WO2018227716A1 - 桥梁状态监测方法及装置 - Google Patents

桥梁状态监测方法及装置 Download PDF

Info

Publication number
WO2018227716A1
WO2018227716A1 PCT/CN2017/093711 CN2017093711W WO2018227716A1 WO 2018227716 A1 WO2018227716 A1 WO 2018227716A1 CN 2017093711 W CN2017093711 W CN 2017093711W WO 2018227716 A1 WO2018227716 A1 WO 2018227716A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge
information
state information
bridge state
preset range
Prior art date
Application number
PCT/CN2017/093711
Other languages
English (en)
French (fr)
Inventor
杜光东
Original Assignee
深圳市盛路物联通讯技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市盛路物联通讯技术有限公司 filed Critical 深圳市盛路物联通讯技术有限公司
Publication of WO2018227716A1 publication Critical patent/WO2018227716A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06395Quality analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/06Protocols specially adapted for file transfer, e.g. file transfer protocol [FTP]

Definitions

  • the present invention belongs to the field of data processing technologies, and in particular, to a bridge condition monitoring method and apparatus.
  • the monitoring of the state of the bridge usually uses sensors to detect the state of the bridge, and then sends the detected data to the control processing terminal for monitoring and predicting the state of the bridge. Since the number of sensors installed in each bridge is large, the amount of data received by the control processor is large, and the corresponding processing speed is slow, which is not conducive to rapid monitoring and prediction of the state of the bridge.
  • the embodiment of the present invention provides a bridge state monitoring method and device, which solves the problem that the state of the bridge is quickly monitored and predicted due to the large amount of data received by the control processor in the prior art. The problem.
  • a bridge condition monitoring method including:
  • the first bridge state information is detected, and the first bridge state information that exceeds the first preset range is sent to the information relay node, so that the information transit node pair exceeds the preset range.
  • the first bridge state information is preprocessed and sent to the control end.
  • a second aspect of the embodiments of the present invention provides a bridge condition monitoring apparatus, including:
  • an information collecting module configured to collect first bridge state information
  • a detecting module configured to detect the first bridge state information, and send the first bridge state information that exceeds a first preset range to an information relay node, so that the information transit node pair exceeds
  • the first bridge state information of the preset range is preprocessed and sent to the control end.
  • a third aspect of the embodiments of the present invention provides a bridge condition monitoring apparatus, including a memory, a processor, and a computer program stored in the memory and operable on the processor, the processing The computer program is executed to implement the steps of the bridge condition monitoring method according to any of the above.
  • a fourth aspect of the embodiments of the present invention provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and the computer program is executed by a processor to implement any one of the foregoing The steps of the bridge condition monitoring method.
  • the first bridge information that exceeds the first preset range is sent to the information relay node by detecting the collected first bridge state information, so that the information transit node pair exceeds the
  • the first bridge state information of the preset range is preprocessed and sent to the control end, and the final control end monitors, records, and the like according to the first bridge state information sent by the transit node, but does not exceed the first
  • the first bridge state information of a preset range is not sent to the transit node, thereby saving network bandwidth resources and improving the monitoring efficiency and accuracy of the bridge state.
  • FIG. 1 is a flowchart of a bridge state monitoring method according to Embodiment 1 of the present invention.
  • step S102 is a flowchart of an implementation of step S102 according to Embodiment 1 of the present invention.
  • FIG. 3 is a flowchart of a bridge state monitoring method according to Embodiment 2 of the present invention.
  • step S302 is a flowchart of an implementation of step S302 according to Embodiment 2 of the present invention.
  • FIG. 5 is a specific flowchart of a bridge state monitoring method according to Embodiment 3 of the present invention.
  • FIG. 6 is a schematic diagram of multi-end interaction of a bridge state monitoring method according to Embodiment 4 of the present invention.
  • FIG. 7 is a structural block diagram of a bridge condition monitoring apparatus according to Embodiment 5 of the present invention.
  • FIG. 8 is a structural block diagram of a bridge condition monitoring apparatus according to Embodiment 6 of the present invention.
  • FIG. 9 is a block diagram showing another structure of a bridge state monitoring device according to Embodiment 7 of the present invention.
  • Embodiments of the invention are a schematic diagram of a bridge condition monitoring apparatus according to Embodiment 8 of the present invention. Embodiments of the invention
  • Step S101 Collecting first bridge state information.
  • the first bridge state information of the bridge may be collected by a plurality of information collection devices disposed at various positions of the bridge.
  • the first bridge state information collected by the plurality of information collection devices includes, but is not limited to, temperature information of the bridge, humidity information, stress information, vibration amplitude information, and the like.
  • each information collecting device may include a temperature sensor, a humidity sensor, a strain gauge, a three-axis acceleration sensor, a wind speed partial pressure sensor, and the like.
  • each bridge state information collecting device may include a temperature sensor, a humidity sensor, a strain gauge, a three-axis acceleration sensor, a wind speed dividing sensor, and a processor.
  • Step S102 detecting the first bridge state information, and sending the first bridge state information that exceeds the first preset range to the information relay node, so that the information transit node pair exceeds the pre-
  • the first bridge state information of the range is preprocessed and sent to the control end.
  • each of the first bridge state information corresponds to one bridge location information.
  • the first bridge status information includes, but is not limited to, temperature information of the bridge, humidity information, stress information, jitter amplitude information, and the like.
  • Each of the first bridge state information can be obtained by collecting information about the bridge from a bridge state information collecting device.
  • the first bridge state information may be detected by the processor in the bridge state information collection device, and the first bridge state information exceeding the first preset range is sent to the information relay node, and The first bridge state information exceeding the first preset range is not transmitted, thereby saving network bandwidth resources and improving monitoring efficiency of the bridge state.
  • step S201 combined with the bridge location information corresponding to the first bridge state information, it is detected whether the first bridge state information of each strip exceeds a corresponding first preset range.
  • the first preset range includes a preset range of various information in the first bridge state information.
  • the first preset range may include a first temperature preset range, a first humidity preset range, a first stress preset range, a first flutter amplitude preset range, and the like.
  • the corresponding first preset ranges are not the same. It can be understood that the amplitude of the vibration near the ends of the bridge is smaller than the amplitude of the vibration in the middle of the bridge; the temperature and humidity information at the top of the bridge is different from the temperature and humidity information at the bottom of the bridge; the stress information at different positions of the bridge is not the same.
  • the first preset range can be obtained by counting historical data. For example, the temperature information, the humidity information, the stress information, and the flutter amplitude information of the bridge are counted in each inter-segment, and then the first preset range is set according to the range value corresponding to the relevant information of the bridge state without abnormality.
  • the first preset range is also related to the date. For example, the temperature and humidity in winter are different from the temperature and humidity in summer.
  • the first preset range of the bridge state information corresponding to the same preset area of the bridge is also different.
  • the first preset range corresponding to the position of the different regions of the bridge represents the safe range of various information corresponding to the location of the bridge.
  • the regional location of the bridge can be divided into a plurality of regional locations such as a first regional location, a second regional location, and a third regional location.
  • the first preset range corresponding to the first area position may specifically be: a date range, a temperature range, a humidity range, a stress range, a range of a wobbling amplitude, and the like.
  • the various information in the first preset range are related to each other as a whole, and the security state determination may not be made for the bridge state information separately for a certain type of information.
  • the temperature/humidity information corresponding to a certain area of the collected bridge is separately compared with the temperature/humidity range in the corresponding first preset range, and the collected temperature/humidity information exceeds the corresponding first preset. If the temperature/humidity range in the range is ⁇ , it is determined that the bridge state is abnormal, which is also inconsistent with the actual situation, and the monitoring is not scientific enough.
  • the collected stress/vibration amplitude information Comparing the stress/vibration amplitude information corresponding to a certain position of the collected bridge to the corresponding range of stress/vibration amplitude in the first preset range, the collected stress/vibration amplitude information exceeds If the stress/vibration amplitude range ⁇ in the corresponding first preset range is ⁇ , it can be determined that the bridge state is abnormal.
  • the first preset range may include a separate preset range of partial information and an overall preset range in which various kinds of information are combined.
  • the collected partial information may be separately compared with the corresponding preset range of the information in the corresponding first preset range, and the collected various information and the corresponding first preset range will be The overall preset range of information is compared.
  • Step S202 Send first bridge state information that exceeds the corresponding first preset range to the information relay node.
  • the first bridge state information is sent to the information relay node, so that the information relay node pre-predicts the first bridge state information. After processing, it is sent to the server for bridge status monitoring, recording, and so on.
  • the first bridge state information exceeds the corresponding first preset range, and the following conditions are included: [0047] part of the information in the first bridge state letter exceeds the information in the corresponding first preset range.
  • Separate preset range For example, if the location information of a certain area of the bridge exceeds the individual stress range in the corresponding first preset range, the corresponding first bridge state information may be sent to the information relay node; or, a certain bridge The corresponding first bridge state information may be sent to the information relay node according to the range of the obtained flutter amplitude information corresponding to the individual flutter amplitude range in the corresponding first preset range.
  • All the information in the first bridge state information exceeds the overall preset range in the corresponding first preset range.
  • the first bridge state information may be The various information is compared with the overall preset range in the first preset range, and the first bridge state information is sent to the information relay node after the preset requirement is met.
  • the overall preset range in the first preset range may be set according to actual conditions.
  • the individual preset range of stress is A1 ⁇ A2
  • the individual preset range of the vibration amplitude is B1 ⁇ B2
  • the overall preset range of stress in the overall preset range is A3 ⁇ A4
  • the overall preset range of the vibration amplitude is B3 ⁇ B4, stressful
  • the overall preset range and the overall preset range of the flutter amplitude are related to each other.
  • the two can be fitted according to historical data to obtain an association relationship between the two.
  • each bridge state information collecting device may continuously collect the bridge state information according to the preset inter-turn interval, and detect the collected bridge state information, and send the bridge state information exceeding the first preset range. Give the information to the transit node.
  • the bridge state information collecting device may collect the bridge state information according to the information collecting instruction sent by the information relay node, and detect the collected bridge state information, and send the bridge state information exceeding the first preset range to the information relay node, and The information collection instruction sent by the relay node that has not received the information is in a sleep state.
  • a photovoltaic power generation unit may be disposed on each bridge state information collection device to perform power supply work by photovoltaic power generation. Therefore, each bridge state information collecting device can be saved in a sleep state after receiving the information collecting command sent by the information relay node. Of course, it is also possible to supply power to each bridge state information collecting device through the power source of the street lamp on the bridge.
  • the bridge state monitoring method is configured to: send the first bridge information that exceeds the first preset range to the information relay node by detecting the collected first bridge state information, so that the information transit node pair exceeds the
  • the first bridge state information of the preset range is preprocessed and sent to the control end, and the final control end monitors, records, and the like according to the first bridge state information sent by the transit node, but does not exceed
  • the first bridge state information of the first preset range is not sent to the transit node, thereby saving network bandwidth resources and improving the monitoring efficiency and accuracy of the bridge state.
  • FIG. 3 is a flowchart showing an implementation process of a bridge state monitoring method according to an embodiment of the present invention.
  • the bridge state monitoring method further includes:
