WO2018229926A1 - Medical manipulator - Google Patents

Medical manipulator Download PDF

Info

Publication number
WO2018229926A1
WO2018229926A1 PCT/JP2017/022097 JP2017022097W WO2018229926A1 WO 2018229926 A1 WO2018229926 A1 WO 2018229926A1 JP 2017022097 W JP2017022097 W JP 2017022097W WO 2018229926 A1 WO2018229926 A1 WO 2018229926A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
processing unit
operated
operation input
manipulator
Prior art date
Application number
PCT/JP2017/022097
Other languages
French (fr)
Japanese (ja)
Inventor
竜一 頼本
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/022097 priority Critical patent/WO2018229926A1/en
Publication of WO2018229926A1 publication Critical patent/WO2018229926A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots

Definitions

  • the present invention relates to a medical manipulator.
  • Patent Document 1 describes a control device including two processing systems that perform the same processing.
  • the same command is input to two processing systems, and the processing results are compared.
  • the processing results do not match, it is determined which processing result is correct using the input value and the processing result determined to be normal in the past control.
  • control parameters, control programs, and the like may be updated for the purpose of improving responsiveness to operations or eliminating problems.
  • update is performed after verifying that there are no problems in the contents of the update data by performing verification assuming various usage situations using the update data including the updated control parameters and control program. .
  • control software including control parameters and control programs is becoming larger and more complex.
  • efforts such as enhancing the number and contents of test patterns by listening to the surgeon who is a user are limited.
  • the number of verification personnel is not infinite, the amount of verification work that can be performed is limited.
  • an object of the present invention is to provide a medical manipulator that can perform verification of update data in a more enhanced manner.
  • the present invention includes an operation input unit that receives a user's operation input, a control unit that generates an operation signal based on the operation input, a drive unit that is driven by the operation signal, and a target that is operated by the drive unit.
  • An operation unit wherein the control unit is connected to the drive unit, and is separated from the drive unit, a first processing unit that generates the operation signal based on the operation input and signal generation data, and the operation unit
  • a medical manipulator including a second processing unit configured to generate a verification operation signal based on an input.
  • the second processing unit may include a plant model that can be simulated by inputting the verification operation signal.
  • the plant model may be a physical model of the drive unit and the operated unit.
  • the second processing unit may be configured to receive information from at least one of the driving unit and the operated unit.
  • the medical manipulator of the present invention further includes an external detection unit configured to be able to acquire information about the inside of the patient and the periphery of the operated unit, and the second processing unit can receive information from the external detection unit May be configured.
  • the medical manipulator of the present invention further includes a space recognition sensor configured to be able to acquire information on a space in which the medical manipulator is disposed, and the second processing unit can receive information from the space recognition sensor. It may be configured.
  • the second processing unit may store data to be verified for updating the signal generation data, and the operation signal for verification may be generated based on the operation input and the data to be verified.
  • the medical manipulator of the present invention can perform verification of update data in a more complete manner.
  • FIG. 1 is a functional block diagram of a medical manipulator (hereinafter simply referred to as “manipulator”) 1 of the present embodiment.
  • the manipulator 1 includes an operation input unit 10 operated by a user, an operated unit 20 that operates based on an operation input to the operation input unit 10, a drive unit 30 that electrically drives the operated unit, and a drive unit 30. And a control unit 40 that controls driving.
  • buttons and levers can be exemplified.
  • observation means such as a laparoscope and an endoscope
  • treatment means such as a grasping forceps and a high-frequency knife, and the like can be exemplified.
  • the drive unit 30 includes a drive source such as a motor and a power source.
  • the drive source and the operated unit 20 are connected to each other by a wire that transmits electric power, a wire that transmits power, or the like according to a specific configuration of the operated unit 20.
  • the control unit 40 includes a first processing unit 41 and a second processing unit 51.
  • the first processing unit 41 includes a calculation unit 42, a volatile storage unit 43, a nonvolatile storage unit 44, an FPGA (field-programmable gate array) 45, and a drive unit driver 46.
  • CPU etc. can be used, for example.
  • a RAM or the like can be used as the volatile storage unit 43.
  • the nonvolatile storage unit 44 for example, a flash memory or the like can be used.
  • the FPGA 45 is a gate array that can update the contents of the program.
  • the drive unit driver 46 for example, when the drive source is a motor, a motor driver is used.
  • the calculation unit 42 is connected to the volatile storage unit 43, the nonvolatile storage unit 44, and the FPGA 45.
  • the FPGA 45 is connected to the calculation unit 42 and the drive unit driver 46.
  • the drive unit driver 46 is connected to the drive unit 30.
  • the second processing unit 51 includes a calculation unit 52, a volatile storage unit 53, a nonvolatile storage unit 54, an FPGA 55, and a plant model 56.
  • the calculation unit 52, the volatile storage unit 53, the nonvolatile storage unit 54, and the FPGA 55 configurations similar to those of the calculation unit 42, the volatile storage unit 43, the nonvolatile storage unit 44, and the FPGA 45 can be used, respectively.
  • the calculation unit 52 is connected to the volatile storage unit 53, the nonvolatile storage unit 54, and the FPGA 55.
  • the FPGA 55 is connected to the calculation unit 52 and the plant model 56 and is separated from the drive unit 30.
  • the plant model 56 is data obtained by physically modeling the structure, dimensions, operation mode, and the like of the operated unit 20, the drive unit 30, and the drive unit driver 46, and is stored in a storage medium or the like.
  • the plant model 56 is configured to be able to execute an operation simulation of the drive unit 30 and the operated unit 20 by inputting a signal for operating the drive unit driver 46.
  • the FPGA 45 stores operation signal generation data for generating an operation signal for operating the drive unit driver 46 based on an output from the operation input unit 10.
  • the operation signal generation data includes a signal generation program for generating an operation signal, a control parameter, and the like.
  • the generated operation signal is sent to the driver driver 46.
  • the drive unit driver 46 drives the drive unit 30 based on the operation signal, the operated unit 20 operates. Thereby, the surgeon can perform a desired procedure such as observation or treatment using the operated portion 20.
  • the same operation signal generation data as that stored in the FPGA 45 is stored in the FPGA 55 of the second processing unit 51.
  • the output of the operation input unit 10 is not sent to the second processing unit 51. Therefore, in the series of operations described above, the second processing unit 51 does not operate.
  • the operation signal generation data before update can be verified by activating the second processing unit 51.
  • the procedure will be described below.
  • operation signal generation data to be verified (hereinafter referred to as “data to be verified”) is stored in the FPGA 55 of the second processing unit 51, and the operation signal generation data is changed. Further, the setting is changed so that the output of the operation input unit 10 is also sent to the second processing unit 51.
  • the output of the operation input unit 10 is sent to both the first processing unit 41 and the second processing unit 51.
  • the first processing unit 41 that has received the output operates as described above to operate the operated unit 20.
  • the calculation unit 52 uses the data to be verified stored in the FPGA 55 and performs an operation signal (operation signal for verification) by a process different from that of the first processing unit 51 based on the output of the operation input unit 10. ) Is generated. Subsequently, the calculation unit 52 inputs the generated operation signal to the plant model 56 and performs an operation simulation of the drive unit 30 and the operated unit 20. The result of the operation simulation is accumulated in the nonvolatile storage unit 54 in the form of a system log, an error log, or the like. The accumulated logs and the like are collected at an appropriate timing by a service person or the like, and used for operation analysis or correction of data to be verified.
  • the manipulator 1 of the present embodiment includes the second processing unit 51 including the plant model 56, it is possible to verify the data to be verified based on the output of the operation input unit 10 when the operator actually performs the procedure. it can.
  • the variations in output associated with the actual procedure of the surgeon are far more diverse than the test pattern assumed by the manufacturer, and the surgeon's habit at the time of use, special usage by a specific surgeon, etc. It also includes elements specific to the surgeon. Therefore, the quality of verification for the data to be verified can be remarkably improved, and the occurrence of problems and the like that occur after the update of the operation signal generation data using the data to be verified can be suitably suppressed.
  • the second processing unit 51 performs an operation simulation using the plant model 56, the driving unit 30 and the operated unit 20 are not operated. Therefore, even if a problem occurs during verification of the verification target data, the operations of the drive unit 30 and the operated unit 20 are not affected.
  • the verification by the second processing unit 51 is performed in parallel with the actual procedure using the manipulator 1, it is not necessary to separately secure time for verification. Further, when the surgeon performs an operation input on the operation input unit 10, the input content is output to both the first processing unit 41 and the second processing unit 51, so there is no need to perform another operation input for verification. .
  • the operator simply performs the procedure with the verification data stored in the FPGA 55 of the second processing unit 51, and does not affect the actual procedure and is automatically covered. Verification data is verified. Moreover, the contents of the verification are based on actual techniques in a wide variety of situations, and are very useful for finding and improving defects in data to be verified. Therefore, by storing the data to be verified in the second processing unit 51 of the manipulator 1 that is actually operating in a hospital or the like in each place, it is possible to efficiently perform a full verification of the data to be verified, The quality of the updated operation signal generation data can be improved.
  • the second processing unit may be configured using a ROM instead of the FPGA 55, and may be replaced with a ROM that stores data to be verified at the time of verification.
  • control unit 40 and the server 500 storing the data to be verified are connected via the network 501, and the data to be verified is received via the network 501 and stored in the FPGA 55. There may be.
  • a system log or error log as a simulation result may be transmitted to the server 500 via the network 501 and stored in the server 500 in real time or at a predetermined timing.
