WO2018227630A1 - 信道传输的方法、终端设备和网络设备 - Google Patents
信道传输的方法、终端设备和网络设备 Download PDFInfo
- Publication number
- WO2018227630A1 WO2018227630A1 PCT/CN2017/088806 CN2017088806W WO2018227630A1 WO 2018227630 A1 WO2018227630 A1 WO 2018227630A1 CN 2017088806 W CN2017088806 W CN 2017088806W WO 2018227630 A1 WO2018227630 A1 WO 2018227630A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time domain
- domain resource
- channel
- resource
- terminal device
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
Definitions
- the embodiments of the present application relate to the field of wireless communications, and, more particularly, to a method, a terminal device, and a network device for channel transmission.
- PUCCHs Physical Uplink Control Channels
- short PUCCH short-PUCCH
- long PUCCH long-PUCCH
- the short PUCCH usually includes 1 time domain symbol or 2 time domain symbols
- the long PUCCH usually includes 4 to 14 time domain symbols.
- the feedback of the terminal equipment for different service data may have different delays, and the length of the PUCCH used may also be different. Therefore, for the same terminal equipment, it may be necessary to use the same time domain resource unit, for example, the same time slot (slot).
- the short PUCCH is transmitted and the long PUCCH is transmitted. If the terminal device does not support transmitting multiple uplink channels and/or uplink signals simultaneously in one symbol, when the short PUCCH and the long PUCCH in one time domain resource unit collide in the time domain, how does the terminal device perform uplink transmission Become an urgent problem to solve.
- the embodiment of the present application provides a channel transmission method, a terminal device, and a network device.
- the control information transmitted by the terminal device conflicts on the time domain resource, the control information can still be effectively transmitted.
- the first aspect provides a method for channel transmission, including: receiving, by a terminal device, first information sent by a network device at a first moment; and determining, by the terminal device, for transmitting the first uplink channel according to the first information a first time domain resource, where the first time domain resource is located in the target time domain resource unit, the first time domain resource includes P channel resource units, and each of the P channel resource units
- the channel resource unit includes M time domain symbols, and the last N time domain symbols of the M time domain symbols are used to transmit reference signals, P, M, and N are positive integers, and N is not greater than M.
- each channel resource unit transmitting the first uplink channel can be Independent demodulation.
- the network device can also effectively demodulate those channels it receives, thereby ensuring effective transmission of the control channel.
- the method further includes: receiving, by the terminal device, the second information sent by the network device at a second moment; the terminal device determining, according to the second information, a second time domain resource of the first uplink channel, where the second time instant is located after the first time, the second time domain resource is located in the target time domain resource unit, and the first time domain is The resource includes the second time domain resource; the terminal device sends the first uplink channel to the network device on the second time domain resource.
- the determining, by the terminal device, the second time domain resource for sending the first uplink channel, according to the second information includes: the terminal device according to the second information, Determining that a second uplink channel or signal is transmitted on a third time domain resource in the target time domain resource unit, wherein the third time domain resource at least partially overlaps with the first time domain resource; Determining, as the second time domain resource, a time domain resource that does not overlap with the third time domain resource in the first time domain resource.
- each channel resource unit in the second time domain resource includes a resource for transmitting the reference signal, the content of the first uplink channel received by the network device on the second time domain resource can be correctly demodulated. . Even if the first uplink channel on the part of the time domain resource that overlaps with the third time domain resource in the first time domain resource is no longer transmitted, and does not bring the transmission of the first uplink channel on the second time domain resource influences. And the second uplink channel or signal can also be transmitted on the third time domain resource without being affected by the first uplink channel, thereby ensuring effective transmission of the control channel.
- the first time domain resource includes the P channel resource unit and an incomplete channel resource unit.
- the incomplete channel resource unit is located at the end of the first time domain resource.
- the incomplete channel resource unit includes a first K1 symbol of the first channel resource unit, and the first channel resource unit and each of the P channel resource units
- K1 is a positive integer smaller than M. .
- the second time domain resource includes Q channel resource units, where Q is a positive integer and Q is less than or equal to P.
- the second time domain resource occupies the first K2 time domain symbols in the first time domain resource, and K2 is a positive integer.
- the i+1th channel resource unit of the P channel resource units is adjacent to the i th channel resource unit in the time domain, and i is from 1 to P-1.
- the method before the determining, by the terminal device, the second time domain resource for sending the first uplink channel, according to the second information sent by the network device received at the second time, the method further includes: the terminal device receiving configuration information sent by the network device, where the configuration information is used to indicate that the terminal device can adjust a time domain resource for sending the first uplink information.
- the target time domain resource unit includes a time slot, a subframe, or a frame.
- a method for channel transmission including: the network device transmitting first information to a terminal device at a first moment, so that the terminal device determines, according to the first information, that the first uplink channel is sent.
- a first time domain resource wherein the first time domain resource is located in the target time domain resource unit, the first time domain resource includes P channel resource units, and each of the P channel resource units Channel resource units include M time domain symbols, the last N time domain symbols of the M time domain symbols are used for transmitting reference signals, P, M and N are positive integers, and N is not greater than M;
- the device sends the second information to the terminal device at the second moment, so that the terminal device determines, according to the second information, a second time domain resource for sending the first uplink channel, where the second time After the first time, the second time domain resource is located in the target time domain resource unit and the first time domain resource includes the second time domain resource; the network device is in the second Time domain resources, receiving The first uplink channel sent by the terminal device.
- each channel resource unit transmitting the first uplink channel can be independently demodulated.
- the network device can also effectively demodulate those channels it receives, thereby ensuring effective transmission of the control channel.
- the third time domain resource in the target time domain resource unit at least partially overlaps with the first time domain resource, where the second time domain resource is the first time domain resource a time domain resource that does not overlap with the third time domain resource, where the third time domain resource is a time domain resource that is used by the terminal device to send the second uplink channel or signal according to the second information.
- each channel resource unit in the second time domain resource includes a resource for transmitting the reference signal, the content of the first uplink channel received by the network device on the second time domain resource can be correctly demodulated. . Even if the first uplink channel on the part of the time domain resource that overlaps with the third time domain resource in the first time domain resource is no longer transmitted, and does not transmit the first uplink channel on the second time domain resource The transmission has an impact. And the second uplink channel or signal can also be transmitted on the third time domain resource without being affected by the first uplink channel, thereby ensuring effective transmission of the control channel.
- the first time domain resource includes the P channel resource unit and an incomplete channel resource unit.
- the incomplete channel resource unit is located at the end of the first time domain resource.
- the incomplete channel resource unit includes a first K1 symbol of the first channel resource unit, and the first channel resource unit and each of the P channel resource units The structure is the same, and K1 is a positive integer smaller than M.
- the second time domain resource includes Q channel resource units, where Q is a positive integer and Q is less than or equal to P.
- the second time domain resource occupies the first K2 time domain symbols in the first time domain resource, and K2 is a positive integer.
- the i+1th channel resource unit of the P channel resource units is adjacent to the i th channel resource unit in the time domain, and i is from 1 to P-1.
- the method before the sending, by the network device, the first information to the terminal device, the method further includes: sending, by the network device, configuration information, the configuration information, to the terminal device And configured to indicate that the terminal device is capable of adjusting a time domain resource that sends the first uplink information.
- the target time domain resource unit includes a time slot, a subframe, or a frame.
- a terminal device which can perform the operations of the terminal device in the above first aspect or any optional implementation manner of the first aspect.
- the terminal device may comprise a modular unit for performing the operations of the terminal device in any of the possible implementations of the first aspect or the first aspect described above.
- a network device which can perform the operations of the network device in any of the foregoing optional implementations of the second aspect or the second aspect.
- the network device may comprise a modular unit for performing the operations of the network device in any of the possible implementations of the second aspect or the second aspect described above.
- a terminal device comprising: a processor, a transceiver, and a memory.
- the processor, the transceiver, and the memory communicate with each other through an internal connection path.
- the memory is for storing instructions for executing instructions stored by the memory.
- the processor executes the instruction stored by the memory, the executing causes the terminal device to perform the first aspect or the first The method of any of the possible implementations of aspects, or the performing such that the terminal device implements the terminal device provided by the third aspect.
- a network device comprising: a processor, a transceiver, and a memory.
- the processor, the transceiver, and the memory communicate with each other through an internal connection path.
- the memory is for storing instructions for executing instructions stored by the memory.
- the processor executes the instruction stored by the memory, the executing causes the network device to perform the method in any of the possible implementations of the second aspect or the second aspect, or the execution causes the network device to implement the network provided by the fourth aspect device.
- a computer readable storage medium storing a program causing a terminal device to perform the first aspect described above, and any one of the various implementations of the channel transmission Methods.
- a computer readable storage medium storing a program causing a network device to perform the second aspect described above, and any one of the various implementations of the channel transmission Methods.
- a system chip comprising an input interface, an output interface, a processor, and a memory
- the processor is configured to execute an instruction stored by the memory, and when the instruction is executed, the processor can implement the foregoing The first aspect and any of its various implementations.
- a system chip includes an input interface, an output interface, a processor, and a memory
- the processor is configured to execute an instruction stored by the memory, and when the instruction is executed, the processor can implement the foregoing The second aspect and any of the various implementations.
- a computer program product comprising instructions for causing a computer to execute the first aspect or any of the alternative implementations of the first aspect, when the computer program product is run on a computer method.
- a twelfth aspect a computer program product comprising instructions for causing a computer to execute the second aspect or the optional implementation of any of the second aspect, when the computer program product is run on a computer method.
- FIG. 1 is a schematic structural diagram of an application scenario of an embodiment of the present application.
- 2 is a schematic diagram of transmission of an uplink control channel.
- FIG. 3 is a schematic flowchart of a method for channel transmission according to an embodiment of the present application.
- FIG. 4 is a schematic diagram of a channel resource unit in an embodiment of the present application.
- FIG. 5 is a schematic flowchart of a method for channel transmission according to an embodiment of the present application.
- FIG. 6 is a schematic flowchart of a method for channel transmission according to an embodiment of the present application.
- FIG. 7 is a schematic diagram of transmission of an uplink control channel according to an embodiment of the present application.
- FIG. 8 is a schematic diagram of time domain resources for transmitting an uplink control channel according to an embodiment of the present application.
- FIG. 9 is a schematic flowchart of a method for channel transmission according to an embodiment of the present application.
- FIG. 10 is a schematic block diagram of a terminal device according to an embodiment of the present application.
- FIG. 11 is a schematic block diagram of a network device according to an embodiment of the present application.
- FIG. 12 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
- FIG. 13 is a schematic structural diagram of a network device according to an embodiment of the present application.
- FIG. 14 is a schematic structural diagram of a system chip according to an embodiment of the present application.
- GSM Global System of Mobile Communication
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- LTE Long Term Evolution
- FDD Frequency Division Duplex
- TDD Time Division Duplex
- UMTS Universal Mobile Telecommunication System
- the present application describes various embodiments in connection with a terminal device.
- the terminal device may also refer to a user equipment (User Equipment, UE), an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, and a user agent.
- the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
- PLMN public land mobile network
- the present application describes various embodiments in connection with a network device.
- the network device may be a device for communicating with the terminal device, for example, may be a base station (Base Transceiver Station, BTS) in the GSM system or CDMA, or may be a base station (NodeB, NB) in the WCDMA system, or may be An evolved base station (Evolutional Node B, eNB or eNodeB) in an LTE system, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network side device in a future 5G network or a future evolved PLMN network. Network side devices, etc.
- FIG. 1 is a schematic diagram of an application scenario of an embodiment of the present application.
- the communication system in FIG. 1 may include a network device 10 and a terminal device 20.
- the network device 10 is configured to provide communication services for the terminal device 20 and access the core network.
- the terminal device 20 can access the network by searching for synchronization signals, broadcast signals, and the like transmitted by the network device 10, thereby performing communication with the network.
- the arrows shown in FIG. 1 may represent uplink/downlink transmissions by a cellular link between the terminal device 20 and the network device 10.
- the network in the embodiment of the present application may refer to a Public Land Mobile Network (PLMN) or a Device to Device (D2D) network or a Machine to Machine/Man (M2M) network.
- PLMN Public Land Mobile Network
- D2D Device to Device
- M2M Machine to Machine/Man
- FIG. 1 is only a simplified schematic diagram of an example, and other terminal devices may also be included in the network, which are not shown in FIG.
- the short PUCCH usually includes 1 time domain symbol or 2 time domain symbols
- the long PUCCH usually includes 4 to 14 time domain symbols.
- the uplink feedback of the terminal equipment for different service data may have different delays, and therefore the length of the used PUCCH may also be different. Therefore, for the same terminal equipment, it may be necessary to have the same time domain resource unit, for example, the same time slot.
- the short PUCCH is transmitted and the long PUCCH is transmitted.
- the terminal device does not support transmitting multiple uplink channels and/or uplink signals simultaneously in one symbol, when the short PUCCH and the long PUCCH in one time domain resource unit collide in the time domain, how does the terminal device perform uplink transmission Become an urgent problem to solve.
- the terminal device needs to transmit uplink control information for the first Physical Uplink Shared CHannel (PUSCH), the second PUSCH, and the third PUSCH, that is, the long PUCCH shown in FIG.
- the uplink control information for the fourth PUSCH that is, the short PUCCH shown in FIG. 2 is transmitted in the slot n+3, and the time domain resource occupied by the long PUCCH and the time domain resource occupied by the short PUCCH overlap, if the terminal device does not support the A plurality of uplink channels and/or uplink signals are simultaneously transmitted in one symbol, and the terminal device cannot be used when the short PUCCH and the long PUCCH collide in the time domain.
- the structure of the uplink channel is designed, so that the time domain resource of the uplink control channel, for example, the long PUCCH, includes multiple channel resource units, and each channel resource unit includes M time domain symbols and M time domain symbols.
- the last N symbols are used to transmit the reference signal so that the information in each channel resource unit transmitting the upstream channel can be independently demodulated.
- the network device can also effectively demodulate those channels it receives.
- FIG. 3 is a schematic flowchart of channel transmission in the embodiment of the present application.
- the method shown in FIG. 3 can be performed by a terminal device, which can be, for example, the terminal device 20 shown in FIG. 1.
- the method for channel transmission includes:
- the terminal device receives the first information sent by the network device at the first moment.
- the terminal device determines, according to the first information, a first time domain resource for sending the first uplink channel, where the first time domain resource is located in the target time domain resource unit, where the first time domain resource is Including P channel resource units, each of the P channel resource units includes M time domain symbols, and the last N time domain symbols of the M time domain symbols are used to transmit reference signals, P, M, and N is a positive integer and N is not greater than M.
- the target time domain resource unit is, for example, a time slot, a subframe or a frame.
- the terminal device determines, on the first time domain resource in the target time domain resource unit, to feed back the first uplink channel, for example, the long PUCCH, to the network device.
- the first time domain resource includes a plurality of, for example, P channel resource units, and each of the channel resource units includes M time domain symbols, and the last N time domain symbols of the M time domain symbols are used for transmission reference. Signal.
- each channel resource unit transmitting the first uplink channel can be independently demodulated.
- the network device can also effectively demodulate those channels it receives, thereby ensuring effective transmission of the control channel.
- the i+1th channel resource unit of the P channel resource units is adjacent to the i th channel resource unit in the time domain, and i is from 1 to P-1. That is, a channel resource list in time The elements are sequentially arranged in a channel resource unit, and the time domain symbols in different channel resource units are not interleaved.
- the first time domain resource includes the P channel resource unit and an incomplete channel resource unit.
- the P channel resource units are P complete channel resource units, each channel resource unit includes M time domain symbols, and the incomplete channel resource unit includes only parts of the M time domain symbols.
- the time domain symbol that is, the number of time domain symbols in the incomplete channel resource unit is less than M.
- the incomplete channel resource unit is located at the end of the first time domain resource.
- the P channel resource units in the first time domain resource occupy the foremost time domain symbol in the first time domain resource.
- the incomplete channel resource unit includes a first K1 symbol of the first channel resource unit, where the first channel resource unit has the same structure as each channel resource unit of the P channel resource unit, and K1 is less than M. Positive integer.
- the first channel resource unit may understand a complete channel resource unit having the same structure as the P channel resource unit, and the first channel resource unit also includes M time domain symbols and N symbols of the M symbols are used for transmission.
- a reference signal, and the first K1 symbols in the first channel resource unit may constitute the incomplete channel resource unit, and the P channel resource unit and the incomplete channel resource unit form a first time domain resource.
- each channel resource unit includes two time domain symbols, and the previous symbol is used to transmit control information, and the latter symbol is used.
- the incomplete channel resource unit (Partial Unit) 4 includes only one symbol, and the incomplete channel resource unit 4 includes This 1 symbol is a symbol for transmitting uplink information.
- the method further includes 330 to 350. among them:
- the terminal device receives the second information sent by the network device at the second moment.
- the terminal device determines, according to the second information, a second time domain resource for sending the first uplink channel, where the second time is located after the first time, and the second time domain resource is located at the target
- the time domain resource unit and the first time domain resource includes the second time domain resource.
- the terminal device sends the first uplink channel to the network device on the second time domain resource.
- the terminal device determines that after the first uplink channel is sent to the network device on the first time domain resource in the target time domain resource unit, the second information that is sent by the network device is received at the second time, and the second time is The terminal device does not send the first uplink channel, and the terminal device may further re-determine the second time domain resource for sending the first uplink channel according to the second information, and send the second time domain resource to the network. The device sends the first uplink channel.
- 340 may include 341 and 342, wherein:
- the terminal device determines, according to the second information, that the second uplink channel or the signal is sent on the third time domain resource in the target time domain resource unit, where the third time domain resource and the first time domain are Resources at least partially overlap.
- the terminal device determines, as the second time domain resource, the time domain resource in the first time domain resource that does not overlap the third time domain resource.
- the terminal device after receiving the second information, such as the PUSCH or the downlink control information, the terminal device determines to feed back a second uplink channel (for example, a short PUCCH) or a signal to the network device on the third time domain resource in the target time domain resource unit. (eg reference signal).
- a second uplink channel for example, a short PUCCH
- the terminal device will re-determine the time domain resource used for transmitting the first uplink channel.
- the terminal device may determine, as the time domain resource for transmitting the first uplink channel, the second time domain resource, the time domain resource that does not overlap the third time domain resource in the first time domain resource.
- the second information may be the second PUSCH or the indication information for indicating that the terminal device transmits the aperiodic reference signal.
- the second time domain resource includes Q channel resource units, where Q is a positive integer and Q is less than or equal to P.
- Each channel resource unit includes M time domain symbols, and the last N time domain symbols of the M time domain symbols are used to transmit reference signals.
- the Q channel resource units are a subset of P channel resource units in the first time domain resource, that is, the Q channel resource units are at least part of the channel resource units of the P channel resource units.
- the second time domain resource occupies the first K2 time domain symbols in the first time domain resource, and K2 is a positive integer.
- the time domain resource as shown in FIG. 8 is the second time domain resource for transmitting the first uplink channel.
- the second time domain resource includes a channel resource unit 1, a channel resource unit 2, and a channel resource unit 3, wherein each channel resource unit includes two time domain symbols, and a previous symbol of each channel resource unit is used to transmit control information. The latter symbol is used to transmit the reference signal.
- the second time domain resource includes the first six symbols of the first time domain resource.
- each channel resource unit in the second time domain resource includes a resource for transmitting the reference signal, the content of the first uplink channel received by the network device on the second time domain resource can be correctly demodulated. . Even if the first uplink channel on the part of the time domain resource that overlaps with the third time domain resource in the first time domain resource is no longer transmitted, and does not bring the transmission of the first uplink channel on the second time domain resource influences. And the second uplink channel or signal can also be transmitted on the third time domain resource without being affected by the first uplink channel, thereby ensuring effective transmission of the control channel.
- the method further includes: receiving, by the terminal device, configuration information sent by the network device, The configuration information is used to indicate that the terminal device can adjust the time domain resource that sends the first uplink information.
- the configuration information is used to indicate that the terminal device can further re-determine the time domain resource used for transmitting the first uplink channel, that is, the second time domain resource, according to the second information after receiving the second information.
- FIG. 9 is a schematic flowchart of channel transmission in the embodiment of the present application.
- the method illustrated in FIG. 9 may be performed by a network device, such as network device 10 shown in FIG.
- the method for channel transmission includes:
- the network device sends the first information to the terminal device at the first moment, so that the terminal device determines, according to the first information, a first time domain resource for sending the first uplink channel, where the first time domain
- the resource is located in the target time domain resource unit, where the first time domain resource includes P channel resource units, and each of the P channel resource units includes M time domain symbols, where the M time domain symbols are The last N time domain symbols are used to transmit reference signals, P, M, and N are positive integers, and N is not greater than M.
- the network device sends the second information to the terminal device at the second moment, so that the terminal device determines, according to the second information, a second time domain resource for sending the first uplink channel, where the second time After the first time, the second time domain resource is located in the target time domain resource unit and the first time domain resource includes the second time domain resource.
- the network device receives the first sent by the terminal device on the second time domain resource. Upstream channel.
- the network device sends the first information, for example, the first PUSCH, to the terminal device, where the first terminal device determines, according to the first information, that the first time domain resource in the target time domain resource unit is fed back to the network device.
- An upstream channel such as a long PUCCH.
- the network device sends the second information to the terminal device at the second moment, and the terminal device does not send the first uplink channel at the second moment.
- the terminal device may further re-determine to send the first according to the second information.
- the second time domain resource of the uplink channel, and the first uplink channel is sent to the network device on the second time domain resource, so that the network device receives the first uplink channel sent by the terminal device on the second time domain resource.
- the first time domain resource includes a plurality of, for example, P channel resource units, and each of the channel resource units includes M time domain symbols, and the last N time domain symbols of the M time domain symbols are used for transmission reference.
- the target time domain resource unit is, for example, a time slot, a subframe or a frame.
- each channel resource unit transmitting the first uplink channel can be independently demodulated.
- the network device can also effectively demodulate those channels it receives, thereby ensuring effective transmission of the control channel.
- the i+1th channel resource unit of the P channel resource units is adjacent to the i th channel resource unit in the time domain, and i is from 1 to P-1. That is to say, in time, one channel resource unit is sequentially arranged next to one channel resource unit, and time domain symbols in different channel resource units are not interleaved.
- the first time domain resource includes the P channel resource unit and an incomplete channel resource unit.
- the P channel resource units are P complete channel resource units, each channel resource unit includes M time domain symbols, and the incomplete channel resource unit includes only parts of the M time domain symbols.
- the time domain symbol that is, the number of time domain symbols in the incomplete channel resource unit is less than M.
- the incomplete channel resource unit is located at the end of the first time domain resource.
- the P channel resource units in the first time domain resource occupy the foremost time domain symbol in the first time domain resource.
- the incomplete channel resource unit includes a first K1 symbol of the first channel resource unit, where the first channel resource unit has the same structure as each channel resource unit of the P channel resource unit, and K1 is less than M. Positive integer.
- each channel resource unit includes two time domain symbols, and the previous symbol is used to transmit control information, and the latter symbol is used to transmit reference signals.
- the channel resource unit 2 and the channel resource unit 3 only one symbol is included in the incomplete channel resource unit (Partial Unit) 4.
- the third time domain resource in the target time domain resource unit at least partially overlaps with the first time domain resource, where the second time domain resource is not in the first time domain resource and the third time domain resource An overlapping time domain resource, where the third time domain resource is a time domain resource used by the terminal device to send the second uplink channel or signal according to the second information.
- the second information may be the second PUSCH or the indication information for indicating that the terminal device transmits the aperiodic reference signal.
- each channel resource unit in the second time domain resource includes a resource for transmitting the reference signal, the content of the first uplink channel received by the network device on the second time domain resource can be correctly demodulated. . Even if the first uplink channel on the part of the time domain resource that overlaps with the third time domain resource in the first time domain resource is no longer transmitted, and does not bring the transmission of the first uplink channel on the second time domain resource influences. And the second uplink channel or signal can also be transmitted on the third time domain resource without being affected by the first uplink channel, thereby ensuring effective transmission of the control channel.
- the second time domain resource includes Q channel resource units, where Q is a positive integer and Q is less than or equal to P.
- Each of the Q channel resource units includes M time domain symbols, and the last N time domain symbols of the M time domain symbols are used to transmit reference signals.
- the Q channel resource units are a subset of P channel resource units in the first time domain resource, that is, the Q channel resource units are at least part of the channel resource units of the P channel resource units.
- the second time domain resource occupies the first K2 time domain symbols in the first time domain resource, and K2 is a positive integer.
- the time domain resource as shown in FIG. 8 is a second time domain resource for transmitting the first uplink channel.
- the second time domain resource includes a channel resource unit 1, a channel resource unit 2, and a channel resource unit 3, wherein each channel resource unit includes two time domain symbols, and a previous symbol of each channel resource unit is used to transmit control information. The latter symbol is used to transmit the reference signal.
- the second time domain resource includes the first six symbols of the first time domain resource.
- the method further includes: the network device sending configuration information to the terminal device, where the configuration information is used to indicate that the terminal device can adjust the sending The time domain resource of the first uplink information.
- the configuration information is used to indicate that the terminal device can further re-determine the time domain resource used for transmitting the first uplink channel, that is, the second time domain resource, according to the second information after receiving the second information.
- the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not be applied to the embodiment of the present application.
- the implementation process constitutes any limitation.
- FIG. 10 is a schematic block diagram of a terminal device 1000 according to an embodiment of the present application. As shown in FIG. 10, the terminal device 1000 includes a receiving unit 1010 and a determining unit 1020. among them:
- the receiving unit 1010 is configured to receive the first information sent by the network device at the first moment;
- a determining unit 1020 configured to determine, according to the first information received by the receiving unit 1010, a first time domain resource for sending a first uplink channel, where the first time domain resource is located in the target time domain
- the first time domain resource includes P channel resource units, and each of the P channel resource units includes M time domain symbols, and the last N of the M time domain symbols
- the time domain symbols are used to transmit reference signals, P, M, and N are positive integers, and N is not greater than M.
- each channel resource unit transmitting the first uplink channel can be independently demodulated.
- the network device can also effectively demodulate those channels it receives, thereby ensuring effective transmission of the control channel.
- the terminal device further includes a sending unit, where the receiving unit 1010 is further configured to: receive the second information sent by the network device at a second time; the determining unit 1020 is further configured to: Determining, by the second information, a second time domain resource for sending the first uplink channel, where the second time is located after the first time, and the second time domain resource is located in the target time domain
- the first time domain resource includes the second time domain resource
- the sending unit is configured to send the first uplink channel to the network device on the second time domain resource.
- the determining unit 1020 is specifically configured to: determine, according to the second information, that a second uplink channel or a signal is sent on a third time domain resource in the target time domain resource unit, where the The third time domain resource at least partially overlaps with the first time domain resource; the first time domain resource is to be The time domain resource that does not overlap with the third time domain resource is determined as the second time domain resource.
- the first time domain resource includes the P channel resource unit and an incomplete channel resource unit.
- the incomplete channel resource unit is located at the end of the first time domain resource.
- the incomplete channel resource unit includes a first K1 symbol of the first channel resource unit, and the first channel resource unit has the same structure as each channel resource unit of the P channel resource unit, K1 Is a positive integer less than M.
- the second time domain resource includes Q channel resource units, where Q is a positive integer and Q is less than or equal to P.
- the second time domain resource occupies the first K2 time domain symbols in the first time domain resource, and K2 is a positive integer.
- the i+1th channel resource unit of the P channel resource units is adjacent to the i th channel resource unit in the time domain, and i is from 1 to P-1.
- the receiving unit 1010 is further configured to: receive configuration information sent by the network device, where the configuration information is used to indicate that the terminal device can adjust a time domain resource that sends the first uplink information.
- the target time domain resource unit includes a time slot, a subframe or a frame.
- FIG. 11 is a schematic block diagram of a network device 1100 in accordance with an embodiment of the present application. As shown in FIG. 11, the network device 1100 includes a transmitting unit 1110 and a receiving unit 1120. among them:
- the sending unit 1110 is configured to send the first information to the terminal device at the first moment, so that the terminal device determines, according to the first information, a first time domain resource for sending the first uplink channel, where the The first time domain resource is located in the target time domain resource unit, where the first time domain resource includes P channel resource units, and the channel resource unit includes M time domain symbols, where the M time domain symbols are The last N time domain symbols are used to transmit reference signals, P, M and N are positive integers, and N is not greater than M;
- the sending unit 1110 is further configured to: send the second information to the terminal device at the second moment, so that the terminal device determines, according to the second information, the second time domain resource used to send the first uplink channel.
- the second time domain resource is located in the target time domain resource unit, and the first time domain resource includes the second time domain resource;
- the receiving unit 1120 is configured to receive, by using the terminal device, the second time domain resource The first upstream channel.
- each channel resource unit transmitting the first uplink channel can be independently demodulated.
- the network device can also effectively demodulate those channels it receives, thereby ensuring effective transmission of the control channel.
- the third time domain resource in the target time domain resource unit at least partially overlaps with the first time domain resource, where the second time domain resource is the first time domain resource and the first time domain resource
- each channel resource unit in the second time domain resource includes a resource for transmitting the reference signal, the content of the first uplink channel received by the network device on the second time domain resource can be correctly demodulated. . Even if the first uplink channel on the part of the time domain resource that overlaps with the third time domain resource in the first time domain resource is no longer transmitted, and does not bring the transmission of the first uplink channel on the second time domain resource influences. And the second uplink channel or signal can also be transmitted on the third time domain resource without being affected by the first uplink channel, thereby ensuring effective transmission of the control channel.
- the first time domain resource includes the P channel resource unit and an incomplete channel resource unit.
- the incomplete channel resource unit is located at the end of the first time domain resource.
- the incomplete channel resource unit includes a first K1 symbol of the first channel resource unit, and the first channel resource unit has the same structure as each channel resource unit of the P channel resource unit, K1 Is a positive integer less than M.
- the second time domain resource includes Q channel resource units, where Q is a positive integer and Q is less than or equal to P.
- the second time domain resource occupies the first K2 time domain symbols in the first time domain resource, and K2 is a positive integer.
- the i+1th channel resource unit of the P channel resource units is adjacent to the i th channel resource unit in the time domain, and i is from 1 to P-1.
- the sending unit 1110 is further configured to: send configuration information to the terminal device, where the configuration information is used to indicate that the terminal device can adjust a time domain resource that sends the first uplink information.
- the target time domain resource unit includes a time slot, a subframe or a frame.
- FIG. 12 is a schematic structural diagram of a terminal device 1200 according to an embodiment of the present application.
- the terminal device includes a processor 1210, a transceiver 1220, and a memory 1230, wherein the processor 1210, the transceiver 1220, and the memory 1230 communicate with each other through an internal connection path.
- the memory 1230 is configured to store instructions for executing the instructions stored by the memory 1230 to control the transceiver 1220 to receive signals or transmit signals.
- the transceiver 1220 is configured to:
- the processor 1210 is configured to: determine, according to the first information received by the transceiver 1220, a first time domain resource for sending a first uplink channel, where the first time domain resource is located at the target In the domain resource unit, the first time domain resource includes P channel resource units, and each of the P channel resource units includes M time domain symbols, and the last of the M time domain symbols N time domain symbols are used to transmit reference signals, P, M, and N are positive integers, and N is not greater than M.
- each channel resource unit transmitting the first uplink channel can be independently demodulated.
- the network device can also effectively demodulate those channels it receives, thereby ensuring effective transmission of the control channel.
- the terminal device further includes a sending unit, where the transceiver 1220 is further configured to: receive the second information sent by the network device at a second moment; the processor 1210 is further configured to: Determining, by the second information, a second time domain resource for sending the first uplink channel, where the second time is located after the first time, and the second time domain resource is located in the target time domain
- the first time domain resource includes the second time domain resource
- the sending unit is configured to send the first uplink channel to the network device on the second time domain resource.
- the processor 1210 is configured to: determine, according to the second information, that a second uplink channel or a signal is sent on a third time domain resource in the target time domain resource unit, where the The third time domain resource at least partially overlaps with the first time domain resource; and the time domain resource that does not overlap with the third time domain resource in the first time domain resource is determined as the second time domain resource.
- the first time domain resource includes the P channel resource unit and an incomplete channel resource unit.
- the incomplete channel resource unit is located at the end of the first time domain resource.
- the incomplete channel resource unit includes the first K1 of the first channel resource unit. a symbol, the first channel resource unit has the same structure as each of the P channel resource units, and K1 is a positive integer smaller than M.
- the second time domain resource includes Q channel resource units, where Q is a positive integer and Q is less than or equal to P.
- the second time domain resource occupies the first K2 time domain symbols in the first time domain resource, and K2 is a positive integer.
- the i+1th channel resource unit of the P channel resource units is adjacent to the i th channel resource unit in the time domain, and i is from 1 to P-1.
- the transceiver 1220 is further configured to: receive configuration information sent by the network device, where the configuration information is used to indicate that the terminal device can adjust a time domain resource that sends the first uplink information.
- the target time domain resource unit includes a time slot, a subframe or a frame.
- the processor 1210 may be a central processing unit (CPU), and the processor 1210 may also be another general-purpose processor, a digital signal processor (DSP). , Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, etc.
- the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
- the memory 1230 can include read only memory and random access memory and provides instructions and data to the processor 1210. A portion of the memory 1230 can also include a non-volatile random access memory.
- each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1210 or an instruction in a form of software.
- the steps of the positioning method disclosed in the embodiment of the present application may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the processor 1210.
- the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
- the storage medium is located in the memory 1230, and the processor 1210 reads the information in the memory 1230 and, in conjunction with its hardware, performs the steps of the above method. To avoid repetition, it will not be described in detail here.
- the terminal device 1200 according to the embodiment of the present application may correspond to the terminal device for performing the method 400 in the foregoing method 400, and the terminal device 1000 according to the embodiment of the present application, and each unit or module in the terminal device 1200 is used for The operations or processes performed by the terminal device in the above method 400 are performed.
- each unit or module in the terminal device 1200 is used for The operations or processes performed by the terminal device in the above method 400 are performed.
- detailed description thereof will be omitted.
- FIG. 13 is a schematic structural diagram of a network device 1300 according to an embodiment of the present application.
- the network device includes a processor 1310, a transceiver 1320, and a memory 1330, wherein the processor 1310, the transceiver 1320, and the memory 1330 communicate with each other through an internal connection path.
- the memory 1330 is configured to store instructions for executing the instructions stored by the memory 1330 to control the transceiver 1320 to receive signals or transmit signals.
- the transceiver 1320 is configured to:
- the terminal device Transmitting, by the first time, the first information to the terminal device, so that the terminal device determines, according to the first information, a first time domain resource for sending the first uplink channel, where the first time domain resource is located
- the first time domain resource includes P channel resource units
- the channel resource unit includes M time domain symbols, and the last N time domain symbols in the M time domain symbols
- P, M and N are positive integers, and N is not greater than M;
- the terminal device determines, according to the second information, a second time domain resource for sending the first uplink channel, where the second time is located After the first time, the second time domain resource is located in the target time domain resource unit and the first time domain resource includes the second time domain resource;
- each channel resource unit transmitting the first uplink channel can be independently demodulated.
- the network device can also effectively demodulate those channels it receives, thereby ensuring effective transmission of the control channel.
- the third time domain resource in the target time domain resource unit at least partially overlaps with the first time domain resource, where the second time domain resource is the first time domain resource and the first time domain resource
- each channel resource unit in the second time domain resource includes a resource for transmitting the reference signal, the content of the first uplink channel received by the network device on the second time domain resource can be correctly demodulated. . Even part of the time domain resource that overlaps with the third time domain resource in the first time domain resource The first uplink channel on the source is no longer transmitted, and does not affect the transmission of the first uplink channel on the second time domain resource. And the second uplink channel or signal can also be transmitted on the third time domain resource without being affected by the first uplink channel, thereby ensuring effective transmission of the control channel.
- the first time domain resource includes the P channel resource unit and an incomplete channel resource unit.
- the incomplete channel resource unit is located at the end of the first time domain resource.
- the incomplete channel resource unit includes a first K1 symbol of the first channel resource unit, and the first channel resource unit has the same structure as each channel resource unit of the P channel resource unit, K1 Is a positive integer less than M.
- the second time domain resource includes Q channel resource units, where Q is a positive integer and Q is less than or equal to P.
- the second time domain resource occupies the first K2 time domain symbols in the first time domain resource, and K2 is a positive integer.
- the i+1th channel resource unit of the P channel resource units is adjacent to the i th channel resource unit in the time domain, and i is from 1 to P-1.
- the transceiver 1320 is further configured to: send configuration information to the terminal device, where the configuration information is used to indicate that the terminal device can adjust a time domain resource that sends the first uplink information.
- the target time domain resource unit includes a time slot, a subframe or a frame.
- the processor 1310 may be a central processing unit (CPU), and the processor 1310 may also be other general-purpose processors, digital signal processors (DSPs), and application specific integrated circuits. (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, and more.
- the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
- the memory 1330 can include read only memory and random access memory and provides instructions and data to the processor 1310. A portion of the memory 1330 can also include a non-volatile random access memory.
- each step of the above method may be completed by an integrated logic circuit of hardware in the processor 1310 or an instruction in a form of software.
- the steps of the positioning method disclosed in the embodiment of the present application may be directly implemented by the hardware processor, or may be performed by a combination of hardware and software modules in the processor 1310.
- the software module can be located in a random access memory, a flash memory, a read only memory, a programmable read only memory or an electrically erasable programmable memory, a register, etc.
- a cooked storage medium In a cooked storage medium.
- the storage medium is located in the memory 1330, and the processor 1310 reads the information in the memory 1330 and performs the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
- the network device 1300 may correspond to the network device for performing the method 900 in the foregoing method 900, and the network device 1100 according to the embodiment of the present application, and each unit or module in the network device 1300 is used for The operations or processes performed by the network device in the above method 900 are performed.
- each unit or module in the network device 1300 is used for The operations or processes performed by the network device in the above method 900 are performed.
- detailed description thereof will be omitted.
- FIG. 14 is a schematic structural diagram of a system chip according to an embodiment of the present application.
- the system chip 1400 of FIG. 14 includes an input interface 1401, an output interface 1402, at least one processor 1403, and a memory 1404.
- the input interface 1401, the output interface 1402, the processor 1403, and the memory 1404 are interconnected by an internal connection path.
- the processor 1403 is configured to execute code in the memory 1404.
- the processor 1403 can implement the method 400 performed by the terminal device in the method embodiment. For the sake of brevity, it will not be repeated here.
- the processor 1403 can implement the method 900 performed by the network device in the method embodiments. For the sake of brevity, it will not be repeated here.
- the disclosed systems, devices, and methods may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- This functionality if implemented as a software functional unit and sold or used as a standalone product, can be stored on a computer readable storage medium.
- the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种信道传输的方法、终端设备和网络设备,该方法包括:终端设备在第一时刻接收网络设备发送的第一信息;终端设备根据所述第一信息确定用于发送第一上行信道的第一时域资源,其中所述第一时域资源位于所述目标时域资源单元中,所述第一时域资源包括P个信道资源单元,所述P个信道资源单元中的每个信道资源单元包括M个时域符号,所述M个时域符号中的最后N个时域符号用于传输参考信号。由于每个信道资源单元的M个时域符号中的最后N个符号用于传输参考信号,从而当两个控制信息因资源冲突而传输受到影响时,网络设备也能够有效地对其接收到的那些信道进行解调,从而保证了控制信道有效传输。
Description
本申请实施例涉及无线通信领域,并且更具体地,涉及一种信道传输的方法、终端设备和网络设备。
在5G系统或称新无线(New Radio)系统中,支持两种不同长度的物理上行控制信道(Physical Uplink Control Channel,PUCCH),即短PUCCH(short-PUCCH)和长PUCCH(long-PUCCH)。其中,短PUCCH通常包括1时域符号或2个时域符号,长PUCCH通常包括4~14个时域符号。
终端设备针对不同业务数据的反馈可能具有不同的时延,所使用的PUCCH的长度也可能不同,因而对于同一个终端设备来说,可能需要在同一个时域资源单元例如同一个时隙(slot)内即传输短PUCCH又传输长PUCCH。如果终端设备不支持在一个符号中同时传输多个上行信道和/或上行信号,那么当一个时域资源单元中的短PUCCH和长PUCCH在时域上发生冲突时,终端设备如何进行上行传输就成为急需解决的问题。
发明内容
本申请实施例提供了一种信道传输的方法、终端设备和网络设备,当终端设备传输的上行控制信息在时域资源上发生冲突时,仍能够有效地进行控制信息的传输。
第一方面,提供了一种信道传输的方法,包括:终端设备在第一时刻接收网络设备发送的第一信息;所述终端设备根据所述第一信息,确定用于发送第一上行信道的第一时域资源,其中,所述第一时域资源位于所述目标时域资源单元中,所述第一时域资源包括P个信道资源单元,所述P个信道资源单元中的每个信道资源单元包括M个时域符号,所述M个时域符号中的最后N个时域符号用于传输参考信号,P、M和N为正整数,且N不大于M。
由于每个信道资源单元的M个时域符号中的最后N个符号用于传输参考信号,从而使传输该第一上行信道的每个信道资源单元中的信息都能够被
独立解调。当两个控制信息因资源冲突而传输受到影响时,网络设备也能够有效地对其接收到的那些信道进行解调,从而保证了控制信道有效传输。
在一种可能的实现方式中,所述方法还包括:所述终端设备在第二时刻接收所述网络设备发送的第二信息;所述终端设备根据所述第二信息,确定用于发送所述第一上行信道的第二时域资源,其中,所述第二时刻位于所述第一时刻之后,所述第二时域资源位于所述目标时域资源单元中且所述第一时域资源包括所述第二时域资源;所述终端设备在所述第二时域资源上,向所述网络设备发送所述第一上行信道。
在一种可能的实现方式中,所述终端设备根据所述第二信息,确定用于发送所述第一上行信道的第二时域资源,包括:所述终端设备根据所述第二信息,确定在所述目标时域资源单元中的第三时域资源上发送第二上行信道或信号,其中,所述第三时域资源与所述第一时域资源至少部分重叠;所述终端设备将所述第一时域资源中与所述第三时域资源不重叠的时域资源,确定为所述第二时域资源。
由于第二时域资源中的每个信道资源单元中都包括用于传输参考信号的资源,因而网络设备在第二时域资源上接收到的第一上行信道中的内容就能够被正确解调。即使第一时域资源中与第三时域资源重叠的那部分时域资源上的第一上行信道不再传输了,也不会对第二时域资源上的第一上行信道的传输带来影响。并且第二上行信道或信号也能够在第三时域资源上进行传输而不受第一上行信道的影响,从而保证了控制信道有效传输。
在一种可能的实现方式中,所述第一时域资源包括所述P个信道资源单元和一个不完整的信道资源单元。
在一种可能的实现方式中,所述不完整的信道资源单元位于所述第一时域资源的末尾。
在一种可能的实现方式中,所述不完整的信道资源单元包括第一信道资源单元的前K1个符号,所述第一信道资源单元与所述P个信道资源单元中每个信道资源单元的结构相同,K1为小于M的正整数。。
在一种可能的实现方式中,所述第二时域资源包括Q个信道资源单元,Q为正整数且Q小于或等于P。
在一种可能的实现方式中,所述第二时域资源占用所述第一时域资源中的前K2个时域符号,K2为正整数。
在一种可能的实现方式中,所述P个信道资源单元中的第i+1个信道资源单元与第i个信道资源单元在时域上相邻,i从1至P-1。
在一种可能的实现方式中,在所述终端设备根据在第二时刻接收的所述网络设备发送的第二信息,确定用于发送所述第一上行信道的第二时域资源之前,所述方法还包括:所述终端设备接收所述网络设备发送的配置信息,所述配置信息用于指示所述终端设备能够调整发送所述第一上行信息的时域资源。
在一种可能的实现方式中,所述目标时域资源单元包括时隙、子帧或帧。
第二方面,提供了一种信道传输的方法,包括:网络设备在第一时刻向终端设备发送第一信息,以便于所述终端设备根据所述第一信息,确定用于发送第一上行信道的第一时域资源,其中,所述第一时域资源位于所述目标时域资源单元中,所述第一时域资源包括P个信道资源单元,所述P个信道资源单元中的每个信道资源单元包括M个时域符号,所述M个时域符号中的最后N个时域符号用于传输参考信号,P、M和N为正整数,且N不大于M;所述网络设备在第二时刻向终端设备发送第二信息,以便于所述终端设备根据所述第二信息,确定用于发送所述第一上行信道的第二时域资源,其中,所述第二时刻位于所述第一时刻之后,所述第二时域资源位于所述目标时域资源单元中且所述第一时域资源包括所述第二时域资源;所述网络设备在所述第二时域资源上,接收所述终端设备发送的所述第一上行信道。
由于每个信道资源单元的M个时域符号中的最后N个符号用于传输参考信号,从而使传输该第一上行信道的每个信道资源单元中的信息都能够被独立解调。当两个控制信息因资源冲突而传输受到影响时,网络设备也能够有效地对其接收到的那些信道进行解调,从而保证了控制信道有效传输。
在一种可能的实现方式中,所述目标时域资源单元中的第三时域资源与所述第一时域资源至少部分重叠,所述第二时域资源为所述第一时域资源中与所述第三时域资源不重叠的时域资源,所述第三时域资源为所述终端设备根据所述第二信息确定的用于发送第二上行信道或信号的时域资源。
由于第二时域资源中的每个信道资源单元中都包括用于传输参考信号的资源,因而网络设备在第二时域资源上接收到的第一上行信道中的内容就能够被正确解调。即使第一时域资源中与第三时域资源重叠的那部分时域资源上的第一上行信道不再传输了,也不会对第二时域资源上的第一上行信道
的传输带来影响。并且第二上行信道或信号也能够在第三时域资源上进行传输而不受第一上行信道的影响,从而保证了控制信道有效传输。
在一种可能的实现方式中,所述第一时域资源包括所述P个信道资源单元和一个不完整的信道资源单元。
在一种可能的实现方式中,所述不完整的信道资源单元位于所述第一时域资源的末尾。在一种可能的实现方式中,所述不完整的信道资源单元包括第一信道资源单元的前K1个符号,所述第一信道资源单元与所述P个信道资源单元中每个信道资源单元的结构相同,K1为小于M的正整数。
在一种可能的实现方式中,所述第二时域资源包括Q个信道资源单元,Q为正整数且Q小于或等于P。
在一种可能的实现方式中,所述第二时域资源占用所述第一时域资源中的前K2个时域符号,K2为正整数。
在一种可能的实现方式中,所述P个信道资源单元中的第i+1个信道资源单元与第i个信道资源单元在时域上相邻,i从1至P-1。
在一种可能的实现方式中,在所述网络设备在第一时刻向终端设备发送第一信息之前,所述方法还包括:所述网络设备向所述终端设备发送配置信息,所述配置信息用于指示所述终端设备能够调整发送所述第一上行信息的时域资源。
在一种可能的实现方式中,所述目标时域资源单元包括时隙、子帧或帧。
第三方面,提供了一种终端设备,该终端设备可以执行上述第一方面或第一方面的任意可选的实现方式中的终端设备的操作。具体地,该终端设备可以包括用于执行上述第一方面或第一方面的任意可能的实现方式中的终端设备的操作的模块单元。
第四方面,提供了一种网络设备,该网络设备可以执行上述第二方面或第二方面的任意可选的实现方式中的网络设备的操作。具体地,该网络设备可以包括用于执行上述第二方面或第二方面的任意可能的实现方式中的网络设备的操作的模块单元。
第五方面,提供了一种终端设备,该终端设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器用于存储指令,该处理器用于执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该终端设备执行第一方面或第一
方面的任意可能的实现方式中的方法,或者该执行使得该终端设备实现第三方面提供的终端设备。
第六方面,提供了一种网络设备,该网络设备包括:处理器、收发器和存储器。其中,该处理器、收发器和存储器之间通过内部连接通路互相通信。该存储器用于存储指令,该处理器用于执行该存储器存储的指令。当该处理器执行该存储器存储的指令时,该执行使得该网络设备执行第二方面或第二方面的任意可能的实现方式中的方法,或者该执行使得该网络设备实现第四方面提供的网络设备。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得终端设备执行上述第一方面,及其各种实现方式中的任一种信道传输的方法。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有程序,所述程序使得网络设备执行上述第二方面,及其各种实现方式中的任一种信道传输的方法。
第九方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该处理器用于执行该存储器存储的指令,当该指令被执行时,该处理器可以实现前述第一方面及其各种实现方式中的任一种方法。
第十方面,提供了一种系统芯片,该系统芯片包括输入接口、输出接口、处理器和存储器,该处理器用于执行该存储器存储的指令,当该指令被执行时,该处理器可以实现前述第二方面及其各种实现方式中的任一种方法。
第十一方面,提供了一种包括指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得该计算机执行上述第一方面或第一方面的任一可选的实现方式中的方法。
第十二方面,提供了一种包括指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得该计算机执行上述第二方面或第二方面的任一可选的实现方式中的方法。
图1是本申请实施例的一种应用场景的示意性架构图。
图2是上行控制信道的传输示意图。
图3是本申请实施例的信道传输的方法的示意性流程图。
图4是本申请实施例的信道资源单元的示意图。
图5是本申请实施例的信道传输的方法的示意性流程图。
图6是本申请实施例的信道传输的方法的示意性流程图。
图7是本申请实施例的上行控制信道的传输示意图。
图8是本申请实施例的传输上行控制信道的时域资源示意图。
图9是本申请实施例的信道传输的方法的示意性流程图。
图10是本申请实施例的终端设备的示意性框图。
图11是本申请实施例的网络设备的示意性框图。
图12是本申请实施例的终端设备的示意性结构图。
图13是本申请实施例的网络设备的示意性结构图。
图14是本申请实施例的系统芯片的示意性结构图。
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、以及未来的5G通信系统等。
本申请结合终端设备描述了各个实施例。终端设备也可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的陆上公用移动通信网(Public Land Mobile Network,PLMN)网络中的终端设备等。
本申请结合网络设备描述了各个实施例。网络设备可以是用于与终端设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络侧设备或未来演进的PLMN网络中的网络侧设备等。
图1是本申请实施例的一个应用场景的示意图。图1中的通信系统可以包括网络设备10和终端设备20。网络设备10用于为终端设备20提供通信服务并接入核心网,终端设备20可以通过搜索网络设备10发送的同步信号、广播信号等而接入网络,从而进行与网络的通信。图1中所示出的箭头可以表示通过终端设备20与网络设备10之间的蜂窝链路进行的上/下行传输。
本申请实施例中的网络可以是指公共陆地移动网络(Public Land Mobile Network,PLMN)或者设备对设备(Device to Device,D2D)网络或者机器对机器/人(Machine to Machine/Man,M2M)网络或者其他网络,图1只是举例的简化示意图,网络中还可以包括其他终端设备,图1中未予以画出。
在5G系统中,支持两种不同长度的PUCCH即短PUCCH(short-PUCCH)和长PUCCH(long-PUCCH)。其中,短PUCCH通常包括1时域符号或2个时域符号,长PUCCH通常包括4~14个时域符号。终端设备针对不同业务数据的上行反馈可能具有不同的时延,因此所使用的PUCCH的长度也可能不同,因而对于同一个终端设备来说,可能需要在同一个时域资源单元例如同一个时隙(slot)内即传输短PUCCH又传输长PUCCH。如果终端设备不支持在一个符号中同时传输多个上行信道和/或上行信号,那么当一个时域资源单元中的短PUCCH和长PUCCH在时域上发生冲突时,终端设备如何进行上行传输就成为急需解决的问题。
例如图2所示的上行控制信道的传输示意图。在时隙3中,终端设备既需要传输针对第一物理上行共享信道(Physical Uplink Shared CHannel,PUSCH)、第二PUSCH和第三PUSCH的上行控制信息即图2中所示的长PUCCH,又需要在时隙n+3中传输针对第四PUSCH的上行控制信息即图2中所示的短PUCCH,且长PUCCH占用的时域资源和短PUCCH占用的时域资源重叠,如果终端设备不支持在一个符号中同时传输多个上行信道和/或上行信号,那么短PUCCH和长PUCCH在时域上发生冲突时终端设备就无法
决策如何传输上行控制信道。同样,如果时隙3中终端设备既需要传输长PUCCH,还需要传输网络设备调度的非周期性参考信号(Reference,RS),且长PUCCH和RS在时域资源上发生冲突,那么终端设备的上行控制信道的传输同样受到影响。
本申请实施例通过对上行信道的结构进行设计,使上行控制信道例如长PUCCH的时域资源中包括多个信道资源单元,每个信道资源单元包括M个时域符号且M个时域符号中的最后N个符号用于传输参考信号,从而使传输该上行信道的每个信道资源单元中的信息都能够被独立解调。当两个控制信息因资源冲突而传输受到影响时,网络设备也能够有效地对其接收到的那些信道进行解调。
图3是本申请实施例的信道传输的示意性流程图。图3所示的方法可以由终端设备执行,该终端设备例如可以为图1中所示的终端设备20。如图3所示,该信道传输的方法包括:
在310中,终端设备在第一时刻接收网络设备发送的第一信息。
在320中,终端设备根据该第一信息,确定用于发送第一上行信道的第一时域资源,其中,该第一时域资源位于该目标时域资源单元中,该第一时域资源包括P个信道资源单元,P个信道资源单元中的每个信道资源单元包括M个时域符号,该M个时域符号中的最后N个时域符号用于传输参考信号,P、M和N为正整数,且N不大于M。该目标时域资源单元例如为时隙、子帧或帧。
具体地,终端设备在第一时刻接收到网络设备发送的第一信息例如PUSCH后,确定在目标时域资源单元中的第一时域资源上向网络设备反馈第一上行信道例如长PUCCH。其中,该第一时域资源包括多个例如P个信道资源单元,每个信道资源单元中包括M个时域符号,这M个时域符号中的最后N个时域符号是用于传输参考信号的。
由于每个信道资源单元的M个时域符号中的最后N个符号用于传输参考信号,从而使传输该第一上行信道的每个信道资源单元中的信息都能够被独立解调。当两个控制信息因资源冲突而传输受到影响时,网络设备也能够有效地对其接收到的那些信道进行解调,从而保证了控制信道有效传输。
可选地,该P个信道资源单元中的第i+1个信道资源单元与第i个信道资源单元在时域上相邻,i从1至P-1。也就是说,在时间上一个信道资源单
元挨着一个信道资源单元顺序排列下去的,不同信道资源单元内的时域符号不会做交织。
可选地,该第一时域资源包括该P个信道资源单元和一个不完整的信道资源单元。
换句话说,该P个信道资源单元为P个完整的信道资源单元,每个信道资源单元中包括M个时域符号,而该不完整的信道资源单元仅包括M个时域符号中的部分时域符号,即不完整的信道资源单元中的时域符号的数量少于M。
可选地,该不完整的信道资源单元位于该第一时域资源的末尾。
换句话说,第一时域资源中的该P个信道资源单元占用第一时域资源中最前面的时域符号。
可选地,该不完整的信道资源单元包括第一信道资源单元的前K1个符号,该第一信道资源单元与该P个信道资源单元中每个信道资源单元的结构相同,K1为小于M的正整数。
该第一信道资源单元可以理解与该P个信道资源单元结构相同的一个完整的信道资源单元,该第一信道资源单元同样包括M个时域符号且M个符号中的N个符号用于传输参考信号,并且该第一信道资源单元中的前K1个符号可以组成该不完整的信道资源单元,该P个信道资源单元与该不完整的信道资源单元组成第一时域资源。
例如图4所示的第一时域资源中的P个信道资源单元的示意图。P=3,在信道资源单元(Unit)1、信道资源单元2和信道资源单元3中,每个信道资源单元包括2个时域符号,且前一个符号用于传输控制信息,后一个符号用于传输参考信号。相比于完整的信道资源单元1、信道资源单元2和信道资源单元3,不完整的信道资源单元(Partial Unit)4中仅包括1个符号,并且,该不完整的信道资源单元4中包括的这1个符号为用于传输上行信息的符号。
可选地,如图5所示,在320之后,该方法还包括330至350。其中:
在330中,终端设备在第二时刻接收网络设备发送的第二信息。
在340中,终端设备根据该第二信息,确定用于发送该第一上行信道的第二时域资源,其中,该第二时刻位于该第一时刻之后,该第二时域资源位于该目标时域资源单元中且该第一时域资源包括该第二时域资源。
在350中,终端设备在该第二时域资源上,向网络设备发送该第一上行信道。
具体地,终端设备确定在目标时域资源单元中的第一时域资源上向网络设备发送第一上行信道之后,又在第二时刻接收到网络设备发送的第二信息,且在第二时刻终端设备暂未发送该第一上行信道,这时终端设备可以根据该第二信息进一步重新确定用于发送该第一上行信道的第二时域资源,并在该第二时域资源上向网络设备发送该第一上行信道。
可选地,如图6所示,340可以包括341和342,其中:
在341中,终端设备根据该第二信息,确定在该目标时域资源单元中的第三时域资源上发送第二上行信道或信号,其中,该第三时域资源与该第一时域资源至少部分重叠。
在342中,终端设备将该第一时域资源中与该第三时域资源不重叠的时域资源,确定为该第二时域资源。
该实施例中,终端设备接收到第二信息例如PUSCH或下行控制信息后,确定在目标时域资源单元中的第三时域资源上向网络设备反馈第二上行信道(例如短PUCCH)或信号(例如参考信号)。这时,如果第三时域资源与该第一时域资源至少部分重叠了,则终端设备将重新确定用于传输第一上行信道的时域资源。终端设备可以将该第一时域资源中与该第三时域资源不重叠的时域资源,确定为用于传输第一上行信道的时域资源即该第二时域资源。
应理解,该第二信息可以为第二PUSCH或者为用于指示终端设备传输非周期性参考信号的指示信息等。
可选地,该第二时域资源包括Q个信道资源单元,Q为正整数且Q小于或等于P。每个信道资源单元包括M个时域符号,该M个时域符号中的最后N个时域符号用于传输参考信号。该Q个信道资源单元为第一时域资源中的P个信道资源单元的子集,即该Q个信道资源单元为该P个信道资源单元中的至少部分信道资源单元。
可选地,该第二时域资源占用该第一时域资源中的前K2个时域符号,K2为正整数。
例如图7所示,假设第一时域资源中的最后一个符号(即不完整的信道资源单元4)与第三时域资源重叠了,其中第一时域资源例如图4中所示,
那么可以确定如图8所示的时域资源为用于传输第一上行信道的第二时域资源。该第二时域资源包括信道资源单元1、信道资源单元2和信道资源单元3,其中每个信道资源单元包括2个时域符号,且每个信道资源单元的前一个符号用于传输控制信息,后一个符号用于传输参考信号。该第二时域资源包括第一时域资源的前6个符号。
由于第二时域资源中的每个信道资源单元中都包括用于传输参考信号的资源,因而网络设备在第二时域资源上接收到的第一上行信道中的内容就能够被正确解调。即使第一时域资源中与第三时域资源重叠的那部分时域资源上的第一上行信道不再传输了,也不会对第二时域资源上的第一上行信道的传输带来影响。并且第二上行信道或信号也能够在第三时域资源上进行传输而不受第一上行信道的影响,从而保证了控制信道有效传输。
可选地,在340之前,即在终端设备根据该第二信息,确定用于发送该第一上行信道的第二时域资源之前,该方法还包括:终端设备接收网络设备发送的配置信息,该配置信息用于指示终端设备能够调整发送该第一上行信息的时域资源。
即,该配置信息用于指示终端设备能够在接收到第二信息之后根据该第二信息进一步重新确定用于传输第一上行信道的时域资源即第二时域资源。
图9是本申请实施例的信道传输的示意性流程图。图9所示的方法可以由网络设备执行,该网络设备例如可以为图1中所示的网络设备10。如图9所示,该信道传输的方法包括:
在910中,网络设备在第一时刻向终端设备发送第一信息,以便于终端设备根据该第一信息,确定用于发送第一上行信道的第一时域资源,其中,该第一时域资源位于该目标时域资源单元中,该第一时域资源包括P个信道资源单元,该P个信道资源单元中的每个信道资源单元包括M个时域符号,该M个时域符号中的最后N个时域符号用于传输参考信号,P、M和N为正整数,且N不大于M。
在920中,网络设备在第二时刻向终端设备发送第二信息,以便于终端设备根据该第二信息,确定用于发送该第一上行信道的第二时域资源,其中,该第二时刻位于该第一时刻之后,该第二时域资源位于该目标时域资源单元中且该第一时域资源包括该第二时域资源。
在930中,网络设备在该第二时域资源上,接收终端设备发送的该第一
上行信道。
具体地,网络设备在第一时刻向终端设备发送第一信息例如第一PUSCH,第一终端设备根据该第一信息确定在目标时域资源单元中的第一时域资源上向网络设备反馈第一上行信道例如长PUCCH。网络设备又在第二时刻向终端设备发送第二信息,且在第二时刻终端设备暂未发送该第一上行信道,这时终端设备可以根据该第二信息进一步重新确定用于发送该第一上行信道的第二时域资源,并在该第二时域资源上向网络设备发送该第一上行信道,从而网络设备在该第二时域资源上接收终端设备发送的该第一上行信道。其中,该第一时域资源包括多个例如P个信道资源单元,每个信道资源单元中包括M个时域符号,这M个时域符号中的最后N个时域符号时用于传输参考信号的。该目标时域资源单元例如为时隙、子帧或帧。
由于每个信道资源单元的M个时域符号中的最后N个符号用于传输参考信号,从而使传输该第一上行信道的每个信道资源单元中的信息都能够被独立解调。当两个控制信息因资源冲突而传输受到影响时,网络设备也能够有效地对其接收到的那些信道进行解调,从而保证了控制信道有效传输。
可选地,该P个信道资源单元中的第i+1个信道资源单元与第i个信道资源单元在时域上相邻,i从1至P-1。也就是说,在时间上一个信道资源单元挨着一个信道资源单元顺序排列下去,不同信道资源单元内的时域符号不会做交织。
可选地,该第一时域资源包括该P个信道资源单元和一个不完整的信道资源单元。
换句话说,该P个信道资源单元为P个完整的信道资源单元,每个信道资源单元中包括M个时域符号,而该不完整的信道资源单元仅包括M个时域符号中的部分时域符号,即不完整的信道资源单元中的时域符号的数量少于M。
可选地,该不完整的信道资源单元位于该第一时域资源的末尾。
换句话说,第一时域资源中的该P个信道资源单元占用第一时域资源中最前面的时域符号。
可选地,该不完整的信道资源单元包括第一信道资源单元的前K1个符号,该第一信道资源单元与该P个信道资源单元中每个信道资源单元的结构相同,K1为小于M的正整数。
例如图4所示的第一时域资源中的P个信道资源单元的示意图。信道资源单元(Unit)1、信道资源单元2和信道资源单元3中,每个信道资源单元包括2个时域符号,且前一个符号用于传输控制信息,后一个符号用于传输参考信号。相比于信道资源单元1、信道资源单元2和信道资源单元3,不完整的信道资源单元(Partial Unit)4中仅包括1个符号。
可选地,该目标时域资源单元中的第三时域资源与该第一时域资源至少部分重叠,该第二时域资源为该第一时域资源中与该第三时域资源不重叠的时域资源,该第三时域资源为终端设备根据该第二信息确定的用于发送第二上行信道或信号的时域资源。
应理解,该第二信息可以为第二PUSCH或者为用于指示终端设备传输非周期性参考信号的指示信息等。
由于第二时域资源中的每个信道资源单元中都包括用于传输参考信号的资源,因而网络设备在第二时域资源上接收到的第一上行信道中的内容就能够被正确解调。即使第一时域资源中与第三时域资源重叠的那部分时域资源上的第一上行信道不再传输了,也不会对第二时域资源上的第一上行信道的传输带来影响。并且第二上行信道或信号也能够在第三时域资源上进行传输而不受第一上行信道的影响,从而保证了控制信道有效传输。
可选地,该第二时域资源包括Q个信道资源单元,Q为正整数且Q小于或等于P。Q个信道资源单元中的每个信道资源单元包括M个时域符号,该M个时域符号中的最后N个时域符号用于传输参考信号。该Q个信道资源单元为第一时域资源中的P个信道资源单元的子集,即该Q个信道资源单元为该P个信道资源单元中的至少部分信道资源单元。
可选地,该第二时域资源占用该第一时域资源中的前K2个时域符号,K2为正整数。
例如图7所示,假设第一时域资源中的最后一个符号(即不完整的信道资源单元4)与第三时域资源重叠了,其中第一时域资源例如图3中所示,那么可以确定如图8所示的时域资源为用于传输第一上行信道的第二时域资源。该第二时域资源包括信道资源单元1、信道资源单元2和信道资源单元3,其中每个信道资源单元包括2个时域符号,且每个信道资源单元的前一个符号用于传输控制信息,后一个符号用于传输参考信号。该第二时域资源包括第一时域资源的前6个符号。
可选地,在910之前,即在网络设备在第一时刻向终端设备发送第一信息之前,该方法还包括:网络设备向终端设备发送配置信息,该配置信息用于指示终端设备能够调整发送该第一上行信息的时域资源。
即,该配置信息用于指示终端设备能够在接收到第二信息之后根据该第二信息进一步重新确定用于传输第一上行信道的时域资源即第二时域资源。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
图10是根据本申请实施例的终端设备1000的示意性框图。如图10所示,该终端设备1000包括接收单元1010和确定单元1020。其中:
接收单元1010,用于在第一时刻接收网络设备发送的第一信息;
确定单元1020,用于根据所述接收单元1010接收的所述第一信息,确定用于发送第一上行信道的第一时域资源,其中,所述第一时域资源位于所述目标时域资源单元中,所述第一时域资源包括P个信道资源单元,所述P个信道资源单元中的每个信道资源单元包括M个时域符号,所述M个时域符号中的最后N个时域符号用于传输参考信号,P、M和N为正整数,且N不大于M。
由于每个信道资源单元的M个时域符号中的最后N个符号用于传输参考信号,从而使传输该第一上行信道的每个信道资源单元中的信息都能够被独立解调。当两个控制信息因资源冲突而传输受到影响时,网络设备也能够有效地对其接收到的那些信道进行解调,从而保证了控制信道有效传输。
可选地,所述终端设备还包括发送单元,其中,所述接收单元1010还用于:在第二时刻接收所述网络设备发送的第二信息;所述确定单元1020还用于,根据所述第二信息,确定用于发送所述第一上行信道的第二时域资源,其中,所述第二时刻位于所述第一时刻之后,所述第二时域资源位于所述目标时域资源单元中且所述第一时域资源包括所述第二时域资源;所述发送单元,用于在所述第二时域资源上,向所述网络设备发送所述第一上行信道。
可选地,所述确定单元1020具体用于:根据所述第二信息,确定在所述目标时域资源单元中的第三时域资源上发送第二上行信道或信号,其中,所述第三时域资源与所述第一时域资源至少部分重叠;将所述第一时域资源
中与所述第三时域资源不重叠的时域资源,确定为所述第二时域资源。
可选地,所述第一时域资源包括所述P个信道资源单元和一个不完整的信道资源单元。
可选地,所述不完整的信道资源单元位于所述第一时域资源的末尾。
可选地,所述不完整的信道资源单元包括第一信道资源单元的前K1个符号,所述第一信道资源单元与所述P个信道资源单元中每个信道资源单元的结构相同,K1为小于M的正整数。
可选地,所述第二时域资源包括Q个信道资源单元,Q为正整数且Q小于或等于P。
可选地,所述第二时域资源占用所述第一时域资源中的前K2个时域符号,K2为正整数。
可选地,所述P个信道资源单元中的第i+1个信道资源单元与第i个信道资源单元在时域上相邻,i从1至P-1。
可选地,所述接收单元1010还用于:接收所述网络设备发送的配置信息,所述配置信息用于指示所述终端设备能够调整发送所述第一上行信息的时域资源。
可选地,所述目标时域资源单元包括时隙、子帧或帧。
图11是根据本申请实施例的网络设备1100的示意性框图。如图11所示,该网络设备1100包括发送单元1110和接收单元1120。其中:
发送单元1110,用于在第一时刻向终端设备发送第一信息,以便于所述终端设备根据所述第一信息,确定用于发送第一上行信道的第一时域资源,其中,所述第一时域资源位于所述目标时域资源单元中,所述第一时域资源包括P个信道资源单元,所述信道资源单元包括M个时域符号,所述M个时域符号中的最后N个时域符号用于传输参考信号,P、M和N为正整数,且N不大于M;
所述发送单元1110还用于,在第二时刻向终端设备发送第二信息,以便于所述终端设备根据所述第二信息,确定用于发送所述第一上行信道的第二时域资源,其中,所述第二时刻位于所述第一时刻之后,所述第二时域资源位于所述目标时域资源单元中且所述第一时域资源包括所述第二时域资源;
接收单元1120,用于在所述第二时域资源上,接收所述终端设备发送的
所述第一上行信道。
由于每个信道资源单元的M个时域符号中的最后N个符号用于传输参考信号,从而使传输该第一上行信道的每个信道资源单元中的信息都能够被独立解调。当两个控制信息因资源冲突而传输受到影响时,网络设备也能够有效地对其接收到的那些信道进行解调,从而保证了控制信道有效传输。
可选地,所述目标时域资源单元中的第三时域资源与所述第一时域资源至少部分重叠,所述第二时域资源为所述第一时域资源中与所述第三时域资源不重叠的时域资源,所述第三时域资源为所述终端设备根据所述第二信息确定的用于发送第二上行信道或信号的时域资源。
由于第二时域资源中的每个信道资源单元中都包括用于传输参考信号的资源,因而网络设备在第二时域资源上接收到的第一上行信道中的内容就能够被正确解调。即使第一时域资源中与第三时域资源重叠的那部分时域资源上的第一上行信道不再传输了,也不会对第二时域资源上的第一上行信道的传输带来影响。并且第二上行信道或信号也能够在第三时域资源上进行传输而不受第一上行信道的影响,从而保证了控制信道有效传输。
可选地,所述第一时域资源包括所述P个信道资源单元和一个不完整的信道资源单元。
可选地,所述不完整的信道资源单元位于所述第一时域资源的末尾。
可选地,所述不完整的信道资源单元包括第一信道资源单元的前K1个符号,所述第一信道资源单元与所述P个信道资源单元中每个信道资源单元的结构相同,K1为小于M的正整数。
可选地,所述第二时域资源包括Q个信道资源单元,Q为正整数且Q小于或等于P。
可选地,所述第二时域资源占用所述第一时域资源中的前K2个时域符号,K2为正整数。
可选地,所述P个信道资源单元中的第i+1个信道资源单元与第i个信道资源单元在时域上相邻,i从1至P-1。
可选地,所述发送单元1110还用于:向所述终端设备发送配置信息,所述配置信息用于指示所述终端设备能够调整发送所述第一上行信息的时域资源。
可选地,所述目标时域资源单元包括时隙、子帧或帧。
图12是根据本申请实施例的终端设备1200的示意性结构图。如图12所示,该终端设备包括处理器1210、收发器1220和存储器1230,其中,该处理器1210、收发器1220和存储器1230之间通过内部连接通路互相通信。该存储器1230用于存储指令,该处理器1210用于执行该存储器1230存储的指令,以控制该收发器1220接收信号或发送信号。其中,该收发器1220用于:
在第一时刻接收网络设备发送的第一信息;
该处理器1210用于:根据所述收发器1220接收的所述第一信息,确定用于发送第一上行信道的第一时域资源,其中,所述第一时域资源位于所述目标时域资源单元中,所述第一时域资源包括P个信道资源单元,所述P个信道资源单元中的每个信道资源单元包括M个时域符号,所述M个时域符号中的最后N个时域符号用于传输参考信号,P、M和N为正整数,且N不大于M。
由于每个信道资源单元的M个时域符号中的最后N个符号用于传输参考信号,从而使传输该第一上行信道的每个信道资源单元中的信息都能够被独立解调。当两个控制信息因资源冲突而传输受到影响时,网络设备也能够有效地对其接收到的那些信道进行解调,从而保证了控制信道有效传输。
可选地,所述终端设备还包括发送单元,其中,所述收发器1220还用于:在第二时刻接收所述网络设备发送的第二信息;所述处理器1210还用于,根据所述第二信息,确定用于发送所述第一上行信道的第二时域资源,其中,所述第二时刻位于所述第一时刻之后,所述第二时域资源位于所述目标时域资源单元中且所述第一时域资源包括所述第二时域资源;所述发送单元,用于在所述第二时域资源上,向所述网络设备发送所述第一上行信道。
可选地,所述处理器1210具体用于:根据所述第二信息,确定在所述目标时域资源单元中的第三时域资源上发送第二上行信道或信号,其中,所述第三时域资源与所述第一时域资源至少部分重叠;将所述第一时域资源中与所述第三时域资源不重叠的时域资源,确定为所述第二时域资源。
可选地,所述第一时域资源包括所述P个信道资源单元和一个不完整的信道资源单元。
可选地,所述不完整的信道资源单元位于所述第一时域资源的末尾。
可选地,所述不完整的信道资源单元包括第一信道资源单元的前K1个
符号,所述第一信道资源单元与所述P个信道资源单元中每个信道资源单元的结构相同,K1为小于M的正整数。
可选地,所述第二时域资源包括Q个信道资源单元,Q为正整数且Q小于或等于P。
可选地,所述第二时域资源占用所述第一时域资源中的前K2个时域符号,K2为正整数。
可选地,所述P个信道资源单元中的第i+1个信道资源单元与第i个信道资源单元在时域上相邻,i从1至P-1。
可选地,所述收发器1220还用于:接收所述网络设备发送的配置信息,所述配置信息用于指示所述终端设备能够调整发送所述第一上行信息的时域资源。
可选地,所述目标时域资源单元包括时隙、子帧或帧。
应理解,在本申请实施例中,该处理器1210可以是中央处理单元(Central Processing Unit,CPU),该处理器1210还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器1230可以包括只读存储器和随机存取存储器,并向处理器1210提供指令和数据。存储器1230的一部分还可以包括非易失性随机存取存储器。
在实现过程中,上述方法的各步骤可以通过处理器1210中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的定位方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器1210中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1230,处理器1210读取存储器1230中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本申请实施例的终端设备1200可以对应于上述方法400中用于执行方法400的终端设备,以及根据本申请实施例的终端设备1000,且该终端设备1200中的各单元或模块分别用于执行上述方法400中终端设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
图13是根据本申请实施例的网络设备1300的示意性结构图。如图13所示,该网络设备包括处理器1310、收发器1320和存储器1330,其中,该处理器1310、收发器1320和存储器1330之间通过内部连接通路互相通信。该存储器1330用于存储指令,该处理器1310用于执行该存储器1330存储的指令,以控制该收发器1320接收信号或发送信号。其中,该收发器1320用于:
在第一时刻向终端设备发送第一信息,以便于所述终端设备根据所述第一信息,确定用于发送第一上行信道的第一时域资源,其中,所述第一时域资源位于所述目标时域资源单元中,所述第一时域资源包括P个信道资源单元,所述信道资源单元包括M个时域符号,所述M个时域符号中的最后N个时域符号用于传输参考信号,P、M和N为正整数,且N不大于M;
在第二时刻向终端设备发送第二信息,以便于所述终端设备根据所述第二信息,确定用于发送所述第一上行信道的第二时域资源,其中,所述第二时刻位于所述第一时刻之后,所述第二时域资源位于所述目标时域资源单元中且所述第一时域资源包括所述第二时域资源;
在所述第二时域资源上,接收所述终端设备发送的所述第一上行信道。
由于每个信道资源单元的M个时域符号中的最后N个符号用于传输参考信号,从而使传输该第一上行信道的每个信道资源单元中的信息都能够被独立解调。当两个控制信息因资源冲突而传输受到影响时,网络设备也能够有效地对其接收到的那些信道进行解调,从而保证了控制信道有效传输。
可选地,所述目标时域资源单元中的第三时域资源与所述第一时域资源至少部分重叠,所述第二时域资源为所述第一时域资源中与所述第三时域资源不重叠的时域资源,所述第三时域资源为所述终端设备根据所述第二信息确定的用于发送第二上行信道或信号的时域资源。
由于第二时域资源中的每个信道资源单元中都包括用于传输参考信号的资源,因而网络设备在第二时域资源上接收到的第一上行信道中的内容就能够被正确解调。即使第一时域资源中与第三时域资源重叠的那部分时域资
源上的第一上行信道不再传输了,也不会对第二时域资源上的第一上行信道的传输带来影响。并且第二上行信道或信号也能够在第三时域资源上进行传输而不受第一上行信道的影响,从而保证了控制信道有效传输。
可选地,所述第一时域资源包括所述P个信道资源单元和一个不完整的信道资源单元。
可选地,所述不完整的信道资源单元位于所述第一时域资源的末尾。
可选地,所述不完整的信道资源单元包括第一信道资源单元的前K1个符号,所述第一信道资源单元与所述P个信道资源单元中每个信道资源单元的结构相同,K1为小于M的正整数。
可选地,所述第二时域资源包括Q个信道资源单元,Q为正整数且Q小于或等于P。
可选地,所述第二时域资源占用所述第一时域资源中的前K2个时域符号,K2为正整数。
可选地,所述P个信道资源单元中的第i+1个信道资源单元与第i个信道资源单元在时域上相邻,i从1至P-1。
可选地,所述收发器1320还用于:向所述终端设备发送配置信息,所述配置信息用于指示所述终端设备能够调整发送所述第一上行信息的时域资源。
可选地,所述目标时域资源单元包括时隙、子帧或帧。
应理解,在本申请实施例中,该处理器1310可以是中央处理单元(Central Processing Unit,CPU),该处理器1310还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器1330可以包括只读存储器和随机存取存储器,并向处理器1310提供指令和数据。存储器1330的一部分还可以包括非易失性随机存取存储器。在实现过程中,上述方法的各步骤可以通过处理器1310中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的定位方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器1310中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成
熟的存储介质中。该存储介质位于存储器1330,处理器1310读取存储器1330中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
根据本申请实施例的网络设备1300可以对应于上述方法900中用于执行方法900的网络设备,以及根据本申请实施例的网络设备1100,且该网络设备1300中的各单元或模块分别用于执行上述方法900中网络设备所执行的各动作或处理过程,这里,为了避免赘述,省略其详细说明。
图14是本申请实施例的系统芯片的一个示意性结构图。图14的系统芯片1400包括输入接口1401、输出接口1402、至少一个处理器1403、存储器1404,所述输入接口1401、输出接口1402、所述处理器1403以及存储器1404之间通过内部连接通路互相连接。所述处理器1403用于执行所述存储器1404中的代码。
可选地,当所述代码被执行时,所述处理器1403可以实现方法实施例中由终端设备执行的方法400。为了简洁,这里不再赘述。
可选地,当所述代码被执行时,所述处理器1403可以实现方法实施例中由网络设备执行的方法900。为了简洁,这里不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
该功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本申请的具体实施方式,但本申请实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请适合私利的保护范围之内。因此,本申请实施例的保护范围应该以权利要求的保护范围为准。
Claims (42)
- 一种信道传输的方法,其特征在于,所述方法包括:终端设备在第一时刻接收网络设备发送的第一信息;所述终端设备根据所述第一信息,确定用于发送第一上行信道的第一时域资源,其中,所述第一时域资源位于所述目标时域资源单元中,所述第一时域资源包括P个信道资源单元,所述P个信道资源单元中的每个信道资源单元包括M个时域符号,所述M个时域符号中的最后N个时域符号用于传输参考信号,P、M和N为正整数,且N不大于M。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:所述终端设备在第二时刻接收所述网络设备发送的第二信息;所述终端设备根据所述第二信息,确定用于发送所述第一上行信道的第二时域资源,其中,所述第二时刻位于所述第一时刻之后,所述第二时域资源位于所述目标时域资源单元中且所述第一时域资源包括所述第二时域资源;所述终端设备在所述第二时域资源上,向所述网络设备发送所述第一上行信道。
- 根据权利要求2所述的方法,其特征在于,所述终端设备根据所述第二信息,确定用于发送所述第一上行信道的第二时域资源,包括:所述终端设备根据所述第二信息,确定在所述目标时域资源单元中的第三时域资源上发送第二上行信道或信号,其中,所述第三时域资源与所述第一时域资源至少部分重叠;所述终端设备将所述第一时域资源中与所述第三时域资源不重叠的时域资源,确定为所述第二时域资源。
- 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一时域资源包括所述P个信道资源单元和一个不完整的信道资源单元。
- 根据权利要求4所述的方法,其特征在于,所述不完整的信道资源单元位于所述第一时域资源的末尾。
- 根据权利要求4或5所述的方法,其特征在于,所述不完整的信道资源单元包括第一信道资源单元的前K1个符号,所述第一信道资源单元与所述P个信道资源单元中每个信道资源单元的结构相同,K1为小于M的正整数。
- 根据权利要求2至6中任一项所述的方法,其特征在于,所述第二时域资源包括Q个信道资源单元,Q为正整数且Q小于或等于P。
- 根据权利要求2至7中任一项所述的方法,其特征在于,所述第二时域资源占用所述第一时域资源中的前K2个时域符号,K2为正整数。
- 根据权利要求1至8中任一项所述的方法,其特征在于,所述P个信道资源单元中的第i+1个信道资源单元与第i个信道资源单元在时域上相邻,i从1至P-1。
- 根据权利要求1至9中任一项所述的方法,其特征在于,在所述终端设备根据在第二时刻接收的所述网络设备发送的第二信息,确定用于发送所述第一上行信道的第二时域资源之前,所述方法还包括:所述终端设备接收所述网络设备发送的配置信息,所述配置信息用于指示所述终端设备能够调整发送所述第一上行信息的时域资源。
- 根据权利要求1至10中任一项所述的方法,其特征在于,所述目标时域资源单元包括时隙、子帧或帧。
- 一种信道传输的方法,其特征在于,所述方法包括:网络设备在第一时刻向终端设备发送第一信息,以便于所述终端设备根据所述第一信息,确定用于发送第一上行信道的第一时域资源,其中,所述第一时域资源位于所述目标时域资源单元中,所述第一时域资源包括P个信道资源单元,所述P个信道资源单元中的每个信道资源单元包括M个时域符号,所述M个时域符号中的最后N个时域符号用于传输参考信号,P、M和N为正整数,且N不大于M;所述网络设备在第二时刻向终端设备发送第二信息,以便于所述终端设备根据所述第二信息,确定用于发送所述第一上行信道的第二时域资源,其中,所述第二时刻位于所述第一时刻之后,所述第二时域资源位于所述目标时域资源单元中且所述第一时域资源包括所述第二时域资源;所述网络设备在所述第二时域资源上,接收所述终端设备发送的所述第一上行信道。
- 根据权利要求12所述的方法,其特征在于,所述目标时域资源单元中的第三时域资源与所述第一时域资源至少部分重叠,所述第二时域资源为所述第一时域资源中与所述第三时域资源不重叠的时域资源,所述第三时域资源为所述终端设备根据所述第二信息确定的用于发送第二上行信道或 信号的时域资源。
- 根据权利要求12或13所述的方法,其特征在于,所述第一时域资源包括所述P个信道资源单元和一个不完整的信道资源单元。
- 根据权利要求14所述的方法,其特征在于,所述不完整的信道资源单元位于所述第一时域资源的末尾。
- 根据权利要求14或15所述的方法,其特征在于,所述不完整的信道资源单元包括第一信道资源单元的前K1个符号,所述第一信道资源单元与所述P个信道资源单元中每个信道资源单元的结构相同,K1为小于M的正整数。
- 根据权利要求12至16中任一项所述的方法,其特征在于,所述第二时域资源包括Q个信道资源单元,Q为正整数且Q小于或等于P。
- 根据权利要求12至17中任一项所述的方法,其特征在于,所述第二时域资源占用所述第一时域资源中的前K2个时域符号,K2为正整数。
- 根据权利要求12至18中任一项所述的方法,其特征在于,所述P个信道资源单元中的第i+1个信道资源单元与第i个信道资源单元在时域上相邻,i从1至P-1。
- 根据权利要求12至19中任一项所述的方法,其特征在于,在所述网络设备在第一时刻向终端设备发送第一信息之前,所述方法还包括:所述网络设备向所述终端设备发送配置信息,所述配置信息用于指示所述终端设备能够调整发送所述第一上行信息的时域资源。
- 根据权利要求12至20中任一项所述的方法,其特征在于,所述目标时域资源单元包括时隙、子帧或帧。
- 一种终端设备,其特征在于,所述终端设备包括:接收单元,用于在第一时刻接收网络设备发送的第一信息;确定单元,用于根据所述接收单元接收的所述第一信息,确定用于发送第一上行信道的第一时域资源,其中,所述第一时域资源位于所述目标时域资源单元中,所述第一时域资源包括P个信道资源单元,所述P个信道资源单元中的每个信道资源单元包括M个时域符号,所述M个时域符号中的最后N个时域符号用于传输参考信号,P、M和N为正整数,且N不大于M。
- 根据权利要求22所述的终端设备,其特征在于,所述终端设备还包括发送单元,其中,所述接收单元还用于:在第二时刻接收所述网络设备发送的第二信息;所述确定单元还用于,根据所述第二信息,确定用于发送所述第一上行信道的第二时域资源,其中,所述第二时刻位于所述第一时刻之后,所述第二时域资源位于所述目标时域资源单元中且所述第一时域资源包括所述第二时域资源;所述发送单元,用于在所述第二时域资源上,向所述网络设备发送所述第一上行信道。
- 根据权利要求23所述的终端设备,其特征在于,所述确定单元具体用于:根据所述第二信息,确定在所述目标时域资源单元中的第三时域资源上发送第二上行信道或信号,其中,所述第三时域资源与所述第一时域资源至少部分重叠;将所述第一时域资源中与所述第三时域资源不重叠的时域资源,确定为所述第二时域资源。
- 根据权利要求22至24中任一项所述的终端设备,其特征在于,所述第一时域资源包括所述P个信道资源单元和一个不完整的信道资源单元。
- 根据权利要求25所述的终端设备,其特征在于,所述不完整的信道资源单元位于所述第一时域资源的末尾。
- 根据权利要求25或26所述的终端设备,其特征在于,所述不完整的信道资源单元包括第一信道资源单元的前K1个符号,所述第一信道资源单元与所述P个信道资源单元中每个信道资源单元的结构相同,K1为小于M的正整数。
- 根据权利要求23至27中任一项所述的终端设备,其特征在于,所述第二时域资源包括Q个信道资源单元,Q为正整数且Q小于或等于P。
- 根据权利要求23至28中任一项所述的终端设备,其特征在于,所述第二时域资源占用所述第一时域资源中的前K2个时域符号,K2为正整数。
- 根据权利要求22至29中任一项所述的终端设备,其特征在于,所述P个信道资源单元中的第i+1个信道资源单元与第i个信道资源单元在时域上相邻,i从1至P-1。
- 根据权利要求22至30中任一项所述的终端设备,其特征在于,所 述接收单元还用于:接收所述网络设备发送的配置信息,所述配置信息用于指示所述终端设备能够调整发送所述第一上行信息的时域资源。
- 根据权利要求22至31中任一项所述的终端设备,其特征在于,所述目标时域资源单元包括时隙、子帧或帧。
- 一种网络设备,其特征在于,所述网络设备包括:发送单元,用于在第一时刻向终端设备发送第一信息,以便于所述终端设备根据所述第一信息,确定用于发送第一上行信道的第一时域资源,其中,所述第一时域资源位于所述目标时域资源单元中,所述第一时域资源包括P个信道资源单元,所述信道资源单元包括M个时域符号,所述M个时域符号中的最后N个时域符号用于传输参考信号,P、M和N为正整数,且N不大于M;所述发送单元还用于,在第二时刻向终端设备发送第二信息,以便于所述终端设备根据所述第二信息,确定用于发送所述第一上行信道的第二时域资源,其中,所述第二时刻位于所述第一时刻之后,所述第二时域资源位于所述目标时域资源单元中且所述第一时域资源包括所述第二时域资源;接收单元,用于在所述第二时域资源上,接收所述终端设备发送的所述第一上行信道。
- 根据权利要求33所述的网络设备,其特征在于,所述目标时域资源单元中的第三时域资源与所述第一时域资源至少部分重叠,所述第二时域资源为所述第一时域资源中与所述第三时域资源不重叠的时域资源,所述第三时域资源为所述终端设备根据所述第二信息确定的用于发送第二上行信道或信号的时域资源。
- 根据权利要求33或34所述的网络设备,其特征在于,所述第一时域资源包括所述P个信道资源单元和一个不完整的信道资源单元。
- 根据权利要求35所述的网络设备,其特征在于,所述不完整的信道资源单元位于所述第一时域资源的末尾。
- 根据权利要求35或36所述的网络设备,其特征在于,所述不完整的信道资源单元包括第一信道资源单元的前K1个符号,所述第一信道资源单元与所述P个信道资源单元中每个信道资源单元的结构相同,K1为小于M的正整数。
- 根据权利要求33至37中任一项所述的网络设备,其特征在于,所述第二时域资源包括Q个信道资源单元,Q为正整数且Q小于或等于P。
- 根据权利要求33至38中任一项所述的网络设备,其特征在于,所述第二时域资源占用所述第一时域资源中的前K2个时域符号,K2为正整数。
- 根据权利要求33值39中任一项所述的网络设备,其特征在于,所述P个信道资源单元中的第i+1个信道资源单元与第i个信道资源单元在时域上相邻,i从1至P-1。
- 根据权利要求33至40中任一项所述的网络设备,其特征在于,所述发送单元还用于:向所述终端设备发送配置信息,所述配置信息用于指示所述终端设备能够调整发送所述第一上行信息的时域资源。
- 根据权利要求33至41中任一项所述的网络设备,其特征在于,所述目标时域资源单元包括时隙、子帧或帧。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/088806 WO2018227630A1 (zh) | 2017-06-16 | 2017-06-16 | 信道传输的方法、终端设备和网络设备 |
CN201780089910.3A CN110547023A (zh) | 2017-06-16 | 2017-06-16 | 信道传输的方法、终端设备和网络设备 |
EP17913425.9A EP3618551B1 (en) | 2017-06-16 | 2017-06-16 | Channel transmission method and terminal device |
IL270796A IL270796A (en) | 2017-06-16 | 2019-11-20 | Channel transmission method, terminal device and network device |
PH12019502643A PH12019502643A1 (en) | 2017-06-16 | 2019-11-22 | Channel transmission method, terminal device and network device |
US16/703,469 US10932244B2 (en) | 2017-06-16 | 2019-12-04 | Channel transmission method, terminal device and network device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/088806 WO2018227630A1 (zh) | 2017-06-16 | 2017-06-16 | 信道传输的方法、终端设备和网络设备 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/703,469 Continuation US10932244B2 (en) | 2017-06-16 | 2019-12-04 | Channel transmission method, terminal device and network device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018227630A1 true WO2018227630A1 (zh) | 2018-12-20 |
Family
ID=64658731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/088806 WO2018227630A1 (zh) | 2017-06-16 | 2017-06-16 | 信道传输的方法、终端设备和网络设备 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10932244B2 (zh) |
EP (1) | EP3618551B1 (zh) |
CN (1) | CN110547023A (zh) |
IL (1) | IL270796A (zh) |
PH (1) | PH12019502643A1 (zh) |
WO (1) | WO2018227630A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112865946B (zh) | 2017-11-10 | 2022-07-15 | 中兴通讯股份有限公司 | 无线通信方法及装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102098086A (zh) * | 2010-12-30 | 2011-06-15 | 中兴通讯股份有限公司 | 数据发送方法及装置 |
CN102223726A (zh) * | 2011-06-10 | 2011-10-19 | 中兴通讯股份有限公司 | 一种srs的发送方法和系统 |
US20140169326A1 (en) * | 2012-12-19 | 2014-06-19 | Broadcom Corporation | Synchronization |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5389932B2 (ja) * | 2008-11-14 | 2014-01-15 | エルジー エレクトロニクス インコーポレイティド | 多重アンテナシステムにおける複数のリソースを用いたデータ送信方法及び装置 |
KR20110038585A (ko) * | 2009-10-08 | 2011-04-14 | 엘지전자 주식회사 | 다중 안테나 시스템에서 상향링크 전송 방법 및 장치 |
WO2011137408A2 (en) * | 2010-04-30 | 2011-11-03 | Interdigital Patent Holdings, Inc. | Determination of carriers and multiplexing for uplink control information transmission |
US9172513B2 (en) * | 2010-10-11 | 2015-10-27 | Qualcomm Incorporated | Resource assignments for uplink control channel |
KR20140032545A (ko) * | 2012-08-31 | 2014-03-17 | 삼성전자주식회사 | 상향링크 제어 채널 자원이 동적으로 변하는 무선통신 시스템에서 사운딩 운용 방법 및 장치 |
CN105025574B (zh) * | 2014-04-16 | 2019-07-02 | 中兴通讯股份有限公司 | 一种数据传输方法及装置 |
WO2017031621A1 (zh) * | 2015-08-21 | 2017-03-02 | 华为技术有限公司 | 无线通信的方法、网络设备、用户设备和系统 |
-
2017
- 2017-06-16 CN CN201780089910.3A patent/CN110547023A/zh active Pending
- 2017-06-16 WO PCT/CN2017/088806 patent/WO2018227630A1/zh unknown
- 2017-06-16 EP EP17913425.9A patent/EP3618551B1/en active Active
-
2019
- 2019-11-20 IL IL270796A patent/IL270796A/en unknown
- 2019-11-22 PH PH12019502643A patent/PH12019502643A1/en unknown
- 2019-12-04 US US16/703,469 patent/US10932244B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102098086A (zh) * | 2010-12-30 | 2011-06-15 | 中兴通讯股份有限公司 | 数据发送方法及装置 |
CN102223726A (zh) * | 2011-06-10 | 2011-10-19 | 中兴通讯股份有限公司 | 一种srs的发送方法和系统 |
US20140169326A1 (en) * | 2012-12-19 | 2014-06-19 | Broadcom Corporation | Synchronization |
Non-Patent Citations (1)
Title |
---|
See also references of EP3618551A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3618551B1 (en) | 2021-04-21 |
EP3618551A1 (en) | 2020-03-04 |
CN110547023A (zh) | 2019-12-06 |
US20200112951A1 (en) | 2020-04-09 |
IL270796A (en) | 2020-01-30 |
PH12019502643A1 (en) | 2020-07-13 |
US10932244B2 (en) | 2021-02-23 |
EP3618551A4 (en) | 2020-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11871427B2 (en) | Data transmission method, terminal device and network device | |
JP6833875B2 (ja) | データ伝送方法及び装置 | |
WO2018170673A1 (zh) | 传输数据的方法、终端设备和网络设备 | |
WO2018132983A1 (zh) | 传输下行控制信息的方法、终端设备和网络设备 | |
US10554794B2 (en) | Information transmission method and apparatus in TDD system | |
TWI754052B (zh) | 傳輸信號的方法、網絡設備和終端設備 | |
US20230007676A1 (en) | Method for data transmission, terminal device and network device | |
US11191066B2 (en) | Method for transmitting data, terminal device and network device | |
WO2019014818A1 (zh) | 传输数据的方法、终端设备和网络设备 | |
WO2019136717A1 (zh) | 用于功率控制的方法、终端设备和网络设备 | |
WO2018107502A1 (zh) | 传输参考信号的方法、终端设备和网络设备 | |
US10932244B2 (en) | Channel transmission method, terminal device and network device | |
WO2019033392A1 (zh) | 信号传输的方法、终端设备和网络设备 | |
US11064529B2 (en) | Signal transmission method, terminal device and network device | |
CN109661835B (zh) | 一种配置pdcp实体的方法、接收装置和发送装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17913425 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017913425 Country of ref document: EP Effective date: 20191127 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |