WO2018229953A1 - Base station, terminal, communication system, and processing method - Google Patents

Base station, terminal, communication system, and processing method Download PDF

Info

Publication number
WO2018229953A1
WO2018229953A1 PCT/JP2017/022216 JP2017022216W WO2018229953A1 WO 2018229953 A1 WO2018229953 A1 WO 2018229953A1 JP 2017022216 W JP2017022216 W JP 2017022216W WO 2018229953 A1 WO2018229953 A1 WO 2018229953A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
data channel
base station
reference signal
speed
Prior art date
Application number
PCT/JP2017/022216
Other languages
French (fr)
Japanese (ja)
Inventor
孝斗 江崎
義博 河▲崎▼
大出 高義
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2017/022216 priority Critical patent/WO2018229953A1/en
Publication of WO2018229953A1 publication Critical patent/WO2018229953A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to a base station, a terminal, a communication system, and a processing method.
  • an object of the present invention is to provide a base station, a terminal, a communication system, and a processing method that can improve overhead by reducing overhead while suppressing deterioration in reception quality.
  • a base station that performs wireless communication between a first terminal and a second terminal different from the first terminal is configured to A first data channel transmitted in a frame format including a reference signal having a repetitive pattern is transmitted to the first terminal, and control information indicating a radio resource of the first data channel is transmitted to the second terminal. Then, a base station, a communication system, and a communication method are proposed in which a second data channel that has fewer reference signals than the first data channel or does not include a reference signal is transmitted to the second terminal.
  • the terminal performs wireless communication with another terminal and the own terminal, and transmits a first data channel transmitted in a frame format including a reference signal having a repetition pattern in the time direction.
  • Control information indicating radio resources of the first data channel from the base station that transmits to the other terminal, and a second data channel that includes fewer reference signals than the first data channel or does not include a reference signal ,
  • a terminal, a communication system, and a communication method that compensate for the offset are proposed.
  • the present invention has an effect that transmission efficiency can be improved by reducing overhead while suppressing deterioration in reception quality.
  • FIG. 1 is a diagram illustrating an example of a communication system according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of a mobile communication system according to the embodiment.
  • FIG. 3 is a diagram illustrating an example of an RS pattern for a low-speed terminal according to the embodiment.
  • FIG. 4 is a diagram illustrating an example of an RS pattern for a high-speed terminal according to the embodiment.
  • FIG. 5 is a sequence diagram illustrating an example of processing in the mobile communication system according to the embodiment.
  • FIG. 6 is a diagram of an example of the base station according to the embodiment.
  • FIG. 7 is a diagram illustrating an example of a hardware configuration of the base station apparatus according to the embodiment.
  • FIG. 8 is a diagram illustrating an example of a terminal according to the embodiment.
  • FIG. 1 is a diagram illustrating an example of a communication system according to an embodiment.
  • FIG. 2 is a diagram illustrating an example of a mobile communication system according to the embodiment.
  • FIG. 3
  • FIG. 9 is a diagram illustrating an example of a hardware configuration of the terminal according to the embodiment.
  • FIG. 10 is a flowchart illustrating an example of processing performed by the base station apparatus according to the embodiment.
  • FIG. 11 is a flowchart illustrating an example of processing performed by the terminal according to the embodiment.
  • FIG. 12 is a diagram illustrating an example of a DCI format for a low-speed terminal according to the embodiment.
  • FIG. 13 is a diagram illustrating an example of a DCI format for a high-speed terminal according to the embodiment.
  • FIG. 14 is a diagram illustrating another example of the RS pattern for low-speed terminals according to the embodiment.
  • FIG. 15 is a diagram illustrating another example of the RS pattern for the high-speed terminal according to the embodiment.
  • FIG. 1 is a diagram illustrating an example of a communication system according to an embodiment.
  • the communication system 100 includes a base station 110, a first terminal 120, and a second terminal 130. Further, the communication system 100 may further include a third terminal 140.
  • the base station 110 includes a communication unit 111 and a control unit 112.
  • the communication unit 111 is a communication unit that performs wireless communication with the first terminal 120, the second terminal 130, and the third terminal 140. Wireless communication by the communication unit 111 is controlled by the control unit 112.
  • the control unit 112 controls the communication unit 111 to transmit a radio signal to the first terminal 120, the second terminal 130, and the third terminal 140.
  • the control unit 112 transmits a first data channel transmitted in a frame format including a reference signal having a repetition pattern in the time direction, that is, a first data channel including a reference signal repeated in the time direction to the first terminal 120.
  • the reference signal that repeats in the time direction is a reference signal having a predetermined pattern that enables frequency offset compensation on the receiving side.
  • the reference signals repeated in the time direction are a plurality of reference signals assigned to different time resources with the same frequency resource in the first data channel.
  • control unit 112 transmits control information indicating radio resources for transmitting the first data channel to the first terminal 120 to the second terminal 130.
  • the control information can be realized by DCI (Downlink Control Information) as an example.
  • the control information may include information indicating the arrangement of reference signals in the first data channel.
  • control unit 112 transmits a second data channel having a reference signal smaller than that of the first data channel to the second terminal 130.
  • the second data channel having fewer reference signals than the first data channel is, for example, a data channel to which a reference signal that is not repeated in time is assigned.
  • the second data channel may include a plurality of reference signals that repeat in the time direction a smaller number of times than the reference signal of the first data channel. .
  • the second data channel may not include the reference signal.
  • the control unit 112 transmits the control information described above to the second terminal 130, the frequency offset of the second data channel based on the reference signal included in the first data channel with respect to the second terminal 130. Can be compensated.
  • the first terminal 120 compensates the frequency offset of the first data channel based on the reference signal included in the first data channel transmitted from the base station 110 to the own terminal. Then, the first terminal 120 decodes user data and the like included in the first data channel compensated for the frequency offset.
  • the second terminal 130 includes a receiving unit 131 and a processing unit 132.
  • the receiving unit 131 receives control information indicating the radio resource of the first data channel described above and the second data channel described above from the base station 110. Further, the reception unit 131 receives a first data channel transmitted from the base station 110 to the first terminal 120 based on the received control information. Then, the reception unit 131 outputs the received first data channel and second data channel to the processing unit 132.
  • the processing unit 132 compensates the frequency offset of the second data channel output from the receiving unit 131 based on at least one of the reference signals included in the first data channel output from the receiving unit 131. For example, the processing unit 132 estimates a frequency offset based on the reference signal included in the first data channel, and compensates the frequency offset of the second data channel based on the estimated frequency offset.
  • the processing unit 132 estimates the phase rotation amount based on the reference signal included in the first data channel, and compensates the phase rotation amount of the second data channel based on the estimated phase rotation amount.
  • the frequency offset of the two data channels may be compensated.
  • the processing unit 132 can estimate the frequency offset and the phase rotation amount by performing correlation calculation between a plurality of reference signals repeated in the time direction in the first data channel, and can compensate the frequency offset. Compensation of frequency offset by correlation calculation between a plurality of reference signals will be described later.
  • the processing unit 132 calculates a frequency offset of the second data channel based on at least a part of the reference signals included in the first data channel and the reference signal included in the second data channel. You may compensate. However, in this case, reference signals used for frequency offset compensation are reference signals having different times.
  • the processing unit 132 decodes user data included in the second data channel in which the frequency offset is compensated.
  • the processing unit 132 decodes user data included in the second data channel in which the frequency offset is compensated.
  • the first data channel transmitted in the frame format including the reference signal having the repetition pattern in the time direction can be transmitted to the first terminal 120.
  • the second data channel that has fewer reference signals than the first data channel or does not include the reference signal can be transmitted to the second terminal 130.
  • the control information indicating the radio resource of the first data channel transmitted in the frame format including the reference signal having the repetition pattern in the time direction can be transmitted to the second terminal 130. It can. Accordingly, the second terminal 130 can compensate for the frequency offset based on the reference signal of the first data channel, and can suppress a decrease in reception quality. For this reason, it is possible to improve the transmission efficiency by reducing the overhead in the radio signal while suppressing the deterioration of the reception quality.
  • the control information can be, for example, information directly indicating the radio resource (for example, frequency) of the first data channel. Further, the control information may be information indicating a difference between the radio resource of the second data channel to the second terminal 130 and the radio resource of the first data channel to the first terminal 120. . Thereby, the second terminal 130 allocates the radio resource of the first data channel to the first terminal 120 based on the radio resource of the second data channel to the own terminal and the difference indicated by the control information. A first data channel can be received. In this case, for example, it is possible to reduce the information amount of the control information as compared with the case where the control information directly indicates the radio resource of the first data channel.
  • the communication unit 111 of the base station 110 may be capable of wireless communication with each terminal including the first terminal 120 and the second terminal 130.
  • the control unit 112 identifies a plurality of terminals (for example, high-speed terminals described later) that are in a predetermined movement state among the terminals that the communication unit 111 is communicating with.
  • the predetermined moving state is, for example, a state where the moving speed is a certain speed or higher and the fading frequency is a predetermined value or higher.
  • the fading frequency is, for example, the amount of change in radio frequency due to the Doppler effect accompanying the movement of the terminal.
  • the control unit 112 specifies a fading frequency for each terminal with which the communication unit 111 is communicating.
  • the control unit 112 measures the fading frequency of each terminal based on the radio signal received from each terminal by the communication unit 111.
  • the control part 112 may specify the fading frequency of each terminal by receiving the information which shows the fading frequency which each terminal measured based on the radio signal which the communication part 111 transmitted to each terminal from each terminal. .
  • the control part 112 judges whether each terminal is a predetermined
  • control unit 112 may specify the moving speed of each terminal with which the communication unit 111 is communicating.
  • control part 112 specifies the moving speed of each terminal by receiving the measurement result of the moving speed of each terminal from each terminal. And the control part 112 judges whether each terminal is a predetermined
  • the first terminal 120 and the second terminal 130 are in a predetermined movement state (for example, during high-speed movement), and the third terminal 140 is not in a predetermined movement state (for example, during stoppage or low-speed movement).
  • the control unit 112 transmits the first data channel described above to some of the plurality of terminals determined to be in the predetermined movement state. In addition, the control unit 112 transmits the above-described control information and the second data channel to a terminal different from the above-described some terminals among the plurality of terminals determined to be in the predetermined movement state.
  • control unit 112 transmits the first data channel described above to the first terminal 120 out of the first terminal 120 and the second terminal 130 that are determined to be in the predetermined movement state. To do.
  • control unit 112 transfers the control information and the second information to the second terminal 130 that is different from the part of the first terminal 120 and the second terminal 130 that are determined to be in the predetermined movement state. Send the data channel.
  • control unit 112 transmits the third data channel to the third terminal 140 (for example, a low-speed terminal described later) that is not in a predetermined moving state.
  • the third data channel is, for example, a data channel having a reference signal that is less than the first data channel.
  • the third data channel is a data channel including the same number of reference signals as the reference signals included in the second data channel.
  • the first data channel transmitted in the frame format including the reference signal having the repetition pattern in the time direction to only some of the plurality of terminals in the predetermined movement state. Can be sent.
  • the second data channel including the reference signal having fewer reference signals than the first data channel or not including the reference signal is transmitted to the remaining terminals among the plurality of terminals in the predetermined movement state. Control information can be transmitted.
  • the base station 110 can transmit a third data channel having a reference signal smaller than the first data channel to a terminal that is not in a predetermined movement state.
  • the terminal for example, the second terminal 130 excluding a part (for example, the first terminal 120) out of the terminals that need to compensate for the frequency offset based on the reference signal repeated in the time direction has a small number of reference signals.
  • a data channel can be transmitted.
  • the third data channel with few reference signals can be transmitted to a terminal (for example, the third terminal 140) that does not require frequency offset compensation based on the reference signal repeated in the time direction.
  • the terminals of the first data channel transmitted in the frame format including the reference signal having the repetition pattern in the time direction are transmitted to terminals excluding a part of the terminals that need to compensate the frequency offset based on the reference signal repeated in the time direction.
  • Control information indicating radio resources can be transmitted.
  • a terminal for example, the second terminal 130 excluding this part can compensate for the frequency offset based on the reference signal of the first data channel, and can suppress a decrease in reception quality.
  • the amount of signaling can be reduced by not transmitting the above-described control information to a terminal (for example, the third terminal 140) that does not require frequency offset compensation based on a reference signal repeated in the time direction.
  • control unit 112 of the base station 110 controls the communication unit 111 to obtain information indicating the possible range of the radio resources of the first data channel and the second data channel in advance for the first terminal 120 and the first terminal. It may be transmitted to the second terminal 130.
  • This range is, for example, a partial range of the system band that can be used by the base station 110 (for example, a specific subband).
  • the control unit 112 controls the communication unit 111 to transmit the first data channel and the second data channel using the radio resource selected from the range indicated by the transmitted information.
  • this range may be a range that can be taken by radio resources of the first data channel, the second data channel, and the third data channel.
  • the control unit 112 controls the communication unit 111 to set the first data channel, the second data channel, and the third data channel according to the radio resource selected from the range indicated by the transmitted information. Send.
  • control unit 112 can transmit information indicating this range by higher level signaling such as an RRC (Radio Resource Control) message.
  • RRC Radio Resource Control
  • the base station 110, the first terminal 120, and the second terminal 130 can set the reception process in the range indicated by the information received from the base station 110.
  • this reception processing includes, for example, FFT.
  • OFDM is an abbreviation for Orthogonal Frequency Division Multiplexing.
  • FFT is an abbreviation for Fast Fourier Transform.
  • FIG. 2 is a diagram illustrating an example of a mobile communication system according to the embodiment.
  • the communication system 100 shown in FIG. 1 can be realized by the mobile communication system 200 shown in FIG. 2, for example.
  • Mobile communication system 200 includes a base station 210, terminals 221 to 223, and a core network 230.
  • the base station 210 is a radio base station apparatus that performs radio communication with the terminals 221 to 223.
  • Base station 210 is connected to core network 230.
  • the base station 210 is an eNB (evolved Node B) defined by 3GPP.
  • Each of the terminals 221 to 223 is a wireless terminal device that performs wireless communication with the base station 210.
  • the terminal 221 is a terminal whose moving speed is lower than that of the terminals 222 and 223 (including a stop).
  • Terminals 222 and 223 are terminals having a higher moving speed than terminal 221.
  • Each of the terminals 221 to 223 is, for example, a UE (User Equipment) defined by 3GPP.
  • the core network 230 is an EPC (Evolved Packet Core) defined by 3GPP.
  • the base station 110 shown in FIG. 1 can be realized by the base station 210, for example.
  • the first terminal 120, the second terminal 130, and the third terminal 140 shown in FIG. 1 can be realized by the terminals 221 to 223, for example.
  • FIG. 3 is a diagram illustrating an example of an RS pattern for a low-speed terminal according to the embodiment.
  • a low-speed wireless format 300 shown in FIG. 3 is a wireless format to which an RS pattern for low-speed terminals is applied.
  • the horizontal direction indicates time and the vertical direction indicates frequency.
  • Control information 310 (Control) and a data channel 320 (Data) are assigned to the low-speed wireless format 300.
  • the control information 310 downlink control information is transmitted.
  • the downlink control information includes, for example, DCI.
  • the control information 310 is transmitted as a PDCCH as an example.
  • PDCCH is an abbreviation for Physical Downlink Control Channel (physical downlink control channel).
  • the data channel 320 includes downlink user data.
  • the data channel 320 is a PDSCH for 1 TTI transmitted by the base station 210.
  • TTI is an abbreviation for Transmission Time Interval (transmission time interval).
  • PDSCH is an abbreviation for Physical Downlink Shared Channel (physical downlink shared channel).
  • the data channel 320 includes reference signals 331 and 332.
  • Reference signals 331 and 332 are downlink reference signals.
  • Reference signals 331 and 332 are reference signals having different frequencies. In the example illustrated in FIG. 3, the reference signals 331 and 332 are reference signals at different times, but the reference signals 331 and 332 may be reference signals at the same time.
  • Each reference signal is, for example, a reference signal that is individually transmitted to each terminal, and is, for example, DMRS (Data Demodulation Reference Signal).
  • DMRS Data Demodulation Reference Signal
  • an RS pattern for a low-speed terminal for example, an RS pattern in which a reference signal is arranged once for each frequency in a data channel 320 for 1 TTI can be used.
  • the data channel 320 of a low speed terminal for example, the terminal 221
  • the arrangement of reference signals can be reduced and the arrangement of user data and the like can be increased, so that transmission efficiency can be improved.
  • FIG. 4 is a diagram illustrating an example of an RS pattern for a high-speed terminal according to the embodiment.
  • a high-speed wireless format 400 shown in FIG. 4 is a wireless format to which an RS pattern for high-speed terminals is applied.
  • the horizontal direction indicates time and the vertical direction indicates frequency.
  • Control information 410 and a data channel 420 are assigned to the high-speed wireless format 400.
  • the control information 410 is downlink control information.
  • the downlink control information includes, for example, DCI.
  • the control information 410 is a PDCCH as an example.
  • the data channel 420 includes downlink user data. As an example, the data channel 420 is a PDSCH for 1 TTI transmitted by the base station 210.
  • the data channel 420 includes reference signals 431 to 434.
  • Reference signals 431 to 434 are downlink reference signals.
  • the reference signals 431 and 433 are reference signals having the same frequency and different times.
  • the reference signals 432 and 434 have the same frequency, are different from the reference signals 431 and 433, and are reference signals at different times.
  • the reference signals 431 and 432 are reference signals having different times, but the reference signals 431 and 432 may be reference signals having the same time.
  • the reference signals 433 and 434 are reference signals at different times, but the reference signals 433 and 434 may be reference signals at the same time.
  • an RS pattern in which a reference signal is arranged twice for each frequency in a data channel 420 for 1 TTI can be used as an RS pattern for a high-speed terminal.
  • a high-speed terminal for example, the terminals 222 and 223 having a large frequency offset can compensate for the frequency offset with high accuracy.
  • the RS pattern for high-speed terminals with a large number of reference signals arranged in this way has a larger overhead than the RS pattern for low-speed terminals with a small number of arranged reference signals, so that the transmission efficiency is low.
  • the base station 210 according to the embodiment applies the RS pattern for high-speed terminals only to some high-speed terminals (for example, the terminals 222 and 223), for example, and low-speed to the remaining high-speed terminals. Apply RS pattern for terminal.
  • the base station 210 performs high-speed radio format resource position information indicating a position of a radio resource allocated to a high-speed terminal to which the RS pattern for high-speed terminals is applied, for a high-speed terminal that does not apply the RS pattern for high-speed terminals Is notified by DCI.
  • the base station 210 assigns radio resources that apply an RS pattern for high-speed terminals to the terminal 222 that is a high-speed terminal, and applies radio resources that apply an RS pattern for low-speed terminals to the terminal 223 that is a high-speed terminal. Make assignments. In this case, the base station 210 notifies high-speed radio format resource position information indicating the position of the radio resource allocated to the terminal 222 by DCI to the terminal 223.
  • the terminal 223 receives the data channel 420 (see FIG. 4) of the radio resource allocated to the terminal 222 based on the high-speed radio format resource position information notified from the base station 210. Then, the terminal 222 uses the reference signals 431 to 434 included in the received data channel 420 to compensate for its own frequency offset.
  • the high-speed radio format resource position information indicating the position of the radio resource allocated to the terminal 222 is information directly indicating, for example, a radio resource (time and frequency) allocated to the terminal 222 using a bitmap or the like.
  • the high-speed radio format resource position information may be information indicating a difference (offset) between the position of the radio resource allocated to the terminal 222 and the position of the radio resource allocated to the terminal 223.
  • the high-speed wireless format resource position information indirectly indicates the position of the wireless resource allocated to the terminal 222.
  • the terminal 223 is allocated to the terminal 222 based on the position of the radio resource allocated to the terminal 223 indicated by the DCI transmitted from the base station 210 to the terminal 223 and the difference indicated by the high-speed radio format resource position information. Identified radio resources.
  • Frequency offset compensation As an example, frequency offset compensation by a terminal 223 to which a low-speed wireless format 300 of an RS pattern for a low-speed terminal is assigned will be described. For example, it is assumed that the low-speed wireless format 300 (see FIG. 3) is assigned to the terminal 223 from the base station 210, and the high-speed wireless format 400 (see FIG. 4) is assigned to the terminal 222 from the base station 210.
  • the terminal 223 specifies the resource position of the data channel 320 transmitted from the base station 210 to the own terminal based on the DCI included in the control information 310 transmitted from the base station 210. Also, the terminal 223 specifies the resource position of the data channel 420 transmitted from the base station 210 to the terminal 222 based on the high-speed wireless format resource position information included in the control information 310. Then, the terminal 223 receives the reference signals 431 to 434 based on the identified resource position of the data channel 420.
  • the terminal 223 performs decoding of user data included in the data channel 320 by compensating for the frequency offset of the data channel 320 received from the base station 210 based on the received reference signals 431 to 434.
  • the terminal 223 can compensate for the frequency offset even if the pilot sequence s of the reference signals 431 to 434 is unknown.
  • the received symbol x [k] at time k can be expressed by the following equation (1).
  • represents the amount of phase rotation.
  • E indicates the frequency deviation within the symbol.
  • H indicates propagation path distortion. It is assumed that the frequency deviation E and the channel distortion H in the symbol are time invariant.
  • the radio signal transmitted from the base station 210 to the terminals 221 to 223 is an OFDM signal, and W in the following equation (1) is a DFT matrix. DFT is an abbreviation for Discrete Fourier Transform.
  • the received symbol x [k + ⁇ ] at time k + ⁇ can be expressed as the following equation (2).
  • the terminal 223 can calculate the phase rotation amount ⁇ at the time length ⁇ , for example, by the following equation (4).
  • the terminal 223 can compensate for the frequency offset of the received signal by compensating the phase rotation amount of the received signal based on the calculated phase rotation amount ⁇ .
  • pilot sequences of the reference signals 431 and 433 are different from each other and the pilot sequences of the reference signals 432 and 434 are different from each other will be described.
  • pilot sequence s of reference signals 431 to 434 is known at terminal 223.
  • the phase rotation amount of the received signal can be estimated by removing the pilot sequence s.
  • equation (5) is established by the above equation (1).
  • diag (s) H is a diagonal matrix and is multiplicative.
  • the terminal 223 can calculate the phase rotation amount ⁇ in the time length ⁇ , for example, by the following equation (10).
  • the terminal 223 can compensate for the frequency offset of the received signal by compensating the phase rotation amount of the received signal based on the calculated phase rotation amount ⁇ .
  • the frequency offset can be compensated even when the reference signals are transmitted from the plurality of antennas of the base station 210.
  • FIG. 5 is a sequence diagram illustrating an example of processing in the mobile communication system according to the embodiment.
  • the steps shown in FIG. 5 are executed.
  • the base station 210 assigns a high-speed wireless format 400 (see FIG. 4) to which a high-speed terminal RS pattern is applied to a terminal 222 that is a high-speed terminal.
  • the base station 210 assigns a low-speed wireless format 300 (see FIG. 3) in which an RS pattern for low-speed terminals is applied to a terminal 221 that is a low-speed terminal and a terminal 223 that is a high-speed terminal.
  • the base station 210 transmits DCI for a low-speed terminal to the terminal 221 (step S501).
  • the DCI transmitted in step S501 includes information indicating the position of the radio resource of the data channel transmitted from the base station 210 to the terminal 221 in step S504, for example.
  • the DCI transmitted in step S501 includes information that can specify the RS pattern in the data channel that the base station 210 transmits to the terminal 221 in step S504.
  • the base station 210 transmits DCI for the high speed terminal to the terminal 222 (step S502).
  • the DCI transmitted at step S502 includes, for example, information indicating the position of the radio resource of the data channel transmitted from the base station 210 to the terminal 222 at step S505.
  • the DCI transmitted in step S502 includes information that can specify the RS pattern in the data channel that the base station 210 transmits to the terminal 222 in step S505, for example.
  • the base station 210 transmits DCI for the high speed terminal to the terminal 223 (step S503).
  • the DCI transmitted at step S503 includes information indicating the position of the radio resource of the data channel transmitted from the base station 210 to the terminal 223 at step S506, for example.
  • the DCI transmitted in step S503 includes information that can specify the RS pattern in the data channel that the base station 210 transmits to the terminal 223 in step S506, for example.
  • the DCI transmitted in step S503 includes, for example, high-speed radio format resource position information indicating the position of the radio resource of the data channel transmitted from the base station 210 to the terminal 222 in step S505.
  • the base station 210 transmits the data channel 320 (see FIG. 3) to which the RS pattern for low-speed terminals is applied to the terminal 221 (step S504). Based on the DCI received in step S501, the terminal 221 receives the data channel 320 transmitted in step S504, and decodes the received data channel 320.
  • the base station 210 transmits the data channel 420 (see FIG. 4) to which the RS pattern for high-speed terminals is applied to the terminal 222 (step S505).
  • the terminal 222 receives the data channel 420 transmitted in step S505 based on the DCI received in step S502. Then, the terminal 222 performs frequency offset compensation for the received data channel 420 based on the reference signals 431 to 434 included in the received data channel 420, and decodes the data channel 420 that has been compensated for frequency offset.
  • the base station 210 transmits the data channel 320 (see FIG. 3) to which the RS pattern for low-speed terminals is applied to the terminal 223 (step S506).
  • the terminal 223 receives the data channel transmitted in step S506 based on the DCI received in step S503. Also, the terminal 223 identifies the position of the radio resource of the data channel 420 that the base station 210 transmits to the terminal 222 in step S505 based on the high-speed radio format resource position information included in the DCI received in step S503. Further, the terminal 223 receives the data channel 420 based on the specified position of the radio resource.
  • the terminal 223 compensates the received frequency offset of the data channel 320 to the own terminal based on the reference signals 431 to 434 included in the data channel 420 to the terminal 222, and compensates the frequency offset.
  • the data channel 320 is decoded.
  • the terminal 223 compensates for the frequency offset based on the received reference signals 331 and 332 included in the data channel 320 to the own terminal and the received reference signals 433 and 434 included in the data channel 420 to the terminal 222. You may go.
  • the terminal 221 transmits an ACK response for the data channel 320 transmitted in step S504 to the base station 210 (step S507).
  • the terminal 222 transmits an ACK response for the data channel 420 transmitted in step S505 to the base station 210 (step S508).
  • the terminal 223 transmits an ACK response for the data channel 320 transmitted in step S506 to the base station 210 (step S509).
  • the terminal 221 transmits a NACK response to the base station 210 in step S507. If the data channel 420 transmitted in step S505 is not normally decoded by the terminal 222, the terminal 222 transmits a NACK response to the base station 210 in step S508. If the data channel 320 transmitted in step S506 is not normally decoded by the terminal 223, the terminal 223 transmits a NACK response to the base station 210 in step S509.
  • FIG. 6 is a diagram of an example of the base station according to the embodiment.
  • the base station 210 includes, for example, an antenna 601, an RF reception unit 602, a baseband reception unit 603, a line termination unit 604, a baseband transmission unit 605, an RF transmission unit 606, A scheduling unit 607.
  • RF is an abbreviation for Radio Frequency.
  • Antenna 601 receives a signal wirelessly transmitted from another communication device (for example, terminals 221 to 223), and outputs the received signal (uplink reception signal) to RF reception unit 602.
  • the RF reception unit 602 performs an RF reception process on the uplink reception signal output from the antenna 601.
  • the RF reception processing by the RF reception unit 602 includes, for example, amplification, frequency conversion from the RF band to the baseband, conversion from an analog signal to a digital signal, and the like.
  • the RF reception unit 602 outputs a signal (uplink baseband signal) subjected to the RF reception process to the baseband reception unit 603.
  • the uplink baseband signal output from the RF receiving unit 602 to the baseband receiving unit 603 is a signal from which an uplink carrier wave has been removed.
  • the baseband receiving unit 603 demodulates the uplink baseband signal output from the RF receiving unit 602, and decodes the demodulated signal. For example, the baseband receiving unit 603 demodulates and decodes the uplink baseband signal based on the uplink scheduling setting from the scheduling unit 607.
  • Baseband reception section 603 then outputs a signal (reception signal) obtained by decoding to line termination section 604.
  • the line termination unit 604 performs a line termination process based on the received signal output from the baseband reception unit 603, and transmits the uplink signal obtained by the line termination process to the upper network.
  • the upper network is, for example, the core network 230 shown in FIG.
  • the line termination unit 604 performs a line termination process based on the downlink signal received from the upper network, and outputs a transmission signal obtained by the line termination process to the baseband transmission unit 605.
  • the baseband transmission unit 605 encodes the transmission signal output from the line termination unit 604 and modulates the encoded signal. For example, the baseband transmission unit 605 demodulates and decodes the transmission signal based on the downlink scheduling setting from the scheduling unit 607. Baseband transmission section 605 then outputs a signal (downlink baseband signal) obtained by modulation to RF transmission section 606. Further, the baseband transmission unit 605 generates control information such as DCI based on the downlink scheduling setting from the scheduling unit 607, and outputs a signal (downlink baseband signal) including the generated control information to the RF transmission unit 606. To do.
  • the RF transmission unit 606 performs RF transmission processing of the downlink baseband signal output from the baseband transmission unit 605.
  • the RF transmission processing by the RF transmission unit 606 includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband to an RF band, amplification, and the like.
  • the RF transmission unit 606 outputs the signal (downlink modulated signal) subjected to the RF transmission process to the antenna 601.
  • the antenna 601 wirelessly transmits the downlink modulated signal output from the RF transmission unit 606 to other communication devices (for example, terminals 221 to 223).
  • the scheduling unit 607 performs downlink scheduling for assigning radio resources in radio transmission from the base station 210 to the terminals 221 to 223. Then, the scheduling unit 607 performs downlink scheduling setting for the baseband transmission unit 605 based on the result of downlink scheduling.
  • the scheduling unit 607 performs uplink scheduling that allocates radio resources in radio transmission from the terminals 221 to 223 to the base station 210. Then, the scheduling unit 607 performs uplink scheduling setting based on the uplink scheduling result for the baseband receiving unit 603.
  • the communication unit 111 illustrated in FIG. 1 can be realized by, for example, the antenna 601, the RF reception unit 602, the baseband reception unit 603, the baseband transmission unit 605, and the RF transmission unit 606.
  • the control unit 112 illustrated in FIG. 1 can be realized by the scheduling unit 607, for example.
  • FIG. 7 is a diagram illustrating an example of a hardware configuration of the base station apparatus according to the embodiment.
  • the base station 210 illustrated in FIG. 6 can be realized by an antenna 601, an RF circuit 701, an FPGA 702, a CPU 703, and a memory 704, for example, as illustrated in FIG.
  • FPGA is an abbreviation for Field Programmable Gate Array.
  • CPU is an abbreviation for Central Processing Unit.
  • the RF circuit 701 includes circuits such as an amplifier, a mixer, an ADC, and a DAC.
  • ADC is an abbreviation for Analog / Digital Converter (analog / digital converter).
  • DAC stands for Digital / Analog Converter (digital / analog converter).
  • the RF receiving unit 602 and the RF transmitting unit 606 shown in FIG. 6 can be realized by the RF circuit 701, for example.
  • the FPGA 702 is a circuit that performs baseband digital processing.
  • the baseband receiving unit 603 and the baseband transmitting unit 605 illustrated in FIG. 6 can be realized by the FPGA 702, for example.
  • the CPU 703 is a CPU that controls the entire base station 210.
  • the memory 704 includes, for example, a main memory and an auxiliary memory.
  • the main memory is, for example, a RAM (Random Access Memory).
  • the main memory is used as a work area for the CPU 703.
  • the auxiliary memory is a non-volatile memory such as a magnetic disk, an optical disk, or a flash memory.
  • Various programs for operating the base station 210 are stored in the auxiliary memory.
  • the program stored in the auxiliary memory is loaded into the main memory and executed by the CPU 703.
  • the line termination unit 604 and scheduling unit 607 shown in FIG. 6 can be realized by the CPU 703 and the memory 704, for example.
  • FIG. 8 is a diagram illustrating an example of a terminal according to the embodiment. Although the configuration of the terminal 221 will be described, the configurations of the terminals 222 and 223 are the same as the configuration of the terminal 221. As illustrated in FIG. 8, the terminal 221 includes, for example, an antenna 801, an RF reception unit 802, a baseband reception unit 803, a control unit 804, a baseband transmission unit 805, and an RF transmission unit 806. .
  • the antenna 801 receives a signal wirelessly transmitted from another communication device (for example, the base station 210), and outputs the received signal (downlink reception signal) to the RF reception unit 802.
  • the RF reception unit 802 performs an RF reception process on the downlink reception signal output from the antenna 801.
  • the RF reception processing by the RF receiver 802 includes, for example, amplification, frequency conversion from the RF band to the baseband, conversion from an analog signal to a digital signal, and the like.
  • the RF reception unit 802 outputs the signal (downlink baseband signal) subjected to the RF reception process to the baseband reception unit 803.
  • the downlink baseband signal output from the RF reception unit 802 to the baseband reception unit 803 is a signal from which a downlink carrier wave has been removed.
  • the baseband receiving unit 803 demodulates the downlink baseband signal output from the RF receiving unit 802 and decodes the demodulated signal. Then, the baseband receiving unit 803 outputs a signal (reception signal) obtained by decoding to the control unit 804.
  • the control unit 804 performs processing (for example, application processing) based on the received signal output from the baseband receiving unit 803. In addition, a transmission signal based on processing (for example, application processing) is generated, and the generated transmission signal is output to baseband transmission section 805. In addition, the control unit 804 performs a reception process based on a control signal such as DCI included in the reception signal output from the baseband reception unit 803 and a reference signal.
  • processing for example, application processing
  • a transmission signal based on processing for example, application processing
  • the control unit 804 performs a reception process based on a control signal such as DCI included in the reception signal output from the baseband reception unit 803 and a reference signal.
  • the baseband transmission unit 805 encodes the transmission signal output from the control unit 804 and modulates the encoded signal. Then, the baseband transmission unit 805 outputs a signal (uplink baseband signal) obtained by the modulation to the RF transmission unit 806.
  • the RF transmission unit 806 performs RF transmission processing on the uplink baseband signal output from the baseband transmission unit 805.
  • the RF transmission processing by the RF transmission unit 806 includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband to an RF band, amplification, and the like.
  • the RF transmission unit 806 outputs a signal (uplink modulated signal) subjected to RF transmission processing to the antenna 801.
  • the antenna 801 wirelessly transmits the uplink modulated signal output from the RF transmission unit 806 to another communication device (for example, the base station 210).
  • the receiving unit 131 of the second terminal 130 illustrated in FIG. 1 can be realized by, for example, the antenna 801, the RF receiving unit 802, the baseband receiving unit 803, and the control unit 804.
  • the processing unit 132 of the second terminal 130 illustrated in FIG. 1 can be realized by at least one of the baseband receiving unit 803 and the control unit 804, for example.
  • FIG. 9 is a diagram illustrating an example of a hardware configuration of the terminal according to the embodiment.
  • the terminal 221 illustrated in FIG. 8 can be realized by an antenna 801, an RF circuit 901, a baseband circuit 902, a memory 903, a processor 904, and a memory 905, for example, as illustrated in FIG. it can.
  • the RF circuit 901 includes circuits such as an amplifier, a mixer, an ADC, and a DAC.
  • the RF receiver 802 and the RF transmitter 806 shown in FIG. 8 can be realized by the RF circuit 901, for example.
  • the baseband circuit 902 is a circuit that performs baseband digital processing.
  • the baseband circuit 902 can be realized by a digital circuit such as an FPGA or a DSP, for example.
  • DSP is an abbreviation for Digital Signal Processor.
  • the memory 903 is a storage area connected to the baseband circuit 902.
  • the baseband circuit 902 performs baseband processing by accessing the memory 903, for example.
  • the baseband receiving unit 803 and the baseband transmitting unit 805 illustrated in FIG. 8 can be realized by the baseband circuit 902 and the memory 903, for example.
  • the processor 904 is a circuit that performs signal processing (for example, host processing), and is, for example, a CPU that controls the entire terminal 221.
  • the memory 905 includes, for example, a main memory and an auxiliary memory.
  • the main memory is, for example, a RAM.
  • the main memory is used as a work area for the processor 904.
  • the auxiliary memory is a non-volatile memory such as a magnetic disk, an optical disk, or a flash memory.
  • Various programs for operating the terminal 221 are stored in the auxiliary memory.
  • the program stored in the auxiliary memory is loaded into the main memory and executed by the processor 904.
  • the control unit 804 illustrated in FIG. 8 can be realized by the processor 904 and the memory 905, for example.
  • FIG. 10 is a flowchart illustrating an example of processing performed by the base station apparatus according to the embodiment.
  • the base station 210 according to the embodiment executes, for example, each step shown in FIG.
  • Each step illustrated in FIG. 10 is executed by control or processing by the scheduling unit 607 of the base station 210 illustrated in FIG. 6, for example.
  • the base station 210 performs radio scheduling processing (step S1001).
  • the radio scheduling process in step S1001 includes, for example, terminal selection for selecting a terminal that performs radio communication and resource allocation for assigning radio resources (for example, a combination of frequency and time) to the selected terminal.
  • the high speed format assignment flag Flag_HS is information indicating whether or not the high speed wireless format 400 is assigned to the high speed terminal. Further, the high-speed format allocation flag Flag_HS is stored in the memory of the base station 210 (for example, the memory 704 shown in FIG. 7).
  • U is the number of terminals selected by the terminal selection in step S1001 (the number of selected terminals).
  • u is an index from 0 to U ⁇ 1 indicating the current processing target terminal among the U terminals selected by the terminal selection in step S1001.
  • the base station 210 selects the terminals 221 to 223 by the terminal selection in step S1001.
  • U 3.
  • the base station 210 performs high-speed movement determination that determines whether or not the fading frequency estimation result fd [u] of the terminal u is larger than a predetermined threshold value ⁇ fd (step S1003).
  • the estimation result fd [u] of the fading frequency of the terminal u can be calculated by the base station 210 based on the radio signal from the terminal u.
  • the fading frequency estimation result fd [u] of the terminal u can be calculated by the terminal u based on a radio signal from the base station 210, for example.
  • the base station 210 receives information indicating the estimation result fd [u] calculated by the terminal u from the terminal u.
  • the base station 210 allocates the low-speed wireless format 300 to the terminal u (step S1005), and ends the processes of steps S1003 to S1009 for the terminal u.
  • the radio format ChannelFormat [u] is information stored in the memory of the base station 210 (for example, the memory 704 shown in FIG. 7).
  • the base station 210 determines whether or not the high-speed format allocation flag Flag_HS is True (step S1007). If the high speed format assignment flag Flag_HS is True (step S1007: Yes), it can be determined that the high speed wireless format 400 has already been assigned to the high speed terminal, and the base station 210 moves to step S1005. In this case, the terminal u is determined as a high-speed terminal, but the low-speed wireless format 300 is assigned.
  • step S1007 if the high-speed format assignment flag Flag_HS is not True (step S1007: No), it can be determined that the high-speed wireless format 400 has not yet been assigned to the high-speed terminal.
  • the base station 210 stores the terminal u as a high-speed format terminal and changes the high-speed format assignment flag Flag_HS (step S1009).
  • the high-speed format terminal HSFormatUE is information stored in the memory of the base station 210 (for example, the memory 704 shown in FIG. 7).
  • the base station 210 determines whether or not the mobility Mobility [u] of the terminal u is High Speed (step S1010).
  • mobility Mobility [u] is not High Speed (step S1010: No)
  • base station 210 transmits DCI (for example, see FIG. 12) for low-speed terminals to terminal u (step S1011).
  • the DCI for low-speed terminals includes high-speed radio format resource position information indicating the positions of radio resources allocated to the terminals indicated by the high-speed format terminal HSFormatUE.
  • step S1010 when mobility Mobility [u] is High Speed (step S1010: Yes), base station 210 transmits DCI for high-speed terminals (for example, see FIG. 13) to terminal u (step S1012).
  • the base station 210 determines whether or not the radio format ChannelFormat [u] of the terminal u is HighSpeed (step S1013).
  • the base station 210 transmits the data channel 320 to the terminal u in the low speed radio format 300 (see FIG. 3) (step S1014).
  • the base station 210 ends the processes of steps S1010 to S1015 for the terminal u.
  • step S1013 when the radio format ChannelFormat [u] is HighSpeed (step S1013: Yes), the base station 210 moves to step S1015. That is, the base station 210 transmits the data channel 420 to the terminal u in the high-speed wireless format 400 (see FIG. 4) (step S1015), and ends the processes of steps S1010 to S1015 for the terminal u.
  • the base station 210 may set a high-speed format terminal to be a high-speed terminal to which the frequency resource closest to the center of the subband used by these high-speed terminals is assigned.
  • the maximum value of the difference between the frequency resource allocated to each other high-speed terminal and the frequency resource allocated to the high-speed format terminal can be reduced. For this reason, it is possible to suppress a decrease in frequency offset compensation accuracy caused by other high-speed terminals referring to the reference signal of the high-speed format terminal.
  • the base station 210 may use a plurality of high-speed terminals among the high-speed terminals as high-speed format terminals. In this case, the base station 210 transmits, to each high-speed terminal that is not a high-speed format terminal, high-speed radio format resource position information indicating the radio resource of the high-speed format terminal that is closest to the allocated frequency resource among the plurality of high-speed format terminals. . As a result, it is possible to suppress a decrease in frequency offset compensation accuracy caused by other high-speed terminals referring to the reference signal of the high-speed format terminal.
  • the base station 210 may use a plurality of high-speed terminals among the high-speed terminals as high-speed format terminals so that the frequency resources allocated to the high-speed format terminals are evenly arranged within the subband. As a result, it is possible to suppress a decrease in frequency offset compensation accuracy caused by other high-speed terminals referring to the reference signal of the high-speed format terminal.
  • the base station 210 may select a high-speed terminal having the highest fading frequency (or the highest moving speed) among the high-speed terminals as a high-speed format terminal.
  • the terminal having the largest frequency offset can compensate for the frequency offset by the reference signal assigned to the own terminal, and can suppress a decrease in the frequency offset compensation accuracy.
  • FIG. 11 is a flowchart illustrating an example of processing performed by the terminal according to the embodiment.
  • the processing by the terminal 221 will be described, but the processing by the terminals 222 and 223 is the same as the processing by the terminal 221.
  • the terminal 221 executes, for example, each step shown in FIG.
  • Each step shown in FIG. 11 is executed by, for example, control or processing by the control unit 804 shown in FIG.
  • the terminal 221 receives DCI from the base station 210 to the terminal (step S1101). For example, the terminal 221 can determine whether the DCI is the DCI for the terminal by attempting to demodulate and decode the DCI transmitted from the base station 210 (blind reception or blind decoding).
  • the terminal 221 determines whether or not the DCI received in step S1101 is DCI for high-speed terminals (step S1102). For example, the terminal 221 determines whether the DCI is DCI for a high-speed terminal based on the value of a field indicating the format of the DCI (for example, see FIGS. 12 and 13) included in the received DCI. .
  • step S1102 if the DCI is not for high-speed terminals (step S1102: No), the terminal 221 proceeds to step S1105. In this case, the terminal 221 may not perform frequency offset compensation. If the DCI is for high-speed terminals (step S1102: Yes), the terminal 221 proceeds to step S1103. That is, the base station 210 extracts the high-speed radio format resource position information indicating the position of the radio resource allocated to the terminal to which the high-speed radio format 400 is applied from the DCI received in step S1101 (step S1103).
  • the terminal 221 estimates the frequency offset using the reference signals (reference signals 431 to 434) of the high speed wireless format 400 at the resource position indicated by the extracted high speed wireless format resource position information (step S1104).
  • the terminal 221 extracts information indicating the position of the radio resource of the data channel addressed to the terminal and various parameters from the DCI received in step S1101 (step S1105).
  • Various parameters are parameters for receiving a data channel addressed to the terminal itself.
  • the terminal 221 decodes the data channel for the terminal itself using the information extracted in step S1105 (step S1106), and ends a series of processing.
  • the base station 210 can improve the reception quality of the data channel by performing frequency offset compensation based on the frequency offset estimated in step S1104.
  • the process shown in FIG. 11 even when the terminal 221 does not determine whether or not the terminal 221 is a high-speed terminal, it is determined whether or not the DCI to the terminal is DCI for the high-speed terminal. Thus, processing according to whether or not the terminal 221 is a high-speed terminal can be performed.
  • the process may be branched depending on whether or not the terminal 221 is a high-speed terminal in step S1102. In this case, information indicating whether DCI is DCI for high-speed terminals (for example, high-speed DCI format determination flags 1201 and 1301 shown in FIGS. 12 and 13) may not be included in DCI.
  • FIG. 12 is a diagram illustrating an example of a DCI format for a low-speed terminal according to the embodiment.
  • DCI 1200 shown in FIG. 12 is DCI for low-speed terminals.
  • the DCI 1200 includes a high-speed DCI format determination flag 1201 and high-speed wireless format resource position information 1202.
  • the high-speed DCI format determination flag 1201 is information indicating that the DCI 1200 is DCI for low-speed terminals. In the example shown in FIG. 12, the high-speed DCI format determination flag 1201 is stored at the head of the DCI 1200.
  • the high-speed wireless format resource position information 1202 is information indicating the position of the wireless resource to which the high-speed wireless format 400 is assigned to the high-speed terminal. In the example shown in FIG. 12, the high-speed wireless format resource position information 1202 is stored at the end of the DCI 1200.
  • FIG. 13 is a diagram illustrating an example of a DCI format for a high-speed terminal according to the embodiment.
  • DCI 1300 shown in FIG. 13 is DCI for high-speed terminals.
  • the DCI 1300 includes a high-speed DCI format determination flag 1301.
  • the high-speed DCI format determination flag 1301 is information indicating that the DCI 1300 is DCI for low-speed terminals.
  • the high-speed DCI format determination flag 1301 is stored at the head of the DCI 1300.
  • the DCI for high-speed terminals does not include information indicating the position of the radio resource assigned the high-speed radio format to the high-speed terminal, such as the high-speed radio format resource position information 1202 shown in FIG. Also good.
  • the high-speed DCI format determination flags 1201 and 1301 may be omitted from the DCIs 1200 and 1300 shown in FIGS.
  • the number of bits is made different between the DCIs 1200 and 1300, and the terminals 221 to 223 try to decode the received DCI with the respective number of bits, so that the DCI is either DCI 1200 or 1300 Can be determined.
  • FIG. 14 is a diagram illustrating another example of the RS pattern for low-speed terminals according to the embodiment.
  • a reference signal 1411 may be included in the data channel 320 of the low-speed wireless format 300.
  • the reference signal 1411 is a reference signal assigned to the entire frequency of the low speed wireless format 300.
  • the reference signal of the data channel 320 may not be a reference signal having a different time for each frequency included in the low-speed wireless format 300.
  • FIG. 15 is a diagram illustrating another example of the RS pattern for the high-speed terminal according to the embodiment.
  • reference signals 1511 and 1512 may be included in the data channel 420 of the high-speed wireless format 400.
  • Each of the reference signals 1511 and 1512 is a reference signal assigned to the entire frequency of the high-speed wireless format 400.
  • Reference signals 1511 and 1512 are reference signals having different times. As described above, the reference signal of the data channel 420 may not be a reference signal having a different time for each frequency included in the high-speed wireless format 400.
  • the data channel 320 of the low-speed wireless format 300 can be transmitted to the terminal 223 excluding a part (terminal 222) of the high-speed terminals and the terminal 221 that is a low-speed terminal.
  • the overhead by a reference signal can be reduced and the transmission efficiency can be improved.
  • DCI including high-speed radio format resource position information indicating the radio resource of the data channel 420 of the high-speed radio format 400 can be transmitted to the terminal 223 which is a high-speed terminal.
  • the terminal 223 can compensate for the frequency offset based on the reference signals 431 to 434 of the data channel 420, and can suppress a decrease in reception quality. For this reason, it is possible to improve the transmission efficiency by reducing the overhead due to the reference signal while suppressing the deterioration of the reception quality.
  • the base station As described above, according to the base station, the terminal, the communication system, and the processing method, it is possible to improve the transmission efficiency by reducing the overhead while suppressing the deterioration of the reception quality.
  • CS-RS Cell Specific Reference Signal
  • 5G cell common pilots are abolished to improve operational efficiency, and studies are proceeding in a direction in which user-specific pilots (UE-RS: UE specific Reference Signal) are allocated.
  • UE-RS UE specific Reference Signal
  • DMRS patterns for PDSCH For example, as a reference signal arrangement pattern for a terminal moving at high speed, a pattern that repeats in the time direction is supported in order to facilitate frequency offset compensation.
  • the number of reference signals arranged is large, the overhead becomes large and the transmission efficiency deteriorates.
  • the terminals moving at high speed transmits a data channel in which the reference signal repeats in the time direction, and the other terminals moving at high speed move the data. You can refer to the channel.
  • the ratio of the reference signal in the radio resource can be reduced, the utilization efficiency of the radio resource can be improved, and the cell throughput can be improved.

Abstract

A base station (110) is provided with a communication unit (111) and a control unit (112). The communication unit (111) wirelessly communicates with a first terminal (120) and a second terminal (130) that differs from the first terminal (120). By controlling the communication unit (111), the control unit (112) transmits, to the first terminal (120), a first data channel that is transmitted in a frame format including a reference signal having a repeated pattern in the temporal direction. In addition, the control unit (112) transmits, to the second terminal (130), control information indicating a wireless resource of the first data channel. In addition, the control unit (112) transmits, to the second terminal (130), a second data channel in which there are fewer reference signals than in the first data channel or that includes no reference signals.

Description

基地局、端末、通信システムおよび処理方法Base station, terminal, communication system and processing method
 本発明は、基地局、端末、通信システムおよび処理方法に関する。 The present invention relates to a base station, a terminal, a communication system, and a processing method.
 従来、3GPPにおいて、第3世代移動通信システム(3G)、第3.9世代移動通信システムに対応するLTE、第4世代移動通信システムに対応するLTE-Advancedなどの移動通信システムの仕様が検討されている。3GPPは3rd Generation Partnership Projectの略である。LTEはLong Term Evolutionの略である。また、第5世代移動通信システム(5G)に関する技術の検討も開始されている。また、基地局と無線通信を行う各端末に対して個別のRS(Reference Signal:参照信号)パターンを割り当てる構成が知られている(たとえば、下記特許文献1~4参照。)。 Conventionally, in 3GPP, specifications of mobile communication systems such as the third generation mobile communication system (3G), LTE corresponding to the 3.9th generation mobile communication system, LTE-Advanced corresponding to the fourth generation mobile communication system have been studied. ing. 3GPP is an abbreviation for 3rd Generation Partnership Project. LTE is an abbreviation for Long Term Evolution. In addition, studies on technologies relating to the fifth generation mobile communication system (5G) have also started. Also, a configuration is known in which individual RS (Reference Signal: Reference Signal) patterns are assigned to each terminal that performs wireless communication with a base station (see, for example, Patent Documents 1 to 4 below).
特表2016-518758号公報Special table 2016-518758 gazette 特開2010-283863号公報JP 2010-283863 A 特開2011-142454号公報JP 2011-142454 A 特開2014-143605号公報JP 2014-143605 A
 しかしながら、上述した従来技術では、たとえばリファレンス信号が時間方向に繰り返すRSパターンを各端末に割り当てると、リファレンス信号による無線信号のオーバヘッドが多くなり、伝送効率が低下する場合がある。また、リファレンス信号が時間的に繰り返さないRSパターンが割り当てられた端末は、たとえば周波数オフセットの補償が困難になり受信品質が低下する場合がある。 However, in the above-described conventional technology, for example, if an RS pattern in which the reference signal repeats in the time direction is assigned to each terminal, the overhead of the radio signal due to the reference signal increases, and transmission efficiency may decrease. In addition, a terminal to which an RS pattern that does not repeat a reference signal in time is assigned, for example, it may be difficult to compensate for a frequency offset, and reception quality may deteriorate.
 1つの側面では、本発明は、受信品質の低下を抑制しつつオーバヘッドを減らして伝送効率の向上を図ることができる基地局、端末、通信システムおよび処理方法を提供することを目的とする。 In one aspect, an object of the present invention is to provide a base station, a terminal, a communication system, and a processing method that can improve overhead by reducing overhead while suppressing deterioration in reception quality.
 上述した課題を解決し、目的を達成するため、1つの実施態様では、第1の端末および前記第1の端末と異なる第2の端末との間で無線通信を行う基地局が、時間方向の繰り返しパターンを有するリファレンス信号を含むフレームフォーマットで送信される第1のデータチャネルを前記第1の端末へ送信し、前記第1のデータチャネルの無線リソースを示す制御情報を前記第2の端末へ送信し、リファレンス信号が前記第1のデータチャネルより少ない、またはリファレンス信号を含まない第2のデータチャネルを前記第2の端末へ送信する基地局、通信システムおよび通信方法が提案される。 In order to solve the above-described problems and achieve the object, in one embodiment, a base station that performs wireless communication between a first terminal and a second terminal different from the first terminal is configured to A first data channel transmitted in a frame format including a reference signal having a repetitive pattern is transmitted to the first terminal, and control information indicating a radio resource of the first data channel is transmitted to the second terminal. Then, a base station, a communication system, and a communication method are proposed in which a second data channel that has fewer reference signals than the first data channel or does not include a reference signal is transmitted to the second terminal.
 また、別の1つの実施態様では、端末が、他の端末および自端末との間で無線通信を行い時間方向の繰り返しパターンを有するリファレンス信号を含むフレームフォーマットで送信される第1のデータチャネルを前記他の端末へ送信する基地局から、前記第1のデータチャネルの無線リソースを示す制御情報と、リファレンス信号が前記第1のデータチャネルより少ない、またはリファレンス信号を含まない第2のデータチャネルと、を受信し、受信した前記制御情報に基づいて前記第1のデータチャネルを受信し、受信した前記第1のデータチャネルに含まれるリファレンス信号に基づいて、受信した前記第2のデータチャネルの周波数オフセットを補償する端末、通信システムおよび通信方法が提案される。 In another embodiment, the terminal performs wireless communication with another terminal and the own terminal, and transmits a first data channel transmitted in a frame format including a reference signal having a repetition pattern in the time direction. Control information indicating radio resources of the first data channel from the base station that transmits to the other terminal, and a second data channel that includes fewer reference signals than the first data channel or does not include a reference signal , Receiving the first data channel based on the received control information, and receiving the frequency of the second data channel based on a reference signal included in the received first data channel A terminal, a communication system, and a communication method that compensate for the offset are proposed.
 1つの側面では、本発明は、受信品質の低下を抑制しつつオーバヘッドを減らして伝送効率の向上を図ることができるという効果を奏する。 In one aspect, the present invention has an effect that transmission efficiency can be improved by reducing overhead while suppressing deterioration in reception quality.
図1は、実施の形態にかかる通信システムの一例を示す図である。FIG. 1 is a diagram illustrating an example of a communication system according to an embodiment. 図2は、実施の形態にかかる移動体通信システムの一例を示す図である。FIG. 2 is a diagram illustrating an example of a mobile communication system according to the embodiment. 図3は、実施の形態にかかる低速端末向けのRSパターンの一例を示す図である。FIG. 3 is a diagram illustrating an example of an RS pattern for a low-speed terminal according to the embodiment. 図4は、実施の形態にかかる高速端末向けのRSパターンの一例を示す図である。FIG. 4 is a diagram illustrating an example of an RS pattern for a high-speed terminal according to the embodiment. 図5は、実施の形態にかかる移動体通信システムにおける処理の一例を示すシーケンス図である。FIG. 5 is a sequence diagram illustrating an example of processing in the mobile communication system according to the embodiment. 図6は、実施の形態にかかる基地局の一例を示す図である。FIG. 6 is a diagram of an example of the base station according to the embodiment. 図7は、実施の形態にかかる基地局装置のハードウェア構成の一例を示す図である。FIG. 7 is a diagram illustrating an example of a hardware configuration of the base station apparatus according to the embodiment. 図8は、実施の形態にかかる端末の一例を示す図である。FIG. 8 is a diagram illustrating an example of a terminal according to the embodiment. 図9は、実施の形態にかかる端末のハードウェア構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of a hardware configuration of the terminal according to the embodiment. 図10は、実施の形態にかかる基地局装置による処理の一例を示すフローチャートである。FIG. 10 is a flowchart illustrating an example of processing performed by the base station apparatus according to the embodiment. 図11は、実施の形態にかかる端末による処理の一例を示すフローチャートである。FIG. 11 is a flowchart illustrating an example of processing performed by the terminal according to the embodiment. 図12は、実施の形態にかかる低速端末向けのDCIのフォーマットの一例を示す図である。FIG. 12 is a diagram illustrating an example of a DCI format for a low-speed terminal according to the embodiment. 図13は、実施の形態にかかる高速端末向けのDCIフォーマットの一例を示す図である。FIG. 13 is a diagram illustrating an example of a DCI format for a high-speed terminal according to the embodiment. 図14は、実施の形態にかかる低速端末向けのRSパターンの他の一例を示す図である。FIG. 14 is a diagram illustrating another example of the RS pattern for low-speed terminals according to the embodiment. 図15は、実施の形態にかかる高速端末向けのRSパターンの他の一例を示す図である。FIG. 15 is a diagram illustrating another example of the RS pattern for the high-speed terminal according to the embodiment.
 以下に図面を参照して、本発明にかかる基地局、端末、通信システムおよび処理方法の実施の形態を詳細に説明する。 Embodiments of a base station, a terminal, a communication system, and a processing method according to the present invention will be described in detail below with reference to the drawings.
(実施の形態)
(実施の形態にかかる通信システム)
 図1は、実施の形態にかかる通信システムの一例を示す図である。図1に示すように、実施の形態にかかる通信システム100は、基地局110と、第1の端末120と、第2の端末130と、を含む。また、通信システム100は、さらに第3の端末140を含んでもよい。
(Embodiment)
(Communication system according to embodiment)
FIG. 1 is a diagram illustrating an example of a communication system according to an embodiment. As illustrated in FIG. 1, the communication system 100 according to the embodiment includes a base station 110, a first terminal 120, and a second terminal 130. Further, the communication system 100 may further include a third terminal 140.
 基地局110は、通信部111と、制御部112と、を含む。通信部111は、第1の端末120、第2の端末130および第3の端末140との間で無線通信を行う通信部である。通信部111による無線通信は制御部112によって制御される。 The base station 110 includes a communication unit 111 and a control unit 112. The communication unit 111 is a communication unit that performs wireless communication with the first terminal 120, the second terminal 130, and the third terminal 140. Wireless communication by the communication unit 111 is controlled by the control unit 112.
 制御部112は、通信部111を制御することにより、第1の端末120、第2の端末130および第3の端末140に対して無線信号を送信する。たとえば、制御部112は、時間方向の繰り返しパターンを有するリファレンス信号を含むフレームフォーマットで送信される第1のデータチャネル、すなわち時間方向に繰り返すリファレンス信号を含む第1のデータチャネルを第1の端末120へ送信する。時間方向に繰り返すリファレンス信号は、受信側において周波数オフセットの補償が可能になる所定パターンのリファレンス信号である。たとえば、時間方向に繰り返すリファレンス信号は、第1のデータチャネルにおいて、同じ周波数リソースで異なる時間リソースに割り当てられた複数のリファレンス信号である。 The control unit 112 controls the communication unit 111 to transmit a radio signal to the first terminal 120, the second terminal 130, and the third terminal 140. For example, the control unit 112 transmits a first data channel transmitted in a frame format including a reference signal having a repetition pattern in the time direction, that is, a first data channel including a reference signal repeated in the time direction to the first terminal 120. Send to. The reference signal that repeats in the time direction is a reference signal having a predetermined pattern that enables frequency offset compensation on the receiving side. For example, the reference signals repeated in the time direction are a plurality of reference signals assigned to different time resources with the same frequency resource in the first data channel.
 また、制御部112は、第1のデータチャネルを第1の端末120へ送信する無線リソースを示す制御情報を第2の端末130へ送信する。制御情報は、一例としてはDCI(Downlink Control Information)により実現することができる。また、制御情報は、第1のデータチャネルにおけるリファレンス信号の配置を示す情報を含んでもよい。 In addition, the control unit 112 transmits control information indicating radio resources for transmitting the first data channel to the first terminal 120 to the second terminal 130. The control information can be realized by DCI (Downlink Control Information) as an example. Further, the control information may include information indicating the arrangement of reference signals in the first data channel.
 また、制御部112は、リファレンス信号が第1のデータチャネルより少ない第2のデータチャネルを第2の端末130へ送信する。リファレンス信号が第1のデータチャネルより少ない第2のデータチャネルは、一例としては時間的に繰り返さないリファレンス信号が割り当てられたデータチャネルである。 Further, the control unit 112 transmits a second data channel having a reference signal smaller than that of the first data channel to the second terminal 130. The second data channel having fewer reference signals than the first data channel is, for example, a data channel to which a reference signal that is not repeated in time is assigned.
 また、第1のデータチャネルにおいてリファレンス信号が3回以上繰り返す場合は、第2のデータチャネルは、第1のデータチャネルのリファレンス信号よりも少ない回数だけ時間方向に繰り返す複数のリファレンス信号を含んでもよい。または、第2のデータチャネルは、リファレンス信号を含まなくてもよい。 When the reference signal repeats three or more times in the first data channel, the second data channel may include a plurality of reference signals that repeat in the time direction a smaller number of times than the reference signal of the first data channel. . Alternatively, the second data channel may not include the reference signal.
 制御部112が上述の制御情報を第2の端末130へ送信することで、第2の端末130に対して、第1のデータチャネルに含まれるリファレンス信号に基づいて第2のデータチャネルの周波数オフセットを補償させることができる。 When the control unit 112 transmits the control information described above to the second terminal 130, the frequency offset of the second data channel based on the reference signal included in the first data channel with respect to the second terminal 130. Can be compensated.
 第1の端末120は、基地局110から自端末へ送信された第1のデータチャネルに含まれるリファレンス信号に基づいて、その第1のデータチャネルの周波数オフセットを補償する。そして、第1の端末120は、周波数オフセットを補償した第1のデータチャネルに含まれるユーザデータ等の復号を行う。 The first terminal 120 compensates the frequency offset of the first data channel based on the reference signal included in the first data channel transmitted from the base station 110 to the own terminal. Then, the first terminal 120 decodes user data and the like included in the first data channel compensated for the frequency offset.
 第2の端末130は、受信部131と、処理部132と、を備える。受信部131は、基地局110から、上述した第1のデータチャネルの無線リソースを示す制御情報と、上述した第2のデータチャネルと、を受信する。また、受信部131は、受信した制御情報に基づいて、基地局110から第1の端末120へ送信される第1のデータチャネルを受信する。そして、受信部131は、受信した第1のデータチャネルおよび第2のデータチャネルを処理部132へ出力する。 The second terminal 130 includes a receiving unit 131 and a processing unit 132. The receiving unit 131 receives control information indicating the radio resource of the first data channel described above and the second data channel described above from the base station 110. Further, the reception unit 131 receives a first data channel transmitted from the base station 110 to the first terminal 120 based on the received control information. Then, the reception unit 131 outputs the received first data channel and second data channel to the processing unit 132.
 処理部132は、受信部131から出力された第1のデータチャネルに含まれるリファレンス信号の少なくともいずれかに基づいて、受信部131から出力された第2のデータチャネルの周波数オフセットを補償する。たとえば、処理部132は、第1のデータチャネルに含まれるリファレンス信号に基づく周波数オフセットの推定を行い、推定した周波数オフセットに基づいて第2のデータチャネルの周波数オフセットを補償する。 The processing unit 132 compensates the frequency offset of the second data channel output from the receiving unit 131 based on at least one of the reference signals included in the first data channel output from the receiving unit 131. For example, the processing unit 132 estimates a frequency offset based on the reference signal included in the first data channel, and compensates the frequency offset of the second data channel based on the estimated frequency offset.
 または、処理部132は、第1のデータチャネルに含まれるリファレンス信号に基づく位相回転量の推定を行い、推定した位相回転量に基づいて第2のデータチャネルの位相回転量を補償することにより第2のデータチャネルの周波数オフセットを補償してもよい。 Alternatively, the processing unit 132 estimates the phase rotation amount based on the reference signal included in the first data channel, and compensates the phase rotation amount of the second data channel based on the estimated phase rotation amount. The frequency offset of the two data channels may be compensated.
 たとえば、処理部132は、第1のデータチャネルにおいて時間方向に繰り返す複数のリファレンス信号の間の相関演算を行うことにより周波数オフセットや位相回転量の推定を行い、周波数オフセットを補償することができる。複数のリファレンス信号の間の相関演算による周波数オフセットの補償については後述する。 For example, the processing unit 132 can estimate the frequency offset and the phase rotation amount by performing correlation calculation between a plurality of reference signals repeated in the time direction in the first data channel, and can compensate the frequency offset. Compensation of frequency offset by correlation calculation between a plurality of reference signals will be described later.
 また、処理部132は、第1のデータチャネルに含まれるリファレンス信号の少なくとも一部のリファレンス信号と、第2のデータチャネルに含まれるリファレンス信号と、に基づいて第2のデータチャネルの周波数オフセットを補償してもよい。ただし、この場合に周波数オフセットの補償に用いる各リファレンス信号は、互いに時間が異なる各リファレンス信号とする。 In addition, the processing unit 132 calculates a frequency offset of the second data channel based on at least a part of the reference signals included in the first data channel and the reference signal included in the second data channel. You may compensate. However, in this case, reference signals used for frequency offset compensation are reference signals having different times.
 また、処理部132は、周波数オフセットを補償した第2のデータチャネルに含まれるユーザデータ等の復号を行う。これにより、第1のデータチャネルよりリファレンス信号が少ない第2のデータチャネルを受信する第2の端末130においても、第1のデータチャネルに含まれるリファレンス信号を用いて周波数オフセットの補償を行うことができる。このため、第2のデータチャネルの受信品質を向上させることができる。また、第2の端末130への第2のデータチャネルに含まれるリファレンス信号を少なくすることができる。このため、無線信号におけるリファレンス信号によるオーバヘッドを減らし、伝送効率の向上を図ることができる。 In addition, the processing unit 132 decodes user data included in the second data channel in which the frequency offset is compensated. As a result, even in the second terminal 130 that receives the second data channel that has fewer reference signals than the first data channel, it is possible to compensate for the frequency offset using the reference signal included in the first data channel. it can. For this reason, the reception quality of the second data channel can be improved. Also, the reference signal included in the second data channel to the second terminal 130 can be reduced. For this reason, the overhead by the reference signal in a radio signal can be reduced and transmission efficiency can be improved.
 このように、基地局110によれば、時間方向の繰り返しパターンを有するリファレンス信号を含むフレームフォーマットで送信される第1のデータチャネルを第1の端末120へ送信することができる。また、基地局110によれば、リファレンス信号が第1のデータチャネルより少ない、またはリファレンス信号を含まない第2のデータチャネルを第2の端末130へ送信することができる。これにより、無線信号におけるオーバヘッドを減らし、伝送効率の向上を図ることができる。 Thus, according to the base station 110, the first data channel transmitted in the frame format including the reference signal having the repetition pattern in the time direction can be transmitted to the first terminal 120. Further, according to the base station 110, the second data channel that has fewer reference signals than the first data channel or does not include the reference signal can be transmitted to the second terminal 130. Thereby, the overhead in a radio signal can be reduced and the transmission efficiency can be improved.
 また、基地局110によれば、第2の端末130へ、時間方向の繰り返しパターンを有するリファレンス信号を含むフレームフォーマットで送信される第1のデータチャネルの無線リソースを示す制御情報を送信することができる。これにより、第2の端末130は、第1のデータチャネルのリファレンス信号に基づく周波数オフセットの補償が可能になり、受信品質の低下を抑制することができる。このため、受信品質の低下を抑制しつつ、無線信号におけるオーバヘッドを減らして伝送効率の向上を図ることができる。 Further, according to the base station 110, the control information indicating the radio resource of the first data channel transmitted in the frame format including the reference signal having the repetition pattern in the time direction can be transmitted to the second terminal 130. it can. Accordingly, the second terminal 130 can compensate for the frequency offset based on the reference signal of the first data channel, and can suppress a decrease in reception quality. For this reason, it is possible to improve the transmission efficiency by reducing the overhead in the radio signal while suppressing the deterioration of the reception quality.
 制御情報は、たとえば第1のデータチャネルの無線リソース(たとえば周波数)を直接的に示す情報とすることができる。また、制御情報は、第2の端末130への第2のデータチャネルの無線リソースと、第1の端末120への第1のデータチャネルの無線リソースと、の差分を示す情報であってもよい。これにより、第2の端末130は、自端末への第2のデータチャネルの無線リソースと、制御情報が示す差分と、に基づいて第1の端末120への第1のデータチャネルの無線リソースを特定し、第1のデータチャネルを受信することができる。また、この場合は、たとえば制御情報が第1のデータチャネルの無線リソースを直接的に示す場合よりも制御情報の情報量を減らすことが可能になる。 The control information can be, for example, information directly indicating the radio resource (for example, frequency) of the first data channel. Further, the control information may be information indicating a difference between the radio resource of the second data channel to the second terminal 130 and the radio resource of the first data channel to the first terminal 120. . Thereby, the second terminal 130 allocates the radio resource of the first data channel to the first terminal 120 based on the radio resource of the second data channel to the own terminal and the difference indicated by the control information. A first data channel can be received. In this case, for example, it is possible to reduce the information amount of the control information as compared with the case where the control information directly indicates the radio resource of the first data channel.
 また、基地局110の通信部111は、第1の端末120および第2の端末130を含む各端末との間で無線通信が可能であってもよい。図1に示す例では、通信部111は、第1の端末120、第2の端末130および第3の端末140との間で通信中であるとする。この場合に、制御部112は、通信部111が通信中の各端末のうち所定の移動状態である複数の端末(たとえば後述の高速端末)を特定する。所定の移動状態とは、たとえば、移動速度が一定の速度以上でありフェージング周波数が所定値以上の状態である。フェージング周波数は、たとえば端末の移動に伴うドップラ効果による電波周波数の変化量である。 Further, the communication unit 111 of the base station 110 may be capable of wireless communication with each terminal including the first terminal 120 and the second terminal 130. In the example illustrated in FIG. 1, it is assumed that the communication unit 111 is communicating with the first terminal 120, the second terminal 130, and the third terminal 140. In this case, the control unit 112 identifies a plurality of terminals (for example, high-speed terminals described later) that are in a predetermined movement state among the terminals that the communication unit 111 is communicating with. The predetermined moving state is, for example, a state where the moving speed is a certain speed or higher and the fading frequency is a predetermined value or higher. The fading frequency is, for example, the amount of change in radio frequency due to the Doppler effect accompanying the movement of the terminal.
