WO2018230394A1 - Method for producing alcohols having fluorene skeleton - Google Patents

Method for producing alcohols having fluorene skeleton Download PDF

Info

Publication number
WO2018230394A1
WO2018230394A1 PCT/JP2018/021539 JP2018021539W WO2018230394A1 WO 2018230394 A1 WO2018230394 A1 WO 2018230394A1 JP 2018021539 W JP2018021539 W JP 2018021539W WO 2018230394 A1 WO2018230394 A1 WO 2018230394A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
compound represented
above formula
examples
yield
Prior art date
Application number
PCT/JP2018/021539
Other languages
French (fr)
Japanese (ja)
Inventor
康春 半田
松浦 隆
秀樹 河井
Original Assignee
田岡化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田岡化学工業株式会社 filed Critical 田岡化学工業株式会社
Priority to CN201880022509.2A priority Critical patent/CN110461807B/en
Priority to KR1020197029317A priority patent/KR20200018392A/en
Publication of WO2018230394A1 publication Critical patent/WO2018230394A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/16Preparation of ethers by reaction of esters of mineral or organic acids with hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups

Definitions

  • the present invention relates to a method for producing alcohols having a fluorene skeleton.
  • n 1 and n 2 are the same or different and each represents an integer of 1 or more.
  • the alcohols represented by the formulas are particularly suitable as raw materials for optical resins because the resins produced from the alcohols and their derivatives are excellent in optical properties such as light transmittance, refractive index, and thermal properties such as heat resistance.
  • Patent Literature 1 International Publication No. 2016/047766
  • Patent Literature 2 International Publication No. 2016/147847
  • Patent Literature 3 Japanese Unexamined Patent Publication No. 2011-168723
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2011-068624 Publication
  • Patent Document 4 Examples 13 to 16
  • Method 1 describes that the purity of the alcohol represented by the above formula (1) is very low when the yield is very low or high.
  • Method 2 although the yield and the purity of the alcohol represented by Formula (1) obtained by the method are relatively high, the alcohol represented by Formula (3) is generally difficult to obtain. Therefore, it is necessary to separately produce an alcohol represented by the formula (3), and since sulfuric acid is used in a large amount as a solvent and catalyst, it is not necessarily a method suitable for industrial implementation. .
  • An object of the present invention is to provide a production method suitable for industrial implementation of alcohols represented by the above formula (1).
  • the present inventors have found that the bisnaphthol compound represented by the following formula (2) is unstable, and it is necessary to produce the compound under the specific conditions described below. It was also found that the alcohol represented by the above formula (1) having a high purity can be obtained in a high yield by reacting with ethylene carbonate without taking out the compound after the reaction.
  • the present invention includes the following manufacturing methods.
  • n 1 and n 2 are the same or different and each represents an integer of 1 or more.
  • step (i) is performed in the presence of an aliphatic chain ester and / or an aliphatic cyclic ester.
  • a highly pure alcohol represented by the above formula (1) can be obtained in high yield from 9-fluorenone and naphthol, which are generally available raw materials. Since the alcohol represented by the above formula (1) can be produced without taking out the compound represented by the above formula (2) and the number of production steps can be greatly reduced, it is particularly advantageous for industrial implementation. It can be said that it is a manufacturing method.
  • the present invention includes the steps (i) and (ii) in this order in the production of the alcohol represented by the above formula (1).
  • Step (i) A step of reacting 9-fluorenone with naphthol in the presence of a solid acid to obtain a bisnaphthol compound represented by the above formula (2).
  • Step (ii) The step of reacting the bisnaphthol compound represented by the above formula (2) with ethylene carbonate without taking it out.
  • the solid acid used in the present invention may be an inorganic solid acid or an organic solid acid.
  • the inorganic solid acid include metal compounds; non-metal sulfates; clay minerals; zeolites; kaolin and the like.
  • the metal compound include oxides such as SiO 2 , Al 2 O 3 , TiO 2 , Fe 2 O 3 , ZrO 2 , SnO 2 , and V 2 O 5 ; SiO 2 —Al 2 O 3 , SiO 2 —TiO 2 , Composite oxides such as TiO 2 —ZrO 2 and SiO 2 —ZrO 2 ; sulfides such as ZnS; CaSO 4 , Fe 2 (SO 4 ) 3 , CuSO 4 , NiSO 4 , Al 2 (SO 4 ) 3 , MnSO 4 Sulfates such as BaSO 4 , CoSO 4 , ZnSO 4 ; polyacids containing elements such as P, Mo, V, W, Si, etc.
  • phosphates such as phosphates of AlPO 4 , Ti, etc.
  • different 2 Composite oxide acids composed of more than one kind of oxide complex
  • heteropolyacids in which part or all of the protons of the acid of the polyacid or complex oxide acid are replaced with other cations
  • the nonmetal sulfate include (NH 4 ) 2 SO 4
  • clay minerals include acid clay and montmorillonite. Zeolite, Y-type having an acidic OH group, X type, A type, ZSM5, mordenite, VIPI 5, AlPO 4 -5, and the like AlPO 4 -11.
  • the organic solid acid include a cation exchange resin.
  • the solid acid may be porous or non-porous depending on the type of the solid acid, and only one kind may be used as necessary, or two or more kinds may be used in combination.
  • a heteropolyacid or a cation exchange resin is preferred because of its excellent handleability and availability, and a heteropolyacid is more preferred.
  • preferred embodiments of the heteropolyacid and the cation exchange resin will be described in detail.
  • Heteropolyacids include, for example, oxyacid ions of elements such as phosphorus, arsenic, tin, silicon, titanium, and zirconium (eg, phosphoric acid and silicic acid) and oxyacid ions of elements such as molybdenum, tungsten, vanadium, niobium, and tantalum.
  • oxyacid ions of elements such as phosphorus, arsenic, tin, silicon, titanium, and zirconium (eg, phosphoric acid and silicic acid)
  • oxyacid ions of elements such as molybdenum, tungsten, vanadium, niobium, and tantalum.
  • vanadic acid, molybdic acid, tungstic acid and various heteropolyacids can be selected depending on the combination thereof.
  • Examples of the elements contained in the oxygen acid constituting the heteropolyacid include copper, beryllium, boron, aluminum, carbon, silicon, germanium, tin, titanium, zirconium, cerium, thorium, nitrogen, phosphorus, arsenic, antimony, vanadium, Examples include niobium, tantalum, chromium, molybdenum, tungsten, uranium, selenium, tellurium, manganese, iodine, iron, cobalt, nickel, rhodium, osmium, iridium, platinum, and the like.
  • a heteropolyacid containing at least one element selected from silicon, vanadium, molybdenum and tungsten is preferable, and phosphorus or silicon and at least one element selected from vanadium, molybdenum and tungsten
  • the heteropolyacid containing is more preferable.
  • preferred examples of the heteropolyacid include phosphomolybdic acid, phosphotungstic acid, silicomolybdic acid, silicotungstic acid, and phosphovanadomolybdic acid.
  • the heteropolyacid that can be used in the present invention may be a heteropolyacid salt in which a part or all of protons are replaced with other cations.
  • cations that can replace protons include ammonium cations, alkali metal cations, alkaline earth metal cations, and the like.
  • the heteropolyacid may be an anhydride or a crystal water-containing material.
  • Examples of the cation exchange resin (cationic ion exchange resin, acid ion exchange resin) that can be used in the present invention include strong acid cation exchange resins and weak acid cation exchange resins.
  • Examples of the strongly acidic cation exchange resin include an ion exchange resin having a sulfonic acid group.
  • an ion exchange resin having a sulfonic acid group for example, Sulfonated products of crosslinked polystyrene such as styrene-divinylbenzene copolymer, Examples thereof include a fluorine-containing resin having a sulfonic acid group (or —CF 2 CF 2 SO 3 H group).
  • fluorine-containing resin examples include fluorine-containing ion exchange resins such as a block copolymer of [2- (2-sulfotetrafluoroethoxy) hexafluoropropoxy] trifluoroethylene and tetrafluoroethylene.
  • block copolymer examples include Nafion manufactured by DuPont.
  • weakly acidic cation exchange resin examples include an ion exchange resin having a carboxylic acid group.
  • the ion exchange resin having a carboxylic acid group examples include methacrylic acid-divinylbenzene copolymer and acrylic acid-divinylbenzene copolymer.
  • strong acid cation exchange resins in particular, strong acid cation exchange resins having a styrene-divinylbenzene copolymer as a base (or base) are preferably used.
  • the amount of the solid acid used is, for example, 0.0001 parts by weight or more, preferably 0.001 to 30 parts by weight, more preferably 0.01 to 5 parts by weight with respect to 1 part by weight of 9-fluorenone.
  • the above-mentioned solid acid may be dispersed or dissolved in water or the organic solvent described below and then used in step (i).
  • liquid inorganic acid sulfuric acid, hydrochloric acid, etc.
  • organic acid methanesulfonic acid, etc.
  • the bisnaphthol compound represented by the above formula (2) is reacted with ethylene carbonate without taking it out.
  • the reaction rate can be improved by using a compound having an SH group together with a solid acid.
  • the compound having an SH group that may be used in the present invention include mercaptocarboxylic acid, alkyl mercaptan, aralkyl mercaptan, and salts thereof.
  • the mercaptocarboxylic acid include thioacetic acid, ⁇ -mercaptopropionic acid, ⁇ -mercaptopropionic acid, thioglycolic acid, thiooxalic acid, mercaptosuccinic acid, and mercaptobenzoic acid.
  • alkyl mercaptans examples include C 1-16 alkyl mercaptans such as methyl mercaptan, ethyl mercaptan, propyl mercaptan, isopropyl mercaptan, n-butyl mercaptan, and dodecyl mercaptan.
  • alkyl mercaptans examples include C 1-16 alkyl mercaptans such as methyl mercaptan, ethyl mercaptan, propyl mercaptan, isopropyl mercaptan, n-butyl mercaptan, and dodecyl mercaptan.
  • aralkyl mercaptan examples include benzyl mercaptan.
  • the salt include alkali metal salts (for example, sodium salts such as methyl mercaptan sodium and ethyl mercaptan sodium).
  • the amount of the compound having an SH group is, for example, 0.0001 parts by weight or more, preferably 0.001 to 30 parts by weight, more preferably 1 part by weight of 9-fluorenone. 0.01 to 3 parts by weight.
  • the naphthol used in the present invention may be either 1-naphthol ( ⁇ -naphthol) or 2-naphthol ( ⁇ -naphthol).
  • the amount of naphthol to be used is, for example, usually 2 to 20 mol, preferably 2.1 to 5 mol, per 1 mol of 9-fluorenone. By using 2 mol or more, it becomes possible to produce the bisnaphthol compound represented by the above formula (2) with a higher yield, and by reducing the amount used to 20 mol or less, unreacted naphthol can be reduced. Is possible.
  • an organic solvent may be used, or an organic solvent may not be used, but it is preferable to use an organic solvent in order to carry out step (i) more efficiently.
  • Usable organic solvents include, for example, aromatic hydrocarbons, halogenated aromatic hydrocarbons, aliphatic hydrocarbons, halogenated aliphatic hydrocarbons, ethers, esters, aliphatic nitriles, and the like. Can be mentioned.
  • Aromatic hydrocarbons include toluene, xylene, mesitylene and the like.
  • Examples of halogenated aromatic hydrocarbons include chlorobenzene and dichlorobenzene.
  • Examples of the aliphatic hydrocarbons include pentane, hexane, heptane and the like.
  • Examples of halogenated aliphatic hydrocarbons include dichloromethane and 1,2-dichloroethane.
  • Examples of ethers include diethyl ether, diisopropyl ether, methyl tert-butyl ether, cyclopentyl methyl ether, diphenyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol isopropyl methyl ether, diethylene glycol diethyl Ether, diethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether, triethylene glycol dimethyl ether, diethylene glycol dibutyl ether, triethylene glycol butyl methyl ether, tetra
  • Esters include ethyl acetate, butyl acetate, cellosolve acetate, methyl lactate, butyl lactate, ethyl lactate, ⁇ -butyrolactone, ⁇ -valerolactone, butyl benzoate, methyl benzoate, phenyl acetate, ethylene carbonate, propylene carbonate, etc. Can be mentioned.
  • Examples of aliphatic nitriles include acetonitrile. Only one organic solvent may be used, or two or more organic solvents may be mixed and used as necessary.
  • the solubility of the bisnaphthol compound represented by the above formula (2) is high, and the step (ii) is more efficiently performed when the step (ii) is performed without taking out the compound. Since it becomes possible, aliphatic chain esters (ethyl acetate, butyl acetate, cellosolve acetate, methyl lactate, butyl lactate, ethyl lactate, etc.) and / or aliphatic cyclic esters ( ⁇ -butyrolactone, ⁇ -valerolactone, It is preferable to use an organic solvent containing ethylene carbonate, propylene carbonate and the like.
  • the amount of use should be such that 9-fluorenone and naphthol as raw materials and part or all of the bisnaphthol compound represented by the above formula (2) as a product are dissolved in the organic solvent.
  • it is usually 1 to 30 parts by weight, preferably 2 to 5 parts by weight per 1 part by weight of 9-fluorenone.
  • Step (i) is usually performed at 70 to 130 ° C, preferably 80 to 100 ° C.
  • the internal pressure is lower than 101.3 kPa, more preferably 49.3 kPa or less, and the reaction is carried out while removing by-product water from the system because the reaction proceeds more efficiently.
  • the solid acid used in step (i) may be removed by filtration or neutralized as necessary.
  • bases that can be used for neutralization include alkali metal or alkaline earth metal hydroxides such as sodium hydroxide, potassium hydroxide, and calcium hydroxide, potassium carbonate, calcium carbonate, sodium carbonate, and sodium bicarbonate.
  • the reaction solution after neutralization can be used in step (ii) without removing the salt produced by neutralization.
  • the salt generated by neutralization is removed by filtration, or water is added to the reaction solution, stirred and allowed to stand, and then the aqueous layer is removed (hereinafter also referred to as a water washing step).
  • the salt produced by neutralization may be removed from the reaction solution.
  • the water washing step may be repeated a plurality of times as necessary.
  • step (i) it is necessary to react with ethylene carbonate without taking out the bisnaphthol compound represented by the above formula (2).
  • the bisnaphthol compound represented by the above formula (2) is taken out by a conventional method such as concentration and crystallization, the alcohols represented by the above formula (1) as shown in the section of the following [Example] and the like. In some cases, the yield of the alcohol represented by the above formula (1) may be reduced.
  • step (ii) the bisnaphthol compound represented by the above formula (2) contained in the reaction solution is in a completely dissolved state even in a state where crystals are partially precipitated (slurry state).
  • step (ii) can be carried out more efficiently when the crystals of the bisnaphthol compound represented by formula (2) are completely dissolved. This is preferable.
  • ethylene carbonate is usually used in an amount of 2 to 10 mol, preferably 2 to 4 mol, per 1 mol of 9-fluorenone used in step (i).
  • the reaction may be carried out in the presence of a basic compound as necessary.
  • a basic compound that can be used in step (ii) include carbonates, bicarbonates, hydroxides, organic bases, and the like.
  • carbonates include potassium carbonate, sodium carbonate, lithium carbonate, cesium carbonate and the like.
  • hydrogen carbonates include potassium hydrogen carbonate, sodium hydrogen carbonate, lithium hydrogen carbonate, cesium hydrogen carbonate and the like.
  • hydroxides include sodium hydroxide, potassium hydroxide, lithium hydroxide and the like.
  • organic bases include triethylamine, dimethylaminopyridine, triphenylphosphine, tetramethylammonium bromide, tetramethylammonium chloride and the like.
  • potassium carbonate, sodium carbonate and triphenylphosphine are preferably used from the viewpoint of good handleability. Only 1 type may be used for a basic compound, or 2 or more types may be mixed and used as needed. When a basic compound is used, the amount used is usually 0.01 to 1.0 mol, preferably 0.03 to 0.5 mol, relative to 1 mol of 9-fluorenone used in step (i). .
  • the reaction may be carried out using ethylene carbonate as a solvent, or in the presence of other organic solvents.
  • organic solvent include ketones, aromatic hydrocarbons, halogenated aromatic hydrocarbons, aliphatic hydrocarbons, halogenated aliphatic hydrocarbons, ethers, esters, aliphatic nitriles, amides, Examples include sulfoxides.
  • Ketones include acetone, methyl ethyl ketone, butyl methyl ketone, diisobutyl ketone, methyl isobutyl ketone, methyl isoamyl ketone, 2-heptanone, 2-octanone, cyclohexanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, cyclodecanone, Examples include cycloundecanone.
  • Aromatic hydrocarbons include toluene, xylene, mesitylene and the like. Examples of halogenated aromatic hydrocarbons include chlorobenzene and dichlorobenzene.
  • Examples of the aliphatic hydrocarbons include pentane, hexane, heptane and the like.
  • Examples of halogenated aliphatic hydrocarbons include dichloromethane and 1,2-dichloroethane.
  • Examples of ethers include diethyl ether, diisopropyl ether, methyl tert-butyl ether, cyclopentyl methyl ether, diphenyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol isopropyl methyl ether, diethylene glycol diethyl Ether, diethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether, triethylene glycol dimethyl ether, diethylene glycol dibutyl ether, triethylene glycol butyl methyl ether, tetra
  • esters examples include ethyl acetate, butyl acetate, ⁇ -butyrolactone, and ⁇ -valerolactone.
  • aliphatic nitriles include acetonitrile.
  • amides examples include dimethylformamide and dimethylacetamide.
  • sulfoxides examples include dimethyl sulfoxide.
  • organic solvents an organic solvent having a boiling point of 110 ° C. or higher and an organic solvent selected from aromatic hydrocarbons, ketones, esters and ethers is preferably used because of its availability and ease of handling. It is done. Only one type of organic solvent may be used, or two or more types may be used in combination as required. When an organic solvent is used, the amount used is usually 0.1 to 10 parts by weight, preferably 0.5 to 3 parts by weight, based on 1 part by weight of 9-fluorenone used in step (i).
  • Step (ii) is usually carried out at 30 to 150 ° C., preferably 100 to 130 ° C.
  • the basic compound used in the step (ii) is neutralized as necessary, and then the alcohol represented by the above formula (1) is taken out by a conventional method such as concentration and crystallization. be able to.
  • the reaction solution obtained after the completion of the step (ii) is obtained by the above formula (1).
  • HPLC analysis conditions Apparatus: LC-2010AHT manufactured by Shimadzu Corporation Column: XBridge Shield RP18 (3.5 ⁇ m, 4.6 mm ⁇ ⁇ 250 mm) manufactured by Waters Mobile phase: pure water / acetonitrile (acetonitrile 65% (10 min) ⁇ 100% (10 min) ⁇ 65% (10 min)
  • Example 1 To a glass reactor equipped with a stirrer, a heating / cooling device, and a thermometer, 9-fluorenone 30.0 g (0.17 mol), 2-naphthol 57.6 g (0.40 mol), n-dodecyl mercaptan 1.79 g (0.008 mol), 45.0 g of toluene, 14.8 g of ⁇ -butyrolactone and 0.8 g of phosphotungstic acid were added, the pressure was reduced to 49.3 kPa, the temperature was raised to 100 ° C., and the mixture was stirred at the same temperature for 7 hours, followed by HPLC It was confirmed that the residual ratio of 9-fluorenone was 0.2% or less.
  • Example 2 To a glass reactor equipped with a stirrer, a heating / cooling device, and a thermometer, 9-fluorenone 30.0 g (0.17 mol), 2-naphthol 57.6 g (0.40 mol), n-dodecyl mercaptan 1.79 g (0.008 mol), 30.0 g of toluene, 30.0 g of ethyl acetate and 0.8 g of phosphotungstic acid were charged, the pressure was reduced to 56.7 kPa, the temperature was raised to 100 ° C., and the mixture was stirred at the same temperature for 4 hours. It was confirmed that the residual ratio of 9-fluorenone was 0.2% or less.
  • the aqueous layer was separated and removed, and the organic layer containing the alcohol compound represented by the above formula (1-1) was recovered.
  • the recovered organic layer was cooled to 20 ° C. to precipitate crystals, and the precipitated crystals were separated by filtration.
  • the crystals separated by filtration were washed with water and then dried at 120 ° C. under reduced pressure of 1.3 kPa for 8 hours to obtain an alcohol compound represented by the above formula (1-1).
  • the yield, yield and purity of the alcohol compound represented by the above formula (1-1) are shown below.
  • Example 3 The alcohol compound represented by the above formula (1-1) was obtained in the same manner as in Example 2 except that ethyl acetate was changed to butyl acetate. The yield, yield and purity of the alcohol compound represented by the above formula (1-1) are shown below.
  • Example 4 The same procedure as in Example 1 was carried out except that phosphotungstic acid was changed to silicotungstic acid to obtain an alcohol compound represented by the above formula (1-1). The yield, yield and purity of the alcohol compound represented by the above formula (1-1) are shown below.
  • Example 5 The same procedure as in Example 1 was carried out except that the amount of toluene used was changed from 45.0 g to 90.0 g and the amount of ⁇ -butyrolactone was changed from 14.8 g to 30.0 g. The alcohol compound shown by was obtained. The yield, yield and purity of the alcohol compound represented by the above formula (1-1) are shown below.
  • Example 6 The alcohol compound represented by the above formula (1-1) was obtained in the same manner as in Example 1, except that n-dodecyl mercaptan was changed to ⁇ -mercaptopropionic acid.
  • the yield, yield and purity of the alcohol compound represented by the above formula (1-1) are shown below.
  • Example 7 In a glass reactor equipped with a stirrer, a heating / cooling device, and a thermometer, 9-fluorenone 20.0 g (0.11 mol), 2-naphthol 38.4 g (0.27 mol), ⁇ -mercaptopropionic acid 0. 58 g (0.012 mol), 35.0 g of toluene, 5.0 g of ⁇ -butyrolactone and 1.0 g of phosphotungstic acid were charged, the temperature was raised to 120 ° C., and the mixture was stirred at the same temperature for 2 hours. It was confirmed that the residual rate was 0.2% or less.
  • Example 8> In a glass reactor equipped with a stirrer, a heating / cooling device, and a thermometer, 9-fluorenone 20.0 g (0.11 mol), 2-naphthol 38.4 g (0.27 mol), ⁇ -mercaptopropionic acid 0. 58 g (0.012 mol), 35.0 g of toluene, 5.0 g of ⁇ -butyrolactone and 4.0 g of Amberlyst 15DRY (manufactured by Organo) were charged, the temperature was raised to 120 ° C., and the mixture was stirred at the same temperature for 6 hours. It was confirmed that the residual ratio of 9-fluorenone was 0.2% or less.
  • the aqueous layer was separated and removed, and the organic layer containing the alcohol compound represented by the above formula (1-1) was recovered.
  • the recovered organic layer was cooled to 20 ° C. to precipitate crystals, and the precipitated crystals were separated by filtration.
  • the crystals separated by filtration were dried at 120 ° C. under reduced pressure of 1.3 kPa for 8 hours to obtain an alcohol compound represented by the above formula (1-1).
  • the yield, yield and purity of the alcohol compound represented by the above formula (1-1) are shown below.
  • step (i) was carried out in the same manner except that 0.8 g of phosphotungstic acid was changed to 25.8 g of 98% sulfuric acid. As a result, the residual ratio of 9-fluorenone was 0.2% or less. It took 15 hours. Thereafter, the same procedure as in Example 1 was performed to obtain an alcohol compound represented by the above formula (1-1). The yield, yield and purity of the alcohol compound represented by the above formula (1-1) are shown below.
  • step (i) was carried out in the same manner except that 0.8 g of phosphotungstic acid was changed to 6.0 g of methanesulfonic acid. As a result, the residual ratio of 9-fluorenone was 0.2% or less. It took 20 hours. Thereafter, the same procedure as in Example 1 was performed to obtain an alcohol compound represented by the above formula (1-1). The yield, yield and purity of the alcohol compound represented by the above formula (1-1) are shown below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided is a method for producing alcohols represented by formula (1), which sequentially comprises in the following order: a step (i) for obtaining a bisnaphthol compound represented by formula (2) by reacting 9-fluorenone and naphthol with each other in the presence of a solid acid; and a step (ii) for reacting the bisnaphthol compound represented by formula (2) with ethylene carbonate without taking out the bisnaphthol compound from the reaction system. (In the formulae, n1 and n2 may be the same or different, and each represents an integer of 1 or more.)

