WO2018228045A1 - 一种无线电链路监测方法及装置 - Google Patents

一种无线电链路监测方法及装置 Download PDF

Info

Publication number
WO2018228045A1
WO2018228045A1 PCT/CN2018/083400 CN2018083400W WO2018228045A1 WO 2018228045 A1 WO2018228045 A1 WO 2018228045A1 CN 2018083400 W CN2018083400 W CN 2018083400W WO 2018228045 A1 WO2018228045 A1 WO 2018228045A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization
user equipment
threshold
signal
bler
Prior art date
Application number
PCT/CN2018/083400
Other languages
English (en)
French (fr)
Inventor
达人
任斌
郑方政
赵铮
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to KR1020227001093A priority Critical patent/KR102453538B1/ko
Priority to EP18817688.7A priority patent/EP3641449B1/en
Priority to KR1020207001485A priority patent/KR102353041B1/ko
Priority to JP2019569740A priority patent/JP6920479B2/ja
Priority to US16/623,349 priority patent/US11218982B2/en
Publication of WO2018228045A1 publication Critical patent/WO2018228045A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0025Synchronization between nodes synchronizing potentially movable access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a radio link monitoring method and apparatus.
  • the radio link monitoring (RLM) function is to monitor the downlink signal quality of the primary serving cell by user equipment (UE) to determine whether the UE is in a synchronized or unsynchronized state.
  • the existing LTE RLM design and implementation are specifically: defining a hypothetical physical downlink control channel (hypothetical PDCCH) and giving a packet loss rate of the PDCCH corresponding to the hypothesis of the synchronization and the unsynchronization threshold (block error) Rate, BLER); in the UE design, the mapping from the BLER of the hypothetical PDCCH to the synchronization unsynchronization threshold is implemented; in the UE RLM operation, the downlink radio link quality is measured from the cell specific reference signal (CRS) And compare the measurements with the sync and unsynchronization thresholds to determine if the UE is in sync or in a different state.
  • hyper PDCCH physical downlink control channel
  • BLER block error Rate
  • the UE can implement RLM by estimating the quality of the CRS. Judging the UE synchronization threshold And non-synchronized thresholds Corresponds to 10% and 2% of the BLER of the hypothesized PDCCH.
  • LTE Long Term Evolution
  • the current 5G new radio (NR) system is much more complicated than LTE.
  • 5G NRs need to support operation from low to high frequency bands and support a wider range of radio link services through beamforming with different link delay, data rate and reliability requirements. Therefore, the NR cannot implement the RLM by adopting a method based on the fixed hypothesis PDCCH.
  • the system synchronization block (SS block) of the NR does not include the PDCCH.
  • the assumed PDCCH needs to be separately defined to implement the actual PDCCH BLER to the synchronous or asynchronous. Threshold with The mapping; this scheme will make the RLM test not be able to be performed simultaneously with the NR PDCCH performance test. It is complicated to define the RLM performance requirements, and it cannot adjust the threshold to provide the flexibility it needs to support different specific systems.
  • the present application provides a radio link monitoring method and apparatus to solve the complexity of defining RLM performance requirements in the prior art, and cannot adjust the threshold to provide due flexibility to support different specific system problems.
  • the present application provides a radio link monitoring method, where a user equipment UE performs radio link monitoring, including:
  • the user equipment UE monitors the downlink signal of the primary serving cell to obtain a monitoring result
  • the UE compares the monitoring result with the obtained synchronization threshold to determine whether the UE is in a synchronization state; wherein the synchronization threshold is determined according to a preset parameter value.
  • the UE compares the monitoring result with the obtained synchronization threshold to determine whether the UE is in a synchronization state, and further includes:
  • the UE determines the synchronization threshold according to a parameter value preconfigured by the network side device.
  • the error rate BLER of the SS block is a BLER of the new air interface NR physical broadcast channel PBCH.
  • the method before determining the synchronization threshold according to the error rate BLER mapping of the system synchronization SS block received by the UE, the method further includes:
  • the BLER of the system synchronization SS block is calculated by using a primary synchronization sequence PSS, a secondary synchronization sequence SSS, or a demodulation reference signal DMRS in the PBCH for each of the SS blocks.
  • An optional implementation manner, before calculating the error rate BLER of the system synchronization SS block further includes:
  • the sending period of the PSS, SSS, or DMRS is determined according to configuration information sent by the network side device.
  • the sending period corresponds to the moving speed of the UE, where the sending period corresponding to the first moving speed is smaller than the sending period corresponding to the second moving speed, and the first moving speed is greater than the second moving speed.
  • the UE after performing the radio link monitoring on the monitoring result and the obtained synchronization threshold, the UE further includes:
  • the UE If the UE receives a signal command sent by the network side device to adjust the synchronization threshold, the UE adjusts the synchronization threshold according to the signal instruction.
  • the user equipment UE monitoring the downlink signal of the primary serving cell to obtain monitoring results includes:
  • the UE monitors the reference signal received quality RSRQ or the signal to interference and noise ratio SINR of the DMRS of the synchronization signal PSS, SSS and PBCH of the serving cell to obtain a monitoring result.
  • a method for monitoring a radio link including:
  • the network side device sends a preset synchronization threshold to the user equipment UE by using a signal instruction
  • the downlink signal of the primary serving cell is monitored to obtain a monitoring result, and the monitoring result is compared with the preset synchronization threshold to determine whether the UE is in a synchronized state.
  • the application provides a user equipment, including:
  • a monitoring unit configured to monitor a downlink signal of the primary serving cell to obtain a monitoring result
  • a determining unit configured to compare the monitoring result with the obtained synchronization threshold to determine whether the UE is in a synchronization state; wherein the synchronization threshold is determined according to a preset parameter value.
  • the user equipment further includes:
  • a determining unit configured to determine the synchronization threshold according to a bit error rate BLER mapping of the system synchronization SS block received by the UE; or determine the synchronization threshold according to a parameter value preconfigured by the network side device.
  • the error rate BLER of the SS block is a BLER of the new air interface NR physical broadcast channel PBCH.
  • the user equipment further includes:
  • the error rate determining unit is configured to calculate a BLER of the system synchronization SS block by using a primary synchronization sequence PSS, a secondary synchronization sequence SSS, or a demodulation reference signal DMRS in the PBCH in each SS block.
  • the error rate determining unit is further configured to: when the UE is in an idle mode or a connected mode, determine a sending period of the PSS, SSS, or DMRS according to configuration information sent by the network side device.
  • the sending period corresponds to the moving speed of the UE, where the sending period corresponding to the first moving speed is smaller than the sending period corresponding to the second moving speed, and the first moving speed is greater than the second moving speed.
  • the user equipment further includes:
  • an adjusting unit configured to adjust the synchronization threshold according to the signal instruction, if receiving a signal instruction sent by the network side device to adjust the synchronization threshold.
  • the monitoring unit is specifically configured to monitor a reference signal receiving quality RSRQ or a signal to interference and noise ratio SINR of the DMRS of the synchronization signal PSS, SSS, and PBCH of the serving cell to obtain a monitoring result.
  • a radio link monitoring system including:
  • a network side device configured to send a preset synchronization threshold to the UE by using a signal instruction
  • the UE when performing radio link monitoring, is configured to monitor a downlink signal of the primary serving cell to obtain a monitoring result, and compare the monitoring result with the preset synchronization threshold to determine whether the UE is in synchronization. status.
  • a computer apparatus comprising a processor, the processor being operative to perform the steps of the method of the first aspect when the computer program stored in the memory is executed.
  • a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the steps of the method of the first aspect.
  • the method provided by the embodiments of the present application is complex when the RLM performance requirements are defined in the prior art, and cannot be performed simultaneously with the NR PDCCH performance test, and the threshold cannot be adjusted to provide the flexibility to support different specific systems.