 たとえば、制御部112は、通信部111が通信中の各端末についてフェージング周波数を特定する。一例としては、制御部112は、通信部111が各端末から受信した無線信号に基づいて各端末のフェージング周波数を測定する。または、制御部112は、通信部111が各端末へ送信した無線信号に基づいて各端末が測定したフェージング周波数を示す情報を各端末から受信することにより各端末のフェージング周波数を特定してもよい。そして、制御部112は、各端末について、特定したフェージング周波数が所定値以上であるか否かを判定することにより、各端末が所定の移動状態であるか否かを判断する。 For example, the control unit 112 specifies a fading frequency for each terminal with which the communication unit 111 is communicating. As an example, the control unit 112 measures the fading frequency of each terminal based on the radio signal received from each terminal by the communication unit 111. Or the control part 112 may specify the fading frequency of each terminal by receiving the information which shows the fading frequency which each terminal measured based on the radio signal which the communication part 111 transmitted to each terminal from each terminal. . And the control part 112 judges whether each terminal is a predetermined | prescribed movement state by determining whether the specified fading frequency is more than predetermined value about each terminal.
 または、制御部112は、通信部111が通信中の各端末の移動速度を特定してもよい。一例としては、制御部112は、各端末の移動速度の測定結果を、各端末から受信することにより各端末の移動速度を特定する。そして、制御部112は、各端末について、特定した移動速度が所定値以上であるか否かを判定することにより、各端末が所定の移動状態であるか否かを判断する。 Alternatively, the control unit 112 may specify the moving speed of each terminal with which the communication unit 111 is communicating. As an example, the control part 112 specifies the moving speed of each terminal by receiving the measurement result of the moving speed of each terminal from each terminal. And the control part 112 judges whether each terminal is a predetermined | prescribed movement state by determining whether the specified moving speed is more than predetermined value about each terminal.
 図1に示す例では、第1の端末120および第2の端末130が所定の移動状態(たとえば高速移動中)であり、第3の端末140が所定の移動状態でない(たとえば停止中または低速移動中)であると判定されたとする。 In the example shown in FIG. 1, the first terminal 120 and the second terminal 130 are in a predetermined movement state (for example, during high-speed movement), and the third terminal 140 is not in a predetermined movement state (for example, during stoppage or low-speed movement). Suppose that it is determined that
 制御部112は、所定の移動状態であると判定した複数の端末のうち一部の端末へ上述の第1のデータチャネルを送信する。また、制御部112は、所定の移動状態であると判定した複数の端末のうち上述の一部の端末と異なる端末へ上述の制御情報および第2のデータチャネルを送信する。 The control unit 112 transmits the first data channel described above to some of the plurality of terminals determined to be in the predetermined movement state. In addition, the control unit 112 transmits the above-described control information and the second data channel to a terminal different from the above-described some terminals among the plurality of terminals determined to be in the predetermined movement state.
 図1に示す例では、制御部112は、所定の移動状態であると判定した第1の端末120および第2の端末130のうちの第1の端末120へ上述の第1のデータチャネルを送信する。また、制御部112は、所定の移動状態であると判定した第1の端末120および第2の端末130のうち上述の一部の端末と異なる第2の端末130へ上述の制御情報および第2のデータチャネルを送信する。 In the example illustrated in FIG. 1, the control unit 112 transmits the first data channel described above to the first terminal 120 out of the first terminal 120 and the second terminal 130 that are determined to be in the predetermined movement state. To do. In addition, the control unit 112 transfers the control information and the second information to the second terminal 130 that is different from the part of the first terminal 120 and the second terminal 130 that are determined to be in the predetermined movement state. Send the data channel.
 また、制御部112は、所定の移動状態でない第3の端末140(たとえば後述の低速端末)へ第3のデータチャネルを送信する。第3のデータチャネルは、たとえばリファレンス信号が第1のデータチャネルより少ないデータチャネルである。一例としては、第3のデータチャネルは、第2のデータチャネルが含むリファレンス信号と同数のリファレンス信号を含むデータチャネルである。 In addition, the control unit 112 transmits the third data channel to the third terminal 140 (for example, a low-speed terminal described later) that is not in a predetermined moving state. The third data channel is, for example, a data channel having a reference signal that is less than the first data channel. As an example, the third data channel is a data channel including the same number of reference signals as the reference signals included in the second data channel.
 このように、基地局110によれば、所定の移動状態である複数の端末のうちの一部のみへ、時間方向の繰り返しパターンを有するリファレンス信号を含むフレームフォーマットで送信される第1のデータチャネルを送信することができる。また、基地局110によれば、所定の移動状態である複数の端末のうちの残りの端末へ、リファレンス信号が第1のデータチャネルより少ない、またはリファレンス信号を含まない第2のデータチャネルおよび上述の制御情報を送信することができる。また、基地局110によれば、所定の移動状態でない端末へ、リファレンス信号が第1のデータチャネルより少ない第3のデータチャネルを送信することができる。 Thus, according to the base station 110, the first data channel transmitted in the frame format including the reference signal having the repetition pattern in the time direction to only some of the plurality of terminals in the predetermined movement state. Can be sent. In addition, according to the base station 110, the second data channel including the reference signal having fewer reference signals than the first data channel or not including the reference signal is transmitted to the remaining terminals among the plurality of terminals in the predetermined movement state. Control information can be transmitted. Further, the base station 110 can transmit a third data channel having a reference signal smaller than the first data channel to a terminal that is not in a predetermined movement state.
 これにより、時間方向に繰り返すリファレンス信号に基づく周波数オフセットの補償を要する端末のうち一部(たとえば第1の端末120)を除く端末(たとえば第2の端末130)にはリファレンス信号が少ない第2のデータチャネルを送信することができる。また、時間方向に繰り返すリファレンス信号に基づく周波数オフセットの補償を要しない端末(たとえば第3の端末140)にもリファレンス信号が少ない第3のデータチャネルを送信することができる。これにより、リファレンス信号によるオーバヘッドを減らして伝送効率の向上を図ることができる。 As a result, the terminal (for example, the second terminal 130) excluding a part (for example, the first terminal 120) out of the terminals that need to compensate for the frequency offset based on the reference signal repeated in the time direction has a small number of reference signals. A data channel can be transmitted. In addition, the third data channel with few reference signals can be transmitted to a terminal (for example, the third terminal 140) that does not require frequency offset compensation based on the reference signal repeated in the time direction. Thereby, the overhead by a reference signal can be reduced and the transmission efficiency can be improved.
 また、時間方向に繰り返すリファレンス信号に基づく周波数オフセットの補償を要する端末のうち一部を除く端末には、時間方向の繰り返しパターンを有するリファレンス信号を含むフレームフォーマットで送信される第1のデータチャネルの無線リソースを示す制御情報を送信することができる。これにより、この一部を除く端末(たとえば第2の端末130)は、第1のデータチャネルのリファレンス信号に基づく周波数オフセットの補償が可能になり、受信品質の低下を抑制することができる。 In addition, the terminals of the first data channel transmitted in the frame format including the reference signal having the repetition pattern in the time direction are transmitted to terminals excluding a part of the terminals that need to compensate the frequency offset based on the reference signal repeated in the time direction. Control information indicating radio resources can be transmitted. Thereby, a terminal (for example, the second terminal 130) excluding this part can compensate for the frequency offset based on the reference signal of the first data channel, and can suppress a decrease in reception quality.
 また、時間方向に繰り返すリファレンス信号に基づく周波数オフセットの補償を要しない端末(たとえば第3の端末140)には上述の制御情報を送信しないことで、シグナリング量の低減を図ることができる。 Further, the amount of signaling can be reduced by not transmitting the above-described control information to a terminal (for example, the third terminal 140) that does not require frequency offset compensation based on a reference signal repeated in the time direction.
 また、基地局110の制御部112は、通信部111を制御することにより、第1のデータチャネルおよび第2のデータチャネルの無線リソースのとり得る範囲を示す情報を予め第1の端末120および第2の端末130へ送信してもよい。この範囲は、たとえば基地局110が使用可能なシステム帯域の一部の範囲(たとえば特定のサブバンド)である。この場合に、制御部112は、通信部111を制御することにより、送信した情報が示す範囲の中から選択した無線リソースにより第1のデータチャネルおよび第2のデータチャネルを送信する。 In addition, the control unit 112 of the base station 110 controls the communication unit 111 to obtain information indicating the possible range of the radio resources of the first data channel and the second data channel in advance for the first terminal 120 and the first terminal. It may be transmitted to the second terminal 130. This range is, for example, a partial range of the system band that can be used by the base station 110 (for example, a specific subband). In this case, the control unit 112 controls the communication unit 111 to transmit the first data channel and the second data channel using the radio resource selected from the range indicated by the transmitted information.
 また、この範囲は、第1のデータチャネル、第2のデータチャネルおよび第3のデータチャネルの無線リソースのとり得る範囲であってもよい。この場合に、制御部112は、通信部111を制御することにより、送信した情報が示す範囲の中から選択した無線リソースにより第1のデータチャネル、第2のデータチャネルおよび第3のデータチャネルを送信する。 Also, this range may be a range that can be taken by radio resources of the first data channel, the second data channel, and the third data channel. In this case, the control unit 112 controls the communication unit 111 to set the first data channel, the second data channel, and the third data channel according to the radio resource selected from the range indicated by the transmitted information. Send.
 また、制御部112は、この範囲を示す情報を、たとえばRRC(Radio Resource Control:無線リソース制御)のメッセージなどの上位シグナリングにより送信することができる。 In addition, the control unit 112 can transmit information indicating this range by higher level signaling such as an RRC (Radio Resource Control) message.
 これにより、基地局110、第1の端末120および第2の端末130は、基地局110から受信した情報が示す範囲の受信処理を設定することができる。基地局110が送信する無線信号がOFDM信号である場合に、この受信処理には、たとえばFFTが含まれる。OFDMはOrthogonal Frequency Division Multiplexing(直交周波数分割多重)の略である。FFTはFast Fourier Transform(高速フーリエ変換)の略である。 Thereby, the base station 110, the first terminal 120, and the second terminal 130 can set the reception process in the range indicated by the information received from the base station 110. When the radio signal transmitted from the base station 110 is an OFDM signal, this reception processing includes, for example, FFT. OFDM is an abbreviation for Orthogonal Frequency Division Multiplexing. FFT is an abbreviation for Fast Fourier Transform.
(実施の形態にかかる移動体通信システム)
 図2は、実施の形態にかかる移動体通信システムの一例を示す図である。図1に示した通信システム100は、たとえば図2に示した移動体通信システム200により実現することができる。移動体通信システム200は、基地局210と、端末221~223と、コアネットワーク230と、を含む。
(Mobile communication system according to embodiment)
FIG. 2 is a diagram illustrating an example of a mobile communication system according to the embodiment. The communication system 100 shown in FIG. 1 can be realized by the mobile communication system 200 shown in FIG. 2, for example. Mobile communication system 200 includes a base station 210, terminals 221 to 223, and a core network 230.
 基地局210は、端末221~223との間で無線通信を行う無線基地局装置である。また、基地局210は、コアネットワーク230と接続されている。基地局210は、一例としては3GPPで規定されたeNB(evolved Node B)である。 The base station 210 is a radio base station apparatus that performs radio communication with the terminals 221 to 223. Base station 210 is connected to core network 230. As an example, the base station 210 is an eNB (evolved Node B) defined by 3GPP.
 端末221~223のそれぞれは、基地局210との間で無線通信を行う無線端末装置である。たとえば、端末221は端末222,223より移動速度が低い(停止を含む)端末である。端末222,223は、端末221より移動速度が高い端末である。端末221~223のそれぞれは、一例としては3GPPで規定されたUE(User Equipment:ユーザ端末)である。コアネットワーク230は、一例としては3GPPで規定されたEPC(Evolved Packet Core:進化したパケットコア)である。 Each of the terminals 221 to 223 is a wireless terminal device that performs wireless communication with the base station 210. For example, the terminal 221 is a terminal whose moving speed is lower than that of the terminals 222 and 223 (including a stop). Terminals 222 and 223 are terminals having a higher moving speed than terminal 221. Each of the terminals 221 to 223 is, for example, a UE (User Equipment) defined by 3GPP. For example, the core network 230 is an EPC (Evolved Packet Core) defined by 3GPP.
 図1に示した基地局110は、たとえば基地局210により実現することができる。図1に示した第1の端末120、第2の端末130および第3の端末140は、たとえば端末221~223により実現することができる。 The base station 110 shown in FIG. 1 can be realized by the base station 210, for example. The first terminal 120, the second terminal 130, and the third terminal 140 shown in FIG. 1 can be realized by the terminals 221 to 223, for example.
(実施の形態にかかる低速端末向けのRSパターン)
 図3は、実施の形態にかかる低速端末向けのRSパターンの一例を示す図である。図3に示す低速無線フォーマット300は、低速端末向けのRSパターンが適用された無線フォーマットである。低速無線フォーマット300において、横方向は時間を示し、縦方向は周波数を示す。低速無線フォーマット300には、制御情報310(Control)およびデータチャネル320(Data)が割り当てられている。
(RS pattern for low-speed terminals according to the embodiment)
FIG. 3 is a diagram illustrating an example of an RS pattern for a low-speed terminal according to the embodiment. A low-speed wireless format 300 shown in FIG. 3 is a wireless format to which an RS pattern for low-speed terminals is applied. In the low-speed wireless format 300, the horizontal direction indicates time and the vertical direction indicates frequency. Control information 310 (Control) and a data channel 320 (Data) are assigned to the low-speed wireless format 300.
 制御情報310では、ダウンリンクの制御情報が送信される。ダウンリンクの制御情報には、たとえばDCIが含まれる。制御情報310は、一例としてはPDCCHとして送信される。PDCCHはPhysical Downlink Control Channel(物理下りリンク制御チャネル)の略である。 In the control information 310, downlink control information is transmitted. The downlink control information includes, for example, DCI. The control information 310 is transmitted as a PDCCH as an example. PDCCH is an abbreviation for Physical Downlink Control Channel (physical downlink control channel).
 データチャネル320には、ダウンリンクのユーザデータが含まれる。一例としては、データチャネル320は、基地局210が送信する1TTI分のPDSCHである。TTIはTransmission Time Interval(送信時間間隔)の略である。PDSCHはPhysical Downlink Shared Channel(物理下りリンク共有チャネル)の略である。 The data channel 320 includes downlink user data. As an example, the data channel 320 is a PDSCH for 1 TTI transmitted by the base station 210. TTI is an abbreviation for Transmission Time Interval (transmission time interval). PDSCH is an abbreviation for Physical Downlink Shared Channel (physical downlink shared channel).
 また、データチャネル320には、リファレンス信号331,332が含まれる。リファレンス信号331,332は、ダウンリンクのリファレンス信号である。リファレンス信号331,332は、互いに異なる周波数の各リファレンス信号である。図3に示す例ではリファレンス信号331,332は互いに異なる時間の各リファレンス信号となっているが、リファレンス信号331,332は互いに同じ時間の各リファレンス信号であってもよい。 Also, the data channel 320 includes reference signals 331 and 332. Reference signals 331 and 332 are downlink reference signals. Reference signals 331 and 332 are reference signals having different frequencies. In the example illustrated in FIG. 3, the reference signals 331 and 332 are reference signals at different times, but the reference signals 331 and 332 may be reference signals at the same time.
 各リファレンス信号は、たとえば各端末に対して個別に送信されるリファレンス信号であり、一例としてはDMRS(Data Demodulation Reference Signal:復調参照信号)である。 Each reference signal is, for example, a reference signal that is individually transmitted to each terminal, and is, for example, DMRS (Data Demodulation Reference Signal).
 図3に示すように、低速端末向けのRSパターンとして、たとえば、1TTI分のデータチャネル320に、周波数ごとに1回ずつリファレンス信号を配置するRSパターンを用いることができる。周波数オフセットが小さい低速端末(たとえば端末221)のデータチャネル320について、リファレンス信号の配置を少なくし、ユーザデータ等の配置を多くすることができるため、伝送効率を向上させることができる。 As shown in FIG. 3, as an RS pattern for a low-speed terminal, for example, an RS pattern in which a reference signal is arranged once for each frequency in a data channel 320 for 1 TTI can be used. With respect to the data channel 320 of a low speed terminal (for example, the terminal 221) with a small frequency offset, the arrangement of reference signals can be reduced and the arrangement of user data and the like can be increased, so that transmission efficiency can be improved.
(実施の形態にかかる高速端末向けのRSパターン)
 図4は、実施の形態にかかる高速端末向けのRSパターンの一例を示す図である。図4に示す高速無線フォーマット400は、高速端末向けのRSパターンが適用された無線フォーマットである。高速無線フォーマット400において、横方向は時間を示し、縦方向は周波数を示す。高速無線フォーマット400には、制御情報410およびデータチャネル420が割り当てられている。制御情報410は、ダウンリンクの制御情報である。ダウンリンクの制御情報には、たとえばDCIが含まれる。制御情報410は、一例としてはPDCCHである。データチャネル420には、ダウンリンクのユーザデータが含まれる。一例としては、データチャネル420は、基地局210が送信する1TTI分のPDSCHである。
(RS pattern for high-speed terminals according to the embodiment)
FIG. 4 is a diagram illustrating an example of an RS pattern for a high-speed terminal according to the embodiment. A high-speed wireless format 400 shown in FIG. 4 is a wireless format to which an RS pattern for high-speed terminals is applied. In the high-speed wireless format 400, the horizontal direction indicates time and the vertical direction indicates frequency. Control information 410 and a data channel 420 are assigned to the high-speed wireless format 400. The control information 410 is downlink control information. The downlink control information includes, for example, DCI. The control information 410 is a PDCCH as an example. The data channel 420 includes downlink user data. As an example, the data channel 420 is a PDSCH for 1 TTI transmitted by the base station 210.
 データチャネル420には、リファレンス信号431~434が含まれる。リファレンス信号431~434は、ダウンリンクのリファレンス信号である。リファレンス信号431,433は、互いに同じ周波数であり、互いに異なる時間の各リファレンス信号である。リファレンス信号432,434は、互いに同じ周波数であり、リファレンス信号431,433とは異なる周波数であり、かつ互いに異なる時間の各リファレンス信号である。図4に示す例ではリファレンス信号431,432は互いに異なる時間の各リファレンス信号となっているが、リファレンス信号431,432は互いに同じ時間の各リファレンス信号であってもよい。また、図4に示す例ではリファレンス信号433,434は互いに異なる時間の各リファレンス信号となっているが、リファレンス信号433,434は互いに同じ時間の各リファレンス信号であってもよい。 The data channel 420 includes reference signals 431 to 434. Reference signals 431 to 434 are downlink reference signals. The reference signals 431 and 433 are reference signals having the same frequency and different times. The reference signals 432 and 434 have the same frequency, are different from the reference signals 431 and 433, and are reference signals at different times. In the example illustrated in FIG. 4, the reference signals 431 and 432 are reference signals having different times, but the reference signals 431 and 432 may be reference signals having the same time. In the example shown in FIG. 4, the reference signals 433 and 434 are reference signals at different times, but the reference signals 433 and 434 may be reference signals at the same time.
 図4に示すように、高速端末向けのRSパターンとして、たとえば、1TTI分のデータチャネル420に、周波数ごとに2回ずつリファレンス信号を配置するRSパターンを用いることができる。これにより、周波数オフセットが大きい高速端末(たとえば端末222,223)であっても周波数オフセットの高精度な補償を行うことが可能になる。 As shown in FIG. 4, for example, an RS pattern in which a reference signal is arranged twice for each frequency in a data channel 420 for 1 TTI can be used as an RS pattern for a high-speed terminal. Thereby, even a high-speed terminal (for example, the terminals 222 and 223) having a large frequency offset can compensate for the frequency offset with high accuracy.
 ただし、このように配置されるリファレンス信号が多い高速端末向けのRSパターンは、配置されるリファレンス信号が少ない低速端末向けのRSパターンと比べて、オーバヘッドが大きいため伝送効率が低くなる。これに対して、実施の形態にかかる基地局210は、たとえば高速端末(たとえば端末222,223)の一部の高速端末にのみ高速端末向けのRSパターンを適用し、残りの高速端末には低速端末向けのRSパターンを適用する。 However, the RS pattern for high-speed terminals with a large number of reference signals arranged in this way has a larger overhead than the RS pattern for low-speed terminals with a small number of arranged reference signals, so that the transmission efficiency is low. On the other hand, the base station 210 according to the embodiment applies the RS pattern for high-speed terminals only to some high-speed terminals (for example, the terminals 222 and 223), for example, and low-speed to the remaining high-speed terminals. Apply RS pattern for terminal.
 また、基地局210は、高速端末向けのRSパターンを適用しなかった高速端末に対して、高速端末向けのRSパターンを適用した高速端末に割り当てた無線リソースの位置を示す高速無線フォーマットリソース位置情報をDCIにより通知する。 In addition, the base station 210 performs high-speed radio format resource position information indicating a position of a radio resource allocated to a high-speed terminal to which the RS pattern for high-speed terminals is applied, for a high-speed terminal that does not apply the RS pattern for high-speed terminals Is notified by DCI.
 一例としては、基地局210は、高速端末である端末222に高速端末向けのRSパターンを適用した無線リソースの割り当てを行い、高速端末である端末223に低速端末向けのRSパターンを適用した無線リソースの割り当てを行う。この場合に、基地局210は、端末222に割り当てた無線リソースの位置を示す高速無線フォーマットリソース位置情報を端末223へのDCIにより通知する。 As an example, the base station 210 assigns radio resources that apply an RS pattern for high-speed terminals to the terminal 222 that is a high-speed terminal, and applies radio resources that apply an RS pattern for low-speed terminals to the terminal 223 that is a high-speed terminal. Make assignments. In this case, the base station 210 notifies high-speed radio format resource position information indicating the position of the radio resource allocated to the terminal 222 by DCI to the terminal 223.
 端末223は、基地局210から通知された高速無線フォーマットリソース位置情報に基づいて、端末222に割り当てられた無線リソースのデータチャネル420(図4参照)を受信する。そして、端末222は、受信したデータチャネル420に含まれるリファレンス信号431~434を用いて自端末の周波数オフセットの補償を行う。 The terminal 223 receives the data channel 420 (see FIG. 4) of the radio resource allocated to the terminal 222 based on the high-speed radio format resource position information notified from the base station 210. Then, the terminal 222 uses the reference signals 431 to 434 included in the received data channel 420 to compensate for its own frequency offset.
 端末222に割り当てた無線リソースの位置を示す高速無線フォーマットリソース位置情報は、たとえば端末222に割り当てた無線リソース(時間および周波数)をビットマップ等で直接的に示す情報である。または、この高速無線フォーマットリソース位置情報は、端末222に割り当てた無線リソースの位置と、端末223に割り当てた無線リソースの位置と、の差分(オフセット)を示す情報であってもよい。この場合は、高速無線フォーマットリソース位置情報は、端末222に割り当てた無線リソースの位置を間接的に示す。たとえば、端末223は、基地局210から端末223へ送信されたDCIが示す端末223に割り当てられた無線リソースの位置と、高速無線フォーマットリソース位置情報が示す差分と、に基づいて、端末222に割り当てられた無線リソースを特定する。 The high-speed radio format resource position information indicating the position of the radio resource allocated to the terminal 222 is information directly indicating, for example, a radio resource (time and frequency) allocated to the terminal 222 using a bitmap or the like. Alternatively, the high-speed radio format resource position information may be information indicating a difference (offset) between the position of the radio resource allocated to the terminal 222 and the position of the radio resource allocated to the terminal 223. In this case, the high-speed wireless format resource position information indirectly indicates the position of the wireless resource allocated to the terminal 222. For example, the terminal 223 is allocated to the terminal 222 based on the position of the radio resource allocated to the terminal 223 indicated by the DCI transmitted from the base station 210 to the terminal 223 and the difference indicated by the high-speed radio format resource position information. Identified radio resources.
(周波数オフセットの補償)
 一例として、高速端末であるが低速端末向けのRSパターンの低速無線フォーマット300が割り当てられた端末223による周波数オフセットの補償について説明する。たとえば、端末223には基地局210から低速無線フォーマット300(図3参照)が割り当てられ、端末222には基地局210から高速無線フォーマット400(図4参照)が割り当てられたとする。
(Frequency offset compensation)
As an example, frequency offset compensation by a terminal 223 to which a low-speed wireless format 300 of an RS pattern for a low-speed terminal is assigned will be described. For example, it is assumed that the low-speed wireless format 300 (see FIG. 3) is assigned to the terminal 223 from the base station 210, and the high-speed wireless format 400 (see FIG. 4) is assigned to the terminal 222 from the base station 210.
 この場合に、端末223は、基地局210から送信された制御情報310に含まれるDCIに基づいて、基地局210から自端末へ送信されるデータチャネル320のリソース位置を特定する。また、端末223は、制御情報310に含まれる高速無線フォーマットリソース位置情報に基づいて、基地局210から端末222へ送信されるデータチャネル420のリソース位置を特定する。そして、端末223は、特定したデータチャネル420のリソース位置に基づいてリファレンス信号431~434を受信する。 In this case, the terminal 223 specifies the resource position of the data channel 320 transmitted from the base station 210 to the own terminal based on the DCI included in the control information 310 transmitted from the base station 210. Also, the terminal 223 specifies the resource position of the data channel 420 transmitted from the base station 210 to the terminal 222 based on the high-speed wireless format resource position information included in the control information 310. Then, the terminal 223 receives the reference signals 431 to 434 based on the identified resource position of the data channel 420.
 また、端末223は、受信したリファレンス信号431~434に基づいて、基地局210から受信したデータチャネル320の周波数オフセットの補償を行うことにより、データチャネル320に含まれるユーザデータ等の復号を行う。 In addition, the terminal 223 performs decoding of user data included in the data channel 320 by compensating for the frequency offset of the data channel 320 received from the base station 210 based on the received reference signals 431 to 434.
 まず、リファレンス信号431,433のパイロット系列が互いに同じであり、かつリファレンス信号432,434のパイロット系列が互いに同じである場合について説明する。この場合は、端末223はリファレンス信号431~434のパイロット系列sが未知であっても周波数オフセットの補償を行うことができる。 First, a case where the pilot sequences of the reference signals 431 and 433 are the same as each other and the pilot sequences of the reference signals 432 and 434 are the same as each other will be described. In this case, the terminal 223 can compensate for the frequency offset even if the pilot sequence s of the reference signals 431 to 434 is unknown.
 たとえば、時間kにおける受信シンボルx[k]は、下記(1)式のように表すことができる。下記(1)式において、Δθは位相回転量を示す。Eはシンボル内の周波数偏差を示す。Hは伝搬路歪みを示す。シンボル内の周波数偏差Eおよび伝搬路歪みHは時不変であると仮定する。また、基地局210が端末221~223へ送信する無線信号はOFDM信号であり、下記(1)式におけるWはDFT行列である。DFTはDiscrete Fourier Transform(離散フーリエ変換)の略である。 For example, the received symbol x [k] at time k can be expressed by the following equation (1). In the following equation (1), Δθ represents the amount of phase rotation. E indicates the frequency deviation within the symbol. H indicates propagation path distortion. It is assumed that the frequency deviation E and the channel distortion H in the symbol are time invariant. The radio signal transmitted from the base station 210 to the terminals 221 to 223 is an OFDM signal, and W in the following equation (1) is a DFT matrix. DFT is an abbreviation for Discrete Fourier Transform.
 x[k]=ejΔθUEkEHW-1s …(1) x [k] = e j Δθ UEk EHW −1 s (1)
 上記(1)式より、時間k+τにおける受信シンボルx[k+τ]は、下記(2)式のように表すことができる。τは、リファレンス信号431,433の間の時間長(=リファレンス信号432,434の間の時間長)である。 From the above equation (1), the received symbol x [k + τ] at time k + τ can be expressed as the following equation (2). τ is a time length between the reference signals 431 and 433 (= time length between the reference signals 432 and 434).
 x[k+τ]=ejΔθ(k+τ)EHW-1s=ejΔθτx[k] …(2) x [k + τ] = e j Δθ (k + τ ) EHW −1 s = e j Δθτx [k] (2)
 上記(2)式より、下記(3)式が成り立つ。下記(3)式において、xH[k]は受信シンボルx[k]の共役転置である。 From the above equation (2), the following equation (3) is established. In the following equation (3), x H [k] is a conjugate transpose of the received symbol x [k].
 xH[k]x[k+τ]=ejΔθτ||EHW-1s||2 …(3) x H [k] x [k + τ] = e j Δθτ || EHW −1 s || 2 (3)
 したがって、端末223は、たとえば下記(4)式により時間長τにおける位相回転量Δθτを算出することができる。そして、端末223は、算出した位相回転量Δθτに基づいて受信信号の位相回転量を補償することにより、受信信号の周波数オフセットを補償することができる。 Therefore, the terminal 223 can calculate the phase rotation amount Δθτ at the time length τ, for example, by the following equation (4). The terminal 223 can compensate for the frequency offset of the received signal by compensating the phase rotation amount of the received signal based on the calculated phase rotation amount Δθτ.
 arg(xH[k]x[k+τ])=Δθτ …(4) arg (x H [k] x [k + τ]) = Δθτ (4)
 つぎに、リファレンス信号431,433のパイロット系列が互いに異なり、リファレンス信号432,434のパイロット系列が互いに異なる場合について説明する。この場合は、端末223において、リファレンス信号431~434のパイロット系列sが既知であるとする。この場合は、パイロット系列sの除去を行うことによって受信信号の位相回転量を推定することができる。 Next, the case where the pilot sequences of the reference signals 431 and 433 are different from each other and the pilot sequences of the reference signals 432 and 434 are different from each other will be described. In this case, it is assumed that pilot sequence s of reference signals 431 to 434 is known at terminal 223. In this case, the phase rotation amount of the received signal can be estimated by removing the pilot sequence s.
 たとえば、上記(1)式により下記(5)式が成り立つ。下記(5)式において、diag(s)Hは対角行列であるため乗法可換である。 For example, the following equation (5) is established by the above equation (1). In the following equation (5), diag (s) H is a diagonal matrix and is multiplicative.
 diag(s)Hx[k]=ejΔθkEHW-1diag(s)Hs …(5) diag (s) H x [k] = e j Δθ k EHW −1 diag (s) H s (5)
 ここで、下記(6)式および下記(7)式が成り立つ。下記(7)式においては、sn(n=0,…,N-1)の振幅を1と仮定している。 Here, the following formula (6) and the following formula (7) hold. In the following equation (7), s n (n = 0, ..., N-1) assumes the amplitude of 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 上記(5)式より、下記(8)式および下記(9)式のように表すことができる。 From the above formula (5), it can be expressed as the following formula (8) and the following formula (9).
 diag(s)Hx[k]=ejΔθkEHW-1 …(8) diag (s) H x [k] = e j Δθ k EHW −1 (8)
 diag(s)xH[k]x[k+τ]diagH(s)
 =ejΔθτ||EHW-1||2 …(9)
diag (s) x H [k] x [k + τ] diag H (s)
= E j Δθτ || EHW -1 || 2 (9)
 したがって、端末223は、たとえば下記(10)式により時間長τにおける位相回転量Δθτを算出することができる。そして、端末223は、算出した位相回転量Δθτに基づいて受信信号の位相回転量を補償することにより受信信号の周波数オフセットを補償することができる。 Therefore, the terminal 223 can calculate the phase rotation amount Δθτ in the time length τ, for example, by the following equation (10). The terminal 223 can compensate for the frequency offset of the received signal by compensating the phase rotation amount of the received signal based on the calculated phase rotation amount Δθτ.
 arg(diag(s)xH[k]x[k+τ]diagH(s))
 =Δθτ …(10)
arg (diag (s) x H [k] x [k + τ] diag H (s))
= Δθτ (10)
 なお、上述した周波数オフセットの補償方法によれば、基地局210の複数のアンテナからリファレンス信号が送信される場合であっても周波数オフセットを補償することができる。 Note that, according to the frequency offset compensation method described above, the frequency offset can be compensated even when the reference signals are transmitted from the plurality of antennas of the base station 210.
(実施の形態にかかる移動体通信システムにおける処理)
 図5は、実施の形態にかかる移動体通信システムにおける処理の一例を示すシーケンス図である。図2に示した移動体通信システム200においては、たとえば図5に示す各ステップが実行される。図2に示す例において、基地局210は、高速端末である端末222に高速端末向けのRSパターンを適用した高速無線フォーマット400(図4参照)を割り当てたとする。また、基地局210は、低速端末である端末221および高速端末である端末223に低速端末向けのRSパターンを適用した低速無線フォーマット300(図3参照)を割り当てたとする。
(Processing in Mobile Communication System According to Embodiment)
FIG. 5 is a sequence diagram illustrating an example of processing in the mobile communication system according to the embodiment. In the mobile communication system 200 shown in FIG. 2, for example, the steps shown in FIG. 5 are executed. In the example illustrated in FIG. 2, it is assumed that the base station 210 assigns a high-speed wireless format 400 (see FIG. 4) to which a high-speed terminal RS pattern is applied to a terminal 222 that is a high-speed terminal. Further, it is assumed that the base station 210 assigns a low-speed wireless format 300 (see FIG. 3) in which an RS pattern for low-speed terminals is applied to a terminal 221 that is a low-speed terminal and a terminal 223 that is a high-speed terminal.
 まず、基地局210が、低速端末向けのDCIを端末221へ送信する(ステップS501)。ステップS501により送信されるDCIには、たとえばステップS504により基地局210が端末221へ送信するデータチャネルの無線リソースの位置を示す情報が含まれる。また、ステップS501により送信されるDCIには、ステップS504により基地局210が端末221へ送信するデータチャネルにおけるRSパターンを特定可能な情報が含まれる。 First, the base station 210 transmits DCI for a low-speed terminal to the terminal 221 (step S501). The DCI transmitted in step S501 includes information indicating the position of the radio resource of the data channel transmitted from the base station 210 to the terminal 221 in step S504, for example. Also, the DCI transmitted in step S501 includes information that can specify the RS pattern in the data channel that the base station 210 transmits to the terminal 221 in step S504.
 また、基地局210が、高速端末向けのDCIを端末222へ送信する(ステップS502)。ステップS502により送信されるDCIには、たとえばステップS505により基地局210が端末222へ送信するデータチャネルの無線リソースの位置を示す情報が含まれる。また、ステップS502により送信されるDCIには、たとえばステップS505により基地局210が端末222へ送信するデータチャネルにおけるRSパターンを特定可能な情報が含まれる。 Also, the base station 210 transmits DCI for the high speed terminal to the terminal 222 (step S502). The DCI transmitted at step S502 includes, for example, information indicating the position of the radio resource of the data channel transmitted from the base station 210 to the terminal 222 at step S505. Also, the DCI transmitted in step S502 includes information that can specify the RS pattern in the data channel that the base station 210 transmits to the terminal 222 in step S505, for example.
 また、基地局210が、高速端末向けのDCIを端末223へ送信する(ステップS503)。ステップS503により送信されるDCIには、たとえばステップS506により基地局210が端末223へ送信するデータチャネルの無線リソースの位置を示す情報が含まれる。また、ステップS503により送信されるDCIには、たとえばステップS506により基地局210が端末223へ送信するデータチャネルにおけるRSパターンを特定可能な情報が含まれる。また、ステップS503により送信されるDCIには、たとえばステップS505により基地局210が端末222へ送信するデータチャネルの無線リソースの位置を示す高速無線フォーマットリソース位置情報が含まれる。 In addition, the base station 210 transmits DCI for the high speed terminal to the terminal 223 (step S503). The DCI transmitted at step S503 includes information indicating the position of the radio resource of the data channel transmitted from the base station 210 to the terminal 223 at step S506, for example. Also, the DCI transmitted in step S503 includes information that can specify the RS pattern in the data channel that the base station 210 transmits to the terminal 223 in step S506, for example. Also, the DCI transmitted in step S503 includes, for example, high-speed radio format resource position information indicating the position of the radio resource of the data channel transmitted from the base station 210 to the terminal 222 in step S505.
 つぎに、基地局210が、低速端末向けのRSパターンを適用したデータチャネル320(図3参照)を端末221へ送信する(ステップS504)。端末221は、ステップS501により受信したDCIに基づいて、ステップS504により送信されたデータチャネル320を受信し、受信したデータチャネル320を復号する。 Next, the base station 210 transmits the data channel 320 (see FIG. 3) to which the RS pattern for low-speed terminals is applied to the terminal 221 (step S504). Based on the DCI received in step S501, the terminal 221 receives the data channel 320 transmitted in step S504, and decodes the received data channel 320.
 また、基地局210が、高速端末向けのRSパターンを適用したデータチャネル420(図4参照)を端末222へ送信する(ステップS505)。端末222は、ステップS502により受信したDCIに基づいて、ステップS505により送信されたデータチャネル420を受信する。そして、端末222は、受信したデータチャネル420に含まれるリファレンス信号431~434に基づいて、受信したデータチャネル420の周波数オフセットの補償を行い、周波数オフセットの補償を行ったデータチャネル420を復号する。 Further, the base station 210 transmits the data channel 420 (see FIG. 4) to which the RS pattern for high-speed terminals is applied to the terminal 222 (step S505). The terminal 222 receives the data channel 420 transmitted in step S505 based on the DCI received in step S502. Then, the terminal 222 performs frequency offset compensation for the received data channel 420 based on the reference signals 431 to 434 included in the received data channel 420, and decodes the data channel 420 that has been compensated for frequency offset.
 また、基地局210が、低速端末向けのRSパターンを適用したデータチャネル320(図3参照)を端末223へ送信する(ステップS506)。端末223は、ステップS503により受信したDCIに基づいて、ステップS506により送信されたデータチャネルを受信する。また、端末223は、ステップS503により受信したDCIに含まれる高速無線フォーマットリソース位置情報に基づいて、ステップS505において基地局210が端末222へ送信するデータチャネル420の無線リソースの位置を特定する。また、端末223は、特定した無線リソースの位置に基づいて、データチャネル420を受信する。 Also, the base station 210 transmits the data channel 320 (see FIG. 3) to which the RS pattern for low-speed terminals is applied to the terminal 223 (step S506). The terminal 223 receives the data channel transmitted in step S506 based on the DCI received in step S503. Also, the terminal 223 identifies the position of the radio resource of the data channel 420 that the base station 210 transmits to the terminal 222 in step S505 based on the high-speed radio format resource position information included in the DCI received in step S503. Further, the terminal 223 receives the data channel 420 based on the specified position of the radio resource.
 そして、端末223は、受信した端末222へのデータチャネル420に含まれるリファレンス信号431~434に基づいて、受信した自端末へのデータチャネル320の周波数オフセットの補償を行い、周波数オフセットの補償を行ったデータチャネル320を復号する。または、端末223は、受信した自端末へのデータチャネル320に含まれるリファレンス信号331,332と、受信した端末222へのデータチャネル420に含まれるリファレンス信号433,434に基づいて周波数オフセットの補償を行ってもよい。 Then, the terminal 223 compensates the received frequency offset of the data channel 320 to the own terminal based on the reference signals 431 to 434 included in the data channel 420 to the terminal 222, and compensates the frequency offset. The data channel 320 is decoded. Alternatively, the terminal 223 compensates for the frequency offset based on the received reference signals 331 and 332 included in the data channel 320 to the own terminal and the received reference signals 433 and 434 included in the data channel 420 to the terminal 222. You may go.
 図5に示す例では、ステップS504~S506によって送信された各データチャネルがそれぞれ端末221~223によって正常に復号されたとする。この場合に、端末221が、ステップS504によって送信されたデータチャネル320に対するACK応答を基地局210へ送信する(ステップS507)。また、端末222が、ステップS505によって送信されたデータチャネル420に対するACK応答を基地局210へ送信する(ステップS508)。また、端末223が、ステップS506によって送信されたデータチャネル320に対するACK応答を基地局210へ送信する(ステップS509)。 In the example shown in FIG. 5, it is assumed that the data channels transmitted in steps S504 to S506 are normally decoded by the terminals 221 to 223, respectively. In this case, the terminal 221 transmits an ACK response for the data channel 320 transmitted in step S504 to the base station 210 (step S507). Also, the terminal 222 transmits an ACK response for the data channel 420 transmitted in step S505 to the base station 210 (step S508). In addition, the terminal 223 transmits an ACK response for the data channel 320 transmitted in step S506 to the base station 210 (step S509).
 また、ステップS504によって送信されたデータチャネル320が端末221によって正常に復号されなかった場合は、端末221は、ステップS507においてNACK応答を基地局210へ送信する。また、ステップS505によって送信されたデータチャネル420が端末222によって正常に復号されなかった場合は、端末222は、ステップS508においてNACK応答を基地局210へ送信する。また、ステップS506によって送信されたデータチャネル320が端末223によって正常に復号されなかった場合は、端末223は、ステップS509においてNACK応答を基地局210へ送信する。 If the data channel 320 transmitted in step S504 is not normally decoded by the terminal 221, the terminal 221 transmits a NACK response to the base station 210 in step S507. If the data channel 420 transmitted in step S505 is not normally decoded by the terminal 222, the terminal 222 transmits a NACK response to the base station 210 in step S508. If the data channel 320 transmitted in step S506 is not normally decoded by the terminal 223, the terminal 223 transmits a NACK response to the base station 210 in step S509.
(実施の形態にかかる基地局)
 図6は、実施の形態にかかる基地局の一例を示す図である。図6に示すように、基地局210は、たとえば、アンテナ601と、RF受信部602と、ベースバンド受信部603と、回線終端部604と、ベースバンド送信部605と、RF送信部606と、スケジューリング部607と、を備える。RFはRadio Frequency(高周波)の略である。
(Base station according to the embodiment)
FIG. 6 is a diagram of an example of the base station according to the embodiment. As illustrated in FIG. 6, the base station 210 includes, for example, an antenna 601, an RF reception unit 602, a baseband reception unit 603, a line termination unit 604, a baseband transmission unit 605, an RF transmission unit 606, A scheduling unit 607. RF is an abbreviation for Radio Frequency.
 アンテナ601は、他の通信装置(たとえば端末221~223)から無線送信された信号を受信し、受信した信号(上り受信信号)をRF受信部602へ出力する。RF受信部602は、アンテナ601から出力された上り受信信号のRF受信処理を行う。RF受信部602によるRF受信処理には、たとえば、増幅、RF帯からベースバンド帯への周波数変換、アナログ信号からデジタル信号への変換などが含まれる。RF受信部602は、RF受信処理を行った信号(上りベースバンド信号)をベースバンド受信部603へ出力する。 Antenna 601 receives a signal wirelessly transmitted from another communication device (for example, terminals 221 to 223), and outputs the received signal (uplink reception signal) to RF reception unit 602. The RF reception unit 602 performs an RF reception process on the uplink reception signal output from the antenna 601. The RF reception processing by the RF reception unit 602 includes, for example, amplification, frequency conversion from the RF band to the baseband, conversion from an analog signal to a digital signal, and the like. The RF reception unit 602 outputs a signal (uplink baseband signal) subjected to the RF reception process to the baseband reception unit 603.
 RF受信部602からベースバンド受信部603へ出力される上りベースバンド信号は、上り搬送波が除去された信号である。ベースバンド受信部603は、RF受信部602から出力された上りベースバンド信号を復調し、復調した信号を復号する。たとえば、ベースバンド受信部603は、スケジューリング部607からの上りスケジューリング設定に基づいて上りベースバンド信号の復調および復号を行う。そして、ベースバンド受信部603は、復号により得られた信号(受信信号)を回線終端部604へ出力する。 The uplink baseband signal output from the RF receiving unit 602 to the baseband receiving unit 603 is a signal from which an uplink carrier wave has been removed. The baseband receiving unit 603 demodulates the uplink baseband signal output from the RF receiving unit 602, and decodes the demodulated signal. For example, the baseband receiving unit 603 demodulates and decodes the uplink baseband signal based on the uplink scheduling setting from the scheduling unit 607. Baseband reception section 603 then outputs a signal (reception signal) obtained by decoding to line termination section 604.
 回線終端部604は、ベースバンド受信部603から出力された受信信号に基づく回線終端処理を行い、回線終端処理により得られた上り信号を上位ネットワークへ送信する。上位ネットワークは、たとえば図2に示したコアネットワーク230である。また、回線終端部604は、上位ネットワークから受信した下り信号に基づく回線終端処理を行い、回線終端処理により得られた送信信号をベースバンド送信部605へ出力する。 The line termination unit 604 performs a line termination process based on the received signal output from the baseband reception unit 603, and transmits the uplink signal obtained by the line termination process to the upper network. The upper network is, for example, the core network 230 shown in FIG. Also, the line termination unit 604 performs a line termination process based on the downlink signal received from the upper network, and outputs a transmission signal obtained by the line termination process to the baseband transmission unit 605.
 ベースバンド送信部605は、回線終端部604から出力された送信信号を符号化し、符号化した信号を変調する。たとえば、ベースバンド送信部605は、スケジューリング部607からの下りスケジューリング設定に基づいて送信信号の復調および復号を行う。そして、ベースバンド送信部605は、変調により得られた信号(下りベースバンド信号)をRF送信部606へ出力する。また、ベースバンド送信部605は、スケジューリング部607からの下りスケジューリング設定に基づいて、DCI等の制御情報を生成し、生成した制御情報を含む信号(下りベースバンド信号)をRF送信部606へ出力する。 The baseband transmission unit 605 encodes the transmission signal output from the line termination unit 604 and modulates the encoded signal. For example, the baseband transmission unit 605 demodulates and decodes the transmission signal based on the downlink scheduling setting from the scheduling unit 607. Baseband transmission section 605 then outputs a signal (downlink baseband signal) obtained by modulation to RF transmission section 606. Further, the baseband transmission unit 605 generates control information such as DCI based on the downlink scheduling setting from the scheduling unit 607, and outputs a signal (downlink baseband signal) including the generated control information to the RF transmission unit 606. To do.
 RF送信部606は、ベースバンド送信部605から出力された下りベースバンド信号のRF送信処理を行う。RF送信部606によるRF送信処理には、たとえば、デジタル信号からアナログ信号への変換、ベースバンド帯からRF帯への周波数変換、増幅などが含まれる。RF送信部606は、RF送信処理を行った信号(下り変調信号)をアンテナ601へ出力する。アンテナ601は、RF送信部606から出力された下り変調信号を他の通信装置(たとえば端末221~223)へ無線送信する。 The RF transmission unit 606 performs RF transmission processing of the downlink baseband signal output from the baseband transmission unit 605. The RF transmission processing by the RF transmission unit 606 includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband to an RF band, amplification, and the like. The RF transmission unit 606 outputs the signal (downlink modulated signal) subjected to the RF transmission process to the antenna 601. The antenna 601 wirelessly transmits the downlink modulated signal output from the RF transmission unit 606 to other communication devices (for example, terminals 221 to 223).
 スケジューリング部607は、基地局210から端末221~223への無線送信における無線リソースの割り当てを行う下りスケジューリングを行う。そして、スケジューリング部607は、下りスケジューリングの結果に基づく下りスケジューリング設定をベースバンド送信部605に対して行う。 The scheduling unit 607 performs downlink scheduling for assigning radio resources in radio transmission from the base station 210 to the terminals 221 to 223. Then, the scheduling unit 607 performs downlink scheduling setting for the baseband transmission unit 605 based on the result of downlink scheduling.
 また、スケジューリング部607は、端末221~223から基地局210への無線送信における無線リソースの割り当てを行う上りスケジューリングを行う。そして、スケジューリング部607は、上りスケジューリングの結果に基づく上りスケジューリング設定をベースバンド受信部603に対して行う。 In addition, the scheduling unit 607 performs uplink scheduling that allocates radio resources in radio transmission from the terminals 221 to 223 to the base station 210. Then, the scheduling unit 607 performs uplink scheduling setting based on the uplink scheduling result for the baseband receiving unit 603.
 図1に示した通信部111は、たとえばアンテナ601、RF受信部602、ベースバンド受信部603、ベースバンド送信部605およびRF送信部606により実現することができる。図1に示した制御部112は、たとえばスケジューリング部607により実現することができる。 The communication unit 111 illustrated in FIG. 1 can be realized by, for example, the antenna 601, the RF reception unit 602, the baseband reception unit 603, the baseband transmission unit 605, and the RF transmission unit 606. The control unit 112 illustrated in FIG. 1 can be realized by the scheduling unit 607, for example.
(実施の形態にかかる基地局装置のハードウェア構成)
 図7は、実施の形態にかかる基地局装置のハードウェア構成の一例を示す図である。図7において、図6に示した部分と同様の部分については同一の符号を付して説明を省略する。図6に示した基地局210は、たとえば、図7に示すように、アンテナ601と、RF回路701と、FPGA702と、CPU703と、メモリ704と、により実現することができる。FPGAはField Programmable Gate Arrayの略である。CPUはCentral Processing Unit(中央処理装置)の略である。
(Hardware configuration of base station apparatus according to embodiment)
FIG. 7 is a diagram illustrating an example of a hardware configuration of the base station apparatus according to the embodiment. In FIG. 7, the same parts as those shown in FIG. The base station 210 illustrated in FIG. 6 can be realized by an antenna 601, an RF circuit 701, an FPGA 702, a CPU 703, and a memory 704, for example, as illustrated in FIG. FPGA is an abbreviation for Field Programmable Gate Array. CPU is an abbreviation for Central Processing Unit.
 RF回路701には、たとえば、アンプ、ミキサ、ADC、DACなどの回路が含まれる。ADCはAnalog/Digital Converter(アナログ/デジタル変換器)の略である。DACはDigital/Analog Converter(デジタル/アナログ変換器)の略である。図6に示したRF受信部602およびRF送信部606は、たとえばRF回路701により実現することができる。 The RF circuit 701 includes circuits such as an amplifier, a mixer, an ADC, and a DAC. ADC is an abbreviation for Analog / Digital Converter (analog / digital converter). DAC stands for Digital / Analog Converter (digital / analog converter). The RF receiving unit 602 and the RF transmitting unit 606 shown in FIG. 6 can be realized by the RF circuit 701, for example.
 FPGA702は、ベースバンドのデジタル処理を行う回路である。図6に示したベースバンド受信部603およびベースバンド送信部605は、たとえばFPGA702により実現することができる。 The FPGA 702 is a circuit that performs baseband digital processing. The baseband receiving unit 603 and the baseband transmitting unit 605 illustrated in FIG. 6 can be realized by the FPGA 702, for example.
 CPU703は、基地局210の全体の制御を司るCPUである。メモリ704には、たとえばメインメモリおよび補助メモリが含まれる。メインメモリは、たとえばRAM(Random Access Memory)である。メインメモリは、CPU703のワークエリアとして使用される。補助メモリは、たとえば磁気ディスク、光ディスク、フラッシュメモリなどの不揮発性メモリである。補助メモリには、基地局210を動作させる各種のプログラムが記憶されている。補助メモリに記憶されたプログラムは、メインメモリにロードされてCPU703によって実行される。図6に示した回線終端部604およびスケジューリング部607は、たとえばCPU703およびメモリ704により実現することができる。 The CPU 703 is a CPU that controls the entire base station 210. The memory 704 includes, for example, a main memory and an auxiliary memory. The main memory is, for example, a RAM (Random Access Memory). The main memory is used as a work area for the CPU 703. The auxiliary memory is a non-volatile memory such as a magnetic disk, an optical disk, or a flash memory. Various programs for operating the base station 210 are stored in the auxiliary memory. The program stored in the auxiliary memory is loaded into the main memory and executed by the CPU 703. The line termination unit 604 and scheduling unit 607 shown in FIG. 6 can be realized by the CPU 703 and the memory 704, for example.
(実施の形態にかかる端末)
 図8は、実施の形態にかかる端末の一例を示す図である。端末221の構成について説明するが、端末222,223の構成についても端末221の構成と同様である。図8に示すように、端末221は、たとえば、アンテナ801と、RF受信部802と、ベースバンド受信部803と、制御部804と、ベースバンド送信部805と、RF送信部806と、を備える。
(Terminal according to the embodiment)
FIG. 8 is a diagram illustrating an example of a terminal according to the embodiment. Although the configuration of the terminal 221 will be described, the configurations of the terminals 222 and 223 are the same as the configuration of the terminal 221. As illustrated in FIG. 8, the terminal 221 includes, for example, an antenna 801, an RF reception unit 802, a baseband reception unit 803, a control unit 804, a baseband transmission unit 805, and an RF transmission unit 806. .
 アンテナ801は、他の通信装置(たとえば基地局210)から無線送信された信号を受信し、受信した信号(下り受信信号)をRF受信部802へ出力する。RF受信部802は、アンテナ801から出力された下り受信信号のRF受信処理を行う。RF受信部802によるRF受信処理には、たとえば、増幅、RF帯からベースバンド帯への周波数変換、アナログ信号からデジタル信号への変換等が含まれる。RF受信部802は、RF受信処理を行った信号(下りベースバンド信号)をベースバンド受信部803へ出力する。 The antenna 801 receives a signal wirelessly transmitted from another communication device (for example, the base station 210), and outputs the received signal (downlink reception signal) to the RF reception unit 802. The RF reception unit 802 performs an RF reception process on the downlink reception signal output from the antenna 801. The RF reception processing by the RF receiver 802 includes, for example, amplification, frequency conversion from the RF band to the baseband, conversion from an analog signal to a digital signal, and the like. The RF reception unit 802 outputs the signal (downlink baseband signal) subjected to the RF reception process to the baseband reception unit 803.
 RF受信部802からベースバンド受信部803へ出力される下りベースバンド信号は、下り搬送波が除去された信号である。ベースバンド受信部803は、RF受信部802から出力された下りベースバンド信号を復調し、復調した信号を復号する。そして、ベースバンド受信部803は、復号により得られた信号(受信信号)を制御部804へ出力する。 The downlink baseband signal output from the RF reception unit 802 to the baseband reception unit 803 is a signal from which a downlink carrier wave has been removed. The baseband receiving unit 803 demodulates the downlink baseband signal output from the RF receiving unit 802 and decodes the demodulated signal. Then, the baseband receiving unit 803 outputs a signal (reception signal) obtained by decoding to the control unit 804.
 制御部804は、ベースバンド受信部803から出力された受信信号に基づく処理(たとえばアプリケーション処理)を行う。また、処理(たとえばアプリケーション処理)に基づく送信信号を生成し、生成した送信信号をベースバンド送信部805へ出力する。また、制御部804は、ベースバンド受信部803から出力された受信信号に含まれるDCIなどの制御信号やリファレンス信号に基づく受信処理を行う。 The control unit 804 performs processing (for example, application processing) based on the received signal output from the baseband receiving unit 803. In addition, a transmission signal based on processing (for example, application processing) is generated, and the generated transmission signal is output to baseband transmission section 805. In addition, the control unit 804 performs a reception process based on a control signal such as DCI included in the reception signal output from the baseband reception unit 803 and a reference signal.
 ベースバンド送信部805は、制御部804から出力された送信信号を符号化し、符号化した信号を変調する。そして、ベースバンド送信部805は、変調により得られた信号(上りベースバンド信号)をRF送信部806へ出力する。 The baseband transmission unit 805 encodes the transmission signal output from the control unit 804 and modulates the encoded signal. Then, the baseband transmission unit 805 outputs a signal (uplink baseband signal) obtained by the modulation to the RF transmission unit 806.
 RF送信部806は、ベースバンド送信部805から出力された上りベースバンド信号のRF送信処理を行う。RF送信部806によるRF送信処理には、たとえば、デジタル信号からアナログ信号への変換、ベースバンド帯からRF帯への周波数変換、増幅などが含まれる。RF送信部806は、RF送信処理を行った信号(上り変調信号)をアンテナ801へ出力する。アンテナ801は、RF送信部806から出力された上り変調信号を他の通信装置(たとえば基地局210)へ無線送信する。 The RF transmission unit 806 performs RF transmission processing on the uplink baseband signal output from the baseband transmission unit 805. The RF transmission processing by the RF transmission unit 806 includes, for example, conversion from a digital signal to an analog signal, frequency conversion from a baseband to an RF band, amplification, and the like. The RF transmission unit 806 outputs a signal (uplink modulated signal) subjected to RF transmission processing to the antenna 801. The antenna 801 wirelessly transmits the uplink modulated signal output from the RF transmission unit 806 to another communication device (for example, the base station 210).
 図1に示した第2の端末130の受信部131は、たとえばアンテナ801、RF受信部802、ベースバンド受信部803および制御部804により実現することができる。図1に示した第2の端末130の処理部132は、たとえばベースバンド受信部803および制御部804の少なくともいずれかにより実現することができる。 The receiving unit 131 of the second terminal 130 illustrated in FIG. 1 can be realized by, for example, the antenna 801, the RF receiving unit 802, the baseband receiving unit 803, and the control unit 804. The processing unit 132 of the second terminal 130 illustrated in FIG. 1 can be realized by at least one of the baseband receiving unit 803 and the control unit 804, for example.
(実施の形態にかかる端末のハードウェア構成)
 図9は、実施の形態にかかる端末のハードウェア構成の一例を示す図である。図9において、図8に示した部分と同様の部分については同一の符号を付して説明を省略する。端末221のハードウェア構成について説明するが、端末222,223のハードウェア構成についても端末221のハードウェア構成と同様である。図8に示した端末221は、たとえば、図9に示すように、アンテナ801と、RF回路901と、ベースバンド回路902と、メモリ903と、プロセッサ904と、メモリ905と、により実現することができる。
(Hardware configuration of terminal according to embodiment)
FIG. 9 is a diagram illustrating an example of a hardware configuration of the terminal according to the embodiment. In FIG. 9, the same parts as those shown in FIG. Although the hardware configuration of the terminal 221 will be described, the hardware configurations of the terminals 222 and 223 are the same as the hardware configuration of the terminal 221. The terminal 221 illustrated in FIG. 8 can be realized by an antenna 801, an RF circuit 901, a baseband circuit 902, a memory 903, a processor 904, and a memory 905, for example, as illustrated in FIG. it can.
 RF回路901には、たとえば、アンプ、ミキサ、ADC、DACなどの回路が含まれる。図8に示したRF受信部802およびRF送信部806は、たとえばRF回路901により実現することができる。 The RF circuit 901 includes circuits such as an amplifier, a mixer, an ADC, and a DAC. The RF receiver 802 and the RF transmitter 806 shown in FIG. 8 can be realized by the RF circuit 901, for example.
 ベースバンド回路902は、ベースバンドのデジタル処理を行う回路である。また、ベースバンド回路902は、たとえばFPGAやDSPなどのデジタル回路により実現することができる。DSPはDigital Signal Processorの略である。メモリ903は、ベースバンド回路902と接続された記憶域である。ベースバンド回路902は、たとえばメモリ903にアクセスすることによってベースバンド処理を行う。図8に示したベースバンド受信部803およびベースバンド送信部805は、たとえばベースバンド回路902およびメモリ903により実現することができる。 The baseband circuit 902 is a circuit that performs baseband digital processing. The baseband circuit 902 can be realized by a digital circuit such as an FPGA or a DSP, for example. DSP is an abbreviation for Digital Signal Processor. The memory 903 is a storage area connected to the baseband circuit 902. The baseband circuit 902 performs baseband processing by accessing the memory 903, for example. The baseband receiving unit 803 and the baseband transmitting unit 805 illustrated in FIG. 8 can be realized by the baseband circuit 902 and the memory 903, for example.
 プロセッサ904は、信号処理(たとえばホスト処理)を行う回路であり、たとえば端末221の全体の制御を司るCPUである。メモリ905には、たとえばメインメモリおよび補助メモリが含まれる。メインメモリは、たとえばRAMである。メインメモリは、プロセッサ904のワークエリアとして使用される。補助メモリは、たとえば磁気ディスク、光ディスク、フラッシュメモリなどの不揮発性メモリである。補助メモリには、端末221を動作させる各種のプログラムが記憶されている。補助メモリに記憶されたプログラムは、メインメモリにロードされてプロセッサ904によって実行される。図8に示した制御部804は、たとえばプロセッサ904およびメモリ905により実現することができる。 The processor 904 is a circuit that performs signal processing (for example, host processing), and is, for example, a CPU that controls the entire terminal 221. The memory 905 includes, for example, a main memory and an auxiliary memory. The main memory is, for example, a RAM. The main memory is used as a work area for the processor 904. The auxiliary memory is a non-volatile memory such as a magnetic disk, an optical disk, or a flash memory. Various programs for operating the terminal 221 are stored in the auxiliary memory. The program stored in the auxiliary memory is loaded into the main memory and executed by the processor 904. The control unit 804 illustrated in FIG. 8 can be realized by the processor 904 and the memory 905, for example.
(実施の形態にかかる基地局装置による処理)
 図10は、実施の形態にかかる基地局装置による処理の一例を示すフローチャートである。実施の形態にかかる基地局210は、たとえば図10に示す各ステップを実行する。図10に示す各ステップは、たとえば、図6に示した基地局210のスケジューリング部607による制御または処理によって実行される。
(Processing by base station apparatus according to embodiment)
FIG. 10 is a flowchart illustrating an example of processing performed by the base station apparatus according to the embodiment. The base station 210 according to the embodiment executes, for example, each step shown in FIG. Each step illustrated in FIG. 10 is executed by control or processing by the scheduling unit 607 of the base station 210 illustrated in FIG. 6, for example.
 まず、基地局210は、無線スケジューリング処理を行う(ステップS1001)。ステップS1001の無線スケジューリング処理には、たとえば、無線通信を行う端末を選択する端末選択や、選択した端末に無線リソース(たとえば周波数および時間の組み合わせ)を割り当てるリソース割り当てが含まれる。 First, the base station 210 performs radio scheduling processing (step S1001). The radio scheduling process in step S1001 includes, for example, terminal selection for selecting a terminal that performs radio communication and resource allocation for assigning radio resources (for example, a combination of frequency and time) to the selected terminal.
 また、基地局210は、高速フォーマット割り当てフラグを初期化する(ステップS1002)。たとえば、基地局210は、高速フォーマット割り当てフラグFlag_HSをFalseに設定する(Flag_HS:=False)。高速フォーマット割り当てフラグFlag_HSは、高速端末に対して高速無線フォーマット400を割り当てたか否かを示す情報である。また、高速フォーマット割り当てフラグFlag_HSは、基地局210のメモリ(たとえば図7に示したメモリ704)に記憶される。 Also, the base station 210 initializes a high-speed format allocation flag (step S1002). For example, the base station 210 sets the high-speed format allocation flag Flag_HS to False (Flag_HS: = False). The high speed format assignment flag Flag_HS is information indicating whether or not the high speed wireless format 400 is assigned to the high speed terminal. Further, the high-speed format allocation flag Flag_HS is stored in the memory of the base station 210 (for example, the memory 704 shown in FIG. 7).
 つぎに、基地局210は、ステップS1003~S1009の処理を、インデックスuをインクリメント(u:=u+1)しながらU回ループして行う(u:=0 to U-1)。Uは、ステップS1001の端末選択によって選択した端末の数(選択端末数)である。uは、ステップS1001の端末選択によって選択したU個の端末のうちの現在の処理対象の端末を示す、0~U-1のインデックスである。 Next, the base station 210 performs the processing of steps S1003 to S1009 by looping U times while incrementing the index u (u: = u + 1) (u: = 0 to U-1). U is the number of terminals selected by the terminal selection in step S1001 (the number of selected terminals). u is an index from 0 to U−1 indicating the current processing target terminal among the U terminals selected by the terminal selection in step S1001.
 たとえば、基地局210は、ステップS1001の端末選択によって端末221~223を選択したとする。この場合はU=3となる。また、基地局210は、インデックス=0~2をそれぞれ端末221~223に割り当てたとする。この場合は、インデックスu=0のときの端末uは端末221を示し、インデックスu=1のときの端末uは端末222を示し、インデックスu=2のときの端末uは端末223を示す。 For example, it is assumed that the base station 210 selects the terminals 221 to 223 by the terminal selection in step S1001. In this case, U = 3. Further, it is assumed that base station 210 assigns indexes = 0 to 2 to terminals 221 to 223, respectively. In this case, the terminal u when the index u = 0 indicates the terminal 221, the terminal u when the index u = 1 indicates the terminal 222, and the terminal u when the index u = 2 indicates the terminal 223.
 まず、基地局210は、端末uのフェージング周波数の推定結果fd[u]が所定の閾値Θfdより大きいか否かを判定する高速移動判定を行う(ステップS1003)。端末uのフェージング周波数の推定結果fd[u]は、基地局210が端末uからの無線信号に基づいて算出することができる。または、端末uのフェージング周波数の推定結果fd[u]は、たとえば端末uが基地局210からの無線信号に基づいて算出することができる。この場合は、基地局210は、端末uが算出した推定結果fd[u]を示す情報を端末uから受信する。 First, the base station 210 performs high-speed movement determination that determines whether or not the fading frequency estimation result fd [u] of the terminal u is larger than a predetermined threshold value Θfd (step S1003). The estimation result fd [u] of the fading frequency of the terminal u can be calculated by the base station 210 based on the radio signal from the terminal u. Alternatively, the fading frequency estimation result fd [u] of the terminal u can be calculated by the terminal u based on a radio signal from the base station 210, for example. In this case, the base station 210 receives information indicating the estimation result fd [u] calculated by the terminal u from the terminal u.
 ステップS1003において、端末uのフェージング周波数の推定結果fd[u]が閾値Θfdより大きくない場合(ステップS1003:No)は、基地局210は、端末uを低速端末として判定する(ステップS1004)。たとえば、基地局210は、端末uのモビリティMobility[u]をNormalに設定する(Mobility[u]:=Normal)。モビリティMobility[u]は、基地局210のメモリ(たとえば図7に示したメモリ704)に記憶される情報である。 In step S1003, when the fading frequency estimation result fd [u] of the terminal u is not larger than the threshold Θfd (step S1003: No), the base station 210 determines the terminal u as a low speed terminal (step S1004). For example, the base station 210 sets the mobility Mobility [u] of the terminal u to Normal (Mobility [u]: = Normal). Mobility Mobility [u] is information stored in a memory of base station 210 (for example, memory 704 shown in FIG. 7).
 つぎに、基地局210は、端末uに低速無線フォーマット300を割り当て(ステップS1005)、端末uについてのステップS1003~S1009の処理を終了する。ステップS1005において、たとえば、基地局210は、端末uの無線フォーマットChannelFormat[u]をNormalに設定する(ChannelFormat[u]:=Normal)。無線フォーマットChannelFormat[u]は、基地局210のメモリ(たとえば図7に示したメモリ704)に記憶される情報である。 Next, the base station 210 allocates the low-speed wireless format 300 to the terminal u (step S1005), and ends the processes of steps S1003 to S1009 for the terminal u. In step S1005, for example, the base station 210 sets the radio format ChannelFormat [u] of the terminal u to Normal (ChannelFormat [u]: = Normal). The radio format ChannelFormat [u] is information stored in the memory of the base station 210 (for example, the memory 704 shown in FIG. 7).
 ステップS1003において、端末uのフェージング周波数の推定結果fd[u]が閾値Θfdより大きい場合(ステップS1003:Yes)は、基地局210は、端末uを高速端末として判定する(ステップS1006)。たとえば、基地局210は、端末uのモビリティMobility[u]をHighSpeedに設定する(Mobility[u]:=HighSpeed)。モビリティMobility[u]は、基地局210のメモリ(たとえば図7に示したメモリ704)に記憶される情報である。 In step S1003, when the fading frequency estimation result fd [u] of the terminal u is larger than the threshold Θfd (step S1003: Yes), the base station 210 determines the terminal u as a high-speed terminal (step S1006). For example, the base station 210 sets the mobility Mobility [u] of the terminal u to HighSpeed (Mobility [u]: = HighSpeed). Mobility Mobility [u] is information stored in a memory of base station 210 (for example, memory 704 shown in FIG. 7).
 つぎに、基地局210は、高速フォーマット割り当てフラグFlag_HSがTrueであるか否かを判断する(ステップS1007)。高速フォーマット割り当てフラグFlag_HSがTrueである場合(ステップS1007:Yes)は、すでに高速端末に高速無線フォーマット400を割り当てていると判断することができるため、基地局210は、ステップS1005へ移行する。この場合は、端末uは、高速端末として判定されるが低速無線フォーマット300が割り当てられることになる。 Next, the base station 210 determines whether or not the high-speed format allocation flag Flag_HS is True (step S1007). If the high speed format assignment flag Flag_HS is True (step S1007: Yes), it can be determined that the high speed wireless format 400 has already been assigned to the high speed terminal, and the base station 210 moves to step S1005. In this case, the terminal u is determined as a high-speed terminal, but the low-speed wireless format 300 is assigned.
 ステップS1007において、高速フォーマット割り当てフラグFlag_HSがTrueでない場合(ステップS1007:No)は、まだ高速端末に高速無線フォーマット400を割り当てていないと判断することができる。この場合は、基地局210は、端末uに高速無線フォーマット400を割り当てる(ステップS1008)。たとえば、基地局210は、端末uの無線フォーマットChannelFormat[u]をHighSpeedに設定する(ChannelFormat[u]:=HighSpeed)。 In step S1007, if the high-speed format assignment flag Flag_HS is not True (step S1007: No), it can be determined that the high-speed wireless format 400 has not yet been assigned to the high-speed terminal. In this case, the base station 210 assigns the high speed wireless format 400 to the terminal u (step S1008). For example, the base station 210 sets the radio format ChannelFormat [u] of the terminal u to HighSpeed (ChannelFormat [u]: = HighSpeed).
 つぎに、基地局210は、端末uを高速フォーマット端末として記憶し、高速フォーマット割り当てフラグFlag_HSを変更する(ステップS1009)。ステップS1009において、たとえば、基地局210は、高速フォーマット端末HSFormatUEをuに設定する(HSFormatUE:=u)。高速フォーマット端末HSFormatUEは、基地局210のメモリ(たとえば図7に示したメモリ704)に記憶される情報である。また、基地局210は、高速フォーマット割り当てフラグFlag_HSをTrueに設定する(Flag_HS:=True)。そして、基地局210は、端末uについてのステップS1003~S1009の処理を終了する。 Next, the base station 210 stores the terminal u as a high-speed format terminal and changes the high-speed format assignment flag Flag_HS (step S1009). In step S1009, for example, the base station 210 sets the high-speed format terminal HSFormatUE to u (HSFormatUE: = u). The high-speed format terminal HSFormatUE is information stored in the memory of the base station 210 (for example, the memory 704 shown in FIG. 7). In addition, the base station 210 sets the high-speed format assignment flag Flag_HS to True (Flag_HS: = True). Then, the base station 210 ends the processes of steps S1003 to S1009 for the terminal u.
 基地局210は、ステップS1003~S1009の処理をU回ループして行うと、ステップS1010~S1015の処理を、インデックスuをインクリメント(u:=u+1)しながらU回ループして行う(u:=0 to U-1)。 When the base station 210 performs the processes of steps S1003 to S1009 in U loops, the base station 210 performs the processes of steps S1010 to S1015 in U loops while incrementing the index u (u: = u + 1) (u: = 0 to U-1).
 まず、基地局210は、端末uのモビリティMobility[u]がHighSpeedであるか否かを判断する(ステップS1010)。モビリティMobility[u]がHighSpeedでない場合(ステップS1010:No)は、基地局210は、低速端末向けのDCI(たとえば図12参照)を端末uへ送信する(ステップS1011)。低速端末向けのDCIには、高速フォーマット端末HSFormatUEが示す端末に割り当てた無線リソースの位置を示す高速無線フォーマットリソース位置情報が含まれる。 First, the base station 210 determines whether or not the mobility Mobility [u] of the terminal u is High Speed (step S1010). When mobility Mobility [u] is not High Speed (step S1010: No), base station 210 transmits DCI (for example, see FIG. 12) for low-speed terminals to terminal u (step S1011). The DCI for low-speed terminals includes high-speed radio format resource position information indicating the positions of radio resources allocated to the terminals indicated by the high-speed format terminal HSFormatUE.
 ステップS1010において、モビリティMobility[u]がHighSpeedである場合(ステップS1010:Yes)は、基地局210は、高速端末向けのDCI(たとえば図13参照)を端末uへ送信する(ステップS1012)。 In step S1010, when mobility Mobility [u] is High Speed (step S1010: Yes), base station 210 transmits DCI for high-speed terminals (for example, see FIG. 13) to terminal u (step S1012).
 つぎに、基地局210は、端末uの無線フォーマットChannelFormat[u]がHighSpeedであるか否かを判断する(ステップS1013)。無線フォーマットChannelFormat[u]がHighSpeedでない場合(ステップS1013:No)は、基地局210は、低速無線フォーマット300(図3参照)でデータチャネル320を端末uへ送信する(ステップS1014)。そして、基地局210は、端末uについてのステップS1010~S1015の処理を終了する。 Next, the base station 210 determines whether or not the radio format ChannelFormat [u] of the terminal u is HighSpeed (step S1013). When the radio format ChannelFormat [u] is not High Speed (step S1013: No), the base station 210 transmits the data channel 320 to the terminal u in the low speed radio format 300 (see FIG. 3) (step S1014). Then, the base station 210 ends the processes of steps S1010 to S1015 for the terminal u.
 ステップS1013において、無線フォーマットChannelFormat[u]がHighSpeedである場合(ステップS1013:Yes)は、基地局210は、ステップS1015へ移行する。すなわち、基地局210は、高速無線フォーマット400(図4参照)でデータチャネル420を端末uへ送信し(ステップS1015)、端末uについてのステップS1010~S1015の処理を終了する。 In step S1013, when the radio format ChannelFormat [u] is HighSpeed (step S1013: Yes), the base station 210 moves to step S1015. That is, the base station 210 transmits the data channel 420 to the terminal u in the high-speed wireless format 400 (see FIG. 4) (step S1015), and ends the processes of steps S1010 to S1015 for the terminal u.
 図10に示す例では、最初に選択された1個の高速端末を高速フォーマット端末とする処理について説明したが、このような処理に限らない。たとえば、基地局210は、各高速端末のうち、これらの高速端末が使用するサブバンドの中央に最も近い周波数リソースを割り当てた高速端末を高速フォーマット端末としてもよい。これにより、他の各高速端末に割り当てる周波数リソースと、高速フォーマット端末に割り当てる周波数リソースと、の差の最大値を小さくすることができる。このため、高速フォーマット端末のリファレンス信号を他の各高速端末が参照することによる周波数オフセットの補償精度の低下を抑制することができる。 In the example shown in FIG. 10, the process of setting the first selected high-speed terminal as the high-speed format terminal has been described, but the present invention is not limited to such a process. For example, the base station 210 may set a high-speed format terminal to be a high-speed terminal to which the frequency resource closest to the center of the subband used by these high-speed terminals is assigned. Thereby, the maximum value of the difference between the frequency resource allocated to each other high-speed terminal and the frequency resource allocated to the high-speed format terminal can be reduced. For this reason, it is possible to suppress a decrease in frequency offset compensation accuracy caused by other high-speed terminals referring to the reference signal of the high-speed format terminal.
 また、基地局210は、各高速端末のうちの複数の高速端末を高速フォーマット端末としてもよい。この場合に、基地局210は、高速フォーマット端末でない各高速端末に対して、複数の高速フォーマット端末のうち割り当てる周波数リソースが最も近い高速フォーマット端末の無線リソースを示す高速無線フォーマットリソース位置情報を送信する。これにより、高速フォーマット端末のリファレンス信号を他の各高速端末が参照することによる周波数オフセットの補償精度の低下を抑制することができる。また、この場合に、基地局210は、高速フォーマット端末に割り当てる各周波数リソースがサブバンド内で均等配置されるように、各高速端末のうちの複数の高速端末を高速フォーマット端末としてもよい。これにより、高速フォーマット端末のリファレンス信号を他の各高速端末が参照することによる周波数オフセットの補償精度の低下を抑制することができる。 Also, the base station 210 may use a plurality of high-speed terminals among the high-speed terminals as high-speed format terminals. In this case, the base station 210 transmits, to each high-speed terminal that is not a high-speed format terminal, high-speed radio format resource position information indicating the radio resource of the high-speed format terminal that is closest to the allocated frequency resource among the plurality of high-speed format terminals. . As a result, it is possible to suppress a decrease in frequency offset compensation accuracy caused by other high-speed terminals referring to the reference signal of the high-speed format terminal. In this case, the base station 210 may use a plurality of high-speed terminals among the high-speed terminals as high-speed format terminals so that the frequency resources allocated to the high-speed format terminals are evenly arranged within the subband. As a result, it is possible to suppress a decrease in frequency offset compensation accuracy caused by other high-speed terminals referring to the reference signal of the high-speed format terminal.
 また、基地局210は、各高速端末のうちフェージング周波数が最も大きい(または移動速度が最も高い)高速端末を高速フォーマット端末としてもよい。これにより、周波数オフセットが最も大きい端末は自端末に割り当てられたリファレンス信号による周波数オフセットの補償が可能になり、周波数オフセットの補償精度の低下を抑制することができる。 Also, the base station 210 may select a high-speed terminal having the highest fading frequency (or the highest moving speed) among the high-speed terminals as a high-speed format terminal. As a result, the terminal having the largest frequency offset can compensate for the frequency offset by the reference signal assigned to the own terminal, and can suppress a decrease in the frequency offset compensation accuracy.
(実施の形態にかかる端末による処理)
 図11は、実施の形態にかかる端末による処理の一例を示すフローチャートである。端末221による処理について説明するが、端末222,223による処理についても端末221による処理と同様である。端末221は、たとえば図11に示す各ステップを実行する。図11に示す各ステップは、たとえば図8に示した制御部804による制御または処理によって実行される。
(Processing by the terminal according to the embodiment)
FIG. 11 is a flowchart illustrating an example of processing performed by the terminal according to the embodiment. The processing by the terminal 221 will be described, but the processing by the terminals 222 and 223 is the same as the processing by the terminal 221. The terminal 221 executes, for example, each step shown in FIG. Each step shown in FIG. 11 is executed by, for example, control or processing by the control unit 804 shown in FIG.
 まず、端末221は、基地局210からの自端末へのDCIを受信する(ステップS1101)。たとえば、端末221は、基地局210から送信されたDCIの復調および復号を試みること(ブラインド受信またはブラインド復号)により、そのDCIが自端末へのDCIであるかどうかを判断することができる。 First, the terminal 221 receives DCI from the base station 210 to the terminal (step S1101). For example, the terminal 221 can determine whether the DCI is the DCI for the terminal by attempting to demodulate and decode the DCI transmitted from the base station 210 (blind reception or blind decoding).
 つぎに、端末221は、ステップS1101により受信したDCIが高速端末向けのDCIであるか否かを判断する(ステップS1102)。たとえば、端末221は、受信したDCIに含まれる、そのDCIのフォーマットを示すフィールド(たとえば図12,図13参照)の値に基づいてそのDCIが高速端末向けのDCIであるか否かを判断する。 Next, the terminal 221 determines whether or not the DCI received in step S1101 is DCI for high-speed terminals (step S1102). For example, the terminal 221 determines whether the DCI is DCI for a high-speed terminal based on the value of a field indicating the format of the DCI (for example, see FIGS. 12 and 13) included in the received DCI. .
 ステップS1102において、高速端末向けのDCIでない場合(ステップS1102:No)は、端末221は、ステップS1105へ移行する。この場合は、端末221は、周波数オフセットの補償を行わなくてもよい。高速端末向けのDCIである場合(ステップS1102:Yes)は、端末221は、ステップS1103へ移行する。すなわち、基地局210は、ステップS1101により受信したDCIから、高速無線フォーマット400が適用された端末に割り当てられた無線リソースの位置を示す高速無線フォーマットリソース位置情報を抽出する(ステップS1103)。 In step S1102, if the DCI is not for high-speed terminals (step S1102: No), the terminal 221 proceeds to step S1105. In this case, the terminal 221 may not perform frequency offset compensation. If the DCI is for high-speed terminals (step S1102: Yes), the terminal 221 proceeds to step S1103. That is, the base station 210 extracts the high-speed radio format resource position information indicating the position of the radio resource allocated to the terminal to which the high-speed radio format 400 is applied from the DCI received in step S1101 (step S1103).
 つぎに、端末221は、抽出した高速無線フォーマットリソース位置情報が示すリソース位置にある高速無線フォーマット400のリファレンス信号(リファレンス信号431~434)を用いて周波数オフセットを推定する(ステップS1104)。 Next, the terminal 221 estimates the frequency offset using the reference signals (reference signals 431 to 434) of the high speed wireless format 400 at the resource position indicated by the extracted high speed wireless format resource position information (step S1104).
 つぎに、端末221は、ステップS1101により受信したDCIから、自端末宛てのデータチャネルの無線リソースの位置や各種パラメータを示す情報を抽出する(ステップS1105)。各種パラメータは、自端末宛てのデータチャネルの受信のためのパラメータである。 Next, the terminal 221 extracts information indicating the position of the radio resource of the data channel addressed to the terminal and various parameters from the DCI received in step S1101 (step S1105). Various parameters are parameters for receiving a data channel addressed to the terminal itself.
 つぎに、端末221は、ステップS1105により抽出した情報を用いて自端末向けのデータチャネルを復号し(ステップS1106)、一連の処理を終了する。このとき、基地局210は、ステップS1104を実行した場合は、ステップS1104により推定した周波数オフセットに基づく周波数オフセットの補償を行うことによりデータチャネルの受信品質を向上させることができる。 Next, the terminal 221 decodes the data channel for the terminal itself using the information extracted in step S1105 (step S1106), and ends a series of processing. At this time, when performing step S1104, the base station 210 can improve the reception quality of the data channel by performing frequency offset compensation based on the frequency offset estimated in step S1104.
 図11に示した処理においては、端末221が高速端末であるか否かを端末221が判別していない場合においても、自端末へのDCIが高速端末向けのDCIであるか否かを判断することにより、端末221が高速端末であるか否かに応じた処理が可能になる。また、端末221が高速端末であるか否かを端末221が判別している場合は、ステップS1102において、端末221が高速端末であるか否かによって処理を分岐してもよい。この場合は、DCIが高速端末向けのDCIであるか否かを示す情報(たとえば図12,図13に示す高速DCIフォーマット判定用フラグ1201,1301)をDCIに含めなくてもよい。 In the process shown in FIG. 11, even when the terminal 221 does not determine whether or not the terminal 221 is a high-speed terminal, it is determined whether or not the DCI to the terminal is DCI for the high-speed terminal. Thus, processing according to whether or not the terminal 221 is a high-speed terminal can be performed. When the terminal 221 determines whether or not the terminal 221 is a high-speed terminal, the process may be branched depending on whether or not the terminal 221 is a high-speed terminal in step S1102. In this case, information indicating whether DCI is DCI for high-speed terminals (for example, high-speed DCI format determination flags 1201 and 1301 shown in FIGS. 12 and 13) may not be included in DCI.
(実施の形態にかかる低速端末向けのDCIのフォーマット)
 図12は、実施の形態にかかる低速端末向けのDCIのフォーマットの一例を示す図である。図12に示すDCI1200は、低速端末向けのDCIである。DCI1200は、高速DCIフォーマット判定用フラグ1201および高速無線フォーマットリソース位置情報1202を含む。
(DCI format for low-speed terminals according to the embodiment)
FIG. 12 is a diagram illustrating an example of a DCI format for a low-speed terminal according to the embodiment. DCI 1200 shown in FIG. 12 is DCI for low-speed terminals. The DCI 1200 includes a high-speed DCI format determination flag 1201 and high-speed wireless format resource position information 1202.
 高速DCIフォーマット判定用フラグ1201は、DCI1200が低速端末向けのDCIであることを示す情報である。図12に示す例では高速DCIフォーマット判定用フラグ1201はDCI1200の先頭に格納されている。高速無線フォーマットリソース位置情報1202は、高速端末に対して高速無線フォーマット400を割り当てた無線リソースの位置を示す情報である。図12に示す例では高速無線フォーマットリソース位置情報1202はDCI1200の末尾に格納されている。 The high-speed DCI format determination flag 1201 is information indicating that the DCI 1200 is DCI for low-speed terminals. In the example shown in FIG. 12, the high-speed DCI format determination flag 1201 is stored at the head of the DCI 1200. The high-speed wireless format resource position information 1202 is information indicating the position of the wireless resource to which the high-speed wireless format 400 is assigned to the high-speed terminal. In the example shown in FIG. 12, the high-speed wireless format resource position information 1202 is stored at the end of the DCI 1200.
(実施の形態にかかる高速端末向けのDCIフォーマット)
 図13は、実施の形態にかかる高速端末向けのDCIフォーマットの一例を示す図である。図13に示すDCI1300は、高速端末向けのDCIである。DCI1300は、高速DCIフォーマット判定用フラグ1301を含む。高速DCIフォーマット判定用フラグ1301は、DCI1300が低速端末向けのDCIであることを示す情報である。図13に示す例では高速DCIフォーマット判定用フラグ1301はDCI1300の先頭に格納されている。
(DCI format for high-speed terminals according to the embodiment)
FIG. 13 is a diagram illustrating an example of a DCI format for a high-speed terminal according to the embodiment. DCI 1300 shown in FIG. 13 is DCI for high-speed terminals. The DCI 1300 includes a high-speed DCI format determination flag 1301. The high-speed DCI format determination flag 1301 is information indicating that the DCI 1300 is DCI for low-speed terminals. In the example shown in FIG. 13, the high-speed DCI format determination flag 1301 is stored at the head of the DCI 1300.
 また、高速端末向けのDCIには、図12に示した高速無線フォーマットリソース位置情報1202のような、高速端末に対して高速無線フォーマットを割り当てた無線リソースの位置を示す情報は含まれていなくてもよい。 Also, the DCI for high-speed terminals does not include information indicating the position of the radio resource assigned the high-speed radio format to the high-speed terminal, such as the high-speed radio format resource position information 1202 shown in FIG. Also good.
 なお、図12,図13に示したDCI1200,1300において、高速DCIフォーマット判定用フラグ1201,1301を省いてもよい。この場合は、たとえば、DCI1200,1300の間でビット数が異なるようにしておき、端末221~223は受信したDCIの復号をそれぞれのビット数で試みることでそのDCIがDCI1200,1300のいずれであるかを判定することができる。 Note that the high-speed DCI format determination flags 1201 and 1301 may be omitted from the DCIs 1200 and 1300 shown in FIGS. In this case, for example, the number of bits is made different between the DCIs 1200 and 1300, and the terminals 221 to 223 try to decode the received DCI with the respective number of bits, so that the DCI is either DCI 1200 or 1300 Can be determined.
(実施の形態にかかる低速端末向けのRSパターンの他の例)
 図14は、実施の形態にかかる低速端末向けのRSパターンの他の一例を示す図である。図14において、図3に示した部分と同様の部分については同一の符号を付して説明を省略する。図14に示すように、低速無線フォーマット300のデータチャネル320にはリファレンス信号1411が含まれていてもよい。リファレンス信号1411は、低速無線フォーマット300の周波数全体に割り当てられたリファレンス信号である。このように、データチャネル320のリファレンス信号は、低速無線フォーマット300に含まれる周波数ごとに異なる時間のリファレンス信号でなくてもよい。
(Another example of the RS pattern for low-speed terminals according to the embodiment)
FIG. 14 is a diagram illustrating another example of the RS pattern for low-speed terminals according to the embodiment. In FIG. 14, the same parts as those shown in FIG. As shown in FIG. 14, a reference signal 1411 may be included in the data channel 320 of the low-speed wireless format 300. The reference signal 1411 is a reference signal assigned to the entire frequency of the low speed wireless format 300. As described above, the reference signal of the data channel 320 may not be a reference signal having a different time for each frequency included in the low-speed wireless format 300.
(実施の形態にかかる高速端末向けのRSパターンの他の例)
 図15は、実施の形態にかかる高速端末向けのRSパターンの他の一例を示す図である。図15において、図4に示した部分と同様の部分については同一の符号を付して説明を省略する。図15に示すように、高速無線フォーマット400のデータチャネル420にはリファレンス信号1511,1512が含まれていてもよい。リファレンス信号1511,1512のそれぞれは、高速無線フォーマット400の周波数全体に割り当てられたリファレンス信号である。また、リファレンス信号1511,1512は、互いに時間が異なる各リファレンス信号である。このように、データチャネル420のリファレンス信号は、高速無線フォーマット400に含まれる周波数ごとに異なる時間のリファレンス信号でなくてもよい。
(Another example of the RS pattern for high-speed terminals according to the embodiment)
FIG. 15 is a diagram illustrating another example of the RS pattern for the high-speed terminal according to the embodiment. In FIG. 15, the same parts as those shown in FIG. As shown in FIG. 15, reference signals 1511 and 1512 may be included in the data channel 420 of the high-speed wireless format 400. Each of the reference signals 1511 and 1512 is a reference signal assigned to the entire frequency of the high-speed wireless format 400. Reference signals 1511 and 1512 are reference signals having different times. As described above, the reference signal of the data channel 420 may not be a reference signal having a different time for each frequency included in the high-speed wireless format 400.
 このように、実施の形態によれば、高速端末のうち一部(端末222)を除く端末223および低速端末である端末221に低速無線フォーマット300のデータチャネル320を送信することができる。これにより、リファレンス信号によるオーバヘッドを減らして伝送効率の向上を図ることができる。また、高速端末である端末223には、高速無線フォーマット400のデータチャネル420の無線リソースを示す高速無線フォーマットリソース位置情報を含むDCIを送信することができる。これにより、端末223は、データチャネル420のリファレンス信号431~434に基づく周波数オフセットの補償が可能になり、受信品質の低下を抑制することができる。このため、受信品質の低下を抑制しつつ、リファレンス信号によるオーバヘッドを減らして伝送効率の向上を図ることができる。 As described above, according to the embodiment, the data channel 320 of the low-speed wireless format 300 can be transmitted to the terminal 223 excluding a part (terminal 222) of the high-speed terminals and the terminal 221 that is a low-speed terminal. Thereby, the overhead by a reference signal can be reduced and the transmission efficiency can be improved. Further, DCI including high-speed radio format resource position information indicating the radio resource of the data channel 420 of the high-speed radio format 400 can be transmitted to the terminal 223 which is a high-speed terminal. As a result, the terminal 223 can compensate for the frequency offset based on the reference signals 431 to 434 of the data channel 420, and can suppress a decrease in reception quality. For this reason, it is possible to improve the transmission efficiency by reducing the overhead due to the reference signal while suppressing the deterioration of the reception quality.
 以上説明したように、基地局、端末、通信システムおよび処理方法によれば、受信品質の低下を抑制しつつオーバヘッドを減らして伝送効率の向上を図ることができる。 As described above, according to the base station, the terminal, the communication system, and the processing method, it is possible to improve the transmission efficiency by reducing the overhead while suppressing the deterioration of the reception quality.
 従来、5Gではミリ波帯などの高周波の使用が想定されている。高周波では発信器の精度やドップラ周波数によって生じる周波数オフセットが大きくなり、この周波数オフセットの補正が課題となる。 Conventionally, the use of high-frequency waves such as a millimeter wave band is assumed in 5G. At high frequencies, the frequency offset caused by the accuracy of the transmitter and the Doppler frequency increases, and correction of this frequency offset becomes a problem.
 たとえば4Gの下りリンクでは、主にセル共通パイロット(CS-RS:Cell Specific Reference Signal)が周波数オフセットの推定に用いられている。これに対して5Gでは、運用効率向上のためセル共通パイロットが廃止され、ユーザ個別のパイロット(UE-RS:UE specific Reference Signal)が割り当てられる方向で検討が進められている。 For example, in 4G downlink, a cell common pilot (CS-RS: Cell Specific Reference Signal) is mainly used for frequency offset estimation. On the other hand, in 5G, cell common pilots are abolished to improve operational efficiency, and studies are proceeding in a direction in which user-specific pilots (UE-RS: UE specific Reference Signal) are allocated.
 ユーザ個別パイロットで広範囲の周波数オフセット補正と無線リソースの効率化の両方を実現するために、たとえば、PDSCHについて複数のDMRSパターンを持つことが議論されている。たとえば、高速移動中の端末へのリファレンス信号の配置パターンとしては、周波数オフセットの補償を容易にするために時間方向に繰り返すパターンが支持されている。ただし、リファレンス信号の配置数が多いとオーバヘッドが大きくなるため伝送効率が悪くなる。 In order to realize both a wide range of frequency offset correction and efficiency improvement of radio resources in user-specific pilots, for example, it is discussed to have a plurality of DMRS patterns for PDSCH. For example, as a reference signal arrangement pattern for a terminal moving at high speed, a pattern that repeats in the time direction is supported in order to facilitate frequency offset compensation. However, if the number of reference signals arranged is large, the overhead becomes large and the transmission efficiency deteriorates.
 これに対して、上述した実施の形態によれば、高速移動中の端末のうち一部の端末のみにリファレンス信号が時間方向に繰り返すデータチャネルを送信し、高速移動中の他の端末はそのデータチャネルを参照することができる。これにより、無線リソース中のリファレンス信号の割合を減らすことが可能であり、無線リソースの利用効率を向上させ、セルのスループットを向上させることができる。 On the other hand, according to the above-described embodiment, only a part of the terminals moving at high speed transmits a data channel in which the reference signal repeats in the time direction, and the other terminals moving at high speed move the data. You can refer to the channel. As a result, the ratio of the reference signal in the radio resource can be reduced, the utilization efficiency of the radio resource can be improved, and the cell throughput can be improved.
 100 通信システム
 110,210 基地局
 111 通信部
 112,804 制御部
 120 第1の端末
 130 第2の端末
 131 受信部
 132 処理部
 140 第3の端末
 200 移動体通信システム
 221~223 端末
 230 コアネットワーク
 300 低速無線フォーマット
 310,410 制御情報
 320,420 データチャネル
 331,332,431~434,1411,1511,1512 リファレンス信号
 400 高速無線フォーマット
 601,801 アンテナ
 602,802 RF受信部
 603,803 ベースバンド受信部
 604 回線終端部
 605,805 ベースバンド送信部
 606,806 RF送信部
 607 スケジューリング部
 701,901 RF回路
 702 FPGA
 703 CPU
 704,903,905 メモリ
 902 ベースバンド回路
 904 プロセッサ
 1200,1300 DCI
 1201,1301 高速DCIフォーマット判定用フラグ
 1202 高速無線フォーマットリソース位置情報
DESCRIPTION OF SYMBOLS 100 Communication system 110,210 Base station 111 Communication part 112,804 Control part 120 1st terminal 130 2nd terminal 131 Reception part 132 Processing part 140 3rd terminal 200 Mobile communication system 221-223 Terminal 230 Core network 300 Low- speed wireless format 310, 410 Control information 320, 420 Data channel 331, 332, 431-434, 1411, 1511, 1512 Reference signal 400 High- speed wireless format 601, 801 Antenna 602, 802 RF receiver 603, 803 Baseband receiver 604 Line termination unit 605, 805 Baseband transmission unit 606, 806 RF transmission unit 607 Scheduling unit 701, 901 RF circuit 702 FPGA
703 CPU
704, 903, 905 Memory 902 Baseband circuit 904 Processor 1200, 1300 DCI
1201, 1301 High-speed DCI format determination flag 1202 High-speed wireless format resource position information

Claims (12)

  1.  第1の端末および前記第1の端末と異なる第2の端末との間で無線通信を行う通信部を備え、
     時間方向の繰り返しパターンを有するリファレンス信号を含むフレームフォーマットで送信される第1のデータチャネルを前記第1の端末へ送信し、前記第1のデータチャネルの無線リソースを示す制御情報を前記第2の端末へ送信し、リファレンス信号が前記第1のデータチャネルより少ない、またはリファレンス信号を含まない第2のデータチャネルを前記第2の端末へ送信する、
     ことを特徴とする基地局。
    A communication unit that performs wireless communication between the first terminal and a second terminal different from the first terminal;
    A first data channel transmitted in a frame format including a reference signal having a repetition pattern in a time direction is transmitted to the first terminal, and control information indicating a radio resource of the first data channel is transmitted to the second terminal Transmitting to the terminal and transmitting a second data channel having a reference signal less than the first data channel or not including the reference signal to the second terminal;
    A base station characterized by that.
  2.  前記制御情報を前記第2の端末へ送信することにより、前記第1のデータチャネルに含まれるリファレンス信号に基づいて前記第2のデータチャネルの周波数オフセットを前記第2の端末に補償させることを特徴とする請求項1に記載の基地局。 By transmitting the control information to the second terminal, the second terminal is compensated for a frequency offset of the second data channel based on a reference signal included in the first data channel. The base station according to claim 1.
  3.  前記第2のデータチャネルは時間的に繰り返さないリファレンス信号を含むことを特徴とする請求項1または2に記載の基地局。 The base station according to claim 1 or 2, wherein the second data channel includes a reference signal that does not repeat in time.
  4.  前記制御情報は、前記第2のデータチャネルの無線リソースと、前記第1のデータチャネルの無線リソースと、の差分を示す情報であることを特徴とする請求項1~3のいずれか一つに記載の基地局。 4. The control information according to claim 1, wherein the control information is information indicating a difference between a radio resource of the second data channel and a radio resource of the first data channel. The listed base station.
  5.  前記通信部が通信中の各端末のうち所定の移動状態である複数の端末の中から一部の端末を選択し、前記各端末のうち前記所定の移動状態でない端末へリファレンス信号が前記第1のデータチャネルより少ない第3のデータチャネルを送信し、
     前記第1の端末は選択された前記一部の端末であり、
     前記第2の端末は前記複数の端末のうち前記一部の端末と異なる端末である、
     ことを特徴とする請求項1~4のいずれか一つに記載の基地局。
    The communication unit selects some terminals from a plurality of terminals that are in a predetermined movement state among the terminals that are communicating, and a reference signal is sent to the terminal that is not in the predetermined movement state among the terminals. A third data channel that is less than the data channel of
    The first terminal is the selected part of the terminals;
    The second terminal is a terminal different from the some of the plurality of terminals.
    The base station according to any one of claims 1 to 4, wherein:
  6.  前記制御情報はDCI(Downlink Control Information)であることを特徴とする請求項1~5のいずれか一つに記載の基地局。 6. The base station according to claim 1, wherein the control information is DCI (Downlink Control Information).
  7.  前記第1のデータチャネルおよび前記第2のデータチャネルの無線リソースのとり得る範囲を示す情報を前記第1の端末および前記第2の端末へ送信し、前記とり得る範囲の中から選択した無線リソースにより前記第1のデータチャネルおよび前記第2のデータチャネルを送信することを特徴とする請求項1~6のいずれか一つに記載の基地局。 Radio information selected from the possible range is transmitted to the first terminal and the second terminal by transmitting information indicating the possible range of the radio resource of the first data channel and the second data channel. The base station according to any one of claims 1 to 6, wherein the base station transmits the first data channel and the second data channel.
  8.  前記とり得る範囲を示す情報をRRC(Radio Resource Control:無線リソース制御)のメッセージにより前記第1の端末および前記第2の端末へ送信することを特徴とする請求項7に記載の基地局。 The base station according to claim 7, wherein information indicating the possible range is transmitted to the first terminal and the second terminal by an RRC (Radio Resource Control) message.
  9.  他の端末および自端末との間で無線通信を行い時間方向の繰り返しパターンを有するリファレンス信号を含むフレームフォーマットで送信される第1のデータチャネルを前記他の端末へ送信する基地局から、前記第1のデータチャネルの無線リソースを示す制御情報と、リファレンス信号が前記第1のデータチャネルより少ない、またはリファレンス信号を含まない第2のデータチャネルと、を受信し、受信した前記制御情報に基づいて前記第1のデータチャネルを受信する受信部と、
     前記受信部によって受信された前記第1のデータチャネルに含まれるリファレンス信号に基づいて、前記受信部によって受信された前記第2のデータチャネルの周波数オフセットを補償する処理部と、
     を備えることを特徴とする端末。
    From the base station that transmits to the other terminal a first data channel that is transmitted in a frame format including a reference signal that performs wireless communication between the other terminal and the own terminal and has a repetition pattern in the time direction. Receiving control information indicating radio resources of one data channel and a second data channel having a reference signal less than the first data channel or not including the reference signal, and based on the received control information A receiver for receiving the first data channel;
    A processing unit for compensating a frequency offset of the second data channel received by the receiving unit based on a reference signal included in the first data channel received by the receiving unit;
    A terminal comprising:
  10.  第1の端末と、
     前記第1の端末と異なる第2の端末と、
     前記第1の端末および前記第2の端末の間で無線通信を行う基地局であって、時間方向の繰り返しパターンを有するリファレンス信号を含むフレームフォーマットで送信される第1のデータチャネルを前記第1の端末へ送信し、前記第1のデータチャネルの無線リソースを示す制御情報を前記第2の端末へ送信し、リファレンス信号が前記第1のデータチャネルより少ない、またはリファレンス信号を含まない第2のデータチャネルを前記第2の端末へ送信する基地局と、
     を含み、
     前記第2の端末は、前記基地局から前記制御情報および前記第2のデータチャネルを受信し、受信した前記制御情報に基づいて前記第1のデータチャネルを受信し、受信した前記第1のデータチャネルに含まれるリファレンス信号に基づいて、受信した前記第2のデータチャネルの周波数オフセットを補償する、
     ことを特徴とする通信システム。
    A first terminal;
    A second terminal different from the first terminal;
    A base station that performs radio communication between the first terminal and the second terminal, wherein a first data channel transmitted in a frame format including a reference signal having a repetitive pattern in a time direction is defined as the first data channel. Control information indicating radio resources of the first data channel is transmitted to the second terminal, and a reference signal is less than the first data channel or does not include a reference signal. A base station transmitting a data channel to the second terminal;
    Including
    The second terminal receives the control information and the second data channel from the base station, receives the first data channel based on the received control information, and receives the received first data Compensating for a frequency offset of the received second data channel based on a reference signal included in the channel;
    A communication system characterized by the above.
  11.  第1の端末および前記第1の端末と異なる第2の端末との間で無線通信を行う基地局が、
     時間方向の繰り返しパターンを有するリファレンス信号を含むフレームフォーマットで送信される第1のデータチャネルを前記第1の端末へ送信し、
     前記第1のデータチャネルの無線リソースを示す制御情報を前記第2の端末へ送信し、
     リファレンス信号が前記第1のデータチャネルより少ない、またはリファレンス信号を含まない第2のデータチャネルを前記第2の端末へ送信する、
     ことを特徴とする処理方法。
    A base station that performs wireless communication between a first terminal and a second terminal different from the first terminal,
    Transmitting a first data channel transmitted in a frame format including a reference signal having a repetition pattern in a time direction to the first terminal;
    Transmitting control information indicating radio resources of the first data channel to the second terminal;
    Transmitting a second data channel with fewer reference signals than the first data channel or no reference signal to the second terminal;
    A processing method characterized by the above.
  12.  端末が、
     他の端末および自端末との間で無線通信を行い時間方向の繰り返しパターンを有するリファレンス信号を含むフレームフォーマットで送信される第1のデータチャネルを前記他の端末へ送信する基地局から、前記第1のデータチャネルの無線リソースを示す制御情報と、リファレンス信号が前記第1のデータチャネルより少ない、またはリファレンス信号を含まない第2のデータチャネルと、を受信し、
     受信した前記制御情報に基づいて前記第1のデータチャネルを受信し、
     受信した前記第1のデータチャネルに含まれるリファレンス信号に基づいて、受信した前記第2のデータチャネルの周波数オフセットを補償する、
     ことを特徴とする処理方法。
    The device
    From the base station that transmits to the other terminal a first data channel that is transmitted in a frame format including a reference signal that performs wireless communication between the other terminal and the own terminal and has a repetition pattern in the time direction. Receiving control information indicating radio resources of one data channel and a second data channel having a reference signal less than the first data channel or not including the reference signal;
    Receiving the first data channel based on the received control information;
    Compensating a frequency offset of the received second data channel based on a reference signal included in the received first data channel;
    A processing method characterized by the above.
PCT/JP2017/022216 2017-06-15 2017-06-15 Base station, terminal, communication system, and processing method WO2018229953A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/022216 WO2018229953A1 (en) 2017-06-15 2017-06-15 Base station, terminal, communication system, and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/022216 WO2018229953A1 (en) 2017-06-15 2017-06-15 Base station, terminal, communication system, and processing method

