WO2018230299A1 - Asphalt composition - Google Patents

Asphalt composition Download PDF

Info

Publication number
WO2018230299A1
WO2018230299A1 PCT/JP2018/020039 JP2018020039W WO2018230299A1 WO 2018230299 A1 WO2018230299 A1 WO 2018230299A1 JP 2018020039 W JP2018020039 W JP 2018020039W WO 2018230299 A1 WO2018230299 A1 WO 2018230299A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
copolymer
asphalt composition
asphalt
group
Prior art date
Application number
PCT/JP2018/020039
Other languages
French (fr)
Japanese (ja)
Inventor
隆行 城本
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2019525262A priority Critical patent/JP6776449B2/en
Publication of WO2018230299A1 publication Critical patent/WO2018230299A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch

Definitions

  • the present invention relates to an asphalt composition.
  • asphalt compositions have been widely used for road pavement, waterproof sheets, sound insulation sheets, roofing and the like.
  • asphalt composition is used for various purposes, many attempts have been made to add various polymers to the asphalt to improve its properties.
  • the polymer include an ethylene-vinyl acetate copolymer, an ethylene-ethyl acrylate copolymer, a rubber latex, and a block copolymer composed of a conjugated diene and a vinyl aromatic hydrocarbon.
  • Patent Document 1 has a problem in that the low temperature physical properties are poor and the additive is not uniformly dissolved in asphalt, so that the high temperature storage stability may be deteriorated. Yes.
  • the technique described in Patent Document 2 has a problem that the balance between low-temperature physical properties and various characteristics is poor.
  • the technique described in Patent Document 3 has a problem that as the amount of the additive increases, the viscosity of the asphalt composition increases and the processability is inferior.
  • an object of the present invention is to provide an asphalt composition which is excellent in viscosity, low temperature physical properties, copolymer and polyphenylene ether solubility in asphalt, and excellent in high temperature physical properties.
  • the present inventors have found that a copolymer having a vinyl aromatic monomer unit and a conjugated diene monomer unit, and a predetermined reduced viscosity. It has been found that asphalt compositions containing a predetermined amount of polyphenylene ether and asphalt can solve the above-mentioned problems of the prior art, and the present invention has been completed. That is, the present invention is as follows.
  • the content of (a) is 2.5 to 14% by mass,
  • the content of (b) is 0.1 to 10% by mass,
  • the content of (c) is 80 to 97% by mass, An asphalt composition.
  • the polyphenylene ether (b) is It consists of at least one functional group selected from the group consisting of a carboxyl group and / or a group derived from a carboxyl group, a hydroxyl group, an acid anhydride group, an epoxy group, an amino group, an amide group, a silanol group, and an alkoxysilane group.
  • the content of (a) is 4 to 14% by mass, The content of (b) is 0.1 to 8% by mass, The content of (c) is 80 to 97% by mass, The asphalt composition according to any one of [1] to [3].
  • the content of (a) is 4 to 12% by mass, The content of (b) is 0.1 to 5% by mass, The content of (c) is 85 to 97% by mass, The asphalt composition according to any one of [1] to [4].
  • thermoplastic resin composition (d) has a sea-island structure composed of a sea phase composed of the copolymer (a) and an island phase composed of the polyphenylene ether (b),
  • the content of (d) is 3 to 15% by mass
  • the content of (c) is 85 to 97% by mass
  • thermoplastic resin composition (d) contains an antioxidant.
  • copolymer (a) having the vinyl aromatic monomer unit and the conjugated diene monomer unit is hydrogenated.
  • SBS styrene-butadiene-styrene copolymer
  • an asphalt composition excellent in high-temperature physical properties and excellent in viscosity, low-temperature physical properties, copolymer and polyphenylene ether solubility in asphalt it is possible to obtain an asphalt composition excellent in high-temperature physical properties and excellent in viscosity, low-temperature physical properties, copolymer and polyphenylene ether solubility in asphalt.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be implemented with various modifications within the scope of the gist.
  • Asphalt composition of this embodiment A copolymer (a) having a vinyl aromatic monomer unit and a conjugated diene monomer unit; Polyphenylene ether (b) having a reduced viscosity of 0.07 dL / g to 0.60 dL / g; Asphalt (c), Containing,
  • the content of (a) is 2.5 to 14% by mass,
  • the content of (b) is 0.1 to 10% by mass,
  • the content of (c) is 80 to 97% by mass.
  • the structural unit constituting the copolymer is referred to as “ ⁇ monomer unit”, and when describing as a polymer material, “unit” is omitted, and simply described as “ ⁇ monomer”. .
  • the asphalt composition of this embodiment is a copolymer (a) having a vinyl aromatic monomer unit and a conjugated diene monomer unit (hereinafter referred to as copolymer (a), component (a)). There is. ).
  • the copolymer (a) may be either a random copolymer or a block copolymer, both of which are preferred forms.
  • a block copolymer having a polymer block mainly composed of vinyl aromatic monomer units and a polymer block mainly composed of conjugated diene monomer units can be mentioned as a preferred embodiment.
  • Other monomer units may be included as long as the object of the present embodiment is not impaired.
  • “mainly” means that the content of a predetermined monomer unit in the block is 80% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more. Say something. Although there is no restriction
  • the asphalt composition of the present embodiment contains 2.5 to 14% by mass of the copolymer (a), so that it has excellent high-temperature properties, and the viscosity, low-temperature performance, and copolymer of the asphalt composition.
  • the properties of (a) solubility in asphalt are excellent, and the balance of these properties is excellent. From the viewpoint described above, the content of the copolymer (a) in the asphalt composition of the present embodiment is preferably 4 to 14% by mass, more preferably 4 to 12% by mass.
  • the copolymer (a) has a polymer block mainly composed of vinyl aromatic monomer units and a polymer block mainly composed of conjugated diene monomer units, as described above.
  • the block copolymer (hereinafter sometimes referred to as a block copolymer (a)) is a preferred form. Further, in addition to this, a copolymer block comprising a vinyl aromatic monomer unit and a conjugated diene monomer unit may be included.
  • the block copolymer (a) preferably contains at least one block copolymer selected from the group consisting of the following formulas (i) to (xii).
  • S represents a polymer block mainly composed of vinyl aromatic monomer units
  • B represents a polymer block mainly composed of conjugated diene monomer units
  • R represents a copolymer block composed of a vinyl aromatic monomer unit and a conjugated diene monomer unit
  • X represents a residue of a coupling initiator or a residue of a polymerization initiator such as polyfunctional organolithium.
  • M is an integer from 2 to 6
  • n and k are each independently an integer from 1 to 4.
  • the values of m, n and k in (i) to (vi) may be the same or different.
  • structures such as molecular weight and composition may be the same or different.
  • X represents a residue of a coupling agent or a residue of a polymerization initiator such as polyfunctional organolithium, From the viewpoint of controlling the molecular weight of the block, X is preferably a coupling residue.
  • the coupling agent is not limited to the following, for example, silicon tetrachloride, tin tetrachloride, epoxy compounds, polyhalogenated hydrocarbon compounds, carboxylic acid ester compounds, polyvinyl compounds, alkoxysilane compounds, halogenated Examples include silane compounds and ester compounds.
  • the coupling agent is preferably an alkoxysilane compound or an epoxy compound, and more preferably an epoxy compound. preferable.
  • alkoxysilane compounds include, but are not limited to, for example, tetraalkoxysilane compounds such as tetramethoxysilane and the like; tetraaroxysilane compounds such as tetraphenoxysilane and the like; methyltriethoxysilane and the like Alkylalkoxysilane compounds having two or more alkoxy groups such as the same; alkyltrioxysilane compounds having two or more aryloxy groups such as methyltriphenoxysilane and the like; vinyltrimethoxysilane And alkenylalkoxysilane compounds having two or more alkoxy groups such as the same; and halogenoalkoxysilane compounds such as trimethoxychlorosilane and the like It is. Of these, alkylalkoxysilanes having 2 to 4 alkoxy groups are preferred from the viewpoints of heat deterioration resistance and the productivity of the block copolymer (a).
  • epoxy compounds include, but are not limited to, polyepoxidized vegetable oils such as epoxidized soybean oil or epoxidized linseed oil; epoxidized polybutadiene, epoxidized tetraallyl ether pentaerythritol, epoxy compounds having a phenyl group, and the like. Can be mentioned. In these, the epoxy compound which has a phenyl group from a viewpoint of heat-resistant deterioration and the manufacture property of a block copolymer is preferable.
  • the number of alkoxysilyl groups or epoxy groups in the alkoxysilane compound or epoxy compound is such that the mixing temperature of the asphalt composition of the present embodiment is low, the viscosity of the asphalt composition is low, and the copolymer (a) in the asphalt composition is small. From the viewpoint of deterioration and high peeling resistance of the aggregate when it is made into a mixture of the asphalt composition and the aggregate, 2 to 5 is preferable per molecule, and 2 to 4 is more preferable.
  • the copolymer (a) used in the asphalt composition of the present embodiment includes a high temperature physical property of the asphalt composition, a low viscosity of the asphalt composition, a low temperature physical property of the asphalt composition, and a polyphenylene ether (b) and a copolymer (a ) From the viewpoint of solubility in asphalt, [(SB) k ] m -X (m is an integer of 2 to 4, k is an integer of 1 to 4, and S is a vinyl aromatic monomer.
  • B is a polymer block mainly comprising a conjugated diene monomer unit
  • X is a residue of a coupling agent or a residue of a polymerization initiator).
  • B is a polymer block mainly composed of a conjugated diene monomer unit.
  • R is a copolymer block composed of a vinyl aromatic monomer unit and a conjugated diene monomer unit
  • X is a residue of a coupling agent or a residue of a polymerization initiator. It is preferable to contain the block copolymer which has.
  • the weight average molecular weight (Mw) of the copolymer (a) used in the asphalt composition of this embodiment is high as the softening point of the asphalt composition, and high peeling of the aggregate when the asphalt composition and the aggregate are mixed. From the viewpoint of resistance, it is preferably 40,000 or more, more preferably 60,000 or more, and even more preferably 100,000 or more. Further, from the viewpoint of the low viscosity of the asphalt composition and the small deterioration of the copolymer (a) in the asphalt composition, it is preferably 400,000 or less, more preferably 350,000 or less, and 300,000 or less. More preferably it is.
  • the weight average molecular weight of a copolymer (a) can be calculated
  • the content of the vinyl aromatic monomer unit in the copolymer (a) used in the asphalt composition of the present embodiment is a high softening point of the asphalt composition, and a mixture of the asphalt composition and the aggregate. From the viewpoint of high peeling resistance of the aggregate, it is preferably 10% by mass or more, more preferably 14% by mass or more, further preferably 20% by mass or more, and further more preferably 25% by mass or more. Further, from the viewpoint of low viscosity of the asphalt composition, little deterioration of the copolymer (a), and flexibility of the asphalt composition, it is preferably 60% by mass or less, more preferably 55% by mass or less, and 52% by mass. The following is more preferable, and 45% by mass or less is even more preferable.
  • the content of the vinyl aromatic monomer unit in the copolymer (a) refers to the content of the vinyl aromatic monomer unit as the entire copolymer (a).
  • the copolymer (a) there are a plurality of components, that is, when the copolymer (a) is a mixture of a plurality of types of copolymers, the vinyl aromatic monomer unit of each copolymer When the contents are different, it is the average value of the contents of the respective vinyl aromatic monomer units.
  • content of the vinyl aromatic monomer unit in a copolymer (a) can be measured by the method as described in the Example mentioned later.
  • the vinyl aromatic monomer unit is included in the coalesced block in an amount of 80% by mass to 100% by mass.
  • the copolymer (a) is preferably 50% by mass or less, more preferably 45% by mass or less, It is further preferably 40% by mass or less, and further preferably 35% by mass or less.
  • the content of the polymer block mainly composed of the vinyl aromatic monomer unit in the copolymer (a) is described in the examples described later, and the vinyl aromatic monomer in the block copolymer. It can be measured by a method for measuring the body block content.
  • the copolymer (a) used in the asphalt composition of the present embodiment has a high softening point of the asphalt composition, high heat deterioration resistance of the copolymer (a), and extrusion blending with polyphenylene ether (b) described later. From the viewpoint of thermal deterioration with little, it is preferable that the double bond contained in the conjugated diene monomer unit in the copolymer (a) is hydrogenated.
  • Double bond water contained in the conjugated diene monomer unit from the viewpoint of high softening point of asphalt composition, high heat deterioration resistance during storage, and low thermal deterioration during extrusion blending with polyphenylene ether (b)
  • the addition rate is preferably 10 mol% or more, more preferably 20 mol% or more, and further preferably 30 mol% or more.
  • the hydrogenation rate of the double bond amount contained in the conjugated diene monomer unit is preferably 90 mol% or less, more preferably 75 mol% or less, and more preferably 60 mol% or less from the viewpoint of high compatibility with asphalt. Further preferred.
  • the conjugated diene monomer unit does not have the conjugated diene by hydrogenation, but is referred to as “conjugated diene monomer unit” in the present specification regardless of before and after hydrogenation.
  • the hydrogenation rate of the double bond amount can be adjusted by controlling the hydrogenation amount and the hydrogenation reaction time in the hydrogenation step. Moreover, in this embodiment, a hydrogenation rate can be calculated
  • the amount of vinyl bonds in the conjugated diene monomer unit before hydrogenation of the copolymer (a) used in the asphalt composition of the present embodiment is from the viewpoint of high compatibility with asphalt and low viscosity of the asphalt composition. 8 mol% or more, preferably 10 mol% or more, more preferably 12 mol% or more.
  • the vinyl bond amount in the conjugated diene monomer unit before hydrogenation of the copolymer (a) is preferably 45 mol% or less from the viewpoint of less deterioration of the copolymer (a) in the asphalt composition, 40 mol% or less is more preferable, 30 mol% or less is more preferable, and 25 mol% or less is even more preferable.
  • the melt flow rate (MFR, 200 ° C., 5 kgf) of the copolymer (a) used in the asphalt composition of the present embodiment is the productivity of the copolymer (a), during extrusion blending with the polyphenylene ether (b) From the viewpoint of low thermal deterioration, it is preferably 0.01 g / 10 min or more, more preferably 0.2 g / 10 min or more, further preferably 1.0 g / 10 min or more, and further preferably 3 g / 10 min or more. More preferred.
  • 100 g / 10 min or less is preferable, 50 g / 10 min or less is more preferable, and 30 g / 10 min or less is more preferable.
  • the copolymer (a) contains a modifying group composed of a functional group (a modified copolymer having a modifying group composed of a functional group) from the viewpoint of excellent separability of the asphalt composition and interaction with asphalt and / or aggregate. It is preferably a polymer.
  • the functional group include, but are not limited to, at least one functional group selected from the group consisting of a hydroxyl group, an acid anhydride group, an epoxy group, an amino group, an amide group, a silanol group, and an alkoxysilane group. It is done. It is preferable that a modifying group comprising these functional groups is added to the copolymer (a).
  • the method for adding a modifying group comprising a functional group is not limited to the following, but for example, a block copolymer may be used.
  • the copolymer (a) used in the asphalt composition of the present embodiment is obtained by polymerizing at least a conjugated diene monomer and a vinyl aromatic monomer using, for example, a lithium compound as a polymerization initiator in a hydrocarbon solvent.
  • a solvent removal step for removing the solvent can be sequentially performed for production.
  • a polymer is obtained by polymerizing a monomer containing at least a conjugated diene monomer and a vinyl aromatic monomer in a hydrocarbon solvent using a lithium compound as a polymerization initiator.
  • the hydrocarbon solvent used in the polymerization step is not limited to the following, but examples thereof include aliphatic hydrocarbons such as butane, pentane, hexane, isopentane, heptane, and octane; cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane. And alicyclic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene. These may be used alone or in combination of two or more.
  • Examples of the lithium compound used as a polymerization initiator in the polymerization step include, but are not limited to, for example, a compound in which one or more lithium atoms are bonded in a molecule such as an organic monolithium compound, an organic dilithium compound, and an organic polylithium compound. It is done.
  • Examples of such an organic lithium compound include, but are not limited to, for example, ethyl lithium, n-propyl lithium, isopropyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, hexamethylene dilithium, butadiene
  • Examples include enildilithium and isoprenyldilithium. These may be used alone or in combination of two or more.
  • conjugated diene monomer examples include, but are not limited to, for example, 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3 -Diolefins having a pair of conjugated double bonds such as pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, etc.
  • 1,3-butadiene and isoprene are preferable from the viewpoint of economy. From the viewpoint of mechanical strength, 1,3-butadiene is more preferable. These may be used individually by 1 type and may use 2 or more types together.
  • vinyl aromatic monomer examples include, but are not limited to, styrene, ⁇ -methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylethylene, N, N-dimethyl-p-aminoethylstyrene. And vinyl aromatic compounds such as N, N-diethyl-p-aminoethylstyrene. Among these, styrene is preferable from the viewpoint of economy. These may be used alone or in combination of two or more.
  • conjugated diene monomer and vinyl aromatic monomer In addition to the conjugated diene monomer and vinyl aromatic monomer, other monomers copolymerizable with the conjugated diene monomer and vinyl aromatic monomer can also be used.
  • polar compounds and randomizing agents include, but are not limited to, ethers such as tetrahydrofuran, diethylene glycol dimethyl ether and diethylene glycol dibutyl ether; amines such as triethylamine and tetramethylethylenediamine; thioethers, phosphines, phosphoramides, alkylbenzenes Examples thereof include sulfonates, potassium and sodium alkoxides, and the like.
  • the polymerization method is not particularly limited, and a known method can be applied.
  • Known methods include, for example, Japanese Patent Publication No. 36-19286, Japanese Patent Publication No. 43-171979, Japanese Patent Publication No. 46-32415, Japanese Patent Publication No. 49-36957, Japanese Patent Publication No. 48-2423, and Japanese Patent Publication No. Sho. Examples thereof include the methods described in JP-A-48-4106, JP-B-56-28925, JP-A-59-166518, JP-A-60-186777, and the like.
  • ⁇ Deactivation process> In the manufacturing method of a copolymer (a), it is preferable to deactivate the active terminal of a copolymer by performing a deactivation process after a superposition
  • Examples of the method of deactivating the active terminal of the copolymer include a method of reacting with a compound having an active terminal and active hydrogen. Although it does not specifically limit as a compound which has active hydrogen, From an economical viewpoint, alcohol and water are preferable.
  • the hydrogenation step is a step in which a hydrogenation reaction is performed on a part of the double bond in the conjugated diene monomer unit of the copolymer obtained in the polymerization step in the presence of a predetermined catalyst.
  • the catalyst used in the hydrogenation reaction is not limited to the following, but, for example, a supported heterogeneous system in which a metal such as Ni, Pt, Pd, or Ru is supported on a support such as carbon, silica, alumina, or diatomaceous earth.
  • Catalyst So-called Ziegler type catalyst using organic salt such as Ni, Co, Fe, Cr or the like and acetylacetone salt and reducing agent such as organic Al; so-called organic complex catalyst such as organometallic compound such as Ru and Rh, or titanocene compound
  • organic complex catalyst such as organometallic compound such as Ru and Rh, or titanocene compound
  • a homogeneous catalyst using organic Li, organic Al, organic Mg or the like as the reducing agent can be mentioned.
  • a homogeneous catalyst system using organic Li, organic Al, organic Mg or the like as a reducing agent in a titanocene compound is preferable from the viewpoints of economy, heat aging resistance of the polymer, or weather resistance.
  • the hydrogenation method is not limited to the following, but for example, the method described in JP-B-42-8704 and JP-B-43-6636, preferably JP-B-63-4841 and JP-B-63- The method described in 5401 gazette is mentioned.
  • hydrogenated block copolymer solution can be obtained by hydrogenation in the presence of a hydrogenation catalyst in an inert solvent.
  • any of a batch process, a continuous process, or a combination thereof can be used.
  • the hydrogenation reaction is not particularly limited, but is preferably performed after the above-described step of deactivating the active terminal of the copolymer from the viewpoint of high hydrogenation activity.
  • the conjugated bond of the vinyl aromatic monomer unit may be hydrogenated.
  • the hydrogenation rate of the conjugated bond in all vinyl aromatic monomer units is preferably 30 mol% or less, more preferably 10 mol% or less, and further preferably 3 mol% or less.
  • the lower limit of the hydrogenation rate of the conjugated bond in the all vinyl aromatic monomer is not particularly limited, but is preferably a value higher than 0 mol%, more preferably 1 mol% or more.
  • the solvent removal step is a step of removing the solvent of the solution containing the copolymer (a).
  • the solvent removal method is not particularly limited, and examples thereof include a steam stripping method and a direct solvent removal method.
  • the amount of residual solvent in the copolymer obtained by the solvent removal step is preferably 2% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.2% by mass or less, More preferably, it is 0.05 mass% or less, More preferably, it is 0.01 mass% or less.
  • the lower limit of the residual solvent amount in the copolymer is not particularly limited, but it is preferably less, and preferably 0% by mass, but is usually 0.01% by mass from the viewpoint of economy at the time of solvent removal. It is the range of 0.1 mass% or less.
  • an antioxidant to the copolymer (a).
  • the antioxidant include, but are not limited to, phenolic antioxidants such as radical scavengers, phosphorus antioxidants such as peroxide decomposers, and sulfur antioxidants. Moreover, you may use the antioxidant which has both performances together. These may be used alone or in combination of two or more.
  • the antioxidants it is preferable to add at least a phenolic antioxidant from the viewpoint of heat aging resistance and suppression of gelation of the copolymer (a) and the asphalt composition of the present embodiment.
  • the addition amount of the phenolic antioxidant is preferably 0.05 parts by mass or more with respect to 100 parts by mass of the copolymer (a), from the viewpoint of high low-temperature productivity and less deterioration of the copolymer during mixing. 0.10 parts by mass or more is more preferable, and 0.20 parts by mass or more is more preferable.
  • the addition amount of the phenolic antioxidant is preferably 1 part by mass or less with respect to 100 parts by mass of the copolymer (a), from the viewpoint of high peeling resistance and economic efficiency of the aggregate, and 0.5 mass. Part or less is more preferable, 0.4 part by weight or less is more preferable, and 0.3 part by weight or less is even more preferable.
  • a deashing step for removing the metal in the copolymer (a) and adjusting the pH of the polymer before the solvent removal step For example, an acid addition or carbon dioxide addition may be performed.
  • the asphalt composition of the present embodiment is excellent in the high temperature physical properties of the asphalt composition, the viscosity of the asphalt composition, the low temperature performance, the solubility of the copolymer (a) in asphalt, and the balance of these properties. From this point of view, 0.1 to 0.1 of polyphenylene ether (b) having a reduced viscosity of 0.07 dL / g to 0.60 dL / g (hereinafter sometimes referred to as polyphenylene ether (b) or (b) component). Contains 10% by mass.
  • the content of the polyphenylene ether (b) is preferably 0.1 to 8% by mass, and more preferably 0.1 to 5% by mass.
  • the polyphenylene ether (b) generally has a high glass transition point, greatly contributes to performance even in a small amount, and is considered to have an improving effect even when the addition amount is 0.1% by mass.
  • 10 mass% is set as the upper limit.
  • the polyphenylene ether (b) may be either one having a functional group (having a modified group comprising a functional group) or one having no functional group (having no modified group comprising a functional group). .
  • polyphenylene ether (b) examples include the following (1) to (3).
  • Polycarboxyl ether (b-2) having a carboxyl group and / or a group derived from a carboxyl group as a modifying group comprising a functional group is included.
  • the polyphenylene ether (b) used in the asphalt composition of the present embodiment has a reduced viscosity of 0.07 dL / g to 0.60 dL / g, and from the viewpoint of a high softening point of the asphalt composition, 0.07 dL / g or more. 0.15 dL / g or more is preferable, 0.20 dL / g or more is more preferable, and 0.30 dL / g or more is more preferable.
  • the asphalt composition and solubility of the polyphenylene ether (b) in asphalt it is 0.60 dL / g or less, preferably 0.55 dL / g or less, and 0.50 dL / g. The following is more preferable, and 0.40 dL / g or less is more preferable.
  • the reduced viscosity of polyphenylene ether (b) can be measured by the method as described in the Example mentioned later. Further, the reduced viscosity of the polyphenylene ether (b) can be controlled within the above numerical range by adjusting the molecular weight.
  • the functional group-modified polyphenylene ether (b-2) having a carboxyl group and / or a group derived from a carboxyl group includes a polyphenylene ether (b-1) having no modified group consisting of a functional group and an unsaturated carboxylic acid. It can be obtained by reacting an acid or its derivative (F).
  • the amount of the unsaturated carboxylic acid or derivative (F) added to the polyphenylene ether (b-1) having no functional group-modified group is 100% by mass of the polyphenylene ether (b-1). 0.01 to 10% by mass is preferable.
  • the reaction conditions are not limited to the following.
  • the reaction is carried out in the molten state, in the solution state or in the slurry state in the presence or absence of a radical generator, at a temperature of 80 to 350 ° C. can do.
  • the addition amount may be appropriately set according to the purpose. If the addition amount is small, a mixture of a polyphenylene ether having a modifying group made of a functional group and a polyphenylene ether not having the functional group can be obtained.
  • the unsaturated carboxylic acid or derivative (F) is not limited to the following, and examples thereof include maleic acid, fumaric acid, citraconic acid, mesaconic acid, aconitic acid, itaconic acid, cis-4-cyclohexene-1 , 2-dicarboxylic acid, chloromaleic acid, etc., unsaturated carboxylic acid, maleic anhydride, citraconic anhydride, aconitic anhydride, itaconic anhydride, cis-4-cyclohexene-1,2-dicarboxylic anhydride, chloro Acid anhydrides such as maleic anhydride, ester compounds such as monomethyl maleate, dimethyl maleate, monoethyl maleate, diethyl maleate, monomethyl fumarate, dimethyl fumarate, monoethyl fumarate, diethyl fumarate, etc.
  • maleic acid, fumaric acid, citraconic acid, mesaconic acid, itaconic acid, and maleic anhydride are preferable, and maleic acid and maleic anhydride are more preferable.
  • maleic acid or maleic anhydride is selected as the unsaturated carboxylic acid or derivative thereof (F), it is contained in the polyphenylene ether (b-2) having a modifying group consisting of a functional group and the asphalt composition of this embodiment. It is thought that the compatibility as a composition increases by interaction with other polar components.
  • Unsaturated carboxylic acid or its derivative (F) may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a modified group comprising at least one functional group selected from the group consisting of a hydroxyl group, an acid anhydride group, an epoxy group, an amino group, an amide group, a silanol group, and an alkoxysilane group is introduced into the polyphenylene ether (b).
  • a method to do although it is not limited to the following, For example, the method etc. which couple
  • the polyphenylene ether (b) used in the asphalt composition of the present embodiment is more preferably a polyphenylene ether having a modifying group composed of a functional group from the viewpoint of separability of the asphalt composition, low temperature performance, and resistance to digging of the asphalt mixture. .
  • the reason why the resistance to digging is improved by adopting a polyphenylene ether having a modifying group consisting of a functional group as the polyphenylene ether (b) is composed of aggregate (stone) which is a polar material and a functional group of polyphenylene ether. It is considered that the position of the aggregate is fixed in the asphalt composition due to the interaction with the modifying group, so that digging is less likely to occur.
  • the copolymer (a) and the polyphenylene ether (b) may be added independently, or the copolymer (a) and the polyphenylene ether (b).
  • a pellet of the thermoplastic resin composition (d) is prepared by extrusion molding blending the copolymer (a) and the polyphenylene ether (b), and added. Further, from the viewpoint of the solubility of polyphenylene ether (b) in asphalt and the low-temperature properties of the asphalt composition, the copolymer (a) and the pellets of the thermoplastic resin composition (d) described above are respectively provided. It is preferable to add.
  • the polyphenylene ether (b) can be finely dispersed in the pellets of the thermoplastic resin composition (d).
  • the polyphenylene ether (b) is finely dispersed in advance, so that the solubility of the polyphenylene ether (b) tends to be improved.
  • a method of extrusion molding blending the copolymer (a) and the polyphenylene ether (b) a method of melt kneading using a twin screw extruder (“PCM-30” manufactured by Ikekai Co., Ltd.) can be mentioned.
  • the cylinder temperature is preferably set as appropriate depending on the type of the copolymer (a)
  • the screw rotation speed can be set to 150 rotations / minute
  • the discharge rate can be set to 7 kg / h, for example.
  • Residual volatilization can be removed by providing an opening (vent) in the cylinder block and suctioning under reduced pressure.
  • the degree of pressure reduction is preferably ⁇ 0.05 MPa-G or less, more preferably ⁇ 0.07 MPa-G or less, further preferably ⁇ 0.08 MPa-G or less, and further preferably ⁇ 0.09 MPa-G or less.
  • “G” indicates the gauge pressure when the atmospheric pressure is zero.
  • the strand extruded from the die can be cooled and continuously cut with a cutter to obtain pellets. Although the size of the pellet depends on the specific application, it can be, for example, about 3 mm long ⁇ 3 mm diameter.
  • the cylinder temperature is preferably set to 250 ° C. on the upstream side to 300 ° C.
  • coalescence (a) is not hydrogenated, it is preferably set to 250 ° C. from the upstream side to 250 ° C.
  • the thermoplastic resin composition (d) has a sea-island structure composed of a sea phase composed of the copolymer (a) and an island phase composed of the polyphenylene ether (b).
  • the polyphenylene ether (b) can be uniformly dispersed and / or compatible with the copolymer (a).
  • the state in which polyphenylene ether is uniformly dispersed means a state in which polyphenylene ether aggregates having a particle diameter of 50 ⁇ m or more are contained in less than 5% by volume of the total polyphenylene ether.
  • the state in which polyphenylene ether is compatible means a state in which the average dispersed particle size of polyphenylene ether is less than 5 ⁇ m.
  • the state of uniform dispersion and compatibility of the polyphenylene ether (b) with respect to the copolymer (a) can be easily confirmed using a transmission electron microscope (TEM) or the like. Specifically, from a molded piece of the thermoplastic resin composition (d), a test piece for length 10 mm ⁇ width 5 mm ⁇ thickness 3 to 4 mm is cut out, and a slice is cut out at the end of the test piece for dyeing with an ultramicrotome. Create a flat surface.
  • TEM transmission electron microscope
  • the copolymer (a) “a block containing a polymer block mainly composed of at least one vinyl aromatic monomer and a polymer block mainly composed of at least one conjugated diene monomer”
  • a non-block copolymer comprising “a polymer block mainly composed of at least one vinyl aromatic monomer and a polymer block mainly composed of at least one conjugated diene monomer”.
  • "Hydrogenated product” and / or “Non-hydrogenated product of copolymer block comprising at least one vinyl aromatic monomer and at least one conjugated diene monomer” are dyed and observed during TEM observation. Observed in black.
  • the copolymer (a) “a block copolymer comprising a polymer block mainly composed of at least one vinyl aromatic monomer and a polymer block mainly composed of at least one conjugated diene monomer”.
  • ⁇ polymer hydrogenated product '' and / or “the hydrogenated product of a copolymer block comprising at least one vinyl aromatic monomer and at least one conjugated diene monomer” are included,
  • a diamond knife containing water in an ultramicrotome is attached to the test specimen for staining, and a thin film having a thickness of 85 nm is cut out from the plane for sectioning on the water, and then rinsed with Cu mesh for TEM observation.
  • Cu mesh on which this thin film is placed is arranged on a stainless steel net.
  • ruthenium trichloride nhydrate and 1 mL of purified water were dissolved in a petri dish in a glass desiccator, and after adding 5 mL of sodium hypochlorite solution, a Cu mesh on which the thin film was placed was placed. A stainless steel net is placed, the glass desiccator is covered and left to stand for 4 minutes, and then the Cu mesh is taken out.
  • TEM observation can be performed using the copolymer (a) as a black phase and the polyphenylene ether (b) as a white phase. Furthermore, by analyzing this TEM image photograph using commercially available image analysis software, the area fraction of polyphenylene ether aggregates having a particle diameter of 50 ⁇ m or more with respect to the total polyphenylene ether, and average dispersed particles of polyphenylene ether The diameter can be determined.
  • the area fraction of the polyphenylene ether aggregate having a particle diameter of 50 ⁇ m or more with respect to the total polyphenylene ether is regarded as being equivalent to the volume fraction of the polyphenylene ether aggregate having a particle diameter of 50 ⁇ m or more with respect to the total polyphenylene ether.
  • the average dispersed particle size of the polyphenylene ether (b) with respect to the copolymer (a) constituting the thermoplastic resin composition (d) described above is high ductility of the asphalt composition, asphalt composition From the viewpoint of separation of objects, it is preferably less than 5 ⁇ m, more preferably less than 4 ⁇ m, further preferably less than 3.5 ⁇ m, and still more preferably less than 3 ⁇ m.
  • the average dispersed particle size of the polyphenylene ether (b) can be controlled within the above numerical range by adjusting the temperature at the time of melt-kneading or adjusting the number of stirring revolutions at the time of melt-kneading.
  • the above-mentioned pellets of the thermoplastic resin composition (d) used in the asphalt composition of the present embodiment preferably contain a lubricant from the viewpoint of the moldability of the thermoplastic resin composition (d).
  • the lubricant include, but are not limited to, hydrocarbon lubricants such as paraffin wax, microwax and polyethylene wax; butyl stearate, monoglyceride stearate, pentaerythritol distearate, pentaerythritol tetrastearate, stearyl stearate And fatty acid ester lubricants such as ethylene bis stearamide; fatty acid metal salt lubricants such as magnesium distearate, calcium distearate, zinc distearate and calcium montanate.
  • the addition amount of the lubricant is preferably 0 part by mass or more and 30 parts by mass or less, more preferably 1 part by mass or more and 25 parts by mass or less, with respect to 100 parts by mass in total of the copolymer (a) and the polyphenylene ether (b). 5 parts by mass or more and 20 parts by mass or less are more preferable.
  • the thermoplastic resin composition (d) used for the asphalt composition of the present embodiment preferably contains an antioxidant from the viewpoint of improving the heat deterioration resistance.
  • the antioxidant include, but are not limited to, hindered phenol antioxidants, phosphorus antioxidants, sulfur antioxidants, amine antioxidants, and the like.
  • the addition amount of the antioxidant is preferably 0 part by mass or more and 10 parts by mass or less, and 0.1 part by mass or more and 5 parts by mass or less with respect to 100 parts by mass in total of the copolymer (a) and the polyphenylene ether (b). Is more preferably 0.5 parts by mass or more and 4 parts by mass or less.
  • Asphalt (c) used in the asphalt composition of the present embodiment contains asphalt (c) (hereinafter may be referred to as component (c)).
  • Asphalt (c) used in the asphalt composition of the present embodiment is not limited to the following, for example, one obtained as a by-product during petroleum refining (petroleum asphalt), or a natural product (natural asphalt), or The thing etc. which mixed these and petroleum are mentioned. Its main component is called bitumen.
  • the asphalt include, but are not limited to, straight asphalt, semi-blown asphalt, blown asphalt, solvent deasphalted asphalt, tar, pitch, cutback asphalt to which oil is added, asphalt emulsion, and the like. These may be used alone or in combination of two or more.
  • aromatic heavy mineral oils such as petroleum-type solvent extraction oil, aroma-type hydrocarbon process oil, and extract, to various asphalts.
  • the asphalt (c) used in the asphalt composition of the present embodiment preferably has a penetration (measured according to JIS-K2207) of 30 or more and 300 or less, more preferably from the viewpoint of high temperature physical properties, low temperature physical properties, and economic efficiency.
  • Straight asphalt that is 40 or more and 200 or less, and more preferably 45 or more and 150 or less.
  • the content of asphalt (c) is 80 to 97% by mass, preferably 85 to 97% by mass, and 87 to 97% by mass from the viewpoint of economy and viscosity. More preferred.
  • Total content of copolymer (a) and polyphenylene ether (b) The total content of the copolymer (a) and the polyphenylene ether (b) in the asphalt composition of the present embodiment is such that the high softening point of the asphalt composition, the high ductility of the asphalt composition, the asphalt composition and the aggregate. From the viewpoint of high peeling resistance of the aggregate when it is used as a mixture, it is 2.6% by mass or more, preferably 3.5% by mass or more, more preferably 5% by mass or more, and further preferably 6% by mass or more.
  • the copolymer (a) in the asphalt composition is 20% by mass or less, more preferably 16% by mass or less, and 14% by mass. % Or less, more preferably 12% by mass or less.
  • the addition amount of the copolymer (a) is small, the interaction with the asphalt component is insufficient, and therefore the influence on the performance of the asphalt composition is small.
  • the ratio of (b) is preferably 1% by mass or more, more preferably 5% by mass or more, further preferably 10% by mass or more, and further more preferably 15% by mass or more. preferable.
  • the ratio of (b) is 80% by mass or less when (a) + (b) is 100% by mass. Is preferably 70% by mass or less, more preferably 50% by mass or less, and even more preferably 30% by mass or less.
  • the content of the component (d) is 3 to 15% by mass, and the content of the component (c) is 85 to 97.
  • the asphalt composition of this embodiment can mix
  • the types of petroleum resins are not limited to the following, but include, for example, aliphatic petroleum resins such as C5 petroleum resins, aromatic petroleum resins such as C9 petroleum resins, dicyclopentadiene petroleum resins, and the like. And alicyclic petroleum resins, C5 / C9 copolymer petroleum resins and the like, and hydrogenated petroleum resins obtained by hydrogenating these petroleum resins.
  • the compounding quantity of petroleum resin is not specifically limited, Preferably it is 1 mass part or more and 10 mass parts or less with respect to 100 mass parts of asphalt (c), More preferably, it is 2 mass parts or more and 6 mass parts or less. It is.
  • the asphalt composition of this embodiment can mix
  • the type of additive is not particularly limited as long as it is generally used for blending thermoplastic resins and rubber-like polymers.
  • the type of additive is not particularly limited as long as it is generally used for blending thermoplastic resins and rubber-like polymers.
  • Inorganic fillers such as carbon black, iron oxide and other pigments;
  • Lubricants such as stearic acid, behenic acid, zinc stearate, calcium stearate, magnesium stearate, ethylene bisstearamide; release agents, paraffinic process oils, Softeners and plasticizers such as naphthenic process oils, aromatic process oils, paraffins, organic poly
  • the compounding quantity of an additive is not specifically limited, Usually, it is 50 mass parts or less with respect to 100 mass parts of asphalt (c).
  • an anti-peeling agent may be added to prevent the asphalt composition and the aggregate from being peeled when mixed with the aggregate.
  • Resin acid is suitable as the anti-peeling agent, and is a polycyclic diterpene having 20 carbon atoms having a carboxyl group, and any one of abietic acid, dehydroabietic acid, neoabietic acid, pimaric acid, isopimaric acid, and parastrinic acid Or rosin containing one or more of them. Moreover, you may add a fatty acid or fatty acid amide in order to function as a peeling prevention agent and a lubricant.
  • the asphalt composition of the present embodiment may contain other polymers.
  • other polymers include, but are not limited to, olefin elastomers such as natural rubber, polyisoprene rubber, polybutadiene rubber, styrene butadiene rubber, and ethylene propylene copolymer; chloroprene rubber, acrylic rubber, and ethylene.
  • olefin elastomers such as natural rubber, polyisoprene rubber, polybutadiene rubber, styrene butadiene rubber, and ethylene propylene copolymer
  • chloroprene rubber acrylic rubber
  • ethylene ethylene
  • a vinyl acetate copolymer etc. are mentioned.
  • the asphalt composition of the present embodiment preferably contains 1 to 10% by mass of a styrene-butadiene-styrene copolymer (SBS) from the viewpoints of softening point, melt viscosity, and low temperature elongation. More preferably, it is 3 to 10% by mass, and further preferably 5 to 10% by mass.
  • SBS styrene-butadiene-styrene copolymer
  • the method for producing the asphalt composition of the present embodiment is not particularly limited, and can be produced by appropriately mixing the components (a) to (d) described above.
  • it is preferably performed at a temperature of 120 ° C. or higher and 200 ° C. or lower.
  • the stirring time is usually 30 minutes to 6 hours, but a shorter one is preferable from the viewpoint of economy.
  • the stirring speed may be appropriately selected depending on the apparatus to be used, but is usually 100 ppm or more and 8,000 rpm or less.
  • the asphalt composition of the present embodiment can be used in the fields of road pavement, roofing / waterproof sheet, and sealant, and can be suitably used particularly in the field of road pavement, roofing / waterproof sheet.
  • asphalt mixture For road paving, an example in which a large amount of aggregate is mixed with the asphalt composition of the present embodiment and used can be given. What contains an asphalt composition and an aggregate is hereafter called an asphalt mixture.
  • an asphalt mixture There is no limitation on the aggregate, for example, any aggregate can be used as long as it is described in “Asphalt Pavement Summary” published by the Japan Road Association, and is not limited to the following. However, for example, crushed stone, cobblestone, gravel, steel slag and the like can be mentioned.
  • asphalt-coated aggregates and recycled aggregates obtained by coating these aggregates with asphalt can also be used.
  • granular materials similar to these can be used such as artificial sintered aggregate, sintered foam aggregate, artificial lightweight aggregate, ceramic grains, loxobite, aluminum grains, plastic grains, ceramics, emery, construction waste, fibers, and the like.
  • Aggregates are generally classified into coarse aggregates, fine aggregates, and fillers.
  • Coarse aggregate is an aggregate that remains on a 2.36 mm sieve, and is generally No. 7 crushed stone with a particle size range of 2.5-5 mm, No. 6 crushed stone with a particle size range of 5-13 mm, and a particle size range of 13-20 mm No. 5 crushed stone, and also No. 4 crushed stone having a particle size range of 20 to 30 mm.
  • one or more kinds of coarse aggregates having various particle size ranges are mixed.
  • Aggregates or synthesized aggregates can be used. These coarse aggregates may be coated with about 0.3 to 1% by mass of straight asphalt with respect to the aggregates.
  • Fine aggregate means an aggregate that passes through a 2.36 mm sieve and stops at a 0.075 mm sieve, and is not limited to the following, but is not limited to, for example, river sand, hill sand, mountain sand, sea sand, Screening, crushed stone dust, silica sand, artificial sand, glass cullet, foundry sand, recycled aggregate crushed sand and the like.
  • Fillers pass through a 0.075 mm sieve and are not limited to the following, but include, for example, screenings filler, stone powder, slaked lime, cement, incinerator ash, clay, talc, fly ash Carbon black, etc., but also rubber particles, cork particles, wood particles, resin particles, fiber particles, pulp, artificial aggregates, etc. that pass through a 0.075 mm sieve If so, it can be used as a filler.
  • Coarse aggregates, fine aggregates, and fillers may be used alone or in combination of two or more.
  • the aggregate content in the asphalt mixture containing the asphalt composition and the aggregate is 85% by mass or more and 98% by mass or less from the viewpoint of obtaining a mixture having a high mass loss resistance and a high strength reduction at the time of oil adhesion.
  • the range is preferably 90% by mass or more and 97% by mass or less.
  • the method for producing the asphalt mixture containing the asphalt composition and the aggregate is not particularly limited, but the mixing temperature of the asphalt composition and the aggregate is usually within a range of 120 ° C. or more and 200 ° C. or less. Is mentioned. Moreover, you may emulsify the asphalt composition in water as needed.
  • ⁇ Measuring method ⁇ (Vinyl aromatic monomer block content in the block copolymer) As a measurement object, a copolymer before hydrogenation was used. M. Kolthoff, etal. , J .; Polym. Sci. 1, p. 429 (1946), the vinyl aromatic monomer block content of the copolymer was measured by the osmium tetroxide method. An osmic acid 0.1 g / 125 mL tertiary butanol solution was used for the decomposition of the copolymer.
  • the weight average molecular weight was measured by GPC (apparatus manufactured by Waters). Tetrahydrofuran was used as the solvent, and the temperature was set to 35 ° C.
  • the weight average molecular weight was determined using a calibration curve (created using the peak molecular weight of standard polystyrene) obtained from the measurement of commercially available standard polystyrene for the molecular weight of the peak of the chromatogram.
  • MFR MFR was calculated by a method according to JIS K7210 using a melt indexer (L247; manufactured by TECHNOLSEVEN CO., LTD).
  • the test temperature was 200 ° C.
  • the test load was 5.00 kgf
  • the unit of measurement value was expressed in g / 10 minutes.
  • Block copolymer 1 (Block copolymer 1) ⁇ First stage polymerization> A stainless steel autoclave with a stirrer and a jacket with an internal volume of 10 L was washed, dried, and purged with nitrogen. The autoclave was charged with 5720 g of cyclohexane and 240 g of pre-purified styrene, and warm water was passed through the jacket to set the contents at about 40 ° C.
  • n-butyllithium cyclohexane solution (0.70 g in pure content) was added to the autoclave to start polymerization of styrene.
  • a mixture of a glycidyl etherified modified product and a phenol-formaldehyde polycondensate diglycidyl etherified modified product with epichlorohydrin at a mass ratio of 1/1 was added so as to be 0.4 mol / Li, and a cup was added. I let it ring.
  • octadecyl-3- (3,5-dibutyl-t-butyl-4-hydroxyphenyl) propionate as a stabilizer was added in an amount of 0. 1 to 100 parts by mass of the block copolymer. 25 parts by mass was added and mixed well to obtain block copolymer 1.
  • the block copolymer having the SB structure has a weight average molecular weight of 90,000, and (SB) 2 —X structure
  • the weight average molecular weight of the block copolymer was twice the weight average molecular weight of the SB structure.
  • content of the vinyl aromatic monomer unit was 30 mass%, and MFR (200 degreeC, 5 kgf) was 0.2 g / 10min.
  • the vinyl aromatic monomer block content was 30% by mass, and the vinyl bond content was 11% by mass.
  • S represents a polymer block mainly composed of vinyl aromatic monomer units
  • B represents a polymer block mainly composed of conjugated diene monomer units
  • X represents a residue of a coupling agent or a residue of a polymerization initiator such as polyfunctional organolithium.
  • Block copolymer 2 In the above ⁇ second stage polymerization>, the coupling agent was changed to silicon tetrachloride and added so as to be 0.2 mol / Li. Other conditions were obtained block copolymer 2 by the same method as the above (block copolymer 1).
  • the block copolymer having the SB structure has a weight average molecular weight of 90,000, and (SB) 4 —X structure
  • the weight average molecular weight of the block copolymer was 4 times the weight average molecular weight of the SB structure.
  • content of the vinyl aromatic monomer unit was 30 mass%, and MFR (200 degreeC, 5 kgf) was 0.01 g / 10min.
  • the vinyl aromatic monomer block content was 30% by mass, and the vinyl bond content was 11% by mass.
  • ⁇ Polymerization> In the ⁇ first stage polymerization> of the (block copolymer 1), the amount of n-butyllithium cyclohexane solution and the amount of styrene were changed, tetramethylenediamine was added, and in the ⁇ second stage polymerization> The amount of butadiene was changed, and without using a coupling agent, the polymerization of styrene was carried out in the same amount of styrene as that of the first stage polymerization as ⁇ third stage polymerization>.
  • the block copolymer 3 was obtained by the method similar to the (block copolymer 1).
  • the obtained block copolymer 3 had an SBS structure and a weight average molecular weight of 70,000.
  • content of the vinyl aromatic monomer unit was 40 mass%, and MFR (200 degreeC, 5 kgf) was 0.5 g / 10min.
  • the vinyl aromatic monomer block content was 29% by mass, and the vinyl bond content was 40% by mass.
  • Block copolymer 4 In the ⁇ first stage polymerization> of the (block copolymer 1), the amount of n-butyllithium cyclohexane solution and the amount of styrene were changed, tetramethylenediamine was added, and in the ⁇ second stage polymerization> Styrene and butadiene were continuously added, and a styrene polymerization was carried out at the same styrene amount as in the first stage as a ⁇ third stage polymerization> without using a coupling agent.
  • Block Copolymer 3 98 mol% of the double bond in the conjugated diene monomer unit in the block copolymer was hydrogenated with the hydrogenation catalyst prepared by the production method of the above (Block Copolymer 3). This was added to obtain a block copolymer solution. Then, the block copolymer 4 was obtained by the method similar to the (block copolymer 1).
  • the obtained block copolymer 4 had an S—R—S structure and had a weight average molecular weight of 150,000.
  • R represents a copolymer block composed of a vinyl aromatic monomer unit and a conjugated diene monomer unit.
  • content of the vinyl aromatic monomer unit was 50 mass%
  • MFR (200 degreeC, 5 kgf) was 3 g / 10min.
  • the vinyl aromatic monomer block content was 15% by mass, and the vinyl bond content was 20% by mass.
  • Block copolymer 5 In ⁇ First Stage Polymerization> of (Block Copolymer 1), styrene is changed to butadiene, and in ⁇ Second Stage Polymerization>, styrene and butadiene are added at a constant ratio, and then styrene is further added. Then, styrene and butadiene were added at a fixed ratio as ⁇ third stage polymerization>, and styrene polymerization was performed with the same styrene amount as in the second stage as ⁇ fourth stage polymerization>. Then, after adding water and deactivating, the block copolymer 5 was obtained by the method similar to the (block copolymer 1).
  • the block copolymer 5 had a BSSBS structure, and the weight average molecular weight was 100,000. Moreover, content of the vinyl aromatic monomer unit was 40%, and MFR (200 ° C., 5 kgf) was 13 g / 10 min. The vinyl aromatic monomer block content was 35% by mass, and the vinyl bond content was 11% by mass.
  • Block copolymer 6 In ⁇ Second Stage Polymerization> of the (Block Copolymer 1), the coupling agent was changed to 1,3-bis (N, N′-diurisidylaminomethyl) cyclohexane to 0.23 mol / Li. It added so that it might become. In other conditions, the block copolymer 6 was obtained in the same manner as in the above (Block copolymer 1).
  • the weight average molecular weight of the SB structure block copolymer is 90,000, and the weight average molecular weight of (SB) 2 -X + (SB) 3 -X + (SB) 4 -X was 3.7 times the weight average molecular weight of the SB structure.
  • content of the vinyl aromatic monomer unit was 30 mass%, and MFR (200 degreeC, 5 kgf) was 0.01 g / 10min.
  • the vinyl aromatic monomer block content was 30% by mass, and the vinyl bond content was 12% by mass.
  • Polyphenylene ether 1 has a reduced viscosity of 0.33 dL / g.
  • Polyphenylene ether 2 has a reduced viscosity of 0.07 dL / g.
  • Polyphenylene ether 3 has a reduced viscosity of 0.60 dL / g.
  • Polyphenylene ether 4 has a reduced viscosity of 0.70 dL / g.
  • Polyphenylene ether 5 has a reduced viscosity of 0.39 dL / g.
  • Polyphenylene ether 5 is obtained by melt-kneading 100 parts by mass of polyphenylene ether having a reduced viscosity of 0.40 dL / g and 2 parts by mass of maleic anhydride (manufactured by NOF Corporation, Crystal MAN) using a twin screw extruder. Was obtained. At this time, the maleic anhydride addition amount was calculated to be 0.5% by mass with respect to 100% by mass of polyphenylene ether by IR measurement.
  • thermoplastic resin composition pellets (d) prepared by coextrusion blending of block copolymer (a) and polyphenylene ether (b). was used.
  • Example 14 the block copolymer 1, and the thermoplastic resin composition pellet (d) composed of the block copolymer 4 and the polyphenylene ether 1 were used.
  • the aggregate used was a mixture of crushed stone and crushed sand produced from Iwafune-cho, Shimotsuga-gun, Tochigi Prefecture, fine sand produced from Sakae-machi, Inba-gun, Chiba Prefecture, and stone powder produced from Yamagata-machi, Sano City, Tochigi Prefecture.
  • the particle size distribution of the aggregate used in the asphalt mixture is shown in Table 1 below.
  • Softening point is 112 ° C or higher: ⁇ Softening point 105 ° C or higher and lower than 112 ° C: ⁇ Softening point is 98 ° C. or higher and lower than 105 ° C .: ⁇ Softening point less than 98 ° C: ⁇
  • melt viscosity of asphalt composition The melt viscosity of the asphalt composition at 160 ° C. was measured with a Brookfield viscometer. The lower the melt viscosity of the asphalt composition, the better the manufacturability, and it was evaluated as ⁇ , ⁇ , ⁇ , ⁇ in order from the following criteria.
  • Melt viscosity is less than 900 mPa ⁇ s: ⁇ Melt viscosity is 900 mPa ⁇ s or more and less than 1200 mPa ⁇ s: ⁇ Melt viscosity is 1200 mPa ⁇ s or more and less than 1500 mPa ⁇ s: ⁇ Melt viscosity is 1500 mPa ⁇ s or more: ⁇
  • Average particle diameter is less than 10 ⁇ m: ⁇ Average particle diameter of 10 ⁇ m or more and less than 25 ⁇ m: ⁇ Average particle diameter is 25 ⁇ m or more and less than 50 ⁇ m: ⁇ Average particle diameter is 50 ⁇ m or more: ⁇
  • Asphaltt separability of asphalt composition The separability of the asphalt composition after high temperature storage was evaluated.
  • a sample was poured into a Teflon (registered trademark) tube whose bottom was 2.5 cm in diameter and 15 cm long and was sealed with a rubber stopper, covered with an aluminum sheet, and then left in an oven at 175 ° C. for 72 hours. .
  • the asphalt composition was divided into three equal parts in the length direction. The softening points of the upper layer and the lower layer were measured, and the difference between the softening points was determined.
  • Softening point difference is 2 ° C or less: ⁇ Softening point difference is 6 ° C or less: ⁇ Softening point difference is 10 ° C. or less: ⁇ Softening point difference exceeds 10 ° C: ⁇
  • Dynamic stability is 13000 times / mm or more: ⁇ Dynamic stability is 10,000 times / mm or more: ⁇ Dynamic stability is 6000 times / mm or more: ⁇ Dynamic stability is less than 6000 times / mm: ⁇
  • the asphalt composition of the present invention has industrial applicability in the fields of road paving, roofing / waterproof sheets, and sealants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Road Paving Structures (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

This asphalt composition comprises: (a) a copolymer having vinyl aromatic monomer units and conjugated diene monomer units; (b) polyphenylene ether having a reduced viscosity of 0.07-0.60 dL/g; and (c) asphalt, wherein the content of (a) is 2.5-14 mass%, the content of (b) is 0.1-10 mass%, and the content of (c) is 80-97 mass%.

Description

アスファルト組成物Asphalt composition
 本発明は、アスファルト組成物に関する。 The present invention relates to an asphalt composition.
 従来から、アスファルト組成物は、道路舗装、防水シート、遮音シート、ルーフィング等の用途に広く利用されている。
 前記アスファルト組成物を各種用途に利用する際には、アスファルトに種々の重合体を添加して、その性質を改良しようとする試みが多くなされている。
 前記重合体としては、例えば、エチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、ゴムラテックス、及び共役ジエンとビニル芳香族炭化水素とからなるブロック共重合体等が挙げられる。
Conventionally, asphalt compositions have been widely used for road pavement, waterproof sheets, sound insulation sheets, roofing and the like.
When the asphalt composition is used for various purposes, many attempts have been made to add various polymers to the asphalt to improve its properties.
Examples of the polymer include an ethylene-vinyl acetate copolymer, an ethylene-ethyl acrylate copolymer, a rubber latex, and a block copolymer composed of a conjugated diene and a vinyl aromatic hydrocarbon.
 一方、近年、交通量の増加や地球温暖化の観点から、アスファルト組成物の高温物性の向上等の要求がますます高まっている。 On the other hand, in recent years, demands for improving the high-temperature physical properties of asphalt compositions are increasing from the viewpoint of increasing traffic and global warming.
 従来から、アスファルト組成物の高温物性の向上を図るため、種々の添加剤を含有させて、アスファルト組成物の高温物性を向上させる技術が提案されている(例えば、特許文献1~3参照)。
 具体的には、添加剤としてポリフェニレンエーテルを添加し、アスファルト組成物の軟化点を向上させたり、添加剤としてアタクチックポリプロピレンを添加し、アスファルト組成物の軟化点を向上させたり、添加剤としてスチレン-ブタジエン-スチレン共重合体(SBS)を添加し、アスファルト組成物の軟化点を向上させる技術が知られている。
Conventionally, in order to improve the high temperature physical properties of the asphalt composition, a technique for improving the high temperature physical properties of the asphalt composition by incorporating various additives has been proposed (see, for example, Patent Documents 1 to 3).
Specifically, polyphenylene ether is added as an additive to improve the softening point of an asphalt composition, or atactic polypropylene is added as an additive to improve the softening point of an asphalt composition, or styrene is used as an additive. A technique for adding a butadiene-styrene copolymer (SBS) to improve the softening point of an asphalt composition is known.
国際公開第2002/042377号International Publication No. 2002/042377 特開平1-282235号公報JP-A-1-282235 特開平6-41439号公報JP-A-6-41439
 しかしながら、特許文献1~3に開示されている技術においても、未だ、アスファルト組成物の高温物性に関し、十分な特性が得られておらず、より一層のアスファルト組成物の高温物性の向上が望まれている。
 本発明者が検討したところ、前記特許文献1に記載の技術は、低温物性に劣り、また添加剤がアスファルトに均一に溶解しないため、高温貯蔵性の悪化が懸念されるという問題を有している。
 また、特許文献2に記載の技術は、低温物性と各種特性とのバランスが悪いという問題を有している。
 さらに、特許文献3に記載の技術は、添加剤の量が増えることによりアスファルト組成物の粘度が高くなり、加工性が劣る、という問題を有している。
However, even in the techniques disclosed in Patent Documents 1 to 3, sufficient characteristics have not yet been obtained with respect to the high temperature physical properties of the asphalt composition, and further improvement of the high temperature physical properties of the asphalt composition is desired. ing.
As a result of investigation by the present inventor, the technique described in Patent Document 1 has a problem in that the low temperature physical properties are poor and the additive is not uniformly dissolved in asphalt, so that the high temperature storage stability may be deteriorated. Yes.
Moreover, the technique described in Patent Document 2 has a problem that the balance between low-temperature physical properties and various characteristics is poor.
Furthermore, the technique described in Patent Document 3 has a problem that as the amount of the additive increases, the viscosity of the asphalt composition increases and the processability is inferior.
 そこで本発明においては、アスファルト組成物の粘度、低温物性、共重合体及びポリフェニレンエーテルのアスファルトへの溶解性に優れ、かつ高温物性にも優れたアスファルト組成物を提供することを目的とする。 Therefore, an object of the present invention is to provide an asphalt composition which is excellent in viscosity, low temperature physical properties, copolymer and polyphenylene ether solubility in asphalt, and excellent in high temperature physical properties.
 本発明者らは、上記従来技術の課題を解決するため、鋭意検討を行った結果、ビニル芳香族単量体単位と共役ジエン単量体単位とを有する共重合体と、所定の還元粘度のポリフェニレンエーテルと、アスファルトとを、それぞれ所定量含有するアスファルト組成物が、上述した従来技術の課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の通りである。
As a result of intensive studies to solve the above-described problems of the prior art, the present inventors have found that a copolymer having a vinyl aromatic monomer unit and a conjugated diene monomer unit, and a predetermined reduced viscosity. It has been found that asphalt compositions containing a predetermined amount of polyphenylene ether and asphalt can solve the above-mentioned problems of the prior art, and the present invention has been completed.
That is, the present invention is as follows.
〔1〕
 ビニル芳香族単量体単位と共役ジエン単量体単位とを有する共重合体(a)と、
 還元粘度0.07dL/g~0.60dL/gであるポリフェニレンエーテル(b)と、
 アスファルト(c)と、
を、含有し、
 前記(a)の含有量が、2.5~14質量%、
 前記(b)の含有量が、0.1~10質量%、
 前記(c)の含有量が、80~97質量%、
である、アスファルト組成物。
〔2〕
 前記ポリフェニレンエーテル(b)が、
 カルボキシル基及び/又はカルボキシル基から誘導される基、水酸基、酸無水物基、エポキシ基、アミノ基、アミド基、シラノール基、及びアルコキシシラン基からなる群より選択される少なくとも一つの官能基よりなる変性基を有する、前記〔1〕に記載のアスファルト組成物。
〔3〕
 前記ポリフェニレンエーテル(b)が、カルボキシル基及び/又はカルボキシル基から誘導される基を有する、前記〔1〕又は〔2〕に記載のアスファルト組成物。
〔4〕
 前記(a)の含有量が、4~14質量%、
 前記(b)の含有量が、0.1~8質量%、
 前記(c)の含有量が、80~97質量%、
である、前記〔1〕及至〔3〕のいずれか一に記載のアスファルト組成物。
〔5〕
 前記(a)の含有量が、4~12質量%、
 前記(b)の含有量が、0.1~5質量%、
 前記(c)の含有量が、85~97質量%、
である、前記〔1〕乃至〔4〕のいずれか一に記載のアスファルト組成物。
〔6〕
 ビニル芳香族単量体単位と共役ジエン単量体単位とを有する共重合体(a)と、還元粘度0.07dL/g~0.60dL/gであるポリフェニレンエーテル(b)との押し出し成型体である熱可塑性樹脂組成物(d)と、
 アスファルト(c)と、
を、含有するアスファルト組成物であって、
 前記(d)の含有量が、3~20質量%であり、
 前記(c)の含有量が、80~97質量%であり、
 前記熱可塑性樹脂組成物(d)における、前記(a)と前記(b)との質量比率が、
(a)/(b)=20~99/80~1である、
アスファルト組成物。
〔7〕
 前記熱可塑性樹脂組成物(d)が、前記共重合体(a)により構成される海相と、前記ポリフェニレンエーテル(b)により構成される島相からなる海島構造を有し、
 前記熱可塑性樹脂組成物(d)中の前記ポリフェニレンエーテル(b)の平均分散粒子径が5μm未満である、前記〔6〕に記載のアスファルト組成物。
〔8〕
 前記(d)の含有量が、3~15質量%であり、
 前記(c)の含有量が、85~97質量%であり、
 前記(d)における、前記(a)と前記(b)との質量比率が、(a)/(b)=40~99/60~1である、
 前記〔6〕又は〔7〕に記載のアスファルト組成物。
〔9〕
 前記熱可塑性樹脂組成物(d)が酸化防止剤を含む、前記〔6〕及至〔8〕のいずれか一に記載のアスファルト組成物。
〔10〕
 前記ビニル芳香族単量体単位と共役ジエン単量体単位とを有する共重合体(a)が、水素添加されている、前記〔6〕乃至〔9〕のいずれか一に記載のアスファルト組成物。
〔11〕
 スチレン-ブタジエン-スチレン共重合体(SBS)を1~10質量%、さらに含有する、前記〔6〕乃至〔10〕のいずれか一に記載のアスファルト組成物。
〔12〕
 前記ビニル芳香族単量体単位と共役ジエン単量体単位とを有する共重合体(a)が、
官能基よりなる変性基を有する、前記〔1〕及至〔11〕のいずれか一に記載のアスファルト組成物。
[1]
A copolymer (a) having a vinyl aromatic monomer unit and a conjugated diene monomer unit;
Polyphenylene ether (b) having a reduced viscosity of 0.07 dL / g to 0.60 dL / g;
Asphalt (c),
Containing,
The content of (a) is 2.5 to 14% by mass,
The content of (b) is 0.1 to 10% by mass,
The content of (c) is 80 to 97% by mass,
An asphalt composition.
[2]
The polyphenylene ether (b) is
It consists of at least one functional group selected from the group consisting of a carboxyl group and / or a group derived from a carboxyl group, a hydroxyl group, an acid anhydride group, an epoxy group, an amino group, an amide group, a silanol group, and an alkoxysilane group. The asphalt composition according to the above [1], which has a modifying group.
[3]
The asphalt composition according to [1] or [2], wherein the polyphenylene ether (b) has a carboxyl group and / or a group derived from a carboxyl group.
[4]
The content of (a) is 4 to 14% by mass,
The content of (b) is 0.1 to 8% by mass,
The content of (c) is 80 to 97% by mass,
The asphalt composition according to any one of [1] to [3].
[5]
The content of (a) is 4 to 12% by mass,
The content of (b) is 0.1 to 5% by mass,
The content of (c) is 85 to 97% by mass,
The asphalt composition according to any one of [1] to [4].
[6]
Extruded molded product of copolymer (a) having vinyl aromatic monomer unit and conjugated diene monomer unit and polyphenylene ether (b) having reduced viscosity of 0.07 dL / g to 0.60 dL / g A thermoplastic resin composition (d),
Asphalt (c),
An asphalt composition comprising:
The content of (d) is 3 to 20% by mass,
The content of (c) is 80 to 97% by mass,
In the thermoplastic resin composition (d), the mass ratio between (a) and (b) is as follows:
(A) / (b) = 20 to 99/80 to 1,
Asphalt composition.
[7]
The thermoplastic resin composition (d) has a sea-island structure composed of a sea phase composed of the copolymer (a) and an island phase composed of the polyphenylene ether (b),
The asphalt composition as described in [6] above, wherein an average dispersed particle diameter of the polyphenylene ether (b) in the thermoplastic resin composition (d) is less than 5 μm.
[8]
The content of (d) is 3 to 15% by mass,
The content of (c) is 85 to 97% by mass,
In (d), the mass ratio of (a) to (b) is (a) / (b) = 40 to 99/60 to 1.
Asphalt composition as described in said [6] or [7].
[9]
The asphalt composition according to any one of [6] to [8], wherein the thermoplastic resin composition (d) contains an antioxidant.
[10]
The asphalt composition according to any one of [6] to [9], wherein the copolymer (a) having the vinyl aromatic monomer unit and the conjugated diene monomer unit is hydrogenated. .
[11]
The asphalt composition according to any one of [6] to [10], further containing 1 to 10% by mass of a styrene-butadiene-styrene copolymer (SBS).
[12]
The copolymer (a) having the vinyl aromatic monomer unit and the conjugated diene monomer unit,
The asphalt composition according to any one of [1] to [11], which has a modifying group composed of a functional group.
 本発明によれば、高温物性に優れ、また、アスファルト組成物の粘度、低温物性、共重合体及びポリフェニレンエーテルのアスファルトへの溶解性にも優れたアスファルト組成物が得られる。 According to the present invention, it is possible to obtain an asphalt composition excellent in high-temperature physical properties and excellent in viscosity, low-temperature physical properties, copolymer and polyphenylene ether solubility in asphalt.
 以下、本発明を実施するための形態(以下、「本実施形態」という)について、詳細に説明する。
 以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で種々変形して実施できる。
Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. The present invention can be implemented with various modifications within the scope of the gist.
〔アスファルト組成物〕
 本実施形態のアスファルト組成物は、
 ビニル芳香族単量体単位と共役ジエン単量体単位とを有する共重合体(a)と、
 還元粘度0.07dL/g~0.60dL/gであるポリフェニレンエーテル(b)と、
 アスファルト(c)と、
を、含有し、
 前記(a)の含有量が、2.5~14質量%であり、
 前記(b)の含有量が、0.1~10質量%であり、
 前記(c)の含有量が、80~97質量%である。
[Asphalt composition]
Asphalt composition of this embodiment,
A copolymer (a) having a vinyl aromatic monomer unit and a conjugated diene monomer unit;
Polyphenylene ether (b) having a reduced viscosity of 0.07 dL / g to 0.60 dL / g;
Asphalt (c),
Containing,
The content of (a) is 2.5 to 14% by mass,
The content of (b) is 0.1 to 10% by mass,
The content of (c) is 80 to 97% by mass.
 ここで、共重合体を構成する構成単位のことを「~単量体単位」といい、重合体の材料として記載する場合は「単位」を省略し、単に「~単量体」と記載する。 Here, the structural unit constituting the copolymer is referred to as “˜monomer unit”, and when describing as a polymer material, “unit” is omitted, and simply described as “˜monomer”. .
(共重合体(a))
 本実施形態のアスファルト組成物は、ビニル芳香族単量体単位と共役ジエン単量体単位とを有する共重合体(a)(以下、共重合体(a)、(a)成分と記載する場合がある。
)を含有する。
 共重合体(a)は、ランダム共重合体、ブロック共重合体のいずれでもよく、いずれも好ましい形態である。また、ビニル芳香族単量体単位を主体とする重合体ブロックと共役ジエン単量体単位を主体とする重合体ブロックを有しているブロック共重合体であることが好ましい一形態として挙げられる。
 本実施形態の目的を阻害しない範囲でその他の単量体単位を含んでもよい。
 本明細書において、「主体とする」とは、ブロック中、所定の単量体単位の含有量が、80質量%以上であり、90質量%以上がより好ましく、さらに好ましくは95質量%以上であることをいう。
 上限は特に制限はないが、100質量%以下であることが好ましく、99質量%以下であることが好ましい。
 本実施形態のアスファルト組成物は、共重合体(a)を2.5~14質量%含有することにより、高温物性に優れたものとなり、かつ、アスファルト組成物の粘度、低温性能、共重合体(a)のアスファルトへの溶解性の各特性が優れたものとなり、また、これらの特性バランスが優れたものとなる。
 本実施形態のアスファルト組成物における、共重合体(a)の含有量は、上述した観点から、好ましくは4~14質量%であり、より好ましくは4~12質量%である。
(Copolymer (a))
The asphalt composition of this embodiment is a copolymer (a) having a vinyl aromatic monomer unit and a conjugated diene monomer unit (hereinafter referred to as copolymer (a), component (a)). There is.
).
The copolymer (a) may be either a random copolymer or a block copolymer, both of which are preferred forms. Further, a block copolymer having a polymer block mainly composed of vinyl aromatic monomer units and a polymer block mainly composed of conjugated diene monomer units can be mentioned as a preferred embodiment.
Other monomer units may be included as long as the object of the present embodiment is not impaired.
In the present specification, “mainly” means that the content of a predetermined monomer unit in the block is 80% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more. Say something.
Although there is no restriction | limiting in particular in an upper limit, It is preferable that it is 100 mass% or less, and it is preferable that it is 99 mass% or less.
The asphalt composition of the present embodiment contains 2.5 to 14% by mass of the copolymer (a), so that it has excellent high-temperature properties, and the viscosity, low-temperature performance, and copolymer of the asphalt composition. The properties of (a) solubility in asphalt are excellent, and the balance of these properties is excellent.
From the viewpoint described above, the content of the copolymer (a) in the asphalt composition of the present embodiment is preferably 4 to 14% by mass, more preferably 4 to 12% by mass.
 本実施形態において、共重合体(a)は、上述したように、ビニル芳香族単量体単位を主体とする重合体ブロック、共役ジエン単量体単位を主体とする重合体ブロックを有しているブロック共重合体(以下、ブロック共重合体(a)と記載する場合がある)が好ましい形態として挙げられる。さらには、これに加えてビニル芳香族単量体単位と共役ジエン単量体単位からなる共重合体ブロックを有していてもよい。
 ブロック共重合体(a)は、下記の式(i)~(xii)からなる群より選ばれる少なくとも一つのブロック共重合体を含有することが好ましい。
In this embodiment, the copolymer (a) has a polymer block mainly composed of vinyl aromatic monomer units and a polymer block mainly composed of conjugated diene monomer units, as described above. The block copolymer (hereinafter sometimes referred to as a block copolymer (a)) is a preferred form. Further, in addition to this, a copolymer block comprising a vinyl aromatic monomer unit and a conjugated diene monomer unit may be included.
The block copolymer (a) preferably contains at least one block copolymer selected from the group consisting of the following formulas (i) to (xii).
 (S-B)n         ・・・(i)
 S-(B-S)n       ・・・(ii)
 B-(S-B)n       ・・・(iii)
 S-(B-S)n-X     ・・・(iv)
 [(S-B)km-X    ・・・(v)
 [(S-B)k-S]m-X  ・・・(vi)
 (S-R)n         ・・・(vii)
 S-(R-S)n       ・・・(viii)
 R-(S-R)n       ・・・(ix)
 S-(R-S)n-X     ・・・(x)
 [(S-R)km-X    ・・・(xi)
 [(S-R)k-S]m-X  ・・・(xii)
(SB) n (i)
S- (BS) n (ii)
B- (SB) n (iii)
S- (BS) n -X (iv)
[(SB) k ] m -X (v)
[(SB) k -S] m -X (vi)
(SR) n (vii)
S- (RS) n ... (Viii)
R- (S-R) n (ix)
S- (RS) n -X (x)
[(SR) k ] m -X (xi)
[(S−R) k −S] m −X (xii)
 前記式(i)~(xii)中、Sは、ビニル芳香族単量体単位を主体とする重合体ブロックを表し、Bは、共役ジエン単量体単位を主体とする重合体ブロックを表し、Rは、ビニル芳香族単量体単位と共役ジエン単量体単位からなる共重合体ブロックを表し、Xは、カップリング剤の残基又は多官能有機リチウム等の重合開始剤の残基を表し、mは2~6の整数であり、n及びkはそれぞれ独立して1~4の整数である。
 前記(i)~(vi)のm、n及びkの値は同じであっても異なっていてもよい。
In the above formulas (i) to (xii), S represents a polymer block mainly composed of vinyl aromatic monomer units, B represents a polymer block mainly composed of conjugated diene monomer units, R represents a copolymer block composed of a vinyl aromatic monomer unit and a conjugated diene monomer unit, and X represents a residue of a coupling initiator or a residue of a polymerization initiator such as polyfunctional organolithium. , M is an integer from 2 to 6, and n and k are each independently an integer from 1 to 4.
The values of m, n and k in (i) to (vi) may be the same or different.
 ブロック共重合体(a)中にブロックS、B、及びRが複数存在している場合には、各々の分子量や組成等の構造は同一であってもよいし、異なっていてもよい。 When a plurality of blocks S, B, and R are present in the block copolymer (a), structures such as molecular weight and composition may be the same or different.
 上述したように、前記式(iv)~(vi)、及び(x)~(xii)中、Xは、カップリング剤の残基又は多官能有機リチウム等の重合開始剤の残基を表し、ブロックの分子量制御の観点から、Xはカップリングの残基であることが好ましい。 As described above, in the formulas (iv) to (vi) and (x) to (xii), X represents a residue of a coupling agent or a residue of a polymerization initiator such as polyfunctional organolithium, From the viewpoint of controlling the molecular weight of the block, X is preferably a coupling residue.
 前記カップリング剤は、以下に限定されるものではないが、例えば、四塩化ケイ素、四塩化スズ、エポキシ化合物、ポリハロゲン化炭化水素化合物、カルボン酸エステル化合物、ポリビニル化合物、アルコキシシラン化合物、ハロゲン化シラン化合物、エステル系化合物等が挙げられる。 The coupling agent is not limited to the following, for example, silicon tetrachloride, tin tetrachloride, epoxy compounds, polyhalogenated hydrocarbon compounds, carboxylic acid ester compounds, polyvinyl compounds, alkoxysilane compounds, halogenated Examples include silane compounds and ester compounds.
 本実施形態のアスファルト組成物の製造時のブロック共重合体(a)の耐熱劣化性の観点から、カップリング剤は、アルコキシシラン化合物やエポキシ化合物であることが好ましく、エポキシ化合物であることがより好ましい。 From the viewpoint of the heat deterioration resistance of the block copolymer (a) during production of the asphalt composition of the present embodiment, the coupling agent is preferably an alkoxysilane compound or an epoxy compound, and more preferably an epoxy compound. preferable.
 アルコキシシラン化合物としては、以下に限定されないが、例えば、テトラメトキシシラン及びそれと同種のものなどのテトラアルコキシシラン化合物;テトラフェノキシシラン及びそれと同種のものなどのテトラアリーロキシシラン化合物;メチルトリエトキシシラン及びそれと同種のものなどの2又は3以上のアルコキシ基を有するアルキルアルコキシシラン化合物;メチルトリフェノキシシラン及びそれと同種のものなどの2又は3以上のアリーロキシ基を有するアルキルアリーロキシシラン化合物;ビニルトリメトキシシラン及びそれと同種のものなどの2又は3以上のアルコキシ基を有するアルケニルアルコキシシラン化合物;並びにトリメトキシクロロシラン及びそれと同種のものなどのハロゲノアルコキシシラン化合物が挙げられる。
 これらの中では、耐熱劣化性やブロック共重合体(a)の製造性の観点から、アルコキシ基を2~4個有するアルキルアルコキシシランが好ましい。
Examples of alkoxysilane compounds include, but are not limited to, for example, tetraalkoxysilane compounds such as tetramethoxysilane and the like; tetraaroxysilane compounds such as tetraphenoxysilane and the like; methyltriethoxysilane and the like Alkylalkoxysilane compounds having two or more alkoxy groups such as the same; alkyltrioxysilane compounds having two or more aryloxy groups such as methyltriphenoxysilane and the like; vinyltrimethoxysilane And alkenylalkoxysilane compounds having two or more alkoxy groups such as the same; and halogenoalkoxysilane compounds such as trimethoxychlorosilane and the like It is.
Of these, alkylalkoxysilanes having 2 to 4 alkoxy groups are preferred from the viewpoints of heat deterioration resistance and the productivity of the block copolymer (a).
 エポキシ化合物としては、以下に限定されないが、例えば、エポキシ化大豆油又はエポキシ化アマニ油のようなポリエポキシ化植物油;エポキシ化ポリブタジエン、エポキシ化テトラアリルエーテルペンタエリトリトール、フェニル基を有するエポキシ化合物等が挙げられる。
 これらの中では、耐熱劣化性やブロック共重合体の製造性の観点から、フェニル基を有するエポキシ化合物が好ましい。
Examples of epoxy compounds include, but are not limited to, polyepoxidized vegetable oils such as epoxidized soybean oil or epoxidized linseed oil; epoxidized polybutadiene, epoxidized tetraallyl ether pentaerythritol, epoxy compounds having a phenyl group, and the like. Can be mentioned.
In these, the epoxy compound which has a phenyl group from a viewpoint of heat-resistant deterioration and the manufacture property of a block copolymer is preferable.
 アルコキシシラン化合物やエポキシ化合物中のアルコキシシリル基やエポキシ基の数は、本実施形態のアスファルト組成物の低い混合温度、アスファルト組成物の低い粘度、アスファルト組成物中の共重合体(a)の少ない劣化、アスファルト組成物と骨材との混合物にした時の骨材の高い剥離抵抗性の観点から、1分子当たり2~5個が好ましく、2~4個がより好ましい。 The number of alkoxysilyl groups or epoxy groups in the alkoxysilane compound or epoxy compound is such that the mixing temperature of the asphalt composition of the present embodiment is low, the viscosity of the asphalt composition is low, and the copolymer (a) in the asphalt composition is small. From the viewpoint of deterioration and high peeling resistance of the aggregate when it is made into a mixture of the asphalt composition and the aggregate, 2 to 5 is preferable per molecule, and 2 to 4 is more preferable.
 本実施形態のアスファルト組成物に用いる共重合体(a)は、アスファルト組成物の高温物性、アスファルト組成物の低い粘度、アスファルト組成物の低温物性、及びポリフェニレンエーテル(b)及び共重合体(a)のアスファルトへの溶解性の観点から、[(S-B)km-X(m=2~4の整数であり、k=1~4の整数であり、Sはビニル芳香族単量体単位を主体とする重合体ブロックであり、Bは共役ジエン単量体単位を主体とする重合体ブロックであり、Xはカップリング剤の残基又は重合開始剤の残基である。)の構造を有するブロック共重合体を含有することが好ましい。
 また、アスファルト組成物の高温物性、アスファルト組成物の低い粘度の観点から、(S-B)n(n=2~4の整数であり、Sはビニル芳香族単量体単位を主体とする重合体ブロックであり、Bは共役ジエン単量体単位を主体とする重合体ブロックである)の構造を有するブロック共重合体を含有することが好ましい。
 さらに、アスファルト組成物の高温物性、アスファルト組成物の低温物性の観点から、S-(B-S)n(n=1~4の整数であり、Sはビニル芳香族単量体単位を主体とする重合体ブロックであり、Bは共役ジエン単量体単位を主体とする重合体ブロックである)の構造を有するブロック共重合体を含有することが好ましい。
 さらにまた、アスファルト組成物の高温物性、ポリフェニレンエーテル(b)及び共重合体(a)のアスファルトへの溶解性の観点から、S-(R-S)n、及び[(S-R)km-X(n=1~4の整数であり、m=2~4の整数であり、k=1~4の整数であり、Sはビニル芳香族単量体単位を主体とする重合体ブロックであり、Rは、ビニル芳香族単量体単位と共役ジエン単量体単位からなる共重合体ブロックであり、Xはカップリング剤の残基又は重合開始剤の残基である。)の構造を有するブロック共重合体を含有することが好ましい。
The copolymer (a) used in the asphalt composition of the present embodiment includes a high temperature physical property of the asphalt composition, a low viscosity of the asphalt composition, a low temperature physical property of the asphalt composition, and a polyphenylene ether (b) and a copolymer (a ) From the viewpoint of solubility in asphalt, [(SB) k ] m -X (m is an integer of 2 to 4, k is an integer of 1 to 4, and S is a vinyl aromatic monomer. A polymer block mainly comprising a body unit, B is a polymer block mainly comprising a conjugated diene monomer unit, and X is a residue of a coupling agent or a residue of a polymerization initiator). It is preferable to contain a block copolymer having a structure.
Further, from the viewpoint of the high temperature physical properties of the asphalt composition and the low viscosity of the asphalt composition, (SB) n (n = 2 to 4 is an integer, and S is a heavy weight mainly composed of vinyl aromatic monomer units. It is preferable to contain a block copolymer having a structure of a combined block, and B is a polymer block mainly composed of a conjugated diene monomer unit.
Furthermore, from the viewpoint of the high temperature physical properties of the asphalt composition and the low temperature physical properties of the asphalt composition, S— (B—S) n (n = 1 to 4 is an integer, and S is mainly composed of vinyl aromatic monomer units. It is preferable to contain a block copolymer having a structure of B), wherein B is a polymer block mainly composed of a conjugated diene monomer unit.
Furthermore, from the viewpoint of the high temperature physical properties of the asphalt composition and the solubility of the polyphenylene ether (b) and the copolymer (a) in asphalt, S— (RS) n and [(S—R) k ] m— X (n = 1 to 4, integer of m = 2 to 4, k = 1 to 4, and S is a polymer block mainly composed of vinyl aromatic monomer units. Wherein R is a copolymer block composed of a vinyl aromatic monomer unit and a conjugated diene monomer unit, and X is a residue of a coupling agent or a residue of a polymerization initiator). It is preferable to contain the block copolymer which has.
 本実施形態のアスファルト組成物に用いる共重合体(a)の重量平均分子量(Mw)は、アスファルト組成物の高い軟化点、アスファルト組成物と骨材との混合物にした時の骨材の高い剥離抵抗性の観点から、4万以上であることが好ましく、6万以上であることがより好ましく、10万以上であることがさらに好ましい。
 また、アスファルト組成物の低い粘度、アスファルト組成物中の共重合体(a)の少ない劣化の観点から、40万以下であることが好ましく、35万以下であることがより好ましく、30万以下であることがさらに好ましい。
The weight average molecular weight (Mw) of the copolymer (a) used in the asphalt composition of this embodiment is high as the softening point of the asphalt composition, and high peeling of the aggregate when the asphalt composition and the aggregate are mixed. From the viewpoint of resistance, it is preferably 40,000 or more, more preferably 60,000 or more, and even more preferably 100,000 or more.
Further, from the viewpoint of the low viscosity of the asphalt composition and the small deterioration of the copolymer (a) in the asphalt composition, it is preferably 400,000 or less, more preferably 350,000 or less, and 300,000 or less. More preferably it is.
 なお、共重合体(a)の重量平均分子量は、後述する実施例に記載の方法により求めることができる。 In addition, the weight average molecular weight of a copolymer (a) can be calculated | required by the method as described in the Example mentioned later.
 本実施形態のアスファルト組成物に用いる共重合体(a)中のビニル芳香族単量体単位の含有量は、アスファルト組成物の高い軟化点、アスファルト組成物と骨材との混合物にした時の骨材の高い剥離抵抗性の観点から、10質量%以上であることが好ましく、14質量%以上がより好ましく、20質量%以上がさらに好ましく、25質量%以上がさらにより好ましい。
 また、アスファルト組成物の低い粘度、共重合体(a)の少ない劣化、アスファルト組成物の柔軟性の観点から、60質量%以下であることが好ましく、55質量%以下がより好ましく、52質量%以下がさらに好ましく、45質量%以下がさらにより好ましい。
The content of the vinyl aromatic monomer unit in the copolymer (a) used in the asphalt composition of the present embodiment is a high softening point of the asphalt composition, and a mixture of the asphalt composition and the aggregate. From the viewpoint of high peeling resistance of the aggregate, it is preferably 10% by mass or more, more preferably 14% by mass or more, further preferably 20% by mass or more, and further more preferably 25% by mass or more.
Further, from the viewpoint of low viscosity of the asphalt composition, little deterioration of the copolymer (a), and flexibility of the asphalt composition, it is preferably 60% by mass or less, more preferably 55% by mass or less, and 52% by mass. The following is more preferable, and 45% by mass or less is even more preferable.
 ここで、共重合体(a)中のビニル芳香族単量体単位の含有量は、共重合体(a)全体としてのビニル芳香族単量体単位の含有量を言う。
 共重合体(a)中に、複数の成分があり、すなわち共重合体(a)が、複数種類の共重合体の混合物である場合において、各共重合体のビニル芳香族単量体単位の含有量が異なっている場合、それぞれのビニル芳香族単量体単位の含有量の平均値である。
Here, the content of the vinyl aromatic monomer unit in the copolymer (a) refers to the content of the vinyl aromatic monomer unit as the entire copolymer (a).
In the copolymer (a), there are a plurality of components, that is, when the copolymer (a) is a mixture of a plurality of types of copolymers, the vinyl aromatic monomer unit of each copolymer When the contents are different, it is the average value of the contents of the respective vinyl aromatic monomer units.
 なお、本実施形態において、共重合体(a)中のビニル芳香族単量体単位の含有量は、後述する実施例に記載の方法で測定することができる。 In addition, in this embodiment, content of the vinyl aromatic monomer unit in a copolymer (a) can be measured by the method as described in the Example mentioned later.
 本実施形態のアスファルト組成物に用いる共重合体(a)中のビニル芳香族単量体単位を主体とする重合体ブロックの含有量(ここで、上述のとおり「主体とする」とは、重合体ブロック中にビニル芳香族単量体単位を、80質量%以上100質量%以下含むことを言う。)は、アスファルト組成物の高い軟化点、アスファルト組成物と骨材との混合物にした時の高い剥離抵抗性の観点から、8質量%以上であることが好ましく、12質量%以上であることがより好ましく、15質量%以上であることがさらに好ましく、20質量%以上であることがさらにより好ましい。
 また、アスファルト組成物の低い粘度、共重合体(a)の少ない劣化、アスファルト組成物の柔軟性の観点から、50質量%以下であることが好ましく、45質量%以下であることがより好ましく、40質量%以下であることがさらに好ましく、35質量%以下であることがさらにより好ましい。
Content of the polymer block mainly composed of vinyl aromatic monomer units in the copolymer (a) used in the asphalt composition of the present embodiment (Here, as described above, “mainly” means heavy The vinyl aromatic monomer unit is included in the coalesced block in an amount of 80% by mass to 100% by mass.) Is a high softening point of the asphalt composition, and a mixture of the asphalt composition and the aggregate. From the viewpoint of high peeling resistance, it is preferably 8% by mass or more, more preferably 12% by mass or more, further preferably 15% by mass or more, and further more preferably 20% by mass or more. preferable.
Further, from the viewpoint of low viscosity of the asphalt composition, little deterioration of the copolymer (a), and flexibility of the asphalt composition, it is preferably 50% by mass or less, more preferably 45% by mass or less, It is further preferably 40% by mass or less, and further preferably 35% by mass or less.
 なお、共重合体(a)中のビニル芳香族単量体単位を主体とする重合体ブロックの含有量は、後述する実施例に記載されている、ブロック共重合体中のビニル芳香族単量体ブロック含有量の測定方法により測定することができる。 The content of the polymer block mainly composed of the vinyl aromatic monomer unit in the copolymer (a) is described in the examples described later, and the vinyl aromatic monomer in the block copolymer. It can be measured by a method for measuring the body block content.
 本実施形態のアスファルト組成物に用いる共重合体(a)は、アスファルト組成物の高い軟化点、共重合体(a)の高い耐熱劣化性、後述するポリフェニレンエーテル(b)との押出成型ブレンド時の少ない熱劣化の観点から、共重合体(a)中の共役ジエン単量体単位に含まれる二重結合が水素添加されていることが好ましい。
 アスファルト組成物の高い軟化点、貯蔵時の高い耐熱劣化性、ポリフェニレンエーテル(b)との押出成型ブレンド時の少ない熱劣化の観点から、当該共役ジエン単量体単位に含まれる二重結合の水添率は、10mol%以上が好ましく、20mol%以上がより好ましく、30mol%以上がさらに好ましい。
 但し、当該共役ジエン単量体単位に含まれる二重結合量の水素添加率は、アスファルトとの高い相容性の観点から、90mol%以下が好ましく、75mol%以下がより好ましく、60mol%以下がさらに好ましい。
The copolymer (a) used in the asphalt composition of the present embodiment has a high softening point of the asphalt composition, high heat deterioration resistance of the copolymer (a), and extrusion blending with polyphenylene ether (b) described later. From the viewpoint of thermal deterioration with little, it is preferable that the double bond contained in the conjugated diene monomer unit in the copolymer (a) is hydrogenated.
Double bond water contained in the conjugated diene monomer unit from the viewpoint of high softening point of asphalt composition, high heat deterioration resistance during storage, and low thermal deterioration during extrusion blending with polyphenylene ether (b) The addition rate is preferably 10 mol% or more, more preferably 20 mol% or more, and further preferably 30 mol% or more.
However, the hydrogenation rate of the double bond amount contained in the conjugated diene monomer unit is preferably 90 mol% or less, more preferably 75 mol% or less, and more preferably 60 mol% or less from the viewpoint of high compatibility with asphalt. Further preferred.
 なお、共役ジエン単量体単位は、水素添加することにより共役ジエンを有しなくなるが、本明細書中、水添前後にかかわらず「共役ジエン単量体単位」と称する。 The conjugated diene monomer unit does not have the conjugated diene by hydrogenation, but is referred to as “conjugated diene monomer unit” in the present specification regardless of before and after hydrogenation.
 二重結合量の水素添加率は、水添工程における水素添加量や水添反応時間を制御することにより調整することができる。また、本実施形態において、水素添加率は後述する実施例に記載の方法で求めることができる。 The hydrogenation rate of the double bond amount can be adjusted by controlling the hydrogenation amount and the hydrogenation reaction time in the hydrogenation step. Moreover, in this embodiment, a hydrogenation rate can be calculated | required by the method as described in the Example mentioned later.
 本実施形態のアスファルト組成物に用いる共重合体(a)の水素添加前の共役ジエン単量体単位中のビニル結合量は、アスファルトとの高い相容性、アスファルト組成物の低い粘度の観点から、8mol%以上が好ましく、10mol%以上がより好ましく、12mol%以上がさらに好ましい。
 また、共重合体(a)の水素添加前の共役ジエン単量体単位中のビニル結合量は、アスファルト組成物中の共重合体(a)の少ない劣化の観点から、45mol%以下が好ましく、40mol%以下がより好ましく、30mol%以下がさらに好ましく、25mol%以下がさらにより好ましい。
The amount of vinyl bonds in the conjugated diene monomer unit before hydrogenation of the copolymer (a) used in the asphalt composition of the present embodiment is from the viewpoint of high compatibility with asphalt and low viscosity of the asphalt composition. 8 mol% or more, preferably 10 mol% or more, more preferably 12 mol% or more.
In addition, the vinyl bond amount in the conjugated diene monomer unit before hydrogenation of the copolymer (a) is preferably 45 mol% or less from the viewpoint of less deterioration of the copolymer (a) in the asphalt composition, 40 mol% or less is more preferable, 30 mol% or less is more preferable, and 25 mol% or less is even more preferable.
 本実施形態のアスファルト組成物に用いる共重合体(a)のメルトフローレート(MFR、200℃、5kgf)は、共重合体(a)の製造性、ポリフェニレンエーテル(b)との押出成型ブレンド時の少ない熱劣化の観点から、0.01g/10分以上であることが好ましく、0.2g/10分以上がより好ましく、1.0g/10分以上がさらに好ましく、3g/10分以上がさらにより好ましい。また、アスファルトに添加する低いポリマー添加量や引張後の回復性の観点から、100g/10分以下が好ましく、50g/10分以下がより好ましく、30g/10分以下がさらに好ましい。 The melt flow rate (MFR, 200 ° C., 5 kgf) of the copolymer (a) used in the asphalt composition of the present embodiment is the productivity of the copolymer (a), during extrusion blending with the polyphenylene ether (b) From the viewpoint of low thermal deterioration, it is preferably 0.01 g / 10 min or more, more preferably 0.2 g / 10 min or more, further preferably 1.0 g / 10 min or more, and further preferably 3 g / 10 min or more. More preferred. Further, from the viewpoint of a low polymer addition amount added to asphalt and recoverability after tension, 100 g / 10 min or less is preferable, 50 g / 10 min or less is more preferable, and 30 g / 10 min or less is more preferable.
 共重合体(a)は、アスファルト組成物の分離性、アスファルト及び/又は骨材との相互作用が優れる観点から、官能基よりなる変性基を含有する(官能基によりなる変性基を有する変性共重合体である)ことが好ましい。
 官能基としては、以下に限定されないが、例えば、水酸基、酸無水物基、エポキシ基、アミノ基、アミド基、シラノール基、及びアルコキシシラン基からなる群より選択される少なくとも1つの官能基が挙げられる。共重合体(a)に、これらの官能基よりなる変性基が付加されていることが好ましく、官能基よりなる変性基の付加方法としては、以下に限定されないが、例えば、ブロック共重合体を構成する単量体に、これらの官能基よりなる変性基を有する単量体を用いる方法、ブロック共重合体を構成する単量体単位と、これらの官能基よりなる変性基を有する重合開始剤、カップリング剤、又は停止剤の残基とを結合する方法等が挙げられる。
The copolymer (a) contains a modifying group composed of a functional group (a modified copolymer having a modifying group composed of a functional group) from the viewpoint of excellent separability of the asphalt composition and interaction with asphalt and / or aggregate. It is preferably a polymer.
Examples of the functional group include, but are not limited to, at least one functional group selected from the group consisting of a hydroxyl group, an acid anhydride group, an epoxy group, an amino group, an amide group, a silanol group, and an alkoxysilane group. It is done. It is preferable that a modifying group comprising these functional groups is added to the copolymer (a). The method for adding a modifying group comprising a functional group is not limited to the following, but for example, a block copolymer may be used. A method using a monomer having a modifying group consisting of these functional groups as a constituent monomer, a monomer unit constituting a block copolymer, and a polymerization initiator having a modifying group consisting of these functional groups , A coupling agent, or a method of binding to a terminating agent residue.
(共重合体(a)の製造方法)
 本実施形態のアスファルト組成物に用いる共重合体(a)は、例えば、炭化水素溶媒中、リチウム化合物を重合開始剤として、少なくとも共役ジエン単量体とビニル芳香族単量体とを重合させて共重合体を得る重合工程と、任意工程として、得られた前記共重合体の共役ジエン単量体単位中の二重結合に水素添加する水素添加工程と、共重合体を含む溶液の溶媒を脱溶剤する脱溶剤工程を順次行い、製造することができる。
(Production method of copolymer (a))
The copolymer (a) used in the asphalt composition of the present embodiment is obtained by polymerizing at least a conjugated diene monomer and a vinyl aromatic monomer using, for example, a lithium compound as a polymerization initiator in a hydrocarbon solvent. A polymerization step for obtaining a copolymer, a hydrogenation step for hydrogenating the double bond in the conjugated diene monomer unit of the obtained copolymer, and a solvent for the solution containing the copolymer as an optional step. A solvent removal step for removing the solvent can be sequentially performed for production.
<重合工程>
 重合工程においては、炭化水素溶媒中、リチウム化合物を重合開始剤として、少なくとも共役ジエン単量体とビニル芳香族単量体を含む単量体を重合させて重合体を得る。
<Polymerization process>
In the polymerization step, a polymer is obtained by polymerizing a monomer containing at least a conjugated diene monomer and a vinyl aromatic monomer in a hydrocarbon solvent using a lithium compound as a polymerization initiator.
[炭化水素溶媒]
 重合工程で用いる炭化水素溶媒としては、以下に限定されないが、例えば、ブタン、ペンタン、ヘキサン、イソペンタン、ヘプタン、オクタン等の脂肪族炭化水素;シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサン、エチルシクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、エチルベンゼン、キシレン等の芳香族炭化水素等が挙げられる。
 これらは1種のみを単独で使用してもよく、2種以上を混合して使用してもよい。
[Hydrocarbon solvent]
The hydrocarbon solvent used in the polymerization step is not limited to the following, but examples thereof include aliphatic hydrocarbons such as butane, pentane, hexane, isopentane, heptane, and octane; cyclopentane, methylcyclopentane, cyclohexane, methylcyclohexane, and ethylcyclohexane. And alicyclic hydrocarbons such as benzene, toluene, ethylbenzene, and xylene.
These may be used alone or in combination of two or more.
[重合開始剤]
 重合工程において重合開始剤として用いるリチウム化合物としては、以下に限定されないが、例えば、有機モノリチウム化合物、有機ジリチウム化合物、有機ポリリチウム化合物等の分子中に一個以上のリチウム原子を結合した化合物が挙げられる。
 このような有機リチウム化合物としては、以下に限定されないが、例えば、エチルリチウム、n-プロピルリチウム、イソプロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、ヘキサメチレンジリチウム、ブタジエニルジリチウム、イソプレニルジリチウム等が挙げられる。
 これらは1種のみを単独で使用してもよく、2種以上を併用してもよい。
[Polymerization initiator]
Examples of the lithium compound used as a polymerization initiator in the polymerization step include, but are not limited to, for example, a compound in which one or more lithium atoms are bonded in a molecule such as an organic monolithium compound, an organic dilithium compound, and an organic polylithium compound. It is done.
Examples of such an organic lithium compound include, but are not limited to, for example, ethyl lithium, n-propyl lithium, isopropyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, hexamethylene dilithium, butadiene Examples include enildilithium and isoprenyldilithium.
These may be used alone or in combination of two or more.
[重合に用いる単量体]
 共役ジエン単量体としては、以下に限定されないが、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン等の1対の共役二重結合を有するジオレフィンが挙げられる。これらのなかでも、経済性の観点から、1,3-ブタジエン、イソプレンが好ましい。また、機械強度の観点から、1,3-ブタジエンがより好ましい。
 これらは1種単独で使用してもよいし、2種以上を併用してもよい。
[Monomer used for polymerization]
Examples of the conjugated diene monomer include, but are not limited to, for example, 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3 -Diolefins having a pair of conjugated double bonds such as pentadiene, 2-methyl-1,3-pentadiene, 1,3-hexadiene, etc. Among these, 1,3-butadiene and isoprene are preferable from the viewpoint of economy. From the viewpoint of mechanical strength, 1,3-butadiene is more preferable.
These may be used individually by 1 type and may use 2 or more types together.
 ビニル芳香族単量体としては、以下に限定されないが、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、ジビニルベンゼン、1,1-ジフェニルエチレン、N,N-ジメチル-p-アミノエチルスチレン、N,N-ジエチル-p-アミノエチルスチレン等のビニル芳香族化合物が挙げられる。
 これらのなかでも経済性の観点から、スチレンが好ましい。
 これらは1種単独で用いてもよいし、2種以上を併用してもよい。
Examples of the vinyl aromatic monomer include, but are not limited to, styrene, α-methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylethylene, N, N-dimethyl-p-aminoethylstyrene. And vinyl aromatic compounds such as N, N-diethyl-p-aminoethylstyrene.
Among these, styrene is preferable from the viewpoint of economy.
These may be used alone or in combination of two or more.
 前記共役ジエン単量体及びビニル芳香族単量体の他、共役ジエン単量体及びビニル芳香族単量体と共重合可能な他の単量体を用いることもできる。 In addition to the conjugated diene monomer and vinyl aromatic monomer, other monomers copolymerizable with the conjugated diene monomer and vinyl aromatic monomer can also be used.
[極性化合物、ランダム化剤]
 重合工程においては、重合速度の調整、重合した共役ジエン単量体単位のミクロ構造(シス、トランス、及びビニルの比率)の調整、共役ジエン単量体とビニル芳香族単量体との反応比率の調整等を目的として、所定の極性化合物やランダム化剤を使用することができる。
[Polar compounds, randomizing agents]
In the polymerization process, adjustment of the polymerization rate, adjustment of the microstructure of the polymerized conjugated diene monomer units (ratio of cis, trans, and vinyl), reaction ratio of conjugated diene monomer and vinyl aromatic monomer A predetermined polar compound or a randomizing agent can be used for the purpose of adjusting the above.
 極性化合物やランダム化剤としては、以下に限定されないが、例えば、テトラヒドロフラン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル等のエーテル類;トリエチルアミン、テトラメチルエチレンジアミン等のアミン類;チオエーテル類、ホスフィン類、ホスホルアミド類、アルキルベンゼンスルホン酸塩、カリウムやナトリウムのアルコキシド等が挙げられる。 Examples of polar compounds and randomizing agents include, but are not limited to, ethers such as tetrahydrofuran, diethylene glycol dimethyl ether and diethylene glycol dibutyl ether; amines such as triethylamine and tetramethylethylenediamine; thioethers, phosphines, phosphoramides, alkylbenzenes Examples thereof include sulfonates, potassium and sodium alkoxides, and the like.
 重合方法としては、特に限定されず、公知の方法を適用できる。公知の方法としては、例えば、特公昭36-19286号公報、特公昭43-17979号公報、特公昭46-32415号公報、特公昭49-36957号公報、特公昭48-2423号公報、特公昭48-4106号公報、特公昭56-28925号公報、特開昭59-166518号公報、特開昭60-186577号公報等に記載された方法が挙げられる。 The polymerization method is not particularly limited, and a known method can be applied. Known methods include, for example, Japanese Patent Publication No. 36-19286, Japanese Patent Publication No. 43-171979, Japanese Patent Publication No. 46-32415, Japanese Patent Publication No. 49-36957, Japanese Patent Publication No. 48-2423, and Japanese Patent Publication No. Sho. Examples thereof include the methods described in JP-A-48-4106, JP-B-56-28925, JP-A-59-166518, JP-A-60-186777, and the like.
<失活工程>
 共重合体(a)の製造方法においては、重合工程後、失活工程を行うことにより、共重合体の活性末端を失活することが好ましい。
 共重合体の活性末端を失活する方法は、活性末端と活性水素を有する化合物と反応させる方法が挙げられる。
 活性水素を有する化合物としては特に限定されないが、経済性の観点から、アルコールや水が好ましい。
<Deactivation process>
In the manufacturing method of a copolymer (a), it is preferable to deactivate the active terminal of a copolymer by performing a deactivation process after a superposition | polymerization process.
Examples of the method of deactivating the active terminal of the copolymer include a method of reacting with a compound having an active terminal and active hydrogen.
Although it does not specifically limit as a compound which has active hydrogen, From an economical viewpoint, alcohol and water are preferable.
<水素添加工程>
 水素添加工程は、重合工程で得られた共重合体の共役ジエン単量体単位中の二重結合の一部に、所定の触媒の存在下、水素添加反応する工程である。
 水素添加反応に使用される触媒としては、以下に限定されないが、例えば、Ni、Pt、Pd、Ru等の金属をカーボン、シリカ、アルミナ、ケイソウ土等の担体に担持させた担持型不均一系触媒;Ni、Co、Fe、Cr等の有機塩又はアセチルアセトン塩と有機Al等の還元剤とを用いるいわゆるチーグラー型触媒;Ru、Rh等の有機金属化合物等のいわゆる有機錯触媒、或いはチタノセン化合物に還元剤として有機Li、有機Al、有機Mg等を用いる均一触媒が挙げられる。
 特に、経済性、重合体の耐熱老化性あるいは耐候性の観点から、チタノセン化合物に還元剤として有機Li、有機Al、有機Mg等を用いた均一触媒系が好ましい。
<Hydrogenation process>
The hydrogenation step is a step in which a hydrogenation reaction is performed on a part of the double bond in the conjugated diene monomer unit of the copolymer obtained in the polymerization step in the presence of a predetermined catalyst.
The catalyst used in the hydrogenation reaction is not limited to the following, but, for example, a supported heterogeneous system in which a metal such as Ni, Pt, Pd, or Ru is supported on a support such as carbon, silica, alumina, or diatomaceous earth. Catalyst: So-called Ziegler type catalyst using organic salt such as Ni, Co, Fe, Cr or the like and acetylacetone salt and reducing agent such as organic Al; so-called organic complex catalyst such as organometallic compound such as Ru and Rh, or titanocene compound A homogeneous catalyst using organic Li, organic Al, organic Mg or the like as the reducing agent can be mentioned.
In particular, a homogeneous catalyst system using organic Li, organic Al, organic Mg or the like as a reducing agent in a titanocene compound is preferable from the viewpoints of economy, heat aging resistance of the polymer, or weather resistance.
 水素添加方法としては、以下に限定されないが、例えば、特公昭42-8704号公報、特公昭43-6636号公報に記載された方法や、好ましくは特公昭63-4841号公報及び特公昭63-5401号公報に記載された方法が挙げられる。
 具体的には、不活性溶媒中で水素添加触媒の存在下に水素添加して水添ブロック共重合体溶液を得ることができる。
The hydrogenation method is not limited to the following, but for example, the method described in JP-B-42-8704 and JP-B-43-6636, preferably JP-B-63-4841 and JP-B-63- The method described in 5401 gazette is mentioned.
Specifically, hydrogenated block copolymer solution can be obtained by hydrogenation in the presence of a hydrogenation catalyst in an inert solvent.
 水素添加反応は、バッチプロセス、連続プロセス、或いはそれらの組み合わせのいずれも用いることができる。 As the hydrogenation reaction, any of a batch process, a continuous process, or a combination thereof can be used.
 水素添加反応は、特に限定するものではないが、高い水添活性の観点で、上述した共重合体の活性末端を失活する工程後に行うことが好ましい。 The hydrogenation reaction is not particularly limited, but is preferably performed after the above-described step of deactivating the active terminal of the copolymer from the viewpoint of high hydrogenation activity.
 水素添加工程において、ビニル芳香族単量体単位の共役結合が水素添加されてもよい。
 全ビニル芳香族単量体単位中の共役結合の水素添加率は、好ましくは30mol%以下であり、より好ましくは10mol%以下であり、さらに好ましくは3mol%以下である。
 また、全ビニル芳香族単量体中の共役結合の水素添加率の下限は、特に限定されないが、好ましくは0mol%よりも高い値であり、より好ましくは1mol%以上である。全ビニル芳香族単量体中の共役結合の水素添加率が上記範囲内であることにより、アスファルトに添加するポリマー添加量を低減化でき、また、アスファルトとの相容性が高くなる傾向にある。
In the hydrogenation step, the conjugated bond of the vinyl aromatic monomer unit may be hydrogenated.
The hydrogenation rate of the conjugated bond in all vinyl aromatic monomer units is preferably 30 mol% or less, more preferably 10 mol% or less, and further preferably 3 mol% or less.
Moreover, the lower limit of the hydrogenation rate of the conjugated bond in the all vinyl aromatic monomer is not particularly limited, but is preferably a value higher than 0 mol%, more preferably 1 mol% or more. When the hydrogenation rate of the conjugated bond in the total vinyl aromatic monomer is within the above range, the amount of polymer added to the asphalt can be reduced, and the compatibility with the asphalt tends to increase. .
<脱溶剤工程>
 脱溶剤工程は、共重合体(a)を含む溶液の溶媒を脱溶剤する工程である。
 脱溶剤方法としては、特に限定されないが、スチームストリッピング法や直接脱溶媒法が挙げられる。
<Desolvation process>
The solvent removal step is a step of removing the solvent of the solution containing the copolymer (a).
The solvent removal method is not particularly limited, and examples thereof include a steam stripping method and a direct solvent removal method.
 脱溶剤工程により得られる共重合体中の残存溶媒量は、好ましくは2質量%以下であり、より好ましくは0.5質量%以下であり、さらに好ましくは0.2質量%以下であり、さらにより好ましくは0.05質量%以下であり、よりさらに好ましくは0.01質量%以下である。また、共重合体中の残存溶媒量の下限は、特に限定されないが、少ない方が好ましく、好ましくは0質量%であるが、脱溶剤時の経済性の観点から、通常、0.01質量%以上0.1質量%以下の範囲である。 The amount of residual solvent in the copolymer obtained by the solvent removal step is preferably 2% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.2% by mass or less, More preferably, it is 0.05 mass% or less, More preferably, it is 0.01 mass% or less. Further, the lower limit of the residual solvent amount in the copolymer is not particularly limited, but it is preferably less, and preferably 0% by mass, but is usually 0.01% by mass from the viewpoint of economy at the time of solvent removal. It is the range of 0.1 mass% or less.
 共重合体(a)の耐熱老化性やゲル化の抑制の観点から、共重合体(a)に酸化防止剤を添加することが好ましい。
 酸化防止剤としては、以下に限定されないが、例えば、ラジカル補捉剤等のフェノール系酸化防止剤、過酸化物分解剤等のリン系酸化防止剤やイオウ系酸化防止剤が挙げられる。
 また、両性能を併せ持つ酸化防止剤を使用してもよい。
 これらは一種のみを単独で用いてもよく、二種以上を併用してもよい。
From the viewpoint of heat aging resistance of the copolymer (a) and suppression of gelation, it is preferable to add an antioxidant to the copolymer (a).
Examples of the antioxidant include, but are not limited to, phenolic antioxidants such as radical scavengers, phosphorus antioxidants such as peroxide decomposers, and sulfur antioxidants.
Moreover, you may use the antioxidant which has both performances together.
These may be used alone or in combination of two or more.
 前記酸化防止剤のなかでも、共重合体(a)や本実施形態のアスファルト組成物の耐熱老化性やゲル化の抑制の観点から、少なくとも、フェノール系酸化防止剤を添加することが好ましい。
 フェノール系酸化防止剤の添加量は、高い低温製造性や混合中において共重合体の劣化が少ない観点から、共重合体(a)100質量部に対して、0.05質量部以上が好ましく、0.10質量部以上がより好ましく、0.20質量部以上がさらに好ましい。また、フェノール系酸化防止剤の添加量は、骨材の高い剥離抵抗性や経済性の観点から、共重合体(a)100質量部に対して、1質量部以下が好ましく、0.5質量部以下がより好ましく、0.4質量部以下がさらに好ましく、0.3質量部以下がさらにより好ましい。
Among the antioxidants, it is preferable to add at least a phenolic antioxidant from the viewpoint of heat aging resistance and suppression of gelation of the copolymer (a) and the asphalt composition of the present embodiment.
The addition amount of the phenolic antioxidant is preferably 0.05 parts by mass or more with respect to 100 parts by mass of the copolymer (a), from the viewpoint of high low-temperature productivity and less deterioration of the copolymer during mixing. 0.10 parts by mass or more is more preferable, and 0.20 parts by mass or more is more preferable. Moreover, the addition amount of the phenolic antioxidant is preferably 1 part by mass or less with respect to 100 parts by mass of the copolymer (a), from the viewpoint of high peeling resistance and economic efficiency of the aggregate, and 0.5 mass. Part or less is more preferable, 0.4 part by weight or less is more preferable, and 0.3 part by weight or less is even more preferable.
 その他、共重合体(a)の着色防止や機械強度向上の観点から、脱溶剤工程の前に、共重合体(a)中の金属を除去する脱灰工程や、ポリマーのpHを調整する中和工程、例えば、酸の添加や炭酸ガスの添加を行ってもよい。 In addition, from the viewpoint of preventing coloring of the copolymer (a) and improving mechanical strength, a deashing step for removing the metal in the copolymer (a) and adjusting the pH of the polymer before the solvent removal step For example, an acid addition or carbon dioxide addition may be performed.
(還元粘度が0.07dL/g~0.60dL/gであるポリフェニレンエーテル(b))
 本実施形態のアスファルト組成物は、アスファルト組成物の高温物性、また、アスファルト組成物の粘度、低温性能、共重合体(a)のアスファルトへの溶解性、及びこれらの特性バランスが優れたものとなる観点から、還元粘度が0.07dL/g~0.60dL/gであるポリフェニレンエーテル(b)(以下、ポリフェニレンエーテル(b)、(b)成分と記載する場合がある。)を0.1~10質量%含む。
 上記観点から、ポリフェニレンエーテル(b)の含有量は、0.1~8質量%であることが好ましく、0.1~5質量%であることがより好ましい。
 ポリフェニレンエーテル(b)は、一般的にガラス転移点が高く、少量でも性能への寄与が大きく、添加量が0.1質量%でも改良効果があると考えられる。一方、多量に入れると粘度が非常に高くなり加工性が悪化するため、10質量%を上限と設定している。
 ポリフェニレンエーテル(b)は、官能基を有する(官能基よりなる変性基を有する)ものでも、官能基を有していない(官能基よりなる変性基を有していない)ものでも、いずれでもよい。
 前記官能基としては、カルボキシル基及び/又はカルボキシル基から誘導される基、水酸基、酸無水物基、エポキシ基、アミノ基、アミド基、シラノール基、及びアルコキシシラン基が挙げられる。
 ポリフェニレンエーテル(b)の具体的な好ましい態様としては、以下の(1)~(3)が挙げられる。
(1)官能基よりなる変性基を有していないポリフェニレンエーテル(b-1)を含む。
(2)官能基よりなる変性基としてカルボキシル基及び/又はカルボキシル基から誘導される基を有するポリフェニレンエーテル(b-2)を含む。
(3)前記官能基よりなる変性基を有していないポリフェニレンエーテル(b-1)と、カルボキシル基及び/又はカルボキシル基から誘導される基を有するポリフェニレンエーテル(b-2)の混合物を含む。
(Polyphenylene ether (b) having a reduced viscosity of 0.07 dL / g to 0.60 dL / g)
The asphalt composition of the present embodiment is excellent in the high temperature physical properties of the asphalt composition, the viscosity of the asphalt composition, the low temperature performance, the solubility of the copolymer (a) in asphalt, and the balance of these properties. From this point of view, 0.1 to 0.1 of polyphenylene ether (b) having a reduced viscosity of 0.07 dL / g to 0.60 dL / g (hereinafter sometimes referred to as polyphenylene ether (b) or (b) component). Contains 10% by mass.
From the above viewpoint, the content of the polyphenylene ether (b) is preferably 0.1 to 8% by mass, and more preferably 0.1 to 5% by mass.
The polyphenylene ether (b) generally has a high glass transition point, greatly contributes to performance even in a small amount, and is considered to have an improving effect even when the addition amount is 0.1% by mass. On the other hand, since a viscosity will become very high and workability will deteriorate when it puts in large quantities, 10 mass% is set as the upper limit.
The polyphenylene ether (b) may be either one having a functional group (having a modified group comprising a functional group) or one having no functional group (having no modified group comprising a functional group). .
Examples of the functional group include a carboxyl group and / or a group derived from a carboxyl group, a hydroxyl group, an acid anhydride group, an epoxy group, an amino group, an amide group, a silanol group, and an alkoxysilane group.
Specific preferred embodiments of polyphenylene ether (b) include the following (1) to (3).
(1) includes polyphenylene ether (b-1) having no modifying group composed of a functional group.
(2) Polycarboxyl ether (b-2) having a carboxyl group and / or a group derived from a carboxyl group as a modifying group comprising a functional group is included.
(3) A mixture of a polyphenylene ether (b-1) having no modifying group composed of the functional group and a polyphenylene ether (b-2) having a carboxyl group and / or a group derived from a carboxyl group.
 本実施形態のアスファルト組成物に用いるポリフェニレンエーテル(b)は、還元粘度が0.07dL/g~0.60dL/gであり、アスファルト組成物の高い軟化点の観点から、0.07dL/g以上であり、0.15dL/g以上が好ましく、0.20dL/g以上がより好ましく、0.30dL/g以上がさらに好ましい。
 また、アスファルト組成物の低い粘度、柔軟性、ポリフェニレンエーテル(b)のアスファルトへの溶解性の観点から、0.60dL/g以下であり、0.55dL/g以下が好ましく、0.50dL/g以下がより好ましく、0.40dL/g以下がさらに好ましい。
The polyphenylene ether (b) used in the asphalt composition of the present embodiment has a reduced viscosity of 0.07 dL / g to 0.60 dL / g, and from the viewpoint of a high softening point of the asphalt composition, 0.07 dL / g or more. 0.15 dL / g or more is preferable, 0.20 dL / g or more is more preferable, and 0.30 dL / g or more is more preferable.
Further, from the viewpoint of low viscosity and flexibility of the asphalt composition and solubility of the polyphenylene ether (b) in asphalt, it is 0.60 dL / g or less, preferably 0.55 dL / g or less, and 0.50 dL / g. The following is more preferable, and 0.40 dL / g or less is more preferable.
 なお、ポリフェニレンエーテル(b)の還元粘度は、後述する実施例に記載の方法で測定することができる。
 また、ポリフェニレンエーテル(b)の還元粘度は、分子量を調整することにより、上記数値範囲に制御することができる。
In addition, the reduced viscosity of polyphenylene ether (b) can be measured by the method as described in the Example mentioned later.
Further, the reduced viscosity of the polyphenylene ether (b) can be controlled within the above numerical range by adjusting the molecular weight.
 前記カルボキシル基及び/又はカルボキシル基から誘導される基を有する官能基変性ポリフェニレンエーテル(b-2)は、官能基よりなる変性基を有していないポリフェニレンエーテル(b-1)と、不飽和カルボン酸又はその誘導体(F)と、を反応させることによって得られる。
 官能基よりなる変性基を有していないポリフェニレンエーテル(b-1)に対する、前記不飽和カルボン酸又はその誘導体(F)の付加量としては、ポリフェニレンエーテル(b-1)100質量%に対して、0.01~10質量%であることが好ましい。反応の条件としては、以下に限定されないが、例えば、ラジカル発生剤の存在下又は非存在下で、溶融状態、溶液状態又はスラリー状態で、80~350℃の温度条件下で行うことにより、付加することができる。付加量は目的に応じて適宜設定すればよく、付加量が少なければ、官能基よりなる変性基を有するポリフェニレンエーテルと有していないポリフェニレンエーテルの混合物が得られる。
The functional group-modified polyphenylene ether (b-2) having a carboxyl group and / or a group derived from a carboxyl group includes a polyphenylene ether (b-1) having no modified group consisting of a functional group and an unsaturated carboxylic acid. It can be obtained by reacting an acid or its derivative (F).
The amount of the unsaturated carboxylic acid or derivative (F) added to the polyphenylene ether (b-1) having no functional group-modified group is 100% by mass of the polyphenylene ether (b-1). 0.01 to 10% by mass is preferable. The reaction conditions are not limited to the following. For example, the reaction is carried out in the molten state, in the solution state or in the slurry state in the presence or absence of a radical generator, at a temperature of 80 to 350 ° C. can do. The addition amount may be appropriately set according to the purpose. If the addition amount is small, a mixture of a polyphenylene ether having a modifying group made of a functional group and a polyphenylene ether not having the functional group can be obtained.
 不飽和カルボン酸又はその誘導体(F)としては、以下に限定されるものではないが、例えば、マレイン酸、フマル酸、シトラコン酸、メサコン酸、アコニット酸、イタコン酸、cis-4-シクロヘキセン-1,2-ジカルボン酸、クロロマレイン酸、等の不飽和カルボン酸、無水マレイン酸、シトラコン酸無水物、無水アコニット酸、無水イタコ酸、cis-4-シクロヘキセン-1,2-ジカルボン酸無水物、クロロマレイン酸無水物、等の酸無水物、マレイン酸モノメチル、マレイン酸ジメチル、マレイン酸モノエチル、マレイン酸ジエチル、フマル酸モノメチル、フマル酸ジメチル、フマル酸モノエチル、フマル酸ジエチル等のエステル化合物等が挙げられる。
 特に、マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸、無水マレイン酸が好ましく、マレイン酸、無水マレイン酸がより好ましい。
 不飽和カルボン酸又はその誘導体(F)としてマレイン酸、無水マレイン酸を選択した場合、官能基よりなる変性基を有するポリフェニレンエーテル(b-2)と、本実施形態のアスファルト組成物中に含まれる他の極性成分との相互作用により、組成物としての相容性が高まると考えられる。
 不飽和カルボン酸又はその誘導体(F)は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
The unsaturated carboxylic acid or derivative (F) is not limited to the following, and examples thereof include maleic acid, fumaric acid, citraconic acid, mesaconic acid, aconitic acid, itaconic acid, cis-4-cyclohexene-1 , 2-dicarboxylic acid, chloromaleic acid, etc., unsaturated carboxylic acid, maleic anhydride, citraconic anhydride, aconitic anhydride, itaconic anhydride, cis-4-cyclohexene-1,2-dicarboxylic anhydride, chloro Acid anhydrides such as maleic anhydride, ester compounds such as monomethyl maleate, dimethyl maleate, monoethyl maleate, diethyl maleate, monomethyl fumarate, dimethyl fumarate, monoethyl fumarate, diethyl fumarate, etc. .
In particular, maleic acid, fumaric acid, citraconic acid, mesaconic acid, itaconic acid, and maleic anhydride are preferable, and maleic acid and maleic anhydride are more preferable.
When maleic acid or maleic anhydride is selected as the unsaturated carboxylic acid or derivative thereof (F), it is contained in the polyphenylene ether (b-2) having a modifying group consisting of a functional group and the asphalt composition of this embodiment. It is thought that the compatibility as a composition increases by interaction with other polar components.
Unsaturated carboxylic acid or its derivative (F) may be used individually by 1 type, and may be used in combination of 2 or more type.
 また、ポリフェニレンエーテル(b)に、水酸基、酸無水物基、エポキシ基、アミノ基、アミド基、シラノール基、及びアルコキシシラン基からなる群より選ばれる少なくともいずれかの官能基よりなる変性基を導入する方法としては、以下に限定されるものではないが、例えば、カップリング剤又は停止剤の残基と結合させる方法等が挙げられる。 In addition, a modified group comprising at least one functional group selected from the group consisting of a hydroxyl group, an acid anhydride group, an epoxy group, an amino group, an amide group, a silanol group, and an alkoxysilane group is introduced into the polyphenylene ether (b). As a method to do, although it is not limited to the following, For example, the method etc. which couple | bond with the residue of a coupling agent or a terminator are mentioned.
 本実施形態のアスファルト組成物に用いるポリフェニレンエーテル(b)は、アスファルト組成物の分離性、低温性能、アスファルト混合物の耐轍掘れ性の観点から、官能基よりなる変性基を有するポリフェニレンエーテルがより好ましい。
 ポリフェニレンエーテル(b)として、官能基よりなる変性基を有するポリフェニレンエーテルを採用することにより耐轍掘れ性が向上する理由として、極性材料である骨材(石)と、ポリフェニレンエーテルの官能基よりなる変性基との相互作用により、骨材の位置がアスファルト組成物中で固定されることで、轍掘れが発生しにくくなることが考えられる。
The polyphenylene ether (b) used in the asphalt composition of the present embodiment is more preferably a polyphenylene ether having a modifying group composed of a functional group from the viewpoint of separability of the asphalt composition, low temperature performance, and resistance to digging of the asphalt mixture. .
The reason why the resistance to digging is improved by adopting a polyphenylene ether having a modifying group consisting of a functional group as the polyphenylene ether (b) is composed of aggregate (stone) which is a polar material and a functional group of polyphenylene ether. It is considered that the position of the aggregate is fixed in the asphalt composition due to the interaction with the modifying group, so that digging is less likely to occur.
 本実施形態のアスファルト組成物の製造において、共重合体(a)、及びポリフェニレンエーテル(b)は、それぞれ独立して添加してもよいし、共重合体(a)とポリフェニレンエーテル(b)の押し出し成型体、例えばペレットである熱可塑性樹脂組成物(d)を添加してもよい。
 また、共重合体(a)及び上述の熱可塑性樹脂組成物(d)をそれぞれ添加してもよい。
 さらに、2種類以上の熱可塑性樹脂組成物(d)を組み合わせて添加してもよい。
 ポリフェニレンエーテル(b)のアスファルトへの溶解性の観点から、共重合体(a)とポリフェニレンエーテル(b)を押出成型ブレンドすることにより熱可塑性樹脂組成物(d)のペレットを作製し、添加することが好ましく、さらには、ポリフェニレンエーテル(b)のアスファルトへの溶解性、アスファルト組成物の低温物性の観点から、共重合体(a)及び上述の熱可塑性樹脂組成物(d)のペレットをそれぞれ添加することが好ましい。
 あらかじめ共重合体(a)とポリフェニレンエーテル(b)を押出成型ブレンドすることにより、ポリフェニレンエーテル(b)を、熱可塑性樹脂組成物(d)のペレット中に微分散させることができ、その結果、ペレットをアスファルトへ溶解させた場合に、ポリフェニレンエーテル(b)が予め微分散しているのでポリフェニレンエーテル(b)の溶解性が向上する傾向にある。
In the production of the asphalt composition of this embodiment, the copolymer (a) and the polyphenylene ether (b) may be added independently, or the copolymer (a) and the polyphenylene ether (b). You may add the thermoplastic resin composition (d) which is an extrusion molding body, for example, a pellet.
Moreover, you may add a copolymer (a) and the above-mentioned thermoplastic resin composition (d), respectively.
Further, two or more kinds of thermoplastic resin compositions (d) may be added in combination.
From the viewpoint of the solubility of polyphenylene ether (b) in asphalt, a pellet of the thermoplastic resin composition (d) is prepared by extrusion molding blending the copolymer (a) and the polyphenylene ether (b), and added. Further, from the viewpoint of the solubility of polyphenylene ether (b) in asphalt and the low-temperature properties of the asphalt composition, the copolymer (a) and the pellets of the thermoplastic resin composition (d) described above are respectively provided. It is preferable to add.
By pre-extrusion blending the copolymer (a) and the polyphenylene ether (b), the polyphenylene ether (b) can be finely dispersed in the pellets of the thermoplastic resin composition (d). When the pellet is dissolved in asphalt, the polyphenylene ether (b) is finely dispersed in advance, so that the solubility of the polyphenylene ether (b) tends to be improved.
 なお、共重合体(a)とポリフェニレンエーテル(b)を押出成型ブレンドする方法としては、二軸押出機((株)池貝製、「PCM-30」)を用いて溶融混練する方法が挙げられる。
 シリンダー温度は、共重合体(a)の種類により適宜設定することが好ましく、スクリュー回転数は、例えば150回転/分、吐出量は7kg/hとすることができる。
 シリンダーブロックに開口部(ベント)を設け、減圧吸引することにより残存揮発を除去することができる。
 減圧度(圧力)は、-0.05MPa-G以下が好ましく、-0.07MPa-G以下がより好ましく、-0.08MPa-G以下がさらに好ましく、-0.09MPa-G以下がさらにより好ましい。
 なお、「G」とは、大気圧を0としたときのゲージ圧を示す。
 ダイから押し出されたストランドを冷却し、カッターにて連続切断してペレットを得ることができる。
 ペレットのサイズは、具体的な用途にもよるが、例えば約3mm長さ×3mm径とすることができる。
 シリンダー温度については、共重合体(a)の共役ジエン単量体単位に含まれる二重結合が水素添加されている場合、上流側250℃~下流側300℃に設定することが好ましく、共重合体(a)が、水素添加されていない場合、上流側250℃~下流側250℃に設定することが好ましい。
In addition, as a method of extrusion molding blending the copolymer (a) and the polyphenylene ether (b), a method of melt kneading using a twin screw extruder (“PCM-30” manufactured by Ikekai Co., Ltd.) can be mentioned. .
The cylinder temperature is preferably set as appropriate depending on the type of the copolymer (a), the screw rotation speed can be set to 150 rotations / minute, and the discharge rate can be set to 7 kg / h, for example.
Residual volatilization can be removed by providing an opening (vent) in the cylinder block and suctioning under reduced pressure.
The degree of pressure reduction (pressure) is preferably −0.05 MPa-G or less, more preferably −0.07 MPa-G or less, further preferably −0.08 MPa-G or less, and further preferably −0.09 MPa-G or less. .
“G” indicates the gauge pressure when the atmospheric pressure is zero.
The strand extruded from the die can be cooled and continuously cut with a cutter to obtain pellets.
Although the size of the pellet depends on the specific application, it can be, for example, about 3 mm long × 3 mm diameter.
The cylinder temperature is preferably set to 250 ° C. on the upstream side to 300 ° C. on the downstream side when the double bond contained in the conjugated diene monomer unit of the copolymer (a) is hydrogenated. When the coalescence (a) is not hydrogenated, it is preferably set to 250 ° C. from the upstream side to 250 ° C.
 上述の方法により、前記熱可塑性樹脂組成物(d)が、前記共重合体(a)により構成される海相と、前記ポリフェニレンエーテル(b)により構成される島相からなる海島構造を有するものとし、ポリフェニレンエーテル(b)を共重合体(a)に対して、均一分散及び/又は相容したものとすることができる。
 なお、本明細書中、ポリフェニレンエーテルが均一分散している状態とは、50μm以上の粒子径を有するポリフェニレンエーテル凝集体を、全ポリフェニレンエーテルの5体積%未満含む状態を意味する。
 また、ポリフェニレンエーテルが相容している状態とは、ポリフェニレンエーテルの平均分散粒子径が5μm未満である状態を意味する。
By the above-mentioned method, the thermoplastic resin composition (d) has a sea-island structure composed of a sea phase composed of the copolymer (a) and an island phase composed of the polyphenylene ether (b). The polyphenylene ether (b) can be uniformly dispersed and / or compatible with the copolymer (a).
In the present specification, the state in which polyphenylene ether is uniformly dispersed means a state in which polyphenylene ether aggregates having a particle diameter of 50 μm or more are contained in less than 5% by volume of the total polyphenylene ether.
The state in which polyphenylene ether is compatible means a state in which the average dispersed particle size of polyphenylene ether is less than 5 μm.
 共重合体(a)に対するポリフェニレンエーテル(b)の均一分散及び相容の状態は、透過型電子顕微鏡(TEM)等を用いて容易に確認することができる。
 具体的には、熱可塑性樹脂組成物(d)の成形片から、長さ10mm×幅5mm×厚み3~4mmの染色用試験片を切り出し、ウルトラミクロトームにて染色用試験片の端に切片切り出し用の平面を作製する。
 次に、共重合体(a)として、「少なくとも1個のビニル芳香族単量体を主体とする重合体ブロックと少なくとも1個の共役ジエン単量体を主体とする重合体ブロックとを含むブロック共重合体の非水素添加物」、及び/又は、「少なくとも1種のビニル芳香族単量体と少なくとも1種の共役ジエン単量体からなる共重合体ブロックの非水素添加物」、が含まれる場合、耐熱容器に入れた2質量%四塩化オスミウム水溶液に前記染色用試験片を漬け、ウォーターバスで80℃×30分湯せんした後引き上げ、常温になるまで冷却後耐熱容器から取り出し、水洗、乾燥を行う。
 前記染色操作により、前記「少なくとも1個のビニル芳香族単量体を主体とする重合体ブロックと少なくとも1個の共役ジエン単量体を主体とする重合体ブロックとを含むブロック共重合体の非水素添加物」、及び/又は、前記「少なくとも1種のビニル芳香族単量体と少なくとも1種の共役ジエン単量体からなる共重合体ブロックの非水素添加物」が染色され、TEM観察時に黒色に観察される。
 さらに、共重合体(a)として、「少なくとも1個のビニル芳香族単量体を主体とする重合体ブロックと少なくとも1個の共役ジエン単量体を主体とする重合体ブロックとを含むブロック共重合体の水素添加物」、及び/又は、「少なくとも1種のビニル芳香族単量体と少なくとも1種の共役ジエン単量体からなる共重合体ブロックの水素添加物」が含まれる場合、前記染色用試験片をウルトラミクロトームに水を入れたダイヤモンドナイフを取り付け、切片切り出し用の平面から厚み85nmの薄膜を水の上に切り出し、TEM観察用Cuメッシュですくう。この薄膜が載ったCuメッシュをステンレス網の上に並べておく。別個にガラスデシケーター中のシャーレに三塩化ルテニウムn水和物0.1gと精製水1mLを入れ溶解させた後、次亜塩素酸ナトリウム溶液5mLを添加してすぐに薄膜が載ったCuメッシュが載ったステンレス網を載せ、ガラスデシケーターの蓋をして4分静置した後、Cuメッシュを取り出す。
 前記染色操作により、「少なくとも1個のビニル芳香族単量体を主体とする重合体ブロックと少なくとも1個の共役ジエン単量体を主体とする重合体ブロックとを含むブロック共重合体の水素添加物」、及び/又は、「少なくとも1種のビニル芳香族単量体と少なくとも1種の共役ジエン単量体からなる共重合体ブロックの水素添加物」が染色され、TEM観察時に黒色に観察される。
The state of uniform dispersion and compatibility of the polyphenylene ether (b) with respect to the copolymer (a) can be easily confirmed using a transmission electron microscope (TEM) or the like.
Specifically, from a molded piece of the thermoplastic resin composition (d), a test piece for length 10 mm × width 5 mm × thickness 3 to 4 mm is cut out, and a slice is cut out at the end of the test piece for dyeing with an ultramicrotome. Create a flat surface.
Next, as the copolymer (a), “a block containing a polymer block mainly composed of at least one vinyl aromatic monomer and a polymer block mainly composed of at least one conjugated diene monomer” Non-hydrogenated copolymer ”and / or“ non-hydrogenated copolymer block comprising at least one vinyl aromatic monomer and at least one conjugated diene monomer ”. If so, put the test piece for dyeing in a 2 mass% osmium tetrachloride aqueous solution in a heat-resistant container, pour it in a water bath at 80 ° C for 30 minutes, pull it up, cool it to room temperature, take it out from the heat-resistant container, wash it with water, Dry.
By the dyeing operation, a non-block copolymer comprising “a polymer block mainly composed of at least one vinyl aromatic monomer and a polymer block mainly composed of at least one conjugated diene monomer”. "Hydrogenated product" and / or "Non-hydrogenated product of copolymer block comprising at least one vinyl aromatic monomer and at least one conjugated diene monomer" are dyed and observed during TEM observation. Observed in black.
Further, as the copolymer (a), “a block copolymer comprising a polymer block mainly composed of at least one vinyl aromatic monomer and a polymer block mainly composed of at least one conjugated diene monomer”. In the case where the `` polymer hydrogenated product '' and / or “the hydrogenated product of a copolymer block comprising at least one vinyl aromatic monomer and at least one conjugated diene monomer” are included, A diamond knife containing water in an ultramicrotome is attached to the test specimen for staining, and a thin film having a thickness of 85 nm is cut out from the plane for sectioning on the water, and then rinsed with Cu mesh for TEM observation. Cu mesh on which this thin film is placed is arranged on a stainless steel net. Separately, 0.1 g of ruthenium trichloride nhydrate and 1 mL of purified water were dissolved in a petri dish in a glass desiccator, and after adding 5 mL of sodium hypochlorite solution, a Cu mesh on which the thin film was placed was placed. A stainless steel net is placed, the glass desiccator is covered and left to stand for 4 minutes, and then the Cu mesh is taken out.
Hydrogenation of a block copolymer comprising “a polymer block mainly composed of at least one vinyl aromatic monomer and a polymer block mainly composed of at least one conjugated diene monomer” Product "and / or" hydrogenated copolymer block comprising at least one vinyl aromatic monomer and at least one conjugated diene monomer "is dyed and observed black during TEM observation. The
 上述した染色法を用いることで、共重合体(a)を黒色相として、ポリフェニレンエーテル(b)を白色相として、TEM観察することができる。
 さらに、このTEM像写真を、市販の画像解析ソフトを用いて画像解析することにより、全ポリフェニレンエーテルに対する50μm以上の粒子径を有するポリフェニレンエーテル凝集体の面積分率、及び、ポリフェニレンエーテルの平均分散粒子径を求めることができる。
 なお、ここでは、全ポリフェニレンエーテルに対する50μm以上の粒子径を有するポリフェニレンエーテル凝集体の面積分率は、全ポリフェニレンエーテルに対する50μm以上の粒子径を有するポリフェニレンエーテル凝集体の体積分率と同等とみなす。
 以上の操作により、共重合体(a)に対するポリフェニレンエーテル(b)の「均一分散」及び「相容」の状態を確認することができる。
By using the dyeing method described above, TEM observation can be performed using the copolymer (a) as a black phase and the polyphenylene ether (b) as a white phase.
Furthermore, by analyzing this TEM image photograph using commercially available image analysis software, the area fraction of polyphenylene ether aggregates having a particle diameter of 50 μm or more with respect to the total polyphenylene ether, and average dispersed particles of polyphenylene ether The diameter can be determined.
Here, the area fraction of the polyphenylene ether aggregate having a particle diameter of 50 μm or more with respect to the total polyphenylene ether is regarded as being equivalent to the volume fraction of the polyphenylene ether aggregate having a particle diameter of 50 μm or more with respect to the total polyphenylene ether.
By the above operation, the state of “uniform dispersion” and “compatibility” of the polyphenylene ether (b) with respect to the copolymer (a) can be confirmed.
 本実施形態のアスファルト組成物において、上述した熱可塑性樹脂組成物(d)を構成する共重合体(a)に対するポリフェニレンエーテル(b)の平均分散粒子径は、アスファルト組成物の高い延性、アスファルト組成物の分離性の観点から、5μm未満であることが好ましく、4μm未満であることがより好ましく、3.5μm未満であることがさらに好ましく、3μm未満であることがさらにより好ましい。
 ポリフェニレンエーテル(b)の平均分散粒子径は、溶融混練する際の温度を調整したり、溶融混練の際の攪拌回転数を調整したりすることにより、上記数値範囲に制御することができる。
In the asphalt composition of the present embodiment, the average dispersed particle size of the polyphenylene ether (b) with respect to the copolymer (a) constituting the thermoplastic resin composition (d) described above is high ductility of the asphalt composition, asphalt composition From the viewpoint of separation of objects, it is preferably less than 5 μm, more preferably less than 4 μm, further preferably less than 3.5 μm, and still more preferably less than 3 μm.
The average dispersed particle size of the polyphenylene ether (b) can be controlled within the above numerical range by adjusting the temperature at the time of melt-kneading or adjusting the number of stirring revolutions at the time of melt-kneading.
 本実施形態のアスファルト組成物に用いる上述した熱可塑性樹脂組成物(d)のペレットは、熱可塑性樹脂組成物(d)のペレットの成形加工性の観点から、滑剤を含むことが好ましい。
 滑剤としては、以下に限定されないが、例えば、パラフィンワックス、マイクロワックス、ポリエチレンワックス等の炭化水素系滑剤;ステアリン酸ブチル、ステアリン酸モノグリセリド、ペンタエリスリトールジステアレート、ペンタエリスリトールテトラステアレート、ステアリン酸ステアリル、エチレンビスステアリン酸アミド等の脂肪酸エステル系滑剤;ジステアリン酸マグネシウム、ジステアリン酸カルシウム、ジステアリン酸亜鉛、モンタン酸カルシウム等の脂肪酸金属塩系滑剤が挙げられる。
 滑剤の添加量は、共重合体(a)とポリフェニレンエーテル(b)の合計100質量部に対して、0質量部以上30質量部以下が好ましく、1質量部以上25質量部以下がより好ましく、5質量部以上20質量部以下がさらに好ましい。
The above-mentioned pellets of the thermoplastic resin composition (d) used in the asphalt composition of the present embodiment preferably contain a lubricant from the viewpoint of the moldability of the thermoplastic resin composition (d).
Examples of the lubricant include, but are not limited to, hydrocarbon lubricants such as paraffin wax, microwax and polyethylene wax; butyl stearate, monoglyceride stearate, pentaerythritol distearate, pentaerythritol tetrastearate, stearyl stearate And fatty acid ester lubricants such as ethylene bis stearamide; fatty acid metal salt lubricants such as magnesium distearate, calcium distearate, zinc distearate and calcium montanate.
The addition amount of the lubricant is preferably 0 part by mass or more and 30 parts by mass or less, more preferably 1 part by mass or more and 25 parts by mass or less, with respect to 100 parts by mass in total of the copolymer (a) and the polyphenylene ether (b). 5 parts by mass or more and 20 parts by mass or less are more preferable.
 本実施形態のアスファルト組成物に用いる熱可塑性樹脂組成物(d)は、耐熱劣化性を向上させる観点から、酸化防止剤を含むことが好ましい。
 酸化防止剤としては、以下に限定されないが、例えば、ヒンダードフェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、アミン系酸化防止剤等が挙げられる。
 具体的には、2,6-ジ-t-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール(BASF社製IRGANOX565)、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](BASF社製IRGANOX1010、(株)ADEKA製アデカスタブAO-60)、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン(BASF社製IRGANOX1330)、3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオン酸オクタデシル((株)ADEKA製アデカスタブAO-50)、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト(BASF社製IRGAFOS168、(株)ADEKA製アデカスタブ2112)、3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5,5]ウンデカン((株)ADEKA製アデカスタブPEP-8)、3,9-ビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジフォスファスピロ[5,5]ウンデカン((株)ADEKA製アデカスタブPEP-36)、リン酸=2,2'-メチレンビス(4,6-ジ-t-ブチルフェニル)=2-エチルヘキシル((株)ADEKA製アデカスタブHP-10)、3,3'-チオビスプロパン酸ジオクタデシル(BASF社製IRGANOX PS802FD)、N,N-ジオクタデシルヒドロキシルアミン(BASF社製IRGASTAB FS042)等が挙げられる。
 これらは、1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 酸化防止剤の添加量は、共重合体(a)とポリフェニレンエーテル(b)の合計100質量部に対して、0質量部以上10質量部以下が好ましく、0.1質量部以上5質量部以下がより好ましく、0.5質量部以上4質量部以下がさらに好ましい。
The thermoplastic resin composition (d) used for the asphalt composition of the present embodiment preferably contains an antioxidant from the viewpoint of improving the heat deterioration resistance.
Examples of the antioxidant include, but are not limited to, hindered phenol antioxidants, phosphorus antioxidants, sulfur antioxidants, amine antioxidants, and the like.
Specifically, 2,6-di-t-butyl-4- (4,6-bis (octylthio) -1,3,5-triazin-2-ylamino) phenol (IRGANOX565 manufactured by BASF), pentaerythritol tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] (IRGANOX 1010 manufactured by BASF, Adeka Stub AO-60 manufactured by ADEKA Corporation), 1,3,5-trimethyl-2,4 6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene (IRGANOX 1330 manufactured by BASF), octadecyl 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (( ADEKA ADK STAB AO-50), Tris (2,4-di-t-butylphenyl) phosphite (B SFGA IRGAFOS168, ADEKA ADK STAB 2112), 3,9-bis (octadecyloxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] undecane (( ADEKA ADEKA STAB PEP-8), 3,9-bis (2,6-di-t-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5,5] Undecane (ADEKA STAB PEP-36 manufactured by ADEKA Corporation), phosphoric acid = 2,2′-methylenebis (4,6-di-t-butylphenyl) = 2-ethylhexyl (ADEKA STAB manufactured by ADEKA Corporation) HP-10), dioctadecyl 3,3′-thiobispropanoate (IRGANOX PS802FD manufactured by BASF), N, N-dioctadecyl hydroxy Triethanolamine (BASF Corp. IRGASTAB FS042), and the like.
These may be used alone or in combination of two or more.
The addition amount of the antioxidant is preferably 0 part by mass or more and 10 parts by mass or less, and 0.1 part by mass or more and 5 parts by mass or less with respect to 100 parts by mass in total of the copolymer (a) and the polyphenylene ether (b). Is more preferably 0.5 parts by mass or more and 4 parts by mass or less.
(アスファルト(c))
 本実施形態のアスファルト組成物は、アスファルト(c)(以下、(c)成分と記載する場合がある。)を含有する。
 本実施形態のアスファルト組成物に用いるアスファルト(c)としては、以下に限定されないが、例えば、石油精製の際の副産物(石油アスファルト)、又は天然の産出物(天然アスファルト)として得られるもの、もしくはこれらと石油類を混合したもの等が挙げられる。その主成分は瀝青(ビチューメン)と呼ばれるものである。
 アスファルトとしては、以下に限定されるものではないが、例えば、ストレートアスファルト、セミブローンアスファルト、ブローンアスファルト、溶剤脱瀝アスファルト、タール、ピッチ、オイルを添加したカットバックアスファルト、アスファルト乳剤等が挙げられる。
 これらは、一種のみを単独で用いてもよく、二種以上を混合して使用してもよい。
 また、各種アスファルトに石油系溶剤抽出油、アロマ系炭化水素系プロセスオイルやエキストラクト等の芳香族系重質鉱油等を添加してもよい。
(Asphalt (c))
The asphalt composition of the present embodiment contains asphalt (c) (hereinafter may be referred to as component (c)).
Asphalt (c) used in the asphalt composition of the present embodiment is not limited to the following, for example, one obtained as a by-product during petroleum refining (petroleum asphalt), or a natural product (natural asphalt), or The thing etc. which mixed these and petroleum are mentioned. Its main component is called bitumen.
Examples of the asphalt include, but are not limited to, straight asphalt, semi-blown asphalt, blown asphalt, solvent deasphalted asphalt, tar, pitch, cutback asphalt to which oil is added, asphalt emulsion, and the like.
These may be used alone or in combination of two or more.
Moreover, you may add aromatic heavy mineral oils, such as petroleum-type solvent extraction oil, aroma-type hydrocarbon process oil, and extract, to various asphalts.
 本実施形態のアスファルト組成物に用いるアスファルト(c)は、高温物性、低温物性、経済性の観点から、針入度(JIS-K2207によって測定)が好ましくは30以上300以下であり、より好ましくは40以上200以下であり、さらに好ましくは45以上150以下であるストレートアスファルトが挙げられる。 The asphalt (c) used in the asphalt composition of the present embodiment preferably has a penetration (measured according to JIS-K2207) of 30 or more and 300 or less, more preferably from the viewpoint of high temperature physical properties, low temperature physical properties, and economic efficiency. Straight asphalt that is 40 or more and 200 or less, and more preferably 45 or more and 150 or less.
 本実施形態のアスファルト組成物において、アスファルト(c)の含有量は、経済性、粘度の観点から、80~97質量%であるものとし、85~97質量%が好ましく、87~97質量%がより好ましい。 In the asphalt composition of the present embodiment, the content of asphalt (c) is 80 to 97% by mass, preferably 85 to 97% by mass, and 87 to 97% by mass from the viewpoint of economy and viscosity. More preferred.
(共重合体(a)とポリフェニレンエーテル(b)の合計含有量)
 本実施形態のアスファルト組成物中の共重合体(a)とポリフェニレンエーテル(b)の合計含有量は、アスファルト組成物の高い軟化点、アスファルト組成物の高い延性、アスファルト組成物と骨材との混合物にした時の骨材の高い剥離抵抗性の観点から、2.6質量%以上であり、3.5質量%以上が好ましく、5質量%以上がより好ましく、6質量%以上がさらに好ましい。また、アスファルト組成物の低い粘度、アスファルト組成物中の共重合体(a)の少ない劣化、経済性の観点から、20質量%以下であり、16質量%以下であることがより好ましく、14質量%以下であることがさらに好ましく、12質量%以下であることがさらにより好ましい。
 一般的に、アスファルト組成物を作製する場合、共重合体(a)の添加量が少ないと、アスファルトの成分との相互作用が不十分なため、アスファルト組成物の性能に対する影響が小さい。
(Total content of copolymer (a) and polyphenylene ether (b))
The total content of the copolymer (a) and the polyphenylene ether (b) in the asphalt composition of the present embodiment is such that the high softening point of the asphalt composition, the high ductility of the asphalt composition, the asphalt composition and the aggregate. From the viewpoint of high peeling resistance of the aggregate when it is used as a mixture, it is 2.6% by mass or more, preferably 3.5% by mass or more, more preferably 5% by mass or more, and further preferably 6% by mass or more. Further, from the viewpoint of low viscosity of the asphalt composition, little deterioration of the copolymer (a) in the asphalt composition, and economical efficiency, it is 20% by mass or less, more preferably 16% by mass or less, and 14% by mass. % Or less, more preferably 12% by mass or less.
Generally, when producing an asphalt composition, if the addition amount of the copolymer (a) is small, the interaction with the asphalt component is insufficient, and therefore the influence on the performance of the asphalt composition is small.
((a)成分と(b)成分の質量比率)
 本実施形態のアスファルト組成物中の共重合体(a)とポリフェニレンエーテル(b)の質量比率は、アスファルト組成物の高い軟化点の観点から、(a)+(b)を100質量%としたとき、(b)の比率が1質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることがさらに好ましく、15質量%以上であることがさらにより好ましい。
 また、アスファルト組成物の低い粘度、良い低温物性、アスファルトへの溶解性の観点から、(a)+(b)を100質量%としたとき、(b)の比率が80質量%以下であることが好ましく、70質量%以下であることがより好ましく、50質量%以下であることがさらに好ましく、30質量%以下であることがさらにより好ましい。
(Mass ratio of (a) component and (b) component)
From the viewpoint of the high softening point of the asphalt composition, the mass ratio of the copolymer (a) and the polyphenylene ether (b) in the asphalt composition of the present embodiment was set to 100% by mass. The ratio of (b) is preferably 1% by mass or more, more preferably 5% by mass or more, further preferably 10% by mass or more, and further more preferably 15% by mass or more. preferable.
From the viewpoint of low viscosity, good low-temperature physical properties, and solubility in asphalt, the ratio of (b) is 80% by mass or less when (a) + (b) is 100% by mass. Is preferably 70% by mass or less, more preferably 50% by mass or less, and even more preferably 30% by mass or less.
(アスファルト組成物の形態)
 本実施形態のアスファルト組成物の形態の好適な一形態として、
ビニル芳香族単量体単位と共役ジエン単量体単位とを有する共重合体(a)と、還元粘度
0.07dL/g~0.60dL/gであるポリフェニレンエーテル(b)との押し出し成型体である熱可塑性樹脂組成物(d)と、
 アスファルト(c)と、
を、含有するアスファルト組成物が挙げられる。
 前記(d)の含有量が、3~20質量%であり、
 前記(c)の含有量が、80~97質量%であり、
 前記熱可塑性樹脂組成物(d)における、前記(a)成分と前記(b)成分との質量比率が、(a)/(b)=20~99/80~1であるものとする。
 かかるアスファルト組成物は、共重合体(a)とポリフェニレンエーテル(b)との押し出し成型体、例えばペレットである熱可塑性樹脂組成物(d)と、アスファルト(c)とを、混合することにより製造することができる。
(Form of asphalt composition)
As a suitable form of the form of the asphalt composition of this embodiment,
Extruded molded product of copolymer (a) having vinyl aromatic monomer unit and conjugated diene monomer unit and polyphenylene ether (b) having reduced viscosity of 0.07 dL / g to 0.60 dL / g A thermoplastic resin composition (d),
Asphalt (c),
Asphalt compositions containing
The content of (d) is 3 to 20% by mass,
The content of (c) is 80 to 97% by mass,
In the thermoplastic resin composition (d), the mass ratio of the component (a) to the component (b) is (a) / (b) = 20 to 99/80 to 1.
Such an asphalt composition is produced by mixing an extruded product of a copolymer (a) and a polyphenylene ether (b), for example, a thermoplastic resin composition (d) which is a pellet and an asphalt (c). can do.
 上記本実施形態のアスファルト組成物において、粘度と低温伸度の観点から、前記(d)成分の含有量が、3~15質量%であり、前記(c)成分の含有量が、85~97質量%であり、前記(d)成分における、前記(a)成分と前記(b)成分との質量比率が、(a)/(b)=40~99/60~1であることが好ましい。 In the asphalt composition of the present embodiment, from the viewpoint of viscosity and low temperature elongation, the content of the component (d) is 3 to 15% by mass, and the content of the component (c) is 85 to 97. The mass ratio of the component (a) to the component (b) in the component (d) is preferably (a) / (b) = 40 to 99/60 to 1.
(その他の材料)
 本実施形態のアスファルト組成物は、必要に応じて任意の石油樹脂を配合することができる。石油樹脂を添加することで、骨材との混合物としたときのアスファルト組成物と骨材との接着性が向上する傾向にあり、剥離が抑制できる。
 石油樹脂の種類としては、以下に限定されるものではないが、例えば、C5系石油樹脂等の脂肪族系石油樹脂、C9系石油樹脂等の芳香族系石油樹脂、ジシクロペンタジエン系石油樹脂等の脂環族系石油樹脂、C5/C9共重合系石油樹脂等の石油樹脂、並びにこれら石油樹脂を水添して得られる水添石油樹脂が挙げられる。石油樹脂の配合量は特に限定されるものではないが、アスファルト(c)100質量部に対して、好ましくは1質量部以上10質量部以下であり、より好ましくは2質量部以上6質量部以下である。
(Other materials)
The asphalt composition of this embodiment can mix | blend arbitrary petroleum resins as needed. Addition of petroleum resin tends to improve the adhesiveness between the asphalt composition and the aggregate when it is used as a mixture with the aggregate, and peeling can be suppressed.
The types of petroleum resins are not limited to the following, but include, for example, aliphatic petroleum resins such as C5 petroleum resins, aromatic petroleum resins such as C9 petroleum resins, dicyclopentadiene petroleum resins, and the like. And alicyclic petroleum resins, C5 / C9 copolymer petroleum resins and the like, and hydrogenated petroleum resins obtained by hydrogenating these petroleum resins. Although the compounding quantity of petroleum resin is not specifically limited, Preferably it is 1 mass part or more and 10 mass parts or less with respect to 100 mass parts of asphalt (c), More preferably, it is 2 mass parts or more and 6 mass parts or less. It is.
 本実施形態のアスファルト組成物は、必要に応じて任意の添加剤を配合することができる。
 添加剤の種類は、熱可塑性樹脂やゴム状重合体の配合に一般的に用いられるものであれば特に制限はない。
 例えば、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、硫酸カルシウム、硫酸バリウム、シリカ、クレー、タルク、マイカ、ウォラストナイト、モンモリロナイト、ゼオライト、アルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛、スラッグウール、ガラス繊維等の無機充填剤;カーボンブラック、酸化鉄等の顔料;ステアリン酸、ベヘニン酸、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、エチレンビスステアロアミド等の滑剤;離型剤、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイル、パラフィン、有機ポリシロキサン、ミネラルオイル等の軟化剤・可塑剤;ヒンダードフェノール系酸化防止剤、リン系熱安定剤等の酸化防止剤;ヒンダードアミン系光安定剤、ベンゾトリアゾール系紫外線吸収剤、難燃剤、帯電防止剤;有機繊維、ガラス繊維、炭素繊維、金属ウィスカ等の補強剤;着色剤が挙げられ、これらの他の添加剤や、これらの混合物等、「ゴム・プラスチック配合薬品」(日本国ラバーダイジェスト社編)等に記載されたものが挙げられる。
 添加剤の配合量は特に限定されるものではなく、アスファルト(c)100質量部に対して、通常、50質量部以下である。
The asphalt composition of this embodiment can mix | blend arbitrary additives as needed.
The type of additive is not particularly limited as long as it is generally used for blending thermoplastic resins and rubber-like polymers.
For example, calcium carbonate, magnesium carbonate, magnesium hydroxide, calcium sulfate, barium sulfate, silica, clay, talc, mica, wollastonite, montmorillonite, zeolite, alumina, titanium oxide, magnesium oxide, zinc oxide, slug wool, glass fiber Inorganic fillers such as carbon black, iron oxide and other pigments; Lubricants such as stearic acid, behenic acid, zinc stearate, calcium stearate, magnesium stearate, ethylene bisstearamide; release agents, paraffinic process oils, Softeners and plasticizers such as naphthenic process oils, aromatic process oils, paraffins, organic polysiloxanes, mineral oils; antioxidants such as hindered phenolic antioxidants and phosphorous heat stabilizers; hindered amine Mitsuan Agents, benzotriazole-based UV absorbers, flame retardants, antistatic agents; reinforcing agents such as organic fibers, glass fibers, carbon fibers, metal whiskers; colorants, and other additives, mixtures thereof, etc. , “Rubber / Plastic Compounding Chemicals” (edited by Rubber Digest Co., Japan) and the like.
The compounding quantity of an additive is not specifically limited, Usually, it is 50 mass parts or less with respect to 100 mass parts of asphalt (c).
 本実施形態のアスファルト組成物は、骨材との混合物としたときのアスファルト組成物と骨材との剥離を防止するために、剥離防止剤を添加してもよい。 In the asphalt composition of the present embodiment, an anti-peeling agent may be added to prevent the asphalt composition and the aggregate from being peeled when mixed with the aggregate.
 剥離防止剤としては樹脂酸が好適であり、カルボキシル基を有する炭素数20の多環式ジテルペンであって、アビエチン酸、デヒドロアビエチン酸、ネオアビエチン酸、ピマール酸、イソピマール酸、パラストリン酸のうち何れか1種以上を含有するロジンが挙げられる。
 また、脂肪酸又は脂肪酸アミドを、剥離防止剤、並びに滑剤として機能させるために添加してもよい。
Resin acid is suitable as the anti-peeling agent, and is a polycyclic diterpene having 20 carbon atoms having a carboxyl group, and any one of abietic acid, dehydroabietic acid, neoabietic acid, pimaric acid, isopimaric acid, and parastrinic acid Or rosin containing one or more of them.
Moreover, you may add a fatty acid or fatty acid amide in order to function as a peeling prevention agent and a lubricant.
 本実施形態のアスファルト組成物には、共重合体(a)以外に、その他のポリマーを含んでいてもよい。
 その他のポリマーとしては、以下に限定されるものではないが、例えば、天然ゴム、ポリイソプレンゴム、ポリブタジエンゴム、スチレンブタジエンゴム、エチレンプロピレン共重合体等のオレフィン系エラストマー;クロロプレンゴム、アクリルゴム、エチレン酢酸ビニル共重合体等が挙げられる。
In addition to the copolymer (a), the asphalt composition of the present embodiment may contain other polymers.
Examples of other polymers include, but are not limited to, olefin elastomers such as natural rubber, polyisoprene rubber, polybutadiene rubber, styrene butadiene rubber, and ethylene propylene copolymer; chloroprene rubber, acrylic rubber, and ethylene. A vinyl acetate copolymer etc. are mentioned.
 本実施形態のアスファルト組成物は、軟化点、溶融粘度、低温伸度の観点から、スチレン-ブタジエン-スチレン共重合体(SBS)を1~10質量%含有することが好ましい。より好ましくは3~10質量%であり、さらに好ましくは5~10質量%である。 The asphalt composition of the present embodiment preferably contains 1 to 10% by mass of a styrene-butadiene-styrene copolymer (SBS) from the viewpoints of softening point, melt viscosity, and low temperature elongation. More preferably, it is 3 to 10% by mass, and further preferably 5 to 10% by mass.
〔アスファルト組成物の製造方法〕
 本実施形態のアスファルト組成物の製造方法に関しては、特に限定はなく、上述した(a)~(d)成分を適宜混合することにより製造することができる。
 また、共重合体(a)、ポリフェニレンエーテル(b)、及び/又はこれらの混合物である熱可塑性樹脂組成物(d)、及びアスファルト(c)の混合物を攪拌する際の条件に関しても特に制限はないが、120℃以上200℃以下の温度で行うことが好ましい。撹拌時間は通常30分~6時間であるが、経済性の観点から短い方がよい。攪拌速度は、用いる装置により適時選択すればよいが、通常、100ppm以上8,000rpm以下である。
[Method for producing asphalt composition]
The method for producing the asphalt composition of the present embodiment is not particularly limited, and can be produced by appropriately mixing the components (a) to (d) described above.
There are also no particular restrictions on the conditions for stirring the mixture of the copolymer (a), the polyphenylene ether (b), and / or the thermoplastic resin composition (d) that is a mixture thereof, and the asphalt (c). However, it is preferably performed at a temperature of 120 ° C. or higher and 200 ° C. or lower. The stirring time is usually 30 minutes to 6 hours, but a shorter one is preferable from the viewpoint of economy. The stirring speed may be appropriately selected depending on the apparatus to be used, but is usually 100 ppm or more and 8,000 rpm or less.
〔用途〕
 本実施形態のアスファルト組成物は、道路舗装用、ルーフィング・防水シート用、シーラントの分野で利用でき、特に道路舗装用、ルーフィング・防水シート用の分野で好適に利用できる。
[Use]
The asphalt composition of the present embodiment can be used in the fields of road pavement, roofing / waterproof sheet, and sealant, and can be suitably used particularly in the field of road pavement, roofing / waterproof sheet.
 道路舗装用としては、本実施形態のアスファルト組成物に大量の骨材を混合し、使用する例を挙げることができる。
 アスファルト組成物と骨材とを含有するものを、以下、アスファルト混合物と呼ぶ。
 骨材に限定はなく、例えば、社団法人日本道路協会発行の「アスファルト舗装要綱」に記載されている舗装用の骨材であればどのようなものでも使用でき、以下に限定されるものではないが、例えば、砕石、玉石、砂利、鉄鋼スラグ等が挙げられる。また、これらの骨材にアスファルトを被覆したアスファルト被覆骨材及び再生骨材等も使用できる。
 その他、これらに類似する粒状材料で、人工焼成骨材、焼成発泡骨材、人工軽量骨材、陶磁器粒、ルクソバイト、アルミニウム粒、プラスチック粒、セラミックス、エメリー、建設廃材、繊維等も使用できる。
 骨材は、一般に、粗骨材、細骨材、及びフィラーに大別される。
 粗骨材とは、2.36mmふるいに留まる骨材であって、一般には粒径範囲2.5~5mmの7号砕石、粒径範囲5~13mmの6号砕石、粒径範囲13~20mmの5号砕石、更には、粒径範囲20~30mmの4号砕石等の種類があるが、本実施形態においてはこれら種々の粒径範囲の粗骨材の1種又は2種以上を混合した骨材、或いは、合成された骨材等を使用することができる。これらの粗骨材には、骨材に対して0.3~1質量%程度のストレートアスファルトを被覆しておいてもよい。
 細骨材とは、2.36mmふるいを通過し、かつ、0.075mmふるいに止まる骨材をいい、以下に限定されるものではないが、例えば、川砂、丘砂、山砂、海砂、スクリーニングス、砕石ダスト、シリカサンド、人工砂、ガラスカレット、鋳物砂、再生骨材破砕砂等が挙げられる。
 フィラーとは、0.075mmふるいを通過するものであって、以下に限定されるものではないが、例えば、スクリーニングスのフィラー分、石粉、消石灰、セメント、焼却炉灰、クレー、タルク、フライアッシュ、カーボンブラック等であるが、このほか、ゴム粉粒、コルク粉粒、木質粉粒、樹脂粉粒、繊維粉粒、パルプ、人工骨材等であっても、0.075mmふるいを通過するものであれば、フィラーとして使用することができる。
 粗骨材、細骨材、フィラーは、1種のみを単独で用いてもよいが、一般的には、2種以上混合して用いられる。
 アスファルト組成物と骨材とを含有するアスファルト混合物中の骨材の含有量は、油付着時の高い耐質量損失や高い耐強度低下を有する混合物を得る観点から、85質量%以上98質量%以下の範囲が好ましく、90質量%以上97質量%以下がより好ましい。
 アスファルト組成物と骨材とを含有するアスファルト混合物の製造方法に関しては、特に制限はないが、アスファルト組成物と骨材との混合温度を、通常、120℃以上200℃以下の範囲として混合する方法が挙げられる。また、必要に応じて、アスファルト組成物の水中に乳化させて用いてもよい。
For road paving, an example in which a large amount of aggregate is mixed with the asphalt composition of the present embodiment and used can be given.
What contains an asphalt composition and an aggregate is hereafter called an asphalt mixture.
There is no limitation on the aggregate, for example, any aggregate can be used as long as it is described in “Asphalt Pavement Summary” published by the Japan Road Association, and is not limited to the following. However, for example, crushed stone, cobblestone, gravel, steel slag and the like can be mentioned. In addition, asphalt-coated aggregates and recycled aggregates obtained by coating these aggregates with asphalt can also be used.
In addition, granular materials similar to these can be used such as artificial sintered aggregate, sintered foam aggregate, artificial lightweight aggregate, ceramic grains, loxobite, aluminum grains, plastic grains, ceramics, emery, construction waste, fibers, and the like.
Aggregates are generally classified into coarse aggregates, fine aggregates, and fillers.
Coarse aggregate is an aggregate that remains on a 2.36 mm sieve, and is generally No. 7 crushed stone with a particle size range of 2.5-5 mm, No. 6 crushed stone with a particle size range of 5-13 mm, and a particle size range of 13-20 mm No. 5 crushed stone, and also No. 4 crushed stone having a particle size range of 20 to 30 mm. In this embodiment, one or more kinds of coarse aggregates having various particle size ranges are mixed. Aggregates or synthesized aggregates can be used. These coarse aggregates may be coated with about 0.3 to 1% by mass of straight asphalt with respect to the aggregates.
Fine aggregate means an aggregate that passes through a 2.36 mm sieve and stops at a 0.075 mm sieve, and is not limited to the following, but is not limited to, for example, river sand, hill sand, mountain sand, sea sand, Screening, crushed stone dust, silica sand, artificial sand, glass cullet, foundry sand, recycled aggregate crushed sand and the like.
Fillers pass through a 0.075 mm sieve and are not limited to the following, but include, for example, screenings filler, stone powder, slaked lime, cement, incinerator ash, clay, talc, fly ash Carbon black, etc., but also rubber particles, cork particles, wood particles, resin particles, fiber particles, pulp, artificial aggregates, etc. that pass through a 0.075 mm sieve If so, it can be used as a filler.
Coarse aggregates, fine aggregates, and fillers may be used alone or in combination of two or more.
The aggregate content in the asphalt mixture containing the asphalt composition and the aggregate is 85% by mass or more and 98% by mass or less from the viewpoint of obtaining a mixture having a high mass loss resistance and a high strength reduction at the time of oil adhesion. The range is preferably 90% by mass or more and 97% by mass or less.
The method for producing the asphalt mixture containing the asphalt composition and the aggregate is not particularly limited, but the mixing temperature of the asphalt composition and the aggregate is usually within a range of 120 ° C. or more and 200 ° C. or less. Is mentioned. Moreover, you may emulsify the asphalt composition in water as needed.
 以下、具体的な実施例及び比較例を挙げて本発明について詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 実施例及び比較例における共重合体及びアスファルト組成物に関する測定方法を、以下に示す。
Hereinafter, the present invention will be described in detail with specific examples and comparative examples, but the present invention is not limited to the following examples.
The measuring method regarding the copolymer and asphalt composition in an Example and a comparative example is shown below.
〔測定方法〕
(ブロック共重合体中のビニル芳香族単量体ブロック含有量)
 測定対象として、水添前の共重合体を使用し、I.M.Kolthoff,etal.,J.Polym.Sci.1,p.429(1946)に記載の四酸化オスミウム酸法で、共重合体のビニル芳香族単量体ブロック含有量を測定した。
 共重合体の分解にはオスミウム酸0.1g/125mL第3級ブタノール溶液を用いた。
〔Measuring method〕
(Vinyl aromatic monomer block content in the block copolymer)
As a measurement object, a copolymer before hydrogenation was used. M. Kolthoff, etal. , J .; Polym. Sci. 1, p. 429 (1946), the vinyl aromatic monomer block content of the copolymer was measured by the osmium tetroxide method.
An osmic acid 0.1 g / 125 mL tertiary butanol solution was used for the decomposition of the copolymer.
(ブロック共重合体のビニル結合量、共役ジエン単量体単位中の不飽和基の水素添加率、ビニル芳香族単量体単位の含有量)
 ブロック共重合体中のビニル結合量、共役ジエン単量体単位中の不飽和基の水素添加率、及びビニル芳香族単量体単位の含有量を、核磁気共鳴スペクトル解析(NMR)により、下記の条件で測定した。
 ブロック共重合体を水添反応させた後の反応液を、大量のメタノール中に投入し、沈殿させることで、水添後のブロック共重合体を沈殿させて回収した。
 次いで、水添後のブロック共重合体をアセトンで抽出し、抽出液を真空乾燥し、1H-NMR測定のサンプルとして用いた。
 1H-NMR測定の条件を以下に記す。
<測定条件>
 測定機器   :JNM-LA400(JEOL製)
 溶媒     :重水素化クロロホルム
  測定サンプル :ポリマーを水素添加する前後の抜き取り品
 サンプル濃度 :50mg/mL
 観測周波数  :400MHz
 化学シフト基準:TMS(テトラメチルシラン)
 パルスディレイ:2.904秒
 スキャン回数 :64回
 パルス幅   :45°
 測定温度   :26℃
(Vinyl bond amount of block copolymer, hydrogenation rate of unsaturated group in conjugated diene monomer unit, content of vinyl aromatic monomer unit)
The amount of vinyl bonds in the block copolymer, the hydrogenation rate of unsaturated groups in the conjugated diene monomer unit, and the content of the vinyl aromatic monomer unit were analyzed by nuclear magnetic resonance spectrum analysis (NMR) as follows: It measured on condition of this.
The reaction solution after the hydrogenation reaction of the block copolymer was poured into a large amount of methanol and precipitated to precipitate and recover the block copolymer after hydrogenation.
Next, the hydrogenated block copolymer was extracted with acetone, and the extract was vacuum-dried and used as a sample for 1 H-NMR measurement.
The conditions for 1 H-NMR measurement are described below.
<Measurement conditions>
Measuring equipment: JNM-LA400 (manufactured by JEOL)
Solvent: Deuterated chloroform Measurement sample: Extracted sample before and after hydrogenation of polymer Sample concentration: 50 mg / mL
Observation frequency: 400 MHz
Chemical shift criteria: TMS (tetramethylsilane)
Pulse delay: 2.904 seconds Number of scans: 64 times Pulse width: 45 °
Measurement temperature: 26 ° C
(重量平均分子量)
 重量平均分子量は、GPC〔装置は、ウォーターズ製〕で測定した。
 溶媒にはテトラヒドロフランを用い、温度を35℃とした。
 クロマトグラムのピークの分子量を、市販の標準ポリスチレンの測定から求めた検量線(標準ポリスチレンのピーク分子量を使用して作成)を使用し、重量平均分子量(ポリスチレン換算分子量)を求めた。
(Weight average molecular weight)
The weight average molecular weight was measured by GPC (apparatus manufactured by Waters).
Tetrahydrofuran was used as the solvent, and the temperature was set to 35 ° C.
The weight average molecular weight (polystyrene equivalent molecular weight) was determined using a calibration curve (created using the peak molecular weight of standard polystyrene) obtained from the measurement of commercially available standard polystyrene for the molecular weight of the peak of the chromatogram.
(MFR)
 MFRは、メルトインデクサー(L247;TECHNOLSEVEN CO.,LTD製)を用い、JIS K7210に準じた方法により算出した。
 試験温度が200℃、試験荷重が5.00kgfであり、測定値の単位はg/10分で表した。
(MFR)
MFR was calculated by a method according to JIS K7210 using a melt indexer (L247; manufactured by TECHNOLSEVEN CO., LTD).
The test temperature was 200 ° C., the test load was 5.00 kgf, and the unit of measurement value was expressed in g / 10 minutes.
(ポリフェニレンエーテルの還元粘度)
 ポリフェニレンエーテルの還元粘度は、ポリフェニレンエーテル(b)0.5gを、クロロホルム100mLに溶解させて溶液を作製し、ウベローデ型粘度計を用いて30℃で測定した。
(Reduced viscosity of polyphenylene ether)
The reduced viscosity of polyphenylene ether was measured at 30 ° C. using an Ubbelohde viscometer by dissolving 0.5 g of polyphenylene ether (b) in 100 mL of chloroform.
〔共重合体の製造方法〕
(ブロック共重合体1)
 <第一段階の重合>
 攪拌機及びジャケット付きの内容量10Lのステンレス製オートクレーブを、洗浄、乾燥、窒素置換した。
 当該オートクレーブに、シクロヘキサン5720g、予め精製したスチレン240gを仕込み、ジャケットに温水を通水して内容物を約40℃に設定した。
[Method for producing copolymer]
(Block copolymer 1)
<First stage polymerization>
A stainless steel autoclave with a stirrer and a jacket with an internal volume of 10 L was washed, dried, and purged with nitrogen.
The autoclave was charged with 5720 g of cyclohexane and 240 g of pre-purified styrene, and warm water was passed through the jacket to set the contents at about 40 ° C.
 次に、前記オートクレーブに、n-ブチルリチウムシクロヘキサン溶液(純分で0.70g)を添加し、スチレンの重合を開始した。 Next, n-butyllithium cyclohexane solution (0.70 g in pure content) was added to the autoclave to start polymerization of styrene.
 <第二段階の重合>
 スチレンの重合により、最高温度(51℃)に達してから7分後、最高温度から2℃低下した後に、前記オートクレーブに、ブタジエン(1,3-ブタジエン)560gを添加し、重合を継続した。
 ブタジエンがほぼ完全に重合して最高温度(90℃)に達してから30秒後に、前記オートクレーブに、カップリング剤として、2,2-ビス(4-ヒドロキシフェニル)プロパンのエピクロロヒドリンによるジグリシジルエーテル化変性物と、フェノール・ホルムアルデヒド重縮合物のエピクロロヒドリンによるジグリシジルエーテル化変性物と、の質量比1/1の混合物を、0.4mol/Liになるように添加し、カップリングさせた。
<Second stage polymerization>
Seven minutes after reaching the maximum temperature (51 ° C.) due to the polymerization of styrene, the temperature decreased by 2 ° C. from the maximum temperature, and then 560 g of butadiene (1,3-butadiene) was added to the autoclave to continue the polymerization.
30 seconds after the butadiene was almost completely polymerized and reached the maximum temperature (90 ° C.), the autoclave was subjected to dichlorination of 2,2-bis (4-hydroxyphenyl) propane with epichlorohydrin as a coupling agent. A mixture of a glycidyl etherified modified product and a phenol-formaldehyde polycondensate diglycidyl etherified modified product with epichlorohydrin at a mass ratio of 1/1 was added so as to be 0.4 mol / Li, and a cup was added. I let it ring.
 カップリング剤添加より10分後に、前記オートクレーブに、水を加えて失活させてブロック共重合体溶液を得た。 10 minutes after the addition of the coupling agent, the autoclave was deactivated by adding water to obtain a block copolymer solution.
 得られたブロック共重合体の溶液に、安定剤としてオクタデシル-3-(3,5-ジブチル-t-ブチル-4-ヒドロキシフェニル)プロピオネートを、前記ブロック共重合体100質量部に対して0.25質量部添加して、充分混合してブロック共重合体1を得た。
 得られたブロック共重合体1は、ブロック共重合体の混合物であり、構造の比率は、
S-B / (S-B)2-X =20/80質量% であり、S-B構造のブロック共重合体の重量平均分子量は9万であり、(S-B)2-X構造のブロック共重合体の重量平均分子量はS-B構造の重量平均分子量の2倍であった。
 また、ビニル芳香族単量体単位の含有量は30質量%であり、MFR(200℃、5kgf)は0.2g/10分であった。
 ビニル芳香族単量体ブロック含有量は30質量%であり、ビニル結合量は11質量%であった。
 前記式中、Sは、ビニル芳香族単量体単位を主体とする重合体ブロックを表し、Bは、共役ジエン単量体単位を主体とする重合体ブロックを表す。
 Xは、カップリング剤の残基又は多官能有機リチウム等の重合開始剤の残基を表す。
To the obtained block copolymer solution, octadecyl-3- (3,5-dibutyl-t-butyl-4-hydroxyphenyl) propionate as a stabilizer was added in an amount of 0. 1 to 100 parts by mass of the block copolymer. 25 parts by mass was added and mixed well to obtain block copolymer 1.
The obtained block copolymer 1 is a mixture of block copolymers, and the ratio of the structure is
SB / (SB) 2 —X = 20/80% by mass The block copolymer having the SB structure has a weight average molecular weight of 90,000, and (SB) 2 —X structure The weight average molecular weight of the block copolymer was twice the weight average molecular weight of the SB structure.
Moreover, content of the vinyl aromatic monomer unit was 30 mass%, and MFR (200 degreeC, 5 kgf) was 0.2 g / 10min.
The vinyl aromatic monomer block content was 30% by mass, and the vinyl bond content was 11% by mass.
In the above formula, S represents a polymer block mainly composed of vinyl aromatic monomer units, and B represents a polymer block mainly composed of conjugated diene monomer units.
X represents a residue of a coupling agent or a residue of a polymerization initiator such as polyfunctional organolithium.
(ブロック共重合体2)
 前記<第二段階の重合>において、カップリング剤を四塩化ケイ素に変更し、0.2mol/Liになるように添加した。
 その他の条件は、前記(ブロック共重合体1)と同じ方法でブロック共重合体2を得た。
 得られたブロック共重合体2は、ブロック共重合体の混合物であり、構造の比率は、
S-B / (S-B)4-X =20/80質量% であり、S-B構造のブロック共重合体の重量平均分子量は9万であり、(S-B)4-X構造のブロック共重合体の重量平均分子量はS-B構造の重量平均分子量の4倍であった。
 また、ビニル芳香族単量体単位の含有量は30質量%であり、MFR(200℃、5kgf)は0.01g/10分であった。
 ビニル芳香族単量体ブロック含有量は30質量%であり、ビニル結合量は11質量%であった。
(Block copolymer 2)
In the above <second stage polymerization>, the coupling agent was changed to silicon tetrachloride and added so as to be 0.2 mol / Li.
Other conditions were obtained block copolymer 2 by the same method as the above (block copolymer 1).
The obtained block copolymer 2 is a mixture of block copolymers, and the structure ratio is
SB / (SB) 4 —X = 20/80% by mass The block copolymer having the SB structure has a weight average molecular weight of 90,000, and (SB) 4 —X structure The weight average molecular weight of the block copolymer was 4 times the weight average molecular weight of the SB structure.
Moreover, content of the vinyl aromatic monomer unit was 30 mass%, and MFR (200 degreeC, 5 kgf) was 0.01 g / 10min.
The vinyl aromatic monomer block content was 30% by mass, and the vinyl bond content was 11% by mass.
(ブロック共重合体3)
<水添触媒の調製>
 窒素置換した反応容器に、乾燥及び精製したシクロヘキサン1Lを入れ、ビス(シクロペンタジエニル)チタニウムジクロリド100mmolを添加し、十分に攪拌しながらトリメチルアルミニウム200mmolを含むn-ヘキサン溶液を添加して、室温にて約3日間反応させ、水添触媒を得た。
<重合>
 前記(ブロック共重合体1)の<第一段階の重合>において、n-ブチルリチウムシクロヘキサン溶液の量、スチレンの量を変更し、テトラメチレンジアミンを追加し、<第二段階の重合>において、ブタジエンの量を変更し、カップリング剤を使用しないで、更に<第三段階の重合>として、第一段階の重合と同じスチレン量でスチレンの重合を実施した。
 その後、水を加えて失活後、上記の水添触媒で、ブロック共重合体における共役ジエン単量体単位中の二重結合の98mol%を水素添加してブロック共重合体溶液を得た。
 その後、(ブロック共重合体1)と同様の方法で、ブロック共重合体3を得た。
 得られたブロック共重合体3は、S-B-S構造であり、重量平均分子量は7万であった。
 また、ビニル芳香族単量体単位の含有量は40質量%であり、MFR(200℃、5kgf)は0.5g/10分であった。
 ビニル芳香族単量体ブロック含有量は29質量%であり、ビニル結合量は40質量%であった。
(Block copolymer 3)
<Preparation of hydrogenation catalyst>
Into a reaction vessel purged with nitrogen, 1 L of dried and purified cyclohexane was added, 100 mmol of bis (cyclopentadienyl) titanium dichloride was added, and an n-hexane solution containing 200 mmol of trimethylaluminum was added with sufficient stirring. For about 3 days to obtain a hydrogenation catalyst.
<Polymerization>
In the <first stage polymerization> of the (block copolymer 1), the amount of n-butyllithium cyclohexane solution and the amount of styrene were changed, tetramethylenediamine was added, and in the <second stage polymerization> The amount of butadiene was changed, and without using a coupling agent, the polymerization of styrene was carried out in the same amount of styrene as that of the first stage polymerization as <third stage polymerization>.
Then, after adding water and deactivating, 98 mol% of the double bond in the conjugated diene monomer unit in a block copolymer was hydrogenated with said hydrogenation catalyst, and the block copolymer solution was obtained.
Then, the block copolymer 3 was obtained by the method similar to the (block copolymer 1).
The obtained block copolymer 3 had an SBS structure and a weight average molecular weight of 70,000.
Moreover, content of the vinyl aromatic monomer unit was 40 mass%, and MFR (200 degreeC, 5 kgf) was 0.5 g / 10min.
The vinyl aromatic monomer block content was 29% by mass, and the vinyl bond content was 40% by mass.
(ブロック共重合体4)
 前記(ブロック共重合体1)の<第一段階の重合>において、n-ブチルリチウムシクロヘキサン溶液の量、スチレンの量を変更し、テトラメチレンジアミンを追加し、<第二段階の重合>において、スチレンとブタジエンを連続で添加し、カップリング剤を使用しないで、最後に<第三段階の重合>として、第一段階と同じスチレン量でスチレンの重合を実施した。
 その後、水を加えて失活後、上記(ブロック共重合体3)の製造方法で調製した水添触媒で、ブロック共重合体における共役ジエン単量体単位中の二重結合の98mol%を水素添加してブロック共重合体溶液を得た。
 その後、(ブロック共重合体1)と同様の方法で、ブロック共重合体4を得た。
 得られたブロック共重合体4は、S-R-S構造であり、重量平均分子量は15万であった。
 Rは、ビニル芳香族単量体単位と共役ジエン単量体単位からなる共重合体ブロックを表す。
 また、ビニル芳香族単量体単位の含有量は50質量%であり、MFR(200℃、5kgf)は3g/10分であった。
 ビニル芳香族単量体ブロック含有量は15質量%であり、ビニル結合量は20質量%であった。
(Block copolymer 4)
In the <first stage polymerization> of the (block copolymer 1), the amount of n-butyllithium cyclohexane solution and the amount of styrene were changed, tetramethylenediamine was added, and in the <second stage polymerization> Styrene and butadiene were continuously added, and a styrene polymerization was carried out at the same styrene amount as in the first stage as a <third stage polymerization> without using a coupling agent.
Then, after deactivation by adding water, 98 mol% of the double bond in the conjugated diene monomer unit in the block copolymer was hydrogenated with the hydrogenation catalyst prepared by the production method of the above (Block Copolymer 3). This was added to obtain a block copolymer solution.
Then, the block copolymer 4 was obtained by the method similar to the (block copolymer 1).
The obtained block copolymer 4 had an S—R—S structure and had a weight average molecular weight of 150,000.
R represents a copolymer block composed of a vinyl aromatic monomer unit and a conjugated diene monomer unit.
Moreover, content of the vinyl aromatic monomer unit was 50 mass%, and MFR (200 degreeC, 5 kgf) was 3 g / 10min.
The vinyl aromatic monomer block content was 15% by mass, and the vinyl bond content was 20% by mass.
(ブロック共重合体5)
 前記(ブロック共重合体1)の<第一段階の重合>において、スチレンをブタジエンに変更し、<第二段階の重合>において、スチレンとブタジエンを一定比率で添加し、その後、更にスチレンを添加し、<第3段階の重合>としてスチレンとブタジエンを一定比率で添加し、<第4段階の重合>として、第二段階と同じスチレン量でスチレンの重合を実施した。
 その後、水を加えて失活後、(ブロック共重合体1)と同様の方法により、ブロック共重合体5を得た。
 ブロック共重合体5は、B-S-B-S構造であり、重量平均分子量は10万であった。また、ビニル芳香族単量体単位の含有量は40%であり、MFR(200℃、5kgf)は13g/10分であった。
 ビニル芳香族単量体ブロック含有量は35質量%であり、ビニル結合量は11質量%であった。
(Block copolymer 5)
In <First Stage Polymerization> of (Block Copolymer 1), styrene is changed to butadiene, and in <Second Stage Polymerization>, styrene and butadiene are added at a constant ratio, and then styrene is further added. Then, styrene and butadiene were added at a fixed ratio as <third stage polymerization>, and styrene polymerization was performed with the same styrene amount as in the second stage as <fourth stage polymerization>.
Then, after adding water and deactivating, the block copolymer 5 was obtained by the method similar to the (block copolymer 1).
The block copolymer 5 had a BSSBS structure, and the weight average molecular weight was 100,000. Moreover, content of the vinyl aromatic monomer unit was 40%, and MFR (200 ° C., 5 kgf) was 13 g / 10 min.
The vinyl aromatic monomer block content was 35% by mass, and the vinyl bond content was 11% by mass.
(ブロック共重合体6)
 前記(ブロック共重合体1)の<第二段階の重合>において、カップリング剤を1,3-ビス(N,N’-ジウリシジルアミノメチル)シクロヘキサンに変更し、0.23mol/Liになるように添加した。
 その他の条件は、前記(ブロック共重合体1)と同じ方法でブロック共重合体6を得た。
 得られたブロック共重合体6は、ブロック共重合体の混合物であり、構造の比率は、
S-B/〔(S-B)2-X+(S-B)3-X+(S-B)4-X〕 =20/80質量%
であり、S-B構造のブロック共重合体の重量平均分子量は9万であり、(S-B)2-X+(S-B)3-X+(S-B)4-Xの重量平均分子量はS-B構造の重量平均分子量の3.7倍であった。
 また、ビニル芳香族単量体単位の含有量は30質量%であり、MFR(200℃、5kgf)は0.01g/10分であった。
 ビニル芳香族単量体ブロック含有量は30質量%であり、ビニル結合量は12質量%であった。
(Block copolymer 6)
In <Second Stage Polymerization> of the (Block Copolymer 1), the coupling agent was changed to 1,3-bis (N, N′-diurisidylaminomethyl) cyclohexane to 0.23 mol / Li. It added so that it might become.
In other conditions, the block copolymer 6 was obtained in the same manner as in the above (Block copolymer 1).
The obtained block copolymer 6 is a mixture of block copolymers, and the ratio of the structure is
SB / [(SB) 2 -X + (SB) 3 -X + (SB) 4 -X] = 20/80 mass%
The weight average molecular weight of the SB structure block copolymer is 90,000, and the weight average molecular weight of (SB) 2 -X + (SB) 3 -X + (SB) 4 -X Was 3.7 times the weight average molecular weight of the SB structure.
Moreover, content of the vinyl aromatic monomer unit was 30 mass%, and MFR (200 degreeC, 5 kgf) was 0.01 g / 10min.
The vinyl aromatic monomer block content was 30% by mass, and the vinyl bond content was 12% by mass.
〔実施例1~23〕、〔比較例1~7〕
(アスファルト組成物の製造)
 750mLの金属缶に、ストレートアスファルト60-80〔新日本石油(株)製〕を500g投入し、160℃のオイルバスに金属缶を充分に浸した。
 次に、溶融状態のアスファルトを、4000rpmの回転速度で攪拌しながら、下記表2~表4に示すとおり所定量のブロック共重合体(a)、ポリフェニレンエーテル(b)、後述する熱可塑性樹脂組成物ペレット(d)を用いて、これらを前記アスファルトに添加し、添加後に90分間、撹拌してアスファルト組成物を作製した。
[Examples 1 to 23], [Comparative Examples 1 to 7]
(Manufacture of asphalt composition)
500 g of straight asphalt 60-80 [manufactured by Shin Nippon Oil Co., Ltd.] was put into a 750 mL metal can, and the metal can was sufficiently immersed in a 160 ° C. oil bath.
Next, while stirring the molten asphalt at a rotational speed of 4000 rpm, as shown in Tables 2 to 4 below, predetermined amounts of the block copolymer (a), polyphenylene ether (b), and a thermoplastic resin composition described later These were added to the asphalt using the product pellets (d), and stirred for 90 minutes after the addition to prepare an asphalt composition.
 なお、ポリフェニレンエーテル(b)としては、以下のものを用いた。
 ポリフェニレンエーテル1は、還元粘度が0.33dL/gである。
 ポリフェニレンエーテル2は、還元粘度が0.07dL/gである。
 ポリフェニレンエーテル3は、還元粘度が0.60dL/gである。
 ポリフェニレンエーテル4は、還元粘度が0.70dL/gである。
 ポリフェニレンエーテル5は、還元粘度が0.39dL/gである。
In addition, the following were used as polyphenylene ether (b).
Polyphenylene ether 1 has a reduced viscosity of 0.33 dL / g.
Polyphenylene ether 2 has a reduced viscosity of 0.07 dL / g.
Polyphenylene ether 3 has a reduced viscosity of 0.60 dL / g.
Polyphenylene ether 4 has a reduced viscosity of 0.70 dL / g.
Polyphenylene ether 5 has a reduced viscosity of 0.39 dL / g.
 ポリフェニレンエーテル5は、還元粘度が0.40dL/gのポリフェニレンエーテル100質量部と、無水マレイン酸(日本油脂(株)社製、クリスタルMAN)2質量部とを二軸押出機を用いて溶融混練することにより得た。この時、無水マレイン酸付加量は、IR測定により、ポリフェニレンエーテル100質量%に対して0.5質量%と算出された。 Polyphenylene ether 5 is obtained by melt-kneading 100 parts by mass of polyphenylene ether having a reduced viscosity of 0.40 dL / g and 2 parts by mass of maleic anhydride (manufactured by NOF Corporation, Crystal MAN) using a twin screw extruder. Was obtained. At this time, the maleic anhydride addition amount was calculated to be 0.5% by mass with respect to 100% by mass of polyphenylene ether by IR measurement.
 また、実施例7~13、15、16、19、21においては、ブロック共重合体(a)と、ポリフェニレンエーテル(b)とを共押出成型ブレンドにより作製した熱可塑性樹脂組成物ペレット(d)を用いた。 In Examples 7 to 13, 15, 16, 19, and 21, thermoplastic resin composition pellets (d) prepared by coextrusion blending of block copolymer (a) and polyphenylene ether (b). Was used.
 さらに、実施例14においては、ブロック共重合体1と、ブロック共重合体4とポレフェニレンエーテル1からなる熱可塑性樹脂組成物ペレット(d)とをそれぞれ用いた。 Furthermore, in Example 14, the block copolymer 1, and the thermoplastic resin composition pellet (d) composed of the block copolymer 4 and the polyphenylene ether 1 were used.
(アスファルト混合物の製造)
 加熱装置を備える容量27リットルの混合機に、下記表1に示す粒度の密粒度型の骨材94.5質量部を投入し、25秒間空練りを行った。
 次に、上述した方法により製造したアスファルト組成物5.5質量部を、前記混合機に投入し、50秒間本練りを行い、実施例1~23、比較例1~7のアスファルト混合物を得た。
 得られたアスファルト混合物は、密粒度型のアスファルト混合物であった。
 なお、アスファルト混合物の総量は10kgとなるようにし、空練り、本練りともに混合温度は177℃に調整した。
 使用した骨材は、栃木県下都賀郡岩舟町から産出された砕石及び砕砂、千葉県印旛郡栄町から産出された細砂、並びに栃木県佐野市山菅町から産出された石粉の混合物であった。
 アスファルト混合物に使用した骨材の粒度分布を下記表1に示す。
(Manufacture of asphalt mixture)
In a mixer having a capacity of 27 liters equipped with a heating device, 94.5 parts by mass of a fine-grained aggregate having the particle size shown in Table 1 below was charged and kneaded for 25 seconds.
Next, 5.5 parts by mass of the asphalt composition produced by the above-described method was put into the mixer and subjected to main kneading for 50 seconds to obtain asphalt mixtures of Examples 1 to 23 and Comparative Examples 1 to 7. .
The obtained asphalt mixture was a close-graded type asphalt mixture.
The total amount of the asphalt mixture was 10 kg, and the mixing temperature was adjusted to 177 ° C. for both the empty kneading and the main kneading.
The aggregate used was a mixture of crushed stone and crushed sand produced from Iwafune-cho, Shimotsuga-gun, Tochigi Prefecture, fine sand produced from Sakae-machi, Inba-gun, Chiba Prefecture, and stone powder produced from Yamagata-machi, Sano City, Tochigi Prefecture.
The particle size distribution of the aggregate used in the asphalt mixture is shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
〔アスファルト組成物及びアスファルト混合物の評価〕
 上述のようにして作製したアスファルト組成物、及びアスファルト混合物の各物性を、以下の方法により測定した。
 測定結果を表2~表4に示す。
[Evaluation of asphalt composition and asphalt mixture]
The physical properties of the asphalt composition and the asphalt mixture prepared as described above were measured by the following methods.
The measurement results are shown in Tables 2 to 4.
(アスファルト組成物の軟化点)
 JIS-K2207に準じて、アスファルト組成物の軟化点を、リング&ボール法にて測定した。
 規定の環に試料を充填し、グリセリン液中に水平に支え、試料の中央に3.5gの球を置き、液温を5℃/minの速度で上昇させたとき、球の重さで試料が環台の底板に触れた時の温度を測定した。アスファルト組成物は軟化点が高い方が、耐流動性が良く、以下の基準で良い順から◎、○、△、×と評価した。
 <評価基準>
 軟化点が112℃以上         :◎
 軟化点が105℃以上112℃未満   :○
 軟化点が98℃以上105℃未満    :△
 軟化点が98℃未満          :×
(Softening point of asphalt composition)
According to JIS-K2207, the softening point of the asphalt composition was measured by the ring and ball method.
When the sample is filled in the specified ring, supported horizontally in the glycerin liquid, a 3.5 g sphere is placed in the center of the sample, and the liquid temperature is increased at a rate of 5 ° C./min. Measured the temperature when touching the bottom plate of the ring base. The higher the softening point of the asphalt composition, the better the flow resistance, and the following criteria were evaluated as ○, ○, Δ, and × in order of goodness.
<Evaluation criteria>
Softening point is 112 ° C or higher: ◎
Softening point 105 ° C or higher and lower than 112 ° C: ○
Softening point is 98 ° C. or higher and lower than 105 ° C .: Δ
Softening point less than 98 ° C: ×
(アスファルト組成物の溶融粘度)
 ブルックフィールド型粘度計により、160℃のアスファルト組成物の溶融粘度を測定した。
 アスファルト組成物は溶融粘度が低い方が、製造性が良く、以下の基準で良い順から◎、○、△、×と評価した。
 <評価基準>
 溶融粘度が900mPa・s未満              :◎
 溶融粘度が900mPa・s以上1200mPa・s未満   :○
 溶融粘度が1200mPa・s以上1500mPa・s未満  :△
 溶融粘度が1500mPa・s以上             :×
(Melt viscosity of asphalt composition)
The melt viscosity of the asphalt composition at 160 ° C. was measured with a Brookfield viscometer.
The lower the melt viscosity of the asphalt composition, the better the manufacturability, and it was evaluated as ◎, ○, Δ, × in order from the following criteria.
<Evaluation criteria>
Melt viscosity is less than 900 mPa · s: ◎
Melt viscosity is 900 mPa · s or more and less than 1200 mPa · s: ○
Melt viscosity is 1200 mPa · s or more and less than 1500 mPa · s: Δ
Melt viscosity is 1500 mPa · s or more: ×
(アスファルト組成物におけるアスファルト相容性)
 アスファルト組成物製造中のポリフェニレンエーテルの平均粒子径を測定した。測定方法としてデジタルマイクロスコープによる透過光を用いて観察した。
 なお測定装置、測定条件は以下の通りとした。
 <測定装置>
 KEYENCE社製 デジタルマイクロスコープ VHX-2000
 <測定条件>
  測定温度:25℃
  測定倍率:2000倍
  測定モード:透過光
  測定対象:ポリフェニレンエーテル(明白色部)。アスファルトは茶色部、エラストマーは暗白色部である。
 
  サンプル調整方法:撹拌中のアスファルト組成物10mgをスライドガラス上に採取し、180℃に熱したホットプレート上で20秒静置させ溶融させる。その後、カバーガラスを溶融したアスファルト組成物に載せて薄く延ばす。室温で30分後放させた後、デジタルマイクロスコープで観察を実施した。
 アスファルト組成物中のポリフェニレンエーテルの平均粒子径が小さい方が、高温貯蔵性、低温性能が良く、以下の基準で良い順から◎、○、△、×と評価した。
 <評価基準>
 平均粒子径が、10μm未満         :◎
 平均粒子径が、10μm以上25μm未満   :○
 平均粒子径が、25μm以上50μm未満   :△
 平均粒子径が、50μm以上         :×
(Asphalt compatibility in asphalt composition)
The average particle size of the polyphenylene ether during the production of the asphalt composition was measured. As a measuring method, observation was performed using transmitted light from a digital microscope.
The measurement apparatus and measurement conditions were as follows.
<Measurement device>
Digital microscope VHX-2000 made by KEYENCE
<Measurement conditions>
Measurement temperature: 25 ° C
Measurement magnification: 2000 times Measurement mode: transmitted light Measurement object: polyphenylene ether (clear color portion). Asphalt is a brown part and elastomer is a dark white part.

Sample preparation method: 10 mg of the asphalt composition being stirred is collected on a glass slide, allowed to stand for 20 seconds on a hot plate heated to 180 ° C. and melted. Thereafter, the cover glass is placed on a molten asphalt composition and thinly spread. After releasing at room temperature for 30 minutes, observation was performed with a digital microscope.
The smaller the average particle size of the polyphenylene ether in the asphalt composition, the better the high-temperature storage property and the low-temperature performance, and it was evaluated as ◎, ○, Δ, × in order from the following criteria.
<Evaluation criteria>
Average particle diameter is less than 10 μm: ◎
Average particle diameter of 10 μm or more and less than 25 μm: ○
Average particle diameter is 25 μm or more and less than 50 μm: Δ
Average particle diameter is 50 μm or more: ×
(アスファルト組成物の伸度)
 JIS-K2207に準じて、試料を形枠に流し込み、規定の形状にした後、恒温水浴内で15℃に保ち、次に試料を5cm/minの速度で引っ張ったとき、試料が切れるまでに伸びた距離(伸度)を測定した。アスファルト組成物は伸度が高い方が、耐低温ひび割れ性が良く、以下の基準で良い順から◎、○、△、×と評価した。
 <評価基準>
 伸度が80cm以上         :◎
 伸度が65cm以上80cm未満 :○
 伸度が50cm以上65cm未満 :△
 伸度が50cm未満       :×
(Elongation of asphalt composition)
According to JIS-K2207, after pouring the sample into the form and making it into the specified shape, when the sample is kept at 15 ° C in a constant temperature water bath and then pulled at a rate of 5 cm / min, the sample stretches until it breaks. The measured distance (elongation) was measured. The asphalt composition having higher elongation had better resistance to cracking at low temperatures, and was evaluated as 、, ○, Δ, and × in order from the following criteria.
<Evaluation criteria>
Elongation is 80 cm or more: ◎
Elongation 65 cm or more and less than 80 cm: ○
Elongation is 50 cm or more and less than 65 cm: Δ
Elongation is less than 50 cm: ×
(アスファルト組成物のアスファルト分離性)
 アスファルト組成物の高温貯蔵後の分離性を評価した。
 測定方法としては、直径2.5cm長さ15cmの底をゴム栓で塞いだテフロン(登録商標)チューブに、試料を流し込み、アルミシートで蓋をした後、オーブンで175℃×72時間静置した。
 その後、冷凍庫で1時間保管した後、アスファルト組成物を長さ方向に三等分した。その上層と下層の軟化点をそれぞれ測定し、軟化点差を求めた。
 軟化点差が小さい方が、高温貯蔵安定性、低温性能が良く、以下の基準で良い順から◎、○、△、×と評価した。
 <評価基準>
 軟化点差が2℃以下        :◎
 軟化点差が6℃以下        :○
 軟化点差が10℃以下      :△
 軟化点差が10℃を超える  :×
(Asphalt separability of asphalt composition)
The separability of the asphalt composition after high temperature storage was evaluated.
As a measuring method, a sample was poured into a Teflon (registered trademark) tube whose bottom was 2.5 cm in diameter and 15 cm long and was sealed with a rubber stopper, covered with an aluminum sheet, and then left in an oven at 175 ° C. for 72 hours. .
Then, after storing for 1 hour in a freezer, the asphalt composition was divided into three equal parts in the length direction. The softening points of the upper layer and the lower layer were measured, and the difference between the softening points was determined.
The smaller the softening point difference, the better the high-temperature storage stability and the low-temperature performance, and the following criteria were evaluated as ◎, ○, Δ, and × in order of goodness.
<Evaluation criteria>
Softening point difference is 2 ° C or less: ◎
Softening point difference is 6 ° C or less: ○
Softening point difference is 10 ° C. or less: Δ
Softening point difference exceeds 10 ° C: ×
(アスファルト混合物の耐わだち掘れ性)
 上述したアスファルト混合物の製造例により製造したアスファルト混合物を試験体とし、試験法便覧B003に準じて実施した。
 所定の寸法の試験体上に、載荷した小型のゴム車輪を規定温度、規定時間、規定速度で繰り返し往復走行させ、単位時間あたりの変形量から動的安定度(回/mm)を求めた。
 動的安定度が高いほど耐わだち掘れ性に優れることを示す。
 以下の基準で良い順から◎、○、△、×と評価した。
 <評価基準>
 動的安定度が13000回/mm以上:◎
 動的安定度が10000回/mm以上:○
 動的安定度が6000回/mm以上 :△
 動的安定度が6000回/mm未満 :×
(Rubber resistance of asphalt mixture)
The asphalt mixture produced according to the production example of the asphalt mixture described above was used as a test body, and the test was conducted in accordance with Test Method Manual B003.
A small rubber wheel loaded was repeatedly reciprocated at a specified temperature, a specified time, and a specified speed on a test body having a predetermined size, and the dynamic stability (times / mm) was determined from the amount of deformation per unit time.
The higher the dynamic stability, the better the rutting resistance.
The following criteria were evaluated as ◎, ○, △, × from the best order.
<Evaluation criteria>
Dynamic stability is 13000 times / mm or more: ◎
Dynamic stability is 10,000 times / mm or more: ○
Dynamic stability is 6000 times / mm or more: Δ
Dynamic stability is less than 6000 times / mm: ×
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000003
 
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000004
 
 本出願は、2017年6月14日に日本国特許庁へ出願された日本特許出願(特願2017-116680)、2017年12月20日に日本国特許庁に出願された日本特許出願(特願2017-243831)に基づくものであり、その内容はここに参照として取り込まれる。 This application is a Japanese patent application filed with the Japan Patent Office on June 14, 2017 (Japanese Patent Application No. 2017-116680), and a Japanese patent application filed with the Japan Patent Office on December 20, 2017 (Japanese Patent Application No. 2017-243831), the contents of which are incorporated herein by reference.
 本発明のアスファルト組成物は、道路舗装用、ルーフィング・防水シート用、シーラントの分野において、産業上の利用可能性を有している。 The asphalt composition of the present invention has industrial applicability in the fields of road paving, roofing / waterproof sheets, and sealants.

Claims (12)

  1.  ビニル芳香族単量体単位と共役ジエン単量体単位とを有する共重合体(a)と、
     還元粘度0.07dL/g~0.60dL/gであるポリフェニレンエーテル(b)と、
     アスファルト(c)と、
    を、含有し、
     前記(a)の含有量が、2.5~14質量%、
     前記(b)の含有量が、0.1~10質量%、
     前記(c)の含有量が、80~97質量%、
    である、アスファルト組成物。
    A copolymer (a) having a vinyl aromatic monomer unit and a conjugated diene monomer unit;
    Polyphenylene ether (b) having a reduced viscosity of 0.07 dL / g to 0.60 dL / g;
    Asphalt (c),
    Containing,
    The content of (a) is 2.5 to 14% by mass,
    The content of (b) is 0.1 to 10% by mass,
    The content of (c) is 80 to 97% by mass,
    An asphalt composition.
  2.  前記ポリフェニレンエーテル(b)が、
     カルボキシル基及び/又はカルボキシル基から誘導される基、水酸基、酸無水物基、エポキシ基、アミノ基、アミド基、シラノール基、及びアルコキシシラン基からなる群より選択される少なくとも一つの官能基よりなる変性基を有する、請求項1に記載のアスファルト組成物。
    The polyphenylene ether (b) is
    It consists of at least one functional group selected from the group consisting of a carboxyl group and / or a group derived from a carboxyl group, a hydroxyl group, an acid anhydride group, an epoxy group, an amino group, an amide group, a silanol group, and an alkoxysilane group. The asphalt composition of Claim 1 which has a modification group.
  3.  前記ポリフェニレンエーテル(b)が、カルボキシル基及び/又はカルボキシル基から誘導される基を有する、請求項1又は2に記載のアスファルト組成物。 The asphalt composition according to claim 1 or 2, wherein the polyphenylene ether (b) has a carboxyl group and / or a group derived from a carboxyl group.
  4.  前記(a)の含有量が、4~14質量%、
     前記(b)の含有量が、0.1~8質量%、
     前記(c)の含有量が、80~97質量%、
    である、請求項1及至3のいずれか一項に記載のアスファルト組成物。
    The content of (a) is 4 to 14% by mass,
    The content of (b) is 0.1 to 8% by mass,
    The content of (c) is 80 to 97% by mass,
    The asphalt composition according to any one of claims 1 to 3, wherein
  5.  前記(a)の含有量が、4~12質量%、
     前記(b)の含有量が、0.1~5質量%、
     前記(c)の含有量が、85~97質量%、
    である、請求項1乃至4のいずれか一項に記載のアスファルト組成物。
    The content of (a) is 4 to 12% by mass,
    The content of (b) is 0.1 to 5% by mass,
    The content of (c) is 85 to 97% by mass,
    The asphalt composition according to any one of claims 1 to 4, wherein
  6.  ビニル芳香族単量体単位と共役ジエン単量体単位とを有する共重合体(a)と、還元粘度0.07dL/g~0.60dL/gであるポリフェニレンエーテル(b)との押し出し成型体である熱可塑性樹脂組成物(d)と、
     アスファルト(c)と、
    を、含有するアスファルト組成物であって、
     前記(d)の含有量が、3~20質量%であり、
     前記(c)の含有量が、80~97質量%であり、
     前記熱可塑性樹脂組成物(d)における、前記(a)と前記(b)との質量比率が、
    (a)/(b)=20~99/80~1である、
    アスファルト組成物。
    Extruded molded product of copolymer (a) having vinyl aromatic monomer unit and conjugated diene monomer unit and polyphenylene ether (b) having reduced viscosity of 0.07 dL / g to 0.60 dL / g A thermoplastic resin composition (d),
    Asphalt (c),
    An asphalt composition comprising:
    The content of (d) is 3 to 20% by mass,
    The content of (c) is 80 to 97% by mass,
    In the thermoplastic resin composition (d), the mass ratio between (a) and (b) is as follows:
    (A) / (b) = 20 to 99/80 to 1,
    Asphalt composition.
  7.  前記熱可塑性樹脂組成物(d)が、前記共重合体(a)により構成される海相と、前記ポリフェニレンエーテル(b)により構成される島相からなる海島構造を有し、
     前記熱可塑性樹脂組成物(d)中の前記ポリフェニレンエーテル(b)の平均分散粒子径が5μm未満である、請求項6に記載のアスファルト組成物。
    The thermoplastic resin composition (d) has a sea-island structure composed of a sea phase composed of the copolymer (a) and an island phase composed of the polyphenylene ether (b),
    The asphalt composition of Claim 6 whose average dispersed particle diameter of the said polyphenylene ether (b) in the said thermoplastic resin composition (d) is less than 5 micrometers.
  8.  前記(d)の含有量が、3~15質量%であり、
     前記(c)の含有量が、85~97質量%であり、
     前記(d)における、前記(a)と前記(b)との質量比率が、(a)/(b)=40~99/60~1である、
     請求項6又は7に記載のアスファルト組成物。
    The content of (d) is 3 to 15% by mass,
    The content of (c) is 85 to 97% by mass,
    In (d), the mass ratio of (a) to (b) is (a) / (b) = 40 to 99/60 to 1.
    The asphalt composition according to claim 6 or 7.
  9.  前記熱可塑性樹脂組成物(d)が酸化防止剤を含む、請求項6及至8のいずれか一項に記載のアスファルト組成物。 The asphalt composition according to any one of claims 6 to 8, wherein the thermoplastic resin composition (d) contains an antioxidant.
  10.  前記ビニル芳香族単量体単位と共役ジエン単量体単位とを有する共重合体(a)が、水素添加されている、請求項6乃至9のいずれか一項に記載のアスファルト組成物。 The asphalt composition according to any one of claims 6 to 9, wherein the copolymer (a) having the vinyl aromatic monomer unit and the conjugated diene monomer unit is hydrogenated.
  11.  スチレン-ブタジエン-スチレン共重合体(SBS)を1~10質量%、さらに含有する、請求項6乃至10のいずれか一項に記載のアスファルト組成物。 The asphalt composition according to any one of claims 6 to 10, further comprising 1 to 10% by mass of a styrene-butadiene-styrene copolymer (SBS).
  12.  前記ビニル芳香族単量体単位と共役ジエン単量体単位とを有する共重合体(a)が、
    官能基よりなる変性基を有する、請求項1及至11のいずれか一項に記載のアスファルト組成物。
     
     
    The copolymer (a) having the vinyl aromatic monomer unit and the conjugated diene monomer unit,
    The asphalt composition according to any one of claims 1 to 11, which has a modifying group composed of a functional group.

PCT/JP2018/020039 2017-06-14 2018-05-24 Asphalt composition WO2018230299A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019525262A JP6776449B2 (en) 2017-06-14 2018-05-24 Asphalt composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017116680 2017-06-14
JP2017-116680 2017-06-14
JP2017-243831 2017-12-20
JP2017243831 2017-12-20

Publications (1)

Publication Number Publication Date
WO2018230299A1 true WO2018230299A1 (en) 2018-12-20

Family

ID=64659872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020039 WO2018230299A1 (en) 2017-06-14 2018-05-24 Asphalt composition

Country Status (3)

Country Link
JP (1) JP6776449B2 (en)
TW (1) TWI665253B (en)
WO (1) WO2018230299A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194702A1 (en) * 2019-03-28 2020-10-01 出光興産株式会社 Asphalt composition, asphalt mixture, apparatus for producing asphalt composition, system for producing asphalt composition, and method for producing asphalt composition
WO2022023531A1 (en) * 2020-07-31 2022-02-03 Shell Internationale Research Maatschappij B.V. Anti-ageing additives for bitumen
CN114350150A (en) * 2019-04-18 2022-04-15 重庆市智翔铺道技术工程有限公司 High-strength light steel bridge deck pavement material based on polymer alloy and preparation method thereof
WO2024034294A1 (en) * 2022-08-08 2024-02-15 旭化成株式会社 Asphalt composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112592661A (en) * 2020-12-01 2021-04-02 远大洪雨(唐山)防水材料有限公司 Aging-resistant modified asphalt waterproof coiled material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750622A (en) * 1996-03-22 1998-05-12 Shell Oil Company High temperature low viscosity thermoplastic elastomer block copolymer compositions
WO2000064973A1 (en) * 1999-04-28 2000-11-02 General Electric Company Compositions of styrenic block copolymer resin and polyphenylene ether resin
US20010036981A1 (en) * 2000-02-15 2001-11-01 Braat Adrianus J.F.M. Poly (arylene ether) composition, method for the preparation thereof, and articles derived therefrom
WO2002042377A1 (en) * 2000-11-23 2002-05-30 Atofina Research Sbs/ppe bitumen composition
JP2003527462A (en) * 1999-10-05 2003-09-16 ゼネラル・エレクトリック・カンパニイ Powder coating composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI245776B (en) * 2002-04-10 2005-12-21 Asahi Kasei Chemicals Corp Modified polymers and compositions containing the same
EA033134B1 (en) * 2014-05-29 2019-08-30 Асахи Касеи Кабусики Кайся Asphalt composition
CN105198292B (en) * 2015-09-10 2017-04-12 安徽芜湖飞琪水泥制品有限公司 Asphalt cement column and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750622A (en) * 1996-03-22 1998-05-12 Shell Oil Company High temperature low viscosity thermoplastic elastomer block copolymer compositions
WO2000064973A1 (en) * 1999-04-28 2000-11-02 General Electric Company Compositions of styrenic block copolymer resin and polyphenylene ether resin
JP2003527462A (en) * 1999-10-05 2003-09-16 ゼネラル・エレクトリック・カンパニイ Powder coating composition
US20010036981A1 (en) * 2000-02-15 2001-11-01 Braat Adrianus J.F.M. Poly (arylene ether) composition, method for the preparation thereof, and articles derived therefrom
WO2002042377A1 (en) * 2000-11-23 2002-05-30 Atofina Research Sbs/ppe bitumen composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194702A1 (en) * 2019-03-28 2020-10-01 出光興産株式会社 Asphalt composition, asphalt mixture, apparatus for producing asphalt composition, system for producing asphalt composition, and method for producing asphalt composition
JPWO2020194702A1 (en) * 2019-03-28 2021-12-09 出光興産株式会社 Asphalt composition, asphalt mixture, asphalt composition manufacturing equipment, asphalt composition manufacturing system and asphalt composition manufacturing method
JP7167309B2 (en) 2019-03-28 2022-11-08 出光興産株式会社 Asphalt composition, asphalt mixture, asphalt composition manufacturing apparatus, asphalt composition manufacturing system, and asphalt composition manufacturing method
CN114350150A (en) * 2019-04-18 2022-04-15 重庆市智翔铺道技术工程有限公司 High-strength light steel bridge deck pavement material based on polymer alloy and preparation method thereof
WO2022023531A1 (en) * 2020-07-31 2022-02-03 Shell Internationale Research Maatschappij B.V. Anti-ageing additives for bitumen
WO2024034294A1 (en) * 2022-08-08 2024-02-15 旭化成株式会社 Asphalt composition

Also Published As

Publication number Publication date
JPWO2018230299A1 (en) 2019-12-26
TW201905077A (en) 2019-02-01
TWI665253B (en) 2019-07-11
JP6776449B2 (en) 2020-10-28

Similar Documents

Publication Publication Date Title
JP6255492B2 (en) Asphalt composition
JP6776449B2 (en) Asphalt composition
JP6373365B2 (en) Asphalt composition
KR101820618B1 (en) Polymer and asphalt composition
US10138319B2 (en) Polymer and asphalt composition
JP2016210878A (en) Modified asphalt composition and modified asphalt mixture, and method for producing them
JP2016210647A (en) Modified asphalt composition and modified asphalt mixture, and method for producing them
JP6504949B2 (en) Modified asphalt composition and modified asphalt mixture
JP2004292789A (en) Block (co)polymer, block copolymer composition for asphalt modification, preparation process thereof, and asphalt composition
JP2016035037A (en) Asphalt composition
JP6646362B2 (en) Modified asphalt emulsion
JP2016210876A (en) Modified asphalt master batch, modified asphalt composition and modified asphalt mixture, and method for producing them
JP6607672B2 (en) Polymer and asphalt composition
JP4656987B2 (en) Asphalt composition
JP6784838B2 (en) Masterbatch composition, method for producing resin composition, and resin composition
JP4672446B2 (en) Asphalt composition
JP6917252B2 (en) Asphalt composition and tarpaulin
JP2024120842A (en) Block copolymer, asphalt composition, and modified asphalt mixture
JP2016210877A (en) Composition for colored pavement and mixture for colored pavement, and method for producing them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525262

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18817207

Country of ref document: EP

Kind code of ref document: A1