WO2018228056A1 - 背光模组、显示装置及背光模组的制备方法 - Google Patents

背光模组、显示装置及背光模组的制备方法 Download PDF

Info

Publication number
WO2018228056A1
WO2018228056A1 PCT/CN2018/084089 CN2018084089W WO2018228056A1 WO 2018228056 A1 WO2018228056 A1 WO 2018228056A1 CN 2018084089 W CN2018084089 W CN 2018084089W WO 2018228056 A1 WO2018228056 A1 WO 2018228056A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
substrate
light
backlight module
emitting units
Prior art date
Application number
PCT/CN2018/084089
Other languages
English (en)
French (fr)
Inventor
王美丽
徐晓玲
杜渊鑫
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/318,886 priority Critical patent/US10890801B2/en
Publication of WO2018228056A1 publication Critical patent/WO2018228056A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133612Electrical details
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/3413Details of control of colour illumination sources

Definitions

  • the present disclosure relates to the field of display technologies, and specifically discloses a backlight module, a display device, and a method of fabricating the backlight module.
  • the display device typically includes a backlight module and a display panel, wherein the backlight module is used to provide a light source to the display panel.
  • the display panel generally includes a lower polarizing plate, an array substrate, a liquid crystal layer, a color filter substrate, and an upper polarizing plate which are sequentially disposed.
  • the light emitted by the backlight module sequentially passes through the lower polarizing plate, the array substrate, the liquid crystal layer, the color filter substrate, and the upper polarizing plate, thereby finally achieving display.
  • the backlight module generally includes a light source, a light guide plate, a reflection sheet, a diffusion sheet, and a prism sheet.
  • a backlight module is required to be used in combination with a lower polarizing plate.
  • the light emitted from the light source of the backlight module first passes through the light guide plate, the diffusion sheet, and the prism sheet, and then passes through the lower polarizing plate, thereby converting the unpolarized light into linearly polarized light.
  • the structure of the backlight module is relatively complicated, and each component has a certain thickness.
  • the thickness of the light guide plate is large, resulting in a large thickness of the entire backlight module.
  • the transmittance of the lower polarizing plate is low. In general, only up to 42% of the light can pass through the lower polarizer, which results in lower utilization of light from the backlight module.
  • a backlight module includes: a first substrate, the first substrate has a first surface and a second surface opposite to each other; and a plurality of light emitting units arranged on the first surface of the first substrate a metal wire grid polarizing plate disposed on the second surface of the first substrate; and a driving circuit, wherein the driving circuit is electrically connected to the plurality of light emitting units to drive the plurality of light emitting units toward The first substrate emits light.
  • the driving circuit is disposed between the first substrate and the plurality of light emitting units, and includes an array of transparent regions and a non-transparent In the region, the plurality of light emitting units are disposed in a transparent region of the driving circuit.
  • the backlight module provided by the embodiment of the present invention further includes a second substrate. Further, the second substrate is located on a side of the plurality of light emitting units away from the first substrate, and the driving circuit is disposed on a side of the second substrate facing the plurality of light emitting units.
  • the driving circuit includes a plurality of sub-driving circuits, and each sub-driving circuit is disposed opposite to and integrated with a corresponding one of the light-emitting units.
  • each of the light emitting units includes a first sub-light emitting unit configured to emit red light, a second sub-light emitting unit configured to emit green light, and configured to emit The third sub-lighting unit of blue light.
  • each of the light emitting units includes: a light source configured to emit monochromatic light; and a wavelength conversion layer formed on the light emitting surface of the light source.
  • a display device is also provided.
  • the display device includes the backlight module according to any of the preceding embodiments.
  • a method of fabricating a backlight module includes: providing a plurality of light emitting units arranged in an array on a first surface of the first substrate; providing a metal line on a second surface of the first substrate opposite to the first surface a gate polarizer; and a drive circuit. Further, the driving circuit is electrically connected to the plurality of light emitting units to drive the plurality of light emitting units to emit light toward the first substrate.
  • the step of providing a driving circuit includes: providing the driving circuit on a first surface of the first substrate, the driving The circuit includes a transparent area and a non-transparent area arranged in an array. Further, the step of providing a plurality of light emitting units arranged in an array on the first surface of the first substrate includes providing the plurality of light emitting units in a transparent region of the driving circuit.
  • the method for fabricating a backlight module further includes the step of providing a second substrate on a side of the plurality of light emitting units away from the first substrate. Further, the step of providing a driving circuit includes providing the driving circuit on a side of the second substrate facing the plurality of light emitting units.
  • the driving circuit includes a plurality of sub-driving circuits, and each sub-driving circuit is oppositely disposed and integrated with a corresponding one of the light-emitting units. .
  • each of the light emitting units includes a first sub-light emitting unit configured to emit red light, and a second sub-light emitting light configured to emit green light. And a third sub-lighting unit configured to emit blue light.
  • each of the light emitting units includes: a light source configured to emit monochromatic light; and a wavelength formed on a light emitting surface of the light source Conversion layer.
  • FIG. 1 is a schematic cross-sectional view showing a backlight module according to an embodiment of the present disclosure
  • FIG. 2 is a schematic cross-sectional view showing a backlight module according to another embodiment of the present disclosure
  • FIG. 3 schematically illustrates a flow chart of a method for fabricating a backlight module in accordance with an embodiment of the present disclosure
  • FIG. 4 is a schematic cross-sectional view showing the backlight module after the preparation of the driving circuit is completed during the process of preparing the backlight module as shown in FIG. 1;
  • FIG. 5 is a schematic cross-sectional view showing the backlight module after the preparation of the light emitting unit is completed during the process of preparing the backlight module as shown in FIG. 1;
  • FIG. 5 is a schematic cross-sectional view showing the backlight module after the preparation of the light emitting unit is completed during the process of preparing the backlight module as shown in FIG. 1;
  • FIG. 6 is a schematic cross-sectional view showing the backlight module after the preparation of the light emitting unit is completed during the process of preparing the backlight module as shown in FIG. 2;
  • FIG. 7 is a schematic cross-sectional view showing the backlight module after the preparation of the driving circuit is completed during the process of preparing the backlight module shown in FIG. 2;
  • FIG. 8 is a schematic cross-sectional view showing the backlight module after integration of the driving circuit and the light emitting unit during the process of preparing the backlight module as shown in FIG. 2.
  • FIG. 8 is a schematic cross-sectional view showing the backlight module after integration of the driving circuit and the light emitting unit during the process of preparing the backlight module as shown in FIG. 2.
  • FIG. 1 a schematic cross-sectional view of a backlight module according to an embodiment of the present disclosure is schematically illustrated.
  • a backlight module includes a first substrate 11, a light emitting unit 13 and a driving circuit 12 formed on a lower surface of the first substrate 11, and a metal wire grid formed on an upper surface of the first substrate 11.
  • Polarizing plate 14 In the above backlight module, the light emitting units 13 are arranged in a matrix on the first substrate 11. Further, the driving circuit 12 is electrically connected to the light emitting unit 13 to drive the light emitting unit 13 to emit light.
  • the light emitting surface of the light emitting unit 13 faces the first substrate 11 , wherein the light emitting unit 13 emits light toward the first substrate 11 .
  • the driving circuit 12 is formed on the first substrate 11, in particular, on a lower surface of the first substrate, and includes a transparent region and a non-transparent region.
  • the light emitting unit 13 is formed in a transparent region on the driving circuit 12.
  • the non-transparent regions of the driver circuit 12 are primarily used to arrange the circuit components required to drive the illumination unit for illumination. Therefore, by disposing the light emitting unit in the transparent region of the driving circuit, the driving circuit does not block the light emitted from the light emitting unit.
  • each of the light emitting units 13 may include three LEDs for emitting red, green, and blue light, respectively. As shown in FIG. 1, each of the light emitting units 13 includes an LED 131, an LED 132, and an LED 133. Typically, each LED is small in size and indistinguishable from the human eye. As an example, each LED typically has a size on the order of microns. In view of this, the light mixing distance of the LED is relatively small, which can reduce the thickness of the backlight module to a certain extent. In particular, light emitted from LEDs at different locations may overlap after a certain distance has elapsed, resulting in color mixing.
  • the distance between the location of the LED and the location where the color mixture is produced is the blending distance.
  • the light emitted from each of the light-emitting units 13 appears as white light after mixing. Therefore, by arranging the light emitting units in an array, uniform white light can be obtained.
  • the order of arrangement of the three LEDs in each of the light emitting units 13 may be in the order of red LEDs, green LEDs, and blue LEDs. Of course, alternatively, it may be arranged in the order of red LED, blue LED, and green LED. Further optionally, it may also be arranged in the order of green LED, red LED and blue LED. This means that in each of the light-emitting units 13, the arrangement order of the three LEDs may be the same or different as long as it can be ensured that the light emitted from the three LEDs of the respective light-emitting units appears as white light after mixing.
  • the light emitting unit 13 may further include a monochrome LED (ie, an LED configured to emit monochromatic light) and a wavelength conversion layer formed on a light emitting surface of the monochrome LED.
  • a monochrome LED ie, an LED configured to emit monochromatic light
  • a wavelength conversion layer formed on a light emitting surface of the monochrome LED.
  • a wavelength converting material may be coated on the light emitting face of the monochromatic LED to form a wavelength converting layer.
  • the light emitted by the monochromatic LED excites the wavelength converting material in the wavelength converting layer, for example, to obtain light of a different color, thereby forming white light after mixing.
  • the wavelength conversion layer can include a quantum dot wavelength conversion layer.
  • a quantum dot wavelength conversion layer can be formed on the light emitting surface of the blue LED.
  • the quantum dot wavelength conversion layer can include green light quantum dots and red light quantum dots.
  • part of the blue light emitted by the blue LED will be converted to green and red after being absorbed by the corresponding quantum dots. After that, the remaining blue light is mixed with the converted green light and red light to form white light.
  • a luminescent quantum dot can also be applied to the illuminating surface of the ultraviolet LED.
  • ultraviolet light emitted from the ultraviolet LED will excite the luminescent quantum dots, thereby emitting more than one color of light. After that, the light of these colors can be directly mixed to produce white light.
  • the quantum dot particles are small in size and the size of the monochromatic LED is also small. Therefore, the light mixing distance of the LED is made small, so that the thickness of the backlight module can be reduced to some extent.
  • the white balance and brightness of the light provided by the backlight module can be controlled.
  • the metal wire grid polarizer 14 may be configured to convert unpolarized light emitted from the light emitting face of the light emitting unit into polarized light.
  • the metal wire grid polarizer has a higher light transmission than conventional polarizers.
  • the metal wire grid polarizer can have a light transmission greater than 60%, thereby greatly increasing the utilization of light emitted from the light emitting unit.
  • the thickness of the metal wire grid polarizing plate is generally in the range of 100 to 200 nm. In comparison, the thickness of a conventional polarizing plate is generally several tens of micrometers. Therefore, by using a metal wire grid polarizing plate instead of the conventional lower polarizing plate, the thickness of the backlight module can be reduced to some extent.
  • the backlight module includes only the first substrate, the driving circuit, the light emitting unit, and the metal wire grid polarizing plate. Therefore, the structure of the entire backlight module is relatively simple. In addition, in the backlight module, only one substrate is required. At the same time, the thickness of the driving circuit, the light emitting unit and the metal wire grid polarizing plate are relatively small, which makes the overall thickness of the backlight module small.
  • a driving circuit is formed on one surface of the first substrate, and a light emitting unit is formed in a transparent region of the driving circuit while a metal wire grid polarizing plate is formed on the other opposing surface of the first substrate. Further, the driving circuit is electrically connected to the light emitting unit to drive the light emitting unit to emit light, and a light emitting surface of the light emitting unit faces the first substrate. Furthermore, the light emitting units are arranged in an array on the first substrate.
  • the backlight module includes only the substrate, the driving circuit, the light emitting unit, and the metal wire grid polarizing plate. In this way, the structure of the entire backlight module is relatively simple.
  • the thickness of each component in the backlight module is relatively small, which makes the overall thickness of the backlight module small. Further, since the light transmittance of the metal wire grid polarizing plate is high, the utilization of light emitted from the light emitting unit can be improved.
  • FIG. 2 a schematic cross-sectional view of a backlight module according to another embodiment of the present disclosure is schematically illustrated.
  • a backlight module is also provided.
  • the backlight module has a substantially similar structure to the backlight module shown in FIG. The difference between the two is that in the backlight module shown in FIG. 2, the light emitting unit 13 is formed on the first substrate 11, and the driving circuit 12 is formed on the second substrate 15.
  • the driving circuit 12 may further include a plurality of sub-driving circuits, wherein each sub-driving circuit is disposed opposite to and integrated with a corresponding one of the light-emitting units 13.
  • the light emitting unit 13 may be including LEDs 131, LEDs 132, and LEDs 133 that are respectively configured to emit red, green, and blue light. In each of the light-emitting units 13, the arrangement order of the three LEDs may be the same or different. Alternatively, the light emitting unit 13 may further include a monochrome LED and a wavelength conversion layer formed on a light emitting surface of the monochrome LED.
  • the distance between the adjacent two light-emitting units and the light-mixing distance can be determined by simulation and design, thereby determining the array row of the light-emitting units according to the distance between the adjacent two light-emitting units and the light-mixing distance. Cloth way. Thereby, it is not necessary to arrange the light emitting units in the entire area of the first substrate, so that the number of light emitting units can be saved, and the production cost can be reduced. At the same time, uniform white light can be obtained by arranging the light emitting units in an array.
  • a light emitting unit is formed on one surface of the first substrate, and a driving circuit is formed on the second substrate, wherein each of the light emitting units is disposed opposite to and integrated with one of the driving circuits together.
  • a metal wire grid polarizing plate is further formed on the other surface of the first substrate.
  • the driving circuit is electrically connected to the light emitting unit to drive the light emitting unit to emit light, and a light emitting surface of the light emitting unit faces the first substrate, wherein the light emitting unit is on the first substrate
  • the backlight module includes only the substrate, the driving circuit, the light emitting unit, and the metal wire grid polarizing plate.