Publications (1)

Publication Number Publication Date
WO2018229953A1 true WO2018229953A1 (en) 2018-12-20

Family

ID=64659040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022216 WO2018229953A1 (en) 2017-06-15 2017-06-15 Base station, terminal, communication system, and processing method

Country Status (1)

Country Link
WO (1) WO2018229953A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016518758A (en) * 2013-04-01 2016-06-23 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Transmitting apparatus and control signal arrangement method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016518758A (en) * 2013-04-01 2016-06-23 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Transmitting apparatus and control signal arrangement method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "Downlink DM-RS overhead reduction for small Cells", 3GPP TSG-RAN WG1#72B R1-131638, 19 April 2013 (2013-04-19), pages 1 - 6, XP050697423, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WGl_RLl/TSGRl_72b/Docs/Rl-131638.zip> *

Similar Documents

Publication Publication Date Title
EP3008840B1 (en) Method of measuring self-interference channel and user equipment thereto
JP6153575B2 (en) User terminal, radio base station, and radio communication method
JP5729891B2 (en) Terminal device, channel estimation method, and integrated circuit
JP6779212B2 (en) User terminal, wireless base station and wireless communication method
CN110603862B (en) Method and apparatus for reporting power headroom
EP3166234A1 (en) Multi-access scheme and signal structure for d2d communications
JP5695034B2 (en) Transmission device, reception device, transmission method, and notification method
KR20160030226A (en) Methods and apparatus for sounding channel operation in millimeter wave communication systems
KR102527280B1 (en) Method and apparatus for transmission and reception of reference signal in wirelss communication system
JP7230922B2 (en) Method for phase tracking reference signal construction
KR20190097020A (en) Terminal device, base station device and communication method
US11895661B2 (en) Method and apparatus for PUCCH coverage enhancement
CN112436927A (en) Side-link transport method and apparatus
KR20210150550A (en) Data transmission methods and devices
CN107888352B (en) Reference signal processing method, user equipment and base station
JP2022111245A (en) Terminal, base station, wireless communication method, and system
US20230124181A1 (en) Methods for communication, terminal device, network device, and computer readable media
US8983485B2 (en) Base station apparatus, mobile terminal apparatus and scheduling method
CN108282288B (en) Reference signal configuration method, base station, user equipment and system
TWI435577B (en) User terminal and method for transmitting ranging preamble codes to base station in communication systems
CN110086511B (en) Beam forming method and device
US11647467B2 (en) Capability signaling to enable full power uplink transmission
WO2018229953A1 (en) Base station, terminal, communication system, and processing method
CN111865517B (en) Method and device for transmitting reference signal
CN113383508B (en) Broadband communication based on availability assessment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP