WO2018228047A1 - 一种显示装置及其驱动方法 - Google Patents

一种显示装置及其驱动方法 Download PDF

Info

Publication number
WO2018228047A1
WO2018228047A1 PCT/CN2018/083527 CN2018083527W WO2018228047A1 WO 2018228047 A1 WO2018228047 A1 WO 2018228047A1 CN 2018083527 W CN2018083527 W CN 2018083527W WO 2018228047 A1 WO2018228047 A1 WO 2018228047A1
Authority
WO
WIPO (PCT)
Prior art keywords
light control
regions
sub
electrode layer
electrodes
Prior art date
Application number
PCT/CN2018/083527
Other languages
English (en)
French (fr)
Inventor
王延峰
董学
王丹
邱云
杜渊鑫
徐晓玲
吕振华
王志东
胡伟频
魏从从
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/301,292 priority Critical patent/US10769984B2/en
Publication of WO2018228047A1 publication Critical patent/WO2018228047A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits

Definitions

  • the present disclosure relates to the field of display technologies, and more particularly to a display device and a method of driving the display device.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • micro-LED micro-LEDs
  • Display panel Similar to an OLED display panel, a pixel unit in a micro LED display panel also has a light-emitting layer including a self-luminous material, except that the self-luminous material is generally a quantum well. Due to physical limitations, increasing resolution by reducing the physical size of the pixel cells can be difficult for micro LED display panels.
  • a display device includes: a display panel including a plurality of micro LED pixel units arranged in an array; and a light control member disposed on a light exiting side of the display panel, the control
  • the light component includes a plurality of light control regions, each light control region including at least two sub-regions that are independently controllable to switch between a transmissive state and a non-transmissive state.
  • the light control regions are arranged such that an orthographic projection of each of the light control regions on the display panel covers a respective one of the micro LED pixel units.
  • each of the sub-regions are arranged in a lateral direction, a longitudinal direction, or an array within each of the light control regions.
  • the sub-areas of each of the light control regions have the same size.
  • the light control member includes: a first substrate; a second substrate disposed opposite to the first substrate; an electrically controllable optical medium layer disposed on the first substrate and the first Between the two substrates; a first electrode layer disposed on a side of the first substrate facing the second substrate; and a second electrode layer disposed on a side of the second substrate facing the first substrate.
  • At least one of the first electrode layer or the second electrode layer includes a plurality of electrodes disposed in respective ones of the sub-regions of each of the light control regions, disposed in the light control region The electrodes within each of them are independently controllable.
  • the first electrode layer and the second electrode layer each include the plurality of electrodes, and the first electrode layer and the second electrode layer have the same electrode pattern .
  • the first electrode layer includes the plurality of electrodes
  • the second electrode layer includes at least one bulk electrode, each of the block electrodes covering the light control region at least one.
  • the second electrode layer includes the plurality of electrodes
  • the first electrode layer includes at least one bulk electrode, each of the block electrodes covering the light control region at least one.
  • each of the plurality of electrodes includes a plurality of sub-electrodes.
  • the electrically controllable optical medium layer comprises at least one of an electrochromic material or a ferroelectric liquid crystal material.
  • the light control component is configured such that each sub-region of each of the light control regions is sequentially switched to the transmission state to transmit the corresponding micro in a continuous time window The light emitted by the LED pixel unit, and only one of the sub-regions of each of the light control regions in each of the time windows is in the transmissive state.
  • the orthographic projection of each of the light control regions on the display panel also covers a surrounding area of the respective micro LED pixel unit.
  • the light control regions do not overlap each other.
  • a method of driving a display device includes: a display panel including a plurality of micro LED pixel units arranged in an array; and a light control member disposed on a light exiting side of the display panel.
  • the light control component includes a plurality of light control regions, each light control region including at least two sub-regions that are independently controllable to switch between a transmissive state and a non-transmissive state.
  • the light control regions are arranged such that an orthographic projection of each of the light control regions on the display panel covers a respective one of the micro LED pixel units.
  • the method includes sequentially switching sub-regions of each of the light control regions to the transmission state for transmission of light emitted by the respective micro LED pixel unit in a continuous time window. Within each of the time windows, only one of the sub-regions of each of the light control regions is in the transmissive state.
  • the light control member includes: a first substrate; a second substrate disposed opposite to the first substrate; an electrically controllable optical medium layer disposed on the first substrate and the first Between the two substrates; a first electrode layer disposed on a side of the first substrate facing the second substrate; and a second electrode layer disposed on a side of the second substrate facing the first substrate.
  • One of the first electrode layer and the second electrode layer includes a plurality of electrodes disposed in respective ones of the sub-regions of each of the light control regions, disposed in the light control region
  • the electrodes within each are independently controllable.
  • the switching includes selectively applying a driving voltage to the independently controllable electrodes disposed in each of the light control regions in each of the time windows.
  • the applying includes applying the driving voltage to one of the independently controllable electrodes disposed in each of the light control regions without being independently controllable
  • the remaining electrodes of the electrodes apply the driving voltage to switch the sub-region where the electrode to which the driving voltage is applied to the transmitting state.
  • the applying includes: applying the driving voltage to one of the independently controllable electrodes disposed in each of the light control regions to the independently controllable The remaining electrodes of the electrodes apply the driving voltage to switch a sub-region where the electrode to which the driving voltage is not applied to the transmitting state.
  • FIG. 1 is a schematic cross-sectional view of a typical micro LED pixel unit
  • FIG. 2 is a schematic cross-sectional view of a display device in accordance with an embodiment of the present disclosure
  • FIG. 3 4, 5 and 6 are schematic plan views of the display device shown in Fig. 2;
  • Figure 7 is a schematic cross-sectional view of a light control member in the display device shown in Figure 2;
  • Figure 8 is a schematic view showing an electrode arrangement of a first electrode layer in the light control member shown in Figure 7;
  • Figure 9 is a schematic view showing an electrode arrangement of a second electrode layer in the light control member shown in Figure 7;
  • FIG. 10 is a schematic view showing an electrode arrangement of the first electrode layer shown in FIG. 8 and the second electrode layer shown in FIG. 9 when viewed from above.
  • first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/ Some should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer Thus, a first element, component, region, layer, or section, which is discussed below, may be referred to as a second element, component, region, layer or section without departing from the teachings of the disclosure.
  • under and under can encompass both the ⁇ RTIgt; Terms such as “before” or “before” and “after” or “following” may be used, for example, to indicate the order in which light passes through the elements.
  • the device can be oriented in other ways (rotated 90 degrees or in other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • a layer is referred to as “between two layers,” it may be a single layer between the two layers, or one or more intermediate layers may be present.
  • FIG. 1 is a schematic cross-sectional view of a typical micro LED 10.
  • an N-type gallium nitride 12 is grown on the Al2O3 substrate 11, and then a quantum well 13 and a P-type gallium nitride 14 are sequentially grown on the N-type gallium nitride 12.
  • the gallium zinc oxide 15 and the first electrode 16 are, and then the second electrode 17 is disposed at one end of the exposed surface of the N-type gallium nitride 12, thereby forming the micro-LED 10.
  • the micro LED 10 can emit light.
  • the micro LED 10 typically has a size on the order of 1 to 10 ⁇ m, although the disclosure is not limited thereto.
  • the display device includes a display panel 100 including a plurality of micro LED pixel units 110 arranged in an array, and a light control member 200 disposed on a light exit side of the display panel 100.
  • Each of the micro LED pixel units 110 may take the form of the micro LEDs 10 shown in FIG. 1, although the disclosure is not limited thereto.
  • Micro LED pixel units typically need to be fabricated at temperatures above 1000 ° C. Conventional glass substrates or flexible substrates simply cannot withstand such high temperatures. Therefore, the micro LED pixel unit is generally first fabricated on a alumina substrate (which has a melting point of up to 2050 ° C) and then transferred to a glass substrate or a flexible polyethylene terephthalate by transfer or other means. On a glycol ester (PET) or polyimide (PI) substrate.
  • PET glycol ester
  • PI polyimide
  • Fig. 3 is a schematic plan view of the display device shown in Fig. 2.
  • the light control component 200 includes a plurality of light control regions 210 (indicated by blocks filled with diagonal lines).
  • Each of the light control regions 210 includes at least two sub-regions (shown as 210a and 210b in FIG. 3) that are independently controllable to switch between a transmissive state and a non-transmissive state.
  • the orthographic projection of each of the light control regions 210 on the display panel 100 covers a respective one of the micro LED pixel units 110 (indicated by blocks filled with dense black dots) when viewed from above. In the example shown in FIG.
  • each of the light control regions 210 is shown to have an area equal to the cross-sectional area of the corresponding micro LED pixel unit 110, ie, the orthographic projection of the light control region 210 on the display panel 100 and micro The orthographic projection of the LED pixel unit 110 on the display panel 100 completely coincides, although this is not necessary as will be described later.
  • the light control component 200 can be configured such that each sub-region 210a and 210b of each of the light control regions 210 is sequentially switched to the transmission state to transmit the corresponding micro LED pixel in a continuous time window.
  • the light emitted by the unit 110, and only one of the sub-regions 210a and 210b of each of the light control regions 210 in each of the time windows is in the transmissive state.
  • the sub-region 210a is switched to the transmissive state and the sub-region 210b is switched to the non-transmissive state, and then the sub-region 210a is switched to the non-transmission state in the second time window immediately adjacent to the first time window.
  • the transmission state and the sub-region 210b are switched to the transmission state.
  • This allows the so-called visual persistence effect to be used to increase the resolution of the display device.
  • the visual persistence effect means that when a person is watching an object, even if the light signal from the object is stopped, the visual image of the object in the human brain will not disappear immediately, but will remain for a while.
  • each micro LED pixel unit 110 can be "virtualized" into a plurality of pixel units by switching of a plurality of sub-regions of the corresponding light control region 210, thereby increasing the resolution of the display device. Therefore, a solution for improving the resolution of a display device in a non-physical manner is provided.
  • transmissive state refers to an area in which the associated sub-region of light-control component 200 is capable of transmitting at least a majority of the light emitted by the corresponding micro-LED pixel unit 110 (eg, 90%, 80%) Or even 70%), and the term non-transmissive state is used with respect to the term transmissive state, which may refer to a state in which the associated sub-region of the light-controlling component 200 is completely opaque, or where the light-control component 200 is The associated sub-regions are capable of transmitting a small portion (eg, 5%, 8%, or 10%) of the light emitted by the corresponding micro-LED pixel unit 110.
  • each of the light control regions 210 may include more sub-regions, and/or the sub-regions of each of the light control regions 210 may be arranged in other manners.
  • Fig. 4 shows a modification of the display device shown in Fig. 3.
  • the area of each of the light control regions 210 may be larger than the cross-sectional area of the corresponding micro LED pixel unit 110 when viewed from above, that is, each of the light control regions 210 is on the display panel 100 (FIG. 4).
  • the orthographic projection on not shown covers not only the corresponding micro LED pixel unit 110 but also at least partially covers the gap between adjacent micro LED pixel units 110.
  • the light control region 210 indicated by the hatched box not only covers the corresponding micro LED pixel unit 110 indicated by the dense black dot filled frame, but also covers the corresponding micro LED pixel.
  • the surrounding area of unit 110 is not only covers the corresponding micro LED pixel unit 110 indicated by the dense black dot filled frame.
  • the light control region 210 can transmit a greater amount of light emitted by the corresponding micro LED pixel unit 110, increasing the brightness of the displayed image.
  • the respective light control regions 210 do not coincide with each other. This can avoid cross-color interference between adjacent micro-LED pixel units 110.
  • FIG. 5 shows a modification of the display device shown in FIG.
  • each of the light control regions 210 includes two sub-regions 210c and 210d arranged in the lateral direction.
  • the number of sub-regions of each of the light control regions 210 is exemplary. Although not shown, in other embodiments, each of the light control regions 210 may include three, four or more sub-regions.
  • FIG. 6 shows another variation of the display device shown in FIG.
  • each of the light control regions 210 includes four sub-regions arranged in an array, and a sub-region of the light control region 210 located at the upper left corner is marked with a dashed frame.
  • the number of sub-regions included in each of the light control regions 210 is exemplary.
  • each of the light control regions 210 may include, for example, six, nine, or more sub-regions.
  • the four sub-areas of each of the light control regions 210 are sequentially switched to the transmissive state for transmission of the light emitted by the corresponding micro-LED pixel unit 110 in successive four time windows.
  • each light control region 210 can have the same size such that they are capable of transmitting an equal amount of light emitted by the corresponding micro LED pixel unit 110. This enables each "virtual" pixel unit to exhibit the same brightness for the same image data, reducing the amount of computation of the image processing unit when performing pre-processing. As a result, this is advantageous in reducing power consumption while improving the quality of the display screen.
  • FIG. 7 is a schematic cross-sectional view of the light control member 200 in the display device shown in FIG. 2.
  • the light control member 200 includes a first substrate 201, a second substrate 202 disposed opposite the first substrate 201, and an electrically controllable optical medium layer 203 disposed between the first substrate 201 and the second substrate 202. And a first electrode layer 204 disposed on a side of the first substrate 201 facing the second substrate 202, and a second electrode layer 205 disposed on a side of the second substrate 202 facing the first substrate 201.
  • the electrically controllable optical medium layer 203 may be in a transmissive state or a non-transmissive state depending on an electric field between the first electrode layer 204 and the second electrode layer 205.
  • electrically controllable optical dielectric layer 203 can comprise an electrochromic material and/or a ferroelectric liquid crystal material. In other embodiments, electrically controllable optical dielectric layer 203 can comprise any other suitable material.
  • the first substrate 201 and the second substrate 202 may be made of, for example, a transparent material such as, for example, glass, polyethylene terephthalate (PET), or polyimide (PI).
  • the first electrode layer 204 and the second electrode layer 205 electrodes may be made of a transparent conductive material such as, for example, indium tin oxide (ITO). The present disclosure is not limited to this.
  • FIG. 8 shows an exemplary electrode arrangement for the first electrode layer 204 of the display device shown in FIG.
  • the first electrode layer 204 includes a plurality of electrodes 204p (one of which is marked by a dashed box) disposed in a corresponding sub-region of each of the sub-regions of each of the light control regions 210.
  • the electrodes 204p disposed within each of the light control regions 210 are independently controllable. For example, for the light control region 210 in the upper right corner, the electrode 204p marked with a dashed box and the other electrode 204p within the light control region 210 are independently controllable.
  • each electrode 204p is shown to include three sub-electrodes, each of which is indicated in Figure 8 by a dense grid filled strip. Such a sub-electrode arrangement facilitates precise control of state switching of each sub-area. It will be appreciated that the sub-electrode arrangement shown in Figure 8 is exemplary and schematic, and in other embodiments, each electrode 204p may include more or fewer sub-electrodes and/or these sub-electrodes may Arranged in other ways.
  • FIG. 9 shows an exemplary electrode arrangement of the second electrode layer 205 in the light control part 200 shown in FIG.
  • the second electrode layer 205 includes a plurality of bulk electrodes 205q, and each of the bulk electrodes 205q covers a corresponding light control region.
  • each of the bulk electrodes 205q is formed as a single piece without including a plurality of sub-electrodes, and thus it is not necessary to perform fabrication in a fine pattern. This helps to simplify the manufacturing process. It will be understood that although not shown, each of the bulk electrodes 205q may cover at least one light control region.
  • the second electrode layer 205 may even include only a single bulk electrode that covers, for example, the entire second electrode layer 205.
  • the second electrode layer 205 can be realized by evaporation or sputtering without requiring exposure, etching, and patterning. This helps to further simplify the manufacturing process and save production costs.
  • FIG. 10 shows an electrode arrangement of the first electrode layer 204 shown in FIG. 8 and the second electrode layer 205 shown in FIG. 9 when viewed from above.
  • the plurality of electrodes 204p of the first electrode layer 204 overlap with the plurality of bulk electrodes 205q of the second electrode layer 205.
  • the second electrode layer 205 may also have the same electrode arrangement as the first electrode layer 204, that is, the second electrode layer 205 may have the same electrode pattern as the first electrode layer 204.
  • the state switching of the respective light control regions can be controlled by applying respective driving voltages to the plurality of electrodes of the second electrode layer 205 and applying a common voltage to the plurality of electrodes of the first electrode layer 204.
  • the electrode arrangements of the first electrode layer 204 and the second electrode layer 205 may be interchanged. That is, the second electrode layer 205 may include independently controllable electrodes as described above and the first electrode layer 204 may include at least one bulk electrode as described above.
  • the sequential switching of each sub-region of each of the light control regions to the transmissive state can be achieved by selectively applying a drive voltage to the independently controllable electrodes within the light control region.
  • switching of each sub-region to the transmissive state can be achieved by applying or not applying a drive voltage to the electrodes corresponding to the sub-region.
  • the driving voltage is applied to one of the independently controllable electrodes disposed within a light control region without being independently controllable Applying the driving voltage to the remaining electrodes of the electrodes switches the sub-region in which the electrode to which the driving voltage is applied to the transmissive state while the remaining sub-regions of the light-control region are in a non-transmissive state.
  • the driving voltage is not applied to one of the independently controllable electrodes disposed in a light control region to the independent Applying the driving voltage to the remaining ones of the controllable electrodes will switch the sub-region in which the electrode to which the driving voltage is not applied to the transmissive state while the remaining sub-regions of the light-controlling region are in a non-transmissive state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示装置,包括:显示面板(100),包括多个呈阵列排布的微LED像素单元(110);以及控光部件(200),设置于显示面板(100)的出光侧。控光部件(200)包括多个控光区域(210),每个控光区域(210)包括独立可控以在透射状态与非透射状态之间切换的至少两个子区域(210a, 210b)。控光区域(210)被布置使得控光区域(210)中的每一个在显示面板(100)上的正投影覆盖微LED像素单元(110)中的相应一个。

Description

一种显示装置及其驱动方法
相关申请的交叉引用
本申请要求2017年6月15日提交的中国专利申请No.201710452349.2的权益,其全部公开内容通过引用合并于此。
技术领域
本公开涉及显示技术领域,尤指一种显示装置以及驱动该显示装置的方法。
背景技术
随着显示技术的发展,市场上先后出现了液晶显示面板(Liquid Crystal Display,LCD)、有机电致发光二极管(Organic Light-Emitting Diode,OLED)显示面板和所谓的微发光二极管(micro-LED)显示面板。与OLED显示面板类似,微LED显示面板中的像素单元同样具有包括自发光材料的发光层,只不过该自发光材料一般为量子阱。由于物理限制,通过减小像素单元的物理尺寸来提高分辨率对于微LED显示面板来讲可能是困难的。
发明内容
根据本公开的一方面,提供了一种显示装置,包括:显示面板,包括多个呈阵列排布的微LED像素单元;以及控光部件,设置于所述显示面板的出光侧,所述控光部件包括多个控光区域,每个控光区域包括独立可控以在透射状态与非透射状态之间切换的至少两个子区域。所述控光区域被布置使得所述控光区域中的每一个在所述显示面板上的正投影覆盖所述微LED像素单元中的相应一个。
在一些示例性实施例中,在所述控光区域中的每一个内,各所述子区域按照横向方向、纵向方向或阵列排列。
在一些示例性实施例中,各所述控光区域的所述子区域具有相同的尺寸。
在一些示例性实施例中,所述控光部件包括:第一基板;第二基板,与所述第一基板相对设置;电可控光介质层,设置于所述第一基 板和所述第二基板之间;第一电极层,设置于所述第一基板面向所述第二基板一侧;以及第二电极层,设置于所述第二基板面向所述第一基板一侧。所述第一电极层或所述第二电极层中的至少一个包括设置在各所述控光区域的各所述子区域中的相应子区域内的多个电极,设置在所述控光区域中的每一个内的所述电极独立可控。
在一些示例性实施例中,所述第一电极层和所述第二电极层每个均包括所述多个电极,并且所述第一电极层和所述第二电极层具有相同的电极图案。
在一些示例性实施例中,所述第一电极层包括所述多个电极,并且所述第二电极层包括至少一个块状电极,每个所述块状电极覆盖所述控光区域中的至少一个。
在一些示例性实施例中,所述第二电极层包括所述多个电极,并且所述第一电极层包括至少一个块状电极,每个所述块状电极覆盖所述控光区域中的至少一个。
在一些示例性实施例中,所述多个电极中的每一个包括多个子电极。
在一些示例性实施例中,所述电可控光介质层包括电致变色材料或铁电液晶材料中的至少一个。
在一些示例性实施例中,所述控光部件被配置使得在连续的时间窗口内所述控光区域中的每一个的各子区域被依次切换到所述透射状态以透射所述相应的微LED像素单元发射的光线,并且在所述时间窗口中的每一个内所述控光区域中的每一个的各子区域中仅一个子区域处于所述透射状态。
在一些示例性实施例中,所述控光区域中的每一个在所述显示面板上的所述正投影还覆盖所述相应的微LED像素单元的周围区域。
在一些示例性实施例中,所述控光区域彼此不重叠。
根据本公开的另一方面,提供了一种驱动显示装置的方法。所述显示装置包括:显示面板,包括多个呈阵列排布的微LED像素单元;以及控光部件,设置于所述显示面板的出光侧。所述控光部件包括多个控光区域,每个控光区域包括独立可控以在透射状态与非透射状态之间切换的至少两个子区域。所述控光区域被布置使得所述控光区域中的每一个在所述显示面板上的正投影覆盖所述微LED像素单元中的 相应一个。所述方法包括:在连续的时间窗口内将所述控光区域中的每一个的各子区域依次切换到所述透射状态以透射所述相应的微LED像素单元发射的光线。在所述时间窗口中的每一个内,所述控光区域中的每一个的各子区域中仅一个子区域处于所述透射状态。
在一些示例性实施例中,所述控光部件包括:第一基板;第二基板,与所述第一基板相对设置;电可控光介质层,设置于所述第一基板和所述第二基板之间;第一电极层,设置于所述第一基板面向所述第二基板一侧;以及第二电极层,设置于所述第二基板面向所述第一基板一侧。所述第一电极层和所述第二电极层之一包括设置在各所述控光区域的各所述子区域中的相应子区域内的多个电极,设置在所述控光区域中的每一个内的所述电极独立可控。所述切换包括:在所述时间窗口中的每一个内向设置在所述控光区域中的每一个内的所述独立可控的电极选择性地施加驱动电压。
在一些示例性实施例中,所述施加包括:向设置在所述控光区域中的每一个内的所述独立可控的电极之一施加所述驱动电压而不向所述独立可控的电极中的其余电极施加所述驱动电压,以将被施加了所述驱动电压的该电极所在的子区域切换到所述透射状态。
在一些示例性实施例中,所述施加包括:不向设置在所述控光区域中的每一个内的所述独立可控的电极之一施加所述驱动电压而向所述独立可控的电极中的其余电极施加所述驱动电压,以将未被施加所述驱动电压的该电极所在的子区域切换到所述透射状态。
根据在下文中所描述的实施例,本公开的这些和其它方面将是清楚明白的,并且将参考在下文中所描述的实施例而被阐明。
附图说明
图1为一种典型的微LED像素单元的示意性截面图;
图2为根据本公开实施例的显示装置的示意性截面图;
图3、4、5和6为图2中所示的显示装置的示意性俯视图;
图7为图2中所示的显示装置中的控光部件的示意性截面图;
图8为示出图7中所示的控光部件中的第一电极层的电极布置的示意图;
图9为示出图7中所示的控光部件中的第二电极层的电极布置的 示意图;并且
图10为示出当从上方看时图8中所示的第一电极层和图9中所示的第二电极层的电极布置的示意图。
具体实施方式
将理解的是,尽管术语第一、第二、第三等等在本文中可以用来描述各种元件、部件、区、层和/或部分,但是这些元件、部件、区、层和/或部分不应当由这些术语限制。这些术语仅用来将一个元件、部件、区、层或部分与另一个区、层或部分相区分。因此,下面讨论的第一元件、部件、区、层或部分可以被称为第二元件、部件、区、层或部分而不偏离本公开的教导。
诸如“横向”、“纵向”、“在...下面”、“在...之下”、“较下”、“在...下方”、“在...之上”、“较上”等等之类的空间相对术语在本文中可以为了便于描述而用来描述如图中所图示的一个元件或特征与另一个(些)元件或特征的关系。将理解的是,这些空间相对术语意图涵盖除了图中描绘的取向之外在使用或操作中的器件的不同取向。例如,如果翻转图中的器件,那么被描述为“在其他元件或特征之下”或“在其他元件或特征下面”或“在其他元件或特征下方”的元件将取向为“在其他元件或特征之上”。因此,示例性术语“在...之下”和“在...下方”可以涵盖在...之上和在...之下的取向两者。诸如“在...之前”或“在...前”和“在...之后”或“接着是”之类的术语可以类似地例如用来指示光穿过元件所依的次序。器件可以取向为其他方式(旋转90度或以其他取向)并且相应地解释本文中使用的空间相对描述符。另外,还将理解的是,当层被称为“在两个层之间”时,其可以是在该两个层之间的唯一的层,或者也可以存在一个或多个中间层。
本文中使用的术语仅出于描述特定实施例的目的并且不意图限制本公开。如本文中使用的,单数形式“一个”、“一”和“该”意图也包括复数形式,除非上下文清楚地另有指示。将进一步理解的是,术语“包括”和/或“包含”当在本说明书中使用时指定所述及特征、整体、步骤、操作、元件和/或部件的存在,但不排除一个或多个其他特征、整体、步骤、操作、元件、部件和/或其群组的存在或添加一个 或多个其他特征、整体、步骤、操作、元件、部件和/或其群组。如本文中使用的,术语“和/或”包括相关联的列出项目中的一个或多个的任意和全部组合。
将理解的是,当元件或层被称为“在另一个元件或层上”、“连接到另一个元件或层”、“耦合到另一个元件或层”或“邻近另一个元件或层”时,其可以直接在另一个元件或层上、直接连接到另一个元件或层、直接耦合到另一个元件或层或者直接邻近另一个元件或层,或者可以存在中间元件或层。相反,当元件被称为“直接在另一个元件或层上”、“直接连接到另一个元件或层”、“直接耦合到另一个元件或层”、“直接邻近另一个元件或层”时,没有中间元件或层存在。然而,在任何情况下“在...上”或“直接在...上”都不应当被解释为要求一个层完全覆盖下面的层。
本文中参考本公开的理想化实施例的示意性图示(以及中间结构)描述本公开的实施例。正因为如此,应预期例如作为制造技术和/或公差的结果而对于图示形状的变化。因此,本公开的实施例不应当被解释为限于本文中图示的区的特定形状,而应包括例如由于制造导致的形状偏差。因此,图中图示的区本质上是示意性的,并且其形状不意图图示器件的区的实际形状并且不意图限制本公开的范围。
除非另有定义,本文中使用的所有术语(包括技术术语和科学术语)具有与本公开所属领域的普通技术人员所通常理解的相同含义。将进一步理解的是,诸如那些在通常使用的字典中定义的之类的术语应当被解释为具有与其在相关领域和/或本说明书上下文中的含义相一致的含义,并且将不在理想化或过于正式的意义上进行解释,除非本文中明确地如此定义。
图1为一种典型的微LED 10的示意性截面图。如图1所示,在三氧化二铝衬底基板11上生长有N型氮化镓12,然后在N型氮化镓12之上依次生长有量子阱13、P型氮化镓14、掺镓氧化锌15和第一电极16,并且然后第二电极17设置在N型氮化镓12被暴露的一端,由此形成微LED 10。当在第一电极16和第二电极17之间加载适当的电压时,该微LED 10即可发光。微LED 10典型地具有在1~10μm等级的尺寸,尽管本公开不限于此。
图2为根据本公开实施例的显示装置的示意性截面图。如图2所 示,该显示装置包括包括多个呈阵列排布的微LED像素单元110的显示面板100和设置于显示面板100的出光侧的控光部件200。
微LED像素单元110中的每一个可以采取图1中所示的微LED 10的形式,尽管本公开不限于此。微LED像素单元通常需要在大于1000℃以上的高温下制作,普通的玻璃基板或柔性基板根本无法承受如此高的温度。因此,一般将微LED像素单元首先制作在三氧化二铝衬底(其具有高达2050℃的熔点)上,然后在通过转印或其他方式转移到玻璃基板或是柔性的聚对苯二甲酸乙二醇酯(PET)或聚酰亚胺(PI)基板上。
图3为图2中所示的显示装置的示意性俯视图。如图3所示,所述控光部件200包括多个控光区域210(由斜线填充的块指示)。控光区域210中的每一个包括独立可控以在透射状态与非透射状态之间切换的至少两个子区域(图3中示出为210a和210b)。当从上方看时,所述控光区域210中的每一个在所述显示面板100上的正投影覆盖所述微LED像素单元110(由密集的黑点填充的块指示)中的相应一个。在图3所示的示例中,每个控光区域210被示出为具有等于对应微LED像素单元110的横截面面积的面积,即,控光区域210在显示面板100上的正投影与微LED像素单元110在显示面板100上的正投影完全重合,尽管如稍后所述这不是必须的。
所述控光部件200可以被配置使得在连续的时间窗口内所述控光区域210中的每一个的各子区域210a和210b被依次切换到所述透射状态以透射所述相应的微LED像素单元110发射的光线,并且在所述时间窗口中的每一个内所述控光区域210中的每一个的各子区域210a和210b中仅一个子区域处于所述透射状态。例如,在第一时间窗口内,子区域210a被切换为透射状态并且子区域210b被切换为非透射状态,然后在紧接第一时间窗口的第二时间窗口内,子区域210a被切换为非透射状态并且子区域210b被切换为透射状态。这允许利用所谓的视觉暂留效应来增加显示装置的分辨率。视觉暂留效应意味着当人正在观看对象时,即使来自该对象的光信号被停止,该对象在人脑中的视觉形象也不会立刻消失,而会暂留一段时间。基于这一效应,每个微LED像素单元110可以借助于对应的控光区域210的多个子区域的切换而被“虚拟化”为多个像素单元,从而增加了显示装置的分辨率。因此, 提供了一种以非物理方式来提高显示装置的分辨率的解决方案。
将理解的是,如本文所使用的术语透射状态是指其中控光部件200的相关联的子区域能够透射对应的微LED像素单元110所发射的光的至少大部分(例如90%,80%或者甚至70%)的状态,并且术语非透射状态是相对于术语透射状态而使用的,其可以是指其中控光部件200的相关联的子区域完全不透明的状态,或者其中控光部件200的相关联的子区域能够透射对应的微LED像素单元110所发射的光的小部分(例如5%、8%或10%)的状态。
虽然控光区域210在图3中被示出为包括在纵向方向上排列的两个子区域210a和210b,但是这仅仅是示例性和示意性的。如稍后将描述的,在其他实施例中,每个控光区域210可以包括更多的子区域,和/或每个控光区域210的子区域可以以其他方式排列。
图4示出了图3中所示的显示装置的一种变型。如图4所示,当从上方看时,每个控光区域210的面积可以大于对应的微LED像素单元110的横截面面积,即,每个控光区域210在显示面板100(图4中未示出)上的正投影不仅覆盖对应微LED像素单元110,而且还至少部分覆盖相邻微LED像素单元110之间的间隙。在图4所示的示例中,由斜线填充的框所指示的控光区域210不仅覆盖由密集黑点填充的框所指示的相应微LED像素单元110,而且还覆盖所述相应微LED像素单元110的周围区域。这潜在地允许控光区域210透射对应的微LED像素单元110所发射的更大量的光,提高所显示的图像的亮度。在该实施例中,各控光区域210彼此不重合。这可以避免相邻的微LED像素单元110之间的串色干扰。
图5示出了图4中所示的显示装置的一种变型。如图5所示,每个控光区域210包括在横向方向上排列的两个子区域210c和210d。每个控光区域210的子区域的数目是示例性的。虽然未示出,但是在其他实施例中,每个控光区域210可以包括三个、四个或是更多个子区域。
图6示出了图4中所示的显示装置的另一种变型。如图6所示,每个控光区域210包括按照阵列排列的四个子区域,并且位于左上角的控光区域210的一个子区域用虚线框进行了标记。每个控光区域210所包括的子区域的数目是示例性的。虽然未示出,但是在其他实施例 中,每个控光区域210可以例如包括六个、九个或是更多个子区域。在图6所示的示例中,每个控光区域210的四个子区域在连续的四个时间窗口内被依次切换到透射状态以透射对应微LED像素单元110发射的光线。
将理解的是,在各实施例中,不管每个控光区域210包括多少个子区域,这些子区域被切换到透射状态的顺序在本公开中并不受限定。由于微LED像素单元110所发射的光在穿过控光区域210时的损耗,显示装置所显示的画面可能具有下降的亮度。这可以通过图像处理单元对图像数据进行预处理来解决。在各实施例中,每个控光区域210的各子区域可以具有相同的尺寸,使得它们能够透射由对应微LED像素单元110发射的光线的相等的量。这使得各个“虚拟”像素单元对于相同的图像数据能够呈现相同的亮度,减少图像处理单元在执行预处理时的计算量。结果,这有利于降低功耗,同时提高显示画面的质量。
图7为图2中所示的显示装置中的控光部件200的示意性截面图。如图7所示,控光部件200包括第一基板201、与第一基板201相对设置的第二基板202、设置于第一基板201和第二基板202之间的电可控光介质层203、设置于第一基板201面向第二基板202一侧的第一电极层204,以及设置于第二基板202面向第一基板201一侧的第二电极层205。
在该实施例中,电可控光介质层203可以取决于第一电极层204与第二电极层205之间的电场而处于透射状态或非透射状态。作为示例而非限制,电可控光介质层203可以包括电致变色材料和/或铁电液晶材料。在其他实施例中,电可控光介质层203可以包括任何其他适当的材料。
第一基板201和第二基板202可以例如由透明材料制成,诸如例如玻璃、聚对苯二甲酸乙二醇酯(PET)或聚酰亚胺(PI)。第一电极层204和第二电极层205电极可以由透明导电材料制成,诸如例如氧化铟锡(ITO)。本公开不限于此。
图8示出了用于图4中所示的显示装置的第一电极层204的示例性电极布置。如图8所示,所述第一电极层204包括设置在各所述控光区域210的各所述子区域中的相应子区域内的多个电极204p(其中 一个用虚线框进行了标记),并且设置在每个控光区域210内的所述电极204p是独立可控的。例如,对于右上角的控光区域210,用虚线框进行了标记的电极204p和该控光区域210内的另一电极204p是独立可控的。这允许每个控光区域210的各子区域(在该示例中210a和210b)在透射状态与非透射状态之间被独立地切换。另外,在该实施例中,每个电极204p被示出为包括三个子电极,其每一个在图8中用密集网格填充的条指示。这样的子电极布置有利于精确地控制每个子区域的状态切换。将理解的是,图8中所示的子电极布置是示例性和示意性的,并且在其他实施例中,每个电极204p可以包括更多或更少的子电极和/或这些子电极可以以其他的方式排布。
图9示出了图7中所示的控光部件200中的第二电极层205的示例性电极布置。如图9所示,第二电极层205包括多个块状电极205q,且块状电极205q中的每一个覆盖一个相应的控光区域。与图8中所示的电极204p不同,块状电极205q中的每一个形成为单片而不包括多个子电极,并且因此不需要以精细的图案进行制作。这有利于简化制作工艺。将理解的是,虽然未示出,但是每个块状电极205q可以覆盖至少覆盖一个控光区域。在一些实施例中,第二电极层205甚至可以仅包括单个块状电极,其例如覆盖整个第二电极层205。这样,第二电极层205可以通过蒸镀或溅射实现,而不需要曝光、刻蚀和构图。这有利于进一步简化制作工艺,节约制作成本。
图10示出了当从上方看时图8中所示的第一电极层204和图9中所示的第二电极层205的电极布置。如图10所示,当从上方看时,第一电极层204的多个电极204p与第二电极层205的多个块状电极205q相重叠。利用这样的电极布置,当所述电极204p中的每一个被施加有各自的驱动电压并且所述块状电极205q被施加有公共电压时,可以在每个电极204p与对应的块状电极205q之间建立电场以控制对应的控光区域的状态切换。
上面关于图8-10描述的实施例是示例性的,并且还设想了其他实施例。例如,第二电极层205也可以具有与第一电极层204相同的电极布置,即,第二电极层205可以具有与第一电极层204相同的电极图案。这允许使用相同的模板来制作第一电极层204和第二电极层205两者,提高制作效率。在这种情况下,可以通过向第二电极层205的 多个电极施加各自的驱动电压并且向第一电极层204的多个电极施加公共电压来控制各控光区域的状态切换。替换地,第一电极层204和第二电极层205的电极布置可以被互换。也即,第二电极层205可以包括如上所述的独立可控的电极并且第一电极层204可以包括如上所述的至少一个块状电极。
所述控光区域中的每一个的各子区域到所述透射状态的依次切换可以通过向该控光区域内的所述独立可控的电极选择性地施加驱动电压来实现。取决于所使用的电可控光介质,每个子区域到透射状态的切换可以通过向对应于该子区域的所述电极施加或不施加驱动电压来实现。在电可控光介质在外部电场中转变到透射状态的情况下,向设置在一个控光区域内的所述独立可控的电极之一施加所述驱动电压而不向所述独立可控的电极中的其余电极施加所述驱动电压,将使被施加了所述驱动电压的该电极所在的子区域切换到所述透射状态而该控光区域的其余子区域处于非透射状态。相反,在电可控光介质在外部电场中转变到非透射状态的情况下,不向设置在一个控光区域内的所述独立可控的电极之一施加所述驱动电压而向所述独立可控的电极中的其余电极施加所述驱动电压,将使未被施加所述驱动电压的该电极所在的子区域切换到所述透射状态而该控光区域的其余子区域处于非透射状态。
虽然前面的讨论包含若干特定的实现细节,但是这些不应解释为对任何主题或者可能要求保护的范围的限制,而应解释为对特定实施例的特征的描述。在本说明书中不同的实施例中描述的特定特征也可以在单个实施例中以组合形式实现。与此相反,在单个实施例中描述的不同特征也可以在多个实施例中分别地或者以任何适当的子组合形式实现。
通过研究附图、公开内容和所附的权利要求,本领域的技术人员可以对所描述的实施例进行各种改动和变型而不脱离本公开的范围。这样,倘若这些改动和变型落入本公开权利要求的范围及其等同范围之内,则本公开也意图涵盖这些改动和变型在内。

