WO2018227896A1 - 肌肉微动探测元件、开关装置、人机交互系统及前端装置 - Google Patents
肌肉微动探测元件、开关装置、人机交互系统及前端装置 Download PDFInfo
- Publication number
- WO2018227896A1 WO2018227896A1 PCT/CN2017/114281 CN2017114281W WO2018227896A1 WO 2018227896 A1 WO2018227896 A1 WO 2018227896A1 CN 2017114281 W CN2017114281 W CN 2017114281W WO 2018227896 A1 WO2018227896 A1 WO 2018227896A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- muscle
- friction layer
- micromotion
- detecting element
- friction
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1107—Measuring contraction of parts of the body, e.g. organ, muscle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/389—Electromyography [EMG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7225—Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/015—Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
Definitions
- the present disclosure relates to the field of human-computer interaction, and in particular to a muscle micro-motion detecting component, a switching device, and a human-computer interaction system and a front-end device thereof.
- the detection of human muscle micro-motion signals is mainly based on the myoelectric biosignal.
- the electro-oculogram as an example, the Ag/AgCl electrode is used, and the contact between the electrode and the skin is high during use. Required, and the electrode is used once, wearing trouble, etc.
- the most important thing is that the intensity of the bioelectrical signal is extremely small (on the order of microvolts to millivolts), which poses great difficulties for back-end signal processing.
- the existing front-end device of the human-computer interaction system based on the biological myoelectric signal usually adopts the potential difference signal when the gel electrode is in direct contact with the skin to detect the micro-motion of the muscle, and has the following disadvantages: the electrical contact between the gel electrode and the skin is very High requirements; the gel electrode is not portable and beautiful; the gel electrode can not be used multiple times; and the biological myoelectric signal is weak, the signal-to-noise ratio is small, the back-end system has high processing requirements, and the system determines the correct rate.
- a muscle micromotion detecting element comprising a friction nanogenerator attached to a site to be detected for converting mechanical energy of muscle micromotion into an electrical signal.
- a switching device comprising the above-described muscle micromotion detecting element, further comprising a filter circuit, an amplifying circuit, and a switching element.
- the filter circuit is configured to filter an electrical signal generated by the muscle micro-motion component to generate a filtered signal
- the amplifying circuit is configured to amplify the filtered signal to generate an amplified signal
- the switching element is configured to input the amplified signal, and is turned on when the amplified signal voltage reaches above a set threshold range.
- a front end device of a human-machine interaction system includes a signal transmitting module and the above-described muscle micro-motion detecting element; wherein an electrical signal output of the signal transmitting module and the micro-motion detecting element is provided
- the end connection is configured to receive the electrical signal and send it to a back end of the human-computer interaction system.
- a human-computer interaction system comprising a back-end device and the aforementioned front-end device, the back-end device comprising a receiving module that receives the electrical signal.
- the muscle micromotion detecting element of the present disclosure utilizes a friction nano-generator to convert mechanical energy into an electrical signal, and provides a micro-motion of the muscle by setting a first friction layer and a second friction layer which are opposite in electrical polarity during friction.
- the micro-displacement is used as the detection signal source to improve the sensitivity of the detection;
- the switching device of the present disclosure realizes the opening or closing of the electrical circuit by the micro-motion of the muscle, thereby improving the intelligent and high-precision control of the electrical appliance;
- the human-computer interaction system of the present disclosure can be more widely applied to various human-computer interaction scenarios as compared with the conventional indexing improvement of the detection device for acquiring the biological myoelectric signal.
- FIG. 1 is a schematic cross-sectional view showing a muscle micromotion detecting element of a first embodiment of the present disclosure.
- FIG. 2 is a schematic cross-sectional view showing a muscle micromotion detecting element of a second embodiment of the present disclosure.
- 3A and 3B are respectively a schematic cross-sectional structural view and a top view of an electrode portion of a muscle micromotion detecting element according to a third embodiment of the present disclosure.
- FIG. 4 is a comparison diagram of a signal detected by a muscle micromotion detecting element and a conventional electrooculogram signal according to an embodiment of the present disclosure.
- FIG. 5 is a circuit schematic diagram of a switching device according to an embodiment of the present disclosure.
- FIG. 6 is a connection equivalent diagram of a front end device of a human-machine interaction system according to an embodiment of the present disclosure.
- FIG. 7 is a schematic diagram of a front end device of a human-machine interaction system according to another embodiment of the present disclosure.
- FIG. 8 is a block diagram of a human-machine interaction system in accordance with an embodiment of the present disclosure.
- FIG. 9 is an application scenario diagram of the human-machine interaction system of FIG. 7.
- the human-computer interaction system includes a front end and a back end.
- the front end includes a muscle fretting signal collecting component and a signal transmitting component that emits an electrical signal;
- the back end includes an electrical signal processing module that is sent to the front end, and may further include functional modules such as signal filtering, signal recognition, and signal computing.
- muscle fretting to achieve human-computer interaction systems already has related products, such as the use of the handicap to detect the fretting of their fingers, the movement of the eyes, the twitching of the facial muscles, etc. Ready.
- the detection of muscle fretting is currently mainly carried out by means of biological electromyography signal detection.
- biological electromyography signal detection According to the basic idea of the present disclosure, in order to overcome the disadvantages of the prior art front-end device of the human-electromyographic signal based on the biological myoelectric signal, for example, when the gel electrode is in contact with the skin, the gel electrode and the skin need to be in contact with each other, and the electrode cannot be adhered.
- micro-motion detection component that utilizes micro-displacement generated by muscle micro-motion as a detection signal source and detects the frictional electrostatic effect and human-computer interaction with the component is proposed.
- the front-end device achieves a better sensitive detection.
- the muscle micromotion detecting element provided by the present disclosure, including a friction nano-generator, is attached to a portion to be detected for converting mechanical energy of muscle micro-motion into an electrical signal.
- the friction nano-generator may include a first electromotive component and a second electrification component disposed opposite to each other, one of the ones being configured to be attached to the living body that controls the micro-motion of the muscle, and the first electrification under the micro-action of the muscle
- the component and the second electrification component are relatively displaceable to generate an electrical signal.
- the relative displacements described herein may be separate from each other or may be close to each other and away from each other.
- the first electrification member may be flexible and attached to a living body that governs the muscles, for example, for eye movement detection, a flexible first electrification member may be attached thereto.
- a flexible first electrification member may be attached thereto.
- the first electrical component needs to have good tensile recovery with muscle fretting, and therefore, its thickness preferably ranges from 20 micrometers to 0.2 millimeters.
- the friction nano-generator described herein may be a conventional friction nano-generator of any structure, and the structure of the contact-separating friction nano-generator as a micro-motion detecting element is described below with reference to the accompanying drawings.
- a muscle micromotion detecting element is provided.
- 1 is a schematic cross-sectional view showing a muscle micromotion detecting element of a first embodiment of the present disclosure.
- the muscle micromotion detecting element includes a first friction layer 101 and a second friction layer 102.
- frictional static electricity is generated after the relative motion between them, thereby generating an electrical signal.
- the first electrification component of the friction nano-generator includes a first friction layer 101 configured to be attached to the living body that controls the micro-motion of the muscle, and is used to move with the muscle when the muscle is slightly moved. Thereby a frictional electrostatic effect is generated between the second friction layer 102 disposed oppositely.
- the first friction layer 101 is in a relative motion with the first friction layer 102, A material layer that is positively or negatively charged. When positively charged, it is a positive friction layer.
- the corresponding material may be organic, preferably an organic film material with good tensile recovery, including but not limited to elastic materials such as natural rubber or silica gel. .
- the surface of the first friction layer 101 and/or the second friction layer 102 may have a micro/nano structure to increase the surface charge amount of the friction layer, for example, preparing micro or nano on the surface.
- the scale of the nanowire array or the pyramid bump array, the size of the array unit may be between 1 nm and 100 ⁇ m, and the micro-nano structure may be formed by chemical etching or plasma etching, and the embodiment of the present disclosure does not This is limited.
- Both the first friction layer 101 and the second friction layer 102 may have a film structure and may have a thickness ranging from 10 micrometers to 0.1 millimeters.
- the first friction layer 101 is further doped with conductive particles, preferably doped with conductive particles within a certain depth close to the friction surface, and the material of the conductive particles may be metal or Other conductive materials that are not metallic.
- the doping depth may range from 1 nm to 100 nm. For example, doping silver nanoparticles in a range of 50 nanometers from the surface can form a charge center in the friction layer, thereby increasing the signal output intensity of the detecting element.
- the second friction layer 102 is doped with conductive particles at a depth close to the friction surface.
- the muscle micromotion detecting element further includes a first electrode layer 103 that is disposed in contact with the lower surface of the second friction layer 102 for deriving the electrostatic charge to generate an electrical signal.
- the first electrode layer 103 may be formed using a deposition process. The relative position may be that the first electrode layer 103 is located below the second friction layer 102 and the second friction layer 102 is disposed below the first friction layer 101.
- the second electrification component of the friction nanogenerator includes a second friction layer 102 and a first electrode layer 103.
- the first friction layer 101 and the first electrode layer 103 may serve as electrical signal output ends of the muscle micromotion detecting element.
- attachment may be by sticking, contacting but not tightly bonding or indirectly attaching (for example, separating other materials between the first friction layer and the living body). Since the embodiment uses the relative displacement when detecting the micro-motion of the muscle, the detection effect is sensitive, compared to the transmission. The detection of the myoelectric biosignal needs to be closely adhered to the living body, and the attachment method can be attached to the to-be-detected part of the living body without being closely attached.
- the attached site may be on an external tissue having muscle tissue (e.g., the epidermis), preferably attached to a site where the muscle can move flexibly (e.g., the eye).
- the second friction layer 102 is disposed opposite to the first friction layer 101 for generating a relative displacement with the first friction layer 101 when the muscle is slightly moved to generate an electrostatic charge, and an electrostatic potential is generated on the first electrode layer.
- the first electrode layer 103 may be connected to an equipotential ground such as ground or other conductor, and the second friction layer 102 is a first friction layer 101 that generates a relative motion, under the action of an electrostatic potential, in the first electrode layer 103 and the ground or other conductor A charge flow is formed therebetween, and therefore, the first electrode layer 103 and the equipotential are the output ends of the micromotion detecting elements.
- the second friction layer 102 is a material layer that induces negative or positive electricity when the first friction layer 101 is in relative motion (it should be noted here that the electrical properties of the first friction layer and the second friction layer should be opposite when rubbed, If the first friction layer is a positive friction layer that induces positive electricity, the second friction layer should be a negative friction layer that induces negative electricity. When it is a negative friction layer, the selection of the corresponding material can be selected from the field. The embodiment is not limited thereto.
- the preferred negative friction layer is made of an organic thin film material having good mechanical strength, for example, polytetrafluoroethylene (PTFE), perfluoroethylene propylene copolymer (FEP), polyethylene terephthalate. alcohol esters (PET), polydimethylsiloxane (PDMS), manufactured by DuPont TM Polyimide film or nylon (PA), or a combination of the above.
- PTFE polytetrafluoroethylene
- FEP perfluoroethylene propylene copolymer
- the muscle micro-motion element may further include an intermediate spacer 105 disposed between the first electrification member and the second electrification member, such as the first friction layer 101 and the second friction as in FIG. Between the layers 102, the first friction layer 101 and the second friction layer 102 are spaced apart in an inoperative state. Since the first friction layer 101 and the second friction layer 102 can select a material having elasticity, when there is no micro-displacement, the two are separated, and when the micro-displacement occurs, the contact generates friction.
- the intermediate spacer 105 is used to form a space between the first friction layer 101 and the second friction layer 102 such that the first friction layer 101 can be displaced relative to the second friction layer 102 when the muscle is micro-moving, for example, Close to each other and away, or contact separate.
- the distance d between the first friction layer 101 and the second friction layer 102 in the non-operating state is not too large, and the second friction layer 102 or
- the maximum distance L between any two points on the surface of the first friction layer 101 is a reference, and the ratio of L to d is between 5 and 50.
- the spacer 105 has a separation distance (d) between the first friction layer 101 and the second friction layer 102 of 0.5 mm to 1.0 mm.
- the first friction layer 101 and the second friction layer 102 cannot constitute a closed cavity structure, and if the sealing is generated, the air pressure in the cavity may cause micro-motion of the first friction layer in contact with the skin.
- a hole structure in which the interval between the first friction layer and the second friction layer communicates with the outside can be established on the friction nanogenerator.
- the first electrode layer 103 or the side of the intermediate spacer 105 can reasonably design a hole structure that communicates with the outside atmosphere.
- the above components may be integrated by providing the substrate 104.
- a first electrode layer 103 layer is formed on the substrate 104, and the first electrode layer 103 is layered.
- a second friction layer 102 is formed, and the second friction layer 102 can be formed by a mask process or directly placed in the intermediate spacer 105, and the intermediate spacer is provided with a first friction layer 101.
- the first electrode layer 103 and the intermediate spacer 105 can be adjusted according to the difference in detecting the micro-motion portion of the muscle, for example, detecting eye movement, and adopting a circular structure can obtain better sensitive detection. effect.
- the surface of the first friction layer 101 (or the first electrification member) attached to the living body is circular.
- FIG. 2 is a schematic cross-sectional view showing a muscle micromotion detecting element of a second embodiment of the present disclosure.