  • the structure of the backlight module is relatively simple, and the thickness of each component in the backlight module is small, so that the overall thickness of the backlight module is small. Further, since the light transmittance of the metal wire grid polarizing plate is high, the utilization of light emitted from the light emitting unit can also be improved.
  • Embodiments of the present disclosure also provide a display device.
  • the display device includes the backlight module described in any of the above embodiments.
  • the backlight module includes a first substrate, a light emitting unit and a driving circuit on one surface of the first substrate, and a metal wire grid polarizing plate formed on the other surface of the first substrate.
  • the driving circuit is electrically connected to the light emitting unit to drive the light emitting unit to emit light, and a light emitting surface of the light emitting unit faces the first substrate, wherein the light emitting unit is on the first substrate
  • the upper array is arranged.
  • the light emitting unit is formed on the first substrate, and the driving circuit is formed on the second substrate, wherein each of the light emitting units is disposed opposite to one of the driving circuits and Integrated together.
  • the driving circuit is formed on the first substrate and includes an array of transparent regions and non-transparent regions, wherein the light emitting unit is formed in a transparent region of the driving circuit.
  • the light emitting unit includes three LEDs respectively configured to emit red light, green light, and blue light, wherein, in each of the light emitting units, the order of the three LEDs may be the same or different.
  • the light emitting unit may further include a monochrome LED and a wavelength conversion layer formed on a light emitting surface of the monochrome LED.
  • the backlight module since the backlight module includes a metal wire grid polarizing plate, it is not necessary to provide a lower polarizing plate in the display device.
  • the display device includes a liquid crystal display (LCD).
  • LCD liquid crystal display
  • the present invention is by no means limited to the LCD.
  • the display device includes a backlight module.
  • a light emitting unit and a driving circuit are formed on one surface of the first substrate, and a metal wire grid polarizing plate is formed on the other opposite surface of the first substrate, wherein the driving circuit is electrically connected to the light emitting unit, Driving the light emitting unit to emit light.
  • a light emitting surface of the light emitting unit faces the first substrate, and the light emitting units are arranged in an array on the first substrate.
  • the backlight module includes only the substrate, the driving circuit, the light emitting unit, and the metal wire grid polarizing plate.
  • the structure of the backlight module is relatively simple, and the thickness of each component in the backlight module is small, so that the overall thickness of the backlight module is small. Further, since the light transmittance of the metal wire grid polarizing plate is high, the utilization of light emitted from the light emitting unit can be improved.
  • the preparation method may include the following steps.
  • Step 301 forming a light emitting unit and a driving circuit on one surface of the first substrate.
  • a light emitting unit and a driving circuit are first prepared on one surface of the first substrate.
  • the driving circuit is electrically connected to the light emitting unit to drive the light emitting unit to emit light.
  • a light emitting surface of the light emitting unit faces the first substrate, and the light emitting units are arranged in an array on the first substrate.
  • FIG. 4 a schematic cross-sectional view of the backlight module after the preparation of the driving circuit is completed during the process for preparing the backlight module shown in FIG.
  • the drive circuit 12 is formed on the first substrate 11. Specifically, a driving circuit is prepared on one surface of the first substrate, wherein the driving circuit includes a transparent region and a non-transparent region, and circuits necessary for driving the light-emitting unit to emit light are arranged in the non-transparent region.
  • the driving circuit includes a transparent region and a non-transparent region, and circuits necessary for driving the light-emitting unit to emit light are arranged in the non-transparent region.
  • any suitable preparation method for the drive circuit can be selected according to actual needs.
  • FIG. 5 a schematic cross-sectional view of the backlight module after the preparation of the light emitting unit is completed during the process of preparing the backlight module as shown in FIG.
  • the light emitting unit 13 is formed in a transparent region on the drive circuit 12.
  • the lighting unit includes LEDs 131, LEDs 132, and LEDs 133 that are respectively configured to emit red, green, and blue light.
  • the light emitting unit includes a single color LED and a wavelength conversion layer formed on a light emitting surface of the single color LED.
  • the three LEDs are attached directly on the transparent area of the driving circuit.
  • the light emitting unit includes a single color LED and a wavelength conversion layer formed on a light emitting surface of the monochrome LED, a wavelength conversion material material is coated on the light emitting surface of the monochrome LED, and then they are attached together to the driving circuit In the transparent area.
  • FIG. 6 a schematic cross-sectional view of the backlight module after the preparation of the light emitting unit is completed during the process for preparing the backlight module as shown in FIG.
  • the light emitting unit 13 is formed on the first substrate 11.
  • the light emitting unit includes LEDs 131, LEDs 132, and LEDs 133 that are respectively configured to emit red, green, and blue light.
  • the light emitting unit includes a single color LED and a wavelength conversion layer formed on a light emitting surface of the monochrome LED.
  • FIG. 7 a schematic cross-sectional view of the backlight module after the preparation of the driving circuit is completed during the process of preparing the backlight module as shown in FIG.
  • the drive circuit 12 is formed on the second substrate 15.
  • FIG. 8 a schematic cross-sectional view of the backlight module after integration of the driving circuit and the light emitting unit during the process of preparing the backlight module as shown in FIG. 2 is schematically illustrated.
  • each of the light emitting units is disposed opposite to and integrated with a corresponding sub-driving circuit, wherein each of the sub-driving circuits is configured to drive the corresponding light emitting unit to emit light.
  • Step 302 forming a metal wire grid polarizing plate on the other surface of the first substrate.
  • a metal wire grid polarizing plate may be formed on the other surface of the first substrate by a nanoimprint method. Specifically, a metal film layer is prepared on one surface of the first substrate, and then a photoresist is coated on the metal film layer. Thereafter, the photoresist is imprinted using a Wire Grid Polarizer (WGP) imprint template to form a photoresist pattern of the grating structure. Finally, the metal film layer not covered by the photoresist is etched by an etching technique to form a plurality of grating regions.
  • WGP Wire Grid Polarizer
  • a backlight module as shown in FIG. 1 can be obtained by forming a metal wire grid polarizing plate on the other surface of the first substrate.
  • a backlight module as shown in FIG. 2 can be obtained by forming a metal wire grid polarizing plate on the other surface of the first substrate.
  • a light emitting unit and a driving circuit are formed on one surface of the first substrate, and a metal wire grid polarizing plate is formed on the other surface of the first substrate.
  • the driving circuit is electrically connected to the light emitting unit to drive the light emitting unit to emit light, and a light emitting surface of the light emitting unit faces the first substrate, wherein the light emitting unit is on the first substrate
  • the upper array is arranged.
  • the backlight module includes only the substrate, the driving circuit, the light emitting unit, and the metal wire grid polarizing plate. Therefore, the structure of the backlight module is relatively simple, and the thickness of each component in the backlight module is small, so that the overall thickness of the backlight module is small. Further, since the light transmittance of the metal wire grid polarizing plate is high, the utilization of light emitted from the light emitting unit can be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种背光模组、显示装置及背光模组的制备方法,背光模组包括:第一基板(11),第一基板(11)具有彼此相对的第一表面和第二表面;阵列排布在第一基板(11)的第一表面上的多个发光单元(13);设置在第一基板(11)的第二表面上的金属线栅偏振片(14);以及驱动电路(12),其中,驱动电路(12)与多个发光单元(13)电连接,以驱动多个发光单元(13)朝向第一基板(11)发光。因此背光模组的整体厚度小,且可以提高从发光单元(13)发出的光线的利用率。

Description

背光模组、显示装置及背光模组的制备方法
对相关申请的交叉引用
本申请要求2017年6月15日提交的中国专利申请号201710453695.2的优先权,该中国专利申请以其整体通过引用并入本文。
技术领域
本公开涉及显示技术领域,并且具体地公开了背光模组、显示装置及背光模组的制备方法。
背景技术
显示装置典型地包括背光模组和显示面板,其中,背光模组用于向显示面板提供光源。具体地,显示面板一般包括依次设置的下偏振片、阵列基板、液晶层、彩膜基板和上偏振片。在这样的情况下,由背光模组发出的光线依次穿过下偏振片、阵列基板、液晶层、彩膜基板和上偏振片,从而最终实现显示。
目前,背光模组一般包括光源、导光板、反射片、扩散片和棱镜片等部件。当应用显示装置时,需要背光模组与下偏振片结合使用。由此,从背光模组的光源发出的光线首先经过导光板、扩散片和棱镜片,并且然后再经过下偏振片,从而将非偏振光转化为线偏振光。
发明人已经发现,对于目前的显示装置,背光模组的结构较为复杂,并且每个元件都具有一定厚度。尤其地,导光板的厚度较大,从而导致整个背光模组的厚度大。另外,在常规显示装置中,还需要通过背光模组与下偏振片的结合来获得线偏振光。然而,当由背光模组发出的光线经过下偏振片时,下偏振片的透过率较低。一般地,只有至多42%的光线能够透过下偏振片,这使得从背光模组发出的光线的利用率较低。
发明内容
根据本公开的一方面,提供了一种背光模组。具体地,所述背光模组包括:第一基板,所述第一基板具有彼此相对的第一表面和第二 表面;阵列排布在所述第一基板的第一表面上的多个发光单元;设置在所述第一基板的第二表面上的金属线栅偏振片;以及驱动电路,其中,所述驱动电路与所述多个发光单元电连接,以驱动所述多个发光单元朝向所述第一基板发光。
根据具体实现方式,在本发明的实施例提供的背光模组中,所述驱动电路设置在所述第一基板与所述多个发光单元之间,并且包括阵列排布的透明区域和非透明区域,所述多个发光单元设置在所述驱动电路的透明区域中。
根据具体实现方式,由本发明的实施例提供的背光模组还包括第二基板。进一步地,所述第二基板位于所述多个发光单元远离所述第一基板的一侧,并且所述驱动电路设置在所述第二基板面向所述多个发光单元的一侧上。
根据具体实现方式,在本发明的实施例提供的背光模组中,所述驱动电路包括多个子驱动电路,每一个子驱动电路与一个相应的发光单元相对设置并且集成在一起。
根据具体实现方式,在本发明的实施例提供的背光模组中,每一个发光单元包括配置成发射红光的第一子发光单元、配置成发射绿光的第二子发光单元和配置成发射蓝光的第三子发光单元。
根据具体实现方式,在本发明的实施例提供的背光模组中,每一个发光单元包括:配置成发射单色光的光源;和形成于所述光源的发光面上的波长转换层。
根据本公开的又一方面,还提供了一种显示装置。具体地,所述显示装置包括根据前面任一个实施例所述的背光模组。
根据本公开的再一方面,还提供了一种用于背光模组的制备方法。具体地,所述制备方法包括:在第一基板的第一表面上提供阵列排布的多个发光单元;在所述第一基板的与所述第一表面相对的第二表面上提供金属线栅偏振片;以及提供驱动电路。进一步地,所述驱动电路与所述多个发光单元电连接,以驱动所述多个发光单元朝向所述第一基板发光。
根据具体实现方式,在本发明的实施例提供的用于背光模组的制备方法中,提供驱动电路的步骤包括:在所述第一基板的第一表面上提供所述驱动电路,所述驱动电路包括阵列排布的透明区域和非透明 区域。此外,在第一基板的第一表面上提供阵列排布的多个发光单元的步骤包括:在所述驱动电路的透明区域中提供所述多个发光单元。
根据具体实现方式,由本发明的实施例提供的用于背光模组的制备方法还包括以下步骤:在所述多个发光单元远离所述第一基板的一侧提供第二基板。进一步地,提供驱动电路的步骤包括:在所述第二基板面向所述多个发光单元的一侧上提供所述驱动电路。
根据具体实现方式,在本发明的实施例提供的用于背光模组的制备方法中,所述驱动电路包括多个子驱动电路,每一个子驱动电路与一个相应的发光单元相对设置并集成在一起。
根据具体实现方式,在本发明的实施例提供的用于背光模组的制备方法中,每一个发光单元包括配置成发射红光的第一子发光单元、配置成发射绿光的第二子发光单元和配置成发射蓝光的第三子发光单元。
根据具体实现方式,在本发明的实施例提供的用于背光模组的制备方法中,每一个发光单元包括:配置成发射单色光的光源;和形成于所述光源的发光面上的波长转换层。
附图说明
图1示意性示出了根据本公开的一个实施例的背光模组的剖面结构示意图;
图2示意性示出了根据本公开的另一个实施例的背光模组的剖面结构示意图;
图3示意性示出了根据本公开的一个实施例的用于背光模组的制备方法的流程图;
图4示意性示出了在制备如图1中所示的背光模组的过程期间,在驱动电路的制备完成之后,背光模组的剖面结构示意图;
图5示意性示出了在制备如图1中所示的背光模组的过程期间,在发光单元的制备完成之后,背光模组的剖面结构示意图;
图6示意性示出了在制备如图2中所示的背光模组的过程期间,在发光单元的制备完成之后,背光模组的剖面结构示意图;
图7示意性示出了在制备如图2中所示的背光模组的过程期间,在驱动电路的制备完成之后,背光模组的剖面结构示意图;以及
图8示意性示出了在制备如图2中所示的背光模组的过程期间,在驱动电路与发光单元的集成之后,背光模组的剖面结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解到,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整地传达给本领域的技术人员。
参照图1,示意性示出了根据本公开的一个实施例的背光模组的剖面结构示意图。
根据本公开的一个实施例,提供了一种背光模组。具体地,背光模组包括第一基板11、形成在所述第一基板11的下表面上的发光单元13和驱动电路12,以及形成在所述第一基板11的上表面上的金属线栅偏振片14。在以上背光模组中,发光单元13在第一基板11上以矩阵形式排布。进一步地,所述驱动电路12与所述发光单元13电连接,以驱动所述发光单元13发光。在图1所示的背光模组中,所述发光单元13的发光面朝向所述第一基板11,其中,所述发光单元13朝向所述第一基板11发射光。
具体地,所述驱动电路12形成于所述第一基板11上,特别地,形成在所述第一基板的下表面上,并且包括透明区域和非透明区域。所述发光单元13形成于所述驱动电路12上的透明区域中。本领域技术人员应当容易领会到,驱动电路12的非透明区域主要用于排布驱动发光单元进行发光所需的电路元件。因此,通过将发光单元设置在驱动电路的透明区域中,使得驱动电路不会遮挡从发光单元发出的光线。
作为示例,每一个发光单元13可以包括分别用于发射红光、绿光和蓝光的三个LED。如图1中所示,每一个发光单元13包括LED 131、LED 132和LED 133。典型地,每个LED的尺寸很小并且是人眼无法区分的。作为示例,每个LED一般具有微米级别的尺寸。鉴于此,LED的混光距离相对较小,这在一定程度上可以减小背光模组的厚度。具体地,从不同位置处的LED发出的光在传播一定距离之后才可能发生交叠,从而产生混色。本领域技术人员应当容易理解到,LED所处的 位置与产生混色的位置之间的距离即为混光距离。从每一个发光单元13发出的光在混合之后呈现为白光。因此,通过使发光单元呈阵列排布,可以获得均匀的白光。作为示例,每个发光单元13内的三个LED的排列次序可以是按照红色LED、绿色LED和蓝色LED的顺序。当然,可替换地,也可以是按照红色LED、蓝色LED和绿色LED的顺序进行排列。进一步可选地,还可以是按照绿色LED、红色LED和蓝色LED的顺序来排列。这意味着,在各个发光单元13中,三个LED的排列次序可以相同或不同,只要能够保证从各个发光单元中的三个LED发出的光在混合之后呈现为白光即可。
作为可替换示例,所述发光单元13还可以包括单色LED(即,配置为发射单色光的LED)和形成于所述单色LED的发光面上的波长转换层。具体地,可以将波长转换材料涂覆在单色LED的发光面上以形成波长转换层。展开来说,由单色LED发出的光激发波长转换层中的波长转换材料,例如得到不同颜色的光,由此在混合之后形成白光。示例性地,波长转换层可以包括量子点波长转换层。一般地,可以在蓝光LED的发光面上形成量子点波长转换层。在可选示例中,该量子点波长转换层可以包括绿光量子点和红光量子点。在这样的情况下,由蓝光LED发射的部分蓝光在被相应的量子点吸收之后将转换为绿光和红光。在此之后,剩余的蓝光与转换得到的绿光、红光混合,从而形成白光。可替换地,还可以在紫外LED的发光面上涂覆一种发光量子点。由此,从紫外LED发出的紫外光将激发该发光量子点,从而发出不止一种颜色的光。在此之后,这些颜色的光可以直接混合,从而产生白光。典型地,量子点颗粒的尺寸较小,并且单色LED的尺寸也较小。因此,使得LED的混光距离较小,从而在一定程度上可以减小背光模组的厚度。
详细地,根据驱动电路的驱动电压和发光单元的阵列排布方式,可以控制由背光模组提供的光线的白平衡和亮度。
在实施例中,所述金属线栅偏振片14可以配置用于将从发光单元的发光面发出的非偏振光转化为偏振光。有利地,金属线栅偏振片要比传统偏振片的光透过率更高。典型地,金属线栅偏振片的光透过率可以大于60%,由此极大地提高了从发光单元发出的光线的利用率。此外,金属线栅偏振片的厚度一般在100-200nm的范围内。相比而言, 普通偏振片的厚度一般为几十微米。因此,通过采用金属线栅偏振片来代替传统下偏振片,可以在一定程度上减小背光模组的厚度。
在本公开的实施例中,背光模组只包含第一基板、驱动电路、发光单元和金属线栅偏振片。因此,整个背光模组的结构较为简单。此外,在该背光模组中,只需要一个基板。同时,驱动电路、发光单元和金属线栅偏振片的厚度都相对较小,这使得背光模组的整体厚度较小。
在本公开的实施例中,在第一基板的一个表面上形成驱动电路,并且在驱动电路的透明区域中形成发光单元,同时在第一基板的另一相对表面上形成金属线栅偏振片。进一步地,所述驱动电路与所述发光单元电连接,以驱动所述发光单元发光,并且所述发光单元的发光面朝向所述第一基板。此外,所述发光单元在所述第一基板上呈阵列排布。由此,背光模组只包含基板、驱动电路、发光单元和金属线栅偏振片。以这样的方式,整个背光模组的结构较为简单。而且,背光模组中的各个组件的厚度都相对较小,这使得背光模组的整体厚度较小。此外,由于金属线栅偏振片的光透过率高,所以可以提高从发光单元发出的光线的利用率。
参照图2,示意性示出了根据本公开的另一个实施例的背光模组的剖面结构示意图。
在本公开的另一个实施例中,还提供了一种背光模组。从图2可以看出,该背光模组与在图1中所示的背光模组具有大体类似的结构。这两者之间的区别在于,在图2所示的背光模组中,发光单元13形成于所述第一基板11上,而所述驱动电路12形成于第二基板15上。此外,参照图2,驱动电路12还可以包括多个子驱动电路,其中,每一个子驱动电路与相应的一个发光单元13相对设置并且集成在一起。
具体地,所述发光单元13可以为包括分别配置用于发射红光、绿光和蓝光的LED 131、LED 132和LED 133。在每一个发光单元13中,这三个LED的排列次序可以相同或不同。可替换地,所述发光单元13还可以包括单色LED和形成于所述单色LED的发光面上的波长转换层。
为了获得均匀白光,可以通过模拟和设计,确定相邻两个发光单元之间的距离和混光距离,从而按照相邻两个发光单元之间的距离和混光距离来确定发光单元的阵列排布方式。由此,无需在第一基板的 整个区域中布置发光单元,从而可以节省发光单元的数量,并且降低生产成本。同时,通过使发光单元呈阵列排布,可以获得均匀的白光。
在本公开的实施例中,在第一基板的一个表面上形成发光单元,并且在第二基板上形成驱动电路,其中,每一个发光单元与驱动电路中的一个子驱动电路相对设置并且集成在一起。同时,在第一基板的另一表面上还形成金属线栅偏振片。具体地,所述驱动电路与所述发光单元电连接,以驱动所述发光单元发光,并且所述发光单元的发光面朝向所述第一基板,其中,所述发光单元在所述第一基板上阵列排布。在这样的情况下,背光模组只包含基板、驱动电路、发光单元和金属线栅偏振片。由此,背光模组的结构较为简单,并且背光模组中的各个组件的厚度较小,从而使得背光模组的整体厚度较小。此外,由于金属线栅偏振片的光透过率高,所以还可以提高从发光单元发出的光线的利用率。
本公开的实施例还提供了一种显示装置。具体地,该显示装置包括在上文任一个实施例中描述的背光模组。详细地,背光模组包括第一基板、在所述第一基板的一个表面上的发光单元和驱动电路,以及在所述第一基板的另一个表面上形成的金属线栅偏振片。进一步地,所述驱动电路与所述发光单元电连接,以驱动所述发光单元发光,并且所述发光单元的发光面朝向所述第一基板,其中,所述发光单元在所述第一基板上阵列排布。
作为示例,所述发光单元形成于所述第一基板上,并且所述驱动电路形成于第二基板上,其中,每一个所述发光单元与所述驱动电路中的一个子驱动电路相对设置并且集成在一起。
可替换地,所述驱动电路形成于所述第一基板上,并且包括阵列排布的透明区域和非透明区域,其中,所述发光单元形成于所述驱动电路的透明区域中。
所述发光单元包括分别配置用于发射红光、绿光和蓝光的三个LED,其中,在每一个发光单元中,三个LED的排列次序可以相同或不同。可替换地,所述发光单元还可以包括单色LED和形成于所述单色LED的发光面上的波长转换层。
在本公开的实施例中,由于背光模组包括金属线栅偏振片,因此,在显示装置中无需再设置下偏振片。该显示装置包括液晶显示器 (Liquid Crystal Display,LCD)。然而,本发明绝不仅限于LCD。关于背光模组的具体描述,可以参照以上结合图1和2描述的实施例,并且本公开对此不再赘述。
在本公开的实施例中,显示装置包括背光模组。具体地,在第一基板的一个表面上形成发光单元和驱动电路,并且在第一基板的另一相对表面上形成金属线栅偏振片,其中,所述驱动电路与所述发光单元电连接,以驱动所述发光单元发光。此外,所述发光单元的发光面朝向所述第一基板,并且所述发光单元在所述第一基板上阵列排布。以这样的方式,背光模组只包含基板、驱动电路、发光单元和金属线栅偏振片。由此,背光模组的结构较为简单,并且背光模组中的各个组件的厚度较小,使得背光模组的整体厚度较小。此外,由于金属线栅偏振片的光透过率高,所以可以提高从发光单元发出的光线的利用率。
参照图3,示意性示出了根据本公开的实施例的用于背光模组的制备方法的流程图。具体地,所述制备方法可以包括如下步骤。
步骤301,在第一基板的一个表面上形成发光单元和驱动电路。
本公开的实施例中,首先在第一基板的一个表面上制备发光单元和驱动电路。具体地,所述驱动电路与所述发光单元电连接,以驱动所述发光单元发光。进一步地,所述发光单元的发光面朝向所述第一基板,并且所述发光单元在所述第一基板上阵列排布。
参照图4,示意性示出了在用于制备如图1所示的背光模组的过程期间,在驱动电路的制备完成之后,背光模组的剖面结构示意图。
首先,在第一基板11上形成驱动电路12。具体地,在第一基板的一个表面上制备驱动电路,其中,驱动电路包括透明区域和非透明区域,并且在非透明区域中排布用于驱动发光单元发光所需的电路。在本公开的实施例中,可以根据实际需要选择用于驱动电路的任何适合的制备方法。
参照图5,示意性示出了在制备如图1中所示的背光模组的过程期间,在发光单元的制备完成之后,背光模组的剖面结构示意图。
接下来,在所述驱动电路12上的透明区域中形成发光单元13。作为示例,所述发光单元包括分别配置用于发射红光、绿光和蓝光的LED 131、LED 132和LED 133。可替换地,所述发光单元包括单色LED和 形成于所述单色LED的发光面上的波长转换层。当发光单元包括以上三个LED时,直接在驱动电路的透明区域上贴附这三个LED。当发光单元包括单色LED和形成于所述单色LED的发光面上的波长转换层时,在单色LED的发光面上涂覆波长转换材料材料,并且然后将它们一起贴附在驱动电路的透明区域中。
参照图6,示意性示出了在用于制备如图2中所示的背光模组的过程期间,在发光单元的制备完成之后,背光模组的剖面结构示意图。
首先,在第一基板11上形成发光单元13。具体地,所述发光单元包括分别配置用于发射红光、绿光和蓝光的LED 131、LED 132和LED 133。可替换地,所述发光单元包括单色LED和形成于所述单色LED的发光面上的波长转换层。
参照图7,示意性示出了在制备如图2中所示的背光模组的过程期间,在驱动电路的制备完成之后,背光模组的剖面结构示意图。
接下来,在第二基板15上形成驱动电路12。
参照图8,示意性示出了在制备如图2中所示的背光模组的过程期间,在驱动电路与发光单元的集成之后,背光模组的剖面结构示意图。
然后,将驱动电路12与发光单元13进行集成。具体地,将每一个发光单元与对应的子驱动电路相对设置并且集成在一起,其中,每一个子驱动电路用于驱动相应的发光单元发光。
步骤302,在所述第一基板的另一表面上形成金属线栅偏振片。
本公开的实施例中,可以采用纳米压印的方法在第一基板的另一表面上形成金属线栅偏振片。具体地,在第一基板的一个表面上制备金属膜层,并且然后在金属膜层上涂覆光刻胶。在此之后,利用金属线栅偏振片(Wire Grid Polarizer,WGP)压印模板来压印光刻胶,从而形成光栅结构的光刻胶图形。最后,再采用刻蚀技术对未被光刻胶覆盖的金属膜层进行刻蚀,从而形成多个光栅区。
在图5的基础上,通过在第一基板的另一表面上形成金属线栅偏振片,可以得到如图1所示的背光模组。
在图8的基础上,通过在第一基板的另一表面上形成金属线栅偏振片,可以得到如图2所示的背光模组。
在本公开的实施例中,在第一基板的一个表面上形成发光单元和驱动电路,并且在第一基板的另一个表面上形成金属线栅偏振片。具 体地,所述驱动电路与所述发光单元电连接,以驱动所述发光单元发光,并且所述发光单元的发光面朝向所述第一基板,其中,所述发光单元在所述第一基板上阵列排布。在这样的情况下,背光模组只包含基板、驱动电路、发光单元和金属线栅偏振片。由此,背光模组的结构较为简单,并且背光模组中的各个组件的厚度较小,从而使得背光模组的整体厚度较小。此外,由于金属线栅偏振片的光透过率高,所以可以提高从发光单元发出的光线的利用率。
在前述方法实施例中,为了简单的描述,将方法都表述为一系列动作的组合。然而,本领域技术人员应该知悉,本公开并不受所描述的动作的顺序所限制。原因在于,依据本公开的教导,某些步骤可以采用其它顺序或者同时进行。另外,本领域技术人员还应该知悉,在说明书中描述的实施例均属于可选的实施例,并且所涉及的动作和模块并不一定是本公开所必须的。
在本说明书中,采用递进的方式来描述各个实施例。因此,在每个实施例的描述中重点说明的都是它与其他实施例的不同之处,而对于各个实施例之间的相同或相似部分,互相参见即可。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上对本公开所提供的背光模组、显示装置及用于背光模组的制备方法进行了详细介绍。本文中应用了具体个例对本公开的原理及实施方式进行了详细的阐述。以上实施例的说明只是用于帮助理解本公开的方法及其核心思想。同时,对于本领域的一般技术人员,依据本公开的思想,可以容易设想到在具体实施方式及应用范围上的各种改变。综上所述,本说明书内容不应理解为对本公开的限制。

Claims (13)

  1. 一种背光模组,包括:
    第一基板,所述第一基板具有彼此相对的第一表面和第二表面;
    阵列排布在所述第一基板的第一表面上的多个发光单元;
    设置在所述第一基板的第二表面上的金属线栅偏振片;以及
    驱动电路,其中
    所述驱动电路与所述多个发光单元电连接,以驱动所述多个发光单元朝向所述第一基板发光。
  2. 根据权利要求1所述的背光模组,其中
    所述驱动电路设置在所述第一基板与所述多个发光单元之间,并且包括阵列排布的透明区域和非透明区域,所述多个发光单元设置在所述驱动电路的透明区域中。
  3. 根据权利要求1所述的背光模组,还包括:
    第二基板,所述第二基板位于所述多个发光单元远离所述第一基板的一侧,并且
    所述驱动电路设置在所述第二基板面向所述多个发光单元的一侧上。
  4. 根据权利要求3所述的背光模组,其中
    所述驱动电路包括多个子驱动电路,每一个子驱动电路与一个相应的发光单元相对设置并且集成在一起。
  5. 根据权利要求1所述的背光模组,其中
    每一个发光单元包括配置成发射红光的第一子发光单元、配置成发射绿光的第二子发光单元和配置成发射蓝光的第三子发光单元。
  6. 根据权利要求1所述的背光模组,其中
    每一个发光单元包括:配置成发射单色光的光源;和形成于所述光源的发光面上的波长转换层。
  7. 一种显示装置,包括:根据权利要求1-6中任一项所述的背光模组。
  8. 一种用于背光模组的制备方法,包括:
    在第一基板的第一表面上提供阵列排布的多个发光单元;
    在所述第一基板的与所述第一表面相对的第二表面上提供金属线 栅偏振片;以及
    提供驱动电路,其中
    所述驱动电路与所述多个发光单元电连接,以驱动所述多个发光单元朝向所述第一基板发光。
  9. 根据权利要求8所述的制备方法,其中
    提供驱动电路的步骤包括:在所述第一基板的第一表面上提供所述驱动电路,所述驱动电路包括阵列排布的透明区域和非透明区域,并且
    在第一基板的第一表面上提供阵列排布的多个发光单元的步骤包括:在所述驱动电路的透明区域中提供所述多个发光单元。
  10. 根据权利要求8所述的制备方法,还包括:
    在所述多个发光单元远离所述第一基板的一侧提供第二基板,其中
    提供驱动电路的步骤包括:在所述第二基板面向所述多个发光单元的一侧上提供所述驱动电路。
  11. 根据权利要求10所述的制备方法,其中
    所述驱动电路包括多个子驱动电路,每一个子驱动电路与一个相应的发光单元相对设置并集成在一起。
  12. 根据权利要求8所述的制备方法,
    每一个发光单元包括配置成发射红光的第一子发光单元、配置成发射绿光的第二子发光单元和配置成发射蓝光的第三子发光单元。
  13. 根据权利要求8所述的制备方法,
    每一个发光单元包括:配置成发射单色光的光源;和形成于所述光源的发光面上的波长转换层。
PCT/CN2018/084089 2017-06-15 2018-04-23 背光模组、显示装置及背光模组的制备方法 WO2018228056A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/318,886 US10890801B2 (en) 2017-06-15 2018-04-23 Backlight module, display device and fabricating method for backlight module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710453695.2A CN107193158B (zh) 2017-06-15 2017-06-15 一种背光模组、显示装置及背光模组的制备方法
CN201710453695.2 2017-06-15

Publications (1)

Publication Number Publication Date
WO2018228056A1 true WO2018228056A1 (zh) 2018-12-20

Family

ID=59879802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084089 WO2018228056A1 (zh) 2017-06-15 2018-04-23 背光模组、显示装置及背光模组的制备方法

Country Status (3)

Country Link
US (1) US10890801B2 (zh)
CN (1) CN107193158B (zh)
WO (1) WO2018228056A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107193158B (zh) * 2017-06-15 2020-04-17 京东方科技集团股份有限公司 一种背光模组、显示装置及背光模组的制备方法
CN108919407A (zh) 2018-07-11 2018-11-30 京东方科技集团股份有限公司 金属线及金属线栅的制备方法以及线栅偏振片、电子装置
CN108987382A (zh) * 2018-07-27 2018-12-11 京东方科技集团股份有限公司 一种电致发光器件及其制作方法
KR102564142B1 (ko) * 2019-07-03 2023-08-07 엘지디스플레이 주식회사 백라이트 유닛 및 그를 포함하는 표시장치
CN113228287A (zh) * 2019-11-26 2021-08-06 重庆康佳光电技术研究院有限公司 显示组件、显示组件的制作方法、以及电子设备
TWI770813B (zh) * 2021-02-08 2022-07-11 友達光電股份有限公司 顯示裝置及其製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070050237A (ko) * 2005-11-10 2007-05-15 엘지.필립스 엘시디 주식회사 액정표시장치용 백라이트 유닛
CN101742750A (zh) * 2008-11-11 2010-06-16 三星Sdi株式会社 背光单元
KR20120040413A (ko) * 2010-10-19 2012-04-27 엘지이노텍 주식회사 와이어 그리드 편광자 및 이를 포함하는 백라이트유닛
US20150062500A1 (en) * 2013-08-27 2015-03-05 Samsung Electronics Co., Ltd. Wire grid polarizer and liquid crystal display panel and liquid crystal display device having the same
US20160202791A1 (en) * 2015-01-09 2016-07-14 Samsung Display Co., Ltd. Touch panel and organic light emitting diode display device
CN106019454A (zh) * 2016-07-28 2016-10-12 深圳市华星光电技术有限公司 金属线栅偏光片与液晶显示装置
CN107193158A (zh) * 2017-06-15 2017-09-22 京东方科技集团股份有限公司 一种背光模组、显示装置及背光模组的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7589808B2 (en) * 2007-06-15 2009-09-15 University Of Central Florida Research Foundation, Inc. Wide viewing angle transflective liquid crystal displays
US9224323B2 (en) * 2013-05-06 2015-12-29 Dolby Laboratories Licensing Corporation Systems and methods for increasing spatial or temporal resolution for dual modulated display systems
CN206892503U (zh) * 2017-04-10 2018-01-16 北京京东方显示技术有限公司 背光模组、显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070050237A (ko) * 2005-11-10 2007-05-15 엘지.필립스 엘시디 주식회사 액정표시장치용 백라이트 유닛
CN101742750A (zh) * 2008-11-11 2010-06-16 三星Sdi株式会社 背光单元
KR20120040413A (ko) * 2010-10-19 2012-04-27 엘지이노텍 주식회사 와이어 그리드 편광자 및 이를 포함하는 백라이트유닛
US20150062500A1 (en) * 2013-08-27 2015-03-05 Samsung Electronics Co., Ltd. Wire grid polarizer and liquid crystal display panel and liquid crystal display device having the same
US20160202791A1 (en) * 2015-01-09 2016-07-14 Samsung Display Co., Ltd. Touch panel and organic light emitting diode display device
CN106019454A (zh) * 2016-07-28 2016-10-12 深圳市华星光电技术有限公司 金属线栅偏光片与液晶显示装置
CN107193158A (zh) * 2017-06-15 2017-09-22 京东方科技集团股份有限公司 一种背光模组、显示装置及背光模组的制备方法

Also Published As

Publication number Publication date
US20190285946A1 (en) 2019-09-19
US10890801B2 (en) 2021-01-12
CN107193158A (zh) 2017-09-22
CN107193158B (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2018228056A1 (zh) 背光模组、显示装置及背光模组的制备方法
US20160380170A1 (en) White led, backlight module and liquid crystal display device
WO2017071344A1 (zh) 彩膜基板、显示面板及显示装置
WO2015144068A1 (zh) 液晶显示装置
WO2016106896A1 (zh) 背光模块及具有该背光模块的液晶显示器
WO2015051557A1 (zh) 背光模组及液晶显示器
JP2006054470A (ja) 混合色発光ダイオード装置及びこれを製造する方法
US9341763B1 (en) Backlight module and liquid crystal display device
WO2018227678A1 (zh) 蓝光吸收截止膜及蓝光显示装置
TWI480660B (zh) 顯示裝置
TW200804922A (en) Light-emitting unit and backlight module
WO2014201798A1 (zh) 显示面板及其制备方法、显示装置
JP2008192797A (ja) 光源モジュール及びその製造方法、光源装置、並びに液晶表示装置
WO2016049956A1 (zh) 场色序法液晶显示装置及其色彩控制方法
JP5294667B2 (ja) 液晶表示装置
WO2016155115A1 (zh) 导光板及具有该导光板的背光模块和液晶显示器
WO2015027528A1 (zh) 适用于背光模组的荧光粉光学膜片的筛选方法及背光模组
US20160377788A1 (en) Backlight module and liquid crystal display device using the same
KR20150067476A (ko) 나노캡슐 액정층을 포함하는 플렉서블 액정표시장치
TW201944149A (zh) 背光模塊及顯示裝置
US20180088408A1 (en) Color film substrate, manufacturing metho, and liquid crystal device
TWI691765B (zh) 顯示裝置
US20080158877A1 (en) Backlight modules and displays using the same
TWI359987B (en) Liquid crystal display and light emitting unit the
JP2009245780A (ja) パネルモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/05/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18817147

Country of ref document: EP

Kind code of ref document: A1