Claims (16)

  1. 一种显示装置,包括:
    显示面板,包括多个呈阵列排布的微LED像素单元;以及
    控光部件,设置于所述显示面板的出光侧,所述控光部件包括多个控光区域,每个控光区域包括独立可控以在透射状态与非透射状态之间切换的至少两个子区域,
    其中所述控光区域被布置使得所述控光区域中的每一个在所述显示面板上的正投影覆盖所述微LED像素单元中的相应一个。
  2. 如权利要求1所述的显示装置,其中,在所述控光区域中的每一个内,各所述子区域按照横向方向、纵向方向或阵列排列。
  3. 如权利要求2所述的显示装置,其中各所述控光区域的所述子区域具有相同的尺寸。
  4. 如权利要求1所述的显示装置,其中,所述控光部件包括:
    第一基板;
    第二基板,与所述第一基板相对设置;
    电可控光介质层,设置于所述第一基板和所述第二基板之间;
    第一电极层,设置于所述第一基板面向所述第二基板一侧;以及
    第二电极层,设置于所述第二基板面向所述第一基板一侧,并且
    其中所述第一电极层或所述第二电极层中的至少一个包括设置在各所述控光区域的各所述子区域中的相应子区域内的多个电极,设置在所述控光区域中的每一个内的所述电极独立可控。
  5. 如权利要求4所述的显示装置,其中,所述第一电极层和所述第二电极层每个均包括所述多个电极,并且其中所述第一电极层和所述第二电极层具有相同的电极图案。
  6. 如权利要求4所述的显示装置,其中,所述第一电极层包括所述多个电极,并且其中所述第二电极层包括至少一个块状电极,每个所述块状电极覆盖所述控光区域中的至少一个。
  7. 如权利要求4所述的显示装置,其中所述第二电极层包括所述多个电极,并且其中所述第一电极层包括至少一个块状电极,每个所述块状电极覆盖所述控光区域中的至少一个。
  8. 如权利要求4-7任一项所述的显示装置,其中,所述多个电极 中的每一个包括多个子电极。
  9. 如权利要求4-7任一项所述的显示装置,其中,所述电可控光介质层包括电致变色材料或铁电液晶材料中的至少一个。
  10. 如权利要求1所述的显示装置,其中,所述控光部件被配置使得在连续的时间窗口内所述控光区域中的每一个的各子区域被依次切换到所述透射状态以透射所述相应的微LED像素单元发射的光线,并且其中在所述时间窗口中的每一个内所述控光区域中的每一个的各子区域中仅一个子区域处于所述透射状态。
  11. 如权利要求1所述的显示装置,其中,所述控光区域中的每一个在所述显示面板上的所述正投影还覆盖所述相应的微LED像素单元的周围区域。
  12. 如权利要求11所述的显示装置,其中,所述控光区域彼此不重叠。
  13. 一种驱动显示装置的方法,所述显示装置包括:显示面板,包括多个呈阵列排布的微LED像素单元;以及控光部件,设置于所述显示面板的出光侧,所述控光部件包括多个控光区域,每个控光区域包括独立可控以在透射状态与非透射状态之间切换的至少两个子区域,所述控光区域被布置使得所述控光区域中的每一个在所述显示面板上的正投影覆盖所述微LED像素单元中的相应一个,所述方法包括:
    在连续的时间窗口内将所述控光区域中的每一个的各子区域依次切换到所述透射状态以透射所述相应的微LED像素单元发射的光线,
    其中,在所述时间窗口中的每一个内,所述控光区域中的每一个的各子区域中仅一个子区域处于所述透射状态。
  14. 如权利要求13所述的方法,其中,所述控光部件包括:第一基板;第二基板,与所述第一基板相对设置;电可控光介质层,设置于所述第一基板和所述第二基板之间;第一电极层,设置于所述第一基板面向所述第二基板一侧;以及第二电极层,设置于所述第二基板面向所述第一基板一侧,其中所述第一电极层和所述第二电极层之一包括设置在各所述控光区域的各所述子区域中的相应子区域内的多个电极,设置在所述控光区域中的每一个内的所述电极独立可控,并且其中所述切换包括:
    在所述时间窗口中的每一个内向设置在所述控光区域中的每一个 内的所述独立可控的电极选择性地施加驱动电压。
  15. 如权利要求14所述的方法,其中,所述施加包括:
    向设置在所述控光区域中的每一个内的所述独立可控的电极之一施加所述驱动电压而不向所述独立可控的电极中的其余电极施加所述驱动电压,以将被施加了所述驱动电压的该电极所在的子区域切换到所述透射状态。
  16. 如权利要求14所述的方法,其中,所述施加包括:
    不向设置在所述控光区域中的每一个内的所述独立可控的电极之一施加所述驱动电压而向所述独立可控的电极中的其余电极施加所述驱动电压,以将未被施加所述驱动电压的该电极所在的子区域切换到所述透射状态。
PCT/CN2018/083527 2017-06-15 2018-04-18 一种显示装置及其驱动方法 WO2018228047A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/301,292 US10769984B2 (en) 2017-06-15 2018-04-18 Display device and driving method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710452349.2 2017-06-15
CN201710452349.2A CN106997745A (zh) 2017-06-15 2017-06-15 一种显示装置及其驱动方法

Publications (1)

Publication Number Publication Date
WO2018228047A1 true WO2018228047A1 (zh) 2018-12-20

Family

ID=59436502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083527 WO2018228047A1 (zh) 2017-06-15 2018-04-18 一种显示装置及其驱动方法

Country Status (3)

Country Link
US (1) US10769984B2 (zh)
CN (1) CN106997745A (zh)
WO (1) WO2018228047A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106997745A (zh) 2017-06-15 2017-08-01 京东方科技集团股份有限公司 一种显示装置及其驱动方法
CN110134182A (zh) * 2018-02-08 2019-08-16 深圳富泰宏精密工业有限公司 便携式电子装置及其操作方法
CN110767669B (zh) * 2018-07-25 2021-11-23 镎创显示科技股份有限公司 微型发光二极管显示面板
CN110033732A (zh) * 2019-05-14 2019-07-19 上海天马微电子有限公司 一种微发光二极管显示面板、驱动方法和显示装置
CN111965888B (zh) * 2019-05-20 2023-08-29 群创光电股份有限公司 显示设备
CN111048655B (zh) * 2019-12-19 2021-12-03 京东方科技集团股份有限公司 发光二极管芯片、显示面板及其制备方法和显示装置
US11493809B2 (en) * 2021-01-14 2022-11-08 Tpk Advanced Solutions Inc. Electronic curtain and electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102368374A (zh) * 2011-09-16 2012-03-07 广东威创视讯科技股份有限公司 点阵显示屏分辨率提高的装置及点阵显示屏系统
WO2012067037A1 (ja) * 2010-11-15 2012-05-24 シャープ株式会社 多原色表示装置
CN104599604A (zh) * 2015-02-16 2015-05-06 京东方科技集团股份有限公司 一种显示装置及其驱动方法
CN104795434A (zh) * 2015-05-12 2015-07-22 京东方科技集团股份有限公司 Oled像素单元、透明显示装置及制作方法、显示设备
CN106997745A (zh) * 2017-06-15 2017-08-01 京东方科技集团股份有限公司 一种显示装置及其驱动方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4956683A (en) * 1988-03-14 1990-09-11 Polaroid Corporation Isolation of p-n junctions
FR2746934B1 (fr) * 1996-03-27 1998-05-07 Saint Gobain Vitrage Dispositif electrochimique
US8809875B2 (en) * 2011-11-18 2014-08-19 LuxVue Technology Corporation Micro light emitting diode
US8518204B2 (en) 2011-11-18 2013-08-27 LuxVue Technology Corporation Method of fabricating and transferring a micro device and an array of micro devices utilizing an intermediate electrically conductive bonding layer
US9111464B2 (en) * 2013-06-18 2015-08-18 LuxVue Technology Corporation LED display with wavelength conversion layer
FR3028667A1 (fr) * 2014-11-17 2016-05-20 Commissariat Energie Atomique Dispositif emissif comportant des premier et deuxieme pixels adjacents partageant un meme empilement emissif de semi-conducteurs
US9698134B2 (en) * 2014-11-27 2017-07-04 Sct Technology, Ltd. Method for manufacturing a light emitted diode display
US11061276B2 (en) * 2015-06-18 2021-07-13 X Display Company Technology Limited Laser array display
CN105976725B (zh) * 2016-06-20 2019-04-02 深圳市华星光电技术有限公司 微发光二极管显示面板
CN105911709A (zh) * 2016-06-22 2016-08-31 深圳市华星光电技术有限公司 3d微发光二极管显示装置
CN106097900B (zh) * 2016-06-22 2019-04-30 深圳市华星光电技术有限公司 微发光二极管显示面板
CN106782128A (zh) 2017-01-24 2017-05-31 深圳市华星光电技术有限公司 微发光二极管显示面板及其制造方法
CN106848026B (zh) * 2017-02-14 2018-11-23 京东方科技集团股份有限公司 微led器件及显示装置
CN106646904A (zh) * 2017-02-28 2017-05-10 京东方科技集团股份有限公司 一种显示面板及显示装置
CN106707533A (zh) * 2017-03-24 2017-05-24 京东方科技集团股份有限公司 一种三维显示装置
US10456573B1 (en) * 2018-06-18 2019-10-29 Feinstein Patents, Llc Medical cuff employing electrical stimulation to control blood flow

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012067037A1 (ja) * 2010-11-15 2012-05-24 シャープ株式会社 多原色表示装置
CN102368374A (zh) * 2011-09-16 2012-03-07 广东威创视讯科技股份有限公司 点阵显示屏分辨率提高的装置及点阵显示屏系统
CN104599604A (zh) * 2015-02-16 2015-05-06 京东方科技集团股份有限公司 一种显示装置及其驱动方法
CN104795434A (zh) * 2015-05-12 2015-07-22 京东方科技集团股份有限公司 Oled像素单元、透明显示装置及制作方法、显示设备
CN106997745A (zh) * 2017-06-15 2017-08-01 京东方科技集团股份有限公司 一种显示装置及其驱动方法

Also Published As

Publication number Publication date
CN106997745A (zh) 2017-08-01
US10769984B2 (en) 2020-09-08
US20190355295A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2018228047A1 (zh) 一种显示装置及其驱动方法
JP7008439B2 (ja) 表示装置および電子機器
US7812809B2 (en) Display device and a method thereof
KR102536628B1 (ko) 투명표시장치
EP3168677B1 (en) Double-surface display panel and double-surface display apparatus
TW201346330A (zh) 雙模式顯示裝置
US11675223B2 (en) Display device
WO2020107917A1 (en) Display substrate, display apparatus, method of controlling display substrate, and method of fabricating display substrate
US11187957B2 (en) Light distribution control element, and display device and illumination device including the same
US10120234B2 (en) Liquid crystal display apparatus
US20160004067A1 (en) Display panel, manufacturing method thereof, and display device
CN109254443A (zh) 显示设备及其制造方法
CN104599604A (zh) 一种显示装置及其驱动方法
CN106855666A (zh) 光控制装置以及包括其的透明显示装置
US20170131579A1 (en) Liquid crystal display panel and liquid crystal display device
KR101686096B1 (ko) 양면표시장치 및 그의 제조방법
KR20070081736A (ko) 디스플레이 장치
CN103460277A (zh) 显示装置
KR101861825B1 (ko) 평판 표시 장치
KR101878926B1 (ko) 듀얼 모드 디스플레이 장치 및 그의 제조방법
US11232759B2 (en) Display apparatus
KR20070068882A (ko) 멀티 레이어 전자 잉크를 갖는 표시 장치 및 이의 제조방법
CN109212832B (zh) 一种液晶显示面板及其制作方法、液晶显示装置
KR102101613B1 (ko) 유기발광표시장치
KR102284357B1 (ko) 투명표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817120

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.05.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18817120

Country of ref document: EP

Kind code of ref document: A1