WO2018230068A1 - Endoscope device - Google Patents

Endoscope device Download PDF

Info

Publication number
WO2018230068A1
WO2018230068A1 PCT/JP2018/010754 JP2018010754W WO2018230068A1 WO 2018230068 A1 WO2018230068 A1 WO 2018230068A1 JP 2018010754 W JP2018010754 W JP 2018010754W WO 2018230068 A1 WO2018230068 A1 WO 2018230068A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
power
signal
endoscope
control
Prior art date
Application number
PCT/JP2018/010754
Other languages
French (fr)
Japanese (ja)
Inventor
泰宏 西垣
秀之 釘宮
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2018549285A priority Critical patent/JPWO2018230068A1/en
Publication of WO2018230068A1 publication Critical patent/WO2018230068A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes

Definitions

  • the present invention relates to an endoscope apparatus that images a subject and generates image data of the subject.
  • each of the control unit and the endoscope is provided with a transceiver having a power channel and a data channel to wirelessly transmit power and control data.
  • Patent Document 1 since power and control data are transmitted using the same transceiver, an abnormality occurs in the functional device in the endoscope, and an error signal indicating this abnormality is controlled from the endoscope.
  • an error signal In the case of transmission to the unit, when the communication state between the endoscope and the control unit is unstable, an error signal cannot be received by the control unit, the control of the functional device in the endoscope is delayed, and the subject It was difficult to continue observation.
  • the present invention has been made in view of the above, and provides an endoscope apparatus that can reliably transmit an error signal regardless of the communication state even when power is supplied by non-contact wireless communication.
  • the purpose is to do.
  • an endoscope apparatus is an endoscope apparatus having an insertion portion that is inserted into a subject, and is disposed in the insertion portion.
  • a functional device that executes a predetermined function, and a power receiving unit that is disposed in the insertion unit and receives power supplied from the outside in a non-contact manner by an electromagnetic induction method or a magnetic resonance method, and outputs the power to the functional device
  • An abnormality detection unit that is disposed in the insertion unit and detects whether or not an abnormality has occurred in the functional device, and that is disposed in the insertion unit and controls driving of the functional device, and the abnormality detection unit
  • a control unit that outputs an operation error signal indicating that an abnormality has occurred in the functional device, and the operation error signal are arranged in the insertion unit. Characterized in that it comprises a signal transmission unit for transmitting to the outside is converted into signals.
  • the endoscope apparatus further includes an endoscope camera head that is detachably attached to the endoscope, and the endoscope camera head has an electromagnetic induction method or a magnetic field with respect to the power receiving unit.
  • a power transmission unit that supplies power in a contactless manner by a resonance method is provided.
  • the endoscope camera head includes a signal receiving unit that receives the optical signal output from the signal transmitting unit, and the signal receiving unit includes the optical signal. And a power control unit that stops power feeding by the power transmission unit when the power is received.
  • the functional device irradiates the subject with illumination light, a fog prevention unit for preventing fogging of an observation window provided at a distal end of the insertion part, and the subject. It is one or more of an illumination unit, a treatment device that performs treatment on the subject, a memory that records information about the insertion unit, and a power storage that stores electric power provided in the insertion unit.
  • the endoscope apparatus is the above invention, wherein the power receiving unit includes a first coil and a power receiving circuit for receiving the power via the first coil,
  • the power transmission unit includes a second coil and a transmission circuit that transmits the power through the second coil.
  • the endoscope apparatus includes an operation unit that is connected to a proximal end side of the insertion unit and that receives an input of an instruction signal for operating the endoscope, and the operation unit receives the power reception It is characterized by comprising a power transmission unit that supplies power to the unit in a non-contact manner by an electromagnetic induction method or a magnetic field resonance method.
  • the operation unit receives the optical signal output from the signal transmission unit, and the signal reception unit receives the optical signal.
  • the power transmission device further includes a power control unit that stops power feeding by the power transmission unit.
  • the endoscope apparatus is the endoscope apparatus according to the above-described invention, wherein the endoscope device is disposed in the insertion unit and images the subject to generate an image signal, and the image signal generated by the imaging unit is An image signal transmission unit that converts the signal into an optical signal and transmits the signal to the outside, wherein the functional device is the imaging unit.
  • the insertion portion includes a distal end portion that is inserted into the subject, a proximal end portion that is exposed when the insertion portion is inserted into the subject,
  • the functional device and the abnormality detection unit are arranged at the tip.
  • FIG. 1 is a diagram showing a schematic configuration of an endoscope system according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing a functional configuration of a main part of the endoscope system according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart showing an outline of processing executed by the insertion unit according to Embodiment 1 of the present invention.
  • FIG. 4 is a diagram showing a schematic configuration of the endoscope system according to Embodiment 2 of the present invention.
  • FIG. 5 is a block diagram illustrating a functional configuration of a main part of the endoscope system according to the second embodiment of the present invention.
  • FIG. 6 is a flowchart showing an outline of processing executed by the distal end portion according to Embodiment 2 of the present invention.
  • FIG. 1 is a diagram showing a schematic configuration of an endoscope system according to Embodiment 1 of the present invention.
  • An endoscope system 1 shown in FIG. 1 is a system that is used in the medical field and observes the inside of a subject such as a living body.
  • this Embodiment 1 demonstrates the rigid endoscope system using the rigid endoscope (insertion part 2 which is an endoscope) shown in FIG. 1 as the endoscope system 1, it is limited to this.
  • the endoscope system may include a flexible endoscope.
  • the present invention can be applied even outside the medical field, and can be applied even to an industrial endoscope system including an industrial endoscope.
  • an endoscope system 1 includes an insertion portion 2, a light source device 3, a light guide 4, an endoscope camera head 5 (an endoscope imaging device), and a first transmission cable. 6, a display device 7, a second transmission cable 8, a control device 9, and a third transmission cable 10.
  • the insertion part 2 is hard or at least partly soft and has an elongated shape.
  • the insertion unit 2 is inserted into a subject such as a patient and forms an observation image of the subject through an observation window (not shown) provided at the tip.
  • the insertion section 2 has an optical system (for example, an objective lens) that forms an observation image through an observation window and a functional device having a predetermined function, and is inserted into a subject such as a patient. 21, a proximal end portion 22 provided with a control board for controlling a device provided at the distal end portion 21 of the insertion portion 2, and an eyepiece portion 23 detachably connected to the endoscope camera head 5.
  • the insertion unit 2 functions as an endoscope.
  • the light source device 3 is connected to one end of the light guide 4 and supplies visible light or special light for illuminating the inside of the subject to one end of the light guide 4 under the control of the control device 9.
  • the light guide 4 has one end detachably connected to the light source device 3 and the other end detachably connected to the insertion portion 2.
  • the light guide 4 transmits light supplied from the light source device 3 from one end to the other end and supplies the light to the insertion portion 2.
  • the endoscope camera head 5 is detachably connected to the eyepiece 23 of the insertion section 2.
  • the endoscope camera head 5 generates an image signal (electrical signal) by receiving an observation image formed by the insertion unit 2 and performing photoelectric conversion under the control of the control device 9, and this generation is performed.
  • the image signal is output to the control device 9 via the first transmission cable 6.
  • the insertion unit 2 and the endoscope camera head 5 function as an endoscope apparatus.
  • the first transmission cable 6 transmits an image signal output from the endoscope camera head 5 to the control device 9 and transmits a control signal, a synchronization signal, a clock, power, and the like output from the control device 9 to the endoscope. Transmit to the camera head 5.
  • the display device 7 displays an observation image based on the video signal processed in the control device 9 and various information related to the endoscope system 1 under the control of the control device 9.
  • the display device 7 is configured using liquid crystal, organic EL (Electro Luminescence), or the like.
  • the display device 7 has a monitor size of 31 inches or more, preferably 55 inches or more.
  • the display device 7 is configured using liquid crystal, organic EL (Electro Luminescence), or the like.
  • the display device 7 has a monitor size of 31 inches or more.
  • the display device 7 is not limited to this, and other monitor sizes, for example, 2 megapixels (for example, a so-called 2K resolution of 1920 ⁇ 1080 pixels) or more.
  • An image having a resolution of 8 megapixels for example, 3840 ⁇ 2160 pixels, so-called 4K resolution
  • 32 megapixels for example, 7680 ⁇ 4320 pixels, so-called 8K resolution
  • Any monitor size is possible.
  • the second transmission cable 8 has one end detachably connected to the display device 7 and the other end detachably connected to the control device 9.
  • the second transmission cable 8 transmits the video signal processed by the control device 9 to the display device 7.
  • the control device 9 includes a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), various memories, and the like, and according to a program recorded in the memory (not shown), the first transmission cable 6 and the second transmission cable 6
  • the operations of the light source device 3, the endoscope camera head 5 and the display device 7 are comprehensively controlled through the transmission cable 8 and the third transmission cable 10, respectively.
  • the third transmission cable 10 has one end detachably connected to the light source device 3 and the other end detachably connected to the control device 9.
  • the third transmission cable 10 transmits a control signal from the control device 9 to the light source device 3.
  • FIG. 2 is a block diagram illustrating a functional configuration of a main part of the endoscope system 1.
  • the insertion portion 2 has a thin shape, a distal end portion 21 that is inserted into the subject, a proximal end portion 22 that is exposed when the insertion portion 2 is inserted into the subject, Have The distal end portion 21 and the proximal end portion 22 are integrally formed.
  • the front end portion 21 includes a fog prevention unit 211 that functions as a functional device, a drive unit 212, a temperature detection unit 213, and a current detection unit 214.
  • the anti-fogging part 211 is provided in contact with or around the optical system or observation window (not shown) of the tip part 21 and generates heat based on the voltage applied via the drive part 212 to make the observation window or optical system. Heating or warming prevents fogging that occurs in the observation window and optical system.
  • the fog prevention unit 211 is configured using, for example, a heat generating member or a heater. Note that the anti-fogging unit 211 may be cooled not only for heating but also for the observation window, for example. In this case, the fog prevention unit 211 may be configured with a Peltier element, a heat pipe, or the like. In the first embodiment, the anti-fogging unit 211 functions as a functional device.
  • the drive unit 212 controls the power supplied from the power generation unit 222 of the base end 22 described later to a predetermined voltage under the control of the first control unit 225 of the base end 22 described later to prevent fogging. A voltage is applied to the unit 211.
  • the temperature detection unit 213 detects the temperature of the anti-fogging unit 211 and outputs the detection result to the first control unit 225 of the base end 22 described later.
  • the temperature detection unit 213 is configured using, for example, a thermistor.
  • the temperature detection unit 213 is configured using a plurality of thermistors and the like, and outputs a detection result related to the temperature detected by each of the plurality of thermistors to the first control unit 225 of the base end 22 described later. May be.
  • the temperature detection unit 213 functions as an abnormality detection unit.
  • the current detection unit 214 detects the current value supplied to the anti-fogging unit 211, and outputs the detection result to the first control unit 225 of the base end 22 described later.
  • the base end unit 22 includes a power receiving unit 221, a power generation unit 222, a first recording unit 223, a signal transmission unit 224, and a first control unit 225.
  • the power reception unit 221 receives power from a magnetic field generated from the power transmission unit 54 of the endoscope camera head 5 to be described later, generates power, and outputs the generated power to the power generation unit 222.
  • the power receiving unit 221 receives electric power from the outside by non-contact radio by an electromagnetic induction method or a magnetic field resonance method.
  • the power receiving unit 221 includes a power receiving coil 221a (first coil) and a power receiving circuit 221b that receives power via the power receiving coil 221a.
  • the power receiving coil 221a feeds power to the insertion portion 2 in a non-contact manner by a magnetic field resonance method.
  • the power receiving coil 221a is magnetically coupled to a power transmitting coil 541 of a power transmitting portion 54 described later and is dielectrically generated by an alternating magnetic field (magnetic flux) generated by the power transmitting coil 541. Generate current.
  • the power reception circuit 221 b rectifies the dielectric current generated in the power reception coil 221 a and outputs the rectified current to the power generation unit 222.
  • the power generation unit 222 adjusts the voltage of the power input from the power reception unit 221 to the voltage of various devices at the tip 21 and outputs the adjusted voltage. Specifically, the power generation unit 222 converts the voltage of the power supplied from the power reception unit 221 to, for example, 5V to 3.3V, and drives the drive unit 212, the temperature detection unit 213, the signal transmission unit 224, and the first Power is supplied to each of the control units 225.
  • the power generation unit 222 is configured using a voltage regulator IC or the like.
  • the first recording unit 223 records various programs executed by the insertion unit 2.
  • the first recording unit 223 is configured using a volatile memory or a nonvolatile memory.
  • the signal transmission unit 224 converts the signal output from the first control unit 225 into an optical signal and transmits it to the endoscope camera head 5.
  • the signal transmission unit 224 is configured using an E / O conversion circuit.
  • the signal transmission unit 224 is configured using an infrared light emitting element that optically transmits a signal (infrared), and transmits the signal to the endoscope camera head 5 by non-contact optical data communication using IrDA (Infrared Date Association). .
  • IrDA Infrared Date Association
  • the signal transmission unit 224 may transmit an optical signal to the endoscope camera head 5 by optical communication according to another known technique.
  • the first control unit 225 controls the driving of the fog prevention unit 211 via the drive unit 212.
  • the first control unit 225 is configured using a CPU (Central Processing Unit). Further, the first control unit 225 controls the driving of the fog prevention unit 211 based on the detection result of the temperature detection unit 213 and the detection result of the current detection unit 214. Further, the first control unit 225 determines whether or not an abnormality has occurred in the fog prevention unit 211 based on the detection result of the temperature detection unit 213 and the detection result of the current detection unit 214, and When an abnormality has occurred, an operation error signal indicating that an abnormality has occurred in the fog prevention unit 211 is output to the signal transmission unit 224.
  • a CPU Central Processing Unit
  • the endoscope camera head 5 includes an imaging unit 51, an A / D conversion unit 52, an E / O conversion unit 53, a power transmission unit 54, a power control unit 55, a signal reception unit 56, and a second input.
  • the imaging unit 51 generates an image signal by receiving an observation image formed by an optical system (not shown) of the insertion unit 2 and performing photoelectric conversion under the control of the second control unit 59.
  • the data is output to the A / D converter 52.
  • the imaging unit 51 is configured using an image sensor such as a CMOS (Complementary Metal Oxide Semiconductor) or a CCD (Charge Coupled Device).
  • the number of effective pixels of the image sensor used in the imaging unit 51 is 8 megapixels (for example, 3840 ⁇ 2160 pixels, so-called 4K resolution) or more, and preferably 32 megapixels (for example, 7680 ⁇ 4320 pixels, so-called 8K resolution). That's it.
  • a zoom function and a focus function may be provided in the optical system.
  • the optical system of the imaging unit 51 may be omitted.
  • the A / D conversion unit 52 performs A / D conversion processing on the analog image signal input from the imaging unit 51 under the control of the second control unit 59 to generate digital image data,
  • the digital image data is output to the E / O converter 53.
  • the E / O conversion unit 53 performs an E / O conversion process on the digital image data input from the A / D conversion unit 52 under the control of the second control unit 59 to perform image data of the optical signal. And output the image data of this optical signal to the control device 9.
  • the power transmission unit 54 supplies power to the power reception unit 221 by generating a magnetic field by an electromagnetic induction method or a magnetic field resonance method under the control of the power control unit 55.
  • the power transmission unit 54 includes a power transmission coil 541 (second coil) and a transmission circuit 542 that transmits power via the power transmission coil 541.
  • the power control unit 55 controls the power supplied from the power transmission unit 54 to the power reception unit 221 under the control of the second control unit 59. Specifically, the power control unit 55 controls the power supplied from the power transmission unit 54 to the power reception unit 221 by controlling the strength of the magnetic field generated by the power transmission unit 54.
  • the second input unit 57 receives input of various instruction signals related to the endoscope camera head 5, and outputs the received instruction signals to the second control unit 59. Specifically, the second input unit 57 receives an input of a release signal and a capture signal instructing the imaging unit 51 to perform shooting, and outputs the received release signal and capture signal to the second control unit 59.
  • the second input unit 57 is configured using a switch, a button, a jog dial, and the like.
  • the second recording unit 58 records various programs executed by the endoscope camera head 5, data being processed, and the like.
  • the second recording unit 58 is configured using a volatile memory or a nonvolatile memory.
  • the signal reception unit 56 receives the optical signal transmitted from the signal transmission unit 224, converts the received optical signal into an electrical signal, and outputs the electrical signal to the second control unit 59.
  • the signal receiving unit 56 is configured using an O / E conversion circuit.
  • the signal receiving unit 56 is configured using a light receiving element (such as a photodiode or a phototransistor) that receives an optical signal.
  • the second control unit 59 controls each part of the endoscope camera head 5 in an integrated manner. In addition, when the operation error signal is input from the signal receiving unit 56, the second control unit 59 causes the power control unit 55 to stop supplying power to the power transmission unit 54.
  • the second control unit 59 is configured using a CPU or the like.
  • the control device 9 includes an O / E conversion unit 91, an image processing unit 92, a third input unit 93, a third recording unit 94, and a third control unit 95.
  • the O / E conversion unit 91 performs O / E conversion processing on the image data of the optical signal input from the E / O conversion unit 53 of the endoscope camera head 5 via the first transmission cable 6. It is converted into digital image data and output to the image processing unit 92.
  • the image processing unit 92 performs predetermined image processing on the digital image data input from the O / E conversion unit 91 and outputs the digital image data to the display device 7.
  • the predetermined image processing includes, for example, demosaicing processing, white balance processing, and ⁇ correction processing.
  • the third input unit 93 receives input of various instruction signals related to the control device 9 and outputs the received instruction signals to the third control unit 95.
  • the third input unit 93 is configured using buttons, switches, a touch panel, a jog dial, and the like.
  • the third recording unit 94 records various programs executed by the control device 9, data being processed, and the like.
  • the third recording unit 94 is configured using a volatile memory or a nonvolatile memory.
  • the third control unit 95 comprehensively controls each unit constituting the control device 9.
  • the third control unit 95 is configured using a CPU or the like.
  • FIG. 3 is a flowchart showing an outline of processing executed by the insertion unit 2.
  • the power reception unit 221 receives a magnetic field generated from the power transmission unit 54 of the endoscope camera head 5 and starts feeding (step S101).
  • the first control unit 225 drives the drive unit 212 to turn the fog prevention unit 211 into a power-on state (step S102).
  • the temperature detection unit 213 detects the temperature of the anti-fogging unit 211 (step S103), and the current detection unit 214 detects current (step S104).
  • the first control unit 225 determines whether there is an abnormality in the insertion unit 2 based on the temperature detected by the temperature detection unit 213 and the current detected by the current detection unit 214 (step S105). Specifically, first, the first control unit 225 detects the temperature detected by the temperature detection unit 213, and determines whether this temperature is outside a predetermined range. The first control unit 225 determines whether or not the current value detected by the current detection unit 214 is within the predetermined range when the temperature detected by the temperature detection unit 213 is outside the predetermined range. When the current value is outside the predetermined range, it is determined that an abnormality has occurred in the fog prevention unit 211.
  • step S105: Yes the insertion unit 2 proceeds to step S106 described below.
  • step S105: No the insertion unit 2 proceeds to step S108 described later.
  • step S106 the first control unit 225 stops the driving of the driving unit 212, thereby setting the fog prevention unit 211 to a power-off state.
  • the first control unit 225 causes the signal transmission unit 224 to transmit an operation error signal indicating that an abnormality has occurred in the insertion unit 2 toward the signal reception unit 56 of the endoscopic camera head 5 (step). S107). Specifically, the first control unit 225 outputs an operation error signal to the signal transmission unit 224. Then, the signal transmission unit 224 converts the operation error signal into an optical signal under the control of the first control unit 225 and transmits it to the signal reception unit 56 of the endoscope camera head 5. Accordingly, when the second control unit 59 receives an operation error signal from the insertion unit 2 via the power transmission unit 54, the second control unit 59 controls the power control unit 55 to stop the power supply by the power transmission unit 54.
  • the second control unit 59 may transmit a signal indicating that the power supply by the power transmission unit 54 is stopped to the third control unit 95.
  • the third control unit 95 may cause the display device 7 to display information indicating that an abnormality has occurred in the insertion unit 2 via the image processing unit 92. After step S107, the insertion unit 2 ends this process.
  • step S108 the first control unit 225 controls the driving of the driving unit 212 based on the temperature detected by the temperature detecting unit 213 and the current detected by the current detecting unit 214, thereby turning on / off the anti-fogging unit 211. Take control.
  • step S109 when the power supply from the power transmission unit 54 is completed (step S109: Yes), the first control unit 225 stops the driving of the driving unit 212, thereby changing the state of the fog prevention unit 211 to the power-off state. To stop (step S110). After step S110, the insertion unit 2 ends this process.
  • step S109 when the power supply from the power transmission unit 54 is not completed (step S109: No), the insertion unit 2 returns to step S103 described above.
  • an operation error signal can be reliably transmitted regardless of the communication state between the insertion unit 2 and the endoscope camera head 5. Can be sent.
  • the first control unit 225 controls the fog prevention unit 211 provided in the insertion unit 2. , Complex control can be performed.
  • the first control unit 225 directs the operation error signal indicating that an abnormality has occurred in the insertion unit 2 to the signal reception unit 56 of the endoscope camera head 5. Since the signal is transmitted to the signal transmission unit 224, power supply can be reliably stopped.
  • the anti-fogging portion 211 is provided as a functional device provided at the distal end portion 21 of the insertion portion 2.
  • the present invention is not limited to this, and other functional devices may be used. Also good.
  • an illumination device including an LED (Light Emitting Diode) lamp that irradiates illumination light toward the subject and the subject are imaged.
  • An image device such as a CMOS or CCD, a memory device that records various information about the insertion unit 2, a treatment device that performs treatment, an actuator of the treatment device, a power regulator that regulates power to a predetermined voltage, a power storage device, Alternatively, an actuator that moves the optical system provided in the insertion portion 2 along the optical axis direction may be used.
  • an illumination device is disposed at the distal end portion 21 of the insertion portion 2
  • an acceleration sensor and a gyro sensor that detect the posture of the insertion portion 2 are disposed at the distal end portion 21 instead of the temperature detection portion 213.
  • the first controller 225 may control the driving of the lighting device based on the detection results of each gyro sensor.
  • the first control unit 225 has an angle formed by a predetermined axis (for example, an optical axis) of the insertion unit 2 and the direction of gravity equal to or greater than a predetermined value (for example, If it is horizontal or higher), irradiation with the lighting device may be stopped.
  • a predetermined axis for example, an optical axis
  • a predetermined value for example, If it is horizontal or higher
  • the current detection unit 214 is provided at the distal end portion 21, but the present invention is not limited thereto, and the current detection unit 214 may be provided at the proximal end portion 22, for example.
  • the endoscope camera head 5 is provided with the power transmission unit 54 and the power control unit 55.
  • the present invention is not limited thereto, and may be provided in the control device 9, for example.
  • the power transmission unit 54 and the power control unit 55 may be separately provided as an intermediate unit or a power supply unit.
  • FIG. 4 is a diagram showing a schematic configuration of the endoscope system according to Embodiment 2 of the present invention.
  • An endoscope system 1a shown in FIG. 4 is a system that is used in the medical field and observes the inside of a subject such as a living body.
  • a flexible endoscope system using the distal end portion of the endoscope shown in FIG. 4 will be described as the endoscope system 1a.
  • An endoscope system including an endoscope may be used.
  • the present invention can be applied even outside the medical field, and can be applied even to an industrial endoscope system including an industrial endoscope.
  • the endoscope system 1a includes an endoscope 2a, a light source device 3, a first transmission cable 6a, a display device 7, a second transmission cable 8, and a control device 9a.
  • the connector part 12 is provided.
  • the endoscope 2a inserts the insertion portion 100, which is a part of the first transmission cable 6a, into the body cavity of the subject, images the inside of the subject, and outputs an image signal to the control device 9a. Further, the endoscope 2a is one end side of the first transmission cable 6a, and a distal end portion having an image pickup device for capturing an in-vivo image on the distal end 101 side of the insertion portion 100 inserted into the body cavity of the subject. 21 a is provided, and an operation portion 26 (base end portion) that receives various operations on the endoscope 2 a is provided on the proximal end 102 side of the insertion portion 100. The operation unit 26 may be detachable from the insertion unit 100 or may be fixed. In the second embodiment, a mechanism including at least the endoscope 2a and the operation unit 26 functions as an endoscope apparatus.
  • the first transmission cable 6 a connects the endoscope 2 a and the connector unit 12, and connects the endoscope 2 a and the light source device 3. In addition, the first transmission cable 6 a propagates the image signal generated by the endoscope 2 a to the connector unit 12.
  • the first transmission cable 6a is configured using a cable, an optical fiber, or the like.
  • the control device 9 a performs predetermined image processing on the image signal input from the connector unit 12 and outputs the image signal to the display device 7.
  • the control device 9a controls the entire endoscope system 1a in an integrated manner. For example, the control device 9a performs control to switch the illumination light emitted from the light source device 3 or switch the imaging mode of the endoscope 2a.
  • the connector unit 12 is connected to the endoscope 2a, the control device 9a, and the light source device 3, and performs predetermined signal processing on an image signal output from the connected endoscope 2a and digitally captures an analog image signal. It converts into a signal (A / D conversion), and outputs it to the control apparatus 9a.
  • FIG. 5 is a block diagram illustrating a functional configuration of a main part of the endoscope system 1a.
  • the front end 21a includes a fog prevention unit 211, a drive unit 212, a temperature detection unit 213, a current detection unit 214, a power reception unit 221, a power generation unit 222, and a first recording.
  • the imaging drive unit 230 and the abnormality detection unit 231 are included.
  • the first signal transmission unit 224a converts the signal output from the first control unit 225a into an optical signal and transmits it to the operation unit 26.
  • the first signal transmission unit 224a is configured using an E / O conversion circuit.
  • the first signal transmission unit 224a is configured using an infrared light emitting element that optically transmits a signal (infrared), and transmits the signal to the operation unit 26 by non-contact optical data communication using IrDA.
  • the first control unit 225a controls the driving of the anti-fogging unit 211 via the driving unit 212.
  • the first control unit 225a is configured using a CPU (Central Processing Unit). Further, the first control unit 225a controls the driving of the fog prevention unit 211 based on the detection result of the temperature detection unit 213 and the detection result of the current detection unit 214. Further, the first control unit 225a determines whether or not an abnormality has occurred in the fog prevention unit 211 based on the detection result of the temperature detection unit 213 and the detection result of the current detection unit 214, and When an abnormality has occurred, an operation error signal indicating that an abnormality has occurred in the fog prevention unit 211 is output to the first signal transmission unit 224a.
  • a CPU Central Processing Unit
  • the first control unit 225a drives the imaging drive unit 230 based on the control data received by the first signal reception unit 229 to cause the imaging unit 226 to image the subject. Furthermore, when the abnormality detection unit 231 detects an abnormality, the first control unit 225a outputs an operation error signal indicating that an abnormality has occurred in the imaging unit 226 to the first signal transmission unit 224a.
  • the imaging unit 226 receives an observation image of a subject and performs photoelectric conversion under the control of the first control unit 225a to generate an image signal and output the image signal to the A / D conversion unit 227.
  • the imaging unit 226 is configured using an optical system that forms an observation image of a subject, and an image sensor such as a CMOS or CCD that receives the observation image formed by the optical system and generates an image signal. Note that a zoom function or a focus function may be provided in the optical system of the imaging unit 226.
  • the number of effective pixels of the image sensor used for the imaging unit 226 is 8 megapixels (for example, 3840 ⁇ 2160 pixels, so-called 4K resolution) or more, and preferably 32 megapixels (for example, 7680 ⁇ 4320 pixels, so-called 8K resolution). That's it.
  • a zoom function or a focus function may be provided in the optical system of the imaging unit 226.
  • the optical system of the imaging unit 226 may be omitted.
  • the A / D conversion unit 227 performs A / D conversion processing on the analog image signal input from the imaging unit 226 under the control of the first control unit 225a to generate digital image data,
  • the digital image data is output to the image signal transmission unit 228.
  • the image signal transmission unit 228 performs E / O conversion processing on the digital image data input from the A / D conversion unit 227 under the control of the first control unit 225a to convert the image data of the optical signal.
  • the image data of the optical signal is generated and output to the operation unit 26.
  • the first signal receiving unit 229 receives optical signal control data input from the operation unit 26, converts the received optical signal control data into electrical signal control data, and outputs the electrical signal control data to the first control unit 225a. To do.
  • the first signal receiving unit 229 is configured using an O / E conversion circuit.
  • the first signal receiving unit 229 is configured using a light receiving element (such as a photodiode or a phototransistor) that receives an optical signal that receives an optical signal.
  • the imaging drive unit 230 drives the imaging unit 226 under the control of the first control unit 225a.
  • the imaging drive unit 230 changes the imaging timing of the imaging unit 226, the zoom magnification of the optical zoom, the focus position, and the like under the control of the first control unit 225a.
  • the abnormality detection unit 231 detects an abnormality of the imaging unit 226 and outputs the detection result to the first control unit 225a. Specifically, the abnormality detection unit 231 determines whether the imaging unit 226 has a predetermined zoom magnification based on the zoom magnification included in the control data. If the imaging unit 226 does not have the predetermined zoom magnification, the imaging unit 226 An abnormality is detected, and the detection result is output to the first control unit 225a.
  • the abnormality detection unit 231 is configured using, for example, a photo interrupter that detects the position of the optical system included in the imaging unit 226.
  • the operation unit 26 includes a power transmission unit 54, a power control unit 55, a second signal reception unit 56a, a second input unit 57, a second recording unit 58, a second control unit 59a, and an image.
  • a signal reception / transmission unit 63 and a second signal transmission unit 64 are provided.
  • the second signal reception unit 56a receives the optical signal transmitted from the first signal transmission unit 224a, converts the received optical signal into an electrical signal, and outputs the electrical signal to the second control unit 59a.
  • the second signal receiving unit 56a is configured using an O / E conversion circuit.
  • the second signal receiving unit 56a is configured using a light receiving element (such as a photodiode or a phototransistor) that receives an optical signal.
  • the second control unit 59a comprehensively controls each unit of the endoscope 2a. Specifically, the second control unit 59 a outputs control data for controlling the fog prevention unit 211 and the imaging unit 226 to the first signal reception unit 229 via the second signal transmission unit 64. In addition, when the operation error signal is input from the second signal reception unit 56a, the second control unit 59a stops the power control unit 55 from supplying power to the power transmission unit 54.
  • the second control unit 59a is configured using a CPU or the like.
  • the image signal receiving / transmitting unit 63 receives the image signal of the optical signal transmitted from the image signal transmitting unit 228 of the distal end portion 21a, amplifies the image signal, for example, the image signal, and optically transmits the image signal to the control device 9a.
  • the image signal receiving / transmitting unit 63 is configured using a light receiving element (such as a photodiode or a phototransistor) that receives an optical signal, an infrared light emitting element, and an FPGA (Field Programmable Gate Array).
  • the second signal transmission unit 64 performs E / O conversion processing on the control data of the electrical signal input from the second control unit 59a under the control of the second control unit 59a, and performs the optical signal transmission.
  • the control data is transmitted to the first signal receiving unit 229.
  • the second signal transmission unit 64 is configured using an infrared light emitting element that optically transmits a signal (infrared rays), and transmits control data to the distal end portion 21a by non-contact optical data communication using IrDA.
  • the control device 9a includes an image processing unit 92, a third input unit 93, a third recording unit 94, a third control unit 95, and an image receiving unit 96.
  • the image receiving unit 96 performs O / E conversion processing on the image signal of the optical signal transmitted from the image signal receiving / transmitting unit 63 of the operation unit 26 and outputs the signal to the image processing unit 92.
  • the image receiving unit 96 is configured using a light receiving element (such as a photodiode or a phototransistor) that receives an optical signal.
  • FIG. 6 is a flowchart showing an outline of the processing executed by the distal end portion 21a.
  • the first control unit 225a Based on the control data received by the first signal receiving unit 229, the imaging unit 226 is driven via the imaging drive unit 230 (step S202).
  • the first control unit 225a is based on the control data received by the first signal reception unit 229, the temperature detected by the temperature detection unit 213, and the current value detected by the current detection unit 214. To turn on / off the fog prevention unit 211.
  • step S203 when the abnormality detection unit 231 detects an abnormality in the imaging unit 226 (step S203: Yes), the first control unit 225a has an abnormality in the imaging unit 226 in the first signal transmission unit 224a. Is transmitted to the second signal receiver 56a (step S204).
  • step S204 when the second control unit 59a receives an operation error signal from the distal end portion 21a via the second signal receiving unit 56a, the second control unit 59a supplies power by the power transmission unit 54 by controlling the power control unit 55. Stop. After step S204, the distal end portion 21a ends this process.
  • step S201 when the first signal receiving unit 229 has not received control data from the second signal transmitting unit 64 of the operation unit 26 (step S201: No), the distal end portion 21a proceeds to step S203.
  • step S203 when the abnormality detection unit 231 has not detected an abnormality in the imaging unit 226 (step S203: No), the distal end portion 21a proceeds to step S205.
  • step S205 when the power supply from the power transmission unit 54 is completed (step S205: Yes), the distal end portion 21a ends this process.
  • the first control unit 225a stops the driving of the driving unit 212, thereby stopping the fogging prevention unit 211 by turning off the power, and stopping the driving of the imaging driving unit 230. Accordingly, the imaging unit 226 is stopped by setting the power supply to the off state.
  • step S205 when the power supply from the power transmission unit 54 is not completed (step S205: No), the tip 21a returns to step S201 described above.
  • an operation error signal is reliably transmitted regardless of the communication state between the distal end portion 21a and the operation unit 26. be able to.
  • the image signal of the imaging unit 226 is transmitted to the control device 9a via the operation unit 26. Therefore, it is possible to continue operations necessary for subject observation and treatment control.
  • the image signal reception / transmission unit 63 and the second signal transmission unit 64 are provided in the operation unit 26.
  • the present invention is not limited thereto, and is provided in the connector unit 12, for example. May be.
  • the power control unit 55, the second signal receiving unit 56a, and the second control unit 59a may be provided in the connector unit 12.
  • the anti-fogging unit 211 and the imaging unit 226 are provided as the functional devices provided at the distal end portion 21a.
  • the present invention is not limited to this, and other functional devices may be used. Also good.
  • an LED (Light Emitting Diode) lamp illumination device an image device such as a CMOS or CCD, and the insertion unit 2 is recorded.
  • a memory an actuator of a treatment device for performing treatment, a power regulator for adjusting power to a predetermined voltage, a power storage device for storing power, and an optical system provided in the distal end portion 21a along the optical axis direction It may be an actuator to be moved.
  • an actuator for example, when an illumination device is arranged at the tip 21a, an acceleration sensor and a gyro sensor that detect the attitude of the tip 21a are arranged at the tip 21a instead of the temperature detector 213, and each of the acceleration sensor and the gyro sensor Based on the detection result, the first control unit 225a may control the driving of the lighting device.
  • the first control unit 225a determines that the angle formed by a predetermined axis (for example, the optical axis) of the tip 21a and the direction of gravity is equal to or greater than a predetermined value (for example, If it is horizontal or higher), irradiation with the lighting device may be stopped.
  • a predetermined axis for example, the optical axis
  • a predetermined value for example, If it is horizontal or higher
  • inventions can be formed by appropriately combining a plurality of components disclosed in the first and second embodiments of the present invention. For example, some components may be deleted from all the components described in the first and second embodiments of the present invention. Furthermore, you may combine suitably the component demonstrated in Embodiment 1, 2 of this invention mentioned above.
  • control device and the light source device are separate, but may be integrally formed.
  • the “unit” described above can be read as “means” or “circuit”.
  • the control unit can be read as control means or a control circuit.
  • the signal is transmitted from the endoscope camera head to the control device via the transmission cable.
  • the signal need not be wired, for example, and may be wireless.
  • an image signal or the like may be transmitted from the endoscope camera head to the control device in accordance with a predetermined wireless communication standard (for example, Wi-Fi (registered trademark) or Bluetooth (registered trademark)).
  • a predetermined wireless communication standard for example, Wi-Fi (registered trademark) or Bluetooth (registered trademark)
  • wireless communication may be performed according to other wireless communication standards.
  • an endoscope system is used.
  • a capsule endoscope, a video microscope for imaging a subject, a mobile phone having an imaging function, and a tablet type having an imaging function Even a terminal can be applied.

Abstract

Provided is an endoscope device capable of reliably transmitting an error signal regardless of the state of communication even when power is fed in a non-contact wireless manner. This endoscope device is provided with: a power reception unit 221 which is disposed within an insertion part 21, receives power fed in a non-contact manner from the outside by an electromagnetic induction method or a magnetic resonance method, and outputs the power to an antifogging unit 211; a first control unit 225 which is disposed within the insertion part 22, controls the driving of the antifogging unit 211 and, when a temperature detection unit 213 detects an abnormality in the antifogging unit 211, outputs an operating error signal to a signal transmission unit 224; and the signal transmission unit 224 for converting the operating error signal into an optical signal and transmitting the optical signal to the outside.

Description

内視鏡装置Endoscope device
 本発明は、被検体を撮像して該被検体の画像データを生成する内視鏡装置に関する。 The present invention relates to an endoscope apparatus that images a subject and generates image data of the subject.
 近年、内視鏡システムにおいて、非接触の無線によって電力と制御データを制御ユニットから内視鏡へ送信する技術が知られている(特許文献1参照)。この技術では、制御ユニットおよび内視鏡の各々に、電力チャンネルおよびデータチャンネルを備えるトランシーバを設けることによって、電力と制御データとを無線送信する。 In recent years, a technique for transmitting power and control data from a control unit to an endoscope by non-contact wireless in an endoscope system is known (see Patent Document 1). In this technique, each of the control unit and the endoscope is provided with a transceiver having a power channel and a data channel to wirelessly transmit power and control data.
特許第5419964号公報Japanese Patent No. 5419964
 しかしながら、上述した特許文献1では、同じトランシーバを用いて電力と制御データとを送信しているため、内視鏡内の機能デバイスに異常が生じ、この異常を示すエラー信号を内視鏡から制御ユニットへ送信する場合において、内視鏡と制御ユニットとの通信状態が不安定なとき、エラー信号が制御ユニットで受信できず、内視鏡内の機能デバイスに対する制御が遅れてしまい、被検体の観察を継続することが困難であった。 However, in Patent Document 1 described above, since power and control data are transmitted using the same transceiver, an abnormality occurs in the functional device in the endoscope, and an error signal indicating this abnormality is controlled from the endoscope. In the case of transmission to the unit, when the communication state between the endoscope and the control unit is unstable, an error signal cannot be received by the control unit, the control of the functional device in the endoscope is delayed, and the subject It was difficult to continue observation.
 本発明は、上記に鑑みてなされたものであって、非接触の無線によって給電する場合であっても、通信状態に関わらず、確実にエラー信号を送信することができる内視鏡装置を提供することを目的とする。 The present invention has been made in view of the above, and provides an endoscope apparatus that can reliably transmit an error signal regardless of the communication state even when power is supplied by non-contact wireless communication. The purpose is to do.
 上述した課題を解決し、目的を達成するために、本発明に係る内視鏡装置は、被検体内に挿入される挿入部を有する内視鏡装置であって、前記挿入部内に配置され、所定の機能を実行する機能デバイスと、前記挿入部内に配置され、外部から電磁誘導方式または磁界共鳴方式によって非接触で給電された電力を受電するとともに、該電力を前記機能デバイスへ出力する受電部と、前記挿入部に配置され、前記機能デバイスに異常が生じているか否かを検出する異常検出部と、前記挿入部内に配置され、前記機能デバイスの駆動を制御し、かつ、前記異常検出部が前記機能デバイスの異常を検出した場合、前記機能デバイスに異常が生じていることを示す動作エラー信号を出力する制御部と、前記挿入部内に配置され、前記動作エラー信号を光信号に変換して外部へ送信する信号送信部と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, an endoscope apparatus according to the present invention is an endoscope apparatus having an insertion portion that is inserted into a subject, and is disposed in the insertion portion. A functional device that executes a predetermined function, and a power receiving unit that is disposed in the insertion unit and receives power supplied from the outside in a non-contact manner by an electromagnetic induction method or a magnetic resonance method, and outputs the power to the functional device An abnormality detection unit that is disposed in the insertion unit and detects whether or not an abnormality has occurred in the functional device, and that is disposed in the insertion unit and controls driving of the functional device, and the abnormality detection unit When an abnormality of the functional device is detected, a control unit that outputs an operation error signal indicating that an abnormality has occurred in the functional device, and the operation error signal are arranged in the insertion unit. Characterized in that it comprises a signal transmission unit for transmitting to the outside is converted into signals.
 また、本発明に係る内視鏡装置は、前記内視鏡に対して着脱自在な内視鏡カメラヘッドをさらに備え、前記内視鏡カメラヘッドは、前記受電部に対して電磁誘導方式または磁界共鳴方式によって非接触で電力を給電する送電部を備えることを特徴とする。 The endoscope apparatus according to the present invention further includes an endoscope camera head that is detachably attached to the endoscope, and the endoscope camera head has an electromagnetic induction method or a magnetic field with respect to the power receiving unit. A power transmission unit that supplies power in a contactless manner by a resonance method is provided.
 また、本発明に係る内視鏡装置は、上記発明において、前記内視鏡カメラヘッドは、前記信号送信部が出力した前記光信号を受信する信号受信部と、前記信号受信部が前記光信号を受信した場合、前記送電部による給電を停止させる電力制御部をさらに備えることを特徴とする。 In the endoscope apparatus according to the present invention, the endoscope camera head includes a signal receiving unit that receives the optical signal output from the signal transmitting unit, and the signal receiving unit includes the optical signal. And a power control unit that stops power feeding by the power transmission unit when the power is received.
 また、本発明に係る内視鏡装置は、上記発明において、前記機能デバイスは、前記挿入部の先端に設けられた観察窓の曇りを防止する曇り防止部、前記被検体に照明光を照射する照明部、前記被検体に処置を行う処置デバイス、前記挿入部に関する情報を記録するメモリおよび前記挿入部に設けられた電力を蓄積する電力ストレージのいずれか1つ以上であることを特徴とする。 In the endoscope apparatus according to the present invention as set forth in the invention described above, the functional device irradiates the subject with illumination light, a fog prevention unit for preventing fogging of an observation window provided at a distal end of the insertion part, and the subject. It is one or more of an illumination unit, a treatment device that performs treatment on the subject, a memory that records information about the insertion unit, and a power storage that stores electric power provided in the insertion unit.
 また、本発明に係る内視鏡装置は、上記発明において、前記受電部は、第1のコイルと、前記第1のコイルを介して前記電力を受電するための受電回路と、を有し、前記送電部は、第2のコイルと、前記第2のコイルを介して前記電力を送信する送信回路と、を有することを特徴とする。 Moreover, the endoscope apparatus according to the present invention is the above invention, wherein the power receiving unit includes a first coil and a power receiving circuit for receiving the power via the first coil, The power transmission unit includes a second coil and a transmission circuit that transmits the power through the second coil.
 また、本発明に係る内視鏡装置は、前記挿入部の基端側に接続され、前記内視鏡を操作する指示信号の入力を受け付ける操作部と、を備え、前記操作部は、前記受電部に対して電磁誘導方式または磁界共鳴方式によって非接触で電力を給電する送電部を備えることを特徴とする。 In addition, the endoscope apparatus according to the present invention includes an operation unit that is connected to a proximal end side of the insertion unit and that receives an input of an instruction signal for operating the endoscope, and the operation unit receives the power reception It is characterized by comprising a power transmission unit that supplies power to the unit in a non-contact manner by an electromagnetic induction method or a magnetic field resonance method.
 また、本発明に係る内視鏡装置は、上記発明において、前記操作部は、前記信号送信部が出力した前記光信号を受信する信号受信部と、前記信号受信部が前記光信号を受信した場合、前記送電部による給電を停止させる電力制御部をさらに備えることを特徴とする。 In the endoscope apparatus according to the present invention, in the above invention, the operation unit receives the optical signal output from the signal transmission unit, and the signal reception unit receives the optical signal. In this case, the power transmission device further includes a power control unit that stops power feeding by the power transmission unit.
 また、本発明に係る内視鏡装置は、上記発明において、前記挿入部内に配置され、前記被検体を撮像して画像信号を生成する撮像部と、前記撮像部が生成した前記画像信号を前記光信号に変換して外部へ送信する画像信号送信部と、を備え、前記機能デバイスは、前記撮像部であることを特徴とする。 The endoscope apparatus according to the present invention is the endoscope apparatus according to the above-described invention, wherein the endoscope device is disposed in the insertion unit and images the subject to generate an image signal, and the image signal generated by the imaging unit is An image signal transmission unit that converts the signal into an optical signal and transmits the signal to the outside, wherein the functional device is the imaging unit.
 また、本発明に係る内視鏡装置は、上記発明において、前記挿入部は、前記被検体内に挿入される先端部と、前記被検体内に挿入された際に露出する基端部と、を有し、前記機能デバイスおよび前記異常検出部は、前記先端部に配置されることを特徴とする。 Further, in the endoscope apparatus according to the present invention, in the above invention, the insertion portion includes a distal end portion that is inserted into the subject, a proximal end portion that is exposed when the insertion portion is inserted into the subject, The functional device and the abnormality detection unit are arranged at the tip.
 本発明によれば、非接触の無線によって給電する場合であっても、通信状態に関わらず、確実にエラー信号を送信することができるという効果を奏する。 According to the present invention, it is possible to reliably transmit an error signal regardless of the communication state even when power is supplied by non-contact wireless.
図1は、本発明の実施の形態1に係る内視鏡システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an endoscope system according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1に係る内視鏡システムの要部の機能構成を示すブロック図である。FIG. 2 is a block diagram showing a functional configuration of a main part of the endoscope system according to Embodiment 1 of the present invention. 図3は、本発明の実施の形態1に係る挿入部が実行する処理の概要を示すフローチャートである。FIG. 3 is a flowchart showing an outline of processing executed by the insertion unit according to Embodiment 1 of the present invention. 図4は、本発明の実施の形態2に係る内視鏡システムの概略構成を示す図である。FIG. 4 is a diagram showing a schematic configuration of the endoscope system according to Embodiment 2 of the present invention. 図5は、本発明の実施の形態2に係る内視鏡システムの要部の機能構成を示すブロック図である。FIG. 5 is a block diagram illustrating a functional configuration of a main part of the endoscope system according to the second embodiment of the present invention. 図6は、本発明の実施の形態2に係る先端部が実行する処理の概要を示すフローチャートである。FIG. 6 is a flowchart showing an outline of processing executed by the distal end portion according to Embodiment 2 of the present invention.
 以下、本発明を実施するための形態を図面とともに詳細に説明する。なお、以下の実施の形態により本発明が限定されるものではない。また、以下の説明において参照する各図は、本発明の内容を理解でき得る程度に形状、大きさ、および位置関係を概略的に示しているに過ぎない。即ち、本発明は、各図で例示された形状、大きさ、および位置関係のみに限定されるものではない。さらに、図面の記載において、同一の部分には同一の符号を付して説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the following embodiment. The drawings referred to in the following description only schematically show the shape, size, and positional relationship so that the contents of the present invention can be understood. That is, the present invention is not limited only to the shape, size, and positional relationship illustrated in each drawing. Further, in the description of the drawings, the same portions will be described with the same reference numerals.
(実施の形態1)
 〔内視鏡システムの概略構成〕
 図1は、本発明の実施の形態1に係る内視鏡システムの概略構成を示す図である。
 図1に示す内視鏡システム1は、医療分野に用いられ、生体等の被検体内を観察するシステムである。なお、本実施の形態1では、内視鏡システム1として、図1に示す硬性鏡(内視鏡である挿入部2)を用いた硬性内視鏡システムについて説明するが、これに限定されることなく、軟性の内視鏡を備えた内視鏡システムであってもよい。もちろん、医療分野以外であっても適用することができ、工業内視鏡を備えた工業用内視鏡システムであっても適用することができる。
(Embodiment 1)
[Schematic configuration of endoscope system]
FIG. 1 is a diagram showing a schematic configuration of an endoscope system according to Embodiment 1 of the present invention.
An endoscope system 1 shown in FIG. 1 is a system that is used in the medical field and observes the inside of a subject such as a living body. In addition, although this Embodiment 1 demonstrates the rigid endoscope system using the rigid endoscope (insertion part 2 which is an endoscope) shown in FIG. 1 as the endoscope system 1, it is limited to this. Without limitation, the endoscope system may include a flexible endoscope. Of course, the present invention can be applied even outside the medical field, and can be applied even to an industrial endoscope system including an industrial endoscope.
 図1に示すように、内視鏡システム1は、挿入部2と、光源装置3と、ライトガイド4と、内視鏡カメラヘッド5(内視鏡用撮像装置)と、第1の伝送ケーブル6と、表示装置7と、第2の伝送ケーブル8と、制御装置9と、第3の伝送ケーブル10と、を備える。 As shown in FIG. 1, an endoscope system 1 includes an insertion portion 2, a light source device 3, a light guide 4, an endoscope camera head 5 (an endoscope imaging device), and a first transmission cable. 6, a display device 7, a second transmission cable 8, a control device 9, and a third transmission cable 10.
 挿入部2は、硬質または少なくとも一部が軟性で細長形状をなす。挿入部2は、患者等の被検体内に挿入され、先端に設けられた観察窓(図示せず)を介して被検体の観察像を結像する。挿入部2は、内部に観察窓を介して観察像を結像する光学系(例えば対物レンズ等)や所定の機能を有する機能デバイスを有し、患者等の被検体内に挿入される先端部21と、挿入部2の先端部21に設けられたデバイスを制御する制御基板が設けられた基端部22と、内視鏡カメラヘッド5に着脱自在に接続される接眼部23と、を有する。なお、本実施の形態1では、挿入部2が内視鏡として機能する。 The insertion part 2 is hard or at least partly soft and has an elongated shape. The insertion unit 2 is inserted into a subject such as a patient and forms an observation image of the subject through an observation window (not shown) provided at the tip. The insertion section 2 has an optical system (for example, an objective lens) that forms an observation image through an observation window and a functional device having a predetermined function, and is inserted into a subject such as a patient. 21, a proximal end portion 22 provided with a control board for controlling a device provided at the distal end portion 21 of the insertion portion 2, and an eyepiece portion 23 detachably connected to the endoscope camera head 5. Have. In the first embodiment, the insertion unit 2 functions as an endoscope.
 光源装置3は、ライトガイド4の一端が接続され、制御装置9による制御のもと、ライトガイド4の一端に被検体内を照明するための可視光または特殊光を供給する。 The light source device 3 is connected to one end of the light guide 4 and supplies visible light or special light for illuminating the inside of the subject to one end of the light guide 4 under the control of the control device 9.
 ライトガイド4は、一端が光源装置3に着脱自在に接続されるとともに、他端が挿入部2に着脱自在に接続される。ライトガイド4は、光源装置3から供給された光を一端から他端に伝達し、挿入部2に供給する。 The light guide 4 has one end detachably connected to the light source device 3 and the other end detachably connected to the insertion portion 2. The light guide 4 transmits light supplied from the light source device 3 from one end to the other end and supplies the light to the insertion portion 2.
 内視鏡カメラヘッド5は、挿入部2の接眼部23が着脱自在に接続される。内視鏡カメラヘッド5は、制御装置9による制御のもと、挿入部2によって結像された観察像を受光して光電変換を行うことによって画像信号(電気信号)を生成し、この生成した画像信号を第1の伝送ケーブル6を介して制御装置9へ出力する。なお、本実施の形態1では、挿入部2と内視鏡カメラヘッド5が内視鏡装置として機能する。 The endoscope camera head 5 is detachably connected to the eyepiece 23 of the insertion section 2. The endoscope camera head 5 generates an image signal (electrical signal) by receiving an observation image formed by the insertion unit 2 and performing photoelectric conversion under the control of the control device 9, and this generation is performed. The image signal is output to the control device 9 via the first transmission cable 6. In the first embodiment, the insertion unit 2 and the endoscope camera head 5 function as an endoscope apparatus.
 第1の伝送ケーブル6は、一端がビデオコネクタ61を介して制御装置9に着脱自在に接続され、他端がカメラヘッドコネクタ62を介して内視鏡カメラヘッド5に接続される。第1の伝送ケーブル6は、内視鏡カメラヘッド5から出力される画像信号を制御装置9へ伝送するとともに、制御装置9から出力される制御信号、同期信号、クロックおよび電力等を内視鏡カメラヘッド5に伝送する。 One end of the first transmission cable 6 is detachably connected to the control device 9 via the video connector 61, and the other end is connected to the endoscope camera head 5 via the camera head connector 62. The first transmission cable 6 transmits an image signal output from the endoscope camera head 5 to the control device 9 and transmits a control signal, a synchronization signal, a clock, power, and the like output from the control device 9 to the endoscope. Transmit to the camera head 5.
 表示装置7は、制御装置9による制御のもと、制御装置9において処理された映像信号に基づく観察画像や内視鏡システム1に関する各種情報を表示する。表示装置7は、液晶または有機EL(Electro Luminescence)等を用いて構成される。また、表示装置7は、モニタサイズが31インチ以上、好ましく55インチ以上である。表示装置7は、液晶または有機EL(Electro Luminescence)等を用いて構成される。なお、表示装置7は、モニタサイズを31インチ以上で構成しているが、これに限定されることなく、他のモニタサイズ、例えば2メガピクセル(例えば1920×1080ピクセルの所謂2Kの解像度)以上の解像度、好ましくは8メガピクセル(例えば3840×2160ピクセルの所謂4Kの解像度)以上の解像度、より好ましくは32メガピクセル(例えば7680×4320ピクセルの所謂8Kの解像度)以上の解像度を有する画像を表示可能なモニタサイズであればよい。 The display device 7 displays an observation image based on the video signal processed in the control device 9 and various information related to the endoscope system 1 under the control of the control device 9. The display device 7 is configured using liquid crystal, organic EL (Electro Luminescence), or the like. The display device 7 has a monitor size of 31 inches or more, preferably 55 inches or more. The display device 7 is configured using liquid crystal, organic EL (Electro Luminescence), or the like. The display device 7 has a monitor size of 31 inches or more. However, the display device 7 is not limited to this, and other monitor sizes, for example, 2 megapixels (for example, a so-called 2K resolution of 1920 × 1080 pixels) or more. An image having a resolution of 8 megapixels (for example, 3840 × 2160 pixels, so-called 4K resolution) or more, more preferably 32 megapixels (for example, 7680 × 4320 pixels, so-called 8K resolution) or more. Any monitor size is possible.
 第2の伝送ケーブル8は、一端が表示装置7に着脱自在に接続され、他端が制御装置9に着脱自在に接続される。第2の伝送ケーブル8は、制御装置9において処理された映像信号を表示装置7に伝送する。 The second transmission cable 8 has one end detachably connected to the display device 7 and the other end detachably connected to the control device 9. The second transmission cable 8 transmits the video signal processed by the control device 9 to the display device 7.
 制御装置9は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)および各種メモリ等を含んで構成され、メモリ(図示せず)に記録されたプログラムに従って、第1の伝送ケーブル6、第2の伝送ケーブル8および第3の伝送ケーブル10の各々を介して、光源装置3、内視鏡カメラヘッド5および表示装置7の動作を統括的に制御する。 The control device 9 includes a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), various memories, and the like, and according to a program recorded in the memory (not shown), the first transmission cable 6 and the second transmission cable 6 The operations of the light source device 3, the endoscope camera head 5 and the display device 7 are comprehensively controlled through the transmission cable 8 and the third transmission cable 10, respectively.
 第3の伝送ケーブル10は、一端が光源装置3に着脱自在に接続され、他端が制御装置9に着脱自在に接続される。第3の伝送ケーブル10は、制御装置9からの制御信号を光源装置3に伝送する。 The third transmission cable 10 has one end detachably connected to the light source device 3 and the other end detachably connected to the control device 9. The third transmission cable 10 transmits a control signal from the control device 9 to the light source device 3.
 〔内視鏡システムの要部の機能構成〕
 次に、上述した内視鏡システム1の要部の機能構成について説明する。図2は、内視鏡システム1の要部の機能構成を示すブロック図である。
[Functional configuration of main part of endoscope system]
Next, the functional configuration of the main part of the endoscope system 1 described above will be described. FIG. 2 is a block diagram illustrating a functional configuration of a main part of the endoscope system 1.
 〔挿入部の構成〕
 まず、挿入部2の構成について説明する。
 挿入部2は、図2に示すように、細形状をなし、被検体内に挿入される先端部21と、挿入部2が被検体内に挿入された際に露出する基端部22と、を有する。先端部21および基端部22は、一体的に形成される。
(Composition of insertion part)
First, the structure of the insertion part 2 is demonstrated.
As shown in FIG. 2, the insertion portion 2 has a thin shape, a distal end portion 21 that is inserted into the subject, a proximal end portion 22 that is exposed when the insertion portion 2 is inserted into the subject, Have The distal end portion 21 and the proximal end portion 22 are integrally formed.
 先端部21は、機能デバイスとして機能する曇り防止部211と、駆動部212と、温度検出部213と、電流検出部214と、を有する。 The front end portion 21 includes a fog prevention unit 211 that functions as a functional device, a drive unit 212, a temperature detection unit 213, and a current detection unit 214.
 曇り防止部211は、先端部21の図示しない光学系または観察窓に当接または周辺に設けられ、駆動部212を介して印加された電圧に基づいて、発熱することによって観察窓や光学系を加熱または温めることで、観察窓や光学系に発生する曇りを防止する。曇り防止部211は、例えば発熱部材やヒータ等を用いて構成される。なお、曇り防止部211は、加熱だけでなく、例えば観察窓に対して冷却してもよい。この場合、曇り防止部211をペルチェ素子やヒートパイプ等で構成するようにしてもよい。また、本実施の形態1では、曇り防止部211が機能デバイスとして機能する。 The anti-fogging part 211 is provided in contact with or around the optical system or observation window (not shown) of the tip part 21 and generates heat based on the voltage applied via the drive part 212 to make the observation window or optical system. Heating or warming prevents fogging that occurs in the observation window and optical system. The fog prevention unit 211 is configured using, for example, a heat generating member or a heater. Note that the anti-fogging unit 211 may be cooled not only for heating but also for the observation window, for example. In this case, the fog prevention unit 211 may be configured with a Peltier element, a heat pipe, or the like. In the first embodiment, the anti-fogging unit 211 functions as a functional device.
 駆動部212は、後述する基端部22の第1の制御部225による制御のもと、後述する基端部22の電源生成部222から給電された電力を所定の電圧に調整して曇り防止部211に電圧を印加する。 The drive unit 212 controls the power supplied from the power generation unit 222 of the base end 22 described later to a predetermined voltage under the control of the first control unit 225 of the base end 22 described later to prevent fogging. A voltage is applied to the unit 211.
 温度検出部213は、曇り防止部211の温度を検出し、この検出結果を後述する基端部22の第1の制御部225へ出力する。温度検出部213は、例えばサーミスタ等を用いて構成される。なお、温度検出部213は、複数のサーミスタ等を用いて構成し、この複数のサーミスタの各々が検出した温度に関する検出結果を後述する基端部22の第1の制御部225へ出力するようにしてもよい。なお、本実施の形態1では、温度検出部213が異常検出部として機能する。 The temperature detection unit 213 detects the temperature of the anti-fogging unit 211 and outputs the detection result to the first control unit 225 of the base end 22 described later. The temperature detection unit 213 is configured using, for example, a thermistor. The temperature detection unit 213 is configured using a plurality of thermistors and the like, and outputs a detection result related to the temperature detected by each of the plurality of thermistors to the first control unit 225 of the base end 22 described later. May be. In the first embodiment, the temperature detection unit 213 functions as an abnormality detection unit.
 電流検出部214は、曇り防止部211に給電された電流値を検出し、この検出結果を後述する基端部22の第1の制御部225へ出力する。 The current detection unit 214 detects the current value supplied to the anti-fogging unit 211, and outputs the detection result to the first control unit 225 of the base end 22 described later.
 基端部22は、受電部221と、電源生成部222と、第1の記録部223と、信号送信部224と、第1の制御部225と、を有する。 The base end unit 22 includes a power receiving unit 221, a power generation unit 222, a first recording unit 223, a signal transmission unit 224, and a first control unit 225.
 受電部221は、後述する内視鏡カメラヘッド5の送電部54から発せられた磁界を受けて電力を発生し、この発生した電力を電源生成部222へ出力する。具体的には、受電部221は、電磁誘導方式または磁界共鳴方式によって非接触の無線によって外部から電力を受電する。具体的には、受電部221は、受電コイル221a(第1のコイル)と、受電コイル221aを介して電力を受電する受電回路221bと、を有する。受電コイル221aは、磁界共鳴方式により挿入部2に非接触で給電を行うものであり、後述する送電部54の送電コイル541と磁気結合し、送電コイル541により生じた交番磁界(磁束)によって誘電電流を発生する。受電回路221bは、受電コイル221aに生じる誘電電流を整流して電源生成部222へ出力する。 The power reception unit 221 receives power from a magnetic field generated from the power transmission unit 54 of the endoscope camera head 5 to be described later, generates power, and outputs the generated power to the power generation unit 222. Specifically, the power receiving unit 221 receives electric power from the outside by non-contact radio by an electromagnetic induction method or a magnetic field resonance method. Specifically, the power receiving unit 221 includes a power receiving coil 221a (first coil) and a power receiving circuit 221b that receives power via the power receiving coil 221a. The power receiving coil 221a feeds power to the insertion portion 2 in a non-contact manner by a magnetic field resonance method. The power receiving coil 221a is magnetically coupled to a power transmitting coil 541 of a power transmitting portion 54 described later and is dielectrically generated by an alternating magnetic field (magnetic flux) generated by the power transmitting coil 541. Generate current. The power reception circuit 221 b rectifies the dielectric current generated in the power reception coil 221 a and outputs the rectified current to the power generation unit 222.
 電源生成部222は、受電部221から入力された電力の電圧を、先端部21の各種デバイスの電圧に調整して出力する。具体的には、電源生成部222は、受電部221から給電された電力の電圧を、例えば5Vを3.3Vに変換して、駆動部212、温度検出部213、信号送信部224および第1の制御部225それぞれに給電する。電源生成部222は、電圧レギュレータIC等を用いて構成される。 The power generation unit 222 adjusts the voltage of the power input from the power reception unit 221 to the voltage of various devices at the tip 21 and outputs the adjusted voltage. Specifically, the power generation unit 222 converts the voltage of the power supplied from the power reception unit 221 to, for example, 5V to 3.3V, and drives the drive unit 212, the temperature detection unit 213, the signal transmission unit 224, and the first Power is supplied to each of the control units 225. The power generation unit 222 is configured using a voltage regulator IC or the like.
 第1の記録部223は、挿入部2が実行する各種プログラムを記録する。第1の記録部223は、揮発性メモリや不揮発性メモリを用いて構成される。 The first recording unit 223 records various programs executed by the insertion unit 2. The first recording unit 223 is configured using a volatile memory or a nonvolatile memory.
 信号送信部224は、第1の制御部225から出力された信号を光信号に変換して内視鏡カメラヘッド5へ送信する。信号送信部224は、E/O変換回路を用いて構成される。例えば、信号送信部224は、信号を光送信(赤外線)する赤外線発光素子を用いて構成され、IrDA(Infrared Date Association)による非接触の光データ通信によって信号を内視鏡カメラヘッド5へ送信する。なお、信号送信部224は、他の周知技術の光通信によって内視鏡カメラヘッド5へ光信号を送信してもよい。 The signal transmission unit 224 converts the signal output from the first control unit 225 into an optical signal and transmits it to the endoscope camera head 5. The signal transmission unit 224 is configured using an E / O conversion circuit. For example, the signal transmission unit 224 is configured using an infrared light emitting element that optically transmits a signal (infrared), and transmits the signal to the endoscope camera head 5 by non-contact optical data communication using IrDA (Infrared Date Association). . Note that the signal transmission unit 224 may transmit an optical signal to the endoscope camera head 5 by optical communication according to another known technique.
 第1の制御部225は、駆動部212を介して曇り防止部211の駆動を制御する。第1の制御部225は、CPU(Central Processing Unit)を用いて構成される。また、第1の制御部225は、温度検出部213の検出結果および電流検出部214の検出結果に基づいて、曇り防止部211の駆動を制御する。また、第1の制御部225は、温度検出部213の検出結果および電流検出部214の検出結果に基づいて、曇り防止部211に異常が生じているか否かを判断し、曇り防止部211に異常が生じている場合、曇り防止部211に異常が生じていることを示す動作エラー信号を信号送信部224へ出力する。 The first control unit 225 controls the driving of the fog prevention unit 211 via the drive unit 212. The first control unit 225 is configured using a CPU (Central Processing Unit). Further, the first control unit 225 controls the driving of the fog prevention unit 211 based on the detection result of the temperature detection unit 213 and the detection result of the current detection unit 214. Further, the first control unit 225 determines whether or not an abnormality has occurred in the fog prevention unit 211 based on the detection result of the temperature detection unit 213 and the detection result of the current detection unit 214, and When an abnormality has occurred, an operation error signal indicating that an abnormality has occurred in the fog prevention unit 211 is output to the signal transmission unit 224.
 〔内視鏡カメラヘッドの構成〕
 次に、内視鏡カメラヘッド5の構成について説明する。
 内視鏡カメラヘッド5は、撮像部51と、A/D変換部52と、E/O変換部53と、送電部54と、電力制御部55と、信号受信部56と、第2の入力部57と、第2の記録部58と、第2の制御部59と、を有する。
[Configuration of endoscope camera head]
Next, the configuration of the endoscope camera head 5 will be described.
The endoscope camera head 5 includes an imaging unit 51, an A / D conversion unit 52, an E / O conversion unit 53, a power transmission unit 54, a power control unit 55, a signal reception unit 56, and a second input. A unit 57, a second recording unit 58, and a second control unit 59.
 撮像部51は、第2の制御部59による制御のもと、挿入部2の光学系(図示せず)が結像した観察像を受光して光電変換を行うことによって画像信号を生成してA/D変換部52へ出力する。撮像部51は、CMOS(Complementary Metal Oxide Semiconductor)やCCD(Charge Coupled Device)等のイメージセンサ等を用いて構成される。撮像部51に用いられるイメージセンサの有効画素数は、8メガピクセル(例えば3840×2160ピクセルの所謂4Kの解像度)以上であり、好ましくは32メガピクセル(例えば7680×4320ピクセルの所謂8Kの解像度)以上である。なお、光学系にズーム機能やフォーカス機能を設けてもよい。もちろん、撮像部51の光学系を省略してもよい。 The imaging unit 51 generates an image signal by receiving an observation image formed by an optical system (not shown) of the insertion unit 2 and performing photoelectric conversion under the control of the second control unit 59. The data is output to the A / D converter 52. The imaging unit 51 is configured using an image sensor such as a CMOS (Complementary Metal Oxide Semiconductor) or a CCD (Charge Coupled Device). The number of effective pixels of the image sensor used in the imaging unit 51 is 8 megapixels (for example, 3840 × 2160 pixels, so-called 4K resolution) or more, and preferably 32 megapixels (for example, 7680 × 4320 pixels, so-called 8K resolution). That's it. Note that a zoom function and a focus function may be provided in the optical system. Of course, the optical system of the imaging unit 51 may be omitted.
 A/D変換部52は、第2の制御部59による制御のもと、撮像部51から入力されたアナログの画像信号に対してA/D変換処理を行ってデジタルの画像データを生成し、このデジタルの画像データをE/O変換部53へ出力する。 The A / D conversion unit 52 performs A / D conversion processing on the analog image signal input from the imaging unit 51 under the control of the second control unit 59 to generate digital image data, The digital image data is output to the E / O converter 53.
 E/O変換部53は、第2の制御部59による制御のもと、A/D変換部52から入力されたデジタルの画像データに対してE/O変換処理を行って光信号の画像データを生成し、この光信号の画像データを制御装置9へ出力する。 The E / O conversion unit 53 performs an E / O conversion process on the digital image data input from the A / D conversion unit 52 under the control of the second control unit 59 to perform image data of the optical signal. And output the image data of this optical signal to the control device 9.
 送電部54は、電力制御部55による制御のもと、電磁誘導方式または磁界共鳴方式によって磁界を発生させて、受電部221へ電力を給電する。送電部54は、送電コイル541(第2のコイル)と、送電コイル541を介して電力を送信する送信回路542と、を用いて構成される。 The power transmission unit 54 supplies power to the power reception unit 221 by generating a magnetic field by an electromagnetic induction method or a magnetic field resonance method under the control of the power control unit 55. The power transmission unit 54 includes a power transmission coil 541 (second coil) and a transmission circuit 542 that transmits power via the power transmission coil 541.
 電力制御部55は、第2の制御部59による制御のもと、送電部54から受電部221へ給電される電力を制御する。具体的には、電力制御部55は、送電部54が発生させる磁界の強度を制御することによって、送電部54から受電部221へ給電される電力を制御する。 The power control unit 55 controls the power supplied from the power transmission unit 54 to the power reception unit 221 under the control of the second control unit 59. Specifically, the power control unit 55 controls the power supplied from the power transmission unit 54 to the power reception unit 221 by controlling the strength of the magnetic field generated by the power transmission unit 54.
 第2の入力部57は、内視鏡カメラヘッド5に関する各種の指示信号の入力を受け付け、この受け付けた指示信号を第2の制御部59へ出力する。具体的には、第2の入力部57は、撮像部51に撮影を指示するレリーズ信号やキャプチャー信号の入力を受け付け、この受け付けたレリーズ信号やキャプチャー信号を第2の制御部59へ出力する。第2の入力部57は、スイッチ、ボタンおよびジョグダイヤル等を用いて構成される。 The second input unit 57 receives input of various instruction signals related to the endoscope camera head 5, and outputs the received instruction signals to the second control unit 59. Specifically, the second input unit 57 receives an input of a release signal and a capture signal instructing the imaging unit 51 to perform shooting, and outputs the received release signal and capture signal to the second control unit 59. The second input unit 57 is configured using a switch, a button, a jog dial, and the like.
 第2の記録部58は、内視鏡カメラヘッド5が実行する各種プログラムや処理中のデータ等を記録する。第2の記録部58は、揮発性メモリや不揮発性メモリを用いて構成される。 The second recording unit 58 records various programs executed by the endoscope camera head 5, data being processed, and the like. The second recording unit 58 is configured using a volatile memory or a nonvolatile memory.
 信号受信部56は、信号送信部224から送信された光信号を受信し、受信した光信号を電気信号に変換して第2の制御部59へ出力する。信号受信部56は、O/E変換回路を用いて構成される。例えば、信号受信部56は、光信号を受信する受光素子(フォトダイオードやフォトトランジスタ等)を用いて構成される。 The signal reception unit 56 receives the optical signal transmitted from the signal transmission unit 224, converts the received optical signal into an electrical signal, and outputs the electrical signal to the second control unit 59. The signal receiving unit 56 is configured using an O / E conversion circuit. For example, the signal receiving unit 56 is configured using a light receiving element (such as a photodiode or a phototransistor) that receives an optical signal.
 第2の制御部59は、内視鏡カメラヘッド5の各部を統括的に制御する。また、第2の制御部59は、信号受信部56から動作エラー信号が入力された場合、電力制御部55に送電部54に電力を給電させることを停止させる。第2の制御部59は、CPU等を用いて構成される。 The second control unit 59 controls each part of the endoscope camera head 5 in an integrated manner. In addition, when the operation error signal is input from the signal receiving unit 56, the second control unit 59 causes the power control unit 55 to stop supplying power to the power transmission unit 54. The second control unit 59 is configured using a CPU or the like.
 〔制御装置の構成〕
 次に、制御装置9の構成について説明する。
 制御装置9は、O/E変換部91と、画像処理部92と、第3の入力部93と、第3の記録部94と、第3の制御部95と、を備える。
[Configuration of control device]
Next, the configuration of the control device 9 will be described.
The control device 9 includes an O / E conversion unit 91, an image processing unit 92, a third input unit 93, a third recording unit 94, and a third control unit 95.
 O/E変換部91は、第1の伝送ケーブル6を介して内視鏡カメラヘッド5のE/O変換部53から入力された光信号の画像データに対してO/E変換処理を行ってデジタルの画像データに変換して画像処理部92へ出力する。 The O / E conversion unit 91 performs O / E conversion processing on the image data of the optical signal input from the E / O conversion unit 53 of the endoscope camera head 5 via the first transmission cable 6. It is converted into digital image data and output to the image processing unit 92.
 画像処理部92は、O/E変換部91から入力されたデジタルの画像データに対して所定の画像処理を行って表示装置7へ出力する。ここで、所定の画像処理としては、例えばデモザイキング処理、ホワイトバランス処理およびγ補正処理等である。 The image processing unit 92 performs predetermined image processing on the digital image data input from the O / E conversion unit 91 and outputs the digital image data to the display device 7. Here, the predetermined image processing includes, for example, demosaicing processing, white balance processing, and γ correction processing.
 第3の入力部93は、制御装置9に関する各種の指示信号の入力を受け付け、この受け付けた指示信号を第3の制御部95へ出力する。第3の入力部93は、ボタン、スイッチ、タッチパネルおよびジョグダイヤル等を用いて構成される。 The third input unit 93 receives input of various instruction signals related to the control device 9 and outputs the received instruction signals to the third control unit 95. The third input unit 93 is configured using buttons, switches, a touch panel, a jog dial, and the like.
 第3の記録部94は、制御装置9が実行する各種プログラムや処理中のデータ等を記録する。第3の記録部94は、揮発性メモリや不揮発性メモリを用いて構成される。 The third recording unit 94 records various programs executed by the control device 9, data being processed, and the like. The third recording unit 94 is configured using a volatile memory or a nonvolatile memory.
 第3の制御部95は、制御装置9を構成する各部を統括的に制御する。第3の制御部95は、CPU等を用いて構成される。 The third control unit 95 comprehensively controls each unit constituting the control device 9. The third control unit 95 is configured using a CPU or the like.
 〔挿入部の処理〕
 次に、挿入部2が実行する処理について説明する。図3は、挿入部2が実行する処理の概要を示すフローチャートである。
(Processing of the insertion part)
Next, processing executed by the insertion unit 2 will be described. FIG. 3 is a flowchart showing an outline of processing executed by the insertion unit 2.
 図3に示すように、まず、受電部221は、内視鏡カメラヘッド5の送電部54から発せられた磁界を受電して給電を開始する(ステップS101)。 As shown in FIG. 3, first, the power reception unit 221 receives a magnetic field generated from the power transmission unit 54 of the endoscope camera head 5 and starts feeding (step S101).
 続いて、第1の制御部225は、駆動部212を駆動させて曇り防止部211の状態を電源オン状態とする(ステップS102)。 Subsequently, the first control unit 225 drives the drive unit 212 to turn the fog prevention unit 211 into a power-on state (step S102).
 その後、温度検出部213は、曇り防止部211の温度を検出し(ステップS103)、電流検出部214は、電流を検出する(ステップS104)。 Thereafter, the temperature detection unit 213 detects the temperature of the anti-fogging unit 211 (step S103), and the current detection unit 214 detects current (step S104).
 第1の制御部225は、温度検出部213が検出した温度と電流検出部214が検出した電流とに基づいて、挿入部2に異常が生じているか否かを判断する(ステップS105)。具体的には、まず、第1の制御部225は、温度検出部213が検出した温度を検出し、この温度が所定の範囲外であるか否かを判断する。そして、第1の制御部225は、温度検出部213が検出した温度が所定の範囲外である場合において、電流検出部214が検出した電流値が所定範囲内であるか否かを判断し、電流値が所定範囲外であるとき、曇り防止部211に異常が生じていると判断する。第1の制御部225が挿入部2に異常が生じていると判断した場合(ステップS105:Yes)、挿入部2は、後述するステップS106へ移行する。これに対して、第1の制御部225が挿入部2に異常が生じていないと判断した場合(ステップS105:No)、挿入部2は、後述するステップS108へ移行する。 The first control unit 225 determines whether there is an abnormality in the insertion unit 2 based on the temperature detected by the temperature detection unit 213 and the current detected by the current detection unit 214 (step S105). Specifically, first, the first control unit 225 detects the temperature detected by the temperature detection unit 213, and determines whether this temperature is outside a predetermined range. The first control unit 225 determines whether or not the current value detected by the current detection unit 214 is within the predetermined range when the temperature detected by the temperature detection unit 213 is outside the predetermined range. When the current value is outside the predetermined range, it is determined that an abnormality has occurred in the fog prevention unit 211. When the first control unit 225 determines that an abnormality has occurred in the insertion unit 2 (step S105: Yes), the insertion unit 2 proceeds to step S106 described below. On the other hand, when the first control unit 225 determines that there is no abnormality in the insertion unit 2 (step S105: No), the insertion unit 2 proceeds to step S108 described later.
 ステップS106において、第1の制御部225は、駆動部212の駆動を停止させることによって、曇り防止部211の状態を電源オフの状態とすることによって停止させる。 In step S106, the first control unit 225 stops the driving of the driving unit 212, thereby setting the fog prevention unit 211 to a power-off state.
 続いて、第1の制御部225は、信号送信部224に挿入部2に異常が生じていることを示す動作エラー信号を内視鏡カメラヘッド5の信号受信部56に向けて送信させる(ステップS107)。具体的には、第1の制御部225は、動作エラー信号を信号送信部224へ出力する。そして、信号送信部224は、第1の制御部225による制御のもと、動作エラー信号を光信号に変換して内視鏡カメラヘッド5の信号受信部56に送信する。これにより、第2の制御部59は、送電部54を介して挿入部2から動作エラー信号を受信した場合において、電力制御部55を制御することによって送電部54による電力の給電を停止させる。さらに、第2の制御部59は、第3の制御部95に送電部54による給電を停止したことを示す信号を送信してもよい。この場合、第3の制御部95は、画像処理部92を介して挿入部2に異常が生じていることを示す情報を表示装置7に表示させてもよい。ステップS107の後、挿入部2は、本処理を終了する。 Subsequently, the first control unit 225 causes the signal transmission unit 224 to transmit an operation error signal indicating that an abnormality has occurred in the insertion unit 2 toward the signal reception unit 56 of the endoscopic camera head 5 (step). S107). Specifically, the first control unit 225 outputs an operation error signal to the signal transmission unit 224. Then, the signal transmission unit 224 converts the operation error signal into an optical signal under the control of the first control unit 225 and transmits it to the signal reception unit 56 of the endoscope camera head 5. Accordingly, when the second control unit 59 receives an operation error signal from the insertion unit 2 via the power transmission unit 54, the second control unit 59 controls the power control unit 55 to stop the power supply by the power transmission unit 54. Further, the second control unit 59 may transmit a signal indicating that the power supply by the power transmission unit 54 is stopped to the third control unit 95. In this case, the third control unit 95 may cause the display device 7 to display information indicating that an abnormality has occurred in the insertion unit 2 via the image processing unit 92. After step S107, the insertion unit 2 ends this process.
 ステップS108において、第1の制御部225は、温度検出部213が検出した温度と電流検出部214が検出した電流とに基づいて、駆動部212の駆動を制御することによって曇り防止部211のオンオフ制御を行う。 In step S108, the first control unit 225 controls the driving of the driving unit 212 based on the temperature detected by the temperature detecting unit 213 and the current detected by the current detecting unit 214, thereby turning on / off the anti-fogging unit 211. Take control.
 続いて、送電部54からの給電が終了した場合(ステップS109:Yes)、第1の制御部225は、駆動部212の駆動を停止させることによって、曇り防止部211の状態を電源オフの状態とすることによって停止させる(ステップS110)。ステップS110の後、挿入部2は、本処理を終了する。 Subsequently, when the power supply from the power transmission unit 54 is completed (step S109: Yes), the first control unit 225 stops the driving of the driving unit 212, thereby changing the state of the fog prevention unit 211 to the power-off state. To stop (step S110). After step S110, the insertion unit 2 ends this process.
 ステップS109において、送電部54からの給電が終了していない場合(ステップS109:No)、挿入部2は、上述したステップS103へ戻る。 In step S109, when the power supply from the power transmission unit 54 is not completed (step S109: No), the insertion unit 2 returns to step S103 described above.
 以上説明した本発明の実施の形態1によれば、非接触の無線によって給電する場合であっても、挿入部2と内視鏡カメラヘッド5との通信状態に関わらず、確実に動作エラー信号を送信することができる。 According to the first embodiment of the present invention described above, even when power is supplied by non-contact radio, an operation error signal can be reliably transmitted regardless of the communication state between the insertion unit 2 and the endoscope camera head 5. Can be sent.
 また、本発明の実施の形態1によれば、受電部221と送電部54の通信状態が悪化した場合であっても、被検体観察や処置の制御に必要な動作を継続することができる。 Further, according to the first embodiment of the present invention, even when the communication state between the power reception unit 221 and the power transmission unit 54 deteriorates, it is possible to continue operations necessary for subject observation and treatment control.
 また、本発明の実施の形態1によれば、無線によって給電を行う場合であっても、第1の制御部225が挿入部2内に設けられた曇り防止部211に対して制御を行うので、複雑な制御を行うことができる。 Further, according to the first embodiment of the present invention, even when power is supplied wirelessly, the first control unit 225 controls the fog prevention unit 211 provided in the insertion unit 2. , Complex control can be performed.
 また、本発明の実施の形態1によれば、第1の制御部225が挿入部2に異常が生じていることを示す動作エラー信号を内視鏡カメラヘッド5の信号受信部56へ向けて信号送信部224に送信させるので、確実に電力の給電を停止させることができる。 Further, according to the first embodiment of the present invention, the first control unit 225 directs the operation error signal indicating that an abnormality has occurred in the insertion unit 2 to the signal reception unit 56 of the endoscope camera head 5. Since the signal is transmitted to the signal transmission unit 224, power supply can be reliably stopped.
 なお、本発明の実施の形態1では、挿入部2の先端部21に設けられた機能デバイスとして曇り防止部211を設けていたが、これに限定されることなく、他の機能デバイスであってもよい。具体的には、本発明の実施の形態1では、曇り防止部211に換えて、被写体に向けて照明光を照射するLED(Light Emitting Diode)ランプを含む照明デバイス(照明部)、被写体を撮像するCMOSやCCD等のイメージデバイス、挿入部2に関する各種情報を記録するメモリデバイス、処置を行う処置デバイスや処置デバイスのアクチュエータ、電力を所定の電圧に調整する電力レギュレータ(Regulator)や電力ストレージデバイス、および挿入部2の内部に設けられた光学系を光軸方向に沿って移動させるアクチュエータであってもよい。例えば、挿入部2の先端部21に照明デバイスを配置した場合、温度検出部213に換えて、挿入部2の姿勢を検出する加速度センサおよびジャイロセンサを先端部21に配置し、この加速度センサおよびジャイロセンサの各々の検出結果に基づいて、照明デバイスの駆動を第1の制御部225が制御するようにしてもよい。このとき、第1の制御部225は、加速度センサおよびジャイロセンサの各々の検出結果に基づいて、挿入部2の所定の軸(例えば光軸)と重力方向とがなす角度が所定値以上(例えば水平以上)である場合、照明デバイスによる照射を停止させるようにすればよい。 In Embodiment 1 of the present invention, the anti-fogging portion 211 is provided as a functional device provided at the distal end portion 21 of the insertion portion 2. However, the present invention is not limited to this, and other functional devices may be used. Also good. Specifically, in the first embodiment of the present invention, instead of the fog prevention unit 211, an illumination device (illumination unit) including an LED (Light Emitting Diode) lamp that irradiates illumination light toward the subject and the subject are imaged. An image device such as a CMOS or CCD, a memory device that records various information about the insertion unit 2, a treatment device that performs treatment, an actuator of the treatment device, a power regulator that regulates power to a predetermined voltage, a power storage device, Alternatively, an actuator that moves the optical system provided in the insertion portion 2 along the optical axis direction may be used. For example, when an illumination device is disposed at the distal end portion 21 of the insertion portion 2, an acceleration sensor and a gyro sensor that detect the posture of the insertion portion 2 are disposed at the distal end portion 21 instead of the temperature detection portion 213. The first controller 225 may control the driving of the lighting device based on the detection results of each gyro sensor. At this time, based on the detection results of the acceleration sensor and the gyro sensor, the first control unit 225 has an angle formed by a predetermined axis (for example, an optical axis) of the insertion unit 2 and the direction of gravity equal to or greater than a predetermined value (for example, If it is horizontal or higher), irradiation with the lighting device may be stopped.
 また、本発明の実施の形態1では、先端部21に電流検出部214を設けていたが、これに限定されることなく、例えば基端部22に電流検出部214を設けてもよい。 In the first embodiment of the present invention, the current detection unit 214 is provided at the distal end portion 21, but the present invention is not limited thereto, and the current detection unit 214 may be provided at the proximal end portion 22, for example.
 また、本発明の実施の形態1では、内視鏡カメラヘッド5に送電部54と電力制御部55とを設けていたが、これに限定されることなく、例えば制御装置9に設けてもよい。もちろん、送電部54と電力制御部55とを中間ユニットや電源ユニットとして別途設けてもよい。 In Embodiment 1 of the present invention, the endoscope camera head 5 is provided with the power transmission unit 54 and the power control unit 55. However, the present invention is not limited thereto, and may be provided in the control device 9, for example. . Of course, the power transmission unit 54 and the power control unit 55 may be separately provided as an intermediate unit or a power supply unit.
(実施の形態2)
 次に、本発明の実施の形態2について説明する。本実施の形態2では、上述した実施の形態1に係る内視鏡システム1と構成が異なるうえ、実行する処理が異なる。具体的には、本実施の形態2では、挿入部に撮像機能を設けるとともに、操作部に制御機能を設ける。以下においては、本実施の形態2に係る内視鏡システムの構成を説明後、本実施の形態2に係る内視鏡システムが実行する処理について説明する。なお、上述した実施の形態1に係る内視鏡システム1と同一の構成には同一の符号を付して説明を省略する。
(Embodiment 2)
Next, a second embodiment of the present invention will be described. In the second embodiment, the configuration is different from the endoscope system 1 according to the first embodiment described above, and the processing to be executed is different. Specifically, in the second embodiment, an imaging function is provided in the insertion unit, and a control function is provided in the operation unit. In the following, after describing the configuration of the endoscope system according to the second embodiment, processing executed by the endoscope system according to the second embodiment will be described. In addition, the same code | symbol is attached | subjected to the structure same as the endoscope system 1 which concerns on Embodiment 1 mentioned above, and description is abbreviate | omitted.
 〔内視鏡システムの概略構成〕
 図4は、本発明の実施の形態2に係る内視鏡システムの概略構成を示す図である。
 図4に示す内視鏡システム1aは、医療分野に用いられ、生体等の被検体内を観察するシステムである。なお、本実施の形態2では、内視鏡システム1aとして、図4に示す内視鏡の先端部を用いた軟性内視鏡システムについて説明するが、これに限定されることなく、硬性の内視鏡を備えた内視鏡システムであってもよい。もちろん、医療分野以外であっても適用することができ、工業内視鏡を備えた工業用内視鏡システムであっても適用することができる。
[Schematic configuration of endoscope system]
FIG. 4 is a diagram showing a schematic configuration of the endoscope system according to Embodiment 2 of the present invention.
An endoscope system 1a shown in FIG. 4 is a system that is used in the medical field and observes the inside of a subject such as a living body. In the second embodiment, a flexible endoscope system using the distal end portion of the endoscope shown in FIG. 4 will be described as the endoscope system 1a. An endoscope system including an endoscope may be used. Of course, the present invention can be applied even outside the medical field, and can be applied even to an industrial endoscope system including an industrial endoscope.
 図4に示すように、内視鏡システム1aは、内視鏡2aと、光源装置3と、第1の伝送ケーブル6aと、表示装置7と、第2の伝送ケーブル8と、制御装置9aと、コネクタ部12と、を備える。 As shown in FIG. 4, the endoscope system 1a includes an endoscope 2a, a light source device 3, a first transmission cable 6a, a display device 7, a second transmission cable 8, and a control device 9a. The connector part 12 is provided.
 内視鏡2aは、第1の伝送ケーブル6aの一部である挿入部100を被検体の体腔内に挿入することによって被検体の体内を撮像して画像信号を制御装置9aへ出力する。また、内視鏡2aは、第1の伝送ケーブル6aの一端側であり、被検体の体腔内に挿入される挿入部100の先端101側に、体内画像の撮像を行う撮像素子を有する先端部21aが設けられているとともに、挿入部100の基端102側に、内視鏡2aに対する各種操作を受け付ける操作部26(基端部)が設けられている。なお、操作部26は、挿入部100に対して着脱自在であってもよいし、固定されていてもよい。また、本実施の形態2では、少なくとも内視鏡2aと操作部26とを含む機構が内視鏡装置として機能する。 The endoscope 2a inserts the insertion portion 100, which is a part of the first transmission cable 6a, into the body cavity of the subject, images the inside of the subject, and outputs an image signal to the control device 9a. Further, the endoscope 2a is one end side of the first transmission cable 6a, and a distal end portion having an image pickup device for capturing an in-vivo image on the distal end 101 side of the insertion portion 100 inserted into the body cavity of the subject. 21 a is provided, and an operation portion 26 (base end portion) that receives various operations on the endoscope 2 a is provided on the proximal end 102 side of the insertion portion 100. The operation unit 26 may be detachable from the insertion unit 100 or may be fixed. In the second embodiment, a mechanism including at least the endoscope 2a and the operation unit 26 functions as an endoscope apparatus.
 第1の伝送ケーブル6aは、内視鏡2aとコネクタ部12とを接続するとともに、内視鏡2aと光源装置3とを接続する。また、第1の伝送ケーブル6aは、内視鏡2aで生成された画像信号をコネクタ部12へ伝搬する。第1の伝送ケーブル6aは、ケーブルや光ファイバ等を用いて構成される。 The first transmission cable 6 a connects the endoscope 2 a and the connector unit 12, and connects the endoscope 2 a and the light source device 3. In addition, the first transmission cable 6 a propagates the image signal generated by the endoscope 2 a to the connector unit 12. The first transmission cable 6a is configured using a cable, an optical fiber, or the like.
 制御装置9aは、コネクタ部12から入力される画像信号に所定の画像処理を施して表示装置7へ出力する。また、制御装置9aは、内視鏡システム1a全体を統括的に制御する。例えば、制御装置9aは、光源装置3が出射する照明光を切り替えたり、内視鏡2aの撮像モードを切り替えたりする制御を行う。 The control device 9 a performs predetermined image processing on the image signal input from the connector unit 12 and outputs the image signal to the display device 7. The control device 9a controls the entire endoscope system 1a in an integrated manner. For example, the control device 9a performs control to switch the illumination light emitted from the light source device 3 or switch the imaging mode of the endoscope 2a.
 コネクタ部12は、内視鏡2a、制御装置9aおよび光源装置3に接続され、接続された内視鏡2aが出力する画像信号に所定の信号処理を施すとともに、アナログの画像信号をデジタルの撮像信号に変換(A/D変換)して制御装置9aへ出力する。 The connector unit 12 is connected to the endoscope 2a, the control device 9a, and the light source device 3, and performs predetermined signal processing on an image signal output from the connected endoscope 2a and digitally captures an analog image signal. It converts into a signal (A / D conversion), and outputs it to the control apparatus 9a.
 〔内視鏡システムの要部の機能構成〕
 次に、上述した内視鏡システム1aの要部の機能構成について説明する。図5は、内視鏡システム1aの要部の機能構成を示すブロック図である。
[Functional configuration of main part of endoscope system]
Next, the functional configuration of the main part of the endoscope system 1a described above will be described. FIG. 5 is a block diagram illustrating a functional configuration of a main part of the endoscope system 1a.
 〔内視鏡の構成〕
 まず、先端部21aの構成について説明する。
 先端部21aは、図5に示すように、曇り防止部211と、駆動部212と、温度検出部213と、電流検出部214と、受電部221と、電源生成部222と、第1の記録部223と、第1の信号送信部224aと、第1の制御部225aと、撮像部226と、A/D変換部227と、画像信号送信部228と、第1の信号受信部229と、撮像駆動部230と、異常検出部231と、を有する。
[Configuration of endoscope]
First, the configuration of the tip portion 21a will be described.
As shown in FIG. 5, the front end 21a includes a fog prevention unit 211, a drive unit 212, a temperature detection unit 213, a current detection unit 214, a power reception unit 221, a power generation unit 222, and a first recording. Unit 223, first signal transmission unit 224a, first control unit 225a, imaging unit 226, A / D conversion unit 227, image signal transmission unit 228, first signal reception unit 229, The imaging drive unit 230 and the abnormality detection unit 231 are included.
 第1の信号送信部224aは、第1の制御部225aから出力された信号を光信号に変換して操作部26へ送信する。第1の信号送信部224aは、E/O変換回路を用いて構成される。例えば、第1の信号送信部224aは、信号を光送信(赤外線)する赤外線発光素子を用いて構成され、IrDAによる非接触の光データ通信によって信号を操作部26へ送信する。 The first signal transmission unit 224a converts the signal output from the first control unit 225a into an optical signal and transmits it to the operation unit 26. The first signal transmission unit 224a is configured using an E / O conversion circuit. For example, the first signal transmission unit 224a is configured using an infrared light emitting element that optically transmits a signal (infrared), and transmits the signal to the operation unit 26 by non-contact optical data communication using IrDA.
 第1の制御部225aは、駆動部212を介して曇り防止部211の駆動を制御する。第1の制御部225aは、CPU(Central Processing Unit)を用いて構成される。また、第1の制御部225aは、温度検出部213の検出結果および電流検出部214の検出結果に基づいて、曇り防止部211の駆動を制御する。また、第1の制御部225aは、温度検出部213の検出結果および電流検出部214の検出結果に基づいて、曇り防止部211に異常が生じているか否かを判断し、曇り防止部211に異常が生じている場合、曇り防止部211に異常が生じていることを示す動作エラー信号を第1の信号送信部224aへ出力する。また、第1の制御部225aは、第1の信号受信部229が受信した制御データに基づいて、撮像駆動部230を駆動させて撮像部226に被検体を撮像させる。さらにまた、第1の制御部225aは、異常検出部231が異常を検出した場合、撮像部226に異常が生じていることを示す動作エラー信号を第1の信号送信部224aへ出力する。 The first control unit 225a controls the driving of the anti-fogging unit 211 via the driving unit 212. The first control unit 225a is configured using a CPU (Central Processing Unit). Further, the first control unit 225a controls the driving of the fog prevention unit 211 based on the detection result of the temperature detection unit 213 and the detection result of the current detection unit 214. Further, the first control unit 225a determines whether or not an abnormality has occurred in the fog prevention unit 211 based on the detection result of the temperature detection unit 213 and the detection result of the current detection unit 214, and When an abnormality has occurred, an operation error signal indicating that an abnormality has occurred in the fog prevention unit 211 is output to the first signal transmission unit 224a. Further, the first control unit 225a drives the imaging drive unit 230 based on the control data received by the first signal reception unit 229 to cause the imaging unit 226 to image the subject. Furthermore, when the abnormality detection unit 231 detects an abnormality, the first control unit 225a outputs an operation error signal indicating that an abnormality has occurred in the imaging unit 226 to the first signal transmission unit 224a.
 撮像部226は、第1の制御部225aによる制御のもと、被写体の観察像を受光して光電変換を行うことによって画像信号を生成してA/D変換部227へ出力する。撮像部226は、被写体の観察像を結像する光学系、および光学系が結像した観察像を受光して画像信号を生成するCMOSやCCD等のイメージセンサ等を用いて構成される。なお、撮像部226の光学系にズーム機能やフォーカス機能を設けてもよい。撮像部226に用いられるイメージセンサの有効画素数は、8メガピクセル(例えば3840×2160ピクセルの所謂4Kの解像度)以上であり、好ましくは32メガピクセル(例えば7680×4320ピクセルの所謂8Kの解像度)以上である。なお、撮像部226の光学系にズーム機能やフォーカス機能を設けてもよい。もちろん、撮像部226の光学系を省略してもよい。 The imaging unit 226 receives an observation image of a subject and performs photoelectric conversion under the control of the first control unit 225a to generate an image signal and output the image signal to the A / D conversion unit 227. The imaging unit 226 is configured using an optical system that forms an observation image of a subject, and an image sensor such as a CMOS or CCD that receives the observation image formed by the optical system and generates an image signal. Note that a zoom function or a focus function may be provided in the optical system of the imaging unit 226. The number of effective pixels of the image sensor used for the imaging unit 226 is 8 megapixels (for example, 3840 × 2160 pixels, so-called 4K resolution) or more, and preferably 32 megapixels (for example, 7680 × 4320 pixels, so-called 8K resolution). That's it. Note that a zoom function or a focus function may be provided in the optical system of the imaging unit 226. Of course, the optical system of the imaging unit 226 may be omitted.
 A/D変換部227は、第1の制御部225aによる制御のもと、撮像部226から入力されたアナログの画像信号に対してA/D変換処理を行ってデジタルの画像データを生成し、このデジタルの画像データを画像信号送信部228へ出力する。 The A / D conversion unit 227 performs A / D conversion processing on the analog image signal input from the imaging unit 226 under the control of the first control unit 225a to generate digital image data, The digital image data is output to the image signal transmission unit 228.
 画像信号送信部228は、第1の制御部225aによる制御のもと、A/D変換部227から入力されたデジタルの画像データに対してE/O変換処理を行って光信号の画像データを生成し、この光信号の画像データを操作部26へ出力する。 The image signal transmission unit 228 performs E / O conversion processing on the digital image data input from the A / D conversion unit 227 under the control of the first control unit 225a to convert the image data of the optical signal. The image data of the optical signal is generated and output to the operation unit 26.
 第1の信号受信部229は、操作部26から入力された光信号の制御データを受信し、受信した光信号の制御データを電気信号の制御データに変換して第1の制御部225aへ出力する。第1の信号受信部229は、O/E変換回路を用いて構成される。第1の信号受信部229は、光信号を受光する光信号を受信する受光素子(フォトダイオードやフォトトランジスタ等)を用いて構成される。 The first signal receiving unit 229 receives optical signal control data input from the operation unit 26, converts the received optical signal control data into electrical signal control data, and outputs the electrical signal control data to the first control unit 225a. To do. The first signal receiving unit 229 is configured using an O / E conversion circuit. The first signal receiving unit 229 is configured using a light receiving element (such as a photodiode or a phototransistor) that receives an optical signal that receives an optical signal.
 撮像駆動部230は、第1の制御部225aによる制御のもと、撮像部226を駆動する。例えば、撮像駆動部230は、第1の制御部225aによる制御のもと、撮像部226の撮像タイミング、光学ズームのズーム倍率およびピント位置等を変更する。 The imaging drive unit 230 drives the imaging unit 226 under the control of the first control unit 225a. For example, the imaging drive unit 230 changes the imaging timing of the imaging unit 226, the zoom magnification of the optical zoom, the focus position, and the like under the control of the first control unit 225a.
 異常検出部231は、撮像部226の異常を検出し、この検出結果を第1の制御部225aへ出力する。具体的には、異常検出部231は、制御データに含まれるズーム倍率に基づいて、撮像部226が所定のズーム倍率であるか否かを判断し、所定のズーム倍率でない場合、撮像部226が異常であると検出し、この検出結果を第1の制御部225aへ出力する。異常検出部231は、例えば撮像部226に含まれる光学系の位置を検出するフォトインタラプタ等を用いて構成される。 The abnormality detection unit 231 detects an abnormality of the imaging unit 226 and outputs the detection result to the first control unit 225a. Specifically, the abnormality detection unit 231 determines whether the imaging unit 226 has a predetermined zoom magnification based on the zoom magnification included in the control data. If the imaging unit 226 does not have the predetermined zoom magnification, the imaging unit 226 An abnormality is detected, and the detection result is output to the first control unit 225a. The abnormality detection unit 231 is configured using, for example, a photo interrupter that detects the position of the optical system included in the imaging unit 226.
 次に、操作部26の構成について説明する。
 操作部26は、送電部54と、電力制御部55と、第2の信号受信部56aと、第2の入力部57と、第2の記録部58と、第2の制御部59aと、画像信号受信送信部63と、第2の信号送信部64と、を有する。
Next, the configuration of the operation unit 26 will be described.
The operation unit 26 includes a power transmission unit 54, a power control unit 55, a second signal reception unit 56a, a second input unit 57, a second recording unit 58, a second control unit 59a, and an image. A signal reception / transmission unit 63 and a second signal transmission unit 64 are provided.
 第2の信号受信部56aは、第1の信号送信部224aから送信された光信号を受信し、受信した光信号を電気信号に変換して第2の制御部59aへ出力する。第2の信号受信部56aは、O/E変換回路を用いて構成される。例えば、第2の信号受信部56aは、光信号を受信する受光素子(フォトダイオードやフォトトランジスタ等)を用いて構成される。 The second signal reception unit 56a receives the optical signal transmitted from the first signal transmission unit 224a, converts the received optical signal into an electrical signal, and outputs the electrical signal to the second control unit 59a. The second signal receiving unit 56a is configured using an O / E conversion circuit. For example, the second signal receiving unit 56a is configured using a light receiving element (such as a photodiode or a phototransistor) that receives an optical signal.
 第2の制御部59aは、内視鏡2aの各部を統括的に制御する。具体的には、第2の制御部59aは、第2の信号送信部64を介して曇り防止部211および撮像部226を制御する制御データを第1の信号受信部229へ出力する。また、第2の制御部59aは、第2の信号受信部56aから動作エラー信号が入力された場合、電力制御部55に送電部54に電力を給電させることを停止させる。第2の制御部59aは、CPU等を用いて構成される。 The second control unit 59a comprehensively controls each unit of the endoscope 2a. Specifically, the second control unit 59 a outputs control data for controlling the fog prevention unit 211 and the imaging unit 226 to the first signal reception unit 229 via the second signal transmission unit 64. In addition, when the operation error signal is input from the second signal reception unit 56a, the second control unit 59a stops the power control unit 55 from supplying power to the power transmission unit 54. The second control unit 59a is configured using a CPU or the like.
 画像信号受信送信部63は、先端部21aの画像信号送信部228から送信された光信号の画像信号を受信して所定の画像処理、例えば画像信号を増幅して制御装置9aへ光送信する。画像信号受信送信部63は、光信号を受信する受光素子(フォトダイオードやフォトトランジスタ等)、赤外線発光素子およびFPGA(Field Programmable Gate Array)等を用いて構成される。 The image signal receiving / transmitting unit 63 receives the image signal of the optical signal transmitted from the image signal transmitting unit 228 of the distal end portion 21a, amplifies the image signal, for example, the image signal, and optically transmits the image signal to the control device 9a. The image signal receiving / transmitting unit 63 is configured using a light receiving element (such as a photodiode or a phototransistor) that receives an optical signal, an infrared light emitting element, and an FPGA (Field Programmable Gate Array).
 第2の信号送信部64は、第2の制御部59aによる制御のもと、第2の制御部59aから入力された電気信号の制御データに対してE/O変換処理を行って光信号の制御データを第1の信号受信部229へ送信する。第2の信号送信部64は、信号を光送信(赤外線)する赤外線発光素子を用いて構成され、IrDAによる非接触の光データ通信によって制御データを先端部21aへ送信する。 The second signal transmission unit 64 performs E / O conversion processing on the control data of the electrical signal input from the second control unit 59a under the control of the second control unit 59a, and performs the optical signal transmission. The control data is transmitted to the first signal receiving unit 229. The second signal transmission unit 64 is configured using an infrared light emitting element that optically transmits a signal (infrared rays), and transmits control data to the distal end portion 21a by non-contact optical data communication using IrDA.
 〔制御装置の構成〕
 次に、制御装置9aの構成について説明する。
 制御装置9aは、画像処理部92と、第3の入力部93と、第3の記録部94と、第3の制御部95と、画像受信部96と、を備える。
[Configuration of control device]
Next, the configuration of the control device 9a will be described.
The control device 9a includes an image processing unit 92, a third input unit 93, a third recording unit 94, a third control unit 95, and an image receiving unit 96.
 画像受信部96は、操作部26の画像信号受信送信部63から送信された光信号の画像信号に対してO/E変換処理を行って画像処理部92へ出力する。画像受信部96は、光信号を受信する受光素子(フォトダイオードやフォトトランジスタ等)を用いて構成される。 The image receiving unit 96 performs O / E conversion processing on the image signal of the optical signal transmitted from the image signal receiving / transmitting unit 63 of the operation unit 26 and outputs the signal to the image processing unit 92. The image receiving unit 96 is configured using a light receiving element (such as a photodiode or a phototransistor) that receives an optical signal.
 〔先端部の処理〕
 次に、先端部21aが実行する処理について説明する。図6は、先端部21aが実行する処理の概要を示すフローチャートである。
[Treatment at the tip]
Next, the process which the front-end | tip part 21a performs is demonstrated. FIG. 6 is a flowchart showing an outline of the processing executed by the distal end portion 21a.
 図6に示すように、まず、第1の信号受信部229が操作部26の第2の信号送信部64から制御データを受信した場合(ステップS201:Yes)、第1の制御部225aは、第1の信号受信部229が受信した制御データに基づいて、撮像駆動部230を介して撮像部226を駆動させる(ステップS202)。この場合、第1の制御部225aは、第1の信号受信部229が受信した制御データと温度検出部213が検出した温度と電流検出部214が検出した電流値とに基づいて、駆動部212を駆動させて曇り防止部211のオンオフ制御を行う。 As shown in FIG. 6, first, when the first signal receiving unit 229 receives control data from the second signal transmitting unit 64 of the operation unit 26 (step S201: Yes), the first control unit 225a Based on the control data received by the first signal receiving unit 229, the imaging unit 226 is driven via the imaging drive unit 230 (step S202). In this case, the first control unit 225a is based on the control data received by the first signal reception unit 229, the temperature detected by the temperature detection unit 213, and the current value detected by the current detection unit 214. To turn on / off the fog prevention unit 211.
 続いて、異常検出部231が撮像部226の異常を検出した場合(ステップS203:Yes)、第1の制御部225aは、第1の信号送信部224aに撮像部226に異常が生じていることを示す動作エラー信号を第2の信号受信部56aに向けて送信させる(ステップS204)。これにより、第2の制御部59aは、第2の信号受信部56aを介して先端部21aから動作エラー信号を受信した場合において、電力制御部55を制御することによって送電部54による電力の給電を停止させる。ステップS204の後、先端部21aは、本処理を終了する。 Subsequently, when the abnormality detection unit 231 detects an abnormality in the imaging unit 226 (step S203: Yes), the first control unit 225a has an abnormality in the imaging unit 226 in the first signal transmission unit 224a. Is transmitted to the second signal receiver 56a (step S204). As a result, when the second control unit 59a receives an operation error signal from the distal end portion 21a via the second signal receiving unit 56a, the second control unit 59a supplies power by the power transmission unit 54 by controlling the power control unit 55. Stop. After step S204, the distal end portion 21a ends this process.
 ステップS201において、第1の信号受信部229が操作部26の第2の信号送信部64から制御データを受信していない場合(ステップS201:No)、先端部21aは、ステップS203へ移行する。 In step S201, when the first signal receiving unit 229 has not received control data from the second signal transmitting unit 64 of the operation unit 26 (step S201: No), the distal end portion 21a proceeds to step S203.
 ステップS203において、異常検出部231が撮像部226の異常を検出していない場合(ステップS203:No)、先端部21aは、ステップS205へ移行する。 In step S203, when the abnormality detection unit 231 has not detected an abnormality in the imaging unit 226 (step S203: No), the distal end portion 21a proceeds to step S205.
 続いて、送電部54からの給電が終了した場合(ステップS205:Yes)、先端部21aは、本処理を終了する。この場合、第1の制御部225aは、駆動部212の駆動を停止させることによって、曇り防止部211の状態を電源オフの状態とすることによって停止させるとともに、撮像駆動部230の駆動を停止させることによって、撮像部226の状態を電源オフの状態とすることによって停止させる。 Subsequently, when the power supply from the power transmission unit 54 is completed (step S205: Yes), the distal end portion 21a ends this process. In this case, the first control unit 225a stops the driving of the driving unit 212, thereby stopping the fogging prevention unit 211 by turning off the power, and stopping the driving of the imaging driving unit 230. Accordingly, the imaging unit 226 is stopped by setting the power supply to the off state.
 ステップS205において、送電部54からの給電が終了していない場合(ステップS205:No)、先端部21aは、上述したステップS201へ戻る。 In step S205, when the power supply from the power transmission unit 54 is not completed (step S205: No), the tip 21a returns to step S201 described above.
 以上説明した本発明の実施の形態2によれば、非接触の無線によって給電する場合であっても、先端部21aと操作部26との通信状態に関わらず、確実に動作エラー信号を送信することができる。 According to the second embodiment of the present invention described above, even when power is supplied by non-contact radio, an operation error signal is reliably transmitted regardless of the communication state between the distal end portion 21a and the operation unit 26. be able to.
 また、本発明の実施の形態2によれば、受電部221と送電部54の通信状態が悪化した場合であっても、操作部26を介して撮像部226の画像信号を制御装置9aへ送信することができるので、被検体観察や処置の制御に必要な動作を継続することができる。 Further, according to the second embodiment of the present invention, even when the communication state between the power reception unit 221 and the power transmission unit 54 deteriorates, the image signal of the imaging unit 226 is transmitted to the control device 9a via the operation unit 26. Therefore, it is possible to continue operations necessary for subject observation and treatment control.
 なお、本発明の実施の形態2では、画像信号受信送信部63および第2の信号送信部64を操作部26に設けていたが、これに限定されることなく、例えば、コネクタ部12に設けてもよい。もちろん、電力制御部55、第2の信号受信部56aおよび第2の制御部59aをコネクタ部12に設けてもよい。 In the second embodiment of the present invention, the image signal reception / transmission unit 63 and the second signal transmission unit 64 are provided in the operation unit 26. However, the present invention is not limited thereto, and is provided in the connector unit 12, for example. May be. Of course, the power control unit 55, the second signal receiving unit 56a, and the second control unit 59a may be provided in the connector unit 12.
 また、本発明の実施の形態2では、先端部21aに設けられた機能デバイスとして曇り防止部211および撮像部226を設けていたが、これに限定されることなく、他の機能デバイスであってもよい。具体的には、本発明の実施の形態2では、曇り防止部211に換えて、LED(Light Emitting Diode)ランプの照明デバイス、CMOSやCCD等のイメージデバイス、挿入部2に関する各種情報を記録するメモリ、処置を行う処置デバイスのアクチュエータ、電力を所定の電圧に調整する電力レギュレータ(Regulator)や電力を蓄積する電力ストレージデバイス、および先端部21aの内部に設けられた光学系を光軸方向に沿って移動させるアクチュエータであってもよい。例えば、先端部21aに照明デバイスを配置した場合、温度検出部213に換えて、先端部21aの姿勢を検出する加速度センサおよびジャイロセンサを先端部21aに配置し、この加速度センサおよびジャイロセンサの各々の検出結果に基づいて、照明デバイスの駆動を第1の制御部225aが制御するようにしてもよい。このとき、第1の制御部225aは、加速度センサおよびジャイロセンサの各々の検出結果に基づいて、先端部21aの所定の軸(例えば光軸)と重力方向とがなす角度が所定値以上(例えば水平以上)である場合、照明デバイスによる照射を停止させるようにすればよい。 In Embodiment 2 of the present invention, the anti-fogging unit 211 and the imaging unit 226 are provided as the functional devices provided at the distal end portion 21a. However, the present invention is not limited to this, and other functional devices may be used. Also good. Specifically, in Embodiment 2 of the present invention, instead of the anti-fogging unit 211, various information relating to an LED (Light Emitting Diode) lamp illumination device, an image device such as a CMOS or CCD, and the insertion unit 2 is recorded. A memory, an actuator of a treatment device for performing treatment, a power regulator for adjusting power to a predetermined voltage, a power storage device for storing power, and an optical system provided in the distal end portion 21a along the optical axis direction It may be an actuator to be moved. For example, when an illumination device is arranged at the tip 21a, an acceleration sensor and a gyro sensor that detect the attitude of the tip 21a are arranged at the tip 21a instead of the temperature detector 213, and each of the acceleration sensor and the gyro sensor Based on the detection result, the first control unit 225a may control the driving of the lighting device. At this time, based on the detection results of the acceleration sensor and the gyro sensor, the first control unit 225a determines that the angle formed by a predetermined axis (for example, the optical axis) of the tip 21a and the direction of gravity is equal to or greater than a predetermined value (for example, If it is horizontal or higher), irradiation with the lighting device may be stopped.
(その他の実施の形態)
 上述した本発明の実施の形態1,2に開示されている複数の構成要素を適宜組み合わせることによって、種々の発明を形成することができる。例えば、上述した本発明の実施1,2の形態に記載した全構成要素からいくつかの構成要素を削除してもよい。さらに、上述した本発明の実施の形態1,2で説明した構成要素を適宜組み合わせてもよい。
(Other embodiments)
Various inventions can be formed by appropriately combining a plurality of components disclosed in the first and second embodiments of the present invention. For example, some components may be deleted from all the components described in the first and second embodiments of the present invention. Furthermore, you may combine suitably the component demonstrated in Embodiment 1, 2 of this invention mentioned above.
 また、本発明の実施の形態1,2では、制御装置と光源装置とが別体であったが、一体的に形成してもよい。 In the first and second embodiments of the present invention, the control device and the light source device are separate, but may be integrally formed.
 また、本発明の形態1,2では、上述してきた「部」は、「手段」や「回路」などに読み替えることができる。例えば、制御部は、制御手段や制御回路に読み替えることができる。 In the first and second embodiments of the present invention, the “unit” described above can be read as “means” or “circuit”. For example, the control unit can be read as control means or a control circuit.
 また、本発明の形態1,2では、伝送ケーブルを介して内視鏡カメラヘッドから制御装置へ信号を送信していたが、例えば有線である必要はなく、無線であってもよい。この場合、所定の無線通信規格(例えばWi-Fi(登録商標)やBluetooth(登録商標))に従って、内視鏡カメラヘッドから画像信号等を制御装置へ送信するようにすればよい。もちろん、他の無線通信規格に従って無線通信を行ってもよい。 In Embodiments 1 and 2 of the present invention, the signal is transmitted from the endoscope camera head to the control device via the transmission cable. However, the signal need not be wired, for example, and may be wireless. In this case, an image signal or the like may be transmitted from the endoscope camera head to the control device in accordance with a predetermined wireless communication standard (for example, Wi-Fi (registered trademark) or Bluetooth (registered trademark)). Of course, wireless communication may be performed according to other wireless communication standards.
 また、本発明の形態1,2では、内視鏡システムであったが、例えばカプセル型の内視鏡、被検体を撮像するビデオマイクロスコープ、撮像機能を有する携帯電話および撮像機能を有するタブレット型端末であっても適用することができる。 In Embodiments 1 and 2 of the present invention, an endoscope system is used. For example, a capsule endoscope, a video microscope for imaging a subject, a mobile phone having an imaging function, and a tablet type having an imaging function Even a terminal can be applied.
 なお、本明細書におけるフローチャートの説明では、「まず」、「その後」、「続いて」等の表現を用いて各処理の前後関係を明示していたが、本発明を実施するために必要な処理の順序は、それらの表現によって一意的に定められるわけではない。即ち、本明細書で記載したフローチャートにおける処理の順序は、矛盾のない範囲で変更することができる。 In the description of the flowchart in the present specification, the context of each process is clearly indicated using expressions such as “first”, “after”, “follow”, but is necessary for carrying out the present invention. The order of processing is not uniquely determined by their expression. That is, the order of processing in the flowcharts described in this specification can be changed within a consistent range.
 以上、本願の実施の形態のいくつかを図面に基づいて詳細に説明したが、これらは例示であり、発明の開示の欄に記載の態様を始めとして、当業者の知識に基づいて種々の変形、改良を施した他の形態で本発明を実施することが可能である。 The embodiments of the present application have been described in detail with reference to the drawings. However, these are merely examples, and various modifications can be made based on the knowledge of those skilled in the art including the aspects described in the disclosure section of the invention. It is possible to implement the present invention in other forms that have been improved.
 1,1a 内視鏡システム
 2 挿入部
 2a 内視鏡
 3 光源装置
 4 ライトガイド
 5 内視鏡カメラヘッド
 6,6a 第1の伝送ケーブル
 7 表示装置
 8 第2の伝送ケーブル
 9,9a 制御装置
 10 第3の伝送ケーブル
 12 コネクタ部
 21,21a 先端部
 22 基端部
 23 接眼部
 26 操作部
 51,226 撮像部
 52,227 A/D変換部
 53 E/O変換部
 54 送電部
 55 電力制御部
 56 信号受信部
 56a 第2の信号受信部
 57 第2の入力部
 58 第2の記録部
 59,59a 第2の制御部
 61 ビデオコネクタ
 62 カメラヘッドコネクタ
 63 画像信号受信送信部
 64 第2の信号送信部
 91 O/E変換部
 92 画像処理部
 93 第3の入力部
 94 第3の記録部
 95 第3の制御部
 96 画像受信部
 100 挿入部
 211 曇り防止部
 212 駆動部
 213 温度検出部
 214 電流検出部
 221 受電部
 221a 受電コイル
 221b 受電回路
 222 電源生成部
 223 第1の記録部
 224 信号送信部
 224a 第1の信号送信部
 225,225a 第1の制御部
 228 画像信号送信部
 229 第1の信号受信部
 230 撮像駆動部
 231 異常検出部
 541 送電コイル
 542 送信回路
DESCRIPTION OF SYMBOLS 1,1a Endoscope system 2 Insertion part 2a Endoscope 3 Light source device 4 Light guide 5 Endoscope camera head 6,6a 1st transmission cable 7 Display apparatus 8 2nd transmission cable 9, 9a Control apparatus 10 1st 3 Transmission cable 12 Connector portion 21, 21 a Tip end portion 22 Base end portion 23 Eyepiece portion 26 Operation portion 51, 226 Imaging portion 52, 227 A / D conversion portion 53 E / O conversion portion 54 Power transmission portion 55 Power control portion 56 Signal receiving section 56a Second signal receiving section 57 Second input section 58 Second recording section 59, 59a Second control section 61 Video connector 62 Camera head connector 63 Image signal receiving / transmitting section 64 Second signal transmitting section 91 O / E conversion unit 92 Image processing unit 93 Third input unit 94 Third recording unit 95 Third control unit 96 Image receiving unit 100 Insertion unit 211 Anti-fogging 212 Drive unit 213 Temperature detection unit 214 Current detection unit 221 Power reception unit 221a Power reception coil 221b Power reception circuit 222 Power generation unit 223 First recording unit 224 Signal transmission unit 224a First signal transmission unit 225, 225a First control unit 228 Image signal transmission unit 229 First signal reception unit 230 Imaging drive unit 231 Abnormality detection unit 541 Power transmission coil 542 Transmission circuit

Claims (9)

  1.  被検体内に挿入される挿入部を有する内視鏡装置であって、
     前記挿入部内に配置され、所定の機能を実行する機能デバイスと、
     前記挿入部内に配置され、外部から電磁誘導方式または磁界共鳴方式によって非接触で給電された電力を受電するとともに、該電力を前記機能デバイスへ出力する受電部と、
     前記挿入部に配置され、前記機能デバイスに異常が生じているか否かを検出する異常検出部と、
     前記挿入部内に配置され、前記機能デバイスの駆動を制御し、かつ、前記異常検出部が前記機能デバイスの異常を検出した場合、前記機能デバイスに異常が生じていることを示す動作エラー信号を出力する制御部と、
     前記挿入部内に配置され、前記動作エラー信号を光信号に変換して外部へ送信する信号送信部と、
     を備えることを特徴とする内視鏡装置。
    An endoscope apparatus having an insertion portion to be inserted into a subject,
    A functional device that is disposed in the insertion portion and executes a predetermined function;
    A power receiving unit that is disposed in the insertion unit and receives power supplied from the outside in a non-contact manner by an electromagnetic induction method or a magnetic field resonance method, and outputs the power to the functional device;
    An abnormality detection unit that is disposed in the insertion unit and detects whether an abnormality has occurred in the functional device;
    An operation error signal indicating that an abnormality has occurred in the functional device is output when the abnormality detection unit detects an abnormality in the functional device when it is disposed in the insertion unit and controls the driving of the functional device. A control unit,
    A signal transmission unit that is disposed in the insertion unit and converts the operation error signal into an optical signal and transmits the optical signal to the outside;
    An endoscope apparatus comprising:
  2.  前記内視鏡に対して着脱自在な内視鏡カメラヘッドをさらに備え、
     前記内視鏡カメラヘッドは、
     前記受電部に対して電磁誘導方式または磁界共鳴方式によって非接触で電力を給電する送電部を備えることを特徴とする請求項1に記載の内視鏡装置。
    An endoscope camera head that is detachable from the endoscope;
    The endoscope camera head is
    The endoscope apparatus according to claim 1, further comprising a power transmission unit that supplies electric power to the power reception unit in a contactless manner by an electromagnetic induction method or a magnetic field resonance method.
  3.  前記内視鏡カメラヘッドは、
     前記信号送信部が出力した前記光信号を受信する信号受信部と、
     前記信号受信部が前記光信号を受信した場合、前記送電部による給電を停止させる電力制御部をさらに備えることを特徴とする請求項2に記載の内視鏡装置。
    The endoscope camera head is
    A signal receiver for receiving the optical signal output by the signal transmitter;
    The endoscope apparatus according to claim 2, further comprising a power control unit that stops power feeding by the power transmission unit when the signal reception unit receives the optical signal.
  4.  前記機能デバイスは、
     前記挿入部の先端に設けられた観察窓の曇りを防止する曇り防止部、前記被検体に照明光を照射する照明部、前記被検体に処置を行う処置デバイス、前記挿入部に関する情報を記録するメモリおよび前記挿入部に設けられた電力を蓄積する電力ストレージのいずれか1つ以上であることを特徴とする請求項1に記載の内視鏡装置。
    The functional device is
    Records information related to a fog prevention unit that prevents fogging of an observation window provided at the distal end of the insertion unit, an illumination unit that irradiates the subject with illumination light, a treatment device that performs treatment on the subject, and the insertion unit The endoscope apparatus according to claim 1, wherein the endoscope apparatus is one or more of a memory and a power storage that accumulates power provided in the insertion unit.
  5.  前記受電部は、
     第1のコイルと、
     前記第1のコイルを介して前記電力を受電するための受電回路と、
     を有し、
     前記送電部は、
     第2のコイルと、
     前記第2のコイルを介して前記電力を送信する送信回路と、
     を有することを特徴とする請求項2~4のいずれか1つに記載の内視鏡装置。
    The power receiving unit
    A first coil;
    A power receiving circuit for receiving the power via the first coil;
    Have
    The power transmission unit
    A second coil;
    A transmission circuit for transmitting the power via the second coil;
    The endoscope apparatus according to any one of claims 2 to 4, characterized by comprising:
  6.  前記挿入部の基端側に接続され、前記内視鏡を操作する指示信号の入力を受け付ける操作部と、
     を備え、
     前記操作部は、
     前記受電部に対して電磁誘導方式または磁界共鳴方式によって非接触で電力を給電する送電部を備えることを特徴とする請求項1に記載の内視鏡装置。
    An operation unit connected to a proximal end side of the insertion unit and receiving an input of an instruction signal for operating the endoscope;
    With
    The operation unit is
    The endoscope apparatus according to claim 1, further comprising a power transmission unit that supplies electric power to the power reception unit in a contactless manner by an electromagnetic induction method or a magnetic field resonance method.
  7.  前記操作部は、
     前記信号送信部が出力した前記光信号を受信する信号受信部と、
     前記信号受信部が前記光信号を受信した場合、前記送電部による給電を停止させる電力制御部をさらに備えることを特徴とする請求項6に記載の内視鏡装置。
    The operation unit is
    A signal receiver for receiving the optical signal output by the signal transmitter;
    The endoscope apparatus according to claim 6, further comprising a power control unit that stops power feeding by the power transmission unit when the signal reception unit receives the optical signal.
  8.  前記挿入部内に配置され、前記被検体を撮像して画像信号を生成する撮像部と、
     前記撮像部が生成した前記画像信号を前記光信号に変換して外部へ送信する画像信号送信部と、
     を備え、
     前記機能デバイスは、前記撮像部であることを特徴とする請求項6または7に記載の内視鏡装置。
    An imaging unit arranged in the insertion unit and imaging the subject to generate an image signal;
    An image signal transmission unit that converts the image signal generated by the imaging unit into the optical signal and transmits the optical signal to the outside;
    With
    The endoscope apparatus according to claim 6, wherein the functional device is the imaging unit.
  9.  前記挿入部は、
     前記被検体内に挿入される先端部と、
     前記被検体内に挿入された際に露出する基端部と、
     を有し、
     前記機能デバイスおよび前記異常検出部は、
     前記先端部に配置されることを特徴とする請求項1に記載の内視鏡装置。
    The insertion part is
    A tip inserted into the subject;
    A proximal end exposed when inserted into the subject;
    Have
    The functional device and the abnormality detection unit are:
    The endoscope apparatus according to claim 1, wherein the endoscope apparatus is disposed at the distal end portion.
PCT/JP2018/010754 2017-06-12 2018-03-19 Endoscope device WO2018230068A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018549285A JPWO2018230068A1 (en) 2017-06-12 2018-03-19 Endoscope device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-115374 2017-06-12
JP2017115374 2017-06-12

Publications (1)

Publication Number Publication Date
WO2018230068A1 true WO2018230068A1 (en) 2018-12-20

Family

ID=64659758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/010754 WO2018230068A1 (en) 2017-06-12 2018-03-19 Endoscope device

Country Status (2)

Country Link
JP (1) JPWO2018230068A1 (en)
WO (1) WO2018230068A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020162221A (en) * 2019-03-25 2020-10-01 ソニー・オリンパスメディカルソリューションズ株式会社 Charging apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055697A (en) * 2010-09-10 2012-03-22 Karl Storz Imaging Inc Wireless camera coupling with rotatable coupling
WO2012039398A1 (en) * 2010-09-22 2012-03-29 オリンパスメディカルシステムズ株式会社 Temperature control device for endoscope
JP2013027418A (en) * 2011-07-26 2013-02-07 Fujifilm Corp Electronic endoscope apparatus and electronic endoscope system
WO2017022358A1 (en) * 2015-08-06 2017-02-09 ソニー・オリンパスメディカルソリューションズ株式会社 Medical signal-processing device, medical display device, and medical observation system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160098A (en) * 2014-02-28 2015-09-07 富士フイルム株式会社 endoscope system
JP6122802B2 (en) * 2014-03-19 2017-04-26 富士フイルム株式会社 Endoscope system and endoscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055697A (en) * 2010-09-10 2012-03-22 Karl Storz Imaging Inc Wireless camera coupling with rotatable coupling
WO2012039398A1 (en) * 2010-09-22 2012-03-29 オリンパスメディカルシステムズ株式会社 Temperature control device for endoscope
JP2013027418A (en) * 2011-07-26 2013-02-07 Fujifilm Corp Electronic endoscope apparatus and electronic endoscope system
WO2017022358A1 (en) * 2015-08-06 2017-02-09 ソニー・オリンパスメディカルソリューションズ株式会社 Medical signal-processing device, medical display device, and medical observation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020162221A (en) * 2019-03-25 2020-10-01 ソニー・オリンパスメディカルソリューションズ株式会社 Charging apparatus
JP7248471B2 (en) 2019-03-25 2023-03-29 ソニー・オリンパスメディカルソリューションズ株式会社 Charging device and endoscope system
US11633085B2 (en) 2019-03-25 2023-04-25 Sony Olympus Medical Solutions Inc. Charging device

Also Published As

Publication number Publication date
JPWO2018230068A1 (en) 2019-06-27

Similar Documents

Publication Publication Date Title
JP6106142B2 (en) Endoscope system, endoscope, and connector for endoscope
JP6348854B2 (en) Endoscope processor device, endoscope system, and non-contact power feeding method for endoscope system
JP5547118B2 (en) Image acquisition device and method of operating image acquisition device
US20170150874A1 (en) Capsule endoscope system and magnetic field generating device
US20120010480A1 (en) In-vivo information acquiring system
WO2018230068A1 (en) Endoscope device
JPWO2010147066A1 (en) Intra-subject introduction apparatus and in-vivo information acquisition system
WO2015182185A1 (en) Capsule endoscope apparatus
WO2016092941A1 (en) Capsule endoscope system and image capture method thereof
US20170172401A1 (en) Antifogging device and endoscope device
JP2018143594A (en) Endoscope apparatus
WO2018230067A1 (en) Endoscope apparatus and endoscope system
JP6122802B2 (en) Endoscope system and endoscope
US20170245743A1 (en) Endoscopic system and endoscope
JP4303053B2 (en) Capsule endoscope guidance system
US20160317002A1 (en) Capsule endoscope apparatus
JP2019000165A (en) Endoscope and endoscope device
US9883089B2 (en) Imaging unit
JP4656824B2 (en) Wireless in-vivo information acquisition device
WO2014196287A1 (en) Endoscope system
JP6275344B1 (en) Motion determination device, in-subject introduction device, motion determination method, and program
JP2001286439A (en) Portable endoscope
JP2010220960A (en) Endoscope system and method of controlling the same
JP2015181586A (en) Endoscope apparatus, camera head, and control apparatus
JP6062133B1 (en) Endoscope system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018549285

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18817413

Country of ref document: EP

Kind code of ref document: A1