  • Step S301 acquiring second bridge state information collected by the bridge state information collecting device disposed on the bridge; the second bridge state information is exceeded in the first bridge state information collected by the bridge state information collecting device Corresponding first preset range of bridge status information.
  • the first bridge state information of the bridge may be collected by a plurality of bridge state information collecting devices disposed at each position of the bridge.
  • the bridge state information collecting device sends the bridge state information of each of the first bridge state information beyond the corresponding first preset range to the information relay node.
  • the bridge state information exceeding the first preset range in the first bridge state information is referred to as a second bridge state letter. Interest.
  • the acquiring the second bridge state information collected by the bridge state information collection device disposed on the bridge may be: generating an information acquisition instruction, and sending the information acquisition instruction to each bridge state information.
  • the acquiring device is configured to obtain bridge state information collected by each bridge state information collecting device in a preset interval; wherein the information obtaining instruction includes but is not limited to a position identifier of the bridge state information collecting device, a preset interval, and the like .
  • the preset interval can be the previous interval between the current day, or the current interval between the current day.
  • each bridge state information collection device collects the bridge state information of the corresponding position in the preset interval according to the information collection instruction, and sends the information to the information relay node, or the preset interval The collected bridge status information is sent to the information relay node.
  • Step S302 Preprocess the second bridge state information according to current environment information.
  • each of the second bridge state information corresponds to one bridge location information.
  • Current environmental information can have certain impacts on bridge monitoring. For example, the location of the bridge is currently high, resulting in a large amplitude of vibration or a large stress.
  • the second bridge state is preprocessed according to environmental information to minimize or reduce the impact of current environmental information on bridge condition monitoring.
  • the pre-processing of the second bridge state information according to the environment information in the step may be implemented by the following process:
  • Step S401 Acquire current environment information of the bridge.
  • the current environment information includes, but is not limited to, current weather information.
  • Current weather information includes, but is not limited to, current wind, current amount of rain, and the like.
  • the current weather information of the geographical location of the bridge can be obtained through the weather information collecting device, and the current weather information of the geographical location of the bridge can also be obtained through the network.
  • the current wind power can be detected by the wind detecting device, and whether the rainwater and the rainwater are currently detected by the rainwater detecting device.
  • the current environment information may further include current traffic flow information.
  • the traffic flow information of the current bridge between the bridges can be collected by the image acquisition device, or according to the history car.
  • the flow information gives information on the traffic flow throughout the current bridge, and there is no restriction on this.
  • Step S402 Determine, according to the current environment information and the bridge location information corresponding to each of the second bridge state information, a second preset range corresponding to each of the second bridge state information.
  • the second preset range is different from the first preset range in the first embodiment, and the second preset range is based on the current environment information and the bridge location information corresponding to the second bridge state information. It can be concluded that, under the influence of different environmental information, the second preset range corresponding to the second bridge state information may be different. Specifically, different environmental information may have a certain impact on the monitoring of the state of the bridge. For example, the size of the wind, the amount of rain, and the size of the traffic will have a certain impact on the monitoring of the state of the bridge.
  • the impact of the current environment information on the state of the bridge needs to be considered, and the second preset range corresponding to the bridge state information is determined according to the current environment information.
  • the second preset range corresponding to the position of the different regions of the bridge represents the safe range of various information corresponding to the location of the bridge.
  • the regional location of the bridge can be divided into a plurality of regional locations such as a first regional location, a second regional location, and a third regional location.
  • the second preset range corresponding to the first area position may specifically be: a date range, a temperature range, a humidity range, a stress range, a range of a flutter range, and the like.
  • the various information in the second preset range are related to each other as a whole, and the security state determination may not be made for the bridge state information separately for a certain type of information.
  • the temperature/humidity information corresponding to a certain area of the collected bridge is separately compared with the temperature/humidity range in the corresponding second preset range, and the collected temperature/humidity information exceeds the corresponding second preset. If the temperature/humidity range in the range is ⁇ , it is determined that the bridge state is abnormal, which is also inconsistent with the actual situation, and the monitoring is not scientific enough.
  • Step S403 Detect whether the second bridge state information of each strip exceeds a corresponding second preset range.
  • the second preset range may include a separate preset range of the partial information and an overall preset range in which the various information are combined.
  • the collected information may be first combined with the corresponding second preset range.
  • the individual preset ranges of the information are separately compared, and the various preset information of the various information is compared with the corresponding second preset range.
  • each information in the second bridge state information exceeds the corresponding second preset range, and includes the following situations:
  • part of the information in the second bridge status message exceeds a separate preset range of the information in the corresponding second preset range. For example, if the location of a certain area of the bridge corresponds to the individual stress range in the corresponding second preset range, the corresponding second bridge state information may be sent to the information relay node; or, a certain bridge The corresponding second bridge state information may be sent to the information relay node according to the collected flutter amplitude information exceeding the range of the individual flutter amplitude in the corresponding second preset range.
  • the collected stress information and the flutter amplitude information do not exceed the individual stress range and the individual flutter amplitude range in the corresponding second preset range, and the second bridge state information may be The various information is compared with the overall preset range in the second preset range, and the second bridge state information is sent to the information relay node after the preset requirement is met.
  • the overall preset range in the second preset range may be set according to actual conditions.
  • the individual preset range of stress is A5 ⁇ A6, and the individual preset range of the flutter amplitude is B5 ⁇ B6; and the overall preset range of stress in the overall preset range is A7 ⁇ A8, and the overall preset range of the flutter amplitude is B7 ⁇ B8, the overall preset range of stress and the overall preset range of the vibration amplitude are related.
  • the relationship between the two can be based on historical data to obtain the relationship between the two.
  • Step S404 the second bridge state information that exceeds the corresponding second preset range is sent to the control end, so that the control end is configured according to the second bridge state that exceeds the corresponding second preset range.
  • Information detecting the state of the bridge.
  • sending the second bridge state information that exceeds the corresponding second preset range to the control end may be implemented by using the following process:
  • the information transit node encapsulates the second bridge state information and the current environment information that are beyond the second preset range, and sends the information to the control end; the control end can according to the current environment information and the second bridge state information.
  • the state of the bridge is monitored to determine whether the received state information of the second bridge contains the influence of the current environmental information, so as to more accurately monitor the state of the bridge.
  • the bridge condition monitoring method obtains the second bridge state information collected by the bridge state information collecting device disposed on the bridge, and preprocesses the second bridge state information according to the environmental information, and the preprocessing result is satisfied.
  • the second bridge state information of the condition is sent to the control end, so that the control end monitors, records, and the like according to the second bridge state information, and the second bridge state information that does not satisfy the preset condition is not sent to
  • the control terminal can save network bandwidth resources from the information relay node to the control end, and improve the monitoring efficiency of the bridge state.
  • FIG. 5 is a flowchart showing an implementation process of a bridge state monitoring method according to Embodiment 3 of the present invention, and details of the duplicates in Embodiment 2 are not described again, and the details are as follows:
  • Step S501 acquiring second bridge state information collected by the bridge state information collection device disposed on the bridge; the second bridge state information is exceeded in the first bridge state information collected by the bridge state information collection device The bridge state information of the first preset range.
  • Step S502 Preprocess the second bridge state information according to current environment information.
  • Step S503 Send the second bridge status information that exceeds the corresponding second preset range to the control end.
  • Step S504 sending an information collection instruction to the bridge state information collection device corresponding to the second bridge state information that the pre-processing result meets the preset condition, where the information collection instruction includes an acquisition frequency, an acquisition frequency, and a bridge state information collection device identifier. So that the corresponding bridge state information collecting device collects the third bridge state information.
  • the bridge position information corresponding to the second bridge state information is searched for, corresponding to the corresponding bridge state information collecting device, and the information collecting instruction is sent to the bridge state information collecting device, so that the bridge state information is collected.
  • the device collects a bridge shape corresponding to the location of the corresponding area according to the information collection instruction State of mind.
  • each second bridge state information corresponds to a bridge location information, which may be a preset identifier.
  • Each bridge state information collection device corresponds to a bridge location information, which may be a preset identifier.
  • the information collection instruction may include an acquisition frequency, an acquisition frequency, and a bridge state information collection device identifier, and the information collection instruction may correspond to multiple bridge state information collection devices.
  • each bridge state information collection device collects the third bridge state information of the corresponding location area of the bridge according to the information, according to the collection frequency and the number of acquisitions included in the information collection instruction, and directly sends the collected third bridge state information to Corresponding information relay node.
  • Step S505 Receive the third bridge state information, and send the third bridge state information directly to the control terminal.
  • the information relay node directly sends the third bridge status information to the control end, so that the control end meets the bridge position corresponding to the preset condition of the second bridge status information according to the third bridge status information.
  • the loading is further monitored to confirm that the position of the bridge corresponding to the second bridge state information that the pre-processing result satisfies the preset condition is true or only accidental.
  • the bridge condition monitoring method is configured to send an information collection instruction to the bridge state information collection device corresponding to the second bridge state information that meets the preset condition, and then meet the preset according to the third bridge state information.
  • the condition of the bridge position corresponding to the condition of the second bridge state information is further monitored, and the bridge position corresponding to the second bridge state information that the pre-processing result meets the preset condition is confirmed to be a true abnormality or only an accidental situation, which can further improve the state of the bridge. Monitoring accuracy.
  • the bridge state information collection device includes a sensor and a processor, and the control terminal is a server, and the bridge state detection method is further described.
  • each information collecting device may include a temperature sensor , humidity sensor, strain gauge, triaxial acceleration sensor, wind speed partial pressure sensor, etc.
  • the first bridge state information is detected by the processor in each bridge state information collecting device, and the first bridge state information exceeding the first preset range is sent to the information relay node.
  • the information relay node acquires the second bridge state information collected by each sensor disposed on the bridge, and the second bridge state information is that the first bridge state information collected by the bridge state information collection device exceeds the corresponding first preset range. Bridge state information, and preprocessing the second bridge state information according to current environmental information