  • a second embodiment of the present invention will be described with reference to FIG. This embodiment is different from the first embodiment in that the second processing unit is configured to receive information from the drive unit or the like.
  • the second processing unit is configured to receive information from the drive unit or the like.
  • FIG. 3 is a functional block diagram of the manipulator 101 of the present embodiment.
  • the configuration of the functional blocks is substantially the same as that of the manipulator 1 of the first embodiment, but the drive unit driver 46 and the drive unit 30 are connected to the calculation unit 52 of the second processing unit 51.
  • the manipulator 101 is configured to be able to transmit information from the drive unit driver 46 and the drive unit 30 to the calculation unit 52.
  • the flow of information is only in one direction from the drive unit driver 46 and the drive unit 30 to the calculation unit 52, and the independence of the first processing unit 41 from the second processing unit 51 is maintained.
  • the calculation unit 52 of the second processing unit 51 When verifying data to be verified using the manipulator 101, the calculation unit 52 of the second processing unit 51 considers information received from the drive unit driver 46 and the drive unit 30 in addition to the plant model 56, and performs an operation simulation. I do. Information acquired from the drive unit driver 46 and the drive unit 30 can be set as appropriate, but items that are likely to deviate from values in the actual machine in a simulation using only the plant model 56 or that are likely to fluctuate in actual use conditions are preferable. For example, an output value of an encoder indicating the amount of rotation of the drive source in the drive unit 30, a current value generated by the drive unit driver 46, and the like can be exemplified.
  • the manipulator 101 of the present embodiment can perform verification of data to be verified for updating in a more substantial manner. Furthermore, since the second processing unit 51 is configured to be able to acquire information of the drive unit 30 that is a part of the entity structure modeled in the plant model 56, the drive unit 30 that is actually operating and the target The data to be verified can be verified under conditions closer to the state of the operation unit 20.
  • the second processing unit 51 may be configured to be able to acquire information from parts other than the drive unit 30.
  • the manipulator is transmitted so that the output value of the encoder is transmitted to the second processing unit 51 and used for the operation simulation. It may be configured.
  • the configuration may be such that information on the position and orientation of each part of the operated unit is acquired by an appropriate mechanism and sent to the second processing unit 51.
  • a third embodiment of the present invention will be described with reference to FIGS. This embodiment is different from the above-described embodiments in that the second processing unit uses information around the manipulator in the patient's body.
  • FIG. 4 shows an overall image of the manipulator 201 of the present embodiment.
  • the operation input unit 210 is installed on the table 202.
  • the drive unit 230 and the operated unit 220 are attached to an extracorporeal arm 204 disposed near the operating table 203 on which the patient P lies.
  • the operated part 220 includes a body arm that is inserted into the body of the patient P.
  • the distal end portion of the operated portion 220 provided with the internal arm enters the body from the mouth of the patient P.
  • the extracorporeal arm 204 is not included in the operated portion 220 because the position and shape are manually adjusted as necessary.
  • FIG. 5 is a view showing the tip of the operated part 220.
  • an endoscope 205 for observing the inside of the body, two body arms 223 and 224 operated by an operator, and a tip of the operated part 220 are provided at the distal end of the operated part 220.
  • An external field detection unit 225 that acquires information about the surrounding state is provided.
  • Each of the body arms 223 and 224 has a plurality of joints and has a grip 226 at the tip.
  • the body arms 223 and 224 and the endoscope 205 are introduced into the patient P while being inserted into the overtube 206.
  • the mode of the operation input unit 210 corresponding to the operated unit 220 is not particularly limited.
  • one operation input mechanism may be associated with one of the body arms 223 and 224, and the two body arms may be operated with one operation input mechanism while switching the association.
  • two operation input mechanisms may be provided, and each operation input mechanism may be associated with the internal arms 223 and 224, respectively.
  • the outside world detection unit 225 scans the surrounding space of the manipulator 201, the position of each part of the distal end portion of the operated portion 220 located in the body of the patient P in the manipulator 201, and the periphery of the distal end portion of the operated portion 220. Information on the shape and size of the object existing in As the external detection unit 225, for example, a sensor or an imaging unit using LiDAR (Light Detection And Ranging, Laser Imaging Detection and ⁇ ⁇ ⁇ Ranging) can be used.
  • LiDAR Light Detection And Ranging, Laser Imaging Detection and ⁇ ⁇ ⁇ Ranging
  • FIG. 6 shows a functional block diagram of the manipulator 201.
  • the outside world detection unit 225 is connected to the calculation unit 52 of the second processing unit 51. Accordingly, the manipulator 201 is configured to be able to transmit information from the external world detection unit 225 to the calculation unit 52. The flow of information is only in one direction from the external detection unit 225 to the calculation unit 52, and the independence of the first processing unit 41 with respect to the second processing unit 51 is maintained.
  • the calculation unit 52 of the second processing unit 51 When verifying data to be verified using the manipulator 201, the calculation unit 52 of the second processing unit 51 considers information about the surrounding body arms 223 and 224 received from the external detection unit 225 in addition to the plant model 56. And perform an operation simulation. For example, when there is a non-target organ or the like around the target site of the procedure, whether or not the activated internal arms 223 and 224 are in contact with the organ or the like is also verified by simulation.
  • the manipulator 201 of the present embodiment verification of data to be verified for updating can be performed in a more fulfilling manner, like the manipulators of the above-described embodiments. Furthermore, since the second processing unit 51 is configured to be able to receive the information around the operated unit 220 in the body of the patient P acquired by the external detection unit 225, the manipulator 201 actually performs the procedure. The data to be verified can be verified under conditions closer to the environment.
  • the specific configuration of the external detection unit is not limited to the mechanism using LiDAR described above.
  • a known stereo endoscope capable of ranging can be used as the endoscope 205, and information about the operated portion in the patient's body may be acquired from the image and distance data acquired using the stereo function. .
  • surrounding information may be acquired by combining a mechanism using LiDAR and an endoscopic image.
  • a fourth embodiment of the present invention will be described with reference to FIGS. This embodiment is different from the above-described embodiments in that the second processing unit uses information around the patient.
  • FIG. 7 shows an overall image of the manipulator 301 of the present embodiment.
  • the operation input unit 310 operated by the operator Op is provided with a monitor 311 that displays an image inside the patient P.
  • the operated part 320 includes a plurality of arm units 321 arranged near the operating table 203 on which the patient P lies.
  • Each arm unit 321 has an arm part 322 including a plurality of joints 322a, and a treatment instrument unit 323 that is attached to the arm part and inserted into the patient's body.
  • a drive unit 30 is connected to each arm unit 322.
  • An image displayed on the monitor 311 is acquired by the laparoscope 302.
  • the laparoscope 302 is not included in the manipulator 301 because it is operated not by the operator Op but by the scoopist Sc.
  • the laparoscope 302 and each treatment instrument unit 323 are introduced into the patient P through a hole (not shown) formed in the abdominal wall of the patient P.
  • a space recognition sensor 305 that acquires information around the manipulator 301 is installed.
  • the space recognition sensor 305 for example, an infrared sensor or a laser sensor can be used. Or the mechanism using LiDAR mentioned above may be used as a space recognition sensor.
  • the space recognition sensor 305 There is no restriction
  • FIG. For example, it may be attached to the ceiling of the operating room, or may be attached to a stand and placed in the operating room.
  • FIG. 8 shows a functional block diagram of the manipulator 301.
  • the space recognition sensor 305 is connected to the calculation unit 52 of the second processing unit 51. Accordingly, the manipulator 301 is configured to be able to transmit information from the space recognition sensor 305 to the calculation unit 52. The information flow is only in one direction from the space recognition sensor 305 to the calculation unit 52, and the independence of the first processing unit 41 from the second processing unit 51 is maintained.
  • the calculation unit 52 of the second processing unit 51 performs an operation simulation in consideration of the operating room information received from the space recognition sensor 305 in addition to the plant model 56.
  • the information in the operating room includes, for example, the arrangement of each arm unit 321, the positions of the laparoscope 302 and the scoopist Sc, the positions of the operating table 203 and the patient P, and the like. That is, as shown in FIG. 7, when the scopist Sc stands near a certain arm unit 321, and the laparoscope 302 is operated, the arm unit 321 that has been operated is connected to the scopist Sc, the laparoscope 302, the operating table 203, Whether or not the contact has occurred is also verified by simulation.
  • verification of data to be verified for updating can be performed in a more fulfilling manner, as with the manipulators of the above-described embodiments.
  • the second processing unit 51 is configured to be able to receive the information in the operating room acquired by the space recognition sensor 305, it is possible to take into account the situation outside the body of the patient P during the procedure using the manipulator 301. Verification data can be verified.
  • the structure of the operated part stored in the plant model may be different from the structure of the operated part that actually operates.
  • Such an aspect is useful when, for example, verification of data to be verified corresponding to the operated part is performed before a new operated part is added to the product lineup.
  • the example in which the first processing unit and the second processing unit are configured to be physically separated in the control unit has been described, but instead, the modification illustrated in FIG.
  • an area that functions as part of the first processing unit and an area that functions as part of the second processing unit are provided in the same hardware while ensuring independence from each other.
  • a control unit that virtually includes the first processing unit and the second processing unit may be configured.
  • the first areas 42A, 43A, 44A, and 45A provided in the calculation unit 42, the volatile storage unit 43, the nonvolatile storage unit 44, and the FPGA 45 respectively, function as a first processing unit.
  • the second regions 42B, 43B, 44B, and 45B provided in the unit 42, the volatile storage unit 43, the nonvolatile storage unit 44, and the FPGA 45 function as a second processing unit.
  • the present invention can be applied to a medical manipulator.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Robotics (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Manipulator (AREA)