  • FIG. 1 is a method for monitoring a radio link according to Embodiment 1 of the present application
  • FIG. 3 is a method for monitoring a radio link according to Embodiment 3 of the present application.
  • FIG. 4 is a schematic structural diagram of a user equipment according to Embodiment 4 of the present application.
  • FIG. 5 is a schematic structural diagram of a radio link monitoring system according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a physical structure of a user equipment according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • NR New Radio
  • the user equipment includes but is not limited to a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a mobile phone (handset). And portable devices, etc., the user equipment can communicate with one or more core networks via a Radio Access Network (RAN), for example, the user equipment can be a mobile phone (or "cellular"
  • RAN Radio Access Network
  • the user equipment can be a mobile phone (or "cellular"
  • the telephone device, the computer with wireless communication function, etc., the user equipment can also be a mobile device that is portable, pocket-sized, handheld, built-in, or in-vehicle.
  • a base station may refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in TD-SCDMA or WCDMA, or may be an evolved base station (eNodeB or eNB or e- in LTE).
  • NodeB, evolutional Node B), or a base station (gNB) in 5G NR the present invention is not limited.
  • the solution provided by the embodiment of the present application uses the information provided in the SS block to obtain a determination threshold for determining whether the UE is synchronized.
  • the method for determining the threshold is obtained by using the PDCCH with the hypothesis provided in the prior art.
  • the hypothetical PDCCH is defined, and the implementation is simple and easy to implement.
  • the user equipment UE monitors the downlink signal of the primary serving cell to obtain a monitoring result
  • the UE compares the monitoring result with the obtained synchronization threshold to determine whether the UE is in a synchronization state; wherein the synchronization threshold is determined according to a preset parameter value.
  • the method provided by the embodiment of the present application may determine a synchronization threshold based on multiple channels and/or signals existing in a current 5G NR (new radio) system.
  • 5G NR new radio
  • the UE determines the synchronization threshold according to a bit error rate BLER mapping of the system synchronization SS block received by the UE;
  • the UE determines the synchronization threshold according to a parameter value preconfigured by the network side device.
  • the present application provides a radio link monitoring method, and the specific implementation manner of the method may include the following steps. 1)):
  • Step 101 When the UE performs radio link monitoring, the user equipment UE monitors the downlink signal of the primary serving cell to obtain a monitoring result.
  • Step 102 The UE compares the monitoring result with the obtained synchronization threshold to determine whether the UE is in a synchronization state, where the synchronization threshold is obtained according to a BLER mapping of a system synchronization SS block received by the UE. .
  • the RLM cannot be implemented in the PDCCH mode provided by the LTE.
  • the method provided by the embodiment of the present application utilizes the channel existing in the SS block of the NR and/or Or information maps the synchronization or non-synchronization threshold of the UE to provide an RLM implementation that the NR system can implement.
  • the RLM performance requirements for the prior art are complex and cannot be performed simultaneously with the NR PDCCH performance test, and the threshold cannot be adjusted to provide the flexibility to support different specific system problems.
  • the solution provided by the present application can be used.
  • the NR Physical Broadcast Channel (PBCH) is used as a channel for implementing NR RLM (ie, the BLER of the new air interface NR PBCH is used as the error rate BLER of the SS), and the UE RLM criterion is directly defined based on the BLER of the NR PBCH. That is, the UE determines a synchronization threshold based on the PBCH BLER of the serving beam and a predefined or configuration, so as to determine whether the UE is in a synchronized state according to the synchronization threshold.
  • PBCH Physical Broadcast Channel
  • the channel adopted by the method provided by the embodiment of the present application is a PBCH included in each NR SS block. Therefore, there is no need to define a hypothetical PDCCH; in addition, it is easier for the UE to implement mapping from the actual PBCH BLER to the synchronization threshold, which makes the definition of the RLM performance requirement simple and straightforward; and the test RLM performance work can be minimized, and the RLM test can be combined with the NR PBCH Performance testing is performed simultaneously.
  • the method provided by the present application obtains the synchronization threshold by using the BLER mapping of the SS block, and further specifically can obtain the BLER of the SS block by using the following parameter signals, including:
  • the primary synchronization signal (PSS), the secondary synchronization signal (SSS), or the Demodulation Reference Signal (DMRS) in the PBCH are used in each SS block.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • DMRS Demodulation Reference Signal
  • the system synchronizes the BLER of the SS block.
  • NR RLM needs to support a working environment with multiple RF beams.
  • NR introduces a Synchronization Signal (SS) block and an SS Set Block.
  • SS Synchronization Signal
  • Each SS block includes PSS, SSS, and PBCH for preset beam directions.
  • Each SS set block includes a plurality of SS blocks for performing beam scanning, the transmission of each SS block set covers a specific area in one beam scanning operation, and the NR UE mobility is mainly based on the measurement of the SS block.
  • the period of the default NR SS set for initial cell search is defined as 20 milliseconds (ms) for all carrier frequencies in the 5G NR.
  • the period value set of the NR SS set is ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ .
  • the transmission period of the signal is required to be smaller than the measurement requirement of the RLM. Therefore, in the solution provided by the present application, for the idle and connected mode UE, the network side device can support the UE mobility according to itself. And the RLM requirements to configure the periodicity of the NR SS set, the specific implementation can be:
  • the sending period of the PSS, SSS, or DMRS is determined according to configuration information sent by the network side device.
  • the sending period selection principle of the configured PSS, SSS, or DMRS is: the sending period corresponds to the moving speed of the UE; wherein, the sending period corresponding to the first moving speed is smaller than the sending period corresponding to the second moving speed, and the first moving speed Greater than the second moving speed.
  • the set period of the NR SS is set to 20 ms; when the UE moves at a speed of 3 km/h, the set period of the NR SS is set to 80 ms.
  • the network side device since the synchronization threshold in the LTE RLM implementation is implemented by the UE, the network side device cannot actually control how the UE sets the synchronization threshold, so the LTE RLM design cannot support different specific systems; therefore, the LTE RLM design is neither flexible nor It is difficult to guarantee system performance.
  • the network side device may further adjust the synchronization threshold of the RLM according to specific environmental requirements, and the specific implementation manner may be:
  • the network side device determines that the synchronization threshold of the RLM needs to be adjusted according to the current network service provided by the UE, and may send the adjusted synchronization threshold to the UE by using a signal instruction.
  • the UE adjusts the synchronization threshold according to the signal instruction if receiving a signal command sent by the network side device to adjust the synchronization threshold.
  • the specific implementation of adjusting the synchronization threshold may be: the UE acquires the synchronization threshold set by the network side device from the signal instruction, and adjusts the original synchronization threshold by using the synchronization threshold obtained in the signal instruction.
  • the present invention also proposes an adjustment configuration service that allows the network to perform a synchronization threshold for each UE (the UE determines the synchronization threshold according to parameter values preconfigured by the network side device).
  • the embodiment of the present application provides a radio link monitoring method (shown in FIG. 2), including:
  • Step 201 When the UE performs radio link monitoring, monitoring the downlink signal of the primary serving cell to obtain a monitoring result;
  • Step 202 The UE compares the monitoring result with the obtained synchronization threshold to determine whether the UE is in a synchronization state.
  • the synchronization threshold is a parameter value preconfigured by the network side device.