  • the information relay node sends the second bridge state information that the pre-processing result meets the preset condition to the server.
  • the server monitors the state of the bridge according to the second bridge state information that meets the preset condition according to the pre-processing result.
  • the information transfer node sends an information collection instruction to the bridge state information collection device corresponding to the second bridge state information that the pre-processing result meets the preset condition, where the information collection instruction includes the acquisition frequency, the acquisition frequency, and the bridge state information collection device identifier.
  • Bridge state information collecting device corresponding to the bridge state information collecting device identifier in the information collecting instruction
  • the information relay node After receiving the third bridge state information, the information relay node directly sends the third bridge state information to the server.
  • the server further monitors, according to the third bridge state information, a state of the bridge position corresponding to the second bridge state information that the pre-processing result meets the preset condition, and confirms that the pre-processing result meets the preset condition of the second bridge state information corresponding to the second bridge state information.
  • the position of the bridge is a true anomaly or just an accidental situation.
  • the server may further store the bridge state information sent by the information relay node, and may also perform classification analysis on the bridge state information according to the corresponding bridge position, daytime, weather, etc., and may predict the bridge state. To prevent dangerous situations from occurring.
  • FIG. 7 is a structural block diagram of a bridge state monitoring device according to an embodiment of the present invention. For the convenience of explanation, only the parts related to the present embodiment are shown. [0111] Referring to FIG. 7, the apparatus includes an information collection module 101 and a detection module 102.
  • the information collection module 101 is configured to collect first bridge state information.
  • the detecting module 102 is configured to detect the first bridge state information, and send the first bridge state information that exceeds the first preset range to the information relay node, so that the information transit node pair exceeds The first bridge state information of the first preset range is preprocessed and sent to the control end.
  • each of the first bridge state information corresponds to one bridge location information.
  • the detection module 102 can include a first detection unit 201 and a first information transmission unit 202.
  • the first detecting unit 201 is configured to detect, according to the bridge position information corresponding to the first bridge state information, whether the first bridge state information of each strip exceeds a corresponding first preset range.
  • the first information sending unit 202 is configured to send, to the information relay node, the first bridge state information that is detected by the first detecting unit and exceeds the corresponding first preset range.
  • the bridge condition monitoring device transmits the first bridge information exceeding the first preset range to the information relay node by detecting the collected first bridge state information, so that the information transit node pair exceeds the
  • the first bridge state information of the preset range is preprocessed and sent to the control end, and the final control end monitors, records, and the like according to the first bridge state information sent by the transit node, but does not exceed
  • the first bridge state information of the first preset range is not sent to the transit node, thereby saving network bandwidth resources and improving the monitoring efficiency of the bridge state.
  • FIG. 8 is a structural block diagram of the bridge state monitoring device provided by the embodiment of the present invention. For the convenience of explanation, only the parts related to the present embodiment are shown.
  • the apparatus further includes a bridge state information receiving module 301 and a pre-processing module 302.
  • the bridge state information receiving module 301 is configured to acquire the second bridge state information collected by the information collecting module 101.
  • the second bridge state information is that the first bridge state information collected by the information collecting module 101 exceeds a preset range. Bridge status information.
  • the preprocessing module 302 is configured to preprocess the second bridge state information according to current environment information. [0123] wherein each of the second bridge state information corresponds to one bridge location information.
  • the pre-processing module 302 can include an environment information unit 401, a processing unit 402, a second detecting unit 403, and a second information transmitting unit 404.
  • the environment information unit 401 is configured to acquire current environment information of the bridge.
  • the processing unit 402 is configured to determine, according to the current environment information and the bridge location information corresponding to each piece of the second bridge state information, a second preset range corresponding to each of the second bridge state information.
  • the second detecting unit 403 is configured to detect whether each of the second bridge state information exceeds a corresponding second preset range.
  • the second information sending unit 404 is configured to send the second bridge state information that exceeds the corresponding second preset range to the control end, so that the control end is configured according to the second preset corresponding to the second preset
  • the second bridge status information of the range is used to detect the state of the bridge.
  • the second information transmitting unit 404 may include an information encapsulating subunit and an information transmitting subunit. And an information encapsulating subunit, configured to encapsulate each of the second bridge state information that exceeds the corresponding second preset range with the current environment information. An information sending subunit, configured to send the encapsulated information to the control end, so that the control end monitors the status of the bridge according to the encapsulated information.
  • the bridge state detecting device acquires second bridge state information collected by each information collecting module disposed on the bridge, and preprocesses the second bridge state information according to the environment information, and satisfies the preset result to meet the preset
  • the second bridge state information of the condition is sent to the control end, so that the control end monitors, records, and the like according to the second bridge state information, and the second bridge state information that does not satisfy the preset condition is not sent to the control. Therefore, the network bandwidth resource of the information relay node to the control end can be saved, and the monitoring efficiency of the bridge state can be improved.
  • FIG. 9 is a structural block diagram of the bridge state monitoring device provided by the embodiment of the present invention. For the convenience of explanation, only the parts related to the present embodiment are shown.
  • the device further includes a bridge state information receiving module 301, a preprocessing module 302, and an instruction sending module 303.
  • the bridge state information receiving module 301 is configured to acquire the second bridge state information collected by the information collecting module 101 disposed on the bridge; the second bridge state information is the first bridge state information collected by the information collecting module 101. The bridge status information beyond the first preset range.
  • the pre-processing module 302 is configured to pre-process the second bridge state information according to current environment information.
  • the instruction sending module 303 is configured to send an information collection instruction to the information collection module 101 corresponding to the second bridge state information that the pre-processing result meets the preset condition, where the information collection instruction includes an acquisition frequency, an acquisition frequency, and an information collection module.
  • the identifier is such that the corresponding information collection module 101 collects the third bridge state information.
  • the bridge condition monitoring device sends an information collection instruction to the information collection module 101 corresponding to the second bridge state information that meets the preset condition, and then satisfies the preset condition according to the third bridge state information.
  • the state of the bridge position corresponding to the second bridge state information is further monitored, and the bridge position corresponding to the second bridge state information that the pre-processing result meets the preset condition is confirmed to be a true abnormality or only an accidental situation, which can further improve the state of the bridge. Monitoring accuracy.
  • FIG. 10 is a schematic structural diagram of a bridge state monitoring apparatus according to an embodiment of the present invention.
  • the bridge state monitoring apparatus may include: a processor 501, a memory 502, and a memory 502 and A computer program 503, such as a bridge condition monitoring program, executable on the processor 501.
  • the processor 501 executes the computer program 503 to implement the steps in the various embodiments of the bridge state monitoring methods described above, such as steps 101 through 102 shown in FIG.
  • the processor 501 executes the computer program 503 to implement the functions of the modules/units in the above-described respective device embodiments, such as the functions of the modules 101 to 102 shown in FIG.
  • the computer program 503 can be divided into one or more modules/units, which are stored in the memory 502 and executed by the processor 501 To complete the present invention.
  • the one or more modules/units may be a series of computer program instruction segments capable of performing a particular function, the instruction segments being used to describe the execution of the computer program 503 in the bridge condition monitoring device 50.
  • the computer program 503 can be divided into an information collection module and a detection module, and the specific functions of each module are as follows: [0140] an information collecting module, configured to collect first bridge state information;
  • a detecting module configured to detect the first bridge state information, and send the first bridge state information that exceeds a first preset range to an information relay node, so that the information transit node pair exceeds
  • the first bridge state information of the first preset range is preprocessed and sent to the control end.
  • the bridge condition monitoring device 50 may be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server.
  • the bridge condition monitoring device 50 can include, but is not limited to, a processor 501, a memory 502. It will be understood by those skilled in the art that FIG. 10 is merely an example of the bridge condition monitoring device 50, and does not constitute a limitation of the bridge condition monitoring device 50, and may include more or less components than those illustrated, or may combine certain components. Alternatively, different components, such as the bridge condition monitoring device 50, may also include input and output devices, network access devices, buses, and the like.
  • the processor 501 may be a central processing unit (CPU), or may be another general-purpose processor, a digital signal processor (DSP), or an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), ready-to-use programmable gate array
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC Application Specific Integrated Circuit
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the memory 502 may be an internal storage unit of the bridge condition monitoring device 50, such as a hard disk or a memory of the bridge state monitoring device 50.
  • the memory 502 may also be an external storage device of the bridge condition monitoring device 50, such as a plug-in hard disk provided on the bridge state monitoring device 50, a smart memory card (SMC), and a secure digital (Secure) Digital, SD) cards, flash cards, etc.
  • the memory 502 may also include both an internal storage unit of the bridge condition monitoring device 50 and an external storage device.
  • the memory 502 is used to store the computer program and other programs and data required by the bridge condition monitoring device 50.
  • the memory 502 can also be used to temporarily store data that has been output or is about to be output.
  • the disclosed apparatus and method can be implemented in other ways.
  • the system embodiment described above is merely illustrative.
  • the division of the module or unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
  • the coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the unit described as a separate component may or may not be physically distributed, and the component displayed as a unit may or may not be a physical unit, that is, may be located in one place, or may be distributed to multiple On the network unit. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium. Based on such understanding, the present invention is implemented All or part of the processes in the above embodiments may also be implemented by a computer program to instruct related hardware.
  • the computer program may be stored in a computer readable storage medium, and the computer program is executed by the processor. The steps of the various method embodiments described above can be implemented.
  • a portion of the technical solution that contributes in essence or to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a
  • the computer device which may be a personal computer, a server, or a network device, etc.
  • a processor performs all or part of the steps of the method described in various embodiments of the embodiments of the present invention.
  • the computer program includes computer program code, and the computer program code may be in a source code form, an object code form, an executable file or some intermediate form.
  • the computer readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, a read only memory (ROM, Read-Only Memory) ), random access memory (RAM, Random Access Memory), electrical carrier signals, telecommunications signals, and software distribution media.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • electrical carrier signals telecommunications signals
  • software distribution media may be included in the computer readable medium. It should be noted that the content contained in the computer readable medium may be appropriately increased or decreased according to the requirements of legislation and patent practice in a jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, computer readable media Does not include electrical carrier signals and telecommunication signals.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Marketing (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer And Data Communications (AREA)
  • Telephonic Communication Services (AREA)

Abstract

一种桥梁状态监测方法及装置,包括:获取设置在桥梁上的桥梁状态信息采集装置采集的第二桥梁状态信息;第二桥梁状态信息为桥梁状态信息采集装置采集到的第一桥梁状态信息中超出预设范围的桥梁状态信息(S501);根据环境信息对第二桥梁状态信息进行预处理(S502);将预处理结果满足预设条件的第二桥梁状态信息发送至控制端,以使得控制端根据预处理结果满足预设条件的第二桥梁状态信息,对桥梁状态进行检测(S503)。能够节省网络带宽资源,提高对桥梁状态的监测效率和准确度。

Description

说明书 发明名称:桥梁状态监测方法及装置 技术领域
[0001] 本发明属于数据处理技术领域, 尤其涉及一种桥梁状态监测方法及装置。
背景技术
[0002] 传统对桥梁状态的监测, 通常采用传感器检测桥梁的状态, 然后将检测到的数 据发送给控制处理端处理, 对桥梁的状态进行监控预测等。 由于每个桥梁设置 的传感器的数量较多, 因此控制处理端接收到的数据量较大, 对应的处理速度 就会较慢, 不利于对桥梁的状态进行快速监控预测。
技术问题
[0003] 有鉴于此, 本发明实施例提供了一种桥梁状态监测方法及装置, 以解决现有技 术中控制处理端接收到的数据量较大导致的不利于对桥梁的状态进行快速监控 预测的问题。
问题的解决方案
技术解决方案
[0004] 本发明实施例的第一方面, 提供了一种桥梁状态监测方法, 包括:
[0005] 采集第一桥梁状态信息;
[0006] 对所述第一桥梁状态信息进行检测, 将超出第一预设范围的所述第一桥梁状态 信息发送至信息中转节点, 以使得所述信息中转节点对超出所述预设范围的所 述第一桥梁状态信息进行预处理后, 发送至控制端。
[0007] 本发明实施例的第二方面, 提供了一种桥梁状态监测装置, 包括:
[0008] 信息采集模块, 用于采集第一桥梁状态信息;
[0009] 检测模块, 用于对所述第一桥梁状态信息进行检测, 将超出第一预设范围的所 述第一桥梁状态信息发送至信息中转节点, 以使得所述信息中转节点对超出所 述预设范围的所述第一桥梁状态信息进行预处理后, 发送至控制端。
[0010] 本发明实施例的第三方面, 提供了一种桥梁状态监测装置, 包括存储器、 处理 器以及存储在所述存储器中并可在所述处理器上运行的计算机程序, 所述处理 器执行所述计算机程序吋实现如上述任一项所述桥梁状态监测方法的步骤。
[0011] 本发明实施例的第四方面, 提供了一种计算机可读存储介质, 所述计算机可读 存储介质存储有计算机程序, 所述计算机程序被处理器执行吋实现如上述任一 项所述桥梁状态监测方法的步骤。
发明的有益效果
有益效果
[0012] 本发明实施例, 通过对采集到的第一桥梁状态信息进行检测, 将超出第一预设 范围的第一桥梁信息发送至信息中转节点, 以使得所述信息中转节点对超出所 述预设范围的所述第一桥梁状态信息进行预处理后, 发送至控制端, 最终控制 端根据中转节点发送来的第一桥梁状态信息对桥梁状态进行监测、 记录等操作 , 而对于未超出第一预设范围的第一桥梁状态信息则不发送给中转节点, 从而 能够节省网络带宽资源, 提高对桥梁状态的监测效率和准确度。
对附图的简要说明
附图说明
[0013] 为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例或现有技术描 述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是 本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性 的前提下, 还可以根据这些附图获得其他的附图。
[0014] 图 1是本发明实施例一提供的桥梁状态监测方法的流程图;
[0015] 图 2是本发明实施例一提供的步骤 S102的实现流程图;
[0016] 图 3是本发明实施例二提供的桥梁状态监测方法的流程图;
[0017] 图 4是本发明实施例二提供的步骤 S302的实现流程图;
[0018] 图 5是本发明实施例三提供的桥梁状态监测方法的具体流程图;
[0019] 图 6是本发明实施例四提供的桥梁状态监测方法的多端交互示意图;
[0020] 图 7是本发明实施例五提供的桥梁状态监测装置的结构框图;
[0021] 图 8是本发明实施例六提供的桥梁状态监测装置的结构框图;
[0022] 图 9是本发明实施例七提供的桥梁状态监测装置的又一结构框图;
[0023] 图 10是本发明实施例八提供的桥梁状态监测装置的示意图。 本发明的实施方式
[0024] 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实 施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前 提下所获得的所有其他实施例, 都属于本发明保护的范围。
[0025] 为了说明本发明所述的技术方案, 下面通过具体实施例来进行说明。
[0026] 实施例一
[0027] 图 1示出了本发明实施例一提供的桥梁状态监测方法的实现流程, 详述如下: [0028] 步骤 S101, 采集第一桥梁状态信息。
[0029] 其中, 可以通过设置在桥梁各个位置的多个信息采集装置采集桥梁的第一桥梁 状态信息。 多个信息采集装置采集的第一桥梁状态信息包括但不限于桥梁的温 度信息、 湿度信息、 应力信息、 颤动幅度信息等。 具体的, 各个信息采集装置 可以包括温度传感器、 湿度传感器、 应变片、 三轴加速度传感器、 风速分压传 感器等。
[0030] 例如, 每个桥梁状态信息采集装置可以包括一个温度传感器、 一个湿度传感器 、 一个应变片、 一个三轴加速度传感器、 一个风速分压传感器和一个处理器。
[0031] 步骤 S102, 对所述第一桥梁状态信息进行检测, 将超出第一预设范围的所述第 一桥梁状态信息发送至信息中转节点, 以使得所述信息中转节点对超出所述预 设范围的所述第一桥梁状态信息进行预处理后, 发送至控制端。
[0032] 其中, 每条所述第一桥梁状态信息对应一个桥梁位置信息。 其中, 每条第一桥 梁状态信息包括但不限于桥梁的温度信息、 湿度信息、 应力信息、 颤动幅度信 息等。 每条第一桥梁状态信息可以由一个桥梁状态信息采集装置采集桥梁的相 关信息得出。
[0033] 本实施例中, 可以通过桥梁状态信息采集装置中的处理器对第一桥梁状态信息 进行检测, 将超出第一预设范围的第一桥梁状态信息发送至信息中转节点, 而 对于未超出第一预设范围的第一桥梁状态信息不发送, 从而能够节省网络带宽 资源, 提高对桥梁状态的监测效率。 [0034] 参见图 2, 一个实施例中, 步骤 S201 , 结合所述第一桥梁状态信息对应的桥梁 位置信息, 检测各条所述第一桥梁状态信息是否超出对应的第一预设范围。
[0035] 其中, 第一预设范围包括第一桥梁状态信息中各种信息的预设范围。 例如, 第 一预设范围可以包括第一温度预设范围、 第一湿度预设范围、 第一应力预设范 围、 第一颤动幅度预设范围等。
[0036] 对于桥梁的不同区域位置, 对应的第一预设范围不尽相同。 可以理解的, 靠近 桥梁两端位置的颤动幅度小于桥梁中间位置的颤动幅度; 桥梁顶部位置的温湿 度信息与桥梁底部位置的温湿度信息不尽相同; 桥梁不同位置的应力信息不尽 相同。
[0037] 第一预设范围可以统计历史数据得出。 例如, 统计桥梁在各个吋间段的温度信 息、 湿度信息、 应力信息和颤动幅度信息, 然后根据桥梁状态无异常吋的相关 信息对应的范围值设置第一预设范围。
[0038] 通过对桥梁的不同位置区域设置不同的第一预设范围, 能够使得对桥梁状态的 监测更加合理、 准确且符合实际情况, 提高对桥梁状态监测的准确性。
[0039] 另外, 第一预设范围还与日期相关。 例如, 冬季的温湿度与夏季的温湿度不同
, 因此, 对于桥梁同一预设区域对应的桥梁状态信息的第一预设范围也不尽相 同。
[0040] 可以理解的, 桥梁不同区域位置对应的第一预设范围表征桥梁该区域位置对应 的各种信息的安全范围。 例如, 桥梁的区域位置可以划分为第一区域位置、 第 二区域位置、 第三区域位置等多个区域位置。 其中, 第一区域位置对应的第一 预设范围具体可以为: 日期范围、 温度范围、 湿度范围、 应力范围、 颤动幅度 范围等。
[0041] 需要说明的是, 第一预设范围中的各种信息之间是相互关联作为一个整体的, 应单独对于某一种信息可能无法对桥梁状态信息做出安全状态判定。 例如, 单 独将采集到的桥梁某个区域位置对应的温度 /湿度信息与相应的第一预设范围中 的温度 /湿度范围进行比较, 在采集到的温度 /湿度信息超出对应的第一预设范围 中的温度 /湿度范围吋, 则判定桥梁状态异常, 也是不符合实际情况, 监测不够 科学。 [0042] 而对于单独将采集到的桥梁某个区域位置对应的应力 /颤动幅度信息与相应的 第一预设范围中的应力 /颤动幅度范围进行比较, 在采集到的应力 /颤动幅度信息 超出对应的第一预设范围中的应力 /颤动幅度范围吋, 则可以判定桥梁状态异常
[0043] 基于上述原因, 第一预设范围中, 可以包括部分信息的单独预设范围和各种信 息组合在一起的整体预设范围。 可以先将采集到的部分信息与对应的第一预设 范围中该信息的单独预设范围进行单独比较, 在需要吋再将采集到的各种信息 与对应的第一预设范围中将各种信息的整体预设范围进行比较。
[0044] 步骤 S202, 将超出对应的第一预设范围的第一桥梁状态信息发送至所述信息中 转节点。
[0045] 其中, 在检测出第一桥梁状态信息超出对应的第一预设范围吋, 将该第一桥梁 状态信息发送至信息中转节点, 以使得信息中转节点将该第一桥梁状态信息进 行预处理后发送给服务器进行桥梁状态监测、 记录等。
[0046] 具体的, 第一桥梁状态信息超出对应的第一预设范围包括以下几种情况: [0047] 第一桥梁状态信中的部分信息超出对应的第一预设范围中的该信息的单独预设 范围。 例如, 桥梁的某个区域位置对应采集到的应力信息超出相应的第一预设 范围中的单独应力范围, 则可以将相应的第一桥梁状态信息发送至信息中转节 点; 或, 桥梁的某个区域位置对应采集到的颤动幅度信息超出相应的第一预设 范围中的单独颤动幅度范围, 则可以将相应的第一桥梁状态信息发送至信息中 转节点。
[0048] 第一桥梁状态信息中的全部信息超出对应的第一预设范围中的整体预设范围。
例如, 桥梁的某个区域位置对应采集到的应力信息和颤动幅度信息均未超出相 应的第一预设范围中的单独应力范围和单独颤动幅度范围, 则可以将该第一桥 梁状态信息中的各种信息与第一预设范围中的整体预设范围进行比较, 在满足 预设要求吋将该第一桥梁状态信息发送至信息中转节点。
[0049] 其中, 第一预设范围中的整体预设范围可以根据实际情况进行设置。 例如, 应 力的单独预设范围为 A1~A2, 颤动幅度的单独预设范围为 B1~B2; 而整体预设范 围中应力的整体预设范围为 A3~A4, 颤动幅度的整体预设范围为 B3~B4, 应力的 整体预设范围和颤动幅度的整体预设范围之间是具有关联关系的, 例如, 可以 根据历史数据对两者进行拟合得出两者之间的关联关系。
[0050] 需要说明的是, 各个桥梁状态信息采集装置可以按照预设吋间间隔一直采集桥 梁状态信息, 并对采集到的桥梁状态信息进行检测, 将超出第一预设范围的桥 梁状态信息发送给信息中转节点。 各个桥梁状态信息采集装置可以根据信息中 转节点发送的信息采集指令采集桥梁状态信息, 并对采集到的桥梁状态信息进 行检测, 将超出第一预设范围的桥梁状态信息发送给信息中转节点, 并在未接 收到信息中转节点发送的信息采集指令吋处于休眠状态。
[0051] 本实施例中, 各个桥梁状态信息采集装置上可以设置光伏发电单元, 通过光伏 发电进行供电工作。 因此各个桥梁状态信息采集装置在未接收到信息中转节点 发送的信息采集指令吋处于休眠状态, 能够节省消耗。 当然, 也可以通过桥梁 上路灯的电源为各个桥梁状态信息采集装置供电。
[0052] 上述桥梁状态监测方法, 通过对采集到的第一桥梁状态信息进行检测, 将超出 第一预设范围的第一桥梁信息发送至信息中转节点, 以使得所述信息中转节点 对超出所述预设范围的所述第一桥梁状态信息进行预处理后, 发送至控制端, 最终控制端根据中转节点发送来的第一桥梁状态信息对桥梁状态进行监测、 记 录等操作, 而对于未超出第一预设范围的第一桥梁状态信息则不发送给中转节 点, 从而能够节省网络带宽资源, 提高对桥梁状态的监测效率和准确度。
[0053] 实施例二
[0054] 图 3示出了本发明实施例提供的桥梁状态监测方法的实现流程, 在实施例一的 基础上, 该桥梁状态监测方法还包括:
[0055] 步骤 S301, 获取设置在桥梁上的桥梁状态信息采集装置采集的第二桥梁状态信 息; 所述第二桥梁状态信息为所述桥梁状态信息采集装置采集到的第一桥梁状 态信息中超出相应的第一预设范围的桥梁状态信息。
[0056] 其中, 可以通过设置在桥梁各个位置的多个桥梁状态信息采集装置采集桥梁的 第一桥梁状态信息。 桥梁状态信息采集装置将各条第一桥梁状态信息中超出相 应的第一预设范围的桥梁状态信息发送给信息中转节点。 为便于表述, 将第一 桥梁状态信息中超出相应的第一预设范围的桥梁状态信息称作第二桥梁状态信 息。
[0057] 关于桥梁状态信息采集装置如何将各条第一桥梁状态信息中超出相应的第一预 设范围的桥梁状态信息发送给信息中转节点的过程, 可以参考实施例一中的相 关内容, 在此不再赘述。
[0058] 本实施例中, 所述获取设置在桥梁上的桥梁状态信息采集装置采集的第二桥梁 状态信息具体可以为: 生成信息获取指令, 并将所述信息获取指令发送至各个 桥梁状态信息采集装置, 以获取各个桥梁状态信息采集装置在预设吋间段内采 集的桥梁状态信息; 其中, 所述信息获取指令包括但不限于桥梁状态信息采集 装置的位置标识、 预设吋间段等。 预设吋间段可以为当前吋间以前的吋间段, 也可以为当前吋间以后的吋间段。
[0059] 各个桥梁状态信息采集装置接收到信息采集指令后, 根据信息采集指令采集预 设吋间段内相应的位置的桥梁状态信息, 并发送给信息中转节点, 或将预设吋 间段内所采集的桥梁状态信息发送给信息中转节点。
[0060] 步骤 S302, 根据当前环境信息对所述第二桥梁状态信息进行预处理。
[0061] 其中, 每条所述第二桥梁状态信息对应一个桥梁位置信息。 当前环境信息能够 对桥梁监测造成一定影响, 例如桥梁所处地理位置当前风力较大导致桥梁颤动 幅度较大或应力较大。 根据环境信息对第二桥梁状态进行预处理, 以尽量防止 或减小当前环境信息对桥梁状态监测的影响。
[0062] 参见图 4, 本步骤中的所述根据环境信息对所述第二桥梁状态信息进行预处理 可以通过以下过程实现:
[0063] 步骤 S401 , 获取桥梁的当前环境信息。
[0064] 其中, 当前环境信息包括但不限于当前天气信息。 当前天气信息包括但不限于 当前风力、 当前雨水量等。 对于当前天气信息, 可以通过天气信息采集装置获 取桥梁所处地理位置的当前天气信息, 也可以通过网络获取桥梁所处地理位置 的当前天气信息。 例如, 可以通过风力检测装置检测当前风力大小, 通过雨水 量检测装置检测当前是否有雨水以及雨水大小。
[0065] 可选的, 当前环境信息还可以包括当前车流量信息。 对于当前车流量信息, 可 以通过图像采集装置采集当前吋间桥梁各处的车流量信息, 也可以根据历史车 流量信息得出当前吋间桥梁各处的车流量信息, 对此不作限制。
[0066] 步骤 S402, 结合所述当前环境信息和各条所述第二桥梁状态信息对应的桥梁位 置信息, 确定各条所述第二桥梁状态信息对应的第二预设范围。
[0067] 其中, 第二预设范围与实施例一中的第一预设范围不同, 所述第二预设范围根 据所述当前环境信息和条所述第二桥梁状态信息对应的桥梁位置信息得出, 且 在不同的环境信息影响下, 第二桥梁状态信息对应的第二预设范围可能不同。 具体的, 不同的环境信息可能会对桥梁状态的监测有一定的影响, 例如, 风力 大小、 雨水量大小、 车流量大小都会对桥梁状态的监测有一定的影响。
[0068] 基于上述原因, 需要考虑当前环境信息对桥梁状态的影响, 根据当前环境信息 确定桥梁状态信息对应的第二预设范围。
[0069] 可以理解的, 桥梁不同区域位置对应的第二预设范围表征桥梁该区域位置对应 的各种信息的安全范围。 例如, 桥梁的区域位置可以划分为第一区域位置、 第 二区域位置、 第三区域位置等多个区域位置。 其中, 第一区域位置对应的第二 预设范围具体可以为: 日期范围、 温度范围、 湿度范围、 应力范围、 颤动幅度 范围等。
[0070] 需要说明的是, 第二预设范围中的各种信息之间是相互关联作为一个整体的, 应单独对于某一种信息可能无法对桥梁状态信息做出安全状态判定。 例如, 单 独将采集到的桥梁某个区域位置对应的温度 /湿度信息与相应的第二预设范围中 的温度 /湿度范围进行比较, 在采集到的温度 /湿度信息超出对应的第二预设范围 中的温度 /湿度范围吋, 则判定桥梁状态异常, 也是不符合实际情况, 监测不够 科学。
[0071] 而对于单独将采集到的桥梁某个区域位置对应的应力 /颤动幅度信息与相应的 第二预设范围中的应力 /颤动幅度范围进行比较, 在采集到的应力 /颤动幅度信息 超出对应的第二预设范围中的应力 /颤动幅度范围吋, 则可以判定桥梁状态异常
[0072] 步骤 S403 , 检测各条所述第二桥梁状态信息是否超出对应的第二预设范围。
[0073] 其中, 第二预设范围中可以包括部分信息的单独预设范围和各种信息组合在一 起的整体预设范围。 可以先将采集到的部分信息与对应的第二预设范围中该信 息的单独预设范围进行单独比较, 在需要吋再将采集到的各种信息与对应的第 二预设范围中将各种信息的整体预设范围进行比较。
[0074] 具体的, 第二桥梁状态信息中的各个信息超出对应的第二预设范围包括以下几 种情况:
[0075] 第二桥梁状态信中的部分信息超出对应的第二预设范围中的该信息的单独预设 范围。 例如, 桥梁的某个区域位置对应采集到的应力信息超出相应的第二预设 范围中的单独应力范围, 则可以将相应的第二桥梁状态信息发送至信息中转节 点; 或, 桥梁的某个区域位置对应采集到的颤动幅度信息超出相应的第二预设 范围中的单独颤动幅度范围, 则可以将相应的第二桥梁状态信息发送至信息中 转节点。
[0076] 第二桥梁状态信息中的全部信息超出对应的第二预设范围中的整体预设范围。
例如, 桥梁的某个区域位置对应采集到的应力信息和颤动幅度信息均未超出相 应的第二预设范围中的单独应力范围和单独颤动幅度范围, 则可以将该第二桥 梁状态信息中的各种信息与第二预设范围中的整体预设范围进行比较, 在满足 预设要求吋将该第二桥梁状态信息发送至信息中转节点。
[0077] 其中, 第二预设范围中的整体预设范围可以根据实际情况进行设置。 例如, 应 力的单独预设范围为 A5~A6, 颤动幅度的单独预设范围为 B5~B6; 而整体预设范 围中应力的整体预设范围为 A7~A8, 颤动幅度的整体预设范围为 B7~B8, 应力的 整体预设范围和颤动幅度的整体预设范围之间是具有关联关系的, 例如, 可以 根据历史数据对两者进行拟合得出两者之间的关联关系。
[0078] 步骤 S404, 将所述超出对应的第二预设范围的第二桥梁状态信息发送至控制端 , 以使得所述控制端根据所述超出对应的第二预设范围的第二桥梁状态信息, 对桥梁状态进行检测。
[0079] 一个实施例中, 所述将所述超出对应的第二预设范围的第二桥梁状态信息发送 至控制端可以通过以下过程实现:
[0080] 将超出对应的第二预设范围的各条所述第二桥梁状态信息与所述当前环境信息 进行封装;
[0081] 将封装后的信息发送至所述控制端, 以使得所述控制端根据封装后的信息对桥 梁状态进行监测。
[0082] 具体的, 信息中转节点将超出相应第二预设范围的各条第二桥梁状态信息与当 前环境信息进行封装后发给控制端; 控制端能够根据当前环境信息和第二桥梁 状态信息对桥梁状态进行监测, 判断接收到的第二桥梁状态信息是否包含了当 前环境信息的影响, 以对桥梁状态进行更加精准的监测。
[0083] 上述桥梁状态监测方法, 获取设置在桥梁上的桥梁状态信息采集装置采集的第 二桥梁状态信息, 并根据环境信息对所述第二桥梁状态信息进行预处理, 将预 处理结果满足预设条件的第二桥梁状态信息发送至控制端, 以使得控制端根据 第二桥梁状态信息对桥梁状态进行监测、 记录等操作, 而对于不满足预设条件 的第二桥梁状态信息则不发送给控制端, 从而能够节省信息中转节点到控制端 的网络带宽资源, 提高对桥梁状态的监测效率。
[0084] 实施例三
[0085] 图 5示出了本发明实施例三提供的桥梁状态监测方法的实现流程, 与实施例二 中重复的内容不再赘述, 详述如下:
[0086] 步骤 S501, 获取设置在桥梁上的桥梁状态信息采集装置采集的第二桥梁状态信 息; 所述第二桥梁状态信息为所述桥梁状态信息采集装置采集到的第一桥梁状 态信息中超出第一预设范围的桥梁状态信息。
[0087] 步骤 S502, 根据当前环境信息对所述第二桥梁状态信息进行预处理。
[0088] 步骤 S503, 将所述超出对应的第二预设范围的第二桥梁状态信息发送至控制端
, 以使得所述控制端根据所述超出对应的第二预设范围的第二桥梁状态信息, 对桥梁状态进行检测。
[0089] 步骤 S504, 向预处理结果满足预设条件的第二桥梁状态信息对应的桥梁状态信 息采集装置发送信息采集指令, 所述信息采集指令包括采集频率、 采集次数和 桥梁状态信息采集装置标识, 以使得对应的桥梁状态信息采集装置采集第三桥 梁状态信息。
[0090] 其中, 可以通过査找第二桥梁状态信息对应的桥梁位置信息, 对应出相应的桥 梁状态信息采集装置, 再将信息采集指令发送给该桥梁状态信息采集装置, 以 使得该桥梁状态信息采集装置根据该信息采集指令采集对应区域位置的桥梁状 态 息。
[0091] 本实施例中, 每个第二桥梁状态信息对应一个桥梁位置信息, 具体可以为预设 的标识。 每个桥梁状态信息采集装置对应一个桥梁位置信息, 具体可以为预设 的标识。 信息采集指令可以包括采集频率、 采集次数和桥梁状态信息采集装置 标识, 信息采集指令可以对应多个桥梁状态信息采集装置。
[0092] 各个桥梁状态信息采集装置根据信息, 按照信息采集指令中包括的采集频率和 采集次数, 采集桥梁相应位置区域的第三桥梁状态信息, 并将采集得到的第三 桥梁状态信息直接发给对应的信息中转节点。
[0093] 步骤 S505, 接收所述第三桥梁状态信息, 并将所述第三桥梁状态信息直接发送 至所述控制端。
[0094] 其中, 信息中转节点接收到第三桥梁状态信息后直接发送给控制端, 以使控制 端根据第三桥梁状态信息对预处理结果满足预设条件的第二桥梁状态信息对应 的桥梁位置的装填进行进一步监测, 确认预处理结果满足预设条件的第二桥梁 状态信息对应的桥梁位置为真异常或只是偶然的情况。
[0095] 上述桥梁状态监测方法, 通过向预处理结果满足预设条件的第二桥梁状态信息 对应的桥梁状态信息采集装置发送信息采集指令, 然后根据第三桥梁状态信息 对预处理结果满足预设条件的第二桥梁状态信息对应的桥梁位置的状态进行进 一步监测, 确认预处理结果满足预设条件的第二桥梁状态信息对应的桥梁位置 为真异常或只是偶然的情况, 能够进一步提高对桥梁状态的监测准确性。
[0096] 应理解, 上述各个实施例中各步骤的序号的大小并不意味着执行顺序的先后, 各过程的执行顺序应以其功能和内在逻辑确定, 而不应对本发明实施例的实施 过程构成任何限定。
[0097] 实施例四
[0098] 参见图 6, 以下以桥梁状态信息采集装置包括传感器和处理器、 控制端为服务 器为例, 对桥梁状态检测方法进行进一步说明。
[0099] 通过设置在桥梁上的各个桥梁状态信息采集装置中的各个传感器采集第一桥梁 状态信息, 所述第一桥梁状态信息包括但不限于桥梁的温度信息、 湿度信息、 应力信息、 颤动幅度信息等。 具体的, 各个信息采集装置可以包括温度传感器 、 湿度传感器、 应变片、 三轴加速度传感器、 风速分压传感器等。
[0100] 通过各个桥梁状态信息采集装置中的处理器对相应的第一桥梁状态信息进行检 测, 将超出第一预设范围的所述第一桥梁状态信息发送至信息中转节点。
[0101] 信息中转节点获取设置在桥梁上的各个传感器采集的第二桥梁状态信息, 第二 桥梁状态信息为桥梁状态信息采集装置采集到的第一桥梁状态信息中超出相应 的第一预设范围的桥梁状态信息, 并根据当前环境信息对所述第二桥梁状态信 息进行预处理
[0102] 信息中转节点将预处理结果满足预设条件的第二桥梁状态信息发送至服务器。
[0103] 服务器根据预处理结果满足预设条件的第二桥梁状态信息, 对桥梁状态进行监
[0104] 信息中转节点向预处理结果满足预设条件的第二桥梁状态信息对应的桥梁状态 信息采集装置发送信息采集指令, 其中信息采集指令包括采集频率、 采集次数 和桥梁状态信息采集装置标识。
[0105] 与信息采集指令中的桥梁状态信息采集装置标识对应的桥梁状态信息采集装置
, 按照采集频率、 采集次数采集第三桥梁状态信息, 并将所述第三桥梁状态信 息直接发送给信息中转节点。
[0106] 信息中转节点接收到第三桥梁状态信息以后, 将第三桥梁状态信息直接发送至 服务器。
[0107] 服务器根据第三桥梁状态信息对预处理结果满足预设条件的第二桥梁状态信息 对应的桥梁位置的状态进行进一步监测, 确认预处理结果满足预设条件的第二 桥梁状态信息对应的桥梁位置为真异常或只是偶然的情况。
[0108] 进一步的, 服务器还可以保存信息中转节点发送来的桥梁状态信息, 还可以对 该桥梁状态信息按照对应的桥梁位置、 吋间、 天气等情况进行分类分析, 并可 以对桥梁状态进行预测, 以防止危险情况的发生。
[0109] 实施例五
[0110] 对应于上文实施例一所述的桥梁状态监测方法, 图 7示出了本发明实施例提供 的桥梁状态监测装置的结构框图。 为了便于说明, 仅示出了与本实施例相关的 部分。 [0111] 参照图 7, 该装置包括信息采集模块 101和检测模块 102。
[0112] 信息采集模块 101, 用于采集第一桥梁状态信息。
[0113] 检测模块 102, 用于对所述第一桥梁状态信息进行检测, 将超出第一预设范围 的所述第一桥梁状态信息发送至信息中转节点, 以使得所述信息中转节点对超 出所述第一预设范围的所述第一桥梁状态信息进行预处理后, 发送至控制端。
[0114] 其中, 每条所述第一桥梁状态信息对应一个桥梁位置信息。 一个实施例中, 检 测模块 102可以包括第一检测单元 201和第一信息发送单元 202。
[0115] 第一检测单元 201, 用于结合所述第一桥梁状态信息对应的桥梁位置信息, 检 测各条所述第一桥梁状态信息是否超出对应的第一预设范围。
[0116] 第一信息发送单元 202, 用于将所述第一检测单元检测出的超出对应的第一预 设范围的第一桥梁状态信息发送至所述信息中转节点。
[0117] 上述桥梁状态监测装置, 通过对采集到的第一桥梁状态信息进行检测, 将超出 第一预设范围的第一桥梁信息发送至信息中转节点, 以使得所述信息中转节点 对超出所述预设范围的所述第一桥梁状态信息进行预处理后, 发送至控制端, 最终控制端根据中转节点发送来的第一桥梁状态信息对桥梁状态进行监测、 记 录等操作, 而对于未超出第一预设范围的第一桥梁状态信息则不发送给中转节 点, 从而能够节省网络带宽资源, 提高对桥梁状态的监测效率。
[0118] 实施例六
[0119] 对应于上文实施例二所述的桥梁状态监测方法, 图 8示出了本发明实施例提供 的桥梁状态监测装置的结构框图。 为了便于说明, 仅示出了与本实施例相关的 部分。
[0120] 参照图 8, 在实施例五的基础上, 该装置还包括桥梁状态信息接收模块 301和预 处理模块 302。
[0121] 桥梁状态信息接收模块 301, 用于获取信息采集模块 101采集的第二桥梁状态信 息; 所述第二桥梁状态信息为信息采集模块 101采集到的第一桥梁状态信息中超 出预设范围的桥梁状态信息。
[0122] 预处理模块 302, 用于根据当前环境信息对所述第二桥梁状态信息进行预处理 [0123] 其中, 每条所述第二桥梁状态信息对应一个桥梁位置信息。 预处理模块 302可 以包括环境信息单元 401、 处理单元 402、 第二检测单元 403和第二信息发送单元 404。
[0124] 环境信息单元 401, 用于获取桥梁的当前环境信息。
[0125] 处理单元 402, 用于结合所述当前环境信息和各条所述第二桥梁状态信息对应 的桥梁位置信息, 确定各条所述第二桥梁状态信息对应的第二预设范围。
[0126] 第二检测单元 403, 用于检测各条所述第二桥梁状态信息是否超出对应的第二 预设范围。
[0127] 第二信息发送单元 404, 用于将所述超出对应的第二预设范围的第二桥梁状态 信息发送至控制端, 以使得所述控制端根据所述超出对应的第二预设范围的第 二桥梁状态信息, 对桥梁状态进行检测。
[0128] 一个实施例中, 第二信息发送单元 404可以包括信息封装子单元和信息发送子 单元。 信息封装子单元, 用于将超出对应的第二预设范围的各条所述第二桥梁 状态信息与所述当前环境信息进行封装。 信息发送子单元, 用于将封装后的信 息发送至所述控制端, 以使得所述控制端根据封装后的信息对桥梁状态进行监
[0129] 上述桥梁状态检测装置, 获取设置在桥梁上的各个信息采集模块采集的第二桥 梁状态信息, 并根据环境信息对所述第二桥梁状态信息进行预处理, 将预处理 结果满足预设条件的第二桥梁状态信息发送至控制端, 以使得控制端根据第二 桥梁状态信息对桥梁状态进行监测、 记录等操作, 而对于不满足预设条件的第 二桥梁状态信息则不发送给控制端, 从而能够节省信息中转节点到控制端的网 络带宽资源, 提高对桥梁状态的监测效率。
[0130] 实施例七
[0131] 对应于上文实施例三所述的桥梁状态监测方法, 图 9示出了本发明实施例提供 的桥梁状态监测装置的结构框图。 为了便于说明, 仅示出了与本实施例相关的 部分。
[0132] 在实施例五的基础上, 该装置还包括桥梁状态信息接收模块 301、 预处理模块 3 02和指令发送模块 303。 [0133] 桥梁状态信息接收模块 301, 用于获取设置在桥梁上的信息采集模块 101采集的 第二桥梁状态信息; 所述第二桥梁状态信息为信息采集模块 101采集到的第一桥 梁状态信息中超出第一预设范围的桥梁状态信息。
[0134] 预处理模块 302, 用于根据当前环境信息对所述第二桥梁状态信息进行预处理
[0135] 指令发送模块 303, 用于向预处理结果满足预设条件的第二桥梁状态信息对应 的信息采集模块 101发送信息采集指令, 所述信息采集指令包括采集频率、 采集 次数和信息采集模块标识, 以使得对应的信息采集模块 101采集第三桥梁状态信 息。
[0136] 上述桥梁状态监测装置, 通过向预处理结果满足预设条件的第二桥梁状态信息 对应的信息采集模块 101发送信息采集指令, 然后根据第三桥梁状态信息对预处 理结果满足预设条件的第二桥梁状态信息对应的桥梁位置的状态进行进一步监 测, 确认预处理结果满足预设条件的第二桥梁状态信息对应的桥梁位置为真异 常或只是偶然的情况, 能够进一步提高对桥梁状态的监测准确性。
[0137] 实施例八
[0138] 图 10示出了本发明实施例提供的桥梁状态监测装置的结构示意图, 参见图 10, 该桥梁状态监测装置可以包括: 处理器 501、 存储器 502以及存储在所述存储器 5 02中并可在所述处理器 501上运行的计算机程序 503, 例如桥梁状态监测程序。 所述处理器 501执行所述计算机程序 503吋实现上述各个桥梁状态监测方法实施 例中的步骤, 例如图 1所示的步骤 101至 102。 或者, 所述处理器 501执行所述计 算机程序 503吋实现上述各装置实施例中各模块 /单元的功能, 例如图 7所示模块 1 01至 102的功能。
[0139] 示例性的, 所述计算机程序 503可以被分割成一个或多个模块 /单元, 所述一个 或者多个模块 /单元被存储在所述存储器 502中, 并由所述处理器 501执行, 以完 成本发明。 所述一个或多个模块 /单元可以是能够完成特定功能的一系列计算机 程序指令段, 该指令段用于描述所述计算机程序 503在所述桥梁状态监测装置 50 中的执行过程。 例如, 所述计算机程序 503可以被分割成信息采集模块、 检测模 块, 各模块具体功能如下: [0140] 信息采集模块, 用于采集第一桥梁状态信息;
[0141] 检测模块, 用于对所述第一桥梁状态信息进行检测, 将超出第一预设范围的所 述第一桥梁状态信息发送至信息中转节点, 以使得所述信息中转节点对超出所 述第一预设范围的所述第一桥梁状态信息进行预处理后, 发送至控制端。
[0142] 所述桥梁状态监测装置 50可以是桌上型计算机、 笔记本、 掌上电脑及云端服务 器等计算设备。 所述桥梁状态监测装置 50可包括, 但不仅限于, 处理器 501、 存 储器 502。 本领域技术人员可以理解, 图 10仅仅是桥梁状态监测装置 50的示例, 并不构成对桥梁状态监测装置 50的限定, 可以包括比图示更多或更少的部件, 或者组合某些部件, 或者不同的部件, 例如所述桥梁状态监测装置 50还可以包 括输入输出设备、 网络接入设备、 总线等。
[0143] 所称处理器 501可以是中央处理单元 (Central Processing Unit, CPU) , 还可以是 其他通用处理器、 数字信号处理器(Digital Signal Processor, DSP)、 专用集成电 路(Application Specific Integrated Circuit, ASIC)、 现成可编程门阵列
(Field-Programmable Gate Array , FPGA)或者其他可编程逻辑器件、 分立门或者 晶体管逻辑器件、 分立硬件组件等。 通用处理器可以是微处理器或者该处理器 也可以是任何常规的处理器等。
[0144] 所述存储器 502可以是所述桥梁状态监测装置 50的内部存储单元, 例如桥梁状 态监测装置 50的硬盘或内存。 所述存储器 502也可以是所述桥梁状态监测装置 50 的外部存储设备, 例如所述桥梁状态监测装置 50上配备的插接式硬盘, 智能存 储卡 (Smart Media Card, SMC) , 安全数字 (Secure Digital, SD) 卡, 闪存卡 (Flash Card) 等。 进一步地, 所述存储器 502还可以既包括所述桥梁状态监测装 置 50的内部存储单元也包括外部存储设备。 所述存储器 502用于存储所述计算机 程序以及所述桥梁状态监测装置 50所需的其他程序和数据。 所述存储器 502还可 以用于暂吋地存储已经输出或者将要输出的数据。
[0145] 所属领域的技术人员可以清楚地了解到, 为了描述的方便和简洁, 仅以上述各 功能单元、 模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功 能分配由不同的功能单元、 模块完成, 即将所述装置的内部结构划分成不同的 功能单元或模块, 以完成以上描述的全部或者部分功能。 实施例中的各功能单 元、 模块可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可 以两个或两个以上单元集成在一个单元中, 上述集成的单元既可以采用硬件的 形式实现, 也可以采用软件功能单元的形式实现。 另外, 各功能单元、 模块的 具体名称也只是为了便于相互区分, 并不用于限制本申请的保护范围。 上述系 统中单元、 模块的具体工作过程, 可以参考前述方法实施例中的对应过程, 在 此不再赘述。
[0146] 本领域普通技术人员可以意识到, 结合本文中所公幵的实施例描述的各示例的 单元及算法步骤, 能够以电子硬件、 或者计算机软件和电子硬件的结合来实现 。 这些功能究竟以硬件还是软件方式来执行, 取决于技术方案的特定应用和设 计约束条件。 专业技术人员可以对每个特定的应用来使用不同方法来实现所描 述的功能, 但是这种实现不应认为超出本发明的范围。
[0147] 在本发明所提供的实施例中, 应该理解到, 所揭露的装置和方法, 可以通过其 它的方式实现。 例如, 以上所描述的系统实施例仅仅是示意性的, 例如, 所述 模块或单元的划分, 仅仅为一种逻辑功能划分, 实际实现吋可以有另外的划分 方式, 例如多个单元或组件可以结合或者可以集成到另一个系统, 或一些特征 可以忽略, 或不执行。 另一点, 所显示或讨论的相互之间的耦合或直接耦合或 通讯连接可以是通过一些接口, 装置或单元的间接耦合或通讯连接, 可以是电 性, 机械或其它的形式。
[0148] 所述作为分离部件说明的单元可以是或者也可以不是物理上分幵的, 作为单元 显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可 以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或者全部单元 来实现本实施例方案的目的。
[0149] 另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元中, 也可 以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单元中。 上述集成的单元既可以采用硬件的形式实现, 也可以采用软件功能单元的形式 实现。
[0150] 所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用 吋, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明实现 上述实施例方法中的全部或部分流程, 也可以通过计算机程序来指令相关的硬 件来完成, 所述的计算机程序可存储于一计算机可读存储介质中, 该计算机程 序在被处理器执行吋, 可实现上述各个方法实施例的步骤。 技术方案本质上或 者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品 的形式体现出来, 该计算机软件产品存储在一个存储介质中, 包括若干指令用 以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设备等) 或处 理器 (processor) 执行本发明实施例各个实施例所述方法的全部或部分步骤。 而 前述的其中, 所述计算机程序包括计算机程序代码, 所述计算机程序代码可以 为源代码形式、 对象代码形式、 可执行文件或某些中间形式等。 所述计算机可 读介质可以包括: 能够携带所述计算机程序代码的任何实体或装置、 记录介质 、 U盘、 移动硬盘、 磁碟、 光盘、 计算机存储器、 只读存储器 (ROM, Read-Onl y Memory) 、 随机存取存储器 (RAM , Random Access Memory) 、 电载波信号 、 电信信号以及软件分发介质等。 需要说明的是, 所述计算机可读介质包含的 内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减, 例如在某 些司法管辖区, 根据立法和专利实践, 计算机可读介质不包括电载波信号和电 信信号。
以上所述实施例仅用以说明本发明的技术方案, 而非对其限制; 尽管参照前述 实施例对本发明进行了详细的说明, 本领域的普通技术人员应当理解: 其依然 可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分技术特征进 行等同替换; 而这些修改或者替换, 并不使相应技术方案的本质脱离本发明各 实施例技术方案的精神和范围, 均应包含在本发明的保护范围之内。

Claims

权利要求书
[权利要求 1] 一种桥梁状态监测方法, 其特征在于, 包括:
采集第一桥梁状态信息;
对所述第一桥梁状态信息进行检测, 将超出第一预设范围的所述第一 桥梁状态信息发送至信息中转节点, 以使得所述信息中转节点对超出 所述第一预设范围的所述第一桥梁状态信息进行预处理后, 发送至控 制端。
[权利要求 2] 根据权利要求 1所述的桥梁状态监测方法, 其特征在于, 每条所述第 一桥梁状态信息对应一个桥梁位置信息;
所述对所述第一桥梁状态信息进行检测, 将超出第一预设范围的第二 桥梁状态信息发送至信息中转节点包括:
结合所述第一桥梁状态信息对应的桥梁位置信息, 检测各条所述第一 桥梁状态信息是否超出对应的第一预设范围;
将超出对应的第一预设范围的第一桥梁状态信息发送至所述信息中转 节点。
[权利要求 3] 根据权利要求 2所述的桥梁状态监测方法, 其特征在于, 所述方法还 包括:
获取设置在桥梁上的桥梁状态信息采集装置采集的第二桥梁状态信息 ; 所述第二桥梁状态信息为所述桥梁状态信息采集装置采集到的第一 桥梁状态信息中超出所述第一预设范围的桥梁状态信息;
根据当前环境信息对所述第二桥梁状态信息进行预处理。
[权利要求 4] 根据权利要求 3所述的桥梁状态监测方法, 其特征在于,
所述根据当前环境信息对所述第二桥梁状态信息进行预处理包括: 获取桥梁的当前环境信息;
结合所述当前环境信息和各条所述第二桥梁状态信息对应的桥梁位置 信息, 确定各条所述第二桥梁状态信息对应的第二预设范围; 检测各条所述第二桥梁状态信息是否超出对应的第二预设范围; 将所述超出对应的第二预设范围的第二桥梁状态信息发送至控制端, 以使得所述控制端根据所述超出对应的第二预设范围的第二桥梁状态 信息, 对桥梁状态进行检测。
[权利要求 5] 根据权利要求 3所述的桥梁状态监测方法, 其特征在于, 还包括: 向预处理结果满足预设条件的第二桥梁状态信息对应的桥梁状态信息 采集装置发送信息采集指令, 所述信息采集指令包括采集频率、 采集 次数和桥梁状态信息采集装置标识, 以使得对应的桥梁状态信息采集 装置采集第三桥梁状态信息;
接收所述第三桥梁状态信息, 并将所述第三桥梁状态信息直接发送至 所述控制端。
[权利要求 6] —种桥梁状态监测装置, 其特征在于, 包括:
信息采集模块, 用于采集第一桥梁状态信息;
检测模块, 用于对所述第一桥梁状态信息进行检测, 将超出第一预设 范围的所述第一桥梁状态信息发送至信息中转节点, 以使得所述信息 中转节点对超出所述预设范围的所述第一桥梁状态信息进行预处理后 , 发送至控制端。
[权利要求 7] 根据权利要求 6所述的桥梁状态监测装置, 其特征在于, 每条所述第 一桥梁状态信息对应一个桥梁位置信息; 所述检测模块包括: 第一检测单元, 用于结合所述第一桥梁状态信息对应的桥梁位置信息 , 检测各条所述第一桥梁状态信息是否超出对应的第一预设范围; 第一信息发送单元, 用于将所述第一检测单元检测出的超出对应的第 一预设范围的第一桥梁状态信息发送至所述信息中转节点。
[权利要求 8] 根据权利要求 7所述的桥梁状态监测装置, 其特征在于, 还包括: 桥梁状态信息接收模块, 用于获取设置在桥梁上的各个信息采集模块 采集的第二桥梁状态信息; 所述第二桥梁状态信息为所述信息采集模 块采集到的第一桥梁状态信息中超出所述第一预设范围的桥梁状态信 息;
预处理模块, 用于根据当前环境信息对所述第二桥梁状态信息进行预 处理。
[权利要求 9] 一种桥梁状态监测装置, 包括存储器、 处理器以及存储在所述存储器 中并可在所述处理器上运行的计算机程序, 其特征在于, 所述处理器 执行所述计算机程序吋实现如权利要求 1至 5任一项所述桥梁状态监测 方法的步骤。
[权利要求 10] —种计算机可读存储介质, 所述计算机可读存储介质存储有计算机程 序, 其特征在于, 所述计算机程序被处理器执行吋实现如权利要求 1 至 5任一项所述桥梁状态监测方法的步骤。
PCT/CN2017/093711 2017-06-16 2017-07-20 桥梁状态监测方法及装置 WO2018227716A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710461666.0 2017-06-16
CN201710461666.0A CN107358312A (zh) 2017-06-16 2017-06-16 桥梁状态监测方法及装置

Publications (1)

Publication Number Publication Date
WO2018227716A1 true WO2018227716A1 (zh) 2018-12-20

Family

ID=60273788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/093711 WO2018227716A1 (zh) 2017-06-16 2017-07-20 桥梁状态监测方法及装置

Country Status (2)

Country Link
CN (1) CN107358312A (zh)
WO (1) WO2018227716A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110068366A (zh) * 2019-05-22 2019-07-30 江苏东交工程检测股份有限公司 用于监测路面桥梁隧道内部运动状态的装置和方法
CN110080071B (zh) * 2019-05-29 2021-06-08 石家庄铁道大学 一种道路塌陷预警方法、系统及终端设备
CN113420964A (zh) * 2021-06-07 2021-09-21 煤炭科学研究总院 一种桥梁安全的检测方法、装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101763053A (zh) * 2008-12-26 2010-06-30 上海交技发展股份有限公司 一种移动式桥梁安全检测分析管理系统
CN104864913A (zh) * 2015-06-04 2015-08-26 无锡市博尚光电科技有限公司 一种分布式公路桥梁隧道结构健康监测系统
US20150338305A1 (en) * 2014-05-20 2015-11-26 Trimble Navigation Limited Monitoring a response of a bridge based on a position of a vehicle crossing the bridge
US20160217226A1 (en) * 2015-01-28 2016-07-28 Brian Westcott Methods and systems for infrastructure performance: monitoring, control, operations, analysis and adaptive learning
CN106713440A (zh) * 2016-12-16 2017-05-24 东软集团股份有限公司 一种数据传输方法及设备
CN106779326A (zh) * 2016-11-29 2017-05-31 武汉理工大学 桥梁健康状态评估系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8634975B2 (en) * 2010-04-16 2014-01-21 The Boeing Company Vessel performance optimization reporting tool
CN104268670A (zh) * 2014-09-02 2015-01-07 司徒毅 公路桥梁技术状况检查评定系统
CN104764622B (zh) * 2015-04-13 2017-07-25 上海数久信息科技有限公司 一种桥梁状态的检测装置与检测方法
CN105841661B (zh) * 2016-03-22 2018-04-20 宁波市交通建设工程试验检测中心有限公司 一种桥梁动态健康实时监测装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101763053A (zh) * 2008-12-26 2010-06-30 上海交技发展股份有限公司 一种移动式桥梁安全检测分析管理系统
US20150338305A1 (en) * 2014-05-20 2015-11-26 Trimble Navigation Limited Monitoring a response of a bridge based on a position of a vehicle crossing the bridge
US20160217226A1 (en) * 2015-01-28 2016-07-28 Brian Westcott Methods and systems for infrastructure performance: monitoring, control, operations, analysis and adaptive learning
CN104864913A (zh) * 2015-06-04 2015-08-26 无锡市博尚光电科技有限公司 一种分布式公路桥梁隧道结构健康监测系统
CN106779326A (zh) * 2016-11-29 2017-05-31 武汉理工大学 桥梁健康状态评估系统
CN106713440A (zh) * 2016-12-16 2017-05-24 东软集团股份有限公司 一种数据传输方法及设备

Also Published As

Publication number Publication date
CN107358312A (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
US20170187588A1 (en) Selective measurement reporting from internet of things devices
US9043076B2 (en) Automating predictive maintenance for automobiles
CN107924388B (zh) 通用传感器和/或用于提供检测模式的传感器集群
TW201735669A (zh) 用於使用從多個感測器收集之資訊來保護車輛免受惡意軟體及攻擊之方法及系統
WO2018227716A1 (zh) 桥梁状态监测方法及装置
CN103425568A (zh) 日志信息处理方法及装置
US20190036836A1 (en) Adaptive workload distribution for network of video processors
US8935039B2 (en) Method for reducing detection data of a monitoring device in a vehicle, and method for monitoring a vehicle defect in near real time using same
CN112434260A (zh) 一种公路的交通状态检测方法、装置、存储介质及终端
EP3002956B1 (en) Network and sensor topology for a rotorcraft
CN114661456A (zh) 用于工业控制系统的时间感知通用输入输出
CN111932046A (zh) 一种服务场景下处理风险的方法、计算机设备、存储介质
CN105988905A (zh) 异常处理方法及装置
US9396145B1 (en) In-chip bus tracer
CN118349363A (zh) 基于轻量化数据中台的数据处理方法及系统
CN118280121A (zh) 一种基于无人机的目标监测预警方法及系统
CN111654405B (zh) 通信链路的故障节点方法、装置、设备及存储介质
CN111159009B (zh) 一种日志服务系统的压力测试方法及装置
CN116014901B (zh) 基于数字孪生技术实现输变电设备工作状态监控方法
JP2021196997A (ja) ログ送信制御装置
US20210034490A1 (en) Distributed ledger for tracking a condition of an electronic device
CN114116128B (zh) 容器实例的故障诊断方法、装置、设备和存储介质
KR20220069674A (ko) 블록체인을 이용한 전자 문서 발급 시스템 및 방법과 이를 위한 컴퓨터 프로그램
CN206931166U (zh) 一种基于窄带通信的井盖异动探测装置
TW201916635A (zh) 整合感測雲端運算與雲端互聯網之環境智慧監控管理系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913395

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/05/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17913395

Country of ref document: EP

Kind code of ref document: A1