Abstract

A medical manipulator comprises an operation input unit for receiving operation input of a user, a control unit for generating an action signal based on the operation input, a drive unit driven by the action signal, and an operated portion actuated by the drive unit. The control unit comprises a first processing unit connected to the drive unit and that generates an actuation signal based on the operation input and signal generation data, and a second processing unit separated from the drive unit and configured so as to be able to generate an actuation signal for verification based on the operation input.

Description

医療用マニピュレータMedical manipulator
 本発明は、医療用マニピュレータに関する。 The present invention relates to a medical manipulator.
 従来、観察手段および複数の処置具を体内に挿入した状態で術者が操作する医療用マニピュレータが知られている。
 処置具等がモータ等の駆動源により駆動される場合、まず術者の操作により操作部から操作信号が出力される。制御部は、操作信号と所定の制御パラメータや制御プログラム等とに基づいて駆動源を動作させるための動作信号を生成する。駆動源が動作信号に基づいて動作すると、処置具等が動作する。
2. Description of the Related Art Conventionally, medical manipulators that are operated by an operator with an observation means and a plurality of treatment tools inserted into the body are known.
When the treatment instrument or the like is driven by a drive source such as a motor, an operation signal is first output from the operation unit by an operator's operation. The control unit generates an operation signal for operating the drive source based on the operation signal and predetermined control parameters, a control program, and the like. When the drive source operates based on the operation signal, the treatment instrument or the like operates.
 上記医療用マニピュレータにおいては、制御部の誤動作発生を可能な限り抑制することが重要である。
 この問題に関連して、特許文献1には、同一の処理を行う処理系統を二つ備える制御装置が記載されている。この制御装置では、同一の指令を二つの処理系統に入力し、処理結果を比較する。処理結果が一致しない場合は、過去の制御において正常と判断された入力値および処理結果を用いて、いずれの処理結果が正しいかを判断する。
In the medical manipulator, it is important to suppress the occurrence of malfunction of the control unit as much as possible.
In relation to this problem, Patent Document 1 describes a control device including two processing systems that perform the same processing. In this control apparatus, the same command is input to two processing systems, and the processing results are compared. When the processing results do not match, it is determined which processing result is correct using the input value and the processing result determined to be normal in the past control.
日本国特開2011-191876号公報Japanese Unexamined Patent Publication No. 2011-191876
 ところで、医療用マニピュレータの販売開始後に、操作に対する応答性を改善したり、不具合を解消したりする目的で、制御パラメータや制御プログラム等が更新されることがある。通常、このような更新は、更新後の制御パラメータや制御プログラムを含む更新データを用いて、様々な使用場面を想定した検証を行い、更新データの内容に問題がないことを確認した後に行われる。 By the way, after the start of sales of medical manipulators, control parameters, control programs, and the like may be updated for the purpose of improving responsiveness to operations or eliminating problems. Usually, such update is performed after verifying that there are no problems in the contents of the update data by performing verification assuming various usage situations using the update data including the updated control parameters and control program. .
 医療用マニピュレータの複雑化に伴い、制御パラメータや制御プログラム等を含む制御用のソフトウェアは、巨大化、複雑化している。上述の検証についても、ユーザである術者への聞き取り等により、テストパターンの数や内容を充実させる等の努力が行われているが、限界がある。また、検証を行う人員も無限ではないため、可能な検証作業の量にも限界がある。 With the increasing complexity of medical manipulators, control software including control parameters and control programs is becoming larger and more complex. For the above-described verification, efforts such as enhancing the number and contents of test patterns by listening to the surgeon who is a user are limited. In addition, since the number of verification personnel is not infinite, the amount of verification work that can be performed is limited.
 上記事情を踏まえ、本発明は、更新データの検証をより充実した態様で行うことができる医療用マニピュレータを提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a medical manipulator that can perform verification of update data in a more enhanced manner.
 本発明は、使用者の操作入力を受け付ける操作入力部と、前記操作入力にもとづいて動作信号を生成する制御部と、前記動作信号により駆動される駆動部と、前記駆動部により動作される被操作部とを備え、前記制御部は、前記駆動部と接続され、前記操作入力と信号生成データとに基づいて前記動作信号を生成する第一処理部と、前記駆動部と分離され、前記操作入力に基づいて検証用動作信号を生成可能に構成された第二処理部とを備える医療用マニピュレータである。 The present invention includes an operation input unit that receives a user's operation input, a control unit that generates an operation signal based on the operation input, a drive unit that is driven by the operation signal, and a target that is operated by the drive unit. An operation unit, wherein the control unit is connected to the drive unit, and is separated from the drive unit, a first processing unit that generates the operation signal based on the operation input and signal generation data, and the operation unit A medical manipulator including a second processing unit configured to generate a verification operation signal based on an input.
 前記第二処理部は、前記検証用動作信号を入力することによりシミュレーション可能なプラントモデルを有してもよい。
 このとき、前記プラントモデルは、前記駆動部および前記被操作部の物理モデルであってもよい。
The second processing unit may include a plant model that can be simulated by inputting the verification operation signal.
At this time, the plant model may be a physical model of the drive unit and the operated unit.
 前記第二処理部は、前記駆動部および前記被操作部の少なくとも一方から情報を受信可能に構成されてもよい。 The second processing unit may be configured to receive information from at least one of the driving unit and the operated unit.
 本発明の医療用マニピュレータは、患者の体内かつ前記被操作部の周囲の情報を取得可能に構成された外界検知部をさらに備え、前記第二処理部が、前記外界検知部から情報を受信可能に構成されてもよい。 The medical manipulator of the present invention further includes an external detection unit configured to be able to acquire information about the inside of the patient and the periphery of the operated unit, and the second processing unit can receive information from the external detection unit May be configured.
 本発明の医療用マニピュレータは、前記医療用マニピュレータが配置された空間の情報を取得可能に構成された空間認識センサをさらに備え、前記第二処理部が、前記空間認識センサから情報を受信可能に構成されてもよい。 The medical manipulator of the present invention further includes a space recognition sensor configured to be able to acquire information on a space in which the medical manipulator is disposed, and the second processing unit can receive information from the space recognition sensor. It may be configured.
 前記第二処理部には、前記信号生成データを更新するための被検証データが格納され、前記操作入力と前記被検証データとに基づいて前記検証用動作信号が生成されてもよい。 The second processing unit may store data to be verified for updating the signal generation data, and the operation signal for verification may be generated based on the operation input and the data to be verified.
 本発明の医療用マニピュレータは、更新データの検証をより充実した態様で行うことができる。 The medical manipulator of the present invention can perform verification of update data in a more complete manner.
本発明の第一実施形態に係る医療用マニピュレータの機能ブロック図である。It is a functional block diagram of the medical manipulator concerning a first embodiment of the present invention. 同医療用マニピュレータの変形例を示す機能ブロック図である。It is a functional block diagram showing a modification of the medical manipulator. 本発明の第二実施形態に係る医療用マニピュレータを示す機能ブロック図である。It is a functional block diagram which shows the medical manipulator which concerns on 2nd embodiment of this invention. 本発明の第三実施形態に係る医療用マニピュレータの全体構成を示す図である。It is a figure which shows the whole structure of the medical manipulator which concerns on 3rd embodiment of this invention. 同医療用マニピュレータにおける被操作部の先端部を示す図である。It is a figure which shows the front-end | tip part of the to-be-operated part in the medical manipulator. 同医療用マニピュレータの機能ブロック図である。It is a functional block diagram of the medical manipulator. 本発明の第四実施形態に係る医療用マニピュレータの全体構成を示す図である。It is a figure which shows the whole structure of the medical manipulator which concerns on 4th embodiment of this invention. 同医療用マニピュレータの機能ブロック図である。It is a functional block diagram of the medical manipulator. 本発明の変形例に係る医療用マニピュレータの機能ブロック図である。It is a functional block diagram of the medical manipulator which concerns on the modification of this invention.
 本発明の第一実施形態について、図1から図3を参照して説明する。
 図1は、本実施形態の医療用マニピュレータ(以下、単に「マニピュレータ」と称する。)1の機能ブロック図である。マニピュレータ1は、使用者が操作する操作入力部10と、操作入力部10への操作入力に基づいて動作する被操作部20と、被操作部を電動駆動する駆動部30と、駆動部30の駆動を制御する制御部40とを備えている。
A first embodiment of the present invention will be described with reference to FIGS. 1 to 3.
FIG. 1 is a functional block diagram of a medical manipulator (hereinafter simply referred to as “manipulator”) 1 of the present embodiment. The manipulator 1 includes an operation input unit 10 operated by a user, an operated unit 20 that operates based on an operation input to the operation input unit 10, a drive unit 30 that electrically drives the operated unit, and a drive unit 30. And a control unit 40 that controls driving.
 操作入力部10としては、公知の各種機構を採用可能である。例えば、タッチパネルやジョイスティック、マスターアーム等、あるいは、これらに適宜ボタンやレバー等を組み合わせたものを例示することができる。 As the operation input unit 10, various known mechanisms can be employed. For example, a touch panel, a joystick, a master arm, or the like, or a combination of buttons and levers as appropriate can be exemplified.
 被操作部20についても、公知の各種機構を採用可能である。例えば、腹腔鏡や内視鏡等の観察手段、把持鉗子や高周波ナイフ等の処置手段等を例示することができる。 Also for the operated part 20, various known mechanisms can be adopted. For example, observation means such as a laparoscope and an endoscope, treatment means such as a grasping forceps and a high-frequency knife, and the like can be exemplified.
 駆動部30は、モータや電源等の駆動源を備える。駆動源と被操作部20とは、被操作部20の具体的構成に応じて、電力を伝える配線や、動力を伝えるワイヤ等により接続されている。 The drive unit 30 includes a drive source such as a motor and a power source. The drive source and the operated unit 20 are connected to each other by a wire that transmits electric power, a wire that transmits power, or the like according to a specific configuration of the operated unit 20.
 制御部40は、第一処理部41と、第二処理部51とを有する。
 第一処理部41は、演算部42と、揮発性記憶部43と、不揮発性記憶部44と、FPGA(field-programmable gate array)45と、駆動部ドライバ46とを備えている。
The control unit 40 includes a first processing unit 41 and a second processing unit 51.
The first processing unit 41 includes a calculation unit 42, a volatile storage unit 43, a nonvolatile storage unit 44, an FPGA (field-programmable gate array) 45, and a drive unit driver 46.
