WO2018230164A1 - Two-dimensional color measurement device and two-dimensional color measurement method - Google Patents

Two-dimensional color measurement device and two-dimensional color measurement method Download PDF

Info

Publication number
WO2018230164A1
WO2018230164A1 PCT/JP2018/016700 JP2018016700W WO2018230164A1 WO 2018230164 A1 WO2018230164 A1 WO 2018230164A1 JP 2018016700 W JP2018016700 W JP 2018016700W WO 2018230164 A1 WO2018230164 A1 WO 2018230164A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
pixels
area
photometric
dimensional
Prior art date
Application number
PCT/JP2018/016700
Other languages
French (fr)
Japanese (ja)
Inventor
宜弘 西川
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019525174A priority Critical patent/JP7070568B2/en
Publication of WO2018230164A1 publication Critical patent/WO2018230164A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors

Definitions

  • the present invention is a technique relating to setting of a photometric area in colorimetry on a color display screen.
  • the color measuring device calculates the light measurement amount based on the color image information signal obtained from the measurement object, and calculates the chromaticity and luminance of the measurement object based on the light measurement amount.
  • the photometric quantity is a generic term for chromaticity and luminance obtained by performing arithmetic processing from the color image information signal (X signal, Y signal, Z signal) output from the two-dimensional image sensor and the color image information signal. It is a physical quantity.
  • the two-dimensional color measurement device includes a two-dimensional image sensor and has a feature that can measure a plurality of measurement regions simultaneously, and is used for color measurement of a two-dimensional region.
  • the two-dimensional region is a screen of a color display such as a liquid crystal display or an organic electroluminescence display.
  • Patent Document 1 discloses a first, second, and third optical filter that splits light from a sample into three, and the first, second, and third optical filters.
  • Two-dimensional light receiving detection means for receiving the passed light at a plurality of measurement points on the sample surface, a spectral detection means for detecting spectral radiance for light from a specific point among the measurement points, and the detected above
  • An arithmetic means for calculating a tristimulus value at a measurement point other than the specific point using a relationship between the tristimulus value calculated based on the spectral radiance and the detection result of the two-dimensional light receiving detection means at the specific point; are disclosed.
  • a DUT screen (hereinafter referred to as DUT screen 1) has pixels arranged two-dimensionally.
  • the two-dimensional image sensor provided in the two-dimensional colorimetric apparatus 300 has pixels arranged two-dimensionally.
  • the pixel of the two-dimensional image sensor is referred to as a first pixel
  • the pixel of the DUT screen 1 is referred to as a second pixel.
  • the second pixel includes a pair of red Sub-Pixel, green Sub-Pixel, and blue Sub-Pixel.
  • the number of second pixels constituting the measurement region is determined to be 500 or more (for example, IEC 62341-5-3 Measuring methods of image sticking and lifetime). Therefore, a case where the number of second pixels constituting the measurement region is 500 will be described.
  • a DUT having a structure in which a red Sub-Pixel, a green Sub-Pixel, and a blue Sub-Pixel are repeatedly arranged only in the horizontal direction
  • Sub-Pixels of the same color are arranged in the vertical direction. No need to think.
  • FIG. 23 is an explanatory diagram for explaining the relationship between the set position of the photometry area 33-2 and the number of Sub-Pixels 11 of each color in the photometry area 33-2. 0 to 24 arranged in the horizontal direction in the figure indicate the order of the second pixels 13.
  • Example 1 indicates the 0th second pixel 13.
  • Example 2, and Example 3 are different in the setting position of the photometric area 33-2.
  • the number of red Sub-Pixels 11-r is 22, the number of green Sub-Pixels 11-g is 23, and the number of blue Sub-Pixels 11-b is 23.
  • the number of red Sub-Pixels 11-r is 23, the number of green Sub-Pixels 11-g is 22, and the number of blue Sub-Pixels 11-b is 23.
  • the number of red Sub-Pixels 11-r is 23, the number of green Sub-Pixels 11-g is 23, and the number of blue Sub-Pixels 11-b is 22.
  • the present inventor calculated the chromaticity xy for each of Example 1, Example 2, and Example 3 when the DUT is LCD (Liquid Crystal Display). Similarly, when the DUT is OLED (Organic Light Emitting Diode), the chromaticity xy was calculated for each of Example 1, Example 2, and Example 3. Since LCD and OLED have different spectral radiance, LCD and OLED have different chromaticity xy values.
  • FIG. 24 is a graph showing the spectral radiance of the LCD.
  • FIG. 25 is a graph showing the spectral radiance of the OLED. 24 and 25, the horizontal axis indicates the wavelength, and the vertical axis indicates the spectral radiance.
  • Table 1 and Table 2 show the calculation results of LCD and OLED in white display, respectively.
  • “Max” indicates the maximum value of each chromaticity xy in Examples 1, 2, and 3, and “Min” indicates the minimum value of each chromaticity xy in Examples 1, 2, and 3.
  • “ ⁇ ” indicates a difference between “Max” and “Min”.
  • “ ⁇ ” means a variation in measurement of chromaticity caused by the positional relationship between the two-dimensional color measurement device and the DUT. In the case of an LCD, the chromaticity x value is 0.3157 in Example 1, 0.3189 in Example 2, and 0.3216 in Example 3. Therefore, “Max” is 0.3216, “Min” is 0.3157, and “ ⁇ ” is 0.0059.
  • the y value of chromaticity is 0.3155 in Example 1, 0.3090 in Example 2, and 0.3185 in Example 3. Therefore, ⁇ is 0.095. Further, in the case of an OLED having a color reproduction range wider than that of an LCD, the chromaticity x value ⁇ is 0.0071, and the y value ⁇ is 0.0106, which is larger than that of the LCD. In recent years, the display has a wide color gamut, and the measurement variation due to the positional relationship between the two-dimensional colorimetric device and the DUT has expanded.
  • the chromaticity measurement variation ⁇ shown in Tables 1 and 2 is the case where the number of each Sub-Pixel 11 in the photometric area is 22 to 23, respectively, and the photometric area is increased (that is, the second in the photometric area is the second). The number of pixels 13 is increased), and the chromaticity measurement variation ⁇ is reduced.
  • FIG. 26 is a graph showing the relationship between chromaticity measurement variation and the number of second pixels 13 in the photometric area. The horizontal axis indicates the number of second pixels 13 in the photometric area, and the vertical axis indicates the measurement variation of chromaticity x and chromaticity y.
  • the DUT has a resolution of 1920 * 1080 (the number of second pixels 13 is 2073600), and the number of first pixels 31 constituting the photometric area is 5000.
  • the photometric quantity is obtained using a predetermined measurement area, as shown in FIG. 23, the number of red Sub-Pixels 11-r, the green Sub-Pixel 11-r in the photometric area 33-2. There may be a difference between the number of g and the number of blue Sub-Pixels 11-b. As a result, even if the area of the photometric area 33-2 is the same, the chromaticity and the luminance are different if the set position of the photometric area 33-2 is different (Tables 1 and 2). That is, large measurement variations occur in chromaticity and luminance.
  • the number of the second pixels 13 in the photometric area is small.
  • the resolution of the DUT is 1920 * 1080
  • the number of points to be measured is 980 * 980.
  • An object of the present invention is to provide a two-dimensional color measurement device and a two-dimensional color measurement method capable of improving the measurement accuracy of the photometric quantity without excessively increasing the photometric area.
  • a two-dimensional colorimetric apparatus reflecting one aspect of the present invention is a two-dimensional colorimetric apparatus that measures a plurality of measurement regions in a color display screen, and includes a two-dimensional imaging unit. And a determination unit.
  • the two-dimensional imaging unit includes first pixels arranged two-dimensionally and captures a color image displayed on the color display screen.
  • the determination unit sets a plurality of photometric areas including two or more first pixels in correspondence with the plurality of measurement areas, and measures the light quantity of the plurality of measurement areas corresponding to each of the plurality of photometry areas. To decide.
  • the determination unit provides a plurality of setting positions of the photometry area corresponding to the measurement area, and determines the photometry quantity of the measurement area based on the photometry quantity of the measurement area obtained at each of the setting positions.
  • the first process is executed for each of the plurality of measurement regions.
  • FIG. It is a figure which shows the relationship between the color display (DUT) used as a to-be-measured object, and a two-dimensional colorimetry apparatus. It is a schematic diagram of the plane of a DUT screen. It is a block diagram which shows the structure of the two-dimensional colorimetric apparatus which concerns on embodiment. It is a schematic diagram which shows an example of an optical filter. It is a schematic diagram which shows the type 1 of the 2nd pixel which comprises a DUT screen. It is a schematic diagram which shows the type 2 of the 2nd pixel which comprises a DUT screen. It is a top view of a part of DUT screen.
  • FIG. 20 is a plan view showing a state in which the DUT screen shown in FIG. 20 is imaged on the two-dimensional imaging device shown in FIG. 19.
  • FIG. 21 It is the enlarged view to which a part of FIG. 21 was expanded. It is explanatory drawing explaining the relationship between the setting position of a photometry area
  • FIG. 7 is a diagram illustrating the relationship between the DUT and the two-dimensional colorimetric apparatus 300 as described above.
  • FIG. 19 is a plan view of an example of the two-dimensional imaging device 3 built in the two-dimensional colorimetric apparatus 300 of FIG.
  • the first pixels 31 are arranged in a matrix.
  • the number of pixels in the horizontal direction is 20, and the number of pixels in the vertical direction is 20.
  • the number of pixels in the horizontal direction and the vertical direction is larger, for example, the number of pixels in the horizontal direction is 1600 and the number of pixels in the vertical direction is 1200.
  • FIG. 20 is a plan view of an example of the DUT screen 1 provided in the DUT of FIG.
  • the two-dimensional imaging device 3 and the DUT screen 1 are drawn to substantially the same size, but the actual sizes of both are greatly different.
  • the DUT screen 1 is a 55-inch television
  • the horizontal display size is 1217 mm
  • the vertical display size is 684 mm.
  • the two-dimensional imaging device 3 is a 1-inch CCD
  • the horizontal imaging size is 22 mm
  • the vertical imaging size is 12 mm.
  • FIG. 20 shows a DUT screen 1 having a structure in which the same colors are arranged in the vertical direction.
  • Sub-Pixels 11 constituting the second pixel 13 are represented by red Sub-Pixel 11-r, green Sub-Pixel 11-g, and blue Sub-Pixel 11 -B.
  • the second pixel 13 includes three second pixels 13 in order to show a state where the second pixel 13 is repeatedly arranged in the horizontal direction (horizontal direction).
  • FIG. 21 is a plan view showing a state in which the DUT screen 1 shown in FIG. 20 is imaged on the two-dimensional imaging device 3 shown in FIG. Since the two-dimensional colorimetric apparatus 300 needs to image the entire DUT screen 1, the two-dimensional image sensor 3 is normally set to be larger than the DUT screen 1. In this figure, the first pixel 31 of the two-dimensional image pickup device 3 is larger than the second pixel 13 of the DUT screen 1, but it may be reversed.
  • FIG. 22 is an enlarged view of a part of FIG.
  • the DUT screen 1 includes sub-pixels 11 in which sub-pixels 11 having the same color are arranged in the vertical direction and arranged in the order of RGB along the horizontal direction.
  • the Sub-Pixel 11 includes a red Sub-Pixel 11-r, a green Sub-Pixel 11-g, and a blue Sub-Pixel 11-b.
  • the Sub-Pixels 11 are repeatedly arranged in the order of red, green, and blue.
  • One set of red Sub-Pixel 11-r, green Sub-Pixel 11-g, and blue Sub-Pixel 11-b constitutes one second pixel 13.
  • the measurement area is a position on the DUT screen 1 that the measurer wants to measure, and is determined by the coordinates of the second pixel 13 on the DUT screen 1.
  • the photometric area is an area actually measured by the color measuring device. In the case of the two-dimensional colorimetric apparatus 300, the photometric area is determined by the coordinates of the first pixel 31.
  • the photometric area is determined by the position of the first pixel 31 of the two-dimensional image sensor 3.
  • An area defined by 31 coordinates (504, 505) is a photometric area 33-1.
  • the number of the second pixels 13 in the photometric area is not an integer.
  • the number of red sub-pixels 11-r, the number of green sub-pixels 11-g, and the number of blue sub-pixels 11-b are not equal.
  • Such an event occurs because the positions of the measurement area and the photometry area do not match. This is because, in the case of the two-dimensional colorimetric apparatus 300, the size of the first pixel 31 of the two-dimensional image sensor 3 and the size of the second pixel 13 of the DUT screen 1 imaged on the two-dimensional image sensor 3 are different.
  • the two-dimensional colorimetric apparatus 300 provides a plurality of setting positions of one photometric area corresponding to one measurement area, and based on the photometric quantity of the measurement area obtained at each setting position, The photometric quantity of the measurement area is determined. Specifically, the setting position of one photometry area set for one measurement area is shifted (for example, the first pixel 31 is shifted to one or two setting positions) and obtained at each setting position. Average the measured light intensity.
  • FIGS. 1 to 5 are explanatory diagrams for explaining the photometric area 33-3 arranged at the first setting position to the fifth setting position in the two-dimensional colorimetric apparatus 300 according to the embodiment.
  • FIG. 1 is also a photometric area 33-3 of Comparative Example 1.
  • FIG. 6 is an explanatory diagram for explaining the photometric area 33-4 of the second comparative example.
  • the DUT screen 1 is imaged on the two-dimensional imaging device 3 (imaging surface), and a part of the two-dimensional imaging device 3 (part of the imaging surface) and a part of the DUT screen 1 are displayed. Shown in a plane.
  • the structure of the two-dimensional image sensor 3 and the structure of the DUT screen 1 are the same as the structure of the two-dimensional image sensor 3 and the structure of the DUT screen 1 shown in FIGS. “501” to “512” indicate the coordinates (plane coordinates) of the first pixel 31.
  • the first pixel 31 is a pixel of the two-dimensional image sensor 3.
  • the set position of the photometric area 33-3 is a position defined by coordinates (504, 503), coordinates (508, 503), coordinates (504, 508) and coordinates (508, 508). This is set as a reference setting position (first setting position).
  • first setting position the second setting position of the photometric area 33-3 is shifted to the right by one first pixel 31 from the first setting position.
  • the third setting position of the photometric area 33-3 is shifted to the right by two first pixels 31 from the first setting position.
  • the fourth setting position of the photometry area 33-3 is shifted to the left by one first pixel 31 from the first setting position.
  • the fifth setting position of the photometric area 33-3 is shifted to the left by two first pixels 31 from the first setting position.
  • the photometric area 33-3 is wobbled.
  • wobbling means to move the set position of the photometry area 33-3 up, down, left and right with reference to the first set position.
  • the photometric area 33-3 of Comparative Example 2 has a larger area than the photometric area 33-3 of the embodiment and Comparative Example 1.
  • the set position of the photometric area 33-4 is a position defined by coordinates (502, 503), coordinates (510, 503), coordinates (502, 508), and coordinates (510, 508).
  • Comparative Example 1 In Comparative Example 1 (FIG. 1), the measurement area designated by the measurer is set as the photometric area 33-3, the photometric quantity is calculated, and chromaticity and luminance are measured based on the photometric quantity. In this method, the photometric quantity is obtained from the photometric area 33-3 centered on the position of the measurement area shown in FIG. 1 designated by the measurer, so that the contribution of the photometric quantity at the designated position is high.
  • the advantages of Comparative Example 1 are as follows. (1) The area of the measurement region is constant. (2) The center position of the measurement area is the position designated by the measurer.
  • the disadvantages of Comparative Example 1 are as follows. As described with reference to FIG. 23, when the positional relationship between the two-dimensional imaging device 3 and the DUT screen 1 changes slightly (the setting position of the photometric region 33-3 changes slightly), the measurement result (chromaticity, luminance) A relatively large measurement variation occurs.
  • the photometric area 33-3 of Comparative Example 2 (FIG. 6) has a larger area than the photometric area 33-3 of Comparative Example 1 (FIG. 1).
  • the comparative example 2 can reduce the measurement variation generated in the measurement results (chromaticity and luminance) as compared with the comparative example 1, but the evaluation of the spatial luminance and the like of the DUT is insufficient. Become.
  • Disadvantages of the embodiment are as follows. (1) Although the center position of the measurement area is specified by the measurer, since the photometry area 33-3 is wobbling, the center position is slightly shifted. (2) The area of the photometry region 33-3 is larger than the area of the measurement region designated by the measurer.
  • the advantages of the embodiment are as follows. (1) Even if the positional relationship between the two-dimensional imaging device 3 and the DUT screen 1 changes slightly (the setting position of the photometric area 33-3 changes slightly), measurement variations that occur in the measurement results (chromaticity, luminance) Is relatively small. (2) In Comparative Example 2 (FIG.
  • the area of the photometric region 33-4 is increased, the area of the measurement region is increased, and the influence of the center position of the measurement region on the measurement result is reduced (measurer Want to know the chromaticity and brightness at the center of the measurement area). Since the area of the photometric area 33-3 of the embodiment can be made smaller than that of the photometric area 33-4 of Comparative Example 2, the influence of the center position of the measurement area on the measurement result can be increased.
  • Table 3 will be described with an example where Wobbling is -2.
  • the number of red sub-pixels 11-r in the photometry area 33-3 is 3.4
  • the number of green sub-pixels 11-g in the photometry area 33-3 is 3.2
  • the number of blue Sub-Pixels 11-b in the photometric area 33-3 is four. The sum of these is 10.6.
  • the average value of the number of red Sub-Pixels 11-r in the photometric area 33-3 is 3.48, and the average number of green Sub-Pixels 11-g in the photometric area 33-3 The value is 3.50, the average value of the number of blue Sub-Pixels 11-b in the photometry area 33-3 is 3.62, and the total average value is 10.6.
  • Table 4 is a table regarding the number of red Sub-Pixels 11-r, the number of green Sub-Pixels 11-g, and the number of blue Sub-Pixels 11-b in the photometry area 33 for Comparative Example 1, Comparative Example 2, and the embodiment. is there.
  • the average value of the number of red Sub-Pixels 11-r in the photometric area 33-3 is 3.48, and the green Sub-Pixel 11-g in the photometric area 33-3
  • the average value of the number of blue sub-pixels 11-b in the photometry area 33-3 is 3.50.
  • the difference is a value represented by the following formula.
  • the photometry area 33-3 is wobbled around the center position designated by the measurer (FIG. 1) (FIGS. 2 to 5), so that the center position of the measurement area is the measurement result. The effect it has can be increased.
  • a color image (for example, a white image) is displayed on DUT screen 1.
  • the measurement object of the two-dimensional color measuring device 300 is the DUT screen 1 (two-dimensional region).
  • the two-dimensional colorimetric apparatus 300 sets a plurality of measurement areas on the DUT screen 1 based on an instruction from the measurer, and performs colorimetry on the plurality of measurement areas simultaneously.
  • FIG. 8 is a schematic diagram of a plane of the DUT screen 1. Here, for example, 25 measurement areas 15 are set on the DUT screen 1.
  • FIG. 9A is a block diagram showing a configuration of the two-dimensional colorimetric apparatus 300.
  • the two-dimensional colorimetric apparatus 300 includes an optical lens 301, an optical filter 302, a two-dimensional imaging device 3, a signal processing unit 303, an A / D conversion unit 304, an arithmetic processing unit 305, a communication unit 306, Is provided.
  • the optical lens 301 converges the light L from the entire DUT screen 1.
  • the light L converged by the optical lens 301 is received by the two-dimensional image sensor 3 through the optical filter 302.
  • the two-dimensional imaging device 3 is, for example, a CCD (Charge Coupled Device) or a CMOS (Complementary MOS), and is an optical sensor having a two-dimensional region as a measurement range.
  • the two-dimensional imaging device 3 receives the light L through the optical filter 302 to capture a color image displayed on the entire DUT screen 1 and an electrical signal (color image information) indicating information of the captured color image.
  • Signal SG
  • FIG. 9B is a schematic diagram illustrating an example of the optical filter 302.
  • the optical filter 302 includes an X filter 302a that transmits the X component, a Y filter 302b that transmits the Y component, a Z filter 302c that transmits the Z component, and a disc-shaped holder 302d that holds these filters. It is.
  • the X filter 302a is set so that the combined spectral sensitivity of the spectral response of the first pixel 31 and the X filter 302a becomes x ( ⁇ ) defined by CIE1931.
  • the Y filter 302b is set so that the combined spectral sensitivity of the spectral response of the first pixel 31 and the Y filter 302b becomes y ( ⁇ ) defined by CIE1931.
  • the Z filter 302c is set so that the combined spectral sensitivity of the spectral response of the first pixel 31 and the Z filter 302c becomes z ( ⁇ ) defined by CIE1931.
  • the holder 302d is rotated by a rotation mechanism (not shown), and the positions of the X filter 302a, the Y filter 302b, and the Z filter 302c can be sequentially switched to positions facing the two-dimensional imaging device 3.
  • the two-dimensional imaging device 3 receives light L that has passed through a filter located at a position facing the two-dimensional imaging device 3.
  • the optical filter 302 and the two-dimensional imaging element 3 constitute a two-dimensional imaging unit 310.
  • the two-dimensional imaging unit 310 has a structure in which the first pixels 31 are two-dimensionally arranged, and images a color image displayed on the DUT screen 1 (an example of a color display screen).
  • the signal processing unit 303 is a circuit that performs known signal processing on the color image information signal SG output from the two-dimensional image sensor 3.
  • the signal processing unit 303 includes a CDS (Correlated Double Sampling), and the CDS removes reset noise from the color image information signal SG.
  • the A / D conversion unit 304 is a circuit that converts the color image information signal SG subjected to signal processing by the signal processing unit 303 from analog to digital.
  • the calculation processing unit 305 executes various settings and calculations necessary for measuring chromaticity and luminance.
  • the arithmetic processing unit 305 is a microcomputer implemented by a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like.
  • the CPU is an example of a hardware processor.
  • the arithmetic processing unit 305 includes a storage unit 307, a determination unit 308, a first calculation unit 309, and a second calculation unit 310 as functional blocks. These will be described later.
  • arithmetic processing unit 305 may be realized by processing by a DSP (Digital Signal Processor) instead of or by processing by the CPU.
  • DSP Digital Signal Processor
  • some or all of the functions of the arithmetic processing unit 305 may be realized by processing by a dedicated hardware circuit in place of, or together with, processing by software.
  • the communication unit 306 is a communication interface (communication interface circuit) that communicates with a PC (Personal Computer) 400 outside the two-dimensional colorimetric apparatus 300.
  • the measurer operates the PC 400 to make various settings necessary for colorimetry on the DUT screen 1 to the two-dimensional colorimetric apparatus 300 (for example, designation of the center position of the measurement region 15 and the number of measurement regions 15). Instructs to execute color measurement.
  • FIG. 10A is a schematic diagram showing type 1 of the second pixel 13 constituting the DUT screen 1.
  • FIG. 10B is a schematic diagram showing type 2 of the second pixel 13 constituting the DUT screen 1.
  • type 1 of the second pixel 13 includes one red Sub-Pixel 11-r, one green Sub-Pixel 11-g, and one blue Sub-Pixel 11-b.
  • type 2 of the second pixel 13 includes one red Sub-Pixel 11-r, two green Sub-Pixels 11-g, and one blue Sub-Pixel 11-b.
  • FIG. 18 is a flowchart for explaining this.
  • a plurality of measurement areas 15 for example, 25 measurement areas 15 shown in FIG. 8 are set.
  • the determination unit 308 sets a plurality of photometry areas 33 corresponding to the plurality of measurement areas 15 (if another expression is used, the plurality of photometry areas 33 are assigned to the plurality of measurement areas 15 by one.
  • a plurality of photometric areas 33 are displayed on a color image (color image displayed on the DUT screen 1) captured by the two-dimensional image sensor 3.
  • FIG. 11 is a plan view of a part of the DUT screen 1.
  • the second pixel 13 is the type 1 described above.
  • Each second pixel 13 constituting the DUT screen 1 is specified by xy plane coordinates.
  • the x-coordinate and y-coordinate are 301 to 309, respectively.
  • the measurer operates the PC 400 to input the coordinates serving as the center of the measurement region 15 and the size of the measurement region 15.
  • (305, 305) is input as coordinates
  • 3 * 3 is input as size.
  • 3 * 3 means that the number of the second pixels 13 in the xy direction is 3, respectively.
  • the PC 400 transmits the input coordinates and size to the two-dimensional colorimetric apparatus 300, and the determination unit 308 determines the second pixel 13 located at the input coordinates (305, 305) and the second pixel 13.
  • Eight second pixels 13 positioned around are set as the measurement region 15 (step S1 in FIG. 18).
  • the set position of the measurement region 15 is a position defined by coordinates (304, 304), coordinates (306, 304), coordinates (304, 306), and coordinates (306, 306).
  • the number of second pixels 13 constituting the measurement region 15 is nine.
  • the number of red Sub-Pixels 11-r, the number of green Sub-Pixels 11-g, and the number of blue Sub-Pixels 11-b in the measurement region 15 are equal. In this example, both numbers are nine.
  • FIG. 12 is a plan view of a part of the two-dimensional image sensor 3.
  • Each first pixel 31 constituting the two-dimensional imaging device 3 (imaging surface) is specified by xy plane coordinates.
  • the x coordinate indicates 501 to 516
  • the y coordinate indicates 501 to 515.
  • the determination unit 308 is the closest to the coordinates (304, 304) of the DUT screen 1 and the position on the xy coordinates in a state where the DUT screen 1 shown in FIG. 11 is imaged on the two-dimensional imaging device 3 shown in FIG.
  • the coordinates on the two-dimensional image sensor 3 are obtained.
  • the determination unit 308 obtains coordinates on the two-dimensional image sensor 3 for the coordinates (306, 304), the coordinates (304, 306), and the coordinates (306, 306).
  • coordinates (510, 506), coordinates (507, 509), and coordinates (510, 509) are obtained.
  • the determination unit 308 sets the photometric area 33-5.
  • the set position of the photometric area 33-5 is a position defined by coordinates (507, 506), coordinates (510, 506), coordinates (507, 509), and coordinates (510, 509). This is the first set position.
  • the number of first pixels 31 constituting the photometric area 33-5 is 16. Note that the number of the first pixels 31 constituting the photometric area 33-5 is not limited to 16, but may be two or more. Since the size of the first pixel 31 and the size of the second pixel 13 are different, the size of the measurement region 15 (FIG. 11) and the size of the photometry region 33-5 (FIG. 12) do not match.
  • the setting positions include a second setting position to a fifth setting position, which will be described later (FIGS. 14 to 17).
  • the first setting position is the setting position where the overlap between the measurement region 15 and the photometry region 33-5 is the largest.
  • the remaining set positions are set positions where the first pixel 31 is shifted by one from the first set position.
  • FIG. 13 is a plan view showing the relationship among the photometry area 33-5, the DUT screen 1, and the two-dimensional image sensor 3 arranged at the first set position.
  • the DUT screen 1 is the DUT screen 1 shown in FIG.
  • the two-dimensional image sensor 3 is the two-dimensional image sensor 3 shown in FIG. FIG. 13 shows a state in which the DUT screen 1 is imaged on the two-dimensional image sensor 3. The same applies to FIGS. 14 to 17 below.
  • the number of red Sub-Pixels 11-r is 6.0
  • the number of green Sub-Pixels 11-g is 6.6
  • the blue Sub-Pixels 11-b Is 4.7.
  • These numbers are included in the photometric area 33-5 at the first set position shown in FIG. 13 for the purpose of understanding the contents of the embodiment (in other words, to explain that these numbers differ for each set position). Only the specific value of the number of each Sub-Pixel 11 located in is shown. The two-dimensional color measuring device 300 does not calculate these numbers. The same applies to the number of sub-pixels 11 at each setting position described below.
  • the two-dimensional colorimetric apparatus 300 captures a white image displayed on the DUT screen 1 in a state where the X filter 302a (FIG. 9B) faces the two-dimensional image sensor 3, and the white image is displayed. It memorize
  • the white image displayed on the DUT screen 1 is captured in a state where the Z filter 302c (FIG. 9B) faces the two-dimensional image sensor 3, and the white image is stored in the storage unit 307.
  • the determination unit 308 performs a first process for determining a photometric amount for each of these white images. Since the manner of the first processing is the same, a description will be given by taking a white image taken as an example in a state where the X filter 302a and the two-dimensional imaging device 3 face each other.
  • the determination unit 308 reads a white image (a white image captured in a state where the X filter 302a and the two-dimensional image sensor 3 face each other) stored in the storage unit 307, and sets the position of the photometric area 33-5 Are set to the first setting position to the fifth setting position, and the photometric amount of the measurement region 15 (FIG. 11) is obtained at each setting position. More specifically, the determination unit 308 uses the value of the color image information signal SG output from the Sub-Pixel 11 in the photometric area 33-5 (FIG. 13) at the first setting position to determine the photometric amount of the measurement area 15. Calculation is performed (step S4 in FIG. 18).
  • FIG. 14 is a plan view showing the relationship among the photometric region 33-5, the DUT screen 1, and the two-dimensional imaging device 3 arranged at the second setting position (one pixel wobbling to the right with respect to the first setting position).
  • FIG. The second set position is a position defined by coordinates (508, 506), coordinates (511, 506), coordinates (508, 509), and coordinates (511, 509).
  • the second setting position is a position where the first pixel 31 is shifted by 1 in the x direction from the first setting position (FIG. 13).
  • the number of red Sub-Pixels 11-r is 8.7
  • the number of green Sub-Pixels 11-g is 7.0
  • the blue Sub-Pixels 11-b Is 5.1.
  • the two-dimensional colorimetric apparatus 300 does not calculate these numbers.
  • the determination unit 308 calculates the photometric amount of the measurement region 15 using the value of the color image information signal SG output from the Sub-Pixel 11 in the photometry region 33-5 (FIG. 14) at the second set position (FIG. 14). 18 step S5).
  • FIG. 15 is a plan view showing the relationship between the photometric area 33-5, the DUT screen 1, and the two-dimensional image sensor 3 arranged at the third setting position (one pixel wobbling to the left with respect to the first setting position).
  • FIG. The third set position is a position defined by coordinates (506, 506), coordinates (509, 506), coordinates (506, 509), and coordinates (509, 509).
  • the third set position is a position where the first pixel 31 is shifted by minus 1 in the x direction from the first set position (FIG. 13).
  • the number of red Sub-Pixels 11-r is 6.0
  • the number of green Sub-Pixels 11-g is 8.0
  • the blue Sub-Pixels 11-b Is 4.6.
  • the determination unit 308 calculates the photometric amount of the measurement region 15 using the value of the color image information signal SG output from the Sub-Pixel 11 in the photometry region 33-5 (FIG. 15) at the third setting position (FIG. 15). 18 step S6).
  • FIG. 16 is a plan view showing the relationship among the photometric area 33-5, the DUT screen 1, and the two-dimensional image sensor 3 arranged at the fourth setting position (one pixel wobbling above the first setting position).
  • FIG. The fourth set position is a position defined by coordinates (507, 505), coordinates (510, 505), coordinates (507, 508), and coordinates (510, 508).
  • the fourth setting position is a position where the first pixel 31 is shifted by minus 1 in the y direction from the first setting position (FIG. 13).
  • the number of red Sub-Pixels 11-r is 4.0
  • the number of green Sub-Pixels 11-g is 4.4
  • the blue Sub-Pixels 11-b Is 7.5.
  • the determination unit 308 calculates the photometric amount of the measurement region 15 using the value of the color image information signal SG output from the Sub-Pixel 11 in the photometric region 33-5 (FIG. 16) at the fourth setting position (FIG. 16). 18 step S7).
  • FIG. 17 is a plan view showing the relationship among the photometric region 33-5, the DUT screen 1, and the two-dimensional image sensor 3 arranged at the fifth setting position (one pixel wobbling below the first setting position).
  • FIG. The fifth set position is a position defined by coordinates (507, 507), coordinates (510, 507), coordinates (507, 510), and coordinates (510, 510).
  • the fifth setting position is a position where the first pixel 31 is shifted by 1 in the y direction from the first setting position (FIG. 13).
  • the number of red Sub-Pixels 11-r is 4.8
  • the number of green Sub-Pixels 11-g is 5.3
  • the blue Sub-Pixels 11-b The number of is 6.9.
  • the determination unit 308 calculates the photometric amount of the measurement region 15 using the value of the color image information signal SG output from the Sub-Pixel 11 in the photometry region 33-5 (FIG. 17) at the fifth setting position (FIG. 17). 18 step S8).
  • the determination unit 308 calculates the light metering amount of the measurement region 15 (step S4) in which the photometry region 33-5 is calculated at the first set position (FIG. 13), and the photometry region 33-5 is calculated in the second set position (FIG. 14).
  • the measured light amount of the measurement area 15 (step S5), the photometric area 33-5 is calculated at the third set position (FIG. 15) (step S6), and the photometric area 33-5 is the fourth.
  • step S9 The determination unit 308 performs steps S4 to S9 for each of the plurality of measurement regions 15 in the DUT screen 1.
  • the determination unit 308 provides a plurality of setting positions (here, five setting positions) of the photometry area 33-5 corresponding to the measurement area 15, and the photometric quantity of the measurement area 15 obtained at each setting position. Based on the above, the first process for determining the photometric amount of the measurement region 15 is executed for each of the plurality of measurement regions 15.
  • the number of setting positions may be larger than this.
  • the photometric amount of the measurement region 15 for the captured white image is determined in a state where the X filter 302a and the two-dimensional imaging device 3 face each other.
  • the two-dimensional colorimetric device 300 is a white image captured with the Y filter 302b and the two-dimensional image sensor 3 facing each other, and a white image captured with the Z filter 302c and the two-dimensional image sensor 3 facing each other.
  • the photometric amount of the measurement region 15 is determined.
  • the first calculation unit 309 calculates chromaticity (colorimetric values) for each of the plurality of measurement regions 15 based on these photometric amounts.
  • the second calculation unit 310 calculates the luminance for each of the plurality of measurement regions 15 based on these photometric amounts.
  • the determination unit 308 provides a plurality of setting positions of the photometry area 33-5 corresponding to the measurement area 15 (FIG. 11) (FIGS. 13 to 17), and obtains at each setting position. Based on the measured light amount of the measurement area 15 (steps S4 to S8), a first process for determining the light amount of the measurement area 15 is performed (step S9). The determination unit 308 executes the first process for each of the plurality of measurement regions 15 in the DUT screen 1.
  • the photometric quantity can be averaged for each of the plurality of measurement areas 15 (the number of red Sub-Pixels 11-r, the number of green Sub-Pixels 11-g, the blue Sub-Pixels 11-b in the photometric area 33-5). Can reduce the difference in number).
  • the photometric amounts can be averaged for each of the plurality of measurement regions 15, even in the DUT screen 1 (an example of a color display screen)
  • the measurement accuracy of the photometric quantity can be improved without excessively increasing the photometric area 33-5.
  • the determination unit 308 reads the white image stored in the storage unit 307 in step S3 from the storage unit 307, and uses the white image (for each of the plurality of measurement regions 15 captured in the white image).
  • the first process is executed (steps S4 to S9). As described above, according to the embodiment, it is not necessary to capture the white image displayed on the DUT screen 1 every time the setting position of the photometric area 33-5 is changed, so that the DUT screen 1 can be measured at high speed. Can do.
  • the areas of the photometric areas 33-5 (FIGS. 13 to 17) set in the first to fifth setting positions are the same as each other. As described above, according to the embodiment, the area of the photometric region 33-5 is not changed according to the set position, so that the processes in steps S4 to S9 can be simplified.
  • the color image displayed on the DUT screen 1 may be a color image other than the primary color.
  • complementary colors such as cyan and magenta and intermediate colors may be used.
  • a primary color image even if the number of sub-pixels 11 is different, the chromaticity is the same, and therefore there is no measurement variation reducing effect according to this embodiment.
  • the present invention is not limited thereto.
  • the embodiment can be applied to the case where the Sub-Pixel 11 configuring the second pixel 13 is four cases of red Sub-Pixel, green Sub-Pixel, blue Sub-Pixel, and white Sub-Pixel.
  • the embodiment can also be applied to the four cases of Sub-Pixel, Green Sub-Pixel, Blue Sub-Pixel, and Yellow Sub-Pixel.
  • the determination of the photometric quantity in the measurement area 15 has been described with reference to the first setting position (FIG. 13) to the fifth setting position (FIG. 17) as the setting position of the photometry area 33-5.
  • the position is not limited to these.
  • As the setting positions of the photometry area 33-5 for example, there are a sixth setting position to a thirteenth setting position.
  • the sixth setting position (two pixels wobbling to the right with respect to the first setting position) is a position where the first pixel 31 is shifted by +2 in the x direction from the first setting position shown in FIG.
  • the sixth set position is a position defined by coordinates (509, 506), coordinates (512, 506), coordinates (509, 509), and coordinates (512, 509).
  • the number of red Sub-Pixels 11-r is 6.0
  • the number of green Sub-Pixels 11-g is 7.8, and the blue Sub-Pixels 11-b Is 5.0.
  • the two-dimensional colorimetric apparatus 300 does not calculate these numbers. The same applies hereinafter.
  • the seventh setting position (two pixels wobbling on the left with respect to the first setting position) is a position where the first pixel 31 is shifted by minus 2 in the x direction from the first setting position shown in FIG.
  • the seventh set position is a position defined by coordinates (505, 506), coordinates (508, 506), coordinates (505, 509), and coordinates (508, 509).
  • the number of red Sub-Pixels 11-r is 8.0
  • the number of green Sub-Pixels 11-g is 6.0
  • the blue Sub-Pixels 11-b Is 4.7.
  • the eighth setting position (upper two pixels wobbling with respect to the first setting position) is a position where the first pixel 31 is shifted by minus 2 in the y direction from the first setting position shown in FIG.
  • the eighth set position is a position defined by coordinates (507, 504), coordinates (510, 504), coordinates (507, 507), and coordinates (510, 507).
  • the number of red Sub-Pixels 11-r is 5.6
  • the number of green Sub-Pixels 11-g is 6.3
  • the blue Sub-Pixel 11-b The number of is 6.0.
  • the ninth setting position (2 pixels wobbling below the first setting position) is a position where the first pixel 31 is shifted by +2 in the y direction from the first setting position shown in FIG.
  • the ninth set position is a position defined by coordinates (507, 508), coordinates (510, 508), coordinates (507, 511), and coordinates (510, 511).
  • the number of red Sub-Pixels 11-r is 6.0
  • the number of green Sub-Pixels 11-g is 6.8
  • the blue Sub-Pixels 11-b The number of is 7.4.
  • the tenth setting position (one pixel on the right and one pixel wobbling on the first setting position) is the first pixel 31 in the x direction plus the first pixel 31 in the x direction from the first setting position shown in FIG. One pixel 31 is shifted by minus one.
  • the tenth set position is a position defined by coordinates (508, 505), coordinates (511, 505), coordinates (508, 508), and coordinates (511, 508).
  • the number of red Sub-Pixels 11-r is 5.5
  • the number of green Sub-Pixels 11-g is 4.7
  • the blue Sub-Pixels 11-b The number of is 6.8.
  • the eleventh set position (one pixel on the left and one pixel on the top with respect to the first set position) is the first pixel 31 in the x direction from the first set position shown in FIG. One pixel 31 is shifted by minus one.
  • the tenth set position is a position defined by coordinates (506, 505), coordinates (509, 505), coordinates (506, 508), and coordinates (509, 508).
  • the number of red Sub-Pixels 11-r is 4.0
  • the number of green Sub-Pixels 11-g is 5.3
  • the blue Sub-Pixels 11-b The number of is 6.8.
  • the twelfth set position (one pixel to the right and one pixel wobbling to the first set position) is the first pixel 31 in the x direction plus the first pixel in the y direction from the first set position shown in FIG. One pixel 31 is a position shifted by plus one.
  • the twelfth set position is a position defined by coordinates (508, 507), coordinates (511, 507), coordinates (508, 510), and coordinates (511, 510).
  • the number of red Sub-Pixels 11-r is 6.6
  • the number of green Sub-Pixels 11-g is 5.5
  • the blue Sub-Pixels 11-b The number of is 6.0.
  • the thirteenth set position (one pixel on the left and one pixel on the bottom with respect to the first set position) is the first pixel 31 in the x direction from the first set position shown in FIG. One pixel 31 is a position shifted by plus one.
  • the thirteenth set position is a position defined by coordinates (506, 507), coordinates (510, 507), coordinates (506, 510), and coordinates (510, 510).
  • the number of red Sub-Pixels 11-r is 4.8
  • the number of green Sub-Pixels 11-g is 6.5
  • the blue Sub-Pixels 11-b The number of is 6.4.
  • Table 5 shows the number of red Sub-Pixels 11-r, the number of green Sub-Pixels 11-g, and the number of blue Sub-Pixels 11-b in the photometry region 33-5 from the first setting position to the thirteenth setting position. It is.
  • Table 6 is a table showing various values obtained based on the results of Table 5.
  • “No wobbling” indicates the case of the first setting position
  • “Up / down / left / right 1 pixel” indicates the average value from the first setting position to the fifth setting position
  • “Up / down / left / right 2 pixels” The average value in the case of the 1st setting position to the 13th setting position is shown.
  • “no wobbling” is a value of 6.0 in the case of the first setting position shown in Table 5 (FIG. 13), and “one pixel in the vertical and horizontal directions” is shown in Table 5.
  • Average value 5.85 from the 1st setting position to the 13th setting position total value of the number of red Sub-Pixels in Table 5/13).
  • ⁇ r, ⁇ g, and ⁇ b are 100% of the value obtained by dividing the number of red Sub-Pixels 11-r, the number of green Sub-Pixels 1-g, and the number of blue Sub-Pixels 11-b by the maximum value.
  • the number of red sub-pixels 11-r (6.0), the number of green sub-pixels 1-g (6.6), and the number of blue sub-pixels 11-b (4.7).
  • the number of green sub-pixels 11-g is the largest.
  • ⁇ Max is the maximum value among ⁇ r, ⁇ g, and ⁇ b
  • ⁇ Min is the minimum value among ⁇ r, ⁇ g, and ⁇ b.
  • the difference between ⁇ Max and ⁇ Min is smaller in “one pixel in the upper, lower, left, and right” and “two pixels in the upper, lower, left, and right” as compared with “no wobbling”. That is, the “upper and lower left and right one pixel” and the “upper and lower left and right two pixels” are compared with “no wobbling” and the number of red sub-pixels 11-r in the photometry area 33-5, green sub-pixels 11-g The difference in the number of blue sub-pixels 11-b can be reduced. Therefore, the “upper and lower left and right one pixel” and the “upper and lower left and right two pixels” can improve the measurement accuracy of the photometric quantity compared with “no wobbling”.
  • a two-dimensional colorimetric apparatus is a two-dimensional colorimetric apparatus that measures a plurality of measurement regions in a color display screen, and includes first pixels arranged two-dimensionally, A plurality of photometric areas, each of which includes a two-dimensional imaging unit that captures a color image displayed on a color display screen and a plurality of photometric areas including two or more first pixels, corresponding to the plurality of measurement areas.
  • a determination unit that determines light measurement amounts of the plurality of measurement regions corresponding to each of the plurality of measurement regions, wherein the determination unit provides a plurality of setting positions of the photometry regions corresponding to the measurement regions, Based on the obtained photometric quantity of the measurement area, a first process for determining the photometric quantity of the measurement area is executed for each of the plurality of measurement areas.
  • the color display screen has second pixels arranged two-dimensionally.
  • the second pixel includes a plurality of sub-pixels (for example, a red sub-pixel, a green sub-pixel, and a blue sub-pixel).
  • the color image displayed on the color display screen may be a white image or an image of a color other than the primary color. In the case of a primary color image, even if the number of sub-pixels is different, the chromaticity is the same, so there is no measurement variation reduction effect according to the embodiment.
  • the determining unit provides a plurality of set positions of the photometry area corresponding to the measurement area, and performs a first process of determining the photometry of the measurement area based on the photometry of the measurement area obtained at each set position.
  • the determination unit executes the first process for each of the plurality of measurement regions. For this reason, the photometric quantity can be averaged for each of the plurality of measurement areas (in the case of a color display screen, the difference in the number of sub-pixels of each color located in the photometry area can be reduced).
  • the photometric amount can be averaged for each of the plurality of measurement regions, so that even if the two-dimensional region is a color display screen, the photometric region
  • the measurement accuracy of the photometric quantity can be improved without excessively increasing.
  • the first process is, for example, a process of determining an average value of the light measurement amount of the measurement area obtained at each set position as the light measurement amount of the measurement area.
  • the plurality of setting positions are, for example, a first setting position where the overlap between the measurement area and the photometry area is the largest, and the remaining setting where one or more of the one pixel is deviated from the first setting position. (Including one or more integers).
  • the image processing apparatus further includes a storage unit that stores the image, and the determination unit executes the first process using the color image read from the storage unit.
  • the two-dimensional imaging unit captures a color image displayed on the color display screen every time the setting position of the photometric area is changed. For example, when the setting position is changed five times, the two-dimensional imaging unit images the color image displayed on the color display screen five times.
  • the areas of the photometry areas set at the plurality of setting positions are the same as each other.
  • the first process can be simplified.
  • the second process of calculating the colorimetric value of the measurement region based on the light measurement amount of the measurement region determined by the determination unit is performed on each of the plurality of measurement regions. 1 calculation part is further provided.
  • the calorimetric value is calculated based on the photometric quantity with improved measurement accuracy, the accuracy of the calorimetric value can be improved.
  • a second process of calculating a luminance value of the measurement region based on the light measurement amount of the measurement region determined by the determination unit is performed for each of the plurality of measurement regions.
  • a calculation unit is further provided.
  • the accuracy of the luminance value can be improved.
  • a two-dimensional colorimetric method is a two-dimensional colorimetric method for measuring a plurality of measurement regions in a color display screen, and the two-dimensional colorimetric method includes first pixels arranged two-dimensionally.
  • An imaging step of imaging a color image displayed on the color display screen by an imaging unit and a plurality of photometric areas including two or more first pixels are set corresponding to the plurality of measuring areas, and the plurality Determining a photometric quantity of the plurality of measurement areas corresponding to each of the photometric areas, wherein the determining step provides a plurality of setting positions of the photometric areas corresponding to the measurement areas, Based on the photometric amount of the measurement area obtained at the set position, a first process for determining the photometric amount of the measurement area is executed for each of the plurality of measurement areas.
  • the two-dimensional colorimetric method according to another aspect of the embodiment defines the two-dimensional colorimetric apparatus according to one aspect of the embodiment from the viewpoint of the method, and the two-dimensional colorimetric apparatus according to one aspect of the embodiment It has the same effect.
  • a two-dimensional color measurement device and a two-dimensional color measurement method can be provided.

Abstract

This two-dimensional color measurement device comprises a two-dimensional imaging unit that has two-dimensionally arranged first pixels and images a color image displayed on a color display screen (for example, a DUT screen) and a determination unit that sets a plurality of light measurement areas including two or more of the first pixels so as to correspond to a plurality of measurement areas and determines a plurality of measurement-area measured light amounts corresponding to each of the plurality of measurement areas. For each of the plurality of measurement areas, the determination unit carries out first processing in which a plurality of set positions for the light measurement area corresponding to the measurement area are set and the measured light amount for the measurement area is determined on the basis of the measurement-area measured light amounts obtained at each of the set positions.

Description

二次元測色装置および二次元測色方法Two-dimensional color measuring device and two-dimensional color measuring method
 本発明は、カラーディスプレイ画面の測色において、測光領域の設定に関する技術である。 The present invention is a technique relating to setting of a photometric area in colorimetry on a color display screen.
 測色装置は、測定対象物から得られたカラー画像情報信号を基にして、測光量を演算し、測光量を基にして、測定対象物の色度、輝度を演算する。測光量は、二次元撮像素子から出力されるカラー画像情報信号(X信号、Y信号、Z信号)、並びに、カラー画像情報信号から演算処理をして求まる、色度、および、輝度を総称する物理量である。 The color measuring device calculates the light measurement amount based on the color image information signal obtained from the measurement object, and calculates the chromaticity and luminance of the measurement object based on the light measurement amount. The photometric quantity is a generic term for chromaticity and luminance obtained by performing arithmetic processing from the color image information signal (X signal, Y signal, Z signal) output from the two-dimensional image sensor and the color image information signal. It is a physical quantity.
 二次元測色装置は、二次元撮像素子を備え、複数の測定領域を同時に測色できる特徴を有し、二次元領域の測色に用いられる。二次元領域とは、例えば、液晶ディスプレイや有機エレクトロルミネッセンスディスプレイのようなカラーディスプレイの画面である。 The two-dimensional color measurement device includes a two-dimensional image sensor and has a feature that can measure a plurality of measurement regions simultaneously, and is used for color measurement of a two-dimensional region. The two-dimensional region is a screen of a color display such as a liquid crystal display or an organic electroluminescence display.
 二次元測色装置の一例として、特許文献1は、試料からの光を三つに分光する第1,第2,第3の光学フィルタと、この第1,第2,第3の光学フィルタを通過した光をそれぞれ上記試料面の複数の測定点について受光する二次元受光検出手段と、上記測定点の中の特定点からの光について分光放射輝度を検出する分光検出手段と、検出された上記分光放射輝度に基づいて算出された三刺激値と、上記特定点における上記二次元受光検出手段の検出結果との関係を用いて、特定点以外の測定点における三刺激値を算出する演算手段と、を備える二次元測色装置を開示している。 As an example of a two-dimensional color measuring device, Patent Document 1 discloses a first, second, and third optical filter that splits light from a sample into three, and the first, second, and third optical filters. Two-dimensional light receiving detection means for receiving the passed light at a plurality of measurement points on the sample surface, a spectral detection means for detecting spectral radiance for light from a specific point among the measurement points, and the detected above An arithmetic means for calculating a tristimulus value at a measurement point other than the specific point using a relationship between the tristimulus value calculated based on the spectral radiance and the detection result of the two-dimensional light receiving detection means at the specific point; Are disclosed.
 図7は、被測定対象となるカラーディスプレイ(DUT=Device Under Test)と二次元測色装置300との関係を示す図である。DUTの画面(以下、DUT画面1)は、二次元に配置された画素を有する。同様に、二次元測色装置300に備えられた二次元撮像素子は、二次元に配置された画素を有する。以下、二次元撮像素子の画素を、第1画素と記載し、DUT画面1の画素を、第2画素と記載する。第2画素は、例えば、一組の赤色Sub-Pixel、緑色Sub-Pixel、青色Sub-Pixelにより構成される。 FIG. 7 is a diagram showing a relationship between a color display (DUT = Device Under Test) to be measured and the two-dimensional colorimetric apparatus 300. A DUT screen (hereinafter referred to as DUT screen 1) has pixels arranged two-dimensionally. Similarly, the two-dimensional image sensor provided in the two-dimensional colorimetric apparatus 300 has pixels arranged two-dimensionally. Hereinafter, the pixel of the two-dimensional image sensor is referred to as a first pixel, and the pixel of the DUT screen 1 is referred to as a second pixel. For example, the second pixel includes a pair of red Sub-Pixel, green Sub-Pixel, and blue Sub-Pixel.
 色度、輝度を測定する規格では、測定領域を構成する第2画素の数が500以上と定められている(例えば、IEC 62341-5-3 Measuring methods of image sticking and lifetime)。そこで、測定領域を構成する第2画素の数が500の場合で説明する。水平方向にのみ、赤色Sub-Pixel、緑色Sub-Pixel、青色Sub-Pixelが繰り返し並ぶ構造を有するDUTの場合、垂直方向には、同じ色のSub-Pixelが並ぶので、縦方向の測定位置を考える必要がなくなる。よって、横方向の一次元で考えればよいので、測定領域内の画素数は、第2画素の数500の平方根である22.4(=√500)となる測定領域で考えれば良い。このため、第2画素の数22.4に相当する面積が、測光領域となる。しかし、測光領域の設定位置に応じて、赤色Sub-Pixelの数、緑色Sub-Pixelの数、青色Sub-Pixelの数に違いが生じる。図23は、測光領域33-2の設定位置と測光領域33-2内の各色のSub-Pixel11の数との関係を説明する説明図である。図の横方向に並ぶ0~24が、第2画素13の順番を示す。例えば、「0」は、0番目の第2画素13を示す。例1、例2、例3は、それぞれ、測光領域33-2の設定位置が異なる。例1の場合、赤色Sub-Pixel11-rの数が22であり、緑色Sub-Pixel11-gの数が23であり、青色Sub-Pixel11-bの数が23である。例2の場合、赤色Sub-Pixel11-rの数が23であり、緑色Sub-Pixel11-gの数が22であり、青色Sub-Pixel11-bの数が23である。例3の場合、赤色Sub-Pixel11-rの数が23であり、緑色Sub-Pixel11-gの数が23であり、青色Sub-Pixel11-bの数が22である。 In the standard for measuring chromaticity and luminance, the number of second pixels constituting the measurement region is determined to be 500 or more (for example, IEC 62341-5-3 Measuring methods of image sticking and lifetime). Therefore, a case where the number of second pixels constituting the measurement region is 500 will be described. In the case of a DUT having a structure in which a red Sub-Pixel, a green Sub-Pixel, and a blue Sub-Pixel are repeatedly arranged only in the horizontal direction, Sub-Pixels of the same color are arranged in the vertical direction. No need to think. Therefore, since it may be considered in one dimension in the horizontal direction, the number of pixels in the measurement region may be considered in the measurement region where 22.4 (= √500) which is the square root of the number 500 of the second pixels. For this reason, an area corresponding to the number 22.4 of the second pixels is a photometric area. However, there is a difference in the number of red sub-pixels, the number of green sub-pixels, and the number of blue sub-pixels depending on the set position of the photometric area. FIG. 23 is an explanatory diagram for explaining the relationship between the set position of the photometry area 33-2 and the number of Sub-Pixels 11 of each color in the photometry area 33-2. 0 to 24 arranged in the horizontal direction in the figure indicate the order of the second pixels 13. For example, “0” indicates the 0th second pixel 13. Example 1, Example 2, and Example 3 are different in the setting position of the photometric area 33-2. In the case of Example 1, the number of red Sub-Pixels 11-r is 22, the number of green Sub-Pixels 11-g is 23, and the number of blue Sub-Pixels 11-b is 23. In the case of Example 2, the number of red Sub-Pixels 11-r is 23, the number of green Sub-Pixels 11-g is 22, and the number of blue Sub-Pixels 11-b is 23. In the case of Example 3, the number of red Sub-Pixels 11-r is 23, the number of green Sub-Pixels 11-g is 23, and the number of blue Sub-Pixels 11-b is 22.
 本発明者は、DUTがLCD(Liquid Crystal Display)の場合、例1、例2、例3のそれぞれについて、色度xyを計算した。同様に、DUTがOLED(Organic Light Emitting Diode)の場合、例1、例2、例3のそれぞれについて、色度xyを計算した。LCDとOLEDとは、分光放射輝度が異なるので、LCDとOLEDとでは、色度xyの値が異なる。図24は、LCDの分光放射輝度を示すグラフである。図25は、OLEDの分光放射輝度を示すグラフである。図24および図25において、横軸は波長を示し、縦軸は分光放射輝度を示す。 The present inventor calculated the chromaticity xy for each of Example 1, Example 2, and Example 3 when the DUT is LCD (Liquid Crystal Display). Similarly, when the DUT is OLED (Organic Light Emitting Diode), the chromaticity xy was calculated for each of Example 1, Example 2, and Example 3. Since LCD and OLED have different spectral radiance, LCD and OLED have different chromaticity xy values. FIG. 24 is a graph showing the spectral radiance of the LCD. FIG. 25 is a graph showing the spectral radiance of the OLED. 24 and 25, the horizontal axis indicates the wavelength, and the vertical axis indicates the spectral radiance.
 白色表示でのLCDとOLEDの計算結果を、それぞれ、表1、表2で示す。「Max」は、例1、例2、例3のうち、各々の色度xyの最大値を示し、「Min」は、例1、例2、例3のうち、各々の色度xyの最小値を示し、「Δ」は、「Max」と「Min」との差を示す。「Δ」は、二次元測色装置とDUTとの位置関係により生じる色度の測定バラツキを意味する。LCDの場合、色度のx値は、例1が0.3157、例2が0.3189、例3が0.3216である。よって、「Max」は0.3216となり、「Min」は0.3157となり、「Δ」は0.0059となる。色度のy値は、例1が0.3155、例2が0.3090、例3が0.3185である。よって、Δは0.095となる。さらに、LCDより色再現域の広いOLEDの場合、色度のx値のΔは、0.0071、y値のΔは、0.0106となり、LCDの場合より大きくなる。近年、Displayは色再現域が広くなり、二次元測色装置とDUTの位置関係による測定バラツキが拡大してきている。他方、RGBのマトリクス型構造を持っていない光源等の色度を、色彩計で測定した場合、色彩計の色度の測定精度は、±0.0015であり、二次元測色装置とDUTの位置関係による測定バラツキのほうが大きくなってしまうという問題が生じてきている。 Table 1 and Table 2 show the calculation results of LCD and OLED in white display, respectively. “Max” indicates the maximum value of each chromaticity xy in Examples 1, 2, and 3, and “Min” indicates the minimum value of each chromaticity xy in Examples 1, 2, and 3. “Δ” indicates a difference between “Max” and “Min”. “Δ” means a variation in measurement of chromaticity caused by the positional relationship between the two-dimensional color measurement device and the DUT. In the case of an LCD, the chromaticity x value is 0.3157 in Example 1, 0.3189 in Example 2, and 0.3216 in Example 3. Therefore, “Max” is 0.3216, “Min” is 0.3157, and “Δ” is 0.0059. The y value of chromaticity is 0.3155 in Example 1, 0.3090 in Example 2, and 0.3185 in Example 3. Therefore, Δ is 0.095. Further, in the case of an OLED having a color reproduction range wider than that of an LCD, the chromaticity x value Δ is 0.0071, and the y value Δ is 0.0106, which is larger than that of the LCD. In recent years, the display has a wide color gamut, and the measurement variation due to the positional relationship between the two-dimensional colorimetric device and the DUT has expanded. On the other hand, when the chromaticity of a light source or the like that does not have an RGB matrix type structure is measured with a colorimeter, the measurement accuracy of the chromaticity of the colorimeter is ± 0.0015, and the two-dimensional colorimeter and the DUT There is a problem that the measurement variation due to the positional relationship becomes larger.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1および表2に示す色度の測定バラツキΔは、測光領域内の各Sub-Pixel11の数が、それぞれ22~23の場合であり、測光領域を大きくすると(すなわち、測光領域内の第2画素13の数を増やす)、色度の測定バラツキΔが小さくなる。図26は、色度の測定バラツキと、測光領域内の第2画素13の数との関係を示すグラフである。横軸は、測光領域内の第2画素13の数を示し、縦軸は、色度xおよび色度yの測定バラツキを示す。 The chromaticity measurement variation Δ shown in Tables 1 and 2 is the case where the number of each Sub-Pixel 11 in the photometric area is 22 to 23, respectively, and the photometric area is increased (that is, the second in the photometric area is the second). The number of pixels 13 is increased), and the chromaticity measurement variation Δ is reduced. FIG. 26 is a graph showing the relationship between chromaticity measurement variation and the number of second pixels 13 in the photometric area. The horizontal axis indicates the number of second pixels 13 in the photometric area, and the vertical axis indicates the measurement variation of chromaticity x and chromaticity y.
 例えば、測光領域内の第2画素13の数が5000の場合、70.7(=√5000)となる。このため、測光領域内の各Sub-Pixelの数が、それぞれ、70~71になるので、測光領域の設定位置に応じた色度の測定バラツキは小さくできる。 For example, when the number of the second pixels 13 in the photometry area is 5000, 70.7 (= √5000). For this reason, the number of sub-pixels in the photometric area is 70 to 71, respectively, so that the chromaticity measurement variation according to the set position of the photometric area can be reduced.
 他方、測光領域を過度に広げると、空間的に色度、輝度が平均化されるので、DUTの空間的な輝度、色度のMura、均一性の評価が不十分となる。例えば、DUTが、1920*1080(第2画素13の数が2073600)の解像度を有し、測光領域を構成する第1画素31の数が、5000とする。 On the other hand, if the photometry area is excessively widened, the chromaticity and luminance are spatially averaged, so that the evaluation of the spatial luminance, chromaticity Mura, and uniformity of the DUT becomes insufficient. For example, the DUT has a resolution of 1920 * 1080 (the number of second pixels 13 is 2073600), and the number of first pixels 31 constituting the photometric area is 5000.
   2073600/5000=414 2073600/5000 = 414
 よって、水平方向、垂直方向の測定解像度は、20*20(=√414)となる。 Therefore, the measurement resolution in the horizontal and vertical directions is 20 * 20 (= √414).
 以上説明したように、予め定められた測定領域を用いて測光量を求めると、図23に示すように、測光領域33-2内において、赤色Sub-Pixel11-rの数、緑色Sub-Pixel11-gの数、青色Sub-Pixel11-bの数に違いが生じる場合がある。この結果、測光領域33-2の面積が同じでも、測光領域33-2の設定位置が異なると、色度、輝度が異なる(表1、表2)。すなわち、色度、輝度に大きな測定バラツキが生じる。二次元測色装置では、DUT上の輝度、色度を測定するPointの数が多いので(例えば、980*980)、測光領域内の第2画素13の数が少ない。例えば、DUTの解像度が1920*1080であり、測定するPointの数が980*980とする。測光領域内の第2画素13の数は、2.16(=1920*1080/(980*980))となる。よって、測光領域内の各Sub-Pixel11の数が、それぞれ、2~3なってしまい、図26から判るように、大きな測定バラツキが生じるという課題がある。 As described above, when the photometric quantity is obtained using a predetermined measurement area, as shown in FIG. 23, the number of red Sub-Pixels 11-r, the green Sub-Pixel 11-r in the photometric area 33-2. There may be a difference between the number of g and the number of blue Sub-Pixels 11-b. As a result, even if the area of the photometric area 33-2 is the same, the chromaticity and the luminance are different if the set position of the photometric area 33-2 is different (Tables 1 and 2). That is, large measurement variations occur in chromaticity and luminance. In the two-dimensional colorimetric apparatus, since the number of points for measuring the luminance and chromaticity on the DUT is large (for example, 980 * 980), the number of the second pixels 13 in the photometric area is small. For example, the resolution of the DUT is 1920 * 1080, and the number of points to be measured is 980 * 980. The number of second pixels 13 in the photometric area is 2.16 (= 1920 * 1080 / (980 * 980)). Therefore, the number of sub-pixels 11 in the photometric area is 2 to 3, respectively, and there is a problem that large measurement variations occur as can be seen from FIG.
特開平6-201472号公報JP-A-6-2014472
 本発明の目的は、測光領域を過度に大きくすることなく、測光量の測定精度を向上させることができる二次元測色装置および二次元測色方法を提供することである。 An object of the present invention is to provide a two-dimensional color measurement device and a two-dimensional color measurement method capable of improving the measurement accuracy of the photometric quantity without excessively increasing the photometric area.
 上述した目的を実現するために、本発明の一側面を反映した二次元測色装置は、カラーディスプレイ画面内の複数の測定領域を測色する二次元測色装置であって、二次元撮像部と、決定部と、を備える。前記二次元撮像部は、二次元に配置された第1画素を有し、前記カラーディスプレイ画面に表示されたカラー画像を撮像する。前記決定部は、2以上の前記第1画素を含む複数の測光領域を、前記複数の測定領域に対応させて設定し、前記複数の測光領域のそれぞれに対応する前記複数の測定領域の測光量を決定する。前記決定部は、前記測定領域に対応する前記測光領域の設定位置を複数設け、それぞれの前記設定位置で得られた前記測定領域の測光量を基にして、前記測定領域の測光量を決定する第1処理を、前記複数の測定領域のそれぞれに対して実行する。 In order to achieve the above-described object, a two-dimensional colorimetric apparatus reflecting one aspect of the present invention is a two-dimensional colorimetric apparatus that measures a plurality of measurement regions in a color display screen, and includes a two-dimensional imaging unit. And a determination unit. The two-dimensional imaging unit includes first pixels arranged two-dimensionally and captures a color image displayed on the color display screen. The determination unit sets a plurality of photometric areas including two or more first pixels in correspondence with the plurality of measurement areas, and measures the light quantity of the plurality of measurement areas corresponding to each of the plurality of photometry areas. To decide. The determination unit provides a plurality of setting positions of the photometry area corresponding to the measurement area, and determines the photometry quantity of the measurement area based on the photometry quantity of the measurement area obtained at each of the setting positions. The first process is executed for each of the plurality of measurement regions.
 発明の1又は複数の実施形態により与えられる利点及び特徴は以下に与えられる詳細な説明及び添付図面から十分に理解される。これら詳細な説明及び添付図面は、例としてのみ与えられるものであり本発明の限定の定義として意図されるものではない。 The advantages and features afforded by one or more embodiments of the invention will be more fully understood from the detailed description and accompanying drawings provided below. The detailed description and the accompanying drawings are given by way of example only and are not intended as a definition of the limitations of the invention.
実施形態に係る二次元測色装置について、第1設定位置に配置された測光領域を説明する説明図である。It is explanatory drawing explaining the photometry area | region arrange | positioned in the 1st setting position about the two-dimensional colorimetric apparatus which concerns on embodiment. 実施形態に係る二次元測色装置について、第2設定位置に配置された測光領域を説明する説明図である。It is explanatory drawing explaining the photometry area | region arrange | positioned in the 2nd setting position about the two-dimensional colorimetric apparatus which concerns on embodiment. 実施形態に係る二次元測色装置について、第3設定位置に配置された測光領域を説明する説明図である。It is explanatory drawing explaining the photometry area | region arrange | positioned in the 3rd setting position about the two-dimensional colorimetric apparatus which concerns on embodiment. 実施形態に係る二次元測色装置について、第4設定位置に配置された測光領域を説明する説明図である。It is explanatory drawing explaining the photometry area | region arrange | positioned in the 4th setting position about the two-dimensional colorimetric apparatus which concerns on embodiment. 実施形態に係る二次元測色装置について、第5設定位置に配置された測光領域を説明する説明図である。It is explanatory drawing explaining the photometry area | region arrange | positioned in the 5th setting position about the two-dimensional colorimetric apparatus which concerns on embodiment. 比較例2の測光領域を説明する説明図である。It is explanatory drawing explaining the photometry area | region of the comparative example 2. FIG. 被測定対象となるカラーディスプレイ(DUT)と二次元測色装置との関係を示す図である。It is a figure which shows the relationship between the color display (DUT) used as a to-be-measured object, and a two-dimensional colorimetry apparatus. DUT画面の平面の模式図である。It is a schematic diagram of the plane of a DUT screen. 実施形態に係る二次元測色装置の構成を示すブロック図である。It is a block diagram which shows the structure of the two-dimensional colorimetric apparatus which concerns on embodiment. 光学フィルターの一例を示す模式図である。It is a schematic diagram which shows an example of an optical filter. DUT画面を構成する第2画素のタイプ1を示す模式図である。It is a schematic diagram which shows the type 1 of the 2nd pixel which comprises a DUT screen. DUT画面を構成する第2画素のタイプ2を示す模式図である。It is a schematic diagram which shows the type 2 of the 2nd pixel which comprises a DUT screen. DUT画面の一部の平面図である。It is a top view of a part of DUT screen. 二次元撮像素子の一部の平面図である。It is a top view of a part of a two-dimensional image sensor. 第1設定位置に配置された測光領域と、DUT画面と、二次元撮像素子との関係を示す平面図である。It is a top view which shows the relationship between the photometry area | region arrange | positioned in the 1st setting position, a DUT screen, and a two-dimensional image sensor. 第2設定位置に配置された測光領域と、DUT画面と、二次元撮像素子との関係を示す平面図である。It is a top view which shows the relationship between the photometry area | region arrange | positioned in the 2nd setting position, a DUT screen, and a two-dimensional image sensor. 第3設定位置に配置された測光領域と、DUT画面と、二次元撮像素子との関係を示す平面図である。It is a top view which shows the relationship between the photometry area | region arrange | positioned in the 3rd setting position, a DUT screen, and a two-dimensional image sensor. 第4設定位置に配置された測光領域と、DUT画面と、二次元撮像素子との関係を示す平面図である。It is a top view which shows the relationship between the photometry area | region arrange | positioned in the 4th setting position, a DUT screen, and a two-dimensional image sensor. 第5設定位置に配置された測光領域と、DUT画面と、二次元撮像素子との関係を示す平面図である。It is a top view which shows the relationship between the photometry area | region arrange | positioned in the 5th setting position, a DUT screen, and a two-dimensional image sensor. 実施形態に係る二次元測色装置を用いた測光量の測定について説明するフローチャートである。It is a flowchart explaining the measurement of the photometric quantity using the two-dimensional colorimetric apparatus which concerns on embodiment. 二次元撮像素子の一例の平面図である。It is a top view of an example of a two-dimensional image sensor. DUT画面の一例の平面図である。It is a top view of an example of a DUT screen. 図19に示す二次元撮像素子に図20に示すDUT画面が結像された状態を示す平面図である。FIG. 20 is a plan view showing a state in which the DUT screen shown in FIG. 20 is imaged on the two-dimensional imaging device shown in FIG. 19. 図21の一部を拡大した拡大図である。It is the enlarged view to which a part of FIG. 21 was expanded. 測光領域の設定位置と測光領域内の各色のSub-Pixelの数との関係を説明する説明図である。It is explanatory drawing explaining the relationship between the setting position of a photometry area | region, and the number of Sub-Pixels of each color in a photometry area | region. LCDの分光放射輝度を示すグラフである。It is a graph which shows the spectral radiance of LCD. OLEDの分光放射輝度を示すグラフである。It is a graph which shows the spectral radiance of OLED. 色度の測定バラツキと測光領域内の第2画素の数との関係を示すグラフである。It is a graph which shows the relationship between the measurement variation of chromaticity, and the number of the 2nd pixels in a photometry area | region.
 以下、図面を参照して、本発明の1又は複数の実施形態が説明される。しかし、発明の範囲は、開示された実施形態に限定されない。 Hereinafter, one or more embodiments of the present invention will be described with reference to the drawings. However, the scope of the invention is not limited to the disclosed embodiments.
 実施形態を説明する前に、測定領域と測光領域とについて説明する。図7は、上述したように、DUTと二次元測色装置300との関係を示す図である。図19は、図7の二次元測色装置300に内蔵されている二次元撮像素子3の一例の平面図である。二次元撮像素子3において、第1画素31は、マトリクス状に配置されている。この例では、水平方向の画素数が20、垂直方向の画素数が20である。実際には、水平方向、垂直方向の画素数は、もっと多く、例えば、水平方向の画素数が1600、垂直方向の画素数が1200である。 Before describing the embodiment, the measurement area and the photometry area will be described. FIG. 7 is a diagram illustrating the relationship between the DUT and the two-dimensional colorimetric apparatus 300 as described above. FIG. 19 is a plan view of an example of the two-dimensional imaging device 3 built in the two-dimensional colorimetric apparatus 300 of FIG. In the two-dimensional image sensor 3, the first pixels 31 are arranged in a matrix. In this example, the number of pixels in the horizontal direction is 20, and the number of pixels in the vertical direction is 20. Actually, the number of pixels in the horizontal direction and the vertical direction is larger, for example, the number of pixels in the horizontal direction is 1600 and the number of pixels in the vertical direction is 1200.
 図20は、図7のDUTに備えられるDUT画面1の一例の平面図である。図19と図20とにおいて、二次元撮像素子3とDUT画面1とがほぼ同じ大きさに描かれているが、実際の両者のサイズは大きく異なる。例えばDUT画面1が、55インチのテレビの場合、水平方向の表示サイズは、1217mmであり、垂直方向の表示サイズは、684mmである。二次元撮像素子3が、1インチのCCDの場合、水平方向の撮像サイズは、22mmであり、垂直方向の撮像サイズは、12mmである。図20は、垂直方向に同じ色が並んだ構造を持つDUT画面1において、第2画素13を構成するSub-Pixel11を、赤色Sub-Pixel11-r、緑色Sub-Pixel11-g、青色Sub-Pixel11-bで示している。第2画素13は、横方向(水平方向)に繰返し並んでいる状況を示す為に、第2画素13を3つ記載している。 FIG. 20 is a plan view of an example of the DUT screen 1 provided in the DUT of FIG. In FIG. 19 and FIG. 20, the two-dimensional imaging device 3 and the DUT screen 1 are drawn to substantially the same size, but the actual sizes of both are greatly different. For example, when the DUT screen 1 is a 55-inch television, the horizontal display size is 1217 mm, and the vertical display size is 684 mm. When the two-dimensional imaging device 3 is a 1-inch CCD, the horizontal imaging size is 22 mm, and the vertical imaging size is 12 mm. FIG. 20 shows a DUT screen 1 having a structure in which the same colors are arranged in the vertical direction. Sub-Pixels 11 constituting the second pixel 13 are represented by red Sub-Pixel 11-r, green Sub-Pixel 11-g, and blue Sub-Pixel 11 -B. The second pixel 13 includes three second pixels 13 in order to show a state where the second pixel 13 is repeatedly arranged in the horizontal direction (horizontal direction).
 図21は、図19に示す二次元撮像素子3に図20に示すDUT画面1が結像された状態を示す平面図である。二次元測色装置300は、DUT画面1の全体を撮像する必要があるので、二次元撮像素子3は、通常、DUT画面1より大きくなるように設定されている。尚、この図では、二次元撮像素子3の第1画素31は、DUT画面1の第2画素13より大きい状態を示しているが、逆であっても構わない。 FIG. 21 is a plan view showing a state in which the DUT screen 1 shown in FIG. 20 is imaged on the two-dimensional imaging device 3 shown in FIG. Since the two-dimensional colorimetric apparatus 300 needs to image the entire DUT screen 1, the two-dimensional image sensor 3 is normally set to be larger than the DUT screen 1. In this figure, the first pixel 31 of the two-dimensional image pickup device 3 is larger than the second pixel 13 of the DUT screen 1, but it may be reversed.
 図22は、図21の一部を拡大した拡大図である。図22を参照して、DUT画面1は、垂直方向に同じ色のSub-Pixel11が並び、水平方向に沿って、RGBの順番で配列されたSub-Pixel11を備える。Sub-Pixel11には、赤色Sub-Pixel11-rと、緑色Sub-Pixel11-gと、青色Sub-Pixel11-bと、がある。Sub-Pixel11は、赤色、緑色、青色の順番で繰り返し並んでいる。一組の赤色Sub-Pixel11-r、緑色Sub-Pixel11-g、青色Sub-Pixel11-bによって、1つの第2画素13が構成される。 FIG. 22 is an enlarged view of a part of FIG. Referring to FIG. 22, the DUT screen 1 includes sub-pixels 11 in which sub-pixels 11 having the same color are arranged in the vertical direction and arranged in the order of RGB along the horizontal direction. The Sub-Pixel 11 includes a red Sub-Pixel 11-r, a green Sub-Pixel 11-g, and a blue Sub-Pixel 11-b. The Sub-Pixels 11 are repeatedly arranged in the order of red, green, and blue. One set of red Sub-Pixel 11-r, green Sub-Pixel 11-g, and blue Sub-Pixel 11-b constitutes one second pixel 13.
 測定領域とは、測定者が測りたいDUT画面1上の位置であり、DUT画面1の第2画素13の座標によって定められる。測光領域とは、測色装置が実際に測定する領域である。二次元測色装置300の場合、測光領域は、第1画素31の座標によって定められる。 The measurement area is a position on the DUT screen 1 that the measurer wants to measure, and is determined by the coordinates of the second pixel 13 on the DUT screen 1. The photometric area is an area actually measured by the color measuring device. In the case of the two-dimensional colorimetric apparatus 300, the photometric area is determined by the coordinates of the first pixel 31.
 二次元測色装置300の場合、測光領域は、二次元撮像素子3の第1画素31の位置で定まる。例えば、図22に示す例では、第1画素31の座標(501,501)、第1画素31の座標(504,501)、第1画素31の座標(501,505)、および、第1画素31の座標(504,505)で規定される領域が、測光領域33-1とされている。測光に使用される第1画素31の数(測光領域33-1を構成する第1画素31の数)は、20(=水平方向4画素*垂直方向5画素)である。 In the case of the two-dimensional colorimetric apparatus 300, the photometric area is determined by the position of the first pixel 31 of the two-dimensional image sensor 3. For example, in the example shown in FIG. 22, the coordinates (501, 501) of the first pixel 31, the coordinates (504, 501) of the first pixel 31, the coordinates (501, 505) of the first pixel 31, and the first pixel An area defined by 31 coordinates (504, 505) is a photometric area 33-1. The number of first pixels 31 used for photometry (the number of first pixels 31 constituting the photometry area 33-1) is 20 (= 4 pixels in the horizontal direction * 5 pixels in the vertical direction).
 二次元測色装置300の場合、図22を参照して、水平方向において、赤色Sub-Pixel11-rの数が4、緑色Sub-Pixel11-gの数が3、青色Sub-Pixel11-bの数が3.6となる。よって、測光領域33-1内の第2画素13の数は、3.53(=(4+3+3.6)/3)となる。 In the case of the two-dimensional color measuring apparatus 300, referring to FIG. 22, in the horizontal direction, the number of red Sub-Pixels 11-r is 4, the number of green Sub-Pixels 11-g is 3, and the number of blue Sub-Pixels 11-b Becomes 3.6. Therefore, the number of the second pixels 13 in the photometric area 33-1 is 3.53 (= (4 + 3 + 3.6) / 3).
 以上の説明から分かるように、測光領域内の第2画素13の数は、整数にならない。言い換えれば、赤色Sub-Pixel11-rの数と、緑色Sub-Pixel11-gの数と、青色Sub-Pixel11-bの数とは、等しくならない。このような事象が発生するのは、測定領域と測光領域の位置が一致しないからである。二次元測色装置300の場合、二次元撮像素子3の第1画素31のサイズと二次元撮像素子3上に結像した、DUT画面1の第2画素13のサイズとが異なるからである。 As can be seen from the above description, the number of the second pixels 13 in the photometric area is not an integer. In other words, the number of red sub-pixels 11-r, the number of green sub-pixels 11-g, and the number of blue sub-pixels 11-b are not equal. Such an event occurs because the positions of the measurement area and the photometry area do not match. This is because, in the case of the two-dimensional colorimetric apparatus 300, the size of the first pixel 31 of the two-dimensional image sensor 3 and the size of the second pixel 13 of the DUT screen 1 imaged on the two-dimensional image sensor 3 are different.
 以下、図面に基づいて本発明の実施形態を詳細に説明する。まず、実施形態に係る二次元測色装置300の特徴を、比較例と比較して説明する。実施形態に係る二次元測色装置300は、1つの測定領域に対応する1つの測光領域の設定位置を複数設け、それぞれの設定位置で得られた、その測定領域の測光量を基にして、その測定領域の測光量を決定する。詳しくは、1つの測定領域に対して設定される1つの測光領域の設定位置をずらし(例えば、第1画素31を1つまたは2つずらした設定位置にする)、それぞれの設定位置で得られた測光量を平均化する。これにより、測光領域内の赤色Sub-Pixel11-rの数、緑色Sub-Pixel11-gの数、青色Sub-Pixel11-bの数の差を小さくし、色度、輝度の測定精度を向上させる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, the characteristics of the two-dimensional colorimetric apparatus 300 according to the embodiment will be described in comparison with a comparative example. The two-dimensional colorimetric apparatus 300 according to the embodiment provides a plurality of setting positions of one photometric area corresponding to one measurement area, and based on the photometric quantity of the measurement area obtained at each setting position, The photometric quantity of the measurement area is determined. Specifically, the setting position of one photometry area set for one measurement area is shifted (for example, the first pixel 31 is shifted to one or two setting positions) and obtained at each setting position. Average the measured light intensity. This reduces the difference between the number of red Sub-Pixels 11-r, the number of green Sub-Pixels 11-g, and the number of blue Sub-Pixels 11-b in the photometric area, and improves the measurement accuracy of chromaticity and luminance.
 図1~図5は、実施形態に係る二次元測色装置300について、第1設定位置~第5設定位置に配置された測光領域33-3を説明する説明図である。図1は、比較例1の測光領域33-3でもある。測光領域33-3を構成する第1画素31の数は、30である(=水平方向5画素*垂直方向6画素)。図6は、比較例2の測光領域33-4を説明する説明図である。測光領域33-4を構成する第1画素31の数は、54である(=水平方向9画素*垂直方向6画素)。これらの図において、DUT画面1が二次元撮像素子3(撮像面)に結像された状態であり、二次元撮像素子3の一部(撮像面の一部)およびDUT画面1の一部が平面で示されている。二次元撮像素子3の構造およびDUT画面1の構造は、図19~図22に示す二次元撮像素子3の構造およびDUT画面1の構造と同じである。「501」~「512」は、第1画素31の座標(平面座標)を示す。第1画素31は、二次元撮像素子3の画素である。図1において、測光領域33-3の設定位置は、座標(504,503)、座標(508,503)、座標(504,508)および座標(508,508)で規定される位置である。これを基準の設定位置(第1設定位置)とする。図2において、測光領域33-3の第2設定位置は、第1設定位置から第1画素31が1つ右にずれている。図3において、測光領域33-3の第3設定位置は、第1設定位置から第1画素31が2つ右にずれている。図4において、測光領域33-3の第4設定位置は、第1設定位置から第1画素31が1つ左にずれている。図5において、測光領域33-3の第5設定位置は、第1設定位置から第1画素31が2つ左にずれている。このように、実施形態では、測光領域33-3をWobblingさせる。ここでのWobblingとは、測光領域33-3の設定位置を、第1設定位置を基準にして、上下左右に動かすことである。 FIGS. 1 to 5 are explanatory diagrams for explaining the photometric area 33-3 arranged at the first setting position to the fifth setting position in the two-dimensional colorimetric apparatus 300 according to the embodiment. FIG. 1 is also a photometric area 33-3 of Comparative Example 1. The number of first pixels 31 constituting the photometric area 33-3 is 30 (= 5 pixels in the horizontal direction * 6 pixels in the vertical direction). FIG. 6 is an explanatory diagram for explaining the photometric area 33-4 of the second comparative example. The number of first pixels 31 constituting the photometric area 33-4 is 54 (= 9 pixels in the horizontal direction * 6 pixels in the vertical direction). In these drawings, the DUT screen 1 is imaged on the two-dimensional imaging device 3 (imaging surface), and a part of the two-dimensional imaging device 3 (part of the imaging surface) and a part of the DUT screen 1 are displayed. Shown in a plane. The structure of the two-dimensional image sensor 3 and the structure of the DUT screen 1 are the same as the structure of the two-dimensional image sensor 3 and the structure of the DUT screen 1 shown in FIGS. “501” to “512” indicate the coordinates (plane coordinates) of the first pixel 31. The first pixel 31 is a pixel of the two-dimensional image sensor 3. In FIG. 1, the set position of the photometric area 33-3 is a position defined by coordinates (504, 503), coordinates (508, 503), coordinates (504, 508) and coordinates (508, 508). This is set as a reference setting position (first setting position). In FIG. 2, the second setting position of the photometric area 33-3 is shifted to the right by one first pixel 31 from the first setting position. In FIG. 3, the third setting position of the photometric area 33-3 is shifted to the right by two first pixels 31 from the first setting position. In FIG. 4, the fourth setting position of the photometry area 33-3 is shifted to the left by one first pixel 31 from the first setting position. In FIG. 5, the fifth setting position of the photometric area 33-3 is shifted to the left by two first pixels 31 from the first setting position. Thus, in the embodiment, the photometric area 33-3 is wobbled. Here, wobbling means to move the set position of the photometry area 33-3 up, down, left and right with reference to the first set position.
 図6を参照して、比較例2の測光領域33-4は、実施形態および比較例1の測光領域33-3より面積が大きい。測光領域33-4の設定位置は、座標(502,503)、座標(510,503)、座標(502,508)および座標(510,508)で規定される位置である。 Referring to FIG. 6, the photometric area 33-3 of Comparative Example 2 has a larger area than the photometric area 33-3 of the embodiment and Comparative Example 1. The set position of the photometric area 33-4 is a position defined by coordinates (502, 503), coordinates (510, 503), coordinates (502, 508), and coordinates (510, 508).
 比較例1(図1)は、測定者が指定した測定領域を測光領域33-3にして、測光量を演算し、この測光量を基にして色度、輝度を測定する。この方法では、測定者が指定した、図1の測定領域の位置を中心にした測光領域33-3から測光量が得られるので、指定した位置が座標での測光量の寄与度が高くなる。比較例1の長所は、以下の通りである。(1)測定領域の面積が一定となる。(2)測定領域の中心位置が測定者が指定した位置となる。比較例1の短所は、以下の通りである。図23で説明したように、二次元撮像素子3とDUT画面1との位置関係がわずかに変化すると(測光領域33-3の設定位置がわずかに変化)、測定結果(色度、輝度)に比較的大きな測定バラツキが生じる。 In Comparative Example 1 (FIG. 1), the measurement area designated by the measurer is set as the photometric area 33-3, the photometric quantity is calculated, and chromaticity and luminance are measured based on the photometric quantity. In this method, the photometric quantity is obtained from the photometric area 33-3 centered on the position of the measurement area shown in FIG. 1 designated by the measurer, so that the contribution of the photometric quantity at the designated position is high. The advantages of Comparative Example 1 are as follows. (1) The area of the measurement region is constant. (2) The center position of the measurement area is the position designated by the measurer. The disadvantages of Comparative Example 1 are as follows. As described with reference to FIG. 23, when the positional relationship between the two-dimensional imaging device 3 and the DUT screen 1 changes slightly (the setting position of the photometric region 33-3 changes slightly), the measurement result (chromaticity, luminance) A relatively large measurement variation occurs.
 比較例2(図6)の測光領域33-4は、比較例1(図1)の測光領域33-3と比べて、面積が大きくなる。図26で説明したように、比較例2は、比較例1と比べて、測定結果(色度、輝度)に生じる測定バラツキを小さくできるが、DUTの空間的な輝度等の評価が不十分となる。 The photometric area 33-3 of Comparative Example 2 (FIG. 6) has a larger area than the photometric area 33-3 of Comparative Example 1 (FIG. 1). As described with reference to FIG. 26, the comparative example 2 can reduce the measurement variation generated in the measurement results (chromaticity and luminance) as compared with the comparative example 1, but the evaluation of the spatial luminance and the like of the DUT is insufficient. Become.
 実施形態(図1~図5)の短所は、以下の通りである。(1)測定領域の中心位置は、測定者によって指定されるが、測光領域33-3がWobblingするので、この中心位置が多少ずれる。(2)測光領域33-3の面積は、測定者が指定した測定領域の面積より大きくなる。実施形態の長所は、以下の通りである。(1)二次元撮像素子3とDUT画面1との位置関係がわずかに変化しても(測光領域33-3の設定位置がわずかに変化)、測定結果(色度、輝度)に生じる測定バラツキは比較的小さい。(2)比較例2(図6)は、測光領域33-4の面積が大きくなるので、測定領域の面積が大きくなり、測定領域の中心位置が、測定結果に与える影響が少なくなる(測定者は、測定領域の中心位置の色度、輝度を知りたい)。実施形態の測光領域33-3は、比較例2の測光領域33-4と比べて、面積を小さくできるので、測定領域の中心位置が、測定結果に与える影響を大きくできる。 Disadvantages of the embodiment (FIGS. 1 to 5) are as follows. (1) Although the center position of the measurement area is specified by the measurer, since the photometry area 33-3 is wobbling, the center position is slightly shifted. (2) The area of the photometry region 33-3 is larger than the area of the measurement region designated by the measurer. The advantages of the embodiment are as follows. (1) Even if the positional relationship between the two-dimensional imaging device 3 and the DUT screen 1 changes slightly (the setting position of the photometric area 33-3 changes slightly), measurement variations that occur in the measurement results (chromaticity, luminance) Is relatively small. (2) In Comparative Example 2 (FIG. 6), since the area of the photometric region 33-4 is increased, the area of the measurement region is increased, and the influence of the center position of the measurement region on the measurement result is reduced (measurer Want to know the chromaticity and brightness at the center of the measurement area). Since the area of the photometric area 33-3 of the embodiment can be made smaller than that of the photometric area 33-4 of Comparative Example 2, the influence of the center position of the measurement area on the measurement result can be increased.
 測光領域33内の赤色Sub-Pixel11-rの数、緑色Sub-Pixel11-gの数、青色Sub-Pixel11-bの数の違いについて、実施形態(図1~図5)と、比較例1(図1)と、比較例2(図6)とを比較して説明する。表3は、実施形態について、測光領域33-3内の赤色Sub-Pixel11-rの数、緑色Sub-Pixel11-gの数、青色Sub-Pixel11-bの数に関する表である。 Regarding the difference in the number of red sub-pixels 11-r, the number of green sub-pixels 11-g, and the number of blue sub-pixels 11-b in the photometry area 33, the embodiment (FIGS. 1 to 5) and the comparative example 1 ( FIG. 1) is compared with Comparative Example 2 (FIG. 6). Table 3 is a table regarding the number of red Sub-Pixels 11-r, the number of green Sub-Pixels 11-g, and the number of blue Sub-Pixels 11-b in the photometry area 33-3 for the embodiment.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3について、Wobblingが-2を例にして説明する。図5を参照して、測光領域33-3内の赤色Sub-Pixel11-rの数は、3.4であり、測光領域33-3内の緑色Sub-Pixel11-gの数は、3.2であり、測光領域33-3内の青色Sub-Pixel11-bの数は、4である。これらの合計は、10.6である。 Table 3 will be described with an example where Wobbling is -2. Referring to FIG. 5, the number of red sub-pixels 11-r in the photometry area 33-3 is 3.4, and the number of green sub-pixels 11-g in the photometry area 33-3 is 3.2. And the number of blue Sub-Pixels 11-b in the photometric area 33-3 is four. The sum of these is 10.6.