- the detecting element shown in FIG. 2 includes a second electrode 201 in addition to the components shown in FIG. 1 , and the contact is disposed outside the first friction layer 206 (ie, the first friction layer 206 faces away from the second friction layer On one side), the first electrode layer 203 and the second electrode 206 may be connected to an external circuit, and the first electrode layer 203 and the second electrode layer 206 are electrical signal output ends of the muscle micromotion detecting element, and the corresponding electrical signals are derived.
- first friction layer 206 the second friction layer 202, the first electrode layer 203, the substrate 204, and the intermediate spacer 205 may refer to the corresponding composition shown in FIG. Make settings and do not repeat them here.
- FIG. 3A and 3B are respectively a schematic cross-sectional structural view and a top view of an electrode portion of a muscle micromotion detecting element according to a third embodiment of the present disclosure.
- the detecting element shown in FIG. 3 differs from the detecting element shown in FIG. 1 in the manner in which the first electrode layers are arranged differently.
- the first electrode layer shown in FIG. 3 includes a plurality of sub-electrodes 303, and the plurality of sub-electrodes 303 are distributed in a matrix on the substrate 304.
- a plurality of sub-electrodes may be electrically connected to an equipotential or conductive first friction layer, respectively; for the detecting elements of the structure of FIG. 2, a plurality of sub-electrodes may be electrically connected to the second electrode layer 201, respectively.
- the plurality of sub-electrodes 303 are distributed in a dot matrix and can be used to detect fretting signals at different positions.
- the detecting element as shown in Figures 3A and 3B can be used to detect eye movement. Specifically, when the eye is closed, the detecting component is attached to the surface of the eye, and the specific position of the eyeball can be monitored by the output signal of the sub-electrode array when the eyeball moves, and the movement of the eyeball can be realized by the signal processing circuit of the rear segment. Manipulation.
- FIGS. 3A and 3B Other components in FIGS. 3A and 3B: the first friction layer 301, the second friction layer 302, the substrate 304, and the intermediate spacer 305 may be disposed with reference to the corresponding components shown in FIG. 1, and are not described herein.
- the muscle micromotion detecting element of the embodiment of the present disclosure when the two friction film layers are in contact, generates positive and negative equal amounts of electrostatic charges.
- the micro-displacement of the skin causes a corresponding displacement change of the first friction layer film in close contact with the skin, and the displacement change causes a corresponding change in the electrostatic potential of the electrode portion, thereby generating an electrical signal output.
- the sensor as a detecting element in the example can generate a voltage signal of about 750 mV.
- the electrical signal output has several orders of magnitude higher than a biological myoelectric signal (e.g., an ocular electrical signal, about 0.75 mV).
- a switching device realizes opening or closing of the electrical device by muscle micromotion of the living body.
- FIG. 5 is a circuit schematic diagram of a switching device according to an embodiment of the present disclosure.
- the switch device shown in FIG. 5 includes the muscle micromotion detecting element, the filter circuit, the amplifying circuit, and the switching element according to the first aspect of the embodiment.
- the filter circuit of Figure 5 is used to filter the electrical signal generated by the muscle micro-motion detecting element to produce a filtered signal.
- the filtering circuit can filter the electrical signals of the inactive generation of the living body (for example, blinking in a normal state of the human body) to avoid corresponding misoperations.
- the amplifying circuit of FIG. 5 is for amplifying the filtered signal to generate an amplified signal.
- the signal detected by the embodiment of the present disclosure is greatly improved, it can be further amplified by the amplifying circuit to improve the sensitivity of the corresponding switching device.
- the switching element of FIG. 5 is for inputting the amplified signal, and is turned on when the amplified signal voltage reaches above a set threshold range.
- the switching element may be a latch relay.
- the disclosure is not limited thereto, and other trigger relays may be used.
- a front end device of a human-machine interaction system for detecting an electrical signal generated by muscle fretting and transmitting it to a back end including a processor is provided.
- FIG. 6 is a connection equivalent diagram of a front end device of a human-machine interaction system according to an embodiment of the present disclosure.
- the front end device of the human-computer interaction system includes a signal transmitting module and the muscle micro-motion detecting element according to the first aspect of the embodiment of the present disclosure.
- the front end device is configured to detect muscle micromotion of the living body, convert the micro motion into an electrical signal, and output to the back end of the human-computer interaction system.
- the signal transmitting module is connected to the output end of the muscle micro-motion detecting element for receiving an electrical signal generated by the muscle micro-motion detecting element.
- the signal transmitting module may be a wireless signal transmitting module or a wired signal transmitting module.
- a wireless signal transmitting module is employed.
- Figure 6 shows a wireless signal transmitting module comprising a signal signal and an equivalent ground connected to the muscle micro-motion detecting element, the signal end being directly connected to the first electrode layer, and the equivalent end passing through A resistor is connected to the first electrode layer.
- the resistance value connected to the equivalent ground is selected to be 1-40 Mohm, and the characteristics of the output signal can be effectively adjusted by the connection of the resistors.
- FIG. 7 is a schematic diagram of a front end device of a human-machine interaction system according to another embodiment of the present disclosure.
- the muscle micro-motion detecting element 720 and the transmitting module 740 in the front end device in this embodiment may be disposed on the fixing member 710, for example, all disposed on a spectacle frame.
- the fixation element 740 can be a bio-wearable device including, but not limited to, glasses, a hat, an eye patch, a mask, a glove, a wristband, a garment, a shoe, or a watch.
- Solid The fixed element 740 can be worn on the organism described above.
- the front end device may further include a position adjustment component 730 that is mechanically coupled to the muscle micromotion detecting element 720.
- a position adjustment component 730 that is mechanically coupled to the muscle micromotion detecting element 720.
- a human-computer interaction system there is also provided a human-computer interaction system.
- the front end device described above is applied to solve the corresponding existing problems.
- the human-computer interaction system 800 shown in FIG. 8 includes a front end 810 and a rear end 820.
- the front end 810 is mainly configured to be close to a living body, detect muscle micro-motion of the living body and convert it into an electrical signal, and send it to the back end 820.
- the front end 810 includes a muscle micro-motion detecting element 811 and a signal transmitting device 812, which can be set with reference to the third aspect of the embodiments of the present disclosure, and details are not described herein.
- the back end 820 can include a signal receiving device 821 for receiving an electrical signal transmitted by the signal transmitting device 812.
- the back end 820 can also include a processor 822 for processing and applying the received signals.
- FIG. 9 is a simple human-computer interaction typing system implemented by the device.
- the output signal of the device is received by the wireless receiving module, and the pulse signal can be used as a characteristic signal for selecting basic characters on the typing panel.
- the system scan of the typing key can realize the selection of various function keys, for the disabled. People have great application prospects.
- the specific structure of the detecting element can form a multi-channel electrode array structure by rational design, for example, using the muscle micro-motion detecting element shown in FIG.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physiology (AREA)
- Signal Processing (AREA)
- Psychiatry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Dermatology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Power Engineering (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
一种肌肉微动探测元件、开关装置、人机交互系统及前端装置,涉及人机交互领域。其中,肌肉微动探测元件,包括摩擦纳米发电机,贴附在待探测部位,用于将肌肉微动的机械能转变为电信号。摩擦纳米发电机包括相对设置的第一起电部件(101、206、301)和第二起电部件(102、202、302),其中之一配置为贴附于支配肌肉微动的生物体上,在肌肉微动作用下第一起电部件(101、206、301)和第二起电部件(102、202、302)可以相对位移,产生电信号。通过设置摩擦时电性相反的摩擦层(101、206、301、102、202、302),以肌肉微动的微小位移作为探测信号源,提高肌肉微动检测的灵敏度。
Description
本公开涉及人机交互领域,特别涉及一种肌肉微动探测元件,一种开关装置,还涉及一种人机交互系统及其前端装置。
利用人体的微动来实现对机器或者电子设备的控制及操作是下一智能时代的标志性研究内容。就目前而言,对于人体肌肉微动信号的探测主要是基于肌电生物信号,用眼电信号来做例子,其使用Ag/AgCl电极,在使用过程中对于电极与皮肤的接触有较高的要求,且电极单次使用,佩带麻烦等。最重要的是生物电信号的强度极小(微伏到毫伏量级),这对于后端信号处理带来了极大的困难。
现有的基于生物肌电信号的人机交互系统前端装置,通常采用凝胶电极与皮肤直接接触探测肌肉微动时的电势差信号,具有以下的一些缺点:凝胶电极与皮肤的电接触有很高的要求;凝胶电极的佩带不够便携美观;凝胶电极无法多次使用;以及生物肌电信号微弱,信号噪声比小,后端系统处理要求高,系统判断正确率低等。
发明内容
有鉴于此,本公开的目的在于提出一种肌肉微动探测元件、人机交互系统和及其前端,以解决以上所述的至少部分技术问题。
根据本公开的一方面,提供一种肌肉微动探测元件,包括摩擦纳米发电机,贴附在待探测部位,用于将肌肉微动的机械能转变为电信号。
根据本公开的第二方面,提供一种开关装置,包括上述的肌肉微动探测元件,还包括滤波电路、放大电路和开关元件。
所述滤波电路用于对肌肉微动元件产生的电信号进行滤波,产生滤波信号;
所述放大电路,用于对滤波信号进行放大,产生放大信号;
所述开关元件,用于输入所述放大信号,在放大信号电压达到设定阈值范围之上时导通。
根据本公开的第三方面,提供一种人机交互系统的前端装置,包括信号发射模块和上述的肌肉微动探测元件;其中,所述信号发射模块与所述微动探测元件的电信号输出端连接,用于接收所述电信号并发送至人机交互系统的后端。
根据本公开的第四方面,提供一种人机交互系统,包括后端装置和上述的前端装置,所述后端装置包括接收所述电信号的接收模块。
通过上述技术方案,可知本公开的有益效果在于:
(1)本公开的肌肉微动探测元件,利用摩擦纳米发电机可以将机械能转变为电信号的原理,通过设置摩擦时电性相反的第一摩擦层和第二摩擦层,以肌肉微动的微小位移作为探测信号源,提高检测的灵敏度;(2)本公开的开关装置以肌肉微动实现对电器电路的开启或者关闭,提高了电器的智能化和高精度控制;
(3)本公开的人机交互系统相比于传统的通过获取生物肌电信号的探测装置精度指数性提高,可更广泛应用于各种人机交互场景。
图1是本公开第一实施例肌肉微动探测元件的截面结构示意图。
图2是本公开第二实施例肌肉微动探测元件的截面结构示意图。
图3A和图3B分别是本公开第三实施例肌肉微动探测元件的截面结构示意图和电极部分俯视图。
图4是本公开实施例肌肉微动探测元件所探测信号与传统的眼电信号的比较图。
图5是本公开实施例开关装置的电路原理图。
图6是本公开实施例人机交互系统的前端装置的连接等效框图。
图7是本公开另一实施例人机交互系统的前端装置的示意图。
图8是本公开实施例人机交互系统的方框图。
图9是图7的人机交互系统的应用场景图。
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开作进一步的详细说明。
应该注意的是,本文中使用的“第一”、“第二”等仅用于区分不同对象,而不意味着这些对象之间具有任何特定顺序关系。
在本说明书中,术语“包括”和“含有”及其派生词意为包括而非限制。
在本说明书中,下述用于描述本公开原理的各种实施例只是说明,不应该以任何方式解释为限制公开的范围。参照附图的下述描述用于帮助全面理解由权利要求及其等同物限定的本公开的示例性实施例。下述描述包括多种具体细节来帮助理解,但这些细节应认为仅仅是示例性的。因此,本领域普通技术人员应认识到,在不脱离本公开的范围和精神的情况下,可以对本文中描述的实施例进行多种改变和修改。此外,为了清楚和简洁起见,省略了公知功能和结构的描述。此外,尽管可能在不同实施例中描述了具有不同特征的方案,但是本领域技术人员应当意识到:可以将不同实施例的全部或部分特征相结合,以形成不脱离本公开的精神和范围的新的实施例。
本说明书中,人机交互系统包括前端和后端。其中,前端包括肌肉微动信号采集元件以及发出电信号的信号发射元件;后端包括对所述前端发出的电信号处理模块,还可包括信号滤波,信号识别,信号运算等功能模块。
利用肌肉微动来实现人机交互系统已经有相关的产品,例如残障人士使用的用来探测其手指的微动,眼睛的眨动,面部肌肉的抽动等的设
备。肌肉微动的探测目前主要采用生物肌电信号探测的方式来予以实现。根据本公开的基本构思,为克服现有的基于生物肌电信号的人机交互系统前端装置的劣势,例如采用凝胶电极与皮肤接触时凝胶电极与皮肤需接触贴合度高、电极无法多次使用以及探测的生物肌电信号微弱等缺点,提出一种利用肌肉微动产生的微小位移作为探测信号源,根据摩擦静电效应进行探测的肌肉微动探测元件以及含该元件的人机交互前端装置,获得了更好的灵敏探测效果。
本公开提供的肌肉微动探测元件,包括摩擦纳米发电机,贴附在待探测部位,用于将肌肉微动的机械能转变为电信号。
所述摩擦纳米发电机可以包括相对设置的第一起电部件和第二起电部件,其中之一配置为贴附于支配所述肌肉微动的生物体上,在肌肉微动作用下第一起电部件和第二起电部件可以相对位移,产生电信号。这里所述的相对位移可以为互相接触分离,也可以为互相靠近和远离。
为了更好的探测肌肉微动,所述第一起电部件可以为柔性,贴附于支配所述肌肉微动的生物体上,例如对于眼动探测,可以将柔性的第一起电部件贴附在眼部肌肉上。第一起电部件需要可以随着肌肉微动具有较好的拉伸回复性,因此,其厚度范围优选为20微米到0.2毫米。
这里所述的摩擦纳米发电机可以为现有的任意结构的摩擦纳米发电机,下面结合附图以接触分离式摩擦纳米发电机为微动探测元件的结构。
根据本公开实施例的第一方面,提供一种肌肉微动探测元件。图1是本公开第一实施例肌肉微动探测元件的截面结构示意图。如图1所示,肌肉微动探测元件包括第一摩擦层101和第二摩擦层102。通过肌肉微动时,之间相对运动后产生摩擦静电,从而产生电信号。
本实施例中,摩擦纳米发电机的第一起电部件包括第一摩擦层101,配置为贴附在支配肌肉微动的生物体上,用于在肌肉产生微动时也随着肌肉进行运动,从而与相对设置的第二摩擦层102之间产生摩擦静电效应。
其中,第一摩擦层101是在与第一摩擦层102产生相对运动时,感
应正电或者负电的材料层,当感应正电时,为正摩擦层,相应材料可以为有机物,优选的为拉伸恢复性良好的有机薄膜材料,包括但不限于天然橡胶或者硅胶等弹性材料。
一些实施例中,为了增加探测元件的信号输出强度,第一摩擦层101和/或第二摩擦层102的表面可以具有微纳结构,以提高摩擦层表面带电量,例如在表面制备微米或者纳米尺度的纳米线阵列或者金字塔凸起阵列,阵列单元的尺寸可介于1nm-100μm之间,微纳结构的形成方式可以通过化学刻蚀或者等离子体刻蚀方式形成,本公开实施例并不以此为限。
第一摩擦层101和第二摩擦层102均可以采用薄膜结构,厚度范围可以在10微米到0.1毫米。
一些实施例中,为了增加探测元件的信号输出强度,第一摩擦层101还掺杂有导电颗粒,优选的在靠近摩擦表面的一定深度内掺杂有导电颗粒,导电颗粒的材料可以是金属或者非金属的其它导电材料。掺杂深度范围可以在1nm-100nm之间。例如在距离表面50纳米深度范围内掺杂银纳米颗粒,可以在摩擦层中形成电荷中心,从而提高探测元件的信号输出强度。类似的,第二摩擦层102在靠近摩擦表面的一定深度内掺杂有导电颗粒。
如图1所示,肌肉微动探测元件还包括第一电极层103,其接触设置在第二摩擦层102的下表面,用于导出所述静电电荷,产生电信号。第一电极层103可以采用沉积工艺形成。相对位置可以是,第一电极层103位于第二摩擦层102之下,第二摩擦层102设置在第一摩擦层101的下方。
本实施例中,摩擦纳米发电机的第二起电部件包括第二摩擦层102和第一电极层103。对于第一摩擦层101的材料为导体、第二摩擦层的材料为有机物的情况,第一摩擦层101和第一电极层103可以作为肌肉微动探测元件的电信号输出端。
应当理解的是,上述“贴附”的方式可以是粘贴、接触但不紧密结合或者是间接贴附(例如第一摩擦层和生物体之间间隔其它材料)。由于本实施例采用探测肌肉微动时的相对位移,探测效果灵敏,相比于传
统的肌电生物信号探测需要与生物体紧密贴合,贴附方式可以不需要紧密贴合,附着于生物体的待探测部位即可。贴附的部位可以是有肌肉组织的外部组织(例如表皮)上,优选的贴附于肌肉可灵活运动的部位(例如眼睛)。
图1所示,第二摩擦层102与第一摩擦层101相对设置,用于在肌肉微动时与第一摩擦层101产生相对位移进而产生静电电荷,在第一电极层上产生静电势。第一电极层103可以与等电位如地或者其他导体连接,第二摩擦层102是第一摩擦层101产生相对运动时,在静电势作用下,在第一电极层103与地或者其他导体之间形成电荷流动,因此,第一电极层103与等电位之间为微动探测元件的输出端。
其中,第二摩擦层102是在与第一摩擦层101产生相对运动时,感应负电或正电的材料层(此处应注意,第一摩擦层和第二摩擦层摩擦时电性应当相反,如第一摩擦层为感应正电的正摩擦层,则第二摩擦层应为感应负电的负摩擦层),当为负摩擦层时,相应材料的选择可以从本领域中进行选择,本公开实施例并不以此为限,优选的负摩擦层采用机械强度良好的有机薄膜材料,例如,聚四氟乙烯(PTFE),全氟乙烯丙烯共聚物(FEP),聚对苯二甲酸乙二醇酯(PET),聚二甲基硅氧烷(PDMS),杜邦TM生产的聚酰亚胺薄膜或者尼龙(PA),或者上述材料的组合。
在一些实施例中,肌肉微动元件还可包括中间间隔架105,设置于所述第一起电部件和第二起电部件之间,如图1中设置在第一摩擦层101和第二摩擦层102之间,用于在非工作状态下间隔第一摩擦层101和第二摩擦层102。由于第一摩擦层101和第二摩擦层102可以选择具有弹性的材料,在没有产生微位移时,两者分开,产生微位移时则接触产生摩擦。该中间间隔架105用于在第一摩擦层101与第二摩擦层102之间形成空间,使得在肌肉微动时第一摩擦层101能够与第二摩擦层102之间产生相对的位移,例如相互靠近和远离,或者接触分离。
为了能够灵敏的感知肌肉微动,在非工作状态下第一摩擦层101和第二摩擦层102之间的间隔距离d不宜太大,可以以第二摩擦层102或
第一摩擦层101表面上任意两点之间的最大距离L为参照,L与d的比例在5至50之间。
以眼动探测为例,如第一摩擦层101为圆形,则该第一摩擦层101表面上任意两点的最大距离L即为该摩擦层的直径,贴附在眼睛部位的第一摩擦层为直径2cm的圆形薄膜,非工作状态下,间隔架105使在第一摩擦层101和第二摩擦层102之间的间隔距离(d)为0.5mm-1.0mm。
在一些实施例中,考虑到第一摩擦层101和第二摩擦层102不能构成密闭的腔体结构,如果产生密闭,腔体中的气压会对与皮肤接触的第一摩擦层的微动产生影响,可以在摩擦纳米发电机上开设使第一摩擦层和第二摩擦层之间的间隔与外部连通的孔洞结构。例如,第一电极层103上或者中间间隔架105侧面可以合理的设计与外界大气相联通的孔洞结构。
在一些实施例中,可以通过设置基板104将上述组成部分都集成在一起,一种可选的实施方式是,在基板104上先形成第一电极层103层,在第一电极层103层上形成第二摩擦层102,第二摩擦层102上可通过掩模工艺形成或者直接放置中间间隔架105,中间间隔架上设置有第一摩擦层101。
在一些实施例中,第一电极层103和中间间隔架105可以通过探测肌肉微动部位的不同做相应的结构设计调整,例如探测眼睛眨动,采用圆形的结构能够获得更好的灵敏探测效果。相对应的,所述第一摩擦层101(或第一起电部件)与所述生物体贴附的面呈圆形。
图2是本公开第二实施例肌肉微动探测元件的截面结构示意图。图2所示的探测元件中除包含图1所示的各组成部分外,还包含第二电极201,其接触设置在第一摩擦层206外侧(即第一摩擦层206背对第二摩擦层的一侧),可以将第一电极层203和第二电极206连接至外部电路,第一电极层203和第二电极层206为肌肉微动探测元件的电信号输出端,导出相应电信号。
图2中其他组成部分:第一摩擦层206、第二摩擦层202、第一电极层203、基板204以及中间间隔架205可以参照图1所示的对应组成
进行设置,在此不予赘述。
图3A和图3B分别是本公开第三实施例肌肉微动探测元件的截面结构示意图和电极部分俯视图。图3所示的探测元件与图1所示的探测元件的区别在于第一电极层的配置方式不同。图3所示的第一电极层包括多个子电极303,且多个子电极303呈点阵式分布于基板304上。对于图1中结构的探测元件,多个子电极可以分别与等电位或者导电的第一摩擦层电连接;对于图2中结构的探测元件,多个子电极可以分别与第二电极层201电连接。多个子电极303呈点阵式分布,可以用于探测不同位置处的微动信号。
如图3A和3B所示的探测元件例如可以用以探测眼球运动。具体地,眼睛紧闭时,将该探测元件贴附于眼睛表面,当眼球运动时其具体位置可以通过子电极阵列的输出信号进行监测,通过后段信号处理电路能够实现眼球的运动对于电子设备的操控。
图3A和3B中其他组成部分:第一摩擦层301、第二摩擦层302、基板304以及中间间隔架305可以参照图1所示的对应组成进行设置,在此不予赘述。
图4是本公开实施例肌肉微动探测元件所探测信号与传统的生物肌电信号的比较图。如图4所示,本公开实施例的肌肉微动探测元件,其两摩擦薄膜层相接触会产生正负相等量的静电电荷。当肌肉微动时产生的皮肤微位移使得与皮肤紧密接触的第一摩擦层薄膜产生相应的位移变化,该位移变化会使得电极部分的静电势产生相应的变化,从而产生电信号输出,本实施例中作为探测元件的传感器可以产生约750mV的电压信号。该电信号输出具有比生物肌电信号(例如眼电信号,约0.75mV)高几个数量级的效果。
根据本公开实施例的第二方面,提供一种开关装置。该开关装置通过生物体的肌肉微动实现对电器设备的打开或者关闭。
图5是本公开实施例开关装置的电路原理图。如图5所示的开关装置,包括实施例第一方面所述的肌肉微动探测元件、滤波电路、放大电路和开关元件。
图5中的滤波电路用于对肌肉微动探测元件产生的电信号进行滤波,产生滤波信号。该滤波电路可以将生物体非主动产生(例如人体正常状态下眨眼)的电信号进行滤除,以避免相应产生的误操作。
图5中的放大电路,用于对滤波信号进行放大,产生放大信号。虽然采用本公开实施例所探测的信号有了很大提高,仍然可以通过放大电路进一步放大,提高相应开关装置的灵敏度。
图5中的开关元件,用于输入所述放大信号,在放大信号电压达到设定阈值范围之上时导通。该开关元件可以是一门栓继电器,本公开不仅限于此,也可以采用其他触发继电器,当接收到的信号高于一定电压阈值后导通,控制后端的电器元件开始工作。
根据本公开实施例的第三方面,提供一种人机交互系统的前端装置,用于探测肌肉微动产生的电信号并且发送至含处理器的后端。
图6是本公开实施例人机交互系统的前端装置的连接等效框图。如图6所示,人机交互系统的前端装置包括信号发射模块和本公开实施例的第一方面所述的肌肉微动探测元件。该前端装置用于探测生物体的肌肉微动,将该微动转化为电信号,输出至人机交互系统的后端。
图6所示,信号发射模块连接肌肉微动探测元件的输出端,用于接收肌肉微动探测元件产生的电信号。信号发射模块可以是无线信号发射模块或者有线信号发射模块。优选的,采用无线信号发射模块。图6所示的为一无线信号发射模块,包括与肌肉微动探测元件连接的信号端(signal)和等效地端(ground),信号端直接连接至第一电极层,等效地端经过连接一电阻后连接至第一电极层。
在一些实施例中,与等效地端连接的电阻值选取为1-40Mohm,通过电阻的连接能够有效的调节输出信号的特性。
图7是本公开另一实施例人机交互系统的前端装置的示意图。该实施例中的前端装置中肌肉微动探测元件720和发射模块740都可以设置于固定元件710上,例如都套设在一眼镜架上。
一些实施例中,固定元件740可以为生物体可穿戴设备,包括但不限于眼镜、帽子、眼罩、口罩、手套、护腕、衣服、鞋或者手表等。固
定元件740可穿戴于上述的生物体上。
一些实施例中,前端装置还可以包括位置调节部件730,其与肌肉微动探测元件720机械连接,通过对位置调节部件730进行位置调整,相应可调整肌肉微动探测元件720与生物体的相对位置。
根据本公开实施例的第四方面,还提供一种人机交互系统。通过上述的前端装置应用于解决相应的现有问题。
图8是本公开实施例人机交互系统的方框图。图8所示的人机交互系统800包括前端810和后端820,前端810主要配置为接近生物体,探测生物体的肌肉微动并转换为电信号,发送至后端820。
该前端810包括肌肉微动探测元件811和信号发射装置812,其可参照本公开实施例的第三方面进行设置,在此不予赘述。
一些实施例中,后端820可以包括一信号接收装置821,用于接收上述信号发射装置812发送的电信号。后端820还可以包括处理器822,用于对接收到的信号进行处理和应用。
另外作为应用前景展示,图9为采用该装置实现的简单人机交互打字系统。首先将装置的输出信号通过无线接收模块接收,通过软件设计,该脉冲信号可以作为打字面板上基本字符选取的特征信号,通过打字按键的系统扫描,能够实现对于各种功能按键的选取,对于残障人士具有巨大的应用前景。为了拓展本公开的应用使用面,该探测元件的具体结构可以通过合理的设计形成多通道的电极阵列结构,例如采用图3所示的肌肉微动探测元件。
以上所述的具体实施例,对本公开的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本公开的具体实施例而已,并不用于限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
Claims (24)
- 一种肌肉微动探测元件,其特征在于,包括摩擦纳米发电机,贴附在待探测部位,用于将肌肉微动的机械能转变为电信号。
- 根据权利要求1所述的肌肉微动探测元件,其特征在于,所述摩擦纳米发电机包括相对设置的第一起电部件和第二起电部件,所述第一起电部件和第二起电部件其中之一配置为贴附于支配所述肌肉微动的生物体上,在肌肉微动作用下第一起电部件和第二起电部件可以相对位移,产生电信号。
- 根据权利要求2所述的肌肉微动探测元件,其特征在于,所述第一起电部件为柔性,贴附于支配所述肌肉微动的生物体上。
- 根据权利要求2所述的肌肉微动探测元件,其特征在于,所述第一起电部件的厚度范围为20微米到0.2毫米。
- 根据权利要求2-4任一项所述的肌肉微动探测元件,其特征在于,所述第一起电部件,包括第一摩擦层;所述第二起电部件,包括:第二摩擦层,与所述第一摩擦层相对设置,且与所述第一摩擦层摩擦时第一摩擦层与第二摩擦层的表面产生等量电性相反静电电荷;第一电极层,与所述第二摩擦层接触设置,用于感应所述第二摩擦层产生的静电电荷,以产生所述电信号。
- 根据权利要求5所述的肌肉微动探测元件,其特征在于,所述第一电极层包括多个子电极,所述多个子电极呈点阵式分布。
- 根据权利要求5或6所述的肌肉微动探测元件,其特征在于,所述第一摩擦层的材料为有机物,和/或所述第二摩擦层的材料为有机物。
- 根据权利要求5-7任一项所述的肌肉微动探测元件,其特征在于,所述第一电极层与等电位之间为微动探测元件的输出端。
- 根据权利要求5或6所述的肌肉微动探测元件,其特征在于,所述第一摩擦层的材料为导体,所述第二摩擦层的材料为有机物,所述第一摩擦层和所述第一电极层为肌肉微动探测元件的电信号输出端。
- 根据权利要求5或6所述的肌肉微动探测元件,其特征在于, 所述第一摩擦层和/或第二摩擦层在靠近摩擦表面的一定深度内掺杂有导电颗粒。
- 根据权利要求5或6所述的肌肉微动探测元件,其特征在于,导电颗粒的掺杂深度范围在1nm-100nm之间。
- 根据权利要求5-8任一项所述的肌肉微动探测元件,其特征在于,还包括第二电极层,与所述第一摩擦层接触设置;所述第一电极层和所述第二电极层为肌肉微动探测元件的电信号输出端。
- 根据权利要求1-12任一项所述的肌肉微动探测元件,其特征在于,还包括中间间隔架,设置于所述第一起电部件和第二起电部件之间,用于在非工作状态下间隔第一起电部件和第二起电部件。
- 根据权利要求13所述的肌肉微动探测元件,其特征在于,非工作状态下第一摩擦层和第二摩擦层之间的间隔距离为d,第二摩擦层或第一摩擦层的表面上任意两点之间的最大距离为L,L与d的比例在5至50之间。
- 根据权利要求5-14任一项中所述的肌肉微动探测元件,其特征在于,所述第一摩擦层表面和/或第二摩擦层表面具有微纳结构。
- 根据权利要求2-15任一项所述的肌肉微动探测元件,其特征在于,所述第一起电部件与所述生物体贴附的面呈圆形。
- 根据权利要求1-16任一项所述的肌肉微动探测元件,其特征在于,所述摩擦纳米发电机上开设使第一摩擦层和第二摩擦层之间的间隔与外部连通的孔洞结构。
- 一种开关装置,包括权利要求1-17任一项所述的肌肉微动探测元件,还包括滤波电路、放大电路和开关元件。所述滤波电路用于对肌肉微动元件产生的电信号进行滤波,产生滤波信号;所述放大电路,用于对滤波信号进行放大,产生放大信号;所述开关元件,用于输入所述放大信号,在放大信号电压达到设定阈值范围之上时导通。
- 根据权利要求18所述的开关装置,其特征在于,所述开关元件为触发继电器。
- 一种人机交互系统的前端装置,其特征在于包括信号发射模块和权利要求1-17任一项所述的肌肉微动探测元件;其中,所述信号发射模块与所述探测元件的电信号输出端连接,用于接收所述电信号并发送至人机交互系统的后端。
- 根据权利要求20所述的前端装置,其特征在于,所述信号发射模块为无线信号发射模块。
- 根据权利要求20或21所述的前端装置,其特征在于,还包括固定元件,所述信号发射模块和肌肉微动探测元件装配于所述固定元件上,所述固定元件可穿戴于所述生物体上。
- 根据权利要求22所述的前端装置,其特征在于,还包括位置调节部件,所述肌肉微动探测元件固定于所述位置调节部件上,所述位置调节部件也装配于所述固定元件上,配置为可相对固定元件相对移动。
- 一种人机交互系统,包括后端装置和权利要求20-23任一项所述的前端装置,所述后端装置包括接收所述电信号的接收模块。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710445108.5 | 2017-06-13 | ||
CN201710445108.5A CN109077730B (zh) | 2017-06-13 | 2017-06-13 | 肌肉微动控制元件、开关装置、人机交互系统及前端装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018227896A1 true WO2018227896A1 (zh) | 2018-12-20 |
Family
ID=64660423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/114281 WO2018227896A1 (zh) | 2017-06-13 | 2017-12-01 | 肌肉微动探测元件、开关装置、人机交互系统及前端装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109077730B (zh) |
WO (1) | WO2018227896A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111964888A (zh) * | 2020-08-18 | 2020-11-20 | 大连海事大学 | 基于摩擦纳米发电机的文丘里管空化在线监测装置 |
CN112611401B (zh) * | 2020-11-25 | 2022-08-30 | 北京纳米能源与系统研究所 | 一种柔性摩擦纳米传感器及人机交互系统 |
CN112741619A (zh) * | 2020-12-23 | 2021-05-04 | 清华大学 | 一种自驱动唇语动作捕捉装置 |
CN112577554A (zh) * | 2020-12-28 | 2021-03-30 | 安徽银汉机电科技有限公司 | 液体或气体用高灵敏度流量检测器 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0406978A1 (en) * | 1989-07-06 | 1991-01-09 | N.V. Nederlandsche Apparatenfabriek NEDAP | Motion sensor apparatus |
CN101079548A (zh) * | 2006-05-25 | 2007-11-28 | 上海中策工贸有限公司 | 口腔供电系统 |
CN102117119A (zh) * | 2011-01-28 | 2011-07-06 | 国家康复辅具研究中心 | 基于颞肌表面肌电信号实现鼠标控制的方法 |
CN102684546A (zh) * | 2012-05-15 | 2012-09-19 | 纳米新能源(唐山)有限责任公司 | 一种摩擦发电机 |
CN103364460A (zh) * | 2013-02-05 | 2013-10-23 | 国家纳米科学中心 | 一种基于摩擦纳米发电机的分子传感器 |
CN106301062A (zh) * | 2015-05-11 | 2017-01-04 | 北京纳米能源与系统研究所 | 可变形摩擦纳米发电机和发电方法、运动传感器和服装 |
CN106512191A (zh) * | 2015-09-10 | 2017-03-22 | 北京纳米能源与系统研究所 | 自驱动药物释放装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0468340A3 (en) * | 1990-07-24 | 1992-12-16 | Biocontrol Systems, Inc. | Eye directed controller |
CN103368450B (zh) * | 2013-01-28 | 2016-02-03 | 北京纳米能源与系统研究所 | 利用摩擦电纳米发电机的鞋垫 |
CN104426412B (zh) * | 2013-08-20 | 2019-02-05 | 北京纳米能源与系统研究所 | 一种基于皮肤的电信号输出装置和电信号输出方法 |
CN104426417B (zh) * | 2013-08-30 | 2018-06-08 | 北京纳米能源与系统研究所 | 一种产生交流输出的摩擦发电机和发电机组 |
CN204156752U (zh) * | 2014-10-31 | 2015-02-11 | 纳米新能源(唐山)有限责任公司 | 一种压电和摩擦电混合发电机 |
CN105487676A (zh) * | 2016-01-17 | 2016-04-13 | 仲佳 | 具有基于头部生物电信号的人机交互功能的虚拟现实设备 |
CN205548548U (zh) * | 2016-03-08 | 2016-09-07 | 纳智源科技(唐山)有限责任公司 | 基于摩擦发电机的心率监测装置及包括其的可穿戴设备 |
CN105991064B (zh) * | 2016-05-06 | 2018-04-20 | 纳智源科技(唐山)有限责任公司 | 基于摩擦发电机的触觉传感器及机器人触觉感知系统 |
CN106208802B (zh) * | 2016-08-30 | 2018-06-19 | 电子科技大学 | 一种柔性可拉伸的摩擦发电机及其制备方法 |
CN206133869U (zh) * | 2016-11-02 | 2017-04-26 | 纳智源科技(唐山)有限责任公司 | 疲劳驾驶监控装置及可穿戴设备 |
CN106773096B (zh) * | 2017-01-09 | 2023-05-23 | 河北博威集成电路有限公司 | 虚拟显示交互型3d信息镜框 |
-
2017
- 2017-06-13 CN CN201710445108.5A patent/CN109077730B/zh active Active
- 2017-12-01 WO PCT/CN2017/114281 patent/WO2018227896A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0406978A1 (en) * | 1989-07-06 | 1991-01-09 | N.V. Nederlandsche Apparatenfabriek NEDAP | Motion sensor apparatus |
CN101079548A (zh) * | 2006-05-25 | 2007-11-28 | 上海中策工贸有限公司 | 口腔供电系统 |
CN102117119A (zh) * | 2011-01-28 | 2011-07-06 | 国家康复辅具研究中心 | 基于颞肌表面肌电信号实现鼠标控制的方法 |
CN102684546A (zh) * | 2012-05-15 | 2012-09-19 | 纳米新能源(唐山)有限责任公司 | 一种摩擦发电机 |
CN103364460A (zh) * | 2013-02-05 | 2013-10-23 | 国家纳米科学中心 | 一种基于摩擦纳米发电机的分子传感器 |
CN106301062A (zh) * | 2015-05-11 | 2017-01-04 | 北京纳米能源与系统研究所 | 可变形摩擦纳米发电机和发电方法、运动传感器和服装 |
CN106512191A (zh) * | 2015-09-10 | 2017-03-22 | 北京纳米能源与系统研究所 | 自驱动药物释放装置 |
Also Published As
Publication number | Publication date |
---|---|
CN109077730B (zh) | 2022-03-04 |
CN109077730A (zh) | 2018-12-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018227896A1 (zh) | 肌肉微动探测元件、开关装置、人机交互系统及前端装置 | |
Haroun et al. | Progress in micro/nano sensors and nanoenergy for future AIoT-based smart home applications | |
Li et al. | Towards the sEMG hand: internet of things sensors and haptic feedback application | |
Li et al. | Non-invasive stimulation-based tactile sensation for upper-extremity prosthesis: a review | |
Jeon et al. | Flexible multimodal sensors for electronic skin: Principle, materials, device, array architecture, and data acquisition method | |
Shi et al. | Progress of advanced devices and internet of things systems as enabling technologies for smart homes and health care | |
Kim et al. | Stretchable multichannel electromyography sensor array covering large area for controlling home electronics with distinguishable signals from multiple muscles | |
CN103519924B (zh) | 智能假手系统 | |
KR101829541B1 (ko) | 마찰전기를 이용한 압력 센서 및 이의 제조방법 | |
CN108299728A (zh) | 一种柔性压电传感器及其专用压电复合材料 | |
CN110274713A (zh) | 一种纤维基形状自适应性无源电子皮肤及其制备方法 | |
Qu et al. | Assistive devices for the people with disabilities enabled by triboelectric nanogenerators | |
CN102309365A (zh) | 一种可穿戴的脑控智能假肢 | |
Li et al. | Design and applications of graphene-based flexible and wearable physical sensing devices | |
Chen et al. | Electronic skins for healthcare monitoring and smart prostheses | |
Lahane et al. | Innovative approach to control wheelchair for disabled people using BCI | |
WO2016065724A1 (zh) | 电刺激形成人工视觉的设备及方法 | |
CN207515931U (zh) | 一种具有微圆锥台基底的压阻式柔性触觉传感器 | |
Ye et al. | Multimodal integrated flexible electronic skin for physiological perception and contactless kinematics pattern recognition | |
CN110772246B (zh) | 一种用于同步同位检测生物电信号与压力信号的装置和方法 | |
Yao et al. | Recent advances in materials, designs and applications of skin electronics | |
CN105496388A (zh) | 脉搏监测装置 | |
CN213098546U (zh) | 一种假肢的柔性触觉传感装置 | |
Patil et al. | Review on real-time EMG acquisition and hand gesture recognition system | |
Mishra et al. | Fractal-Structured, Wearable Soft Sensors for Control of a Robotic Wheelchair via Electrooculograms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17914085 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17914085 Country of ref document: EP Kind code of ref document: A1 |