  • the network side device directly configures the synchronization threshold of the NR RLM, and does not pass the mapping from the UE to the BLER of the predefined PBCH or PDCCH channel, and the network side device can conveniently adjust the synchronization threshold of the UE in time to provide the RLM.
  • the synchronization threshold of the network side device configuration may be based on the synchronization signals NR-PSS, NR-SSS, and DMRS of the PBCH.
  • the specific implementation of the corresponding UE when monitoring the downlink signal of the primary serving cell to obtain the monitoring result may be:
  • the UE monitors the reference signal reception quality RSRQ or the signal to interference and noise ratio SINR of the DMRS of the synchronization signal PSS, SSS and PBCH of the serving cell to obtain a monitoring result.
  • the method provided by the embodiments of the present application not only provides flexibility for the network to control the synchronization threshold according to supporting different features, but also makes the NR RLM implementation easier.
  • the UE also does not have to implement a synchronization threshold that derives whether it is in a synchronized state from the BLER of the predefined PBCH or PDCCH channel.
  • the present application further provides another radio link monitoring method, which may include the following steps:
  • Step 301 The network side device sends a preset synchronization threshold to the UE by using a signal instruction.
  • Step 302 When the UE performs radio link monitoring, the UE monitors the downlink signal of the primary serving cell to obtain a monitoring result, and compares the monitoring result with the preset synchronization threshold to determine whether the UE is in a synchronized state.
  • the embodiment of the present application further provides a user equipment, where the user equipment includes:
  • the monitoring unit 401 is configured to monitor a downlink signal of the primary serving cell to obtain a monitoring result
  • the determining unit 402 is configured to compare the monitoring result with the obtained synchronization threshold to determine whether the UE is in a synchronization state, where the synchronization threshold is determined according to a preset parameter value.
  • the user equipment may further include:
  • a determining unit configured to determine the synchronization threshold according to a bit error rate BLER mapping of the system synchronization SS block received by the UE; or determine the synchronization threshold according to a parameter value preconfigured by the network side device.
  • the error rate BLER of the SS block is the BLER of the new air interface NR physical broadcast channel PBCH.
  • the user equipment may further include a bit error rate determining unit, configured to calculate the system by using a primary synchronization sequence PSS, a secondary synchronization sequence SSS, or a demodulation reference signal DMRS in the PBCH in each SS block. Synchronize the BLER of the SS block.
  • a bit error rate determining unit configured to calculate the system by using a primary synchronization sequence PSS, a secondary synchronization sequence SSS, or a demodulation reference signal DMRS in the PBCH in each SS block. Synchronize the BLER of the SS block.
  • the error rate determining unit is further configured to: when the UE is in an idle mode or a connected mode, determine a sending period of the PSS, SSS, or DMRS according to configuration information sent by the network side device.
  • the sending period corresponds to the moving speed of the UE, where the sending period corresponding to the first moving speed is smaller than the sending period corresponding to the second moving speed, and the first moving speed is greater than the second moving speed.
  • the user equipment may further include:
  • an adjusting unit configured to adjust the synchronization threshold according to the signal instruction, if receiving a signal instruction sent by the network side device to adjust the synchronization threshold.
  • the RLM is based on the BLER of the PDCCH
  • the BLER statistics require a longer-term process, and the UE cannot calculate the BLER of the PDCCH. Therefore, the UE cannot perform the actual link monitoring and cannot pass the statistical error rate judgment chain during the test.
  • the signal-to-noise ratio of the received signal is used to determine the quality of the radio link. Therefore, in the embodiment of the present application, the monitoring unit in the user equipment is specifically used to monitor the synchronization signal PSS of the serving cell.
  • the reference signal reception quality RSRQ or the signal to interference and noise ratio SINR of the DMRS of the SSS and the PBCH is monitored.
  • the embodiment of the present application further provides a radio link monitoring system, including:
  • the network side device 501 is configured to send a preset synchronization threshold to the UE by using a signal instruction
  • a 502 user equipment configured to monitor a downlink signal of the primary serving cell to obtain a monitoring result when performing radio link monitoring, and compare the monitoring result with the preset synchronization threshold to determine the UE Whether it is in sync.
  • Embodiments of the present invention further provide a computer apparatus, the apparatus comprising a processor, the processor being configured to implement the steps of the method as described in Embodiment 1, 2 or 3 when executing a computer program stored in a memory.
  • the embodiment of the invention further provides a computer readable storage medium having stored thereon a computer program, the computer program being executed by the processor to implement the steps of the method as described in the first, second or third embodiment.
  • the RLM cannot be implemented in the PDCCH mode provided by the LTE.
  • the method provided by the embodiment of the present application utilizes the channel existing in the SS block of the NR and/or Or information maps the synchronization or non-synchronization threshold of the UE to provide an RLM implementation that the NR system can implement.
  • the channel adopted by the method provided by the embodiment of the present application is a PBCH included in each NR SS block. Therefore, there is no need to define a hypothetical PDCCH; in addition, it is easier for the UE to implement mapping from the actual PBCH BLER to the synchronization threshold, which makes the definition of the RLM performance requirement simple and straightforward; and the test RLM performance work can be minimized, and the RLM test can be combined with the NR PBCH Performance testing is performed simultaneously.
  • the user equipment includes a processor 601 and a transceiver 602, where
  • the processor 601 is configured to read a program in the memory and perform the following process:
  • the transceiver 602 is configured to receive and transmit data under the control of the processor 601.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 601 and various circuits of memory represented by the memory.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 602 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 601 is responsible for managing the bus architecture and the usual processing, and the memory can store data used by the processor 601 in performing operations.
  • the processor 601 compares the monitoring result with the obtained synchronization threshold to determine whether the UE is in a synchronization state, and is further configured to:
  • the processor 601 determines the synchronization threshold according to a bit error rate BLER mapping of the system synchronization SS block received by the UE; or
  • the processor 601 determines the synchronization threshold according to a parameter value preconfigured by the network side device.
  • the error rate BLER of the SS block is a BLER of the new air interface NR physical broadcast channel PBCH.
  • the processor 601 is further configured to:
  • the BLER of the system synchronization SS block is calculated by using a primary synchronization sequence PSS, a secondary synchronization sequence SSS, or a demodulation reference signal DMRS in the PBCH for each of the SS blocks.
  • the processor 601 before calculating the error rate BLER of the system synchronization SS block, the processor 601 further includes:
  • the processor 601 determines a sending period of the PSS, SSS, or DMRS according to configuration information sent by the network side device.
  • the sending period of the processor 601 corresponds to the moving speed of the UE, where the sending period corresponding to the first moving speed is smaller than the sending period corresponding to the second moving speed, and the first moving speed is greater than the second moving speed.
  • the processor 601 is further configured to:
  • the processor 601 When receiving the signal command sent by the network side device to adjust the synchronization threshold, the processor 601 adjusts the synchronization threshold according to the signal instruction.
  • the processor 601 when monitoring the downlink signal of the primary serving cell to obtain a monitoring result, is configured to:
  • the reference signal reception quality RSRQ or the signal to interference and noise ratio SINR of the DMRS of the synchronization signals PSS, SSS and PBCH of the serving cell is monitored to obtain a monitoring result.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种无线电链路监测方法及装置,该方法包括:用户设备UE进行无线电链路监测时,用户设备UE监测主服务小区的下行链路信号得到监测结果;所述UE将所述监测结果与获得的同步阈值进行比较确定所述UE是否处于同步状态;其中,所述同步阈值根据预设参数值确定。解决了现有技术中定义RLM性能要求时复杂,并且不能通过调整阈值来提供应有的灵活性以支持不同的具体系统的问题。

Description

一种无线电链路监测方法及装置
本申请要求在2017年6月16日提交中国专利局、申请号为201710459267.0、发明名称为“一种无线电链路监测方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种无线电链路监测方法及装置。
背景技术
无线电链路监测(radio link monitoring,RLM)功能是由用户设备(user equipment,UE)监视主服务小区的下行链路信号质量,以便判断UE是否处于同步或不同步状态。
现有的LTE RLM设计和实现具体为:定义假设的物理下行控制信道(hypothetical physical downlink control channel,假设的PDCCH)并给出对应于同步和不同步阈值的假设的PDCCH的丢包率(block error rate,BLER);在UE设计中,实现从假设的PDCCH的BLER到同步不同步阈值的映射;在UE RLM操作中,从小区专属参考信号(cell specific reference signal,CRS)测量下行无线链路质量,并将测量结果与同步和不同步阈值进行比较,以确定UE处于同步或不同状态。
在长期演进(Long Term Evolution,LTE)系统中,UE可以通过估计CRS的质量来实现RLM。判断UE同步阈值
Figure PCTCN2018083400-appb-000001
和非同步的阈值
Figure PCTCN2018083400-appb-000002
对应于假设的PDCCH的10%和2%的BLER。
目前5G新空口(new radio,NR)系统要比LTE复杂得多。5G NR需要支持从低频到高频带工作,并且通过波束形成支持更广泛的无线电链路业务,具有不同的链路延迟、数据速率和可靠性等要求。因此,NR不能采用基于固定假设的PDCCH的方法,来实现RLM。另外,NR的系统同步块(system synchronization block,SS块)不包含PDCCH,如果采用LTE中所提供的方法实现RLM,则还需要单独定义假设的PDCCH以实现从实际的PDCCH BLER至同步或非同步的阈值
Figure PCTCN2018083400-appb-000003
Figure PCTCN2018083400-appb-000004
的映射;这种方案会使得RLM测试不能与NR PDCCH性能测试同时进行,定义RLM性能要求时复杂,并且不能通过调整阈值来提供应有的灵活性以支持不同的具体系统。
发明内容
本申请提供一种无线电链路监测方法及装置,用以解决现有技术中定义RLM性能要求时复杂,并且不能通过调整阈值来提供应有的灵活性以支持不同的具体系统问题。
第一方面,本申请提供一种无线电链路监测方法,用户设备UE进行无线电链路监测时,包括:
用户设备UE监测主服务小区的下行链路信号得到监测结果;
所述UE将所述监测结果与获得的同步阈值进行比较确定所述UE是否处于同步状态;其中,所述同步阈值根据预设参数值确定。
可选的一种实施方式,所述UE将所述监测结果与获得的同步阈值进行比较确定所述UE是否处于同步状态之前,还包括:
所述UE根据所述UE接收到的系统同步SS块的误码率BLER映射确定所述同步阈值;或者
所述UE根据网络侧设备预配置的参数值确定所述同步阈值。
可选的一种实施方式,所述SS块的误码率BLER为新空口NR物理广播信道PBCH的BLER。
可选的一种实施方式,所述根据所述UE接收到的系统同步SS块的误码率BLER映射确定所述同步阈值之前,还包括:
利用每个SS块中用于预设波束方向的主同步序列PSS、辅同步序列SSS或PBCH中解调参考信号DMRS计算所述系统同步SS块的BLER。
可选的一种实施方式,计算所述系统同步SS块的误码率BLER之前,还包括:
当所述UE为空闲模式或连接模式时,根据网络侧设备发送的配置信息确定所述PSS、SSS或DMRS的发送周期。
可选的一种实施方式,所述发送周期与所述UE的移动速度对应;其中,第一移动速度所对应的发送周期小于第二移动速度对应的发送周期,第一移动速度大于第二移动速度。
可选的一种实施方式,所述UE将所述监测结果与获得的同步阈值进行无线电链路监测之后,进一步包括:
所述UE若接收到网络侧设备发送的对所述同步阈值进行调整的信号指令,则根据所述信号指令对所述同步阈值进行调整。
可选的一种实施方式,用户设备UE监测主服务小区的下行链路信号得到监测结果包括:
所述UE监测所述服务小区的同步信号PSS、SSS和PBCH的DMRS的参考信号接收质量RSRQ或信干噪比SINR得到监测结果。
第二方面,提供一种无线电链路监测方法,包括:
网络侧设备通过信号指令发送预设同步阈值到用户设备UE;
所述UE进行无线电链路监测时,监测主服务小区的下行链路信号得到监测结果,并将所述监测结果和与所述预设同步阈值进行比较确定所述UE是否处于同步状态。
第三方面,本申请提供一种用户设备,包括:
监测单元,用于监测主服务小区的下行链路信号得到监测结果;
判断单元,用于将所述监测结果与获得的同步阈值进行比较确定所述UE是否处于同步状态;其中,所述同步阈值根据预设参数值确定。
可选的一种实施方式,该用户设备还包括:
确定单元,用于根据所述UE接收到的系统同步SS块的误码率BLER映射确定所述同步阈值;或者根据网络侧设备预配置的参数值确定所述同步阈值。
可选的一种实施方式,所述SS块的误码率BLER为新空口NR物理广播信道PBCH的BLER。
可选的一种实施方式,该用户设备还包括;
误码率确定单元,用于利用每个SS块中用于预设波束方向的主同步序列PSS、辅同步序列SSS或PBCH中解调参考信号DMRS计算所述系统同步SS块的BLER。
可选的一种实施方式,误码率确定单元还用于当所述UE为空闲模式或连接模式时,根据网络侧设备发送的配置信息确定所述PSS、SSS或DMRS的发送周期。
可选的一种实施方式,所述发送周期与所述UE的移动速度对应;其中,第一移动速度所对应的发送周期小于第二移动速度对应的发送周期,第一移动速度大于第二移动速度。
可选的一种实施方式,所述用户设备还包括:
调整单元,用于若接收到网络侧设备发送的对所述同步阈值进行调整的信号指令,则根据所述信号指令对所述同步阈值进行调整。
可选的一种实施方式,所述监测单元具体用于监测所述服务小区的同步信号PSS、SSS和PBCH的DMRS的参考信号接收质量RSRQ或信干噪比SINR得到监测结果。
第四方面,提供一种无线电链路监测系统,包括:
网络侧设备,用于通过信号指令发送预设同步阈值到所述UE;
所述UE,在进行无线电链路监测时,用于监测主服务小区的下行链路信号得到监测结果,并将所述监测结果和与所述预设同步阈值进行比较确定所述UE是否处于同步状态。
第五方面,提供一种计算机装置,所述装置包括处理器,所述处理器用于执行存储器中存储的计算机程序时实现如第一方面所述方法的步骤。
第六方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述方法的步骤。
本申请有益效果如下:
针对现有技术定义RLM性能要求时复杂,且不能与NR PDCCH性能测试同时进行、并且不能通过调整阈值来提供应有的灵活性以支持不同的具体系统的问题,本申请实施例所提供的方法利用NR的SS块中存在的信道和/或信息映射UE的同步或非同步阈值,从而提供NR系统能够实现的RLM实现方式,使得UE更容易实现同步阈值的确定,可使定义RLM性能要求时简单直接;并且测试RLM性能工作可以最小化。
附图说明
图1为本申请实施例一所提供的一种无线电链路监测方法;
图2为本申请实施例二所提供的一种无线电链路监测方法;
图3为本申请实施例三所提供的一种无线电链路监测方法;
图4为本申请实施例四所提供的一种用户设备的结构示意图;
图5为本申请实施例所提供的一种无线电链路监测系统的结构示示意图;
图6为本发明实施例所提供的一种用户设备的实体结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、新空口(New Radio,NR)等。
还应理解,在本发明实施例中,用户设备(User Equipment,UE)包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话 (或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
在本发明实施例中,基站(例如,接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是TD-SCDMA或WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNodeB或eNB或e-NodeB,evolutional Node B),或者是5G NR中的基站(gNB),本发明并不限定。
本申请实施例提供的方案利用SS块中所提供的信息得到判断UE是否同步的判断阈值;相对于现有技术中所提供的利用假设的PDCCH得到判断阈值的方式本申请所提供的方法不用单独定义假设的PDCCH,实现方式简单便于实现。本申请所提供的一种无线电链路监测方法,应用到用户设备UE进行无线电链路监测时,该方法的主要实现步骤包括:
用户设备UE监测主服务小区的下行链路信号得到监测结果;
所述UE将所述监测结果与获得的同步阈值进行比较确定所述UE是否处于同步状态;其中,所述同步阈值根据预设参数值确定。
在具体实现的时候,本申请实施例所提供的方法可以基于目前5G NR(new radio,新空口)系统中存在的多种信道和/信号确定同步阈值,本申请实施例中以以下两种方式为具体实例进行说明:
a,UE根据所述UE接收到的系统同步SS块的误码率BLER映射确定所述同步阈值;或者
b,所述UE根据网络侧设备预配置的参数值确定所述同步阈值。
以下结合说明书附图对本申请实施例所提供的一种无线电链路监测方法做进一步详细的说明;
实施例一
当UE根据所述UE接收到的系统同步SS块的误码率BLER映射确定所述同步阈值,本申请提供一种无线电链路监测方法,该方法具体实现方式可以包括以下步骤(方法流程如图1所示):
步骤101,UE进行无线电链路监测时,用户设备UE监测主服务小区的下行链路信号得到监测结果;
步骤102,该UE将所述监测结果与获得的同步阈值进行比较确定所述UE是否处于同步状态;其中,所述同步阈值根据所述UE接收到的系统同步SS块的误码率BLER映射得到。
因为NR的SS块不包含PDCCH,所以不能采用LTE中所提供的假设的PDCCH方式实现RLM,基于现有技术的该问题本申请实施例所提供的方法利用NR的SS块中存在的信道和/或信息映射UE的同步或非同步阈值,从而提供NR系统能够实现的RLM实现方式。
针对现有技术定义RLM性能要求时复杂,且不能与NR PDCCH性能测试同时进行、并且不能通过调整阈值来提供应有的灵活性以支持不同的具体系统的问题,本申请所提供的方案可使用NR物理广播信道(Physical broadcast channel,PBCH)作为实现NR RLM的信道(即将新空口NR PBCH的BLER作为SS的误码率BLER),并且基于NR PBCH的BLER来直接定义UE RLM准则。即UE基于服务波束的PBCH BLER与预定义的或配置确定同步阈值,从而根据该同步阈值来确定UE是否处于同步状态。
与基于假设的PDCCH信道的方法对比,本申请实施例所提供的方法所采用的信道是每个NR SS块都包括的PBCH。因此,无需定义假设的PDCCH;另外,UE更容易实现从实际的PBCH BLER至同步阈值的映射,可使定义RLM性能要求时简单直接;并且测试RLM性能工作可以最小化,RLM测试可以与NR PBCH性能测试同时进行。
本申请所提供的方法利用SS块的BLER映射得到同步阈值,进一步具体可以利用以下参数信号来得到SS块的BLER,包括:
利用每个SS块中用于预设波束方向的主同步序列(Primary synchronization signal,PSS)、辅同步序列(Secondary synchronization signal,SSS)或PBCH中解调参考信号(Demodulation Reference Signal,DMRS)计算所述系统同步SS块的BLER。
NR RLM需要支持具有多个射频波束的工作环境。为了在多波束工作环境下支持NR移动性,NR引入了同步信号(Synchronization signal,SS)块和SS集合块。每个SS块包括用于预设波束方向的PSS、SSS和PBCH。每个SS集合块包括多个SS块用于实现波束扫描,每个SS块集合的传输覆盖一个波束扫描操作中的特定区域,NR UE移动性主要基于SS块的测量。
在5G NR中对于所有载波频率,用于初始小区搜索的默认的NR SS集合的周期定义为20毫秒(ms)。对空闲和连接模式的UE,NR SS集合的周期取值集合为{5ms,10ms,20ms,40ms,80ms,160ms}。
为了达到利用NR SS测量误码率的效果,需要信号的发送周期小于RLM的测量要求,所以在本申请提供的方案中,对于空闲和连接模式的UE,网络侧设备可以根据自身支持UE移动性和RLM的要求配置NR SS集合的周期性,具体实现可以是:
当所述UE为空闲模式或连接模式时,根据网络侧设备发送的配置信息确定所述PSS、SSS或DMRS的发送周期。
配置的PSS、SSS或DMRS的发送周期选择原则是:发送周期与所述UE的移动速度 对应;其中,第一移动速度所对应的发送周期小于第二移动速度对应的发送周期,第一移动速度大于第二移动速度。
例如:当UE移动速度为30~60Km/h时,配置NR SS的集合周期为20ms;当UE移动速度为3km/h时,配置NR SS的集合周期为80ms。
进一步,由于LTE RLM实现里同步阈值是依赖于UE来实现,网络侧设备实际上不能控制UE如何设置同步阈值,所以LTE RLM设计不能支持不同的具体系统;因此,LTE RLM设计既不灵活,也难以保证系统性能。鉴于现有技术的该问题,本申请实施例所提供的方案中,网络侧设备还可以根据具体环境需求对RLM的同步阈值进行调整,具体实现方式可以是:
网络侧设备根据当前对UE提供的网络服务确定需要对RLM的同步阈值进行调整,则可以通过信号指令将调整后的同步阈值发送到UE。
UE若接收到网络侧设备发送的对所述同步阈值进行调整的信号指令,则根据所述信号指令对所述同步阈值进行调整。该实施例中,对同步阈值进行调整的具体实现可以是:UE从信号指令中获取网络侧设备设置的同步阈值,利用信号指令中获得的同步阈值调整原有的同步阈值。
实施例二
为了提供NR RLM支持不同类型系统的灵活性,本发明还提出允许网络对每个UE进行同步阈值的调整配置服务(所述UE根据网络侧设备预配置的参数值确定所述同步阈值)。本申请实施例提供一种无线电链路监测方法(如图2所示),包括:
步骤201,UE进行无线电链路监测时,监测主服务小区的下行链路信号得到监测结果;
步骤202,UE将所述监测结果和获得的同步阈值进行比较确定所述UE是否处于同步状态;其中,所述同步阈值为网络侧设备预配置的参数值。
本申请实施例中,网络侧设备直接配置NR RLM的同步阈值,不通过UE从预定义的PBCH或PDCCH信道的BLER中映射,网络侧设备可以方便及时的调整UE的同步阈值从而提供RLM应有的灵活性从而支持不同系统。
RLM虽然是以PDCCH的BLER作为判断标准,但BLER统计需要一个较长期的过程,UE不能统计PDCCH的BLER,因此UE在进行实际链路监测时,以及在测试中不能通过统计误码率判断链路质量,还是要用接收信号的信噪比来进行无线链路质量的判决,所以本申请实施例中,网络侧设备配置的同步阈值可以基于同步信号NR-PSS、NR-SSS和PBCH的DMRS的参考信号接收质量(Reference Signal Received Quality,RSRQ)或信干噪比(signal to interference and noise ratio,SINR)。
对应的UE在监测主服务小区的下行链路信号得到监测结果时的具体实现可以是:
UE监测所述服务小区的同步信号PSS、SSS和PBCH的DMRS的参考信号接收质量 RSRQ或信干噪比SINR得到监测结果。
本申请实施例所提供的方法不仅提供了让网络根据支持不同特征来控制同步阈值的灵活性,而且使得NR RLM实现更加容易。UE也不必实现从预定义的PBCH或PDCCH信道的BLER中导出是否处于同步状态的同步阈值。
实施例三
如图3所示,本申请还提供另外一种无线电链路监测方法,该包括可以包括以下步骤:
步骤301,网络侧设备通过信号指令发送预设同步阈值到UE;
步骤302,UE进行无线电链路监测时,监测主服务小区的下行链路信号得到监测结果,并将所述监测结果和与所述预设同步阈值进行比较确定所述UE是否处于同步状态。
实施例四
如图4所示,本申请实施例还提供一种用户设备,该用户设备包括:
监测单元401,用于监测主服务小区的下行链路信号得到监测结果;
判断单元402,用于将所述监测结果与获得的同步阈值进行比较确定所述UE是否处于同步状态;其中,所述同步阈值根据预设参数值确定。
可选的,该用户设备还可以包括:
确定单元,用于根据所述UE接收到的系统同步SS块的误码率BLER映射确定所述同步阈值;或者根据网络侧设备预配置的参数值确定所述同步阈值。
其中,该SS块的误码率BLER为新空口NR物理广播信道PBCH的BLER。
另外,该用户设备还可以包括误码率确定单元,用于利用每个SS块中用于预设波束方向的主同步序列PSS、辅同步序列SSS或PBCH中解调参考信号DMRS计算所述系统同步SS块的BLER。
可选的,误码率确定单元还用于当所述UE为空闲模式或连接模式时,根据网络侧设备发送的配置信息确定所述PSS、SSS或DMRS的发送周期。
可选的,该发送周期与所述UE的移动速度对应;其中,第一移动速度所对应的发送周期小于第二移动速度对应的发送周期,第一移动速度大于第二移动速度。
可选的,该用户设备还可以包括:
调整单元,用于若接收到网络侧设备发送的对所述同步阈值进行调整的信号指令,则根据所述信号指令对所述同步阈值进行调整。
RLM虽然是以PDCCH的BLER作为判断标准,但BLER统计需要一个较长期的过程,UE不能统计PDCCH的BLER,因此UE在进行实际链路监测时,以及在测试中不能通过统计误码率判断链路质量,还是要用接收信号的信噪比来进行无线链路质量的判决,所以本申请实施例中,所述用户设备中的监测单元具体具体用于监测所述服务小区的同步信号PSS、SSS和PBCH的DMRS的参考信号接收质量RSRQ或信干噪比SINR得到监测结果。
实施例五
如图5所示,本申请实施例还提供一种无线电链路监测系统,包括:
网络侧设备501,用于通过信号指令发送预设同步阈值到所述UE;
502用户设备(UE),在进行无线电链路监测时,用于监测主服务小区的下行链路信号得到监测结果,并将所述监测结果和与所述预设同步阈值进行比较确定所述UE是否处于同步状态。
本发明实施例还提供一种计算机装置,所述装置包括处理器,所述处理器用于执行存储器中存储的计算机程序时实现如实施例一、二或三中所述方法的步骤。
本发明实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如实施例一、二或三中所述方法的步骤。
因为NR的SS块不包含PDCCH,所以不能采用LTE中所提供的假设的PDCCH方式实现RLM,基于现有技术的该问题本申请实施例所提供的方法利用NR的SS块中存在的信道和/或信息映射UE的同步或非同步阈值,从而提供NR系统能够实现的RLM实现方式。
与基于假设的PDCCH信道的方法对比,本申请实施例所提供的方法所采用的信道是每个NR SS块都包括的PBCH。因此,无需定义假设的PDCCH;另外,UE更容易实现从实际的PBCH BLER至同步阈值的映射,可使定义RLM性能要求时简单直接;并且测试RLM性能工作可以最小化,RLM测试可以与NR PBCH性能测试同时进行。
基于上述实施例,参阅图6所示,本发明实施例中,用户设备包括处理器601和收发机602,其中,
处理器601,用于读取存储器中的程序,执行下列过程:
监测主服务小区的下行链路信号得到监测结果;
将所述监测结果与获得的同步阈值进行比较确定所述UE是否处于同步状态;其中,所述同步阈值根据预设参数值确定;
收发机602,用于在处理器601的控制下接收和发送数据。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器601代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机602可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器601负责管理总线架构和通常的处理,存储器可以存储处理器601在执行操作 时所使用的数据。
可选的,处理器601将所述监测结果与获得的同步阈值进行比较确定所述UE是否处于同步状态之前,还用于:
处理器601根据所述UE接收到的系统同步SS块的误码率BLER映射确定所述同步阈值;或者
处理器601根据网络侧设备预配置的参数值确定所述同步阈值。
可选的,所述SS块的误码率BLER为新空口NR物理广播信道PBCH的BLER。
可选的,所述根据处理器601接收到的系统同步SS块的误码率BLER映射确定所述同步阈值之前,处理器601还用于:
利用每个SS块中用于预设波束方向的主同步序列PSS、辅同步序列SSS或PBCH中解调参考信号DMRS计算所述系统同步SS块的BLER。
可选的,计算所述系统同步SS块的误码率BLER之前,处理器601还包括:
当所述用户设备为空闲模式或连接模式时,处理器601根据网络侧设备发送的配置信息确定所述PSS、SSS或DMRS的发送周期。
可选的,处理器601所述发送周期与所述UE的移动速度对应;其中,第一移动速度所对应的发送周期小于第二移动速度对应的发送周期,第一移动速度大于第二移动速度。
可选的,处理器601将所述监测结果与获得的同步阈值进行无线电链路监测之后,处理器601进一步用于:
处理器601若接收到网络侧设备发送的对所述同步阈值进行调整的信号指令,则根据所述信号指令对所述同步阈值进行调整。
可选的,监测主服务小区的下行链路信号得到监测结果时,处理器601用于:
监测所述服务小区的同步信号PSS、SSS和PBCH的DMRS的参考信号接收质量RSRQ或信干噪比SINR得到监测结果。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (18)

  1. 一种无线电链路监测方法,其特征在于,用户设备UE进行无线电链路监测时,包括:
    用户设备UE监测主服务小区的下行链路信号得到监测结果;
    所述UE将所述监测结果与获得的同步阈值进行比较确定所述UE是否处于同步状态;其中,所述同步阈值根据预设参数值确定。
  2. 如权利要求1所述的方法,其特征在于,所述UE将所述监测结果与获得的同步阈值进行比较确定所述UE是否处于同步状态之前,还包括:
    所述UE根据所述UE接收到的系统同步SS块的误码率BLER映射确定所述同步阈值;或者
    所述UE根据网络侧设备预配置的参数值确定所述同步阈值。
  3. 如权利要求2所述的方法,其特征在于,所述SS块的误码率BLER为新空口NR物理广播信道PBCH的BLER。
  4. 如权利要求2所述的方法,其特征在于,所述根据所述UE接收到的系统同步SS块的误码率BLER映射确定所述同步阈值之前,还包括:
    利用每个SS块中用于预设波束方向的主同步序列PSS、辅同步序列SSS或PBCH中解调参考信号DMRS计算所述系统同步SS块的BLER。
  5. 如权利要求4所述的方法,其特征在于,计算所述系统同步SS块的误码率BLER之前,还包括:
    当所述UE为空闲模式或连接模式时,根据网络侧设备发送的配置信息确定所述PSS、SSS或DMRS的发送周期。
  6. 如权利要求5所述的方法,其特征在于,所述发送周期与所述UE的移动速度对应;其中,第一移动速度所对应的发送周期小于第二移动速度对应的发送周期,第一移动速度大于第二移动速度。
  7. 如权利要求1~6任一所述的方法,其特征在于,所述UE将所述监测结果与获得的同步阈值进行无线电链路监测之后,进一步包括:
    所述UE若接收到网络侧设备发送的对所述同步阈值进行调整的信号指令,则根据所述信号指令对所述同步阈值进行调整。
  8. 如权利要求2所述的方法,其特征在于,用户设备UE监测主服务小区的下行链路信号得到监测结果包括:
    所述UE监测所述服务小区的同步信号PSS、SSS和PBCH的DMRS的参考信号接收质量RSRQ或信干噪比SINR得到监测结果。
  9. 一种用户设备,其特征在于,包括:
    监测单元,用于监测主服务小区的下行链路信号得到监测结果;
    判断单元,用于将所述监测结果与获得的同步阈值进行比较确定所述UE是否处于同步状态;其中,所述同步阈值根据预设参数值确定。
  10. 如权利要求9所述的用户设备,其特征在于,该用户设备还包括:
    确定单元,用于根据所述UE接收到的系统同步SS块的误码率BLER映射确定所述同步阈值;或者根据网络侧设备预配置的参数值确定所述同步阈值。
  11. 如权利要求10所述的用户设备,其特征在于,所述SS块的误码率BLER为新空口NR物理广播信道PBCH的BLER。
  12. 如权利要求10所述的用户设备,其特征在于,该用户设备还包括;
    误码率确定单元,用于利用每个SS块中用于预设波束方向的主同步序列PSS、辅同步序列SSS或PBCH中解调参考信号DMRS计算所述系统同步SS块的BLER。
  13. 如权利要求12所述的用户设备,其特征在于,误码率确定单元还用于当所述UE为空闲模式或连接模式时,根据网络侧设备发送的配置信息确定所述PSS、SSS或DMRS的发送周期。
  14. 如权利要求13所述的用户设备,其特征在于,所述发送周期与所述UE的移动速度对应;其中,第一移动速度所对应的发送周期小于第二移动速度对应的发送周期,第一移动速度大于第二移动速度。
  15. 如权利要求9~14任一所述的用户设备,其特征在于,所述用户设备还包括:
    调整单元,用于若接收到网络侧设备发送的对所述同步阈值进行调整的信号指令,则根据所述信号指令对所述同步阈值进行调整。
  16. 如权利要求10所述的用户设备,其特征在于,所述监测单元具体用于监测所述服务小区的同步信号PSS、SSS和PBCH的DMRS的参考信号接收质量RSRQ或信干噪比SINR得到监测结果。
  17. 一种计算机装置,其特征在于,所述装置包括处理器,所述处理器用于执行存储器中存储的计算机程序时实现如权利要求1-8中任一项所述方法的步骤。
  18. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-8中任一项所述方法的步骤。
PCT/CN2018/083400 2017-06-16 2018-04-17 一种无线电链路监测方法及装置 WO2018228045A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227001093A KR102453538B1 (ko) 2017-06-16 2018-04-17 무선 링크를 모니터링하기 위한 방법 및 장치
EP18817688.7A EP3641449B1 (en) 2017-06-16 2018-04-17 Radio link monitoring method and apparatus
KR1020207001485A KR102353041B1 (ko) 2017-06-16 2018-04-17 무선 링크를 모니터링하기 위한 방법 및 장치
JP2019569740A JP6920479B2 (ja) 2017-06-16 2018-04-17 無線リンクのモニタリング方法および装置
US16/623,349 US11218982B2 (en) 2017-06-16 2018-04-17 Radio link monitoring method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710459267.0A CN109151982B (zh) 2017-06-16 2017-06-16 一种无线电链路监测方法及装置
CN201710459267.0 2017-06-16

Publications (1)

Publication Number Publication Date
WO2018228045A1 true WO2018228045A1 (zh) 2018-12-20

Family

ID=64659640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/083400 WO2018228045A1 (zh) 2017-06-16 2018-04-17 一种无线电链路监测方法及装置

Country Status (7)

Country Link
US (1) US11218982B2 (zh)
EP (1) EP3641449B1 (zh)
JP (1) JP6920479B2 (zh)
KR (2) KR102453538B1 (zh)
CN (1) CN109151982B (zh)
TW (1) TWI716688B (zh)
WO (1) WO2018228045A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112134661B (zh) * 2019-06-24 2021-12-21 华为技术有限公司 一种通信方法及装置
CN113498100B (zh) * 2020-04-08 2023-11-03 华为技术有限公司 测量方法和装置
CN114826443B (zh) * 2021-01-18 2023-06-30 展讯通信(上海)有限公司 基于无线链路监控rlm的测量状态调整方法及相关装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102656926A (zh) * 2009-12-22 2012-09-05 瑞典爱立信有限公司 用于无线通信网络的网络节点的方法和设备
WO2014164946A1 (en) * 2013-03-13 2014-10-09 Alcatel Lucent Methods and systems for reducing interference in networks
CN104904293A (zh) * 2013-01-09 2015-09-09 阿尔卡特朗讯 用于无线电链路监视的方法和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7864724B2 (en) 2006-05-05 2011-01-04 Nokia Corporation Enhanced UE out-of-sync behavior with gated uplink DPCCH or gated downlink F-DPCH or DPCCH transmission
US8300757B2 (en) * 2008-08-08 2012-10-30 Motorola Mobility Llc Methods for detection of failure and recovery in a radio link
US8755753B2 (en) 2010-10-29 2014-06-17 Samsung Electronics Co., Ltd. Apparatus and method for channel measurement in radio link monitoring in a wireless network
DK3185615T3 (en) 2012-10-05 2019-03-18 Interdigital Patent Holdings Inc Method and apparatus for improving coverage of machine-type communication devices (MTC)
WO2015116870A1 (en) * 2014-01-29 2015-08-06 Interdigital Patent Holdings, Inc. Method and apparatus for implementing coverage enhancement (ce) operations
US10624049B2 (en) * 2015-02-19 2020-04-14 Telefonaktiebolaget Lm Ericsson (Publ) Measurement of candidates synchronization references by device-to-device user equipment
US10455468B2 (en) * 2015-08-14 2019-10-22 Qualcomm Incorporated Mobility enhancements for high speed scenarios
US10285028B2 (en) 2016-02-05 2019-05-07 Qualcomm Incorporated Adaptive radio link monitoring
US10868588B2 (en) * 2017-06-01 2020-12-15 Qualcomm Incorporated Conditional reference signal transmission and measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102656926A (zh) * 2009-12-22 2012-09-05 瑞典爱立信有限公司 用于无线通信网络的网络节点的方法和设备
CN104904293A (zh) * 2013-01-09 2015-09-09 阿尔卡特朗讯 用于无线电链路监视的方法和装置
WO2014164946A1 (en) * 2013-03-13 2014-10-09 Alcatel Lucent Methods and systems for reducing interference in networks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3641449A4

Also Published As

Publication number Publication date
EP3641449B1 (en) 2021-07-07
US11218982B2 (en) 2022-01-04
JP2020524442A (ja) 2020-08-13
TW201906462A (zh) 2019-02-01
JP6920479B2 (ja) 2021-08-18
KR102453538B1 (ko) 2022-10-11
KR102353041B1 (ko) 2022-01-18
TWI716688B (zh) 2021-01-21
EP3641449A1 (en) 2020-04-22
US20200178187A1 (en) 2020-06-04
EP3641449A4 (en) 2020-06-03
CN109151982A (zh) 2019-01-04
KR20200016385A (ko) 2020-02-14
KR20220012404A (ko) 2022-02-03
CN109151982B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
US11589249B2 (en) Exchange of parameters relating to measurement periods
US20210368468A1 (en) Positioning and measurement reporting method and apparatus
CN111727620B (zh) Rlm和波束监视参数的优化的重新配置
US11129191B2 (en) Signal transmission method and device
US9113348B2 (en) Compressed mode measurements for flexible bandwidth carrier systems, devices, and methods
KR102109313B1 (ko) 무선 네트워크들에서의 협력적인 측정들
CN108293195B (zh) 用于管理无线通信网络中的信令的无线设备、无线网络节点及在其中执行的方法
US11764849B2 (en) Cell quality derivation based on filtered beam measurements
US20210219164A1 (en) Measurement reporting entry processing method and device
TWI693840B (zh) 接收訊號強度指示測量之方法及其使用者設備
WO2018228045A1 (zh) 一种无线电链路监测方法及装置
CN112075096B (zh) 能够进行测量报告的无线设备、网络节点及其方法
WO2017028049A1 (zh) 一种站间同步方法、基站及控制网元
EP4092925A1 (en) Data transmission method and apparatus
WO2018145587A1 (zh) 一种下行信号预纠偏方法及装置
CN117545059A (zh) 定时提前获取方法、装置、终端及基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817688

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569740

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207001485

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018817688

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018817688

Country of ref document: EP

Effective date: 20200116