 図1~図5について、測光領域33-3内の赤色Sub-Pixel11-rの数の平均値は、3.48であり、測光領域33-3内の緑色Sub-Pixel11-gの数の平均値は、3.50であり、測光領域33-3内の青色Sub-Pixel11-bの数の平均値は、3.62であり、合計の平均値は、10.6である。 1 to 5, the average value of the number of red Sub-Pixels 11-r in the photometric area 33-3 is 3.48, and the average number of green Sub-Pixels 11-g in the photometric area 33-3 The value is 3.50, the average value of the number of blue Sub-Pixels 11-b in the photometry area 33-3 is 3.62, and the total average value is 10.6.
 表4は、比較例1、比較例2、実施形態について、測光領域33内の赤色Sub-Pixel11-rの数、緑色Sub-Pixel11-gの数、青色Sub-Pixel11-bの数に関する表である。 Table 4 is a table regarding the number of red Sub-Pixels 11-r, the number of green Sub-Pixels 11-g, and the number of blue Sub-Pixels 11-b in the photometry area 33 for Comparative Example 1, Comparative Example 2, and the embodiment. is there.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 比較例1(図1)について、測光領域33-3内の赤色Sub-Pixel11-rの数は、3.7であり、測光領域33-3内の緑色Sub-Pixel11-gの数は、3.9であり、測光領域33-3内の青色Sub-Pixel11-bの数は、3.0である。比較例2(図6)について、測光領域33-4内の赤色Sub-Pixel11-rの数は、6.1であり、測光領域33-4内の緑色Sub-Pixel11-gの数は、6.3であり、測光領域33-4内の青色Sub-Pixel11-bの数は、7.0である。実施形態(図1~図5)について、測光領域33-3内の赤色Sub-Pixel11-rの数の平均値は、3.48であり、測光領域33-3内の緑色Sub-Pixel11-gの数の平均値は、3.50であり、測光領域33-3内の青色Sub-Pixel11-bの数の平均値は、3.62である。 For Comparative Example 1 (FIG. 1), the number of red Sub-Pixels 11-r in the photometric area 33-3 is 3.7, and the number of green Sub-Pixels 11-g in the photometric area 33-3 is 3 .9, and the number of blue sub-pixels 11-b in the photometric area 33-3 is 3.0. For Comparative Example 2 (FIG. 6), the number of red Sub-Pixels 11-r in the photometric area 33-4 is 6.1, and the number of green Sub-Pixels 11-g in the photometric area 33-4 is 6 .3, and the number of blue Sub-Pixels 11-b in the photometric area 33-4 is 7.0. For the embodiment (FIGS. 1 to 5), the average value of the number of red Sub-Pixels 11-r in the photometric area 33-3 is 3.48, and the green Sub-Pixel 11-g in the photometric area 33-3 The average value of the number of blue sub-pixels 11-b in the photometry area 33-3 is 3.50.
 差異は、以下の式で表される値である。 The difference is a value represented by the following formula.
   差異={ (最大値/最小値)-1}*100 Difference = {(maximum / minimum) -1} * 100
 比較例1の場合、差異は、30%(={(3.9/3.0)-1}*100)となる。比較例2の場合、差異は、15%(≒{(7.0/6.1)-1}*100)となる。実施形態の場合(表3に示す平均)、差異は、4%(≒{(3.62/3.48)-1}*100)となる。このように、実施形態によれば、比較例1および比較例2と比べて、測光領域33内の赤色Sub-Pixel11-rの数、緑色Sub-Pixel11-gの数、青色Sub-Pixel11-bの数の差を小さくできるので、色度、輝度の測定精度を向上させることができる。また、実施形態によれば、測定者が指定した中心位置(図1)を中心にして、測光領域33-3をWobblingさせるので(図2~図5)、測定領域の中心位置が測定結果に与える影響を大きくできる。 In the case of Comparative Example 1, the difference is 30% (= {(3.9 / 3.0) -1} * 100). In the case of Comparative Example 2, the difference is 15% (≈ {(7.0 / 6.1) -1} * 100). In the case of the embodiment (average shown in Table 3), the difference is 4% (≈ {(3.62 / 3.48) -1} * 100). As described above, according to the embodiment, compared to Comparative Example 1 and Comparative Example 2, the number of red Sub-Pixels 11-r, the number of green Sub-Pixels 11-g, and the blue Sub-Pixels 11-b in the photometry area 33 are compared. Therefore, the measurement accuracy of chromaticity and luminance can be improved. In addition, according to the embodiment, the photometry area 33-3 is wobbled around the center position designated by the measurer (FIG. 1) (FIGS. 2 to 5), so that the center position of the measurement area is the measurement result. The effect it has can be increased.
 図7を参照して、DUT画面1には、カラー画像(例えば、白色画像)が表示される。二次元測色装置300の測定対象は、DUT画面1(二次元領域)である。二次元測色装置300は、測定者の指示に基づいて、DUT画面1に複数の測定領域を設定し、複数の測定領域を同時に測色する。図8は、DUT画面1の平面の模式図である。ここでは、DUT画面1に、例えば、25個の測定領域15が設定されている。 Referring to FIG. 7, a color image (for example, a white image) is displayed on DUT screen 1. The measurement object of the two-dimensional color measuring device 300 is the DUT screen 1 (two-dimensional region). The two-dimensional colorimetric apparatus 300 sets a plurality of measurement areas on the DUT screen 1 based on an instruction from the measurer, and performs colorimetry on the plurality of measurement areas simultaneously. FIG. 8 is a schematic diagram of a plane of the DUT screen 1. Here, for example, 25 measurement areas 15 are set on the DUT screen 1.
 図9Aは、二次元測色装置300の構成を示すブロック図である。二次元測色装置300は、光学レンズ301と、光学フィルター302と、二次元撮像素子3と、信号処理部303と、A/D変換部304と、演算処理部305と、通信部306と、を備える。光学レンズ301は、DUT画面1の全体からの光Lを収束する。光学レンズ301で収束された光Lは、光学フィルター302を介して、二次元撮像素子3で受光される。 FIG. 9A is a block diagram showing a configuration of the two-dimensional colorimetric apparatus 300. The two-dimensional colorimetric apparatus 300 includes an optical lens 301, an optical filter 302, a two-dimensional imaging device 3, a signal processing unit 303, an A / D conversion unit 304, an arithmetic processing unit 305, a communication unit 306, Is provided. The optical lens 301 converges the light L from the entire DUT screen 1. The light L converged by the optical lens 301 is received by the two-dimensional image sensor 3 through the optical filter 302.
 二次元撮像素子3は、例えば、CCD(Charge Coupled Device)、または、CMOS(Complementary MOS)であり、二次元領域を測定範囲とする光学センサーである。二次元撮像素子3は、光学フィルター302を介して光Lを受光することにより、DUT画面1の全体に表示されたカラー画像を撮影し、撮影したカラー画像の情報を示す電気信号(カラー画像情報信号SG)を出力する。 The two-dimensional imaging device 3 is, for example, a CCD (Charge Coupled Device) or a CMOS (Complementary MOS), and is an optical sensor having a two-dimensional region as a measurement range. The two-dimensional imaging device 3 receives the light L through the optical filter 302 to capture a color image displayed on the entire DUT screen 1 and an electrical signal (color image information) indicating information of the captured color image. Signal SG).
 光学フィルター302について、図9Bを参照して説明する。図9Bは、光学フィルター302の一例を示す模式図である。光学フィルター302は、X成分を透過するXフィルター302a、Y成分を透過するYフィルター302b、Z成分を透過するZフィルター302c、および、これらのフィルターを保持する円盤型のホルダー302dを備える回転式フィルターである。第1画素31の分光応答度とXフィルター302aとの合成分光感度が、CIE1931で規定されたx(λ)になるように、Xフィルター302aは設定されている。第1画素31の分光応答度とYフィルター302bとの合成分光感度が、CIE1931で規定されたy(λ)になるように、Yフィルター302bは設定されている。第1画素31の分光応答度とZフィルター302cとの合成分光感度が、CIE1931で規定されたz(λ)になるように、Zフィルター302cは設定されている。ホルダー302dは、不図示の回転機構により回転させられ、Xフィルター302a、Yフィルター302b、Zフィルター302cの位置を、二次元撮像素子3と対向する位置に、順番に切り替えることができる。二次元撮像素子3は、これと対向する位置にあるフィルターを透過した光Lを受光する。 The optical filter 302 will be described with reference to FIG. 9B. FIG. 9B is a schematic diagram illustrating an example of the optical filter 302. The optical filter 302 includes an X filter 302a that transmits the X component, a Y filter 302b that transmits the Y component, a Z filter 302c that transmits the Z component, and a disc-shaped holder 302d that holds these filters. It is. The X filter 302a is set so that the combined spectral sensitivity of the spectral response of the first pixel 31 and the X filter 302a becomes x (λ) defined by CIE1931. The Y filter 302b is set so that the combined spectral sensitivity of the spectral response of the first pixel 31 and the Y filter 302b becomes y (λ) defined by CIE1931. The Z filter 302c is set so that the combined spectral sensitivity of the spectral response of the first pixel 31 and the Z filter 302c becomes z (λ) defined by CIE1931. The holder 302d is rotated by a rotation mechanism (not shown), and the positions of the X filter 302a, the Y filter 302b, and the Z filter 302c can be sequentially switched to positions facing the two-dimensional imaging device 3. The two-dimensional imaging device 3 receives light L that has passed through a filter located at a position facing the two-dimensional imaging device 3.
 光学フィルター302と二次元撮像素子3とにより、二次元撮像部310が構成される。二次元撮像部310は、第1画素31が二次元に配置された構造を有し、DUT画面1(カラーディスプレイ画面の一例)に表示されたカラー画像を撮像する。 The optical filter 302 and the two-dimensional imaging element 3 constitute a two-dimensional imaging unit 310. The two-dimensional imaging unit 310 has a structure in which the first pixels 31 are two-dimensionally arranged, and images a color image displayed on the DUT screen 1 (an example of a color display screen).
 信号処理部303は、二次元撮像素子3から出力されたカラー画像情報信号SGに対して、公知の信号処理をする回路。例えば、二次元撮像素子3がCCDの場合、信号処理部303は、CDS(Correlated Double Sampling)を備え、CDSがカラー画像情報信号SGからリセットノイズを除去する。 The signal processing unit 303 is a circuit that performs known signal processing on the color image information signal SG output from the two-dimensional image sensor 3. For example, when the two-dimensional imaging device 3 is a CCD, the signal processing unit 303 includes a CDS (Correlated Double Sampling), and the CDS removes reset noise from the color image information signal SG.
 A/D変換部304は、信号処理部303で信号処理がされたカラー画像情報信号SGを、アナログからデジタルに変換する回路である。 The A / D conversion unit 304 is a circuit that converts the color image information signal SG subjected to signal processing by the signal processing unit 303 from analog to digital.
 演算処理部305は、色度、輝度の測定に必要な各種の設定、演算を実行する。演算処理部305は、CPU(Central Processing Unit)、RAM(Random Access Memory)、および、ROM(Read Only Memory)等によって実現されるマイクロコンピュータである。CPUは、ハードウェアプロセッサの一例である。演算処理部305は、機能ブロックとして、記憶部307、決定部308、第1算出部309、および、第2算出部310を備える。これらについては後で説明する。 The calculation processing unit 305 executes various settings and calculations necessary for measuring chromaticity and luminance. The arithmetic processing unit 305 is a microcomputer implemented by a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like. The CPU is an example of a hardware processor. The arithmetic processing unit 305 includes a storage unit 307, a determination unit 308, a first calculation unit 309, and a second calculation unit 310 as functional blocks. These will be described later.
 なお、演算処理部305の機能の一部又は全部は、CPUによる処理に替えて、又は、これと共に、DSP(Digital Signal Processor)による処理によって実現されてもよい。又、同様に、演算処理部305の機能の一部又は全部は、ソフトウェアによる処理に替えて、又は、これと共に、専用のハードウェア回路による処理によって実現されてもよい。 Note that some or all of the functions of the arithmetic processing unit 305 may be realized by processing by a DSP (Digital Signal Processor) instead of or by processing by the CPU. Similarly, some or all of the functions of the arithmetic processing unit 305 may be realized by processing by a dedicated hardware circuit in place of, or together with, processing by software.
 通信部306は、二次元測色装置300の外部のPC(Personal Computer)400と通信する通信インターフェイス(通信インターフェイス回路)である。測定者は、PC400を操作することにより、二次元測色装置300に対して、DUT画面1の測色に必要な各種設定(例えば、測定領域15の中心位置の指定、測定領域15の数)、測色を実行する命令等をする。 The communication unit 306 is a communication interface (communication interface circuit) that communicates with a PC (Personal Computer) 400 outside the two-dimensional colorimetric apparatus 300. The measurer operates the PC 400 to make various settings necessary for colorimetry on the DUT screen 1 to the two-dimensional colorimetric apparatus 300 (for example, designation of the center position of the measurement region 15 and the number of measurement regions 15). Instructs to execute color measurement.
 DUT画面1を構成する第2画素13には、様々なタイプがある。ここでは、2つのタイプについて説明する。図10Aは、DUT画面1を構成する第2画素13のタイプ1を示す模式図である。図10Bは、DUT画面1を構成する第2画素13のタイプ2を示す模式図である。図10Aを参照して、第2画素13のタイプ1は、1つの赤色Sub-Pixel11-rと、1つの緑色Sub-Pixel11-gと、1つの青色Sub-Pixel11-bとにより構成される。図10Bを参照して、第2画素13のタイプ2は、1つの赤色Sub-Pixel11-rと、2つの緑色Sub-Pixel11-gと、1つの青色Sub-Pixel11-bとにより構成される。 There are various types of second pixels 13 constituting the DUT screen 1. Here, two types will be described. FIG. 10A is a schematic diagram showing type 1 of the second pixel 13 constituting the DUT screen 1. FIG. 10B is a schematic diagram showing type 2 of the second pixel 13 constituting the DUT screen 1. Referring to FIG. 10A, type 1 of the second pixel 13 includes one red Sub-Pixel 11-r, one green Sub-Pixel 11-g, and one blue Sub-Pixel 11-b. Referring to FIG. 10B, type 2 of the second pixel 13 includes one red Sub-Pixel 11-r, two green Sub-Pixels 11-g, and one blue Sub-Pixel 11-b.
 実施形態に係る二次元測色装置300を用いた測光量の測定について説明する。図18は、これを説明するフローチャートである。DUT画面1には、複数の測定領域15(例えば、図8に示す25個の測定領域15)が設定される。図9Aを参照して、決定部308は、複数の測光領域33を複数の測定領域15に対応させて設定し(別の表現を用いれば、複数の測光領域33を複数の測定領域15に1対1に対応させて設定する。さらに別の表現を用いれば、複数の測光領域33を、二次元撮像素子3が撮像したカラー画像(DUT画面1に表示されたカラー画像)に写された複数の測定領域15に対応させて設定する)、複数の測光領域33のそれぞれに対応する複数の測定領域15の測光量を決定する。これらの測定領域15の測光量の決定方法は同じなので、1つの測定領域15を例にして説明する。図11は、DUT画面1の一部の平面図である。第2画素13は、上記タイプ1である。DUT画面1を構成する各第2画素13は、xy平面座標で特定される。x座標、y座標は、それぞれ、301~309が示されている。 Measurement of the photometric quantity using the two-dimensional colorimetric apparatus 300 according to the embodiment will be described. FIG. 18 is a flowchart for explaining this. In the DUT screen 1, a plurality of measurement areas 15 (for example, 25 measurement areas 15 shown in FIG. 8) are set. Referring to FIG. 9A, the determination unit 308 sets a plurality of photometry areas 33 corresponding to the plurality of measurement areas 15 (if another expression is used, the plurality of photometry areas 33 are assigned to the plurality of measurement areas 15 by one. In other words, a plurality of photometric areas 33 are displayed on a color image (color image displayed on the DUT screen 1) captured by the two-dimensional image sensor 3. Are determined in correspondence with the plurality of measurement areas 15), and the light measurement amounts of the plurality of measurement areas 15 corresponding to the plurality of photometry areas 33 are determined. Since the determination method of the photometric quantity in these measurement areas 15 is the same, a description will be given by taking one measurement area 15 as an example. FIG. 11 is a plan view of a part of the DUT screen 1. The second pixel 13 is the type 1 described above. Each second pixel 13 constituting the DUT screen 1 is specified by xy plane coordinates. The x-coordinate and y-coordinate are 301 to 309, respectively.
 図9Aおよび図11を参照して、測定者は、PC400を操作して、測定領域15の中心となる座標および測定領域15のサイズを入力する。ここでは、座標として、(305,305)が入力され、サイズとして、3*3が入力されたとする。3*3は、xy方向の第2画素13の数がそれぞれ3を意味する。 Referring to FIG. 9A and FIG. 11, the measurer operates the PC 400 to input the coordinates serving as the center of the measurement region 15 and the size of the measurement region 15. Here, it is assumed that (305, 305) is input as coordinates and 3 * 3 is input as size. 3 * 3 means that the number of the second pixels 13 in the xy direction is 3, respectively.
 PC400は、入力された座標およびサイズを二次元測色装置300へ送信し、決定部308は、入力された座標(305,305)に位置する第2画素13、および、この第2画素13の周囲に位置する8個の第2画素13を測定領域15として設定する(図18のステップS1)。測定領域15の設定位置は、座標(304,304)、座標(306,304)、座標(304,306)および座標(306,306)で規定される位置である。測定領域15を構成する第2画素13の数は、9である。測定領域15内の赤色Sub-Pixel11-rの数と、緑色Sub-Pixel11-gの数と、青色Sub-Pixel11-bの数とは、等しい。この例では、いずれの数も9である。 The PC 400 transmits the input coordinates and size to the two-dimensional colorimetric apparatus 300, and the determination unit 308 determines the second pixel 13 located at the input coordinates (305, 305) and the second pixel 13. Eight second pixels 13 positioned around are set as the measurement region 15 (step S1 in FIG. 18). The set position of the measurement region 15 is a position defined by coordinates (304, 304), coordinates (306, 304), coordinates (304, 306), and coordinates (306, 306). The number of second pixels 13 constituting the measurement region 15 is nine. The number of red Sub-Pixels 11-r, the number of green Sub-Pixels 11-g, and the number of blue Sub-Pixels 11-b in the measurement region 15 are equal. In this example, both numbers are nine.
 次に、決定部308は、図11に示す測定領域15に対応する測光領域33-5(図12)を設定する(図18のステップS2)。図12は、二次元撮像素子3の一部の平面図である。二次元撮像素子3(撮像面)を構成する各第1画素31は、xy平面座標で特定される。x座標は、501~516が示され、y座標は、501~515が示されている。決定部308は、図12に示す二次元撮像素子3に図11に示すDUT画面1が結像された状態で、DUT画面1の座標(304,304)とxy座標上の位置が最も近い、二次元撮像素子3上の座標を求める。ここでは、座標(507,506)が求められたとする。決定部308は、座標(306,304)、座標(304,306)、座標(306,306)についても同様に、二次元撮像素子3上の座標を求める。ここでは、座標(510,506)、座標(507,509)、座標(510,509)が求められたとする。 Next, the determination unit 308 sets a photometric area 33-5 (FIG. 12) corresponding to the measurement area 15 shown in FIG. 11 (step S2 in FIG. 18). FIG. 12 is a plan view of a part of the two-dimensional image sensor 3. Each first pixel 31 constituting the two-dimensional imaging device 3 (imaging surface) is specified by xy plane coordinates. The x coordinate indicates 501 to 516, and the y coordinate indicates 501 to 515. The determination unit 308 is the closest to the coordinates (304, 304) of the DUT screen 1 and the position on the xy coordinates in a state where the DUT screen 1 shown in FIG. 11 is imaged on the two-dimensional imaging device 3 shown in FIG. The coordinates on the two-dimensional image sensor 3 are obtained. Here, it is assumed that coordinates (507, 506) are obtained. Similarly, the determination unit 308 obtains coordinates on the two-dimensional image sensor 3 for the coordinates (306, 304), the coordinates (304, 306), and the coordinates (306, 306). Here, it is assumed that coordinates (510, 506), coordinates (507, 509), and coordinates (510, 509) are obtained.
 決定部308は、測光領域33-5を設定する。測光領域33-5の設定位置は、座標(507,506)、座標(510,506)、座標(507,509)および座標(510,509)で規定される位置である。これを第1設定位置とする。測光領域33-5を構成する第1画素31の数は、16である。なお、測光領域33-5を構成する第1画素31の数は、16に限定されず、2以上であればよい。第1画素31のサイズと第2画素13のサイズとが異なるので、測定領域15(図11)のサイズと測光領域33-5(図12)のサイズとが一致しない。設定位置には、第1設定位置に加えて、後で説明する第2設定位置から第5設定位置がある(図14~図17)。これら5つの設定位置のうち、第1設定位置は、測定領域15と測光領域33-5との重なりが最も大きい設定位置である。残りの設定位置は、第1設定位置に対して第1画素31が1つずれた設定位置である。 The determination unit 308 sets the photometric area 33-5. The set position of the photometric area 33-5 is a position defined by coordinates (507, 506), coordinates (510, 506), coordinates (507, 509), and coordinates (510, 509). This is the first set position. The number of first pixels 31 constituting the photometric area 33-5 is 16. Note that the number of the first pixels 31 constituting the photometric area 33-5 is not limited to 16, but may be two or more. Since the size of the first pixel 31 and the size of the second pixel 13 are different, the size of the measurement region 15 (FIG. 11) and the size of the photometry region 33-5 (FIG. 12) do not match. In addition to the first setting position, the setting positions include a second setting position to a fifth setting position, which will be described later (FIGS. 14 to 17). Of these five setting positions, the first setting position is the setting position where the overlap between the measurement region 15 and the photometry region 33-5 is the largest. The remaining set positions are set positions where the first pixel 31 is shifted by one from the first set position.
 図13は、第1設定位置に配置された測光領域33-5と、DUT画面1と、二次元撮像素子3との関係を示す平面図である。DUT画面1は、図11に示すDUT画面1である。二次元撮像素子3は、図12に示す二次元撮像素子3である。図13には、二次元撮像素子3にDUT画面1が結像された状態が示されている。以下の図14~図17も同じである。 FIG. 13 is a plan view showing the relationship among the photometry area 33-5, the DUT screen 1, and the two-dimensional image sensor 3 arranged at the first set position. The DUT screen 1 is the DUT screen 1 shown in FIG. The two-dimensional image sensor 3 is the two-dimensional image sensor 3 shown in FIG. FIG. 13 shows a state in which the DUT screen 1 is imaged on the two-dimensional image sensor 3. The same applies to FIGS. 14 to 17 below.
 第1設定位置の測光領域33-5において、赤色Sub-Pixel11-rの数は、6.0であり、緑色Sub-Pixel11-gの数は、6.6であり、青色Sub-Pixel11-bの数は、4.7である。これらの数は、実施形態の内容の理解のために(言い換えれば、設定位置毎にこれらの数が異なることを説明するために)、図13に示す第1設定位置の測光領域33-5内に位置する各Sub-Pixel11の数の具体的な値を示しているだけである。二次元測色装置300がこれらの数を計算しているのではない。以下に説明する各設定位置でのSub-Pixel11の数も同様である。 In the photometric area 33-5 at the first setting position, the number of red Sub-Pixels 11-r is 6.0, the number of green Sub-Pixels 11-g is 6.6, and the blue Sub-Pixels 11-b Is 4.7. These numbers are included in the photometric area 33-5 at the first set position shown in FIG. 13 for the purpose of understanding the contents of the embodiment (in other words, to explain that these numbers differ for each set position). Only the specific value of the number of each Sub-Pixel 11 located in is shown. The two-dimensional color measuring device 300 does not calculate these numbers. The same applies to the number of sub-pixels 11 at each setting position described below.
 図9Aを参照して、二次元測色装置300は、Xフィルター302a(図9B)が二次元撮像素子3と対向した状態で、DUT画面1に表示された白色画像を撮像し、白色画像を記憶部307に記憶させる(図18のステップS3)。二次元撮像素子3は、Xフィルター302aと対向しているので、Xフィルター302aを通過した光を受光する。同様に、二次元測色装置300は、Yフィルター302b(図9B)が二次元撮像素子3と対向した状態で、DUT画面1に表示された白色画像を撮像し、白色画像を記憶部307に記憶させ、Zフィルター302c(図9B)が二次元撮像素子3と対向した状態で、DUT画面1に表示された白色画像を撮像し、白色画像を記憶部307に記憶させる。決定部308は、これらの白色画像のそれぞれに対して、測光量を決定する第1処理をする。第1処理のやり方は、同じなので、Xフィルター302aと二次元撮像素子3とが対向した状態で、撮像された白色画像を例にして説明する。 Referring to FIG. 9A, the two-dimensional colorimetric apparatus 300 captures a white image displayed on the DUT screen 1 in a state where the X filter 302a (FIG. 9B) faces the two-dimensional image sensor 3, and the white image is displayed. It memorize | stores in the memory | storage part 307 (step S3 of FIG. 18). Since the two-dimensional image sensor 3 faces the X filter 302a, it receives the light that has passed through the X filter 302a. Similarly, the two-dimensional colorimetric apparatus 300 captures a white image displayed on the DUT screen 1 with the Y filter 302 b (FIG. 9B) facing the two-dimensional image sensor 3 and stores the white image in the storage unit 307. The white image displayed on the DUT screen 1 is captured in a state where the Z filter 302c (FIG. 9B) faces the two-dimensional image sensor 3, and the white image is stored in the storage unit 307. The determination unit 308 performs a first process for determining a photometric amount for each of these white images. Since the manner of the first processing is the same, a description will be given by taking a white image taken as an example in a state where the X filter 302a and the two-dimensional imaging device 3 face each other.
 決定部308は、記憶部307に記憶されている白色画像(Xフィルター302aと二次元撮像素子3とが対向した状態で、撮像された白色画像)を読み出して、測光領域33-5の設定位置を第1設定位置~第5設定位置にして、それぞれの設定位置で測定領域15(図11)の測光量を求める。詳しく説明すると、決定部308は、第1設定位置の測光領域33-5(図13)内のSub-Pixel11から出力されたカラー画像情報信号SGの値を用いて、測定領域15の測光量を演算する(図18のステップS4)。 The determination unit 308 reads a white image (a white image captured in a state where the X filter 302a and the two-dimensional image sensor 3 face each other) stored in the storage unit 307, and sets the position of the photometric area 33-5 Are set to the first setting position to the fifth setting position, and the photometric amount of the measurement region 15 (FIG. 11) is obtained at each setting position. More specifically, the determination unit 308 uses the value of the color image information signal SG output from the Sub-Pixel 11 in the photometric area 33-5 (FIG. 13) at the first setting position to determine the photometric amount of the measurement area 15. Calculation is performed (step S4 in FIG. 18).
 次に、決定部308は、測光領域33-5の設定位置を第2設定位置に変える。図14は、第2設定位置(第1設定位置に対して、右に1画素Wobbling)に配置された測光領域33-5と、DUT画面1と、二次元撮像素子3との関係を示す平面図である。第2設定位置は、座標(508,506)、座標(511,506)、座標(508,509)および座標(511,509)で規定される位置である。第2設定位置は、第1設定位置(図13)からx方向に第1画素31がプラス1ずれた位置である。 Next, the determination unit 308 changes the setting position of the photometry area 33-5 to the second setting position. FIG. 14 is a plan view showing the relationship among the photometric region 33-5, the DUT screen 1, and the two-dimensional imaging device 3 arranged at the second setting position (one pixel wobbling to the right with respect to the first setting position). FIG. The second set position is a position defined by coordinates (508, 506), coordinates (511, 506), coordinates (508, 509), and coordinates (511, 509). The second setting position is a position where the first pixel 31 is shifted by 1 in the x direction from the first setting position (FIG. 13).
 第2設定位置の測光領域33-5において、赤色Sub-Pixel11-rの数は、8.7であり、緑色Sub-Pixel11-gの数は、7.0であり、青色Sub-Pixel11-bの数は、5.1である。上述したように、二次元測色装置300は、これらの数を計算しているのではない。 In the photometry area 33-5 at the second setting position, the number of red Sub-Pixels 11-r is 8.7, the number of green Sub-Pixels 11-g is 7.0, and the blue Sub-Pixels 11-b Is 5.1. As described above, the two-dimensional colorimetric apparatus 300 does not calculate these numbers.
 決定部308は、第2設定位置の測光領域33-5(図14)内のSub-Pixel11から出力されたカラー画像情報信号SGの値を用いて、測定領域15の測光量を演算する(図18のステップS5)。 The determination unit 308 calculates the photometric amount of the measurement region 15 using the value of the color image information signal SG output from the Sub-Pixel 11 in the photometry region 33-5 (FIG. 14) at the second set position (FIG. 14). 18 step S5).
 次に、決定部308は、測光領域33-5の設定位置を第3設定位置に変える。図15は、第3設定位置(第1設定位置に対して、左に1画素Wobbling)に配置された測光領域33-5と、DUT画面1と、二次元撮像素子3との関係を示す平面図である。第3設定位置は、座標(506,506)、座標(509,506)、座標(506,509)および座標(509,509)で規定される位置である。第3設定位置は、第1設定位置(図13)からx方向に第1画素31がマイナス1ずれた位置である。 Next, the determination unit 308 changes the setting position of the photometry area 33-5 to the third setting position. FIG. 15 is a plan view showing the relationship between the photometric area 33-5, the DUT screen 1, and the two-dimensional image sensor 3 arranged at the third setting position (one pixel wobbling to the left with respect to the first setting position). FIG. The third set position is a position defined by coordinates (506, 506), coordinates (509, 506), coordinates (506, 509), and coordinates (509, 509). The third set position is a position where the first pixel 31 is shifted by minus 1 in the x direction from the first set position (FIG. 13).
 第3設定位置の測光領域33-5において、赤色Sub-Pixel11-rの数は、6.0であり、緑色Sub-Pixel11-gの数は、8.0であり、青色Sub-Pixel11-bの数は、4.6である。 In the photometric area 33-5 at the third setting position, the number of red Sub-Pixels 11-r is 6.0, the number of green Sub-Pixels 11-g is 8.0, and the blue Sub-Pixels 11-b Is 4.6.
 決定部308は、第3設定位置の測光領域33-5(図15)内のSub-Pixel11から出力されたカラー画像情報信号SGの値を用いて、測定領域15の測光量を演算する(図18のステップS6)。 The determination unit 308 calculates the photometric amount of the measurement region 15 using the value of the color image information signal SG output from the Sub-Pixel 11 in the photometry region 33-5 (FIG. 15) at the third setting position (FIG. 15). 18 step S6).
 次に、決定部308は、測光領域33-5の設定位置を第4設定位置に変える。図16は、第4設定位置(第1設定位置に対して、上に1画素Wobbling)に配置された測光領域33-5と、DUT画面1と、二次元撮像素子3との関係を示す平面図である。第4設定位置は、座標(507,505)、座標(510,505)、座標(507,508)および座標(510,508)で規定される位置である。第4設定位置は、第1設定位置(図13)からy方向に第1画素31がマイナス1ずれた位置である。 Next, the determination unit 308 changes the setting position of the photometry area 33-5 to the fourth setting position. FIG. 16 is a plan view showing the relationship among the photometric area 33-5, the DUT screen 1, and the two-dimensional image sensor 3 arranged at the fourth setting position (one pixel wobbling above the first setting position). FIG. The fourth set position is a position defined by coordinates (507, 505), coordinates (510, 505), coordinates (507, 508), and coordinates (510, 508). The fourth setting position is a position where the first pixel 31 is shifted by minus 1 in the y direction from the first setting position (FIG. 13).
 第4設定位置の測光領域33-5において、赤色Sub-Pixel11-rの数は、4.0であり、緑色Sub-Pixel11-gの数は、4.4であり、青色Sub-Pixel11-bの数は、7.5である。 In the photometry area 33-5 at the fourth setting position, the number of red Sub-Pixels 11-r is 4.0, the number of green Sub-Pixels 11-g is 4.4, and the blue Sub-Pixels 11-b Is 7.5.
 決定部308は、第4設定位置の測光領域33-5(図16)内のSub-Pixel11から出力されたカラー画像情報信号SGの値を用いて、測定領域15の測光量を演算する(図18のステップS7)。 The determination unit 308 calculates the photometric amount of the measurement region 15 using the value of the color image information signal SG output from the Sub-Pixel 11 in the photometric region 33-5 (FIG. 16) at the fourth setting position (FIG. 16). 18 step S7).
 次に、決定部308は、測光領域33-5の設定位置を第5設定位置に変える。図17は、第5設定位置(第1設定位置に対して、下に1画素Wobbling)に配置された測光領域33-5と、DUT画面1と、二次元撮像素子3との関係を示す平面図である。第5設定位置は、座標(507,507)、座標(510,507)、座標(507,510)および座標(510,510)で規定される位置である。第5設定位置は、第1設定位置(図13)からy方向に第1画素31がプラス1ずれた位置である。 Next, the determination unit 308 changes the setting position of the photometry area 33-5 to the fifth setting position. FIG. 17 is a plan view showing the relationship among the photometric region 33-5, the DUT screen 1, and the two-dimensional image sensor 3 arranged at the fifth setting position (one pixel wobbling below the first setting position). FIG. The fifth set position is a position defined by coordinates (507, 507), coordinates (510, 507), coordinates (507, 510), and coordinates (510, 510). The fifth setting position is a position where the first pixel 31 is shifted by 1 in the y direction from the first setting position (FIG. 13).
 第5設定位置の測光領域33-5において、赤色Sub-Pixel11-rの数は、4.8であり、緑色Sub-Pixel11-gの数は、5.3であり、青色Sub-Pixel11-bの数は、6.9である。 In the photometry area 33-5 at the fifth setting position, the number of red Sub-Pixels 11-r is 4.8, the number of green Sub-Pixels 11-g is 5.3, and the blue Sub-Pixels 11-b The number of is 6.9.
 決定部308は、第5設定位置の測光領域33-5(図17)内のSub-Pixel11から出力されたカラー画像情報信号SGの値を用いて、測定領域15の測光量を演算する(図18のステップS8)。 The determination unit 308 calculates the photometric amount of the measurement region 15 using the value of the color image information signal SG output from the Sub-Pixel 11 in the photometry region 33-5 (FIG. 17) at the fifth setting position (FIG. 17). 18 step S8).
 決定部308は、測光領域33-5が第1設定位置(図13)で算出された測定領域15の測光量(ステップS4)、測光領域33-5が第2設定位置(図14)で算出された測定領域15の測光量(ステップS5)、測光領域33-5が第3設定位置(図15)で算出された測定領域15の測光量(ステップS6)、測光領域33-5が第4設定位置(図16)で算出された測定領域15の測光量(ステップS7)、および、測光領域33-5が第5設定位置(図17)で算出された測定領域15の測光量(ステップS8)の平均値を求め、この平均値を、測定領域15(図11)の測光量と決定する(ステップS9)。決定部308は、DUT画面1内の複数の測定領域15のそれぞれに対して、ステップS4~S9の処理をする。このように、決定部308は、測定領域15に対応する測光領域33-5の設定位置を複数設け(ここでは、5つの設定位置)、それぞれの設定位置で得られた測定領域15の測光量を基にして、測定領域15の測光量を決定する第1処理を、複数の測定領域15のそれぞれに対して実行する。なお、設定位置が5つを例に説明したが、設定位置の数はこれより多くてもよい。 The determination unit 308 calculates the light metering amount of the measurement region 15 (step S4) in which the photometry region 33-5 is calculated at the first set position (FIG. 13), and the photometry region 33-5 is calculated in the second set position (FIG. 14). The measured light amount of the measurement area 15 (step S5), the photometric area 33-5 is calculated at the third set position (FIG. 15) (step S6), and the photometric area 33-5 is the fourth. The photometric amount of the measurement region 15 calculated at the set position (FIG. 16) (step S7) and the photometric amount of the measurement region 15 calculated at the fifth set position (FIG. 17) (step S8). ) Is determined, and this average value is determined as the photometric quantity in the measurement region 15 (FIG. 11) (step S9). The determination unit 308 performs steps S4 to S9 for each of the plurality of measurement regions 15 in the DUT screen 1. As described above, the determination unit 308 provides a plurality of setting positions (here, five setting positions) of the photometry area 33-5 corresponding to the measurement area 15, and the photometric quantity of the measurement area 15 obtained at each setting position. Based on the above, the first process for determining the photometric amount of the measurement region 15 is executed for each of the plurality of measurement regions 15. In addition, although five setting positions were demonstrated to the example, the number of setting positions may be larger than this.
 以上により、Xフィルター302aと二次元撮像素子3とが対向した状態で、撮像された白色画像についての測定領域15の測光量が決定される。二次元測色装置300は、Yフィルター302bと二次元撮像素子3とが対向した状態で、撮像された白色画像、Zフィルター302cと二次元撮像素子3とが対向した状態で、撮像された白色画像についても、同様にして、測定領域15の測光量を決定する。図9Aを参照して、第1算出部309は、これらの測光量を基にして、複数の測定領域15のそれぞれについて、色度(測色値)を算出する。第2算出部310は、これらの測光量を基にして、複数の測定領域15のそれぞれについて、輝度を算出する。 As described above, the photometric amount of the measurement region 15 for the captured white image is determined in a state where the X filter 302a and the two-dimensional imaging device 3 face each other. The two-dimensional colorimetric device 300 is a white image captured with the Y filter 302b and the two-dimensional image sensor 3 facing each other, and a white image captured with the Z filter 302c and the two-dimensional image sensor 3 facing each other. Similarly, for the image, the photometric amount of the measurement region 15 is determined. Referring to FIG. 9A, the first calculation unit 309 calculates chromaticity (colorimetric values) for each of the plurality of measurement regions 15 based on these photometric amounts. The second calculation unit 310 calculates the luminance for each of the plurality of measurement regions 15 based on these photometric amounts.
 実施形態の主な効果を説明する。図9Aおよび図18を参照して、決定部308は、測定領域15(図11)に対応する測光領域33-5の設定位置を複数設け(図13~図17)、それぞれの設定位置で得られた測定領域15の測光量を基にして(ステップS4~ステップS8)、測定領域15の測光量を決定する第1処理をする(ステップS9)。決定部308は、第1処理を、DUT画面1内の複数の測定領域15のそれぞれに対して実行する。このため、複数の測定領域15のそれぞれについて、測光量を平均化できる(測光領域33-5内の赤色Sub-Pixel11-rの数、緑色Sub-Pixel11-gの数、青色Sub-Pixel11-bの数を差を小さくできる)。このように、実施形態に係る二次元測色装置300によれば、複数の測定領域15のそれぞれについて、測光量を平均化できるので、DUT画面1(カラーディスプレイ画面の一例)であっても、測光領域33-5を過度に大きくすることなく、測光量の測定精度を向上させることができる。 The main effects of the embodiment will be described. Referring to FIG. 9A and FIG. 18, the determination unit 308 provides a plurality of setting positions of the photometry area 33-5 corresponding to the measurement area 15 (FIG. 11) (FIGS. 13 to 17), and obtains at each setting position. Based on the measured light amount of the measurement area 15 (steps S4 to S8), a first process for determining the light amount of the measurement area 15 is performed (step S9). The determination unit 308 executes the first process for each of the plurality of measurement regions 15 in the DUT screen 1. Therefore, the photometric quantity can be averaged for each of the plurality of measurement areas 15 (the number of red Sub-Pixels 11-r, the number of green Sub-Pixels 11-g, the blue Sub-Pixels 11-b in the photometric area 33-5). Can reduce the difference in number). As described above, according to the two-dimensional colorimetric apparatus 300 according to the embodiment, since the photometric amounts can be averaged for each of the plurality of measurement regions 15, even in the DUT screen 1 (an example of a color display screen) The measurement accuracy of the photometric quantity can be improved without excessively increasing the photometric area 33-5.
 決定部308は、ステップS3で記憶部307に記憶された白色画像を記憶部307から読み出し、この白色画像を用いて(この白色画像に写された複数の測定領域15のそれぞれに対して)、第1処理を実行する(ステップS4~ステップS9)。このように、実施形態によれば、測光領域33-5の設定位置を変える毎に、DUT画面1に表示された白色画像を撮像する必要がないので、DUT画面1を高速で測色することができる。 The determination unit 308 reads the white image stored in the storage unit 307 in step S3 from the storage unit 307, and uses the white image (for each of the plurality of measurement regions 15 captured in the white image). The first process is executed (steps S4 to S9). As described above, according to the embodiment, it is not necessary to capture the white image displayed on the DUT screen 1 every time the setting position of the photometric area 33-5 is changed, so that the DUT screen 1 can be measured at high speed. Can do.
 第1設定位置~第5設定位置のそれぞれに設定される測光領域33-5(図13~図17)の面積は、互いに同じである。このように、実施形態によれば、設定位置に応じて測光領域33-5の面積を変えないので、ステップS4~ステップS9の処理を簡素化することができる。 The areas of the photometric areas 33-5 (FIGS. 13 to 17) set in the first to fifth setting positions are the same as each other. As described above, according to the embodiment, the area of the photometric region 33-5 is not changed according to the set position, so that the processes in steps S4 to S9 can be simplified.
 DUT画面1に表示されたカラー画像として、白色画像を例に説明したが、これに限定されない。DUT画面1に表示されたカラー画像は、原色以外の色のカラー画像でもよい。例えばシアン、マゼンタのような補色、中間色でもよい。原色画像の場合、各Sub-Pixel11の数が異なっても、色度は同じだから、本実施形態による測定バラツキの軽減効果がない。 Although a white image has been described as an example of a color image displayed on the DUT screen 1, it is not limited to this. The color image displayed on the DUT screen 1 may be a color image other than the primary color. For example, complementary colors such as cyan and magenta and intermediate colors may be used. In the case of a primary color image, even if the number of sub-pixels 11 is different, the chromaticity is the same, and therefore there is no measurement variation reducing effect according to this embodiment.
 第2画素13を構成するSub-Pixel11が、赤色Sub-Pixel11-r、緑色Sub-Pixel11-g、青色Sub-Pixel11-bの三つを例に説明したが、これに限定されない。例えば、第2画素13を構成するSub-Pixel11が、赤色Sub-Pixel、緑色Sub-Pixel、青色Sub-Pixel、白色Sub-Pixelの4つの場合についても、実施形態を適用することができ、赤色Sub-Pixel、緑色Sub-Pixel、青色Sub-Pixel、黄色Sub-Pixelの4つ場合についても、実施形態を適用することができる。 Although the sub-pixels 11 constituting the second pixel 13 have been described by taking three examples of red sub-pixels 11-r, green sub-pixels 11-g, and blue sub-pixels 11-b as examples, the present invention is not limited thereto. For example, the embodiment can be applied to the case where the Sub-Pixel 11 configuring the second pixel 13 is four cases of red Sub-Pixel, green Sub-Pixel, blue Sub-Pixel, and white Sub-Pixel. The embodiment can also be applied to the four cases of Sub-Pixel, Green Sub-Pixel, Blue Sub-Pixel, and Yellow Sub-Pixel.
 測光領域33-5の設定位置が、第1設定位置(図13)~第5設定位置(図17)を例にして、測定領域15(図11)の測光量の決定について説明したが、設定位置は、これらに限定されない。測光領域33-5の設定位置として、例えば、第6設定位置~第13設定位置がある。 The determination of the photometric quantity in the measurement area 15 (FIG. 11) has been described with reference to the first setting position (FIG. 13) to the fifth setting position (FIG. 17) as the setting position of the photometry area 33-5. The position is not limited to these. As the setting positions of the photometry area 33-5, for example, there are a sixth setting position to a thirteenth setting position.
 第6設定位置(第1設定位置に対して、右に2画素Wobbling)は、図12に示す第1設定位置からx方向に第1画素31がプラス2ずれた位置である。第6設定位置は、座標(509,506)、座標(512,506)、座標(509,509)および座標(512,509)で規定される位置である。第6設定位置の測光領域33-5において、赤色Sub-Pixel11-rの数は、6.0であり、緑色Sub-Pixel11-gの数は、7.8であり、青色Sub-Pixel11-bの数は、5.0である。上述したように、二次元測色装置300は、これらの数を計算しているのではない。以下同様である。 The sixth setting position (two pixels wobbling to the right with respect to the first setting position) is a position where the first pixel 31 is shifted by +2 in the x direction from the first setting position shown in FIG. The sixth set position is a position defined by coordinates (509, 506), coordinates (512, 506), coordinates (509, 509), and coordinates (512, 509). In the photometric area 33-5 at the sixth setting position, the number of red Sub-Pixels 11-r is 6.0, the number of green Sub-Pixels 11-g is 7.8, and the blue Sub-Pixels 11-b Is 5.0. As described above, the two-dimensional colorimetric apparatus 300 does not calculate these numbers. The same applies hereinafter.
 第7設定位置(第1設定位置に対して、左に2画素Wobbling)は、図12に示す第1設定位置からx方向に第1画素31がマイナス2ずれた位置である。第7設定位置は、座標(505,506)、座標(508,506)、座標(505,509)および座標(508,509)で規定される位置である。第7設定位置の測光領域33-5において、赤色Sub-Pixel11-rの数は、8.0であり、緑色Sub-Pixel11-gの数は、6.0であり、青色Sub-Pixel11-bの数は、4.7である。 The seventh setting position (two pixels wobbling on the left with respect to the first setting position) is a position where the first pixel 31 is shifted by minus 2 in the x direction from the first setting position shown in FIG. The seventh set position is a position defined by coordinates (505, 506), coordinates (508, 506), coordinates (505, 509), and coordinates (508, 509). In the photometry area 33-5 at the seventh setting position, the number of red Sub-Pixels 11-r is 8.0, the number of green Sub-Pixels 11-g is 6.0, and the blue Sub-Pixels 11-b Is 4.7.
 第8設定位置(第1設定位置に対して、上に2画素Wobbling)は、図12に示す第1設定位置からy方向に第1画素31がマイナス2ずれた位置である。第8設定位置は、座標(507,504)、座標(510,504)、座標(507,507)および座標(510,507)で規定される位置である。第8設定位置の測光領域33-5において、赤色Sub-Pixel11-rの数は、5.6であり、緑色Sub-Pixel11-gの数は、6.3であり、青色Sub-Pixel11-bの数は、6.0である。 The eighth setting position (upper two pixels wobbling with respect to the first setting position) is a position where the first pixel 31 is shifted by minus 2 in the y direction from the first setting position shown in FIG. The eighth set position is a position defined by coordinates (507, 504), coordinates (510, 504), coordinates (507, 507), and coordinates (510, 507). In the photometry area 33-5 at the eighth setting position, the number of red Sub-Pixels 11-r is 5.6, the number of green Sub-Pixels 11-g is 6.3, and the blue Sub-Pixel 11-b The number of is 6.0.
 第9設定位置(第1設定位置に対して、下に2画素Wobbling)は、図12に示す第1設定位置からy方向に第1画素31がプラス2ずれた位置である。第9設定位置は、座標(507,508)、座標(510,508)、座標(507,511)および座標(510,511)で規定される位置である。第9設定位置の測光領域33-5において、赤色Sub-Pixel11-rの数は、6.0であり、緑色Sub-Pixel11-gの数は、6.8であり、青色Sub-Pixel11-bの数は、7.4である。 The ninth setting position (2 pixels wobbling below the first setting position) is a position where the first pixel 31 is shifted by +2 in the y direction from the first setting position shown in FIG. The ninth set position is a position defined by coordinates (507, 508), coordinates (510, 508), coordinates (507, 511), and coordinates (510, 511). In the photometry area 33-5 at the ninth setting position, the number of red Sub-Pixels 11-r is 6.0, the number of green Sub-Pixels 11-g is 6.8, and the blue Sub-Pixels 11-b The number of is 7.4.
 第10設定位置(第1設定位置に対して、右に1画素、上に1画素Wobbling)は、図12に示す第1設定位置からx方向に第1画素31がプラス1、y方向に第1画素31がマイナス1ずれた位置である。第10設定位置は、座標(508,505)、座標(511,505)、座標(508,508)および座標(511,508)で規定される位置である。第10設定位置の測光領域33-5において、赤色Sub-Pixel11-rの数は、5.5であり、緑色Sub-Pixel11-gの数は、4.7であり、青色Sub-Pixel11-bの数は、6.8である。 The tenth setting position (one pixel on the right and one pixel wobbling on the first setting position) is the first pixel 31 in the x direction plus the first pixel 31 in the x direction from the first setting position shown in FIG. One pixel 31 is shifted by minus one. The tenth set position is a position defined by coordinates (508, 505), coordinates (511, 505), coordinates (508, 508), and coordinates (511, 508). In the photometric area 33-5 at the tenth setting position, the number of red Sub-Pixels 11-r is 5.5, the number of green Sub-Pixels 11-g is 4.7, and the blue Sub-Pixels 11-b The number of is 6.8.
 第11設定位置(第1設定位置に対して、左に1画素、上に1画素Wobbling)は、図12に示す第1設定位置からx方向に第1画素31がマイナス1、y方向に第1画素31がマイナス1ずれた位置である。第10設定位置は、座標(506,505)、座標(509,505)、座標(506,508)および座標(509,508)で規定される位置である。第11設定位置の測光領域33-5において、赤色Sub-Pixel11-rの数は、4.0であり、緑色Sub-Pixel11-gの数は、5.3であり、青色Sub-Pixel11-bの数は、6.8である。 The eleventh set position (one pixel on the left and one pixel on the top with respect to the first set position) is the first pixel 31 in the x direction from the first set position shown in FIG. One pixel 31 is shifted by minus one. The tenth set position is a position defined by coordinates (506, 505), coordinates (509, 505), coordinates (506, 508), and coordinates (509, 508). In the photometry area 33-5 at the eleventh set position, the number of red Sub-Pixels 11-r is 4.0, the number of green Sub-Pixels 11-g is 5.3, and the blue Sub-Pixels 11-b The number of is 6.8.
 第12設定位置(第1設定位置に対して、右に1画素、下に1画素Wobbling)は、図12に示す第1設定位置からx方向に第1画素31がプラス1、y方向に第1画素31がプラス1ずれた位置である。第12設定位置は、座標(508,507)、座標(511,507)、座標(508,510)および座標(511,510)で規定される位置である。第12設定位置の測光領域33-5において、赤色Sub-Pixel11-rの数は、6.6であり、緑色Sub-Pixel11-gの数は、5.5であり、青色Sub-Pixel11-bの数は、6.0である。 The twelfth set position (one pixel to the right and one pixel wobbling to the first set position) is the first pixel 31 in the x direction plus the first pixel in the y direction from the first set position shown in FIG. One pixel 31 is a position shifted by plus one. The twelfth set position is a position defined by coordinates (508, 507), coordinates (511, 507), coordinates (508, 510), and coordinates (511, 510). In the photometry area 33-5 at the twelfth set position, the number of red Sub-Pixels 11-r is 6.6, the number of green Sub-Pixels 11-g is 5.5, and the blue Sub-Pixels 11-b The number of is 6.0.
 第13設定位置(第1設定位置に対して、左に1画素、下に1画素Wobbling)は、図12に示す第1設定位置からx方向に第1画素31がマイナス1、y方向に第1画素31がプラス1ずれた位置である。第13設定位置は、座標(506,507)、座標(510,507)、座標(506,510)および座標(510,510)で規定される位置である。第13設定位置の測光領域33-5において、赤色Sub-Pixel11-rの数は、4.8であり、緑色Sub-Pixel11-gの数は、6.5であり、青色Sub-Pixel11-bの数は、6.4である。 The thirteenth set position (one pixel on the left and one pixel on the bottom with respect to the first set position) is the first pixel 31 in the x direction from the first set position shown in FIG. One pixel 31 is a position shifted by plus one. The thirteenth set position is a position defined by coordinates (506, 507), coordinates (510, 507), coordinates (506, 510), and coordinates (510, 510). In the photometry area 33-5 at the thirteenth set position, the number of red Sub-Pixels 11-r is 4.8, the number of green Sub-Pixels 11-g is 6.5, and the blue Sub-Pixels 11-b The number of is 6.4.
 表5は、第1設定位置~第13設定位置の測光領域33-5において、赤色Sub-Pixel11-rの数、緑色Sub-Pixel11-gの数、青色Sub-Pixel11-bの数を示す表である。 Table 5 shows the number of red Sub-Pixels 11-r, the number of green Sub-Pixels 11-g, and the number of blue Sub-Pixels 11-b in the photometry region 33-5 from the first setting position to the thirteenth setting position. It is.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表6は、表5の結果を基にして求めた各種の値を示す表である。 Table 6 is a table showing various values obtained based on the results of Table 5.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 「Wobblingなし」とは、第1設定位置の場合を示し、「上下左右1画素」とは 、第1設定位置から第5設定位置の場合の平均値を示し、「上下左右2画素」とは、第1設定位置から第13設定位置の場合の平均値を示す。赤色Sub-Pixel11-rで説明すると、「Wobblingなし」は、表5に示す第1設定位置(図13)の場合の値6.0であり、「上下左右1画素」は、表5に示す第1設定位置から第5設定位置の場合の平均値5.90(=(6.0+8.7+6.0+4.0+4.8)÷5)であり、上下左右2画素」は、表5に示す第1設定位置から第13設定位置の場合の平均値5.85(表5中の赤色Sub-Pixelの数の合計値÷13)。 “No wobbling” indicates the case of the first setting position, “Up / down / left / right 1 pixel” indicates the average value from the first setting position to the fifth setting position, and “Up / down / left / right 2 pixels” The average value in the case of the 1st setting position to the 13th setting position is shown. In the case of the red Sub-Pixel 11-r, “no wobbling” is a value of 6.0 in the case of the first setting position shown in Table 5 (FIG. 13), and “one pixel in the vertical and horizontal directions” is shown in Table 5. The average value in the case of the first setting position to the fifth setting position is 5.90 (= (6.0 + 8.7 + 6.0 + 4.0 + 4.8) ÷ 5). Average value 5.85 from the 1st setting position to the 13th setting position (total value of the number of red Sub-Pixels in Table 5/13).
 Δr、Δg、Δbは、赤色Sub-Pixel11-rの数、緑色Sub-Pixel1-gの数、青色Sub-Pixel11-bの数のそれぞれを、最大値で割った値の100分率である。「Wobblingなし」で説明すると、赤色Sub-Pixel11-rの数(6.0)、緑色Sub-Pixel1-gの数(6.6)、青色Sub-Pixel11-bの数(4.7)のうち、緑色Sub-Pixel11-gの数が最大である。Δrは、91%(=(6.0/6.6)*100)であり、Δgは、100%(=(6.6/6.6)*100)であり、Δbは、71%(=(4.7/6.6)*100)である。 Δr, Δg, and Δb are 100% of the value obtained by dividing the number of red Sub-Pixels 11-r, the number of green Sub-Pixels 1-g, and the number of blue Sub-Pixels 11-b by the maximum value. Explaining “without wobbling”, the number of red sub-pixels 11-r (6.0), the number of green sub-pixels 1-g (6.6), and the number of blue sub-pixels 11-b (4.7). Of these, the number of green sub-pixels 11-g is the largest. Δr is 91% (= (6.0 / 6.6) * 100), Δg is 100% (= (6.6 / 6.6) * 100), and Δb is 71% ( = (4.7 / 6.6) * 100).
 ΔMaxは、Δr、Δg、Δbのうちの最大値であり、ΔMinは、Δr、Δg、Δbのうちの最小値である。「Wobblingなし」で説明すると、Δr(91%)、Δg(100%)、Δb(71%)のうち、最大値は、Δg(100%)であり、最小値は、Δb(71%)である。 ΔMax is the maximum value among Δr, Δg, and Δb, and ΔMin is the minimum value among Δr, Δg, and Δb. Explaining “without wobbling”, among Δr (91%), Δg (100%), and Δb (71%), the maximum value is Δg (100%), and the minimum value is Δb (71%). is there.
 「上下左右1画素」、および、「上下左右2画素」は、「Wobblingなし」と比べて、ΔMaxとΔMinとの差が小さくなることが分かる。すなわち、「上下左右1画素」、および、「上下左右2画素」は、「Wobblingなし」と比べて、測光領域33-5内の赤色Sub-Pixel11-rの数、緑色Sub-Pixel11-gの数、青色Sub-Pixel11-bの数の差を小さくすることができる。従って、「上下左右1画素」、および、「上下左右2画素」は、「Wobblingなし」と比べて、測光量の測定精度を向上させることができる。 It can be seen that the difference between ΔMax and ΔMin is smaller in “one pixel in the upper, lower, left, and right” and “two pixels in the upper, lower, left, and right” as compared with “no wobbling”. That is, the “upper and lower left and right one pixel” and the “upper and lower left and right two pixels” are compared with “no wobbling” and the number of red sub-pixels 11-r in the photometry area 33-5, green sub-pixels 11-g The difference in the number of blue sub-pixels 11-b can be reduced. Therefore, the “upper and lower left and right one pixel” and the “upper and lower left and right two pixels” can improve the measurement accuracy of the photometric quantity compared with “no wobbling”.
(実施形態の纏め)
 実施形態の一態様に係る二次元測色装置は、カラーディスプレイ画面内の複数の測定領域を測色する二次元測色装置であって、二次元に配置された第1画素を有し、前記カラーディスプレイ画面に表示されたカラー画像を撮像する二次元撮像部と、2以上の前記第1画素を含む複数の測光領域を、前記複数の測定領域に対応させて設定し、前記複数の測光領域のそれぞれに対応する前記複数の測定領域の測光量を決定する決定部と、を備え、前記決定部は、前記測定領域に対応する前記測光領域の設定位置を複数設け、それぞれの前記設定位置で得られた前記測定領域の測光量を基にして、前記測定領域の測光量を決定する第1処理を、前記複数の測定領域のそれぞれに対して実行する。
(Summary of embodiment)
A two-dimensional colorimetric apparatus according to an aspect of the embodiment is a two-dimensional colorimetric apparatus that measures a plurality of measurement regions in a color display screen, and includes first pixels arranged two-dimensionally, A plurality of photometric areas, each of which includes a two-dimensional imaging unit that captures a color image displayed on a color display screen and a plurality of photometric areas including two or more first pixels, corresponding to the plurality of measurement areas. And a determination unit that determines light measurement amounts of the plurality of measurement regions corresponding to each of the plurality of measurement regions, wherein the determination unit provides a plurality of setting positions of the photometry regions corresponding to the measurement regions, Based on the obtained photometric quantity of the measurement area, a first process for determining the photometric quantity of the measurement area is executed for each of the plurality of measurement areas.
 カラーディスプレイ画面は、二次元に配置された第2画素を有する。第2画素は、複数の色のSub-Pixel(例えば、赤色Sub-Pixel、緑色Sub-Pixel、青色Sub-Pixel)を含む。カラーディスプレイ画面に表示されたカラー画像は、白色画像でもよいし、原色以外の色の画像でもよい。原色画像の場合、各Sub-Pixelの数が異なっても、色度は同じだから、実施形態による測定バラツキの軽減効果がない。 The color display screen has second pixels arranged two-dimensionally. The second pixel includes a plurality of sub-pixels (for example, a red sub-pixel, a green sub-pixel, and a blue sub-pixel). The color image displayed on the color display screen may be a white image or an image of a color other than the primary color. In the case of a primary color image, even if the number of sub-pixels is different, the chromaticity is the same, so there is no measurement variation reduction effect according to the embodiment.
 決定部は、測定領域に対応する測光領域の設定位置を複数設け、それぞれの設定位置で得られた測定領域の測光量を基にして、測定領域の測光量を決定する第1処理をする。決定部は、第1処理を、複数の測定領域のそれぞれに対して実行する。このため、複数の測定領域のそれぞれについて、測光量を平均化できる(カラーディスプレイ画面の場合、測光領域内に位置する各色のSub-Pixelの数の差を小さくできる)。このように、実施形態の一態様に係る二次元測色装置によれば、複数の測定領域のそれぞれについて、測光量を平均化できるので、二次元領域がカラーディスプレイ画面であっても、測光領域を過度に大きくすることなく、測光量の測定精度を向上させることができる。 The determining unit provides a plurality of set positions of the photometry area corresponding to the measurement area, and performs a first process of determining the photometry of the measurement area based on the photometry of the measurement area obtained at each set position. The determination unit executes the first process for each of the plurality of measurement regions. For this reason, the photometric quantity can be averaged for each of the plurality of measurement areas (in the case of a color display screen, the difference in the number of sub-pixels of each color located in the photometry area can be reduced). Thus, according to the two-dimensional colorimetric apparatus according to one aspect of the embodiment, the photometric amount can be averaged for each of the plurality of measurement regions, so that even if the two-dimensional region is a color display screen, the photometric region The measurement accuracy of the photometric quantity can be improved without excessively increasing.
 前記第1処理は、例えば、それぞれの前記設定位置で得られた前記測定領域の測光量の平均値を、前記測定領域の測光量と決定する処理である。 The first process is, for example, a process of determining an average value of the light measurement amount of the measurement area obtained at each set position as the light measurement amount of the measurement area.
 前記複数の設定位置は、例えば、前記測定領域と前記測光宇領域との重なりが最も大きい第1設定位置と、前記第1設定位置に対して前記1画素が1つ以上ずれた残りの前記設定位置と、を含む(1つ以上とは、整数である)。 The plurality of setting positions are, for example, a first setting position where the overlap between the measurement area and the photometry area is the largest, and the remaining setting where one or more of the one pixel is deviated from the first setting position. (Including one or more integers).
 上記構成において、前記画像を記憶する記憶部をさらに備え、前記決定部は、前記記憶部から読み出された前記カラー画像を用いて、前記第1処理を実行する。 In the above configuration, the image processing apparatus further includes a storage unit that stores the image, and the determination unit executes the first process using the color image read from the storage unit.
 この構成によれば、測光領域の設定位置を変える毎に、カラーディスプレイ画面に表示されたカラー画像を撮像する必要がないので、カラーディスプレイ画面を高速で測色することができる。なお、測光領域の設定位置を変える毎に、二次元撮像部が、カラーディスプレイ画面に表示されたカラー画像を撮像する態様も可能である。例えば、設定位置を5回変える場合、二次元撮像部は、カラーディスプレイ画面に表示されたカラー画像を5回撮像する。 According to this configuration, it is not necessary to take a color image displayed on the color display screen every time the setting position of the photometry area is changed, and thus the color display screen can be measured at high speed. A mode in which the two-dimensional imaging unit captures a color image displayed on the color display screen every time the setting position of the photometric area is changed is also possible. For example, when the setting position is changed five times, the two-dimensional imaging unit images the color image displayed on the color display screen five times.
 上記構成において、前記複数の設定位置のそれぞれに設定される前記測光領域の面積は、互いに同じである。 In the above configuration, the areas of the photometry areas set at the plurality of setting positions are the same as each other.
 この構成によれば、設定位置に応じて測光領域の面積を変えないので、第1処理を簡素化することができる。 According to this configuration, since the area of the photometry area is not changed according to the set position, the first process can be simplified.
 上記構成において、前記決定部が決定した、前記測定領域の測光量を基にして、前記測定領域の測色値を算出する第2処理を、前記複数の測定領域のそれぞれに対して実行する第1算出部をさらに備える。 In the configuration described above, the second process of calculating the colorimetric value of the measurement region based on the light measurement amount of the measurement region determined by the determination unit is performed on each of the plurality of measurement regions. 1 calculation part is further provided.
 この構成によれば、測定精度が向上された測光量を基にして、測色値を算出するので、測色値の精度を向上することができる。 According to this configuration, since the calorimetric value is calculated based on the photometric quantity with improved measurement accuracy, the accuracy of the calorimetric value can be improved.
 上記構成において、前記決定部が決定した、前記測定領域の測光量を基にして、前記測定領域の輝度値を算出する第3処理を、前記複数の測定領域のそれぞれに対して実行する第2算出部をさらに備える。 In the above-described configuration, a second process of calculating a luminance value of the measurement region based on the light measurement amount of the measurement region determined by the determination unit is performed for each of the plurality of measurement regions. A calculation unit is further provided.
 この構成によれば、測定精度が向上された測光量を基にして、輝度値を算出するので、輝度値の精度を向上することができる。 According to this configuration, since the luminance value is calculated based on the photometric quantity with improved measurement accuracy, the accuracy of the luminance value can be improved.
 実施形態の他の態様に係る二次元測色方法は、カラーディスプレイ画面内の複数の測定領域を測色する二次元測色方法であって、二次元に配置された第1画素を有する二次元撮像部によって、前記カラーディスプレイ画面に表示されたカラー画像を撮像する撮像ステップと、2以上の前記第1画素を含む複数の測光領域を、前記複数の測定領域に対応させて設定し、前記複数の測光領域のそれぞれに対応する前記複数の測定領域の測光量を決定する決定ステップと、を備え、前記決定ステップは、前記測定領域に対応する前記測光領域の設定位置を複数設け、それぞれの前記設定位置で得られた前記測定領域の測光量を基にして、前記測定領域の測光量を決定する第1処理を、前記複数の測定領域のそれぞれに対して実行する。 A two-dimensional colorimetric method according to another aspect of the embodiment is a two-dimensional colorimetric method for measuring a plurality of measurement regions in a color display screen, and the two-dimensional colorimetric method includes first pixels arranged two-dimensionally. An imaging step of imaging a color image displayed on the color display screen by an imaging unit and a plurality of photometric areas including two or more first pixels are set corresponding to the plurality of measuring areas, and the plurality Determining a photometric quantity of the plurality of measurement areas corresponding to each of the photometric areas, wherein the determining step provides a plurality of setting positions of the photometric areas corresponding to the measurement areas, Based on the photometric amount of the measurement area obtained at the set position, a first process for determining the photometric amount of the measurement area is executed for each of the plurality of measurement areas.
 実施形態の他の態様に係る二次元測色方法は、実施形態の一態様に係る二次元測色装置を方法の観点から規定しており、実施形態の一態様に係る二次元測色装置と同様の作用効果を有する。 The two-dimensional colorimetric method according to another aspect of the embodiment defines the two-dimensional colorimetric apparatus according to one aspect of the embodiment from the viewpoint of the method, and the two-dimensional colorimetric apparatus according to one aspect of the embodiment It has the same effect.
 本発明の実施形態が詳細に図示され、かつ、説明されたが、それは単なる図例及び実例であって限定ではない。本発明の範囲は、添付されたクレームの文言によって解釈されるべきである。 Although embodiments of the present invention have been illustrated and described in detail, it is merely exemplary and illustrative and not limiting. The scope of the invention should be construed by the language of the appended claims.
 2017年6月14日に提出された日本国特許出願特願2017-116617は、その全体の開示が、その全体において参照によりここに組み込まれる。 The entire disclosure of Japanese Patent Application No. 2017-116617 filed on June 14, 2017 is incorporated herein by reference in its entirety.
 本発明によれば、二次元測色装置および二次元測色方法を提供することができる。 According to the present invention, a two-dimensional color measurement device and a two-dimensional color measurement method can be provided.

Claims (9)

  1.  カラーディスプレイ画面内の複数の測定領域を測色する二次元測色装置であって、
     二次元に配置された第1画素を有し、前記カラーディスプレイ画面に表示されたカラー画像を撮像する二次元撮像部と、
     2以上の前記第1画素を含む複数の測光領域を、前記複数の測定領域に対応させて設定し、前記複数の測光領域のそれぞれに対応する前記複数の測定領域の測光量を決定する決定部と、を備え、
     前記決定部は、前記測定領域に対応する前記測光領域の設定位置を複数設け、それぞれの前記設定位置で得られた前記測定領域の測光量を基にして、前記測定領域の測光量を決定する第1処理を、前記複数の測定領域のそれぞれに対して実行する、二次元測色装置。
    A two-dimensional colorimetric device for measuring a plurality of measurement areas in a color display screen,
    A two-dimensional imaging unit having first pixels arranged two-dimensionally and imaging a color image displayed on the color display screen;
    A determination unit configured to set a plurality of photometric areas including two or more first pixels corresponding to the plurality of measurement areas, and to determine the photometric amounts of the plurality of measurement areas corresponding to the plurality of photometric areas, respectively. And comprising
    The determination unit provides a plurality of setting positions of the photometry area corresponding to the measurement area, and determines the photometry quantity of the measurement area based on the photometry quantity of the measurement area obtained at each of the setting positions. A two-dimensional colorimetric apparatus that executes a first process on each of the plurality of measurement regions.
  2.  前記カラー画像を記憶する記憶部をさらに備え、
     前記決定部は、前記記憶部から読み出された前記カラー画像を用いて、前記第1処理を実行する、請求項1に記載の二次元測色装置。
    A storage unit for storing the color image;
    The two-dimensional colorimetric apparatus according to claim 1, wherein the determination unit executes the first process using the color image read from the storage unit.
  3.  前記第1処理は、それぞれの前記設定位置で得られた前記測定領域の測光量の平均値を、前記測定領域の測光量と決定する処理である、請求項1または2に記載の二次元測色装置。 3. The two-dimensional measurement according to claim 1, wherein the first process is a process of determining an average value of the light measurement amount of the measurement region obtained at each of the set positions as a light measurement amount of the measurement region. Color device.
  4.  前記複数の設定位置は、前記測定領域と前記測光領域との重なりが最も大きい第1設定位置と、前記第1設定位置に対して前記第1画素が1つ以上ずれた残りの前記設定位置と、を含む、請求項1~3のいずれか一項に記載の二次元測色装置。 The plurality of setting positions include a first setting position where the overlap between the measurement area and the photometry area is the largest, and the remaining setting positions in which one or more of the first pixels are shifted from the first setting position. The two-dimensional colorimetric apparatus according to any one of claims 1 to 3, further comprising:
  5.  前記複数の設定位置のそれぞれに設定される前記測光領域の面積は、互いに同じである、請求項1~4のいずれか一項に記載の二次元測色装置。 The two-dimensional colorimetric apparatus according to any one of claims 1 to 4, wherein areas of the photometric areas set in each of the plurality of setting positions are the same.
  6.  前記決定部が決定した、前記測定領域の測光量を基にして、前記測定領域の測色値を算出する第2処理を、前記複数の測定領域のそれぞれに対して実行する第1算出部をさらに備える、請求項1~5のいずれか一項に記載の二次元測色装置。 A first calculation unit configured to execute, for each of the plurality of measurement regions, a second process of calculating a colorimetric value of the measurement region based on the photometric amount of the measurement region determined by the determination unit; The two-dimensional colorimetric device according to any one of claims 1 to 5, further comprising:
  7.  前記決定部が決定した、前記測定領域の測光量を基にして、前記測定領域の輝度値を算出する第3処理を、前記複数の測定領域のそれぞれに対して実行する第2算出部をさらに備える、請求項1~6のいずれか一項に記載の二次元測色装置。 A second calculation unit that executes a third process for calculating the luminance value of the measurement region based on the photometric amount of the measurement region determined by the determination unit, for each of the plurality of measurement regions; The two-dimensional colorimetric apparatus according to any one of claims 1 to 6, further comprising:
  8.  前記カラーディスプレイ画面は、複数の色のサブピクセルを含む第2画素が、二次元に配置された構造を有する、請求項1~7のいずれか一項に記載の二次元測色装置。 The two-dimensional colorimetric apparatus according to any one of claims 1 to 7, wherein the color display screen has a structure in which second pixels including a plurality of color sub-pixels are two-dimensionally arranged.
  9.  カラーディスプレイ画面内の複数の測定領域を測色する二次元測色方法であって、
     二次元に配置された第1画素を有する二次元撮像部によって、前記カラーディスプレイ画面に表示されたカラー画像を撮像する撮像ステップと、
     2以上の前記第1画素を含む複数の測光領域を、前記複数の測定領域に対応させて設定し、前記複数の測光領域のそれぞれに対応する前記複数の測定領域の測光量を決定する決定ステップと、を備え、
     前記決定ステップは、前記測定領域に対応する前記測光領域の設定位置を複数設け、それぞれの前記設定位置で得られた前記測定領域の測光量を基にして、前記測定領域の測光量を決定する第1処理を、前記複数の測定領域のそれぞれに対して実行する、二次元測色方法。
    A two-dimensional colorimetric method for measuring a plurality of measurement areas in a color display screen,
    An imaging step of imaging a color image displayed on the color display screen by a two-dimensional imaging unit having first pixels arranged two-dimensionally;
    A determination step of setting a plurality of photometric areas including two or more first pixels in correspondence with the plurality of measurement areas, and determining a photometric quantity of the plurality of measurement areas corresponding to each of the plurality of photometric areas. And comprising
    In the determining step, a plurality of setting positions of the photometry area corresponding to the measurement area are provided, and the photometry quantity of the measurement area is determined based on the photometry quantity of the measurement area obtained at each of the setting positions. A two-dimensional colorimetric method, wherein a first process is executed for each of the plurality of measurement regions.
PCT/JP2018/016700 2017-06-14 2018-04-25 Two-dimensional color measurement device and two-dimensional color measurement method WO2018230164A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019525174A JP7070568B2 (en) 2017-06-14 2018-04-25 Two-dimensional color measuring device and two-dimensional color measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-116617 2017-06-14
JP2017116617 2017-06-14

Publications (1)

Publication Number Publication Date
WO2018230164A1 true WO2018230164A1 (en) 2018-12-20

Family

ID=64660389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016700 WO2018230164A1 (en) 2017-06-14 2018-04-25 Two-dimensional color measurement device and two-dimensional color measurement method

Country Status (2)

Country Link
JP (1) JP7070568B2 (en)
WO (1) WO2018230164A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159984A (en) * 1994-12-05 1996-06-21 Toppan Printing Co Ltd Pattern irregularity inspecting apparatus
JP2000503433A (en) * 1996-01-17 2000-03-21 フォトン・ダイナミクス・インコーポレーテッド Substrate inspection apparatus and method
US20040174320A1 (en) * 2002-11-29 2004-09-09 Paul Matthijs Method and device for avoiding image misinterpretation due to defective pixels in a matrix display
JP2006084188A (en) * 2004-09-14 2006-03-30 Matsushita Electric Ind Co Ltd Inspection device and inspection system
US20100315429A1 (en) * 2009-06-11 2010-12-16 Rykowski Ronald F Visual display measurement and calibration systems and associated methods
WO2013118306A1 (en) * 2012-02-10 2013-08-15 シャープ株式会社 Defect-detecting device, defect-detecting method, computer-readable recording medium for recording defect-detecting program
JP2015222332A (en) * 2014-05-22 2015-12-10 株式会社Joled Display panel manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159984A (en) * 1994-12-05 1996-06-21 Toppan Printing Co Ltd Pattern irregularity inspecting apparatus
JP2000503433A (en) * 1996-01-17 2000-03-21 フォトン・ダイナミクス・インコーポレーテッド Substrate inspection apparatus and method
US20040174320A1 (en) * 2002-11-29 2004-09-09 Paul Matthijs Method and device for avoiding image misinterpretation due to defective pixels in a matrix display
JP2006084188A (en) * 2004-09-14 2006-03-30 Matsushita Electric Ind Co Ltd Inspection device and inspection system
US20100315429A1 (en) * 2009-06-11 2010-12-16 Rykowski Ronald F Visual display measurement and calibration systems and associated methods
WO2013118306A1 (en) * 2012-02-10 2013-08-15 シャープ株式会社 Defect-detecting device, defect-detecting method, computer-readable recording medium for recording defect-detecting program
JP2015222332A (en) * 2014-05-22 2015-12-10 株式会社Joled Display panel manufacturing method

Also Published As

Publication number Publication date
JPWO2018230164A1 (en) 2020-04-16
JP7070568B2 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
TWI626433B (en) Method for two-dimensional, spatially resolved measurement and imaging colorimeter system capable of said measurement
JP6352185B2 (en) Fast display calibration using a multicolor camera calibrated colorimetrically based on spectrum
TWI495857B (en) High accuracy imaging colorimeter by special designed pattern closed-loop calibration assisted by spectrograph
JP5118047B2 (en) System and method for high performance color filter mosaic array
US9076363B2 (en) Parallel sensing configuration covers spectrum and colorimetric quantities with spatial resolution
CN107547807A (en) For reducing the device and imaging system of spatial flicker artifact
JP6341335B2 (en) Two-dimensional color measuring device
WO2018230164A1 (en) Two-dimensional color measurement device and two-dimensional color measurement method
KR102088125B1 (en) Colorimeter
JP2010139324A (en) Color irregularity measuring method and color irregularity measuring device
JP6907786B2 (en) Two-dimensional color measuring device and two-dimensional color measuring method
US11825211B2 (en) Method of color inspection by using monochrome imaging with multiple wavelengths of light
JP6617537B2 (en) Two-dimensional colorimeter, method, program, and display system
Wolf et al. 72‐2: a high‐speed 2‐in‐1 imaging colorimeter for display production applications
KR102571243B1 (en) Colorimetry device and method
CN110174351B (en) Color measuring device and method
JP6500313B2 (en) Brightness adjustment method, image reading apparatus, seal for brightness calibration using the image reading apparatus, color discrimination method and color discrimination device
WO2024047944A1 (en) Member for calibration, housing device, calibration device, calibration method, and program
JPH02243930A (en) Irregular color inspecting device
OMORI et al. A High-Speed Imaging Colorimeter LumiCol 1900 for Display Measurements
JP2020086578A (en) Imaging device
Kretkowski et al. Automatic color calibration method for high fidelity color reproduction digital camera by spectral measurement of picture area with integrated fiber optic spectrometer
JP2005223779A (en) Output value stabilizing method for ccd camera
JP2006292585A (en) Apparatus and method for measuring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818220

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525174

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818220

Country of ref document: EP

Kind code of ref document: A1