 演算部42としては、例えばCPU等を用いることができる。揮発性記憶部43としては、例えばRAM等を用いることができる。不揮発性記憶部44としては、例えばフラッシュメモリ等を用いることができる。FPGA45は、プログラムの内容を更新可能なゲートアレイである。駆動部ドライバ46としては、例えば駆動源がモータの場合は、モータドライバが用いられる。
 演算部42は、揮発性記憶部43、不揮発性記憶部44、およびFPGA45と接続されている。FPGA45は、演算部42および駆動部ドライバ46と接続されている。駆動部ドライバ46は、駆動部30と接続されている。
As the calculating part 42, CPU etc. can be used, for example. For example, a RAM or the like can be used as the volatile storage unit 43. As the nonvolatile storage unit 44, for example, a flash memory or the like can be used. The FPGA 45 is a gate array that can update the contents of the program. As the drive unit driver 46, for example, when the drive source is a motor, a motor driver is used.
The calculation unit 42 is connected to the volatile storage unit 43, the nonvolatile storage unit 44, and the FPGA 45. The FPGA 45 is connected to the calculation unit 42 and the drive unit driver 46. The drive unit driver 46 is connected to the drive unit 30.
 第二処理部51は、演算部52と、揮発性記憶部53と、不揮発性記憶部54と、FPGA55と、プラントモデル56とを備えている。
 演算部52、揮発性記憶部53、不揮発性記憶部54、およびFPGA55としては、それぞれ演算部42、揮発性記憶部43、不揮発性記憶部44、およびFPGA45と同様の構成を用いることができる。
 演算部52は、揮発性記憶部53、不揮発性記憶部54、およびFPGA55と接続されている。FPGA55は、演算部52およびプラントモデル56と接続されており、駆動部30とは分離されている。
The second processing unit 51 includes a calculation unit 52, a volatile storage unit 53, a nonvolatile storage unit 54, an FPGA 55, and a plant model 56.
As the calculation unit 52, the volatile storage unit 53, the nonvolatile storage unit 54, and the FPGA 55, configurations similar to those of the calculation unit 42, the volatile storage unit 43, the nonvolatile storage unit 44, and the FPGA 45 can be used, respectively.
The calculation unit 52 is connected to the volatile storage unit 53, the nonvolatile storage unit 54, and the FPGA 55. The FPGA 55 is connected to the calculation unit 52 and the plant model 56 and is separated from the drive unit 30.
 プラントモデル56は、被操作部20、駆動部30、および駆動部ドライバ46の構造や寸法、作動態様等を物理モデル化したデータであり、記憶媒体等に格納されている。プラントモデル56は、駆動部ドライバ46を動作させる信号を入力することにより、駆動部30および被操作部20の動作シミュレーションを実行することができるように構成されている。 The plant model 56 is data obtained by physically modeling the structure, dimensions, operation mode, and the like of the operated unit 20, the drive unit 30, and the drive unit driver 46, and is stored in a storage medium or the like. The plant model 56 is configured to be able to execute an operation simulation of the drive unit 30 and the operated unit 20 by inputting a signal for operating the drive unit driver 46.
 FPGA45には、駆動部ドライバ46を動作させる動作信号を操作入力部10からの出力に基づいて生成するための、動作信号生成データが格納されている。動作信号生成データは、動作信号を生成するための信号生成プログラムや、制御パラメータ等を含む。 The FPGA 45 stores operation signal generation data for generating an operation signal for operating the drive unit driver 46 based on an output from the operation input unit 10. The operation signal generation data includes a signal generation program for generating an operation signal, a control parameter, and the like.
 上記のように構成されたマニピュレータ1の使用時の動作について説明する。
 術者が操作入力部10を操作すると、入力内容が操作入力部10から出力されて第一処理部41の演算部42に送られる。演算部42では、FPGA45に格納された動作信号生成データを用い、操作入力部10の出力に基づいて、動作信号を生成する。
An operation at the time of using the manipulator 1 configured as described above will be described.
When the surgeon operates the operation input unit 10, the input content is output from the operation input unit 10 and sent to the calculation unit 42 of the first processing unit 41. The arithmetic unit 42 uses the operation signal generation data stored in the FPGA 45 to generate an operation signal based on the output of the operation input unit 10.
 生成された動作信号は、駆動部ドライバ46に送られる。駆動部ドライバ46が動作信号に基づいて駆動部30を駆動すると被操作部20が動作する。これにより、術者は被操作部20を用いて、観察や処置等の所望の手技を行うことができる。 The generated operation signal is sent to the driver driver 46. When the drive unit driver 46 drives the drive unit 30 based on the operation signal, the operated unit 20 operates. Thereby, the surgeon can perform a desired procedure such as observation or treatment using the operated portion 20.
 マニピュレータ1の出荷時において、第二処理部51のFPGA55には、FPGA45に格納されたものと同一の動作信号生成データが格納されている。マニピュレータ1の初期設定において、操作入力部10の出力は、第二処理部51には送られない。したがって、上述した一連の動作において、第二処理部51は動作しない。 When the manipulator 1 is shipped, the same operation signal generation data as that stored in the FPGA 45 is stored in the FPGA 55 of the second processing unit 51. In the initial setting of the manipulator 1, the output of the operation input unit 10 is not sent to the second processing unit 51. Therefore, in the series of operations described above, the second processing unit 51 does not operate.
 本実施形態のマニピュレータ1では、第二処理部51をアクティブにすることにより、更新前の動作信号生成データを検証することができる。以下に、その手順を説明する。 In the manipulator 1 of the present embodiment, the operation signal generation data before update can be verified by activating the second processing unit 51. The procedure will be described below.
 準備作業として、第二処理部51のFPGA55に、検証対象の動作信号生成データ(以下、「被検証データ」と称する。)を格納し、動作信号生成データを変更する。さらに、操作入力部10の出力が第二処理部51にも送られるように設定を変更する。 As preparatory work, operation signal generation data to be verified (hereinafter referred to as “data to be verified”) is stored in the FPGA 55 of the second processing unit 51, and the operation signal generation data is changed. Further, the setting is changed so that the output of the operation input unit 10 is also sent to the second processing unit 51.
 準備作業が完了したマニピュレータ1を術者が使用すると、操作入力部10の出力は、第一処理部41および第二処理部51の両方に送られる。出力を受け取った第一処理部41は、上述の通りに動作して、被操作部20を動作させる。 When the surgeon uses the manipulator 1 for which the preparation work has been completed, the output of the operation input unit 10 is sent to both the first processing unit 41 and the second processing unit 51. The first processing unit 41 that has received the output operates as described above to operate the operated unit 20.
 第二処理部51では、演算部52が、FPGA55に格納された被検証データを用い、操作入力部10の出力に基づいて、第一処理部51とは異なる処理により動作信号(検証用動作信号)を生成する。
 続いて演算部52は、生成した動作信号をプラントモデル56に入力し、駆動部30および被操作部20の動作シミュレーションを行う。動作シミュレーションの結果は、システムログやエラーログ等の形で不揮発性記憶部54に蓄積される。蓄積されたログ等は、サービスマン等により適宜のタイミングで回収され、被検証データの動作解析や修正等に利用される。
In the second processing unit 51, the calculation unit 52 uses the data to be verified stored in the FPGA 55 and performs an operation signal (operation signal for verification) by a process different from that of the first processing unit 51 based on the output of the operation input unit 10. ) Is generated.
Subsequently, the calculation unit 52 inputs the generated operation signal to the plant model 56 and performs an operation simulation of the drive unit 30 and the operated unit 20. The result of the operation simulation is accumulated in the nonvolatile storage unit 54 in the form of a system log, an error log, or the like. The accumulated logs and the like are collected at an appropriate timing by a service person or the like, and used for operation analysis or correction of data to be verified.
 本実施形態のマニピュレータ1は、プラントモデル56を含む第二処理部51を備えるため、術者が実際に手技を行う際の操作入力部10の出力に基づいて被検証データの検証を行うことができる。
 術者の実際の手技に伴う出力のバリエーションは、製造者が想定したテストパターンよりもはるかに多様であり、かつ使用時における術者の癖や、特定の術者による特殊な使用法等の、術者固有の要素も含んでいる。したがって、被検証データに対する検証の質を著しく向上させることができ、被検証データを用いた動作信号生成データの更新後に発生する不具合等の発生を好適に抑制することができる。
Since the manipulator 1 of the present embodiment includes the second processing unit 51 including the plant model 56, it is possible to verify the data to be verified based on the output of the operation input unit 10 when the operator actually performs the procedure. it can.
The variations in output associated with the actual procedure of the surgeon are far more diverse than the test pattern assumed by the manufacturer, and the surgeon's habit at the time of use, special usage by a specific surgeon, etc. It also includes elements specific to the surgeon. Therefore, the quality of verification for the data to be verified can be remarkably improved, and the occurrence of problems and the like that occur after the update of the operation signal generation data using the data to be verified can be suitably suppressed.
 また、第二処理部51は、プラントモデル56を用いた動作シミュレーションを行うため、駆動部30および被操作部20を動作させない。したがって、被検証データの検証時に不具合が発生しても、駆動部30および被操作部20の動作に影響を与えない。 Further, since the second processing unit 51 performs an operation simulation using the plant model 56, the driving unit 30 and the operated unit 20 are not operated. Therefore, even if a problem occurs during verification of the verification target data, the operations of the drive unit 30 and the operated unit 20 are not affected.
 さらに、第二処理部51による検証は、マニピュレータ1を用いた実際の手技と並行して行われるため、検証のための時間を別途確保する必要がない。また、術者が操作入力部10に操作入力を行うと、入力内容が第一処理部41および第二処理部51の両方に出力されるため、検証のために別途操作入力を行う必要もない。 Furthermore, since the verification by the second processing unit 51 is performed in parallel with the actual procedure using the manipulator 1, it is not necessary to separately secure time for verification. Further, when the surgeon performs an operation input on the operation input unit 10, the input content is output to both the first processing unit 41 and the second processing unit 51, so there is no need to perform another operation input for verification. .
 上述した各作用により、マニピュレータ1においては、第二処理部51のFPGA55に被検証データを格納した状態で術者が手技を行うだけで、実際の手技に影響を及ぼさず、かつ自動的に被検証データの検証が行われる。しかも、その検証内容は、多種多様な局面における実際の手技に基づくものであり、被検証データの不具合発見や改善に非常に有用なものである。
 したがって、実際に各地の病院等で稼働しているマニピュレータ1の第二処理部51に被検証データを格納することにより、被検証データに対して充実した態様の検証を効率よく行うことができ、更新される動作信号生成データの品質を向上させることができる。
Due to the above-described actions, in the manipulator 1, the operator simply performs the procedure with the verification data stored in the FPGA 55 of the second processing unit 51, and does not affect the actual procedure and is automatically covered. Verification data is verified. Moreover, the contents of the verification are based on actual techniques in a wide variety of situations, and are very useful for finding and improving defects in data to be verified.
Therefore, by storing the data to be verified in the second processing unit 51 of the manipulator 1 that is actually operating in a hospital or the like in each place, it is possible to efficiently perform a full verification of the data to be verified, The quality of the updated operation signal generation data can be improved.