Description

フルオレン骨格を有するアルコール類の製造方法Method for producing alcohol having fluorene skeleton
 本発明は、フルオレン骨格を有するアルコール類の製造方法に関する。 The present invention relates to a method for producing alcohols having a fluorene skeleton.
 以下式(1): The following formula (1):
Figure JPOXMLDOC01-appb-C000003

(式中、n及びnはそれぞれ同一又は異なって1以上の整数を表す。)
で表されるアルコール類は、該アルコール類及びその誘導体から製造される樹脂が光透過率、屈折率等の光学特性、及び耐熱性等の熱的特性に優れることから、特に光学樹脂の原材料として着目されている〔例えば、国際公開2016/047766号(特許文献1)、国際公開2016/147847号(特許文献2)、特開2011-168723号公報(特許文献3)、特開2011-068624号公報(特許文献4)〕。
Figure JPOXMLDOC01-appb-C000003

(In the formula, n 1 and n 2 are the same or different and each represents an integer of 1 or more.)
The alcohols represented by the formulas are particularly suitable as raw materials for optical resins because the resins produced from the alcohols and their derivatives are excellent in optical properties such as light transmittance, refractive index, and thermal properties such as heat resistance. [For example, International Publication No. 2016/047766 (Patent Literature 1), International Publication No. 2016/147847 (Patent Literature 2), Japanese Unexamined Patent Publication No. 2011-168723 (Patent Literature 3), Japanese Unexamined Patent Publication No. 2011-068624 Publication (Patent Document 4)].
 一方、上記式(1)で表されるアルコール類の製造方法は殆ど知られておらず、下記の二つの合成ルートが知られるのみである。
方法1
 1-メチルイミダゾール及びジエチレングリコールの存在下、以下式(2-1):
On the other hand, almost no method for producing alcohols represented by the above formula (1) is known, and only the following two synthetic routes are known.
Method 1
In the presence of 1-methylimidazole and diethylene glycol, the following formula (2-1):
Figure JPOXMLDOC01-appb-C000004

で表される化合物とエチレンカーボネートとを反応させる方法(例えば特許文献3合成例2、特許文献4参考例11)
方法2
 硫酸及び3-メルカプトプロピオン酸存在下、9-フルオレノンと以下式(3):
Figure JPOXMLDOC01-appb-C000004

(For example, Patent Document 3 Synthesis Example 2, Patent Document 4 Reference Example 11)
Method 2
In the presence of sulfuric acid and 3-mercaptopropionic acid, 9-fluorenone and the following formula (3):
Figure JPOXMLDOC01-appb-C000005

で表されるアルコール類とを反応させる方法(例えば特許文献4実施例13~16)
Figure JPOXMLDOC01-appb-C000005

(For example, Patent Document 4 Examples 13 to 16)
国際公開2016/047766号International Publication No. 2016/047766 国際公開2016/147847号International Publication No. 2016/147847 特開2011-168723号公報JP 2011-168723 A 特開2011-068624号公報JP 2011-068624 A
 方法1は、極めて収率が低いか、あるいは高収率である場合、得られる上記式(1)で表されるアルコール類の純度が非常に低いことが記載されている。
 方法2は、収率、及び該方法により得られる上記式(1)で表されるアルコール類の純度が比較的高いものの、上記式(3)で表されるアルコール類が一般的に入手困難であるため、別途式(3)で表されるアルコール類を製造する必要があり、また、硫酸を溶媒兼触媒として大量に使用しているため、必ずしも工業的実施に好適な方法とはいえなかった。
Method 1 describes that the purity of the alcohol represented by the above formula (1) is very low when the yield is very low or high.
In Method 2, although the yield and the purity of the alcohol represented by Formula (1) obtained by the method are relatively high, the alcohol represented by Formula (3) is generally difficult to obtain. Therefore, it is necessary to separately produce an alcohol represented by the formula (3), and since sulfuric acid is used in a large amount as a solvent and catalyst, it is not necessarily a method suitable for industrial implementation. .
 本発明の目的は、上記式(1)で表されるアルコール類の工業的実施に好適な製造方法を提供することにある。 An object of the present invention is to provide a production method suitable for industrial implementation of alcohols represented by the above formula (1).
 本発明者らは、前記の課題を解決すべく鋭意研究を重ねた結果、下記式(2)で表されるビスナフトール化合物が不安定であり、該化合物を下記する特定条件で製造する必要があること、また、該化合物を反応後取り出すことなくエチレンカーボネートと反応させることによって、高純度である上記式(1)で表されるアルコール類が、高収率で得られることを見出した。本発明は、以下の製造方法を含む。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the bisnaphthol compound represented by the following formula (2) is unstable, and it is necessary to produce the compound under the specific conditions described below. It was also found that the alcohol represented by the above formula (1) having a high purity can be obtained in a high yield by reacting with ethylene carbonate without taking out the compound after the reaction. The present invention includes the following manufacturing methods.
[1]
 以下式(1):
[1]
The following formula (1):
Figure JPOXMLDOC01-appb-C000006

(式中、n及びnはそれぞれ同一又は異なって1以上の整数を表す。)
で表されるアルコール類の製造方法であって、
 固体酸の存在下、9-フルオレノンとナフトールとを反応させて以下式(2):
Figure JPOXMLDOC01-appb-C000006

(In the formula, n 1 and n 2 are the same or different and each represents an integer of 1 or more.)
A process for producing alcohols represented by:
In the presence of a solid acid, 9-fluorenone and naphthol are reacted to form the following formula (2):
Figure JPOXMLDOC01-appb-C000007

で表されるビスナフトール化合物を得る工程(i)と、
 前記式(2)で表されるビスナフトール化合物を、取り出すことなくエチレンカーボネートと反応させる工程(ii)と、
をこの順で含む、製造方法。
Figure JPOXMLDOC01-appb-C000007

A step (i) of obtaining a bisnaphthol compound represented by:
A step (ii) of reacting the bisnaphthol compound represented by the formula (2) with ethylene carbonate without taking it out;
In this order.
[2]
 固体酸がヘテロポリ酸及び/又は陽イオン交換樹脂である、[1]に記載の製造方法。
[2]
The production method according to [1], wherein the solid acid is a heteropolyacid and / or a cation exchange resin.
[3]
 工程(i)を脂肪族鎖状エステル類及び/又は脂肪族環状エステル類存在下に実施する、[1]又は[2]に記載の製造方法。
[3]
The production method according to [1] or [2], wherein the step (i) is performed in the presence of an aliphatic chain ester and / or an aliphatic cyclic ester.
 本発明によれば、一般的に入手可能な原料である9-フルオレノンとナフトールから、高純度である上記式(1)で表されるアルコール類を、高収率で得ることが可能となる。
 上記式(2)で表される化合物を取り出すことなく上記式(1)で表されるアルコール類が製造可能であり、製造工程数を大幅に削減可能であるので、特に工業的実施に優位な製造方法であるといえる。
According to the present invention, a highly pure alcohol represented by the above formula (1) can be obtained in high yield from 9-fluorenone and naphthol, which are generally available raw materials.
Since the alcohol represented by the above formula (1) can be produced without taking out the compound represented by the above formula (2) and the number of production steps can be greatly reduced, it is particularly advantageous for industrial implementation. It can be said that it is a manufacturing method.
 前述の通り、本発明は、上記式(1)で表されるアルコール類の製造に際し、以下、工程(i)及び(ii)をこの順で含むことを特徴とする。 As described above, the present invention includes the steps (i) and (ii) in this order in the production of the alcohol represented by the above formula (1).
工程(i)
 固体酸の存在下、9-フルオレノンとナフトールとを反応させて上記式(2)で表されるビスナフトール化合物を得る工程。
工程(ii)
 上記式(2)で表されるビスナフトール化合物を、取り出すことなくエチレンカーボネートと反応させる工程。
 以下、上記(i)及び(ii)の工程について詳述する。
Step (i)
A step of reacting 9-fluorenone with naphthol in the presence of a solid acid to obtain a bisnaphthol compound represented by the above formula (2).
Step (ii)
The step of reacting the bisnaphthol compound represented by the above formula (2) with ethylene carbonate without taking it out.
Hereinafter, the steps (i) and (ii) will be described in detail.
 本発明に用いられる固体酸は、無機固体酸であっても有機固体酸であってもよい。
 無機固体酸としては、例えば、金属化合物;非金属硫酸塩;粘土鉱物;ゼオライト;カオリンなどが挙げられる。
 金属化合物としては、SiO、Al、TiO、Fe、ZrO、SnO、Vなどの酸化物;SiO-Al、SiO-TiO、TiO-ZrO、SiO-ZrOなどの複合酸化物;ZnSなどの硫化物;CaSO、Fe(SO、CuSO、NiSO、Al(SO、MnSO、BaSO、CoSO、ZnSOなどの硫酸塩;P、Mo、V、W、Siなどの元素を含有するポリ酸(AlPO、Tiのリン酸塩などのリン酸塩など);異なる2種以上の酸化物複合体からなる複合酸化物酸;及び、上記ポリ酸又は複合酸化物酸の酸のプロトンの一部若しくはすべてを他のカチオンで置き換えたヘテロポリ酸など)が挙げられる。
 非金属硫酸塩としては、(NHSOなどが挙げられる。
 粘土鉱物としては、酸性白土、モンモリロナイトなどが挙げられる。
 ゼオライトとしては、酸性OH基を有するY型、X型、A型、ZSM5、モルデナイト、VIPI、AlPO-5、AlPO-11などが挙げられる。
 有機固体酸としては、例えば、陽イオン交換樹脂などが挙げられる。
 固体酸は、固体酸の種類に応じて多孔性又は非多孔性であってもよく、また、必要に応じ1種のみを用いてもよいしあるいは2種以上を併用することもできる。これら固体酸の中でも取扱性及び入手性が優れることからヘテロポリ酸又は陽イオン交換樹脂が好ましく、ヘテロポリ酸がより好ましい。
 以下、好ましい態様であるヘテロポリ酸及び陽イオン交換樹脂について詳述する。
The solid acid used in the present invention may be an inorganic solid acid or an organic solid acid.
Examples of the inorganic solid acid include metal compounds; non-metal sulfates; clay minerals; zeolites; kaolin and the like.
Examples of the metal compound include oxides such as SiO 2 , Al 2 O 3 , TiO 2 , Fe 2 O 3 , ZrO 2 , SnO 2 , and V 2 O 5 ; SiO 2 —Al 2 O 3 , SiO 2 —TiO 2 , Composite oxides such as TiO 2 —ZrO 2 and SiO 2 —ZrO 2 ; sulfides such as ZnS; CaSO 4 , Fe 2 (SO 4 ) 3 , CuSO 4 , NiSO 4 , Al 2 (SO 4 ) 3 , MnSO 4 Sulfates such as BaSO 4 , CoSO 4 , ZnSO 4 ; polyacids containing elements such as P, Mo, V, W, Si, etc. (phosphates such as phosphates of AlPO 4 , Ti, etc.); different 2 Composite oxide acids composed of more than one kind of oxide complex; and heteropolyacids in which part or all of the protons of the acid of the polyacid or complex oxide acid are replaced with other cations) It is.
Examples of the nonmetal sulfate include (NH 4 ) 2 SO 4 .
Examples of clay minerals include acid clay and montmorillonite.
Zeolite, Y-type having an acidic OH group, X type, A type, ZSM5, mordenite, VIPI 5, AlPO 4 -5, and the like AlPO 4 -11.
Examples of the organic solid acid include a cation exchange resin.
The solid acid may be porous or non-porous depending on the type of the solid acid, and only one kind may be used as necessary, or two or more kinds may be used in combination. Among these solid acids, a heteropolyacid or a cation exchange resin is preferred because of its excellent handleability and availability, and a heteropolyacid is more preferred.
Hereinafter, preferred embodiments of the heteropolyacid and the cation exchange resin will be described in detail.
 ヘテロポリ酸は、例えば、リン、ヒ素、スズ、ケイ素、チタン、ジルコニウムなどの元素の酸素酸イオン(例えば、リン酸、ケイ酸)とモリブデン、タングステン、バナジウム、ニオブ、タンタルなどの元素の酸素酸イオン(例えば、バナジン酸、モリブデン酸、タングステン酸)とで構成されており、その組み合わせにより種々のヘテロポリ酸が選択可能である。 Heteropolyacids include, for example, oxyacid ions of elements such as phosphorus, arsenic, tin, silicon, titanium, and zirconium (eg, phosphoric acid and silicic acid) and oxyacid ions of elements such as molybdenum, tungsten, vanadium, niobium, and tantalum. (For example, vanadic acid, molybdic acid, tungstic acid), and various heteropolyacids can be selected depending on the combination thereof.
 ヘテロポリ酸を構成する酸素酸に含まれる元素としては、例えば、銅、ベリリウム、ホウ素、アルミニウム、炭素、ケイ素、ゲルマニウム、スズ、チタン、ジルコニウム、セリウム、トリウム、窒素、リン、ヒ素、アンチモン、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、ウラン、セレン、テルル、マンガン、ヨウ素、鉄、コバルト、ニッケル、ロジウム、オスミウム、イリジウム、白金などが挙げられる。
 中でも、入手性の観点から、ケイ素、バナジウム、モリブデン及びタングステンから選ばれる少なくとも1種の元素を含有するヘテロポリ酸が好ましく、リン又はケイ素と、バナジウム、モリブデン及びタングステンから選ばれる少なくとも1種の元素とを含有するヘテロポリ酸がより好ましい。具体的には、好ましいヘテロポリ酸として、例えば、リンモリブデン酸、リンタングステン酸、ケイモリブデン酸、ケイタングステン酸、リンバナドモリブデン酸などが挙げられる。
Examples of the elements contained in the oxygen acid constituting the heteropolyacid include copper, beryllium, boron, aluminum, carbon, silicon, germanium, tin, titanium, zirconium, cerium, thorium, nitrogen, phosphorus, arsenic, antimony, vanadium, Examples include niobium, tantalum, chromium, molybdenum, tungsten, uranium, selenium, tellurium, manganese, iodine, iron, cobalt, nickel, rhodium, osmium, iridium, platinum, and the like.
Among them, from the viewpoint of availability, a heteropolyacid containing at least one element selected from silicon, vanadium, molybdenum and tungsten is preferable, and phosphorus or silicon and at least one element selected from vanadium, molybdenum and tungsten The heteropolyacid containing is more preferable. Specifically, preferred examples of the heteropolyacid include phosphomolybdic acid, phosphotungstic acid, silicomolybdic acid, silicotungstic acid, and phosphovanadomolybdic acid.
 本発明に用いることができるヘテロポリ酸は、プロトンの一部若しくはすべてが他のカチオンで置き換えられたヘテロポリ酸の塩であってもよい。プロトンと置換可能なカチオンとして例えば、アンモニウムカチオン、アルカリ金属カチオン、アルカリ土類金属カチオンなどが挙げられる。また、ヘテロポリ酸は無水物であってもよく、結晶水含有物であってもよい。 The heteropolyacid that can be used in the present invention may be a heteropolyacid salt in which a part or all of protons are replaced with other cations. Examples of cations that can replace protons include ammonium cations, alkali metal cations, alkaline earth metal cations, and the like. In addition, the heteropolyacid may be an anhydride or a crystal water-containing material.
 本発明に用いることができる陽イオン交換樹脂(カチオン型イオン交換樹脂、酸型イオン交換樹脂)としては、例えば、強酸性陽イオン交換樹脂、弱酸性陽イオン交換樹脂などが挙げられる。
 強酸性陽イオン交換樹脂としては、例えば、スルホン酸基を有するイオン交換樹脂などが挙げられる。
 スルホン酸基を有するイオン交換樹脂としては、例えば、
 スチレン-ジビニルベンゼンコポリマーなどの架橋ポリスチレンのスルホン化物、
 スルホン酸基(又は-CFCFSOH基)を有する含フッ素樹脂
などが挙げられる。
 上記含フッ素樹脂としては、例えば、[2-(2-スルホテトラフルオロエトキシ)ヘキサフルオロプロポキシ]トリフルオロエチレンとテトラフルオロエチレンとのブロック共重合体などの含フッ素イオン交換樹脂などが挙げられる。
 上記ブロック共重合体としては、例えばデュポン社製のナフィオンなどが挙げられる。
 弱酸性陽イオン交換樹脂としては、例えば、カルボン酸基を有するイオン交換樹脂などが挙げられる。
 カルボン酸基を有するイオン交換樹脂としては、例えば、メタクリル酸-ジビニルベンゼンコポリマー、アクリル酸-ジビニルベンゼンコポリマーなどが挙げられる。
 上記の陽イオン交換樹脂の中でも、強酸性陽イオン交換樹脂、特に、スチレン-ジビニルベンゼンコポリマーを基体(又は母体)とする強酸性陽イオン交換樹脂が好適に用いられる。
Examples of the cation exchange resin (cationic ion exchange resin, acid ion exchange resin) that can be used in the present invention include strong acid cation exchange resins and weak acid cation exchange resins.
Examples of the strongly acidic cation exchange resin include an ion exchange resin having a sulfonic acid group.
As an ion exchange resin having a sulfonic acid group, for example,
Sulfonated products of crosslinked polystyrene such as styrene-divinylbenzene copolymer,
Examples thereof include a fluorine-containing resin having a sulfonic acid group (or —CF 2 CF 2 SO 3 H group).
Examples of the fluorine-containing resin include fluorine-containing ion exchange resins such as a block copolymer of [2- (2-sulfotetrafluoroethoxy) hexafluoropropoxy] trifluoroethylene and tetrafluoroethylene.
Examples of the block copolymer include Nafion manufactured by DuPont.
Examples of the weakly acidic cation exchange resin include an ion exchange resin having a carboxylic acid group.
Examples of the ion exchange resin having a carboxylic acid group include methacrylic acid-divinylbenzene copolymer and acrylic acid-divinylbenzene copolymer.
Among the above cation exchange resins, strong acid cation exchange resins, in particular, strong acid cation exchange resins having a styrene-divinylbenzene copolymer as a base (or base) are preferably used.
 固体酸の使用量として例えば、9-フルオレノン1重量部に対し0.0001重量部以上、好ましくは0.001~30重量部、更に好ましくは0.01~5重量部である。 The amount of the solid acid used is, for example, 0.0001 parts by weight or more, preferably 0.001 to 30 parts by weight, more preferably 0.01 to 5 parts by weight with respect to 1 part by weight of 9-fluorenone.
 工程(i)を実施する際、上記した固体酸を水又は下記する有機溶媒に分散又は溶解させた後、工程(i)に使用してもよい。固体酸ではなく液状の無機酸(硫酸、塩酸等)及び有機酸(メタンスルホン酸等)を用いると、上記式(2)で表されるビスナフトール化合物を、取り出すことなくエチレンカーボネートと反応させることが困難となる場合や、反応させることができたとしても、高純度の上記式(1)で表されるアルコール類を高収率で得ることが困難となる場合がある。 When carrying out step (i), the above-mentioned solid acid may be dispersed or dissolved in water or the organic solvent described below and then used in step (i). When liquid inorganic acid (sulfuric acid, hydrochloric acid, etc.) and organic acid (methanesulfonic acid, etc.) are used instead of solid acid, the bisnaphthol compound represented by the above formula (2) is reacted with ethylene carbonate without taking it out. However, it may be difficult to obtain a high-purity alcohol represented by the above formula (1) in a high yield even if it can be reacted.
 本発明を実施するに際し、固体酸と共にSH基を有する化合物を併用することで、反応速度を向上させることが可能となる。本発明において併用してもよいSH基を有する化合物としては、例えば、メルカプトカルボン酸、アルキルメルカプタン、アラルキルメルカプタン及びこれらの塩が挙げられる。
 メルカプトカルボン酸としては、例えば、チオ酢酸、β-メルカプトプロピオン酸、α-メルカプトプロピオン酸、チオグリコール酸、チオシュウ酸、メルカプトコハク酸、メルカプト安息香酸が挙げられる。
 アルキルメルカプタンとしては、例えば、メチルメルカプタン、エチルメルカプタン、プロピルメルカプタン、イソプロピルメルカプタン、n-ブチルメルカプタン、ドデシルメルカプタンなどのC1-16アルキルメルカプタンが挙げられる。
 アラルキルメルカプタンとしては、例えば、ベンジルメルカプタンが挙げられる。
 上記塩としては、例えば、アルカリ金属塩(例えば、メチルメルカプタンナトリウム、エチルメルカプタンナトリウムなどのナトリウム塩など)が挙げられる。
 上記SH基を有する化合物の中でも、安価に入手可能なことから、β-メルカプトプロピオン酸及びドデシルメルカプタンが好ましい。これらSH基を有する化合物は1種のみを用いてもよいし、あるいは必要に応じ2種以上併用してもよい。
In carrying out the present invention, the reaction rate can be improved by using a compound having an SH group together with a solid acid. Examples of the compound having an SH group that may be used in the present invention include mercaptocarboxylic acid, alkyl mercaptan, aralkyl mercaptan, and salts thereof.
Examples of the mercaptocarboxylic acid include thioacetic acid, β-mercaptopropionic acid, α-mercaptopropionic acid, thioglycolic acid, thiooxalic acid, mercaptosuccinic acid, and mercaptobenzoic acid.
Examples of alkyl mercaptans include C 1-16 alkyl mercaptans such as methyl mercaptan, ethyl mercaptan, propyl mercaptan, isopropyl mercaptan, n-butyl mercaptan, and dodecyl mercaptan.
Examples of aralkyl mercaptan include benzyl mercaptan.
Examples of the salt include alkali metal salts (for example, sodium salts such as methyl mercaptan sodium and ethyl mercaptan sodium).
Among the compounds having an SH group, β-mercaptopropionic acid and dodecyl mercaptan are preferable because they are available at low cost. These SH group-containing compounds may be used alone or in combination of two or more if necessary.
 SH基を有する化合物を使用する場合、SH基を有する化合物の使用量は、例えば、9-フルオレノン1重量部に対し0.0001重量部以上、好ましくは0.001~30重量部、更に好ましくは0.01~3重量部である。 When a compound having an SH group is used, the amount of the compound having an SH group is, for example, 0.0001 parts by weight or more, preferably 0.001 to 30 parts by weight, more preferably 1 part by weight of 9-fluorenone. 0.01 to 3 parts by weight.
 本発明で使用するナフトールは、1-ナフトール(α-ナフトール)、2-ナフトール(β-ナフトール)のいずれであってもよい。
 ナフトールの使用量は、例えば、9-フルオレノン1モルに対し通常2~20モル、好ましくは2.1~5モルである。2モル以上使用することにより、より収率よく上記式(2)で表されるビスナフトール化合物が製造可能となり、また、使用量を20モル以下とすることにより、未反応のナフトールを低減させることが可能となる。
The naphthol used in the present invention may be either 1-naphthol (α-naphthol) or 2-naphthol (β-naphthol).
The amount of naphthol to be used is, for example, usually 2 to 20 mol, preferably 2.1 to 5 mol, per 1 mol of 9-fluorenone. By using 2 mol or more, it becomes possible to produce the bisnaphthol compound represented by the above formula (2) with a higher yield, and by reducing the amount used to 20 mol or less, unreacted naphthol can be reduced. Is possible.
 工程(i)を実施する際、有機溶媒を使用してもよく、有機溶媒を使用しなくてもよいが、より効率よく工程(i)を実施するためには有機溶媒を使用することが好ましい。
 使用可能な有機溶媒としては、例えば、芳香族炭化水素類、ハロゲン化芳香族炭化水素類、脂肪族炭化水素類、ハロゲン化脂肪族炭化水素類、エーテル類、エステル類、脂肪族ニトリル類等が挙げられる。
 芳香族炭化水素類としては、トルエン、キシレン、メシチレン等が挙げられる。
 ハロゲン化芳香族炭化水素類としては、クロロベンゼン、ジクロロベンゼン等が挙げられる。
 脂肪族炭化水素類としては、ペンタン、ヘキサン、ヘプタン等が挙げられる。
 ハロゲン化脂肪族炭化水素類としては、ジクロロメタン、1,2-ジクロロエタン等が挙げられる。
 エーテル類としては、ジエチルエーテル、ジイソプロピルエーテル、メチルtert-ブチルエーテル、シクロペンチルメチルエーテル、ジフェニルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールブチルメチルエーテル、トリプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールブチルメチルエーテル、テトラエチレングリコールジメチルエーテル等が挙げられる。
 エステル類としては、酢酸エチル、酢酸ブチル、セロソルブアセテート、乳酸メチル、乳酸ブチル、乳酸エチル、γ-ブチロラクトン、δ-バレロラクトン、安息香酸ブチル、安息香酸メチル、酢酸フェニル、エチレンカーボネート、プロピレンカーボネート等が挙げられる。
 脂肪族ニトリル類としては、アセトニトリル等が挙げられる。
 有機溶媒は1種のみを用いてもよいし、あるいは必要に応じ2種以上混合して使用してもよい。
When carrying out step (i), an organic solvent may be used, or an organic solvent may not be used, but it is preferable to use an organic solvent in order to carry out step (i) more efficiently. .
Usable organic solvents include, for example, aromatic hydrocarbons, halogenated aromatic hydrocarbons, aliphatic hydrocarbons, halogenated aliphatic hydrocarbons, ethers, esters, aliphatic nitriles, and the like. Can be mentioned.
Aromatic hydrocarbons include toluene, xylene, mesitylene and the like.
Examples of halogenated aromatic hydrocarbons include chlorobenzene and dichlorobenzene.
Examples of the aliphatic hydrocarbons include pentane, hexane, heptane and the like.
Examples of halogenated aliphatic hydrocarbons include dichloromethane and 1,2-dichloroethane.
Examples of ethers include diethyl ether, diisopropyl ether, methyl tert-butyl ether, cyclopentyl methyl ether, diphenyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol isopropyl methyl ether, diethylene glycol diethyl Ether, diethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether, triethylene glycol dimethyl ether, diethylene glycol dibutyl ether, triethylene glycol butyl methyl ether, tetraethylene glycol dimethyl ether Le, and the like.
Esters include ethyl acetate, butyl acetate, cellosolve acetate, methyl lactate, butyl lactate, ethyl lactate, γ-butyrolactone, δ-valerolactone, butyl benzoate, methyl benzoate, phenyl acetate, ethylene carbonate, propylene carbonate, etc. Can be mentioned.
Examples of aliphatic nitriles include acetonitrile.
Only one organic solvent may be used, or two or more organic solvents may be mixed and used as necessary.
 上記の有機溶媒の中でも、上記式(2)で表されるビスナフトール化合物の溶解性が高く、該化合物を取り出すことなく工程(ii)を実施するにあたり、より効率的に工程(ii)が実施可能となることから、脂肪族鎖状エステル類(酢酸エチル、酢酸ブチル、セロソルブアセテート、乳酸メチル、乳酸ブチル、乳酸エチル等)及び/又は脂肪族環状エステル類(γ-ブチロラクトン、δ-バレロラクトン、エチレンカーボネート、プロピレンカーボネート等)を含む有機溶媒を用いることが好ましい。 Among the above organic solvents, the solubility of the bisnaphthol compound represented by the above formula (2) is high, and the step (ii) is more efficiently performed when the step (ii) is performed without taking out the compound. Since it becomes possible, aliphatic chain esters (ethyl acetate, butyl acetate, cellosolve acetate, methyl lactate, butyl lactate, ethyl lactate, etc.) and / or aliphatic cyclic esters (γ-butyrolactone, δ-valerolactone, It is preferable to use an organic solvent containing ethylene carbonate, propylene carbonate and the like.
 有機溶媒を使用する場合、その使用量は、原料の9-フルオレノン及びナフトール、並びに生成物である上記式(2)で表されるビスナフトール化合物の一部又は全部が有機溶媒に溶解すればよく、具体的に例えば、9-フルオレノン1重量部に対し通常1~30重量部、好ましくは2~5重量部である。 In the case of using an organic solvent, the amount of use should be such that 9-fluorenone and naphthol as raw materials and part or all of the bisnaphthol compound represented by the above formula (2) as a product are dissolved in the organic solvent. Specifically, for example, it is usually 1 to 30 parts by weight, preferably 2 to 5 parts by weight per 1 part by weight of 9-fluorenone.
 工程(i)は通常、70~130℃、好ましくは80~100℃で実施する。反応時、内圧を101.3kPaより低い圧力、より好ましくは49.3kPa以下とし、副生する水を系中から除去しながら反応を実施する方がより効率よく反応が進行することから好ましい。 Step (i) is usually performed at 70 to 130 ° C, preferably 80 to 100 ° C. During the reaction, it is preferable that the internal pressure is lower than 101.3 kPa, more preferably 49.3 kPa or less, and the reaction is carried out while removing by-product water from the system because the reaction proceeds more efficiently.
 工程(i)実施後、必要に応じ工程(i)で使用した固体酸をろ過により除去してもよく、又は中和してもよい。中和に使用可能な塩基としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ金属又はアルカリ土類金属の水酸化物、炭酸カリウム、炭酸カルシウム、炭酸ナトリウム、炭酸水素ナトリウム等のアルカリ金属又はアルカリ土類金属の炭酸塩(炭酸水素)塩、アミン類等が例示される。 After step (i), the solid acid used in step (i) may be removed by filtration or neutralized as necessary. Examples of bases that can be used for neutralization include alkali metal or alkaline earth metal hydroxides such as sodium hydroxide, potassium hydroxide, and calcium hydroxide, potassium carbonate, calcium carbonate, sodium carbonate, and sodium bicarbonate. Examples include alkali metal or alkaline earth metal carbonates (hydrogen carbonates), amines, and the like.
 通常、中和後の反応液は、中和により生じた塩を除去することなく工程(ii)に用いることができる。また、必要に応じ、中和により生じた塩をろ過により除去したり、水を反応液に添加し、撹拌し、静置した後、水層を除去する操作(以下、水洗工程と称することもある)を実施することによって、中和により生じた塩を反応液から除去したりしてもよい。水洗工程は、必要に応じ複数回繰り返して実施してもよい。 Usually, the reaction solution after neutralization can be used in step (ii) without removing the salt produced by neutralization. Further, if necessary, the salt generated by neutralization is removed by filtration, or water is added to the reaction solution, stirred and allowed to stand, and then the aqueous layer is removed (hereinafter also referred to as a water washing step). In some cases, the salt produced by neutralization may be removed from the reaction solution. The water washing step may be repeated a plurality of times as necessary.
 工程(i)終了後、上記式(2)で表されるビスナフトール化合物を取り出すことなくエチレンカーボネートと反応させる必要がある。濃縮、晶析等の常法により上記式(2)で表されるビスナフトール化合物を取り出した場合、下記の[実施例]の項等で示す通り、上記式(1)で表されるアルコール類の収率が低下するだけでなく、得られる上記式(1)で表されるアルコール類の純度が低下する場合がある。 After step (i), it is necessary to react with ethylene carbonate without taking out the bisnaphthol compound represented by the above formula (2). When the bisnaphthol compound represented by the above formula (2) is taken out by a conventional method such as concentration and crystallization, the alcohols represented by the above formula (1) as shown in the section of the following [Example] and the like. In some cases, the yield of the alcohol represented by the above formula (1) may be reduced.
 工程(ii)を実施するに際し、反応液に含まれる上記式(2)で表されるビスナフトール化合物は、結晶が一部析出した状態(スラリー状態)であっても、完全に溶解した状態であってもよいが、工程(ii)を実施するにあたり、上記式(2)で表されるビスナフトール化合物の結晶が完溶した状態である方がより効率よく工程(ii)が実施可能となることから好ましい。 In carrying out the step (ii), the bisnaphthol compound represented by the above formula (2) contained in the reaction solution is in a completely dissolved state even in a state where crystals are partially precipitated (slurry state). However, in carrying out step (ii), step (ii) can be carried out more efficiently when the crystals of the bisnaphthol compound represented by formula (2) are completely dissolved. This is preferable.
 工程(ii)において、エチレンカーボネートは、工程(i)で使用した9-フルオレノン1モルに対し、通常2~10モル、好ましくは2~4モル使用する。 In step (ii), ethylene carbonate is usually used in an amount of 2 to 10 mol, preferably 2 to 4 mol, per 1 mol of 9-fluorenone used in step (i).
 工程(ii)を実施するに際し、必要に応じ塩基性化合物存在下にて反応を行ってもよい。塩基性化合物存在下にて反応を行う場合、工程(i)において使用した固体酸を、工程(ii)を実施する前に、ろ過により除去、あるいは中和しておくことが好ましい。
 工程(ii)において使用可能な塩基性化合物としては、炭酸塩類、炭酸水素塩類、水酸化物類、有機塩基類等が例示される。
 炭酸塩類としては、炭酸カリウム、炭酸ナトリウム、炭酸リチウム、炭酸セシウム等が挙げられる。
 炭酸水素塩類としては、炭酸水素カリウム、炭酸水素ナトリウム、炭酸水素リチウム、炭酸水素セシウム等が挙げられる。
 水酸化物類としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等が挙げられる。
 有機塩基類としてトリエチルアミン、ジメチルアミノピリジン、トリフェニルホスフィン、テトラメチルアンモニウムブロミド、テトラメチルアンモニウムクロリド等が挙げられる。
 上記の塩基性化合物の中でも、取扱性の良さの点から、炭酸カリウム、炭酸ナトリウム及びトリフェニルホスフィンが好適に使用される。
 塩基性化合物は1種のみを用いてもよいし、あるいは必要に応じ2種以上混合して使用してもよい。
 塩基性化合物を使用する場合、その使用量は、工程(i)で使用した9-フルオレノン1モルに対し、通常0.01~1.0モル、好ましくは0.03~0.5モルである。
When carrying out step (ii), the reaction may be carried out in the presence of a basic compound as necessary. When the reaction is performed in the presence of a basic compound, it is preferable to remove or neutralize the solid acid used in step (i) by filtration before performing step (ii).
Examples of basic compounds that can be used in step (ii) include carbonates, bicarbonates, hydroxides, organic bases, and the like.
Examples of carbonates include potassium carbonate, sodium carbonate, lithium carbonate, cesium carbonate and the like.
Examples of the hydrogen carbonates include potassium hydrogen carbonate, sodium hydrogen carbonate, lithium hydrogen carbonate, cesium hydrogen carbonate and the like.
Examples of hydroxides include sodium hydroxide, potassium hydroxide, lithium hydroxide and the like.
Examples of organic bases include triethylamine, dimethylaminopyridine, triphenylphosphine, tetramethylammonium bromide, tetramethylammonium chloride and the like.
Among the above basic compounds, potassium carbonate, sodium carbonate and triphenylphosphine are preferably used from the viewpoint of good handleability.
Only 1 type may be used for a basic compound, or 2 or more types may be mixed and used as needed.
When a basic compound is used, the amount used is usually 0.01 to 1.0 mol, preferably 0.03 to 0.5 mol, relative to 1 mol of 9-fluorenone used in step (i). .
 また、工程(ii)を実施するに際し、過剰量のエチレンカーボネートを使用することにより、エチレンカーボネートを溶媒として反応を行ってもよく、それ以外の有機溶媒存在下に反応を行ってもよい。
 有機溶媒としては、ケトン類、芳香族炭化水素類、ハロゲン化芳香族炭化水素類、脂肪族炭化水素類、ハロゲン化脂肪族炭化水素類、エーテル類、エステル類、脂肪族ニトリル類、アミド類、スルホキシド類等が例示される。
 ケトン類としては、アセトン、メチルエチルケトン、ブチルメチルケトン、ジイソブチルケトン、メチルイソブチルケトン、メチルイソアミルケトン、2-ヘプタノン、2-オクタノン、シクロヘキサノン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、シクロオクタノン、シクロデカノン、シクロウンデカノン等が挙げられる。
 芳香族炭化水素類としては、トルエン、キシレン、メシチレン等が挙げられる。
 ハロゲン化芳香族炭化水素類としては、クロロベンゼン、ジクロロベンゼン等が挙げられる。
 脂肪族炭化水素類としては、ペンタン、ヘキサン、ヘプタン等が挙げられる。
 ハロゲン化脂肪族炭化水素類としては、ジクロロメタン、1,2-ジクロロエタン等が挙げられる。
 エーテル類としては、ジエチルエーテル、ジイソプロピルエーテル、メチルtert-ブチルエーテル、シクロペンチルメチルエーテル、ジフェニルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールブチルメチルエーテル、トリプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールブチルメチルエーテル、テトラエチレングリコールジメチルエーテル等が挙げられる。
 エステル類としては、酢酸エチル、酢酸ブチル、γ-ブチロラクトン、δ-バレロラクトン等が挙げられる。
 脂肪族ニトリル類としては、アセトニトリル等が挙げられる。
 アミド類としては、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。
 スルホキシド類としては、ジメチルスルホキシド等が挙げられる。
 上記の有機溶媒の中でも、入手性や取扱性の良さから、沸点が110℃以上の有機溶媒であって芳香族炭化水素類、ケトン類、エステル類及びエーテル類から選ばれる有機溶媒が好適に用いられる。
 有機溶媒は1種類のみを用いてもよいし、あるいは必要に応じ2種類以上併用してもよい。
 有機溶媒を使用する場合、その使用量は、工程(i)で使用した9-フルオレノン1重量部に対し、通常0.1~10重量部、好ましくは0.5~3重量部である。
In carrying out step (ii), by using an excessive amount of ethylene carbonate, the reaction may be carried out using ethylene carbonate as a solvent, or in the presence of other organic solvents.
Examples of the organic solvent include ketones, aromatic hydrocarbons, halogenated aromatic hydrocarbons, aliphatic hydrocarbons, halogenated aliphatic hydrocarbons, ethers, esters, aliphatic nitriles, amides, Examples include sulfoxides.
Ketones include acetone, methyl ethyl ketone, butyl methyl ketone, diisobutyl ketone, methyl isobutyl ketone, methyl isoamyl ketone, 2-heptanone, 2-octanone, cyclohexanone, cyclopentanone, cyclohexanone, cycloheptanone, cyclooctanone, cyclodecanone, Examples include cycloundecanone.
Aromatic hydrocarbons include toluene, xylene, mesitylene and the like.
Examples of halogenated aromatic hydrocarbons include chlorobenzene and dichlorobenzene.
Examples of the aliphatic hydrocarbons include pentane, hexane, heptane and the like.
Examples of halogenated aliphatic hydrocarbons include dichloromethane and 1,2-dichloroethane.
Examples of ethers include diethyl ether, diisopropyl ether, methyl tert-butyl ether, cyclopentyl methyl ether, diphenyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, diethylene glycol ethyl methyl ether, diethylene glycol isopropyl methyl ether, diethylene glycol diethyl Ether, diethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether, triethylene glycol dimethyl ether, diethylene glycol dibutyl ether, triethylene glycol butyl methyl ether, tetraethylene glycol dimethyl ether Le, and the like.
Examples of the esters include ethyl acetate, butyl acetate, γ-butyrolactone, and δ-valerolactone.
Examples of aliphatic nitriles include acetonitrile.
Examples of amides include dimethylformamide and dimethylacetamide.
Examples of the sulfoxides include dimethyl sulfoxide.
Among the above organic solvents, an organic solvent having a boiling point of 110 ° C. or higher and an organic solvent selected from aromatic hydrocarbons, ketones, esters and ethers is preferably used because of its availability and ease of handling. It is done.
Only one type of organic solvent may be used, or two or more types may be used in combination as required.
When an organic solvent is used, the amount used is usually 0.1 to 10 parts by weight, preferably 0.5 to 3 parts by weight, based on 1 part by weight of 9-fluorenone used in step (i).
 工程(ii)は通常30~150℃、好ましくは100~130℃で実施される。 Step (ii) is usually carried out at 30 to 150 ° C., preferably 100 to 130 ° C.
 工程(ii)終了後、必要に応じ、工程(ii)にて使用した塩基性化合物を中和した後、濃縮、晶析等の常法により上記式(1)で表されるアルコール類を取り出すことができる。また、公知の方法と比べ、高純度の上記式(1)で表されるアルコール類が高収率で得られることから、工程(ii)の終了後に得られた反応液は、上記式(1)で表されるアルコール類を取り出すことなく、そのまま樹脂原料として使用することもできる。 After the step (ii) is completed, the basic compound used in the step (ii) is neutralized as necessary, and then the alcohol represented by the above formula (1) is taken out by a conventional method such as concentration and crystallization. be able to. In addition, since the alcohol represented by the above formula (1) having a high purity can be obtained in a high yield as compared with the known method, the reaction solution obtained after the completion of the step (ii) is obtained by the above formula (1). ) Can be used as it is as a resin raw material without taking out the alcohol represented by
 以下に実施例等を挙げて本発明を具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。また、実施例及び比較例に記載した各成分の生成率(残存率)及び純度は下記条件で測定したHPLCの面積百分率値であり、収率は、特に断りのない限り9-フルオレノンに対する有姿収率である。 Hereinafter, the present invention will be specifically described with reference to examples and the like, but the present invention is not limited to these examples. Further, the production rate (residual rate) and purity of each component described in Examples and Comparative Examples are HPLC area percentage values measured under the following conditions, and the yield is solid with respect to 9-fluorenone unless otherwise specified. Yield.
 (1)HPLC分析条件
 装置 :島津製作所製 LC-2010AHT
 カラム:Waters製 XBridge Shield RP18 (3.5μm、4.6mmφ×250mm)
 移動相:純水/アセトニトリル(アセトニトリル65%(10min)→100%(10min)→65%(10min)
(1) HPLC analysis conditions Apparatus: LC-2010AHT manufactured by Shimadzu Corporation
Column: XBridge Shield RP18 (3.5 μm, 4.6 mmφ × 250 mm) manufactured by Waters
Mobile phase: pure water / acetonitrile (acetonitrile 65% (10 min) → 100% (10 min) → 65% (10 min)
 <実施例1>
 攪拌器、加熱冷却器、及び温度計を備えたガラス製反応器に、9-フルオレノン30.0g(0.17mol)、2-ナフトール57.6g(0.40mol)、n-ドデシルメルカプタン1.79g(0.008mol)、トルエン45.0g、γ-ブチロラクトン14.8g及びリンタングステン酸0.8gを仕込み、49.3kPaまで減圧した後に100℃まで昇温し、同温度で7時間撹拌後、HPLCにて9-フルオレノンの残存率が0.2%以下であることを確認した。
 次いで、得られた反応液に24%水酸化ナトリウム水溶液(以下、苛性水と称することもある)0.9gを仕込み、リンタングステン酸を中和した後、120℃まで昇温し、水を留出させた。
 その後、反応液に炭酸カリウム1.2g、エチレンカーボネート36.6g、トルエン1.5gを仕込み、110℃まで昇温後、同温度で13時間攪拌し、HPLCにて上記式(2-1)で表されるビスナフトール化合物の消失を確認した。
 反応終了後、得られた反応液に水7.5g、24%苛性水26.3g仕込んだ後、75~85℃まで昇温し、同温度で4時間攪拌した。撹拌後、水層を分離除去し、下記式(1-1):
Figure JPOXMLDOC01-appb-C000008

で示されるアルコール化合物を含む有機層を回収した。次いで、回収した有機層を20℃まで冷却することにより結晶を析出させ、析出した結晶を濾別した。濾別した結晶を水洗した後、1.3kPaの減圧下120℃で8時間乾燥を行い、上記式(1-1)で示されるアルコール化合物を得た。得られた上記式(1-1)で示されるアルコール化合物の収量、収率及び純度を以下に示す。
<Example 1>
To a glass reactor equipped with a stirrer, a heating / cooling device, and a thermometer, 9-fluorenone 30.0 g (0.17 mol), 2-naphthol 57.6 g (0.40 mol), n-dodecyl mercaptan 1.79 g (0.008 mol), 45.0 g of toluene, 14.8 g of γ-butyrolactone and 0.8 g of phosphotungstic acid were added, the pressure was reduced to 49.3 kPa, the temperature was raised to 100 ° C., and the mixture was stirred at the same temperature for 7 hours, followed by HPLC It was confirmed that the residual ratio of 9-fluorenone was 0.2% or less.
Next, 0.9 g of a 24% aqueous solution of sodium hydroxide (hereinafter sometimes referred to as caustic water) was added to the resulting reaction solution to neutralize phosphotungstic acid, and then the temperature was raised to 120 ° C. to maintain the water. I made it come out.
Thereafter, 1.2 g of potassium carbonate, 36.6 g of ethylene carbonate, and 1.5 g of toluene were added to the reaction liquid, and the temperature was raised to 110 ° C., followed by stirring at the same temperature for 13 hours. The disappearance of the bisnaphthol compound represented was confirmed.
After completion of the reaction, 7.5 g of water and 26.3 g of 24% caustic water were added to the resulting reaction solution, and the temperature was raised to 75 to 85 ° C. and stirred at the same temperature for 4 hours. After stirring, the aqueous layer is separated and removed, and the following formula (1-1):
Figure JPOXMLDOC01-appb-C000008

An organic layer containing an alcohol compound represented by the following was recovered. Next, the recovered organic layer was cooled to 20 ° C. to precipitate crystals, and the precipitated crystals were separated by filtration. The crystals separated by filtration were washed with water and then dried at 120 ° C. under reduced pressure of 1.3 kPa for 8 hours to obtain an alcohol compound represented by the above formula (1-1). The yield, yield and purity of the alcohol compound represented by the above formula (1-1) are shown below.
 得られた結晶の重さ:81.1g(収率:90.4%)
 HPLC純度:95.8%
Weight of the obtained crystal: 81.1 g (Yield: 90.4%)
HPLC purity: 95.8%
 <実施例2>
 攪拌器、加熱冷却器、及び温度計を備えたガラス製反応器に、9-フルオレノン30.0g(0.17mol)、2-ナフトール57.6g(0.40mol)、n-ドデシルメルカプタン1.79g(0.008mol)、トルエン30.0g、酢酸エチル30.0g及びリンタングステン酸0.8gを仕込み、56.7kPaまで減圧した後100℃まで昇温し、同温度で4時間撹拌後、HPLCにて9-フルオレノンの残存率が0.2%以下であることを確認した。
 次いで、得られた反応液に24%苛性水0.9gを仕込み、リンタングステン酸を中和した後、120℃まで昇温し、水を留出させた。
 その後、反応液に炭酸カリウム1.2g、エチレンカーボネート36.6g、トルエン1.5gを仕込み、110℃まで昇温後、同温度で16時間攪拌し、HPLCにて上記式(2-1)で表されるビスナフトール化合物の消失を確認した。
 反応終了後、得られた反応液に水7.5g、24%苛性水26.3g仕込んだ後、75~85℃まで昇温し、同温度で2時間攪拌した。撹拌後、水層を分離除去し、上記式(1-1)で示されるアルコール化合物を含む有機層を回収した。次いで、回収した有機層を20℃まで冷却することにより結晶を析出させ、析出した結晶を濾別した。濾別した結晶を水洗した後、1.3kPaの減圧下120℃で8時間乾燥を行い、上記式(1-1)で示されるアルコール化合物を得た。得られた上記式(1-1)で示されるアルコール化合物の収量、収率及び純度を以下に示す。
<Example 2>
To a glass reactor equipped with a stirrer, a heating / cooling device, and a thermometer, 9-fluorenone 30.0 g (0.17 mol), 2-naphthol 57.6 g (0.40 mol), n-dodecyl mercaptan 1.79 g (0.008 mol), 30.0 g of toluene, 30.0 g of ethyl acetate and 0.8 g of phosphotungstic acid were charged, the pressure was reduced to 56.7 kPa, the temperature was raised to 100 ° C., and the mixture was stirred at the same temperature for 4 hours. It was confirmed that the residual ratio of 9-fluorenone was 0.2% or less.
Next, 0.9 g of 24% caustic water was added to the obtained reaction liquid to neutralize phosphotungstic acid, and then the temperature was raised to 120 ° C. to distill water.
Thereafter, 1.2 g of potassium carbonate, 36.6 g of ethylene carbonate, and 1.5 g of toluene were added to the reaction solution, the temperature was raised to 110 ° C., and the mixture was stirred at the same temperature for 16 hours. The disappearance of the bisnaphthol compound represented was confirmed.
After completion of the reaction, 7.5 g of water and 26.3 g of 24% caustic water were added to the obtained reaction solution, and the temperature was raised to 75 to 85 ° C. and stirred at the same temperature for 2 hours. After stirring, the aqueous layer was separated and removed, and the organic layer containing the alcohol compound represented by the above formula (1-1) was recovered. Next, the recovered organic layer was cooled to 20 ° C. to precipitate crystals, and the precipitated crystals were separated by filtration. The crystals separated by filtration were washed with water and then dried at 120 ° C. under reduced pressure of 1.3 kPa for 8 hours to obtain an alcohol compound represented by the above formula (1-1). The yield, yield and purity of the alcohol compound represented by the above formula (1-1) are shown below.
 得られた結晶の重さ:80.6g(収率:89.9%)
 HPLC純度:94.1%
Weight of the obtained crystal: 80.6 g (Yield: 89.9%)
HPLC purity: 94.1%
 <実施例3>
 実施例2において、酢酸エチルを酢酸ブチルに変更した以外は同様に実施して上記式(1-1)で示されるアルコール化合物を得た。得られた上記式(1-1)で示されるアルコール化合物の収量、収率及び純度を以下に示す。
<Example 3>
The alcohol compound represented by the above formula (1-1) was obtained in the same manner as in Example 2 except that ethyl acetate was changed to butyl acetate. The yield, yield and purity of the alcohol compound represented by the above formula (1-1) are shown below.
 得られた結晶の重さ:80.9g(収率:90.2%)
 HPLC純度:94.6%
Weight of the obtained crystal: 80.9 g (Yield: 90.2%)
HPLC purity: 94.6%
 <実施例4>
 実施例1において、リンタングステン酸をケイタングステン酸に変更した以外は同様に実施して上記式(1-1)で示されるアルコール化合物を得た。得られた上記式(1-1)で示されるアルコール化合物の収量、収率及び純度を以下に示す。
<Example 4>
The same procedure as in Example 1 was carried out except that phosphotungstic acid was changed to silicotungstic acid to obtain an alcohol compound represented by the above formula (1-1). The yield, yield and purity of the alcohol compound represented by the above formula (1-1) are shown below.
 得られた結晶の重さ:79.8g(収率:89.0%)
 HPLC純度:96.3%
Weight of the obtained crystal: 79.8 g (Yield: 89.0%)
HPLC purity: 96.3%
 <実施例5>
 実施例1において、トルエンの使用量を45.0gから90.0gへ、γ-ブチロラクトンの使用量を14.8gから30.0gに変更した以外は同様に実施して上記式(1-1)で示されるアルコール化合物を得た。得られた上記式(1-1)で示されるアルコール化合物の収量、収率及び純度を以下に示す。
<Example 5>
The same procedure as in Example 1 was carried out except that the amount of toluene used was changed from 45.0 g to 90.0 g and the amount of γ-butyrolactone was changed from 14.8 g to 30.0 g. The alcohol compound shown by was obtained. The yield, yield and purity of the alcohol compound represented by the above formula (1-1) are shown below.
 得られた結晶の重さ:80.0g(収率:89.2%)
 HPLC純度:96.1%
Weight of the obtained crystal: 80.0 g (Yield: 89.2%)
HPLC purity: 96.1%
 <実施例6>
 実施例1において、n-ドデシルメルカプタンをβ-メルカプトプロピオン酸に変更した以外は同様に実施して上記式(1-1)で示されるアルコール化合物を得た。得られた上記式(1-1)で示されるアルコール化合物の収量、収率及び純度を以下に示す。
<Example 6>
The alcohol compound represented by the above formula (1-1) was obtained in the same manner as in Example 1, except that n-dodecyl mercaptan was changed to β-mercaptopropionic acid. The yield, yield and purity of the alcohol compound represented by the above formula (1-1) are shown below.
 得られた結晶の重さ:79.5g(収率:88.7%)
 HPLC純度:95.6%
Weight of the obtained crystal: 79.5 g (Yield: 88.7%)
HPLC purity: 95.6%
 <実施例7>
 攪拌器、加熱冷却器、及び温度計を備えたガラス製反応器に、9-フルオレノン20.0g(0.11mol)、2-ナフトール38.4g(0.27mol)、β-メルカプトプロピオン酸0.58g(0.012mol)、トルエン35.0g、γ-ブチロラクトン5.0g及びリンタングステン酸1.0gを仕込み、120℃まで昇温し、同温度で2時間撹拌後、HPLCにて9-フルオレノンの残存率が0.2%以下であることを確認した。
 次いで、得られた反応液に、24%苛性水1.3gを仕込み、リンタングステン酸を中和した後、120℃まで昇温し、水を留去させた。
 その後、反応液に炭酸カリウム0.3g、エチレンカーボネート14.7gを仕込み、内温110℃まで昇温後、同温度で11時間撹拌し、HPLCにて上記式(2-1)で表されるビスナフトール化合物の消失を確認した。
 反応終了後、得られた反応液に水10g、24%苛性水17.5g仕込んだ後、75~85℃まで昇温し、同温度で4時間攪拌した。撹拌後、水層を分離除去し、上記式(1-1)で示されるアルコール化合物を含む有機層を回収した。次いで、回収した有機層を20℃まで冷却することにより結晶を析出させ、析出した結晶を濾別した。濾別した結晶を1.3kPaの減圧下、120℃で8時間乾燥を行い、上記式(1-1)で示されるアルコール化合物を得た。得られた上記式(1-1)で示されるアルコール化合物の収量、収率及び純度を以下に示す。
<Example 7>
In a glass reactor equipped with a stirrer, a heating / cooling device, and a thermometer, 9-fluorenone 20.0 g (0.11 mol), 2-naphthol 38.4 g (0.27 mol), β-mercaptopropionic acid 0. 58 g (0.012 mol), 35.0 g of toluene, 5.0 g of γ-butyrolactone and 1.0 g of phosphotungstic acid were charged, the temperature was raised to 120 ° C., and the mixture was stirred at the same temperature for 2 hours. It was confirmed that the residual rate was 0.2% or less.
Subsequently, 1.3 g of 24% caustic water was added to the obtained reaction liquid to neutralize phosphotungstic acid, and then the temperature was raised to 120 ° C. to distill off the water.
Thereafter, 0.3 g of potassium carbonate and 14.7 g of ethylene carbonate were added to the reaction solution, the temperature was raised to an internal temperature of 110 ° C., and the mixture was stirred at the same temperature for 11 hours, and represented by the above formula (2-1) by HPLC. The disappearance of the bisnaphthol compound was confirmed.
After completion of the reaction, 10 g of water and 17.5 g of 24% caustic water were added to the resulting reaction solution, and then the temperature was raised to 75 to 85 ° C. and stirred at the same temperature for 4 hours. After stirring, the aqueous layer was separated and removed, and the organic layer containing the alcohol compound represented by the above formula (1-1) was recovered. Next, the recovered organic layer was cooled to 20 ° C. to precipitate crystals, and the precipitated crystals were separated by filtration. The crystals separated by filtration were dried at 120 ° C. under reduced pressure of 1.3 kPa for 8 hours to obtain an alcohol compound represented by the above formula (1-1). The yield, yield and purity of the alcohol compound represented by the above formula (1-1) are shown below.
 得られた結晶の重さ:47.7g(収率:79.8%)
 HPLC純度:95.1%
Weight of the obtained crystal: 47.7 g (yield: 79.8%)
HPLC purity: 95.1%
 <実施例8>
 攪拌器、加熱冷却器、及び温度計を備えたガラス製反応器に、9-フルオレノン20.0g(0.11mol)、2-ナフトール38.4g(0.27mol)、β-メルカプトプロピオン酸0.58g(0.012mol)、トルエン35.0g、γ-ブチロラクトン5.0g及びアンバーリスト15DRY(オルガノ社製)4.0gを仕込み、120℃まで昇温し、同温度で6時間撹拌後、HPLCにて9-フルオレノンの残存率が0.2%以下であることを確認した。
 次いで、得られた反応液からアンバーリスト15DRYを濾別した。その後、反応液に炭酸カリウム0.3g、エチレンカーボネート14.7gを仕込み、内温110℃まで昇温後、同温度で6時間撹拌し、HPLCにて上記式(2-1)で表されるビスナフトール化合物の消失を確認した。
 反応終了後、得られた反応液に水10g、24%苛性水17.5g仕込んだ後、75~85℃まで昇温し、同温度で4時間攪拌した。撹拌後、水層を分離除去し、上記式(1-1)で示されるアルコール化合物を含む有機層を回収した。次いで、回収した有機層を20℃まで冷却することにより結晶を析出させ、析出した結晶を濾別した。濾別した結晶を1.3kPaの減圧下、120℃で8時間乾燥を行い、上記式(1-1)で示されるアルコール化合物を得た。得られた上記式(1-1)で示されるアルコール化合物の収量、収率及び純度を以下に示す。
<Example 8>
In a glass reactor equipped with a stirrer, a heating / cooling device, and a thermometer, 9-fluorenone 20.0 g (0.11 mol), 2-naphthol 38.4 g (0.27 mol), β-mercaptopropionic acid 0. 58 g (0.012 mol), 35.0 g of toluene, 5.0 g of γ-butyrolactone and 4.0 g of Amberlyst 15DRY (manufactured by Organo) were charged, the temperature was raised to 120 ° C., and the mixture was stirred at the same temperature for 6 hours. It was confirmed that the residual ratio of 9-fluorenone was 0.2% or less.
Next, Amberlyst 15DRY was filtered off from the obtained reaction solution. Thereafter, 0.3 g of potassium carbonate and 14.7 g of ethylene carbonate were added to the reaction solution, the temperature was raised to an internal temperature of 110 ° C., and the mixture was stirred at the same temperature for 6 hours, and represented by the above formula (2-1) by HPLC. The disappearance of the bisnaphthol compound was confirmed.
After completion of the reaction, 10 g of water and 17.5 g of 24% caustic water were added to the resulting reaction solution, and then the temperature was raised to 75 to 85 ° C. and stirred at the same temperature for 4 hours. After stirring, the aqueous layer was separated and removed, and the organic layer containing the alcohol compound represented by the above formula (1-1) was recovered. Next, the recovered organic layer was cooled to 20 ° C. to precipitate crystals, and the precipitated crystals were separated by filtration. The crystals separated by filtration were dried at 120 ° C. under reduced pressure of 1.3 kPa for 8 hours to obtain an alcohol compound represented by the above formula (1-1). The yield, yield and purity of the alcohol compound represented by the above formula (1-1) are shown below.
 得られた結晶の重さ:51.1g(収率:85.5%)
 HPLC純度:96.7%
Weight of the obtained crystal: 51.1 g (Yield: 85.5%)
HPLC purity: 96.7%
 <比較例1>
 実施例1において、リンタングステン酸0.8gを98%硫酸25.8gに変更した以外は同様に工程(i)を実施したところ、9-フルオレノンの残存率が0.2%以下となるまでに15時間要した。その後、更に実施例1と同様に実施して上記式(1-1)で示されるアルコール化合物を得た。得られた上記式(1-1)で示されるアルコール化合物の収量、収率及び純度を以下に示す。
<Comparative Example 1>
In Example 1, step (i) was carried out in the same manner except that 0.8 g of phosphotungstic acid was changed to 25.8 g of 98% sulfuric acid. As a result, the residual ratio of 9-fluorenone was 0.2% or less. It took 15 hours. Thereafter, the same procedure as in Example 1 was performed to obtain an alcohol compound represented by the above formula (1-1). The yield, yield and purity of the alcohol compound represented by the above formula (1-1) are shown below.
 得られた結晶の重さ:34.5g(収率:38.5%)
 HPLC純度:41.0%
Weight of the obtained crystal: 34.5 g (Yield: 38.5%)
HPLC purity: 41.0%
 <比較例2>
 実施例1において、リンタングステン酸0.8gをメタンスルホン酸6.0gに変更した以外は同様に工程(i)を実施したところ、9-フルオレノンの残存率が0.2%以下となるまでに20時間要した。その後、更に実施例1と同様に実施して上記式(1-1)で示されるアルコール化合物を得た。得られた上記式(1-1)で示されるアルコール化合物の収量、収率及び純度を以下に示す。
<Comparative example 2>
In Example 1, step (i) was carried out in the same manner except that 0.8 g of phosphotungstic acid was changed to 6.0 g of methanesulfonic acid. As a result, the residual ratio of 9-fluorenone was 0.2% or less. It took 20 hours. Thereafter, the same procedure as in Example 1 was performed to obtain an alcohol compound represented by the above formula (1-1). The yield, yield and purity of the alcohol compound represented by the above formula (1-1) are shown below.
 得られた結晶の重さ:30.1g(収率:33.6%)
 HPLC純度:35.1%
Weight of the obtained crystal: 30.1 g (Yield: 33.6%)
HPLC purity: 35.1%
 <比較例3>
 攪拌器、加熱冷却器、及び温度計を備えたガラス製反応器に、9-フルオレノン60.0g(0.33mol)、2-ナフトール115.3g(0.80mol)、β-メルカプトプロピオン酸1.79g(0.012mol)、トルエン120g、及びリンタングステン酸1.5gを仕込み、120℃まで昇温し、同温度で4時間撹拌後、HPLCにて9-フルオレノンの残存率が0.2%以下であることを確認した。
 得られた反応液にトルエン120g、水90g、24%苛性水3.6gを仕込み、リンタングステン酸を中和した後、40℃まで冷却し、同温度で1時間攪拌することで結晶を析出させた後、更に20℃まで冷却し、上記式(2-1)で表されるビスナフトール化合物の結晶93.4gを得た。
 得られた上記式(2-1)で表されるビスナフトール化合物の結晶30.0g、トルエン45g、炭酸カリウム0.7g、エチレンカーボネート14.8gを仕込み、110℃まで昇温後、同温度で8時間攪拌後、HPLCにて上記式(2-1)で表されるビスナフトール化合物の消失を確認した。
 得られた反応液に水7.5g、24%苛性水7.6g仕込んだ後、75~85℃まで昇温し、同温度で4時間攪拌した。撹拌後、水層を分離除去し、上記式(1-1)で示されるアルコール化合物を含む有機層を回収した。次いで、回収した有機層を20℃まで冷却することにより結晶を析出させ、析出した結晶を濾別した。濾別した結晶を1.3kPaの減圧下、120℃で8時間乾燥を行い、上記式(1-1)で示されるアルコール化合物を得た。得られた上記式(1-1)で示されるアルコール化合物の収量、収率及び純度を以下に示す。
<Comparative Example 3>
In a glass reactor equipped with a stirrer, a heating / cooling device, and a thermometer, 9-fluorenone 60.0 g (0.33 mol), 2-naphthol 115.3 g (0.80 mol), β-mercaptopropionic acid 1. 79 g (0.012 mol), 120 g of toluene, and 1.5 g of phosphotungstic acid were added, the temperature was raised to 120 ° C., and the mixture was stirred at the same temperature for 4 hours. The residual ratio of 9-fluorenone was 0.2% or less by HPLC. It was confirmed that.
To the obtained reaction solution, 120 g of toluene, 90 g of water, 3.6 g of 24% caustic water were added to neutralize phosphotungstic acid, and then cooled to 40 ° C. and stirred at the same temperature for 1 hour to precipitate crystals. After further cooling to 20 ° C., 93.4 g of crystals of the bisnaphthol compound represented by the above formula (2-1) were obtained.
The obtained bisnaphthol compound crystal represented by the above formula (2-1) 30.0 g, 45 g of toluene, 0.7 g of potassium carbonate and 14.8 g of ethylene carbonate were charged, and the temperature was raised to 110 ° C. After stirring for 8 hours, disappearance of the bisnaphthol compound represented by the above formula (2-1) was confirmed by HPLC.
After 7.5 g of water and 7.6 g of 24% caustic water were added to the obtained reaction liquid, the temperature was raised to 75 to 85 ° C. and the mixture was stirred at the same temperature for 4 hours. After stirring, the aqueous layer was separated and removed, and the organic layer containing the alcohol compound represented by the above formula (1-1) was recovered. Next, the recovered organic layer was cooled to 20 ° C. to precipitate crystals, and the precipitated crystals were separated by filtration. The crystals separated by filtration were dried at 120 ° C. under reduced pressure of 1.3 kPa for 8 hours to obtain an alcohol compound represented by the above formula (1-1). The yield, yield and purity of the alcohol compound represented by the above formula (1-1) are shown below.
 得られた結晶の重さ:30.4g(収率:52.7%)
 HPLC純度:88.5%
Weight of the obtained crystal: 30.4 g (Yield: 52.7%)
HPLC purity: 88.5%

Claims (3)

  1.  以下式(1):
    Figure JPOXMLDOC01-appb-C000001

    (式中、n及びnはそれぞれ同一又は異なって1以上の整数を表す。)
    で表されるアルコール類の製造方法であって、
     固体酸の存在下、9-フルオレノンとナフトールとを反応させて以下式(2):
    Figure JPOXMLDOC01-appb-C000002

    で表されるビスナフトール化合物を得る工程(i)と、
     前記式(2)で表されるビスナフトール化合物を、取り出すことなくエチレンカーボネートと反応させる工程(ii)と、
    をこの順で含む、製造方法。
    The following formula (1):
    Figure JPOXMLDOC01-appb-C000001

    (In the formula, n 1 and n 2 are the same or different and each represents an integer of 1 or more.)
    A process for producing alcohols represented by:
    In the presence of a solid acid, 9-fluorenone and naphthol are reacted to form the following formula (2):
    Figure JPOXMLDOC01-appb-C000002

    A step (i) of obtaining a bisnaphthol compound represented by:
    A step (ii) of reacting the bisnaphthol compound represented by the formula (2) with ethylene carbonate without taking it out;
    In this order.
  2.  固体酸がヘテロポリ酸及び/又は陽イオン交換樹脂である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the solid acid is a heteropolyacid and / or a cation exchange resin.
  3.  工程(i)を脂肪族鎖状エステル類及び/又は脂肪族環状エステル類存在下に実施する、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein step (i) is carried out in the presence of aliphatic chain esters and / or aliphatic cyclic esters.
PCT/JP2018/021539 2017-06-15 2018-06-05 Method for producing alcohols having fluorene skeleton WO2018230394A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880022509.2A CN110461807B (en) 2017-06-15 2018-06-05 Method for producing alcohols having fluorene skeleton
KR1020197029317A KR20200018392A (en) 2017-06-15 2018-06-05 Method for producing alcohols having a fluorene skeleton

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017118036 2017-06-15
JP2017-118036 2017-06-15

Publications (1)

Publication Number Publication Date
WO2018230394A1 true WO2018230394A1 (en) 2018-12-20

Family

ID=64659206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021539 WO2018230394A1 (en) 2017-06-15 2018-06-05 Method for producing alcohols having fluorene skeleton

Country Status (4)

Country Link
JP (1) JP7128581B2 (en)
KR (1) KR20200018392A (en)
CN (1) CN110461807B (en)
WO (1) WO2018230394A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7303062B2 (en) * 2019-08-19 2023-07-04 帝人株式会社 Compound having fluorene skeleton and method for producing the same
CN113795476B (en) * 2019-05-09 2024-04-09 帝人株式会社 Compound having fluorene skeleton and method for producing same
JP7303055B2 (en) * 2019-05-09 2023-07-04 帝人株式会社 Compound having fluorene skeleton and method for producing the same
JP2021116249A (en) * 2020-01-24 2021-08-10 田岡化学工業株式会社 Crystal of bisnaphthol having fluorene skeleton and method for producing the same
JPWO2022190800A1 (en) * 2021-03-09 2022-09-15

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005104935A (en) * 2003-10-01 2005-04-21 Osaka Gas Co Ltd Polyhydric alcohol having fluorene skeleton and method for producing the same
JP2007099741A (en) * 2005-10-07 2007-04-19 Osaka Gas Co Ltd Compound having fluorene skeleton and method for producing the same
JP2011068624A (en) * 2009-09-28 2011-04-07 Osaka Gas Chem Kk Method for producing fluorene skeleton-containing alcohol
JP2011168723A (en) * 2010-02-19 2011-09-01 Osaka Gas Chem Kk Polyester resin having fluorene skeleton
CN105001027A (en) * 2015-07-24 2015-10-28 上虞日月星科技化学有限公司 Fluorne compound preparing method
JP2017114947A (en) * 2015-12-21 2017-06-29 Jfeケミカル株式会社 Fluorene condensate composition and epoxidation composition and manufacturing method thereof
CN108017521A (en) * 2017-10-30 2018-05-11 江苏永星化工股份有限公司 Double [6- (the 2- hydroxy ethoxies of the 9,9- of high-purity high-bulk-density)Naphthyl] fluorenes preparation method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4671231B2 (en) * 2005-06-16 2011-04-13 田岡化学工業株式会社 Method for producing fluorene derivative
JP5330683B2 (en) * 2007-12-26 2013-10-30 大阪瓦斯株式会社 Alcohol having a fluorene skeleton
WO2010119727A1 (en) * 2009-04-13 2010-10-21 田岡化学工業株式会社 Method for producing fluorene derivative
JP5068828B2 (en) * 2010-01-19 2012-11-07 信越化学工業株式会社 Resist underlayer film forming composition, resist underlayer film forming method, and pattern forming method
JP5782281B2 (en) * 2011-03-29 2015-09-24 大阪ガスケミカル株式会社 (Meth) acrylate with fluorene skeleton
JP5731256B2 (en) * 2011-03-30 2015-06-10 大阪ガスケミカル株式会社 Crystal polymorph of 6,6- (9-fluorenylidene) -di (2-naphthol) and method for producing the same
JP5564091B2 (en) * 2012-11-06 2014-07-30 大阪瓦斯株式会社 Compound having fluorene skeleton and method for producing the same
FR3020067A1 (en) 2014-04-18 2015-10-23 Bluestar Silicones France METHOD FOR COATING A SILICONE COMPOSITION ON A FLEXIBLE SUPPORT
KR102319734B1 (en) 2014-10-23 2021-11-01 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device and light emitting device package including the device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005104935A (en) * 2003-10-01 2005-04-21 Osaka Gas Co Ltd Polyhydric alcohol having fluorene skeleton and method for producing the same
JP2007099741A (en) * 2005-10-07 2007-04-19 Osaka Gas Co Ltd Compound having fluorene skeleton and method for producing the same
JP2011068624A (en) * 2009-09-28 2011-04-07 Osaka Gas Chem Kk Method for producing fluorene skeleton-containing alcohol
JP2011168723A (en) * 2010-02-19 2011-09-01 Osaka Gas Chem Kk Polyester resin having fluorene skeleton
CN105001027A (en) * 2015-07-24 2015-10-28 上虞日月星科技化学有限公司 Fluorne compound preparing method
JP2017114947A (en) * 2015-12-21 2017-06-29 Jfeケミカル株式会社 Fluorene condensate composition and epoxidation composition and manufacturing method thereof
CN108017521A (en) * 2017-10-30 2018-05-11 江苏永星化工股份有限公司 Double [6- (the 2- hydroxy ethoxies of the 9,9- of high-purity high-bulk-density)Naphthyl] fluorenes preparation method

Also Published As

Publication number Publication date
KR20200018392A (en) 2020-02-19
CN110461807A (en) 2019-11-15
CN110461807B (en) 2022-11-29
JP2019001780A (en) 2019-01-10
JP7128581B2 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
JP7128581B2 (en) Method for producing alcohol having fluorene skeleton
TWI503306B (en) Polymorphic crystals of fluorene derivative
JP4671231B2 (en) Method for producing fluorene derivative
JP4671235B2 (en) Method for producing fluorene derivative
JP6083900B2 (en) Method for producing binaphthalene compound
CN107848933B (en) Crystal of alcohol having fluorene skeleton and method for producing same
JP5274349B2 (en) Process for producing 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene
KR102300816B1 (en) Method for producing fluorenylidene diallyl phenols and fluorenylidene diallyl phenols
CN106008451B (en) The preparation method of episulfide compounds
JP6016303B2 (en) Method for producing xanthene compound having fluorene skeleton
JP2007197367A (en) Method for producing fluorene derivative
JP6183956B2 (en) Method for producing fluorenone derivative
JP5230019B2 (en) Process for producing 9,9-bis (4- (2-hydroxyethoxy) phenyl) fluorene
JP7290908B2 (en) Method for producing alcohol having fluorene skeleton
JP5062856B2 (en) Method for producing 9,9-biscresol fluorene
JP5183579B2 (en) High purity 1,1-bis- (4-hydroxy-3-methylphenyl) cyclododecane and process for producing the same
JP6330806B2 (en) Method for producing unsaturated acid ester or unsaturated acid
JP2014201551A (en) Method for manufacturing an anthrone derivative
JP7317642B2 (en) Method for producing fluorene derivative
JP2010059098A (en) Method for producing 9,9-biscresol fluorene
TW202136186A (en) Crystal of bisnaphthol having fluorene skeleton and manufacturing method thereof
JP6024410B2 (en) Method for producing hydroxyadamantane polycarboxylic acid compound
JP2020186220A (en) Compound having fluorene skeleton and production method of the same
JP2019147750A (en) Novel manufacturing method of 2,2-bis(4-hydroxy-3-methylphenyl)propane
JP2017061428A (en) Production method of 1,1-bis-(4-hydroxyethoxy-3-methylphenyl)cyclododecane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197029317

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18817134

Country of ref document: EP

Kind code of ref document: A1