 本実施形態では、FPGA55に被検証データが格納される例を示したが、FPGA以外の構成を用いることも可能である。例えばFPGA55に代えてROMを用いて第二処理部を構成し、検証時に被検証データが記憶されたROMに交換されるような構成であってもよい。 In the present embodiment, an example in which data to be verified is stored in the FPGA 55 is shown, but a configuration other than the FPGA may be used. For example, the second processing unit may be configured using a ROM instead of the FPGA 55, and may be replaced with a ROM that stores data to be verified at the time of verification.
 あるいは、図2に示すように、制御部40と被検証データが保存されたサーバー500とをネットワーク501を介して接続し、被検証データがネットワーク501経由で受信されてFPGA55に格納される構成であってもよい。この場合、シミュレーション結果としてのシステムログやエラーログ等がネットワーク501経由でサーバー500に送信され、リアルタイム或いは所定のタイミングでサーバー500内に蓄積される構成であってもよい。 Alternatively, as shown in FIG. 2, the control unit 40 and the server 500 storing the data to be verified are connected via the network 501, and the data to be verified is received via the network 501 and stored in the FPGA 55. There may be. In this case, a system log or error log as a simulation result may be transmitted to the server 500 via the network 501 and stored in the server 500 in real time or at a predetermined timing.
 本発明の第二実施形態について、図3を参照して説明する。本実施形態は、第二処理部が駆動部等から情報を受信するよう構成されている点で第一実施形態と異なっている。以降の説明において、既に説明したものと共通する構成については、同一の符号を付して重複する説明を省略する。 A second embodiment of the present invention will be described with reference to FIG. This embodiment is different from the first embodiment in that the second processing unit is configured to receive information from the drive unit or the like. In the following description, components that are the same as those already described are assigned the same reference numerals and redundant description is omitted.
 図3は、本実施形態のマニピュレータ101の機能ブロック図である。機能ブロックの構成は概ね第一実施形態のマニピュレータ1と同様であるが、駆動部ドライバ46および駆動部30が、第二処理部51の演算部52に接続されている。これにより、マニピュレータ101は、駆動部ドライバ46および駆動部30から演算部52に情報を送信可能に構成されている。情報の流れは、駆動部ドライバ46および駆動部30から演算部52への一方向のみであり、第一処理部41の第二処理部51に対する独立性は維持されている。 FIG. 3 is a functional block diagram of the manipulator 101 of the present embodiment. The configuration of the functional blocks is substantially the same as that of the manipulator 1 of the first embodiment, but the drive unit driver 46 and the drive unit 30 are connected to the calculation unit 52 of the second processing unit 51. Thereby, the manipulator 101 is configured to be able to transmit information from the drive unit driver 46 and the drive unit 30 to the calculation unit 52. The flow of information is only in one direction from the drive unit driver 46 and the drive unit 30 to the calculation unit 52, and the independence of the first processing unit 41 from the second processing unit 51 is maintained.
 マニピュレータ101を用いて被検証データの検証を行う場合、第二処理部51の演算部52は、プラントモデル56に加えて、駆動部ドライバ46および駆動部30から受信した情報も考慮して動作シミュレーションを行う。
 駆動部ドライバ46および駆動部30から取得する情報は適宜設定できるが、プラントモデル56のみを用いたシミュレーションにおいて実機における値と乖離が生じやすい、あるいは実際の使用状況において変動しやすい項目が好ましい。例えば、駆動部30において駆動源の回転量を示すエンコーダの出力値や、駆動部ドライバ46で発生した電流値などを例示することができる。
When verifying data to be verified using the manipulator 101, the calculation unit 52 of the second processing unit 51 considers information received from the drive unit driver 46 and the drive unit 30 in addition to the plant model 56, and performs an operation simulation. I do.
Information acquired from the drive unit driver 46 and the drive unit 30 can be set as appropriate, but items that are likely to deviate from values in the actual machine in a simulation using only the plant model 56 or that are likely to fluctuate in actual use conditions are preferable. For example, an output value of an encoder indicating the amount of rotation of the drive source in the drive unit 30, a current value generated by the drive unit driver 46, and the like can be exemplified.
 本実施形態のマニピュレータ101によっても、第一実施形態のマニピュレータ1と同様に、更新のための被検証データの検証をより充実した態様で行うことができる。
 さらに、第二処理部51が、プラントモデル56においてモデル化された実体構造の一部である駆動部30の情報を取得可能に構成されているため、実際に稼働している駆動部30および被操作部20の状態により近い条件で被検証データの検証を行うことができる。
Similarly to the manipulator 1 of the first embodiment, the manipulator 101 of the present embodiment can perform verification of data to be verified for updating in a more substantial manner.
Furthermore, since the second processing unit 51 is configured to be able to acquire information of the drive unit 30 that is a part of the entity structure modeled in the plant model 56, the drive unit 30 that is actually operating and the target The data to be verified can be verified under conditions closer to the state of the operation unit 20.
 本実施形態において、第二処理部51が駆動部30以外の部位から情報を取得可能に構成されてもよい。例えば、被操作部20が関節を有し、関節に回動量を検出するエンコーダが取り付けられている場合、当該エンコーダの出力値が第二処理部51に送信されて動作シミュレーションに用いられるようマニピュレータが構成されてもよい。このほか、被操作部の各部位の位置や姿勢の情報が適宜の機構により取得され、第二処理部51に送られる構成であってもよい。 In the present embodiment, the second processing unit 51 may be configured to be able to acquire information from parts other than the drive unit 30. For example, when the operated unit 20 has a joint and an encoder for detecting the rotation amount is attached to the joint, the manipulator is transmitted so that the output value of the encoder is transmitted to the second processing unit 51 and used for the operation simulation. It may be configured. In addition, the configuration may be such that information on the position and orientation of each part of the operated unit is acquired by an appropriate mechanism and sent to the second processing unit 51.
 本発明の第三実施形態について、図4から図6を参照して説明する。本実施形態は、第二処理部が患者の体内におけるマニピュレータの周囲の情報を用いる点で上述の各実施形態と異なっている。 A third embodiment of the present invention will be described with reference to FIGS. This embodiment is different from the above-described embodiments in that the second processing unit uses information around the manipulator in the patient's body.
 図4に本実施形態のマニピュレータ201の全体像を示す。操作入力部210は、テーブル202上に設置されている。駆動部230および被操作部220は、患者Pが横たわる手術台203の近くに配置された体外アーム204に取り付けられている。被操作部220は、患者Pの体内に挿入される体内アームを含む。図4において、体内アームが設けられた被操作部220の先端部は、患者Pの口から体内に進入している。
 体外アーム204は、必要に応じて手動で位置や形状が調整されるため、被操作部220には含まれない。
FIG. 4 shows an overall image of the manipulator 201 of the present embodiment. The operation input unit 210 is installed on the table 202. The drive unit 230 and the operated unit 220 are attached to an extracorporeal arm 204 disposed near the operating table 203 on which the patient P lies. The operated part 220 includes a body arm that is inserted into the body of the patient P. In FIG. 4, the distal end portion of the operated portion 220 provided with the internal arm enters the body from the mouth of the patient P.
The extracorporeal arm 204 is not included in the operated portion 220 because the position and shape are manually adjusted as necessary.
 図5は、被操作部220の先端部を示す図である。被操作部220の先端部には、図5に示すように、体内を観察する内視鏡205と、術者によって操作される2本の体内アーム223、224と、被操作部220先端部の周囲の状態に関する情報を取得する外界検知部225とが設けられている。体内アーム223、224は、いずれも複数の関節を有し、先端に把持部226を有する。
 体内アーム223、224、および内視鏡205は、オーバーチューブ206に挿入された状態で患者Pの体内に導入されている。
FIG. 5 is a view showing the tip of the operated part 220. As shown in FIG. 5, an endoscope 205 for observing the inside of the body, two body arms 223 and 224 operated by an operator, and a tip of the operated part 220 are provided at the distal end of the operated part 220. An external field detection unit 225 that acquires information about the surrounding state is provided. Each of the body arms 223 and 224 has a plurality of joints and has a grip 226 at the tip.
The body arms 223 and 224 and the endoscope 205 are introduced into the patient P while being inserted into the overtube 206.
 本実施形態において、被操作部220に対応する操作入力部210の態様には特に制限はない。例えば、一つの操作入力機構を、体内アーム223、224の一方と対応付け、対応付けを切り替えつつ一つの操作入力機構で2本の体内アームを操作する構成でもよい。また、二つの操作入力機構を備え、各操作入力機構がそれぞれ体内アーム223、224と対応付けられた構成であってもよい。 In this embodiment, the mode of the operation input unit 210 corresponding to the operated unit 220 is not particularly limited. For example, one operation input mechanism may be associated with one of the body arms 223 and 224, and the two body arms may be operated with one operation input mechanism while switching the association. Alternatively, two operation input mechanisms may be provided, and each operation input mechanism may be associated with the internal arms 223 and 224, respectively.
 外界検知部225は、自身の周囲の空間を走査して、マニピュレータ201のうち、患者Pの体内に位置する被操作部220の先端部の各部位の位置、および被操作部220先端部の周囲に存在する物体の形状や大きさ等の情報を取得する。外界検知部225としては、例えばLiDAR(Light Detection And Ranging, Laser Imaging Detection and Ranging)を用いたセンサや撮像ユニット等を用いることができる。 The outside world detection unit 225 scans the surrounding space of the manipulator 201, the position of each part of the distal end portion of the operated portion 220 located in the body of the patient P in the manipulator 201, and the periphery of the distal end portion of the operated portion 220. Information on the shape and size of the object existing in As the external detection unit 225, for example, a sensor or an imaging unit using LiDAR (Light Detection And Ranging, Laser Imaging Detection and 用 い る Ranging) can be used.
 図6に、マニピュレータ201の機能ブロック図を示す。外界検知部225は、第二処理部51の演算部52に接続されている。これにより、マニピュレータ201は、外界検知部225から演算部52に情報を送信可能に構成されている。情報の流れは、外界検知部225から演算部52への一方向のみであり、第一処理部41の第二処理部51に対する独立性は維持されている。 FIG. 6 shows a functional block diagram of the manipulator 201. The outside world detection unit 225 is connected to the calculation unit 52 of the second processing unit 51. Accordingly, the manipulator 201 is configured to be able to transmit information from the external world detection unit 225 to the calculation unit 52. The flow of information is only in one direction from the external detection unit 225 to the calculation unit 52, and the independence of the first processing unit 41 with respect to the second processing unit 51 is maintained.
 マニピュレータ201を用いて被検証データの検証を行う場合、第二処理部51の演算部52は、プラントモデル56に加えて、外界検知部225から受信した体内アーム223、224の周囲の情報も考慮して動作シミュレーションを行う。
 例えば、手技の対象部位の周囲に対象外の臓器等が存在する場合、作動した体内アーム223、224が当該臓器等と接触したか否か等についても、シミュレーションにより検証される。
When verifying data to be verified using the manipulator 201, the calculation unit 52 of the second processing unit 51 considers information about the surrounding body arms 223 and 224 received from the external detection unit 225 in addition to the plant model 56. And perform an operation simulation.
For example, when there is a non-target organ or the like around the target site of the procedure, whether or not the activated internal arms 223 and 224 are in contact with the organ or the like is also verified by simulation.
 本実施形態のマニピュレータ201によっても、上述した各実施形態のマニピュレータと同様に、更新のための被検証データの検証をより充実した態様で行うことができる。
 さらに、外界検知部225が取得した、患者Pの体内における被操作部220の周囲の情報を第二処理部51が受信可能に構成されているため、マニピュレータ201による手技が実際に行われている環境により近い条件で被検証データの検証を行うことができる。
Also with the manipulator 201 of the present embodiment, verification of data to be verified for updating can be performed in a more fulfilling manner, like the manipulators of the above-described embodiments.
Furthermore, since the second processing unit 51 is configured to be able to receive the information around the operated unit 220 in the body of the patient P acquired by the external detection unit 225, the manipulator 201 actually performs the procedure. The data to be verified can be verified under conditions closer to the environment.
 本実施形態において、外界検知部の具体的構成は、上述したLiDARを用いた機構には限定されない。例えば、内視鏡205として測距可能な公知のステレオ内視鏡を用い、ステレオ機能を用いて取得された画像および距離データから、患者の体内における被操作部周囲の情報が取得されてもよい。あるいは、LiDARを用いた機構と内視鏡画像とを組み合わせて周囲の情報が取得されてもよい。 In the present embodiment, the specific configuration of the external detection unit is not limited to the mechanism using LiDAR described above. For example, a known stereo endoscope capable of ranging can be used as the endoscope 205, and information about the operated portion in the patient's body may be acquired from the image and distance data acquired using the stereo function. . Alternatively, surrounding information may be acquired by combining a mechanism using LiDAR and an endoscopic image.
 本実施形態に、第二実施形態の内容を組み合わせてもよいことは当然である。 Of course, the contents of the second embodiment may be combined with this embodiment.
 本発明の第四実施形態について、図7および図8を参照して説明する。本実施形態は、第二処理部が患者の周囲の情報を用いる点で上述の各実施形態と異なっている。 A fourth embodiment of the present invention will be described with reference to FIGS. This embodiment is different from the above-described embodiments in that the second processing unit uses information around the patient.
 図7に本実施形態のマニピュレータ301の全体像を示す。術者Opが操作する操作入力部310には、患者Pの体内の画像を映すモニタ311が設置されている。被操作部320は、患者Pが横たわる手術台203の近くに配置された複数のアームユニット321を備える。各アームユニット321は、複数の関節322aを含むアーム部322と、アーム部に取り付けられて患者の体内に挿入される処置具ユニット323とを有する。各アーム部322には、駆動部30が接続されている。
 モニタ311に映し出される映像は、腹腔鏡302によって取得される。腹腔鏡302は、術者Opでなく、スコピストScによって操作されるため、マニピュレータ301には含まれない。
 腹腔鏡302および各処置具ユニット323は、患者Pの腹壁に開けた穴(不図示)から患者Pの体内に導入されている。
FIG. 7 shows an overall image of the manipulator 301 of the present embodiment. The operation input unit 310 operated by the operator Op is provided with a monitor 311 that displays an image inside the patient P. The operated part 320 includes a plurality of arm units 321 arranged near the operating table 203 on which the patient P lies. Each arm unit 321 has an arm part 322 including a plurality of joints 322a, and a treatment instrument unit 323 that is attached to the arm part and inserted into the patient's body. A drive unit 30 is connected to each arm unit 322.
An image displayed on the monitor 311 is acquired by the laparoscope 302. The laparoscope 302 is not included in the manipulator 301 because it is operated not by the operator Op but by the scoopist Sc.
The laparoscope 302 and each treatment instrument unit 323 are introduced into the patient P through a hole (not shown) formed in the abdominal wall of the patient P.
 マニピュレータ301が設置される手術室内には、マニピュレータ301の周囲の情報を取得する空間認識センサ305が設置されている。空間認識センサ305としては、例えば赤外線方式や、レーザー方式のセンサを用いることができる。あるいは、上述したLiDARを用いた機構が空間認識センサとして用いられてもよい。空間認識センサ305の設置態様には特に制限はない。例えば、手術室の天井に取り付けてもよいし、スタンドに取り付けられて手術室内に置かれてもよい。 In the operating room where the manipulator 301 is installed, a space recognition sensor 305 that acquires information around the manipulator 301 is installed. As the space recognition sensor 305, for example, an infrared sensor or a laser sensor can be used. Or the mechanism using LiDAR mentioned above may be used as a space recognition sensor. There is no restriction | limiting in particular in the installation aspect of the space recognition sensor 305. FIG. For example, it may be attached to the ceiling of the operating room, or may be attached to a stand and placed in the operating room.
 図8に、マニピュレータ301の機能ブロック図を示す。空間認識センサ305は、第二処理部51の演算部52に接続されている。これにより、マニピュレータ301は、空間認識センサ305から演算部52に情報を送信可能に構成されている。情報の流れは、空間認識センサ305から演算部52への一方向のみであり、第一処理部41の第二処理部51に対する独立性は維持されている。 FIG. 8 shows a functional block diagram of the manipulator 301. The space recognition sensor 305 is connected to the calculation unit 52 of the second processing unit 51. Accordingly, the manipulator 301 is configured to be able to transmit information from the space recognition sensor 305 to the calculation unit 52. The information flow is only in one direction from the space recognition sensor 305 to the calculation unit 52, and the independence of the first processing unit 41 from the second processing unit 51 is maintained.
 マニピュレータ301を用いて被検証データの検証を行う場合、第二処理部51の演算部52は、プラントモデル56に加えて、空間認識センサ305から受信した手術室内の情報も考慮して動作シミュレーションを行う。手術室内の情報は、例えば、各アームユニット321の配置や、腹腔鏡302およびスコピストScの位置、手術台203や患者Pの位置等を含む。
 すなわち、図7に示すように、あるアームユニット321の近くにスコピストScが立って腹腔鏡302を操作している場合、作動したアームユニット321がスコピストScや腹腔鏡302、あるいは手術台203等と接触したか否かについても、シミュレーションにより検証される。
When verifying data to be verified using the manipulator 301, the calculation unit 52 of the second processing unit 51 performs an operation simulation in consideration of the operating room information received from the space recognition sensor 305 in addition to the plant model 56. Do. The information in the operating room includes, for example, the arrangement of each arm unit 321, the positions of the laparoscope 302 and the scoopist Sc, the positions of the operating table 203 and the patient P, and the like.
That is, as shown in FIG. 7, when the scopist Sc stands near a certain arm unit 321, and the laparoscope 302 is operated, the arm unit 321 that has been operated is connected to the scopist Sc, the laparoscope 302, the operating table 203, Whether or not the contact has occurred is also verified by simulation.
 本実施形態のマニピュレータ301によっても、上述した各実施形態のマニピュレータと同様に、更新のための被検証データの検証をより充実した態様で行うことができる。
 さらに、空間認識センサ305が取得した手術室内の情報を第二処理部51が受信可能に構成されているため、マニピュレータ301を用いた手技中における、患者Pの体外の状況をも考慮しつつ被検証データの検証を行うことができる。
Also with the manipulator 301 of the present embodiment, verification of data to be verified for updating can be performed in a more fulfilling manner, as with the manipulators of the above-described embodiments.
In addition, since the second processing unit 51 is configured to be able to receive the information in the operating room acquired by the space recognition sensor 305, it is possible to take into account the situation outside the body of the patient P during the procedure using the manipulator 301. Verification data can be verified.
 本実施形態に、第二実施形態や第三実施形態の内容を組み合わせてもよいことは当然である。 Of course, the contents of the second embodiment and the third embodiment may be combined with this embodiment.
 以上、本発明の各実施形態について説明したが、本発明の技術的範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において構成要素の組み合わせを変えたり、各構成要素に種々の変更を加えたり、削除したりすることが可能である。 The embodiments of the present invention have been described above. However, the technical scope of the present invention is not limited to the above-described embodiments, and combinations of constituent elements may be changed without departing from the spirit of the present invention. Various changes can be made to the element or deleted.
 例えば、本発明のマニピュレータにおいては、プラントモデルに格納された被操作部の構造と、実際に動作する被操作部との構造とが異なっていてもよい。このような態様は、新しい被操作部が製品ラインナップに加えられる前に、当該被操作部に対応する被検証データの検証を行う場合等に有用である。 For example, in the manipulator of the present invention, the structure of the operated part stored in the plant model may be different from the structure of the operated part that actually operates. Such an aspect is useful when, for example, verification of data to be verified corresponding to the operated part is performed before a new operated part is added to the product lineup.
 また、上述した各実施形態においては、制御部内において、第一処理部と第二処理部とが物理的に分離して構成された例を説明したが、これに代えて、図9に示す変形例のマニピュレータ1Aのように、同一のハードウェア内にそれぞれ第一処理部の一部として機能する領域と、第二処理部の一部として機能する領域とを互いの独立を確保しつつ設けることで、第一処理部と第二処理部とを仮想的に備える制御部を構成してもよい。マニピュレータ1Aにおいては、演算部42、揮発性記憶部43、不揮発性記憶部44、およびFPGA45にそれぞれ設けられた第一領域42A、43A、44A,および45Aが、第一処理部として機能し、演算部42、揮発性記憶部43、不揮発性記憶部44、およびFPGA45にそれぞれ設けられた第二領域42B、43B、44B,および45Bが、第二処理部として機能する。 Further, in each of the above-described embodiments, the example in which the first processing unit and the second processing unit are configured to be physically separated in the control unit has been described, but instead, the modification illustrated in FIG. As in the example manipulator 1A, an area that functions as part of the first processing unit and an area that functions as part of the second processing unit are provided in the same hardware while ensuring independence from each other. Thus, a control unit that virtually includes the first processing unit and the second processing unit may be configured. In the manipulator 1A, the first areas 42A, 43A, 44A, and 45A provided in the calculation unit 42, the volatile storage unit 43, the nonvolatile storage unit 44, and the FPGA 45, respectively, function as a first processing unit. The second regions 42B, 43B, 44B, and 45B provided in the unit 42, the volatile storage unit 43, the nonvolatile storage unit 44, and the FPGA 45 function as a second processing unit.
 本発明は、医療用マニピュレータに適用することができる。 The present invention can be applied to a medical manipulator.
 1、1A、101、201、301 医療用マニピュレータ
 10、210、310 操作入力部
 20、220、320 被操作部
 30、230 駆動部
 40 制御部
 41 第一処理部
 51 第二処理部
 56 プラントモデル
 225 外界検知部
 305 空間認識センサ
1, 1A, 101, 201, 301 Medical manipulator 10, 210, 310 Operation input unit 20, 220, 320 Operated unit 30, 230 Drive unit 40 Control unit 41 First processing unit 51 Second processing unit 56 Plant model 225 External sensor 305 Space recognition sensor

Claims (7)

  1.  使用者の操作入力を受け付ける操作入力部と、
     前記操作入力にもとづいて動作信号を生成する制御部と、
     前記動作信号により駆動される駆動部と、
     前記駆動部により動作される被操作部と、
     を備え、
     前記制御部は、
     前記駆動部と接続され、前記操作入力と信号生成データとに基づいて前記動作信号を生成する第一処理部と、
     前記駆動部と分離され、前記操作入力に基づいて検証用動作信号を生成可能に構成された第二処理部と、
     を備える、
     医療用マニピュレータ。
    An operation input unit for receiving a user's operation input;
    A control unit that generates an operation signal based on the operation input;
    A drive unit driven by the operation signal;
    An operated portion operated by the driving unit;
    With
    The controller is
    A first processing unit that is connected to the driving unit and generates the operation signal based on the operation input and signal generation data;
    A second processing unit separated from the drive unit and configured to generate a verification operation signal based on the operation input;
    Comprising
    Medical manipulator.
  2.  前記第二処理部は、前記検証用動作信号を入力することによりシミュレーション可能なプラントモデルを有する、
     請求項1に記載の医療用マニピュレータ。
    The second processing unit has a plant model that can be simulated by inputting the verification operation signal.
    The medical manipulator according to claim 1.
  3.  前記プラントモデルは、前記駆動部および前記被操作部の物理モデルである、
     請求項2に記載の医療用マニピュレータ。
    The plant model is a physical model of the drive unit and the operated unit.
    The medical manipulator according to claim 2.
  4.  前記第二処理部は、前記駆動部および前記被操作部の少なくとも一方から情報を受信可能に構成されている、
     請求項1に記載の医療用マニピュレータ。
    The second processing unit is configured to receive information from at least one of the driving unit and the operated unit.
    The medical manipulator according to claim 1.
  5.  患者の体内かつ前記被操作部の周囲の情報を取得可能に構成された外界検知部をさらに備え、
     前記第二処理部は、前記外界検知部から情報を受信可能に構成されている、
     請求項1に記載の医療用マニピュレータ。
    Further comprising an external detection unit configured to be able to acquire information about the inside of the patient and the operated unit;
    The second processing unit is configured to be able to receive information from the outside world detection unit,
    The medical manipulator according to claim 1.
  6.  前記医療用マニピュレータが配置された空間の情報を取得可能に構成された空間認識センサをさらに備え、
     前記第二処理部は、前記空間認識センサから情報を受信可能に構成されている、
     請求項1に記載の医療用マニピュレータ。
    A space recognition sensor configured to be able to acquire information on a space in which the medical manipulator is disposed;
    The second processing unit is configured to receive information from the space recognition sensor.
    The medical manipulator according to claim 1.
  7.  前記第二処理部には、前記信号生成データを更新するための被検証データが格納され、前記操作入力と前記被検証データとに基づいて前記検証用動作信号が生成される、
     請求項1に記載の医療用マニピュレータ。
    The second processing unit stores verification data for updating the signal generation data, and generates the verification operation signal based on the operation input and the verification data.
    The medical manipulator according to claim 1.
PCT/JP2017/022097 2017-06-15 2017-06-15 Medical manipulator WO2018229926A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/022097 WO2018229926A1 (en) 2017-06-15 2017-06-15 Medical manipulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/022097 WO2018229926A1 (en) 2017-06-15 2017-06-15 Medical manipulator

Publications (1)

Publication Number Publication Date
WO2018229926A1 true WO2018229926A1 (en) 2018-12-20

Family

ID=64659147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022097 WO2018229926A1 (en) 2017-06-15 2017-06-15 Medical manipulator

Country Status (1)

Country Link
WO (1) WO2018229926A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06304882A (en) * 1993-04-26 1994-11-01 Nec Corp Remote control device
JPH09216184A (en) * 1996-02-08 1997-08-19 Toshiba Corp Remote operation type robot monitoring system
JPH09261618A (en) * 1996-03-21 1997-10-03 Toshiba Corp Remote controller
WO2010090059A1 (en) * 2009-02-03 2010-08-12 オリンパスメディカルシステムズ株式会社 Manipulator
JP2012181574A (en) * 2011-02-28 2012-09-20 Bridgestone Corp Interference checking device and program
JP2013034832A (en) * 2011-08-04 2013-02-21 Olympus Corp Surgical instrument and control method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06304882A (en) * 1993-04-26 1994-11-01 Nec Corp Remote control device
JPH09216184A (en) * 1996-02-08 1997-08-19 Toshiba Corp Remote operation type robot monitoring system
JPH09261618A (en) * 1996-03-21 1997-10-03 Toshiba Corp Remote controller
WO2010090059A1 (en) * 2009-02-03 2010-08-12 オリンパスメディカルシステムズ株式会社 Manipulator
JP2012181574A (en) * 2011-02-28 2012-09-20 Bridgestone Corp Interference checking device and program
JP2013034832A (en) * 2011-08-04 2013-02-21 Olympus Corp Surgical instrument and control method thereof

Similar Documents

Publication Publication Date Title
US8374723B2 (en) Obtaining force information in a minimally invasive surgical procedure
US9687301B2 (en) Surgical robot system and control method thereof
US8594841B2 (en) Visual force feedback in a minimally invasive surgical procedure
JP5048136B2 (en) Method for determining location of detection device in navigation system and method for positioning detection device
CN106470634B (en) System and method for being indicated outside the screen of the instrument in remote control operation medical system
JP7046912B2 (en) Systems and methods for on-screen menus in remote-controlled medical systems
US20210205027A1 (en) Context-awareness systems and methods for a computer-assisted surgical system
US20190053872A1 (en) Systems and methods for removing occluding objects in surgical images and/or video
JP2020532383A (en) Camera control for surgical robot systems
JP2017510826A5 (en)
CN107920864A (en) Robotic surgical system control program for Manipulation of the machine people's end effector
Marinho et al. SmartArm: Integration and validation of a versatile surgical robotic system for constrained workspaces
EP4150606A1 (en) Surgical simulation system with simulated surgical equipment coordination
JP5800610B2 (en) Medical master-slave manipulator
WO2022159229A1 (en) Service life management for an instrument of a robotic surgery system
JP2024051132A (en) Camera control system and method for a computer-assisted surgery system - Patents.com
US20220273368A1 (en) Auto-configurable simulation system and method
WO2018229926A1 (en) Medical manipulator
US20220401166A1 (en) Surgical system and controlling method
US20240033005A1 (en) Systems and methods for generating virtual reality guidance
JP2023551531A (en) Systems and methods for generating and evaluating medical treatments
WO2022243958A1 (en) Surgical simulation system with coordinated imagining
CN116686053A (en) System and method for planning a medical environment
WO2019035206A1 (en) Medical system and image generation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913710

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP