WO2018227579A1 - Configuration transmission - Google Patents

Configuration transmission Download PDF

Info

Publication number
WO2018227579A1
WO2018227579A1 PCT/CN2017/088713 CN2017088713W WO2018227579A1 WO 2018227579 A1 WO2018227579 A1 WO 2018227579A1 CN 2017088713 W CN2017088713 W CN 2017088713W WO 2018227579 A1 WO2018227579 A1 WO 2018227579A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration
csi
cell
layer
resource
Prior art date
Application number
PCT/CN2017/088713
Other languages
French (fr)
Inventor
Xiaojuan Shi
He Huang
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to CN201780090314.7A priority Critical patent/CN110622541A/en
Priority to PCT/CN2017/088713 priority patent/WO2018227579A1/en
Publication of WO2018227579A1 publication Critical patent/WO2018227579A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path

Definitions

  • a communication link between wireless nodes may be facilitated by transmitting reference signals (RS) between the wireless nodes.
  • RS reference signals
  • the network may transmit one or more RS to the UE.
  • the UE may use the one or more RS to perform radio resource management (RRM) measurements.
  • Information about the communication link may be determined based upon the RRM measurements.
  • a core configuration may be generated.
  • a modifier corresponding to the core configuration may be generated.
  • the core configuration and the modifier may be transmitted to a node.
  • a core configuration may be determined.
  • a cell configuration corresponding to a cell may be determined.
  • One or more distinctions between the core configuration and the cell configuration may be determined.
  • a modifier may be generated based upon the one or more distinctions.
  • the core configuration and the modifier may be transmitted to a node.
  • a core configuration and a modifier may be received from a node.
  • a modified configuration may be generated by modifying the core configuration based upon the modifier.
  • a first action may be performed based upon the core configuration.
  • a second action may be performed based upon the modified configuration.
  • Fig. 1A is a flow chart illustrating an example method of facilitating transmission of a configuration.
  • Fig. 1B is a flow chart illustrating an example method of facilitating transmission of a configuration.
  • Fig. 1C is a flow chart illustrating an example method of facilitating reception of a configuration.
  • Fig. 2 is a component block diagram illustrating an example system for facilitating transmission of a configuration.
  • Fig. 3 is a component block diagram illustrating an example system for facilitating transmission of a configuration.
  • Fig. 4 is a component block diagram illustrating an example system for facilitating transmission of a configuration.
  • Fig. 5 is a diagram illustrating an example of a core channel state information (CSI) resource signal (RS) configuration.
  • CSI core channel state information
  • RS resource signal
  • Fig. 6 is a diagram illustrating an example of a measurement object.
  • Fig. 7 is a diagram illustrating an example of a measurement object.
  • Fig. 8 is a diagram illustrating an example of a measurement object.
  • Fig. 9 is a diagram illustrating an example of a measurement object.
  • Fig. 10 is a diagram illustrating an example of a measurement object.
  • Fig. 11 is a diagram illustrating an example of a measurement object.
  • Fig. 12 is a diagram illustrating an example of a measurement object.
  • Fig. 13A is a component block diagram illustrating an example system of a plurality of cells.
  • Fig. 13B is a component block diagram illustrating an example system of a plurality of cells.
  • Fig. 14A is a component block diagram illustrating an example system of a plurality of CSI RS resources.
  • Fig. 14B is a component block diagram illustrating an example system of a plurality of CSI RS resources.
  • Fig. 15 is a diagram illustrating an example of a core IDLE RS measurement configuration.
  • Fig. 16 is a diagram illustrating an example of one or more IDLE RS measurement configurations.
  • Fig. 17 is a diagram illustrating an example of a core IDLE RS measurement configuration.
  • Fig. 18 is a diagram illustrating an example of a cell IDLE RS measurement configuration.
  • Fig. 19A is a component block diagram illustrating an example system of a plurality of cells.
  • Fig. 19B is a component block diagram illustrating an example system of a plurality of cells.
  • Fig. 20 is an illustration of a scenario involving an example configuration of a base station (BS) that may utilize and/or implement at least a portion of the techniques presented herein.
  • BS base station
  • Fig. 21 is an illustration of a scenario involving an example configuration of a user equipment (UE) that may utilize and/or implement at least a portion of the techniques presented herein.
  • UE user equipment
  • Fig. 22 is an illustration of a scenario featuring an example non-transitory computer readable medium in accordance with one or more of the provisions set forth herein.
  • a user equipment may connect to a (e.g., wireless communication) network.
  • the UE may perform cell-specific radio resource management (RRM) measurements.
  • the RRM measurements may be (e.g., transmitted and/or) used, for example, to enable the network to communicate with the UE reliably and/or with high data rates.
  • the UE may perform an RRM measurement based upon a cell to derive one or more qualities of the cell (e.g., and/or a signal corresponding to the cell) .
  • the UE may use a configuration corresponding to the cell to perform a RRM measurement based upon the cell.
  • the UE may perform a RRM measurement based upon the cell (e.g., and/or perform cell detection) based upon a configuration comprised within an IDLE reference signal (RS) (e.g., received from the network) .
  • the configuration may correspond to an IDLE RS measurement configuration in an IDLE state and/or an IDLE RS measurement configuration in a CONNECTED state.
  • the UE may perform a RRM measurement based upon the cell (e.g., and/or cell detection) based upon one or more other (e.g., additional) RS.
  • the one or more other RS may comprise a channel state information (CSI) RS and/or other information.
  • CSI channel state information
  • the CSI RS may comprise a low layer CSI RS resource configuration for a first layer and/or a second layer and/or a high layer CSI RS resource configuration for a third layer.
  • the UE may perform RRM measurements based upon a cell, manage (e.g., multiple antenna) beamforming applications and/or manage the first layer (e.g., physical layer) and/or the second layer (e.g., medium access control (MAC) layer) based upon the low layer CSI RS resource configuration for the first layer and/or the second layer.
  • manage e.g., multiple antenna
  • the first layer e.g., physical layer
  • the second layer e.g., medium access control (MAC) layer
  • the UE may perform RRM measurements based upon a cell, manage the third layer (e.g., radio resource control (RRC) layer) and/or perform measurements for third layer mobility (e.g., and/or RRM mobility) based upon the high layer CSI RS resource configuration for the third layer.
  • RRC radio resource control
  • third layer mobility e.g., and/or RRM mobility
  • RS configurations e.g., their transmission, processing, etc.
  • the high layer CSI RS resource configuration for the third layer may be the same, partly the same, and/or different than the low layer CSI RS resource configuration for the first layer and/or the second layer.
  • the UE may use the low layer CSI RS resource configuration for the first layer and/or the second layer as a configuration baseline for the high layer CSI RS resource configuration for the third layer to reduce signaling overhead.
  • the UE may use the IDLE RS measurement configuration in an IDLE state as a configuration baseline for the IDLE RS measurement configuration in a CONNECTED state to reduce signaling overhead.
  • the first wireless node may be a network and/or base station (BS) and the second wireless node may be a UE.
  • the first wireless node may be required to transmit a configuration (e.g., CSI RS resource configuration, IDLE RS measurement configuration, etc. ) to the second wireless node.
  • a configuration e.g., CSI RS resource configuration, IDLE RS measurement configuration, etc.
  • the first wireless node generates a core configuration.
  • the core configuration may be representative of a configuration baseline for one or more configurations.
  • the one or more configurations may (e.g., respectively) correspond to a (e.g., specific and/or defined) configuration type for one or more layers and/or one or more states.
  • one or more low layer CSI RS resource configurations for a first layer and/or a second layer may correspond to a first configuration type
  • one or more high layer CSI RS resource configuration for a third layer may correspond to a second configuration type
  • one or more IDLE RS measurement configurations for an IDLE state may correspond to a third configuration type
  • one or more IDLE RS measurement configurations for a CONNECTED state may correspond to a fourth configuration type
  • the core configuration may correspond to the (e.g., same) configuration type as the one or more configurations for whom the core configuration represents a configuration baseline.
  • the core configuration may correspond to a (e.g., different) configuration type than the one or more configurations for whom the core configuration represents a configuration baseline.
  • the first wireless node generates a modifier corresponding to the core configuration.
  • the core configuration and/or the modifier correspond to a (e.g., specific and/or defined) frequency.
  • the modifier may comprise overriding information, corresponding to information comprised within the core configuration, that may override at least some information comprised within the core configuration.
  • the modifier may comprise additional information that may be added and/or combined with information comprised within the core configuration.
  • the modifier may correspond to a configuration type, which may be the same as, or different than, the configuration type of the core configuration.
  • the core configuration may comprise a low layer CSI RS resource configuration for the first layer and/or second layer and/or the modifier may correspond to (e.g., and/or be representative of) a high layer CSI RS resource configuration for the third layer.
  • the core configuration may comprise an IDLE RS measurement configuration for the IDLE state and/or the modifier may correspond to (e.g., and/or be representative of) an IDLE RS measurement configuration for the CONNECTED state.
  • the core configuration may comprise a first IDLE RS measurement configuration for the IDLE state and/or the modifier may correspond to (e.g., and/or be representative of) a second IDLE RS measurement configuration for the IDLE state.
  • the core configuration may comprise a first IDLE RS measurement configuration for the CONNECTED state and/or the modifier may correspond to (e.g., and/or be representative of) a second IDLE RS measurement configuration for the CONNECTED state.
  • the first wireless node transmits the core configuration and/or the modifier to the second wireless node.
  • the first wireless node may generate a second modifier corresponding to the core configuration.
  • the first wireless node may transmit the second modifier to the second wireless node.
  • the second modifier may correspond to the core configuration (e.g., and/or the configuration type corresponding to the core configuration) .
  • FIG. 1B An example method 100B of facilitating transmission of a configuration from a first wireless node to a second wireless node is illustrated in Fig. 1B.
  • the first wireless node may be a network and/or the second wireless node may be a UE. Accordingly, at 105B, the first wireless node determines a core configuration. At 110B, the first wireless node determines a cell configuration corresponding to a cell.
  • the core configuration may be representative of a configuration baseline for one or more configurations corresponding to one or more cells.
  • the one or more configurations may comprise the cell configuration.
  • the core configuration and/or the one or more configurations may correspond to a (e.g., specific and/or defined) frequency.
  • the first wireless node determines one or more distinctions between the core configuration and the cell configuration.
  • the first wireless node generates a modifier based upon the one or more distinctions.
  • the modifier may comprise overriding information, corresponding to information comprised within the core configuration, that may override at least some information comprised within the core configuration.
  • the modifier may comprise additional information that may be added and/or combined with information comprised within the core configuration.
  • the modifier may correspond to a configuration type, which may be the same as, or different than, a configuration type of the core configuration.
  • the core configuration may comprise a first high layer CSI RS resource configuration for a third layer and/or the modifier (e.g., and/or the one or more configurations) may correspond to (e.g., and/or be representative of) a second high layer CSI RS resource configuration for the third layer.
  • a core cell configuration corresponding to a second cell may comprise the core configuration.
  • the first wireless node transmits the core configuration and the modifier to the second wireless node.
  • FIG. 1C An example method 100C of facilitating reception of a configuration at a second wireless node from a first wireless node is illustrated in Fig. 1C.
  • the first wireless node may be a network and the second wireless node may be a UE.
  • the second wireless node may perform one or more actions using one or more configurations from the first wireless node.
  • the second wireless node receives a core configuration and a modifier from the first wireless node.
  • the core configuration may comprise information and/or the modifier may comprise overriding information that may override at least some information comprised within the core configuration and/or additional information that may be added and/or combined with information comprised within the core configuration.
  • the second wireless node generates a modified configuration by modifying the core configuration based upon the modifier.
  • the second wireless node may modify the information (e.g., of the core configuration) based upon the overriding information and/or the additional information (e.g., of the modifier) to generate the modified configuration.
  • the core configuration may be representative of a configuration baseline for one or more configurations corresponding to a (e.g., specific and/or defined) configuration type (e.g., a low layer CSI RS resource configuration for a first layer and/or a second layer, a high layer CSI RS resource configuration for a third layer, an IDLE RS measurement configuration for an IDLE state, an IDLE RS measurement configuration for a CONNECTED state, etc. ) .
  • the one or more configurations may comprise the modified configuration.
  • the core configuration may correspond to a (e.g., different) configuration type than the one or more configurations for whom the core configuration represents a configuration baseline.
  • the core configuration may comprise a low layer CSI RS resource configuration for a first layer and/or second layer and/or the one or more configurations may comprise a high layer CSI RS resource configuration for a third layer (e.g., and/or vice versa) .
  • the core configuration may comprise an IDLE RS measurement configuration for an IDLE state and/or the one or more configurations may comprise an IDLE RS measurement configuration for a CONNECTED state (e.g., and/or vice versa) .
  • the core configuration may correspond to the (e.g., same) configuration type as the one or more configurations for whom the core configuration represents a configuration baseline.
  • the core configuration may comprise a first high layer CSI RS resource configuration for the third layer and/or the one or more configurations may comprise a second high layer CSI RS resource configuration for the third layer.
  • the core configuration may comprise a first IDLE RS measurement configuration for the IDLE state and/or the one or more configurations may comprise a second IDLE RS measurement configuration for the IDLE state.
  • the core configuration may comprise a first IDLE RS measurement configuration for the CONNECTED state and/or the one or more configurations may comprise a second IDLE RS measurement configuration for the CONNECTED state.
  • the second wireless node performs a first action based upon the core configuration.
  • the core configuration may comprise a low layer CSI RS resource configuration for the first layer and/or the second layer (e.g., and/or management of the first layer and/or the second layer) .
  • the second wireless node may perform the first action based upon the core configuration by using (e.g., and/or managing and/or performing a RRM measurement based upon) a cell corresponding to the first layer and/or the second layer based upon the core configuration.
  • the core configuration may comprise a high layer CSI RS resource configuration for the third layer (e.g., and/or a third layer mobility) .
  • the second wireless node may perform the first action based upon the core configuration by using (e.g., and/or managing and/or performing a RRM measurement based upon) a cell corresponding to the third layer based upon the core configuration.
  • the core configuration may comprise an IDLE RS measurement configuration for an IDLE state.
  • the second wireless node may then perform the first action based upon the core configuration by performing a first (e.g., RRM) measurement (e.g., and/or performing cell detection) in the IDLE state, based upon the core configuration and/or a corresponding cell.
  • the core configuration may comprise an IDLE RS measurement configuration for a CONNECTED state.
  • the second wireless node may then perform the first action based upon the core configuration by performing a second (e.g., RRM) measurement (e.g., and/or performing cell detection) in the CONNECTED state based upon the core configuration and/or a corresponding cell.
  • the second wireless node performs a second action based upon the modified configuration.
  • the modified configuration may comprise a low layer CSI RS resource configuration for the first layer and/or the second layer (e.g., and/or management of the first layer and/or the second layer) .
  • the second wireless node may perform the second action based upon the modified configuration by using (e.g., and/or managing and/or performing a RRM measurement based upon) a cell corresponding to the first layer and/or the second layer based upon the modified configuration.
  • the modified configuration may comprise a high layer CSI RS resource configuration for the third layer (e.g., and/or a third layer mobility) .
  • the second wireless node may perform the second action based upon the modified configuration by using (e.g., and/or managing and/or performing a RRM measurement based upon) a cell corresponding to the third layer based upon the modified configuration.
  • the modified configuration may comprise an IDLE RS measurement configuration for an IDLE state.
  • the second wireless node may then perform the second action based upon the modified configuration by performing a first (e.g., RRM) measurement (e.g., and/or performing cell detection) in the IDLE state, based upon the modified configuration and/or a corresponding cell.
  • the modified configuration may comprise an IDLE RS measurement configuration for a CONNECTED state.
  • the second wireless node may then perform the second action based upon the modified configuration) by performing a second (e.g., RRM) measurement (e.g., and/or performing cell detection) in the CONNECTED state based upon the modified configuration and/or a corresponding cell.
  • the second wireless node may receive a second modifier.
  • the second wireless node may then generate a second modified configuration by modifying the core configuration based upon the second modifier.
  • the second modified configuration may comprise a low layer CSI RS resource configuration for the first layer and/or the second layer.
  • the second wireless node may then use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the first layer and/or the second layer based upon the second modified configuration.
  • the second modified configuration may comprise an IDLE state measurement configuration for the IDLE state.
  • the second wireless node may then perform a (e.g., RRM) measurement (e.g., and/or perform cell detection) in the IDLE state, based upon the second modified configuration and/or a corresponding cell.
  • a (e.g., RRM) measurement e.g., and/or perform cell detection
  • the core configuration may correspond to a (e.g., specific and/or defined) frequency.
  • the core configuration may be representative of a configuration baseline for one or more configurations corresponding to the frequency.
  • the one or more configurations may comprise a cell configuration corresponding to a cell.
  • the second wireless node may use (e.g., and/or manage and/or perform a RRM measurement based upon) one or more cells based upon the core configuration.
  • the cell configuration may comprise the modified configuration. Accordingly, the second wireless node may use (e.g., and/or manage and/or perform a RRM measurement based upon) the cell based upon the modified configuration.
  • a core cell configuration corresponding to a second cell may comprise the core configuration.
  • the second wireless node may use (e.g., and/or manage and/or perform a RRM measurement based upon) the second cell based upon the core configuration (e.g., core cell configuration) .
  • the second wireless node may perform a RRM measurement based upon a cell to derive one or more qualities of the cell (e.g., and/or a signal corresponding to the cell) .
  • the second wireless node may perform a RRM measurement based upon (e.g., and/or using) at least one of a low layer CSI RS resource configuration for the first layer and/or the second layer, a high layer CSI RS resource configuration for the third layer, an IDLE RS measurement configuration for the IDLE state and/or an IDLE RS measurement configuration for the CONNECTED state.
  • the first layer may comprise a physical layer.
  • the physical layer may carry information such as power control measurements and/or cell search measurements (e.g., and/or other information and/or measurements) .
  • the second layer may comprise at least one of a MAC layer, a radio link control (RLC) layer and/or a packet data convergence control (PDCP) layer.
  • the MAC layer may provide a connection between logical channels and transport channels and/or a connection between the physical layer and the transport channels (e.g., and/or perform other functions) .
  • the third layer may comprise a RRC layer and/or a non-access stratum (NAS) protocol.
  • the RRC layer may broadcast system information related to the NAS protocol (e.g., and/or perform other functions) .
  • Fig. 2 illustrates an example of a system 200 for facilitating transmission of a configuration from a first wireless node 205 (e.g., a network) to a second wireless node 210 (e.g., a UE) .
  • the first wireless node 205 may generate a core configuration 215 representative of a configuration baseline for one or more configurations.
  • the first wireless node 205 may generate a modifier 220.
  • the first wireless node 205 may transmit the core configuration 215 and/or the modifier 220 to the second wireless node 210.
  • the core configuration 215 and/or the modifier 220 may be transmitted together and/or in a common signal.
  • the core configuration 215 and/or the modifier 220 may be transmitted separately and/or in separate signals.
  • the second wireless node 210 may generate a modified configuration 225 by modifying the core configuration 215 based upon the modifier 220.
  • the core configuration 215 may correspond to a first configuration type and/or the modified configuration 225 may correspond to a second configuration type.
  • the first configuration type and the second configuration type may be different types.
  • the core configuration 215 comprise a low layer CSI RS resource configuration for a first layer and/or second layer and/or the modified configuration 225 may comprise a high layer CSI RS resource configuration for a third layer.
  • the core configuration 215 may comprise an IDLE RS measurement configuration for an IDLE state and/or the modified configuration 225 may comprise an IDLE RS measurement configuration for a CONNECTED state.
  • the first configuration type and the second configuration type may be similar types and/or the same type.
  • the core configuration 215 may comprise a high layer CSI RS resource configuration for a third layer and/or the modified configuration 225 may comprise a high layer CSI RS resource configuration for a third layer.
  • the core configuration 215 may comprise an IDLE RS measurement configuration for a CONNECTED state and/or the modified configuration 225 may comprise an IDLE RS measurement configuration for a CONNECTED state.
  • Fig. 3 illustrates an example of a system 300 for facilitating transmission of a configuration from a first wireless node 305 (e.g., a network) to a second wireless node 310 (e.g., a UE) .
  • the first wireless node 305 may generate a core configuration 315, a modifier 320 and/or a second modifier 325.
  • the core configuration 315 may be representative of a configuration baseline for one or more configurations.
  • the first wireless node 305 may transmit the core configuration 315, the modifier 320 and/or the second modifier 325 to the second wireless node 310.
  • the core configuration 315, the modifier 320 and/or the second modifier 325 may be transmitted together and/or in a common signal.
  • the core configuration 315, the modifier 320 and/or the second modifier 325 may be transmitted separately and/or in separate signals.
  • at least some of the core configuration 315, the modifier 320 and/or the second modifier 325 may be transmitted in a first signal, while a remainder of the core configuration 315, the modifier 320 and/or the second modifier 325 may be transmitted in a second signal.
  • the second wireless node 310 may generate a modified configuration 330 by modifying the core configuration 315 based upon the modifier 320.
  • the second wireless node 310 may generate a second modified configuration 335, by modifying the core configuration 315 based upon the second modifier 325.
  • the second modified configuration 335 may correspond to a first configuration type and/or the modified configuration 330 may correspond to a second configuration type.
  • the first configuration type and the second configuration type may be different types.
  • the second modified configuration 335 may comprise a low layer CSI RS resource configuration for a first layer and/or second layer and/or the modified configuration 330 may comprise a high layer CSI RS resource configuration for a third layer.
  • the second modified configuration 335 may comprise an IDLE RS measurement configuration for an IDLE state and/or the modified configuration 330 may comprise an IDLE RS measurement configuration for a CONNECTED state.
  • the first configuration type and the second configuration type may be similar types and/or the same type.
  • the second modified configuration 335 may comprise a high layer CSI RS resource configuration for a third layer and/or the modified configuration 330 may comprise a high layer CSI RS resource configuration for a third layer.
  • the second modified configuration 335 may comprise an IDLE RS measurement configuration for a CONNECTED state and/or the modified configuration 330 may comprise an IDLE RS measurement configuration for a CONNECTED state.
  • Fig. 4 illustrates an example of a system 400 for facilitating transmission of a configuration from a first wireless node 405 (e.g., a network) to a second wireless node 410 (e.g., a UE) .
  • the first wireless node 405 may determine (e.g., and/or generate) a core configuration 415.
  • the first wireless node 405 may determine (e.g., and/or generate) a cell configuration 425 corresponding to a cell.
  • the first wireless node 405 may then use an analyzer 430 to determine one or more or more distinctions between the core configuration 415 and the cell configuration 425.
  • the first wireless node 405 may then generate (e.g., and/or determine) a modifier 420 based upon the one or more distinctions.
  • the first wireless node 405 may transmit the core configuration 415 and/or the modifier 420 to the second wireless node 410.
  • the core configuration 415 and/or the modifier 420 may be transmitted together and/or in a common signal.
  • the core configuration 415 and/or the modifier 420 may be transmitted separately and/or in separate signals.
  • the core configuration 415 may be representative of a configuration baseline for one or more configurations corresponding to one or more cells, the one or more configurations comprising the cell configuration 425. Accordingly, the second wireless node 410 may generate the cell configuration 425 by modifying the core configuration 415 based upon the modifier 420.
  • a core configuration, a cell configuration and/or a modified configuration may comprise a (e.g., core, carrier frequency, cell, high layer, low layer, etc. ) CSI RS resource configuration and/or a (e.g., core, carrier frequency, cell, etc. ) IDLE RS measurement configuration (e.g., as discussed with relation to Figs. 5-19B) .
  • Fig. 5 illustrates an example of a data structure 500 of a core CSI RS resource configuration.
  • the core CSI RS resource configuration may comprise (e.g., and/or be configured as) a low layer CSI RS resource configuration for a first layer and/or a second layer.
  • a wireless node e.g., UE
  • use e.g., and/or manage and/or perform a RRM measurement based upon
  • the core CSI RS resource configuration may comprise one or more CSI RS resource settings. Accordingly, the core CSI RS resource configuration may comprise a CSI RS resource setting, identified as CSI resource setting identification (ID) 1 505.
  • the CSI RS resource setting may be configured outside of a measurement object and/or measurement configuration information (e.g., measConfig) .
  • the CSI RS resource setting may be configured within a dedicated physical configuration (e.g., physicalConfigDedicated) .
  • the CSI RS resource setting may comprise one or more CSI RS resources. Accordingly, the CSI RS resource setting may comprise a first CSI RS resource, identified as CSI RS resource ID 1 510, and/or a second CSI RS resource, identified as CSI resource ID 2 520.
  • the first CSI RS resource may comprise (e.g., and/or be configured with) first CSI RS resource information 515 and/or the second CSI RS resource may comprise (e.g., and/or be configured with) second CSI RS resource information 525.
  • the first CSI RS resource information 515 and/or the second CSI RS resource information 525 may comprise at least one of a cell ID, a number of antenna ports, a configuration for time/frequency resource mapping, a timing configuration (e.g., time offset and/or periodicity) , parameters for sequence generation and/or other information (e.g., and/or parameters) .
  • the first CSI RS resource information 515 and/or the second CSI RS resource information 525 may comprise different (e.g., and/or similar) information.
  • the core CSI RS resource configuration may be representative of a configuration baseline for one or more CSI RS resource configurations (e.g., in one or more measurement objects) .
  • Fig. 6 illustrates an example of a data structure 600 of a measurement object, identified as a measurement object ID 1 605.
  • the measurement object may comprise information 610 and/or a CSI RS resource configuration 615.
  • the information 610 comprises at least one of a carrier frequency, a measurement bandwidth, timing configuration (e.g., time offset and/or periodicity) , information for antenna port and/or other information (e.g., and/or parameters) .
  • the CSI RS resource configuration 615 may comprise one or more CSI RS resource setting IDs.
  • the one or more CSI RS resource setting IDs may correspond to (e.g., link to) one or more CSI RS resource settings comprised within a core CSI RS resource configuration.
  • a CSI RS resource setting ID 1 of the CSI RS resource configuration 615 corresponds to (e.g., links to) a first CSI RS resource setting comprised within the core CSI RS resource configuration.
  • a CSI RS resource setting ID 3 of the CSI RS resource configuration 615 corresponds to (e.g., links to) a second CSI RS resource setting comprised within the core CSI RS resource configuration.
  • a CSI RS resource setting ID 1 of the CSI RS resource configuration 615 corresponds to (e.g., links to) a CSI RS resource setting comprised within the core CSI RS resource configuration identified with the same CSI RS resource setting ID.
  • a CSI RS resource setting ID 3 of the CSI RS resource configuration 615 corresponds to (e.g., links to) a CSI RS resource setting comprised within the core CSI RS resource configuration identified with the same CSI RS resource setting ID.
  • the CSI RS resource configuration 615 may comprise (e.g., and/or be configured as) a high layer CSI RS resource configuration for a third layer and/or a low layer CSI RS resource configuration for a first layer and/or second layer.
  • a wireless node e.g., UE
  • the core CSI RS resource configuration may comprise (e.g., and/or be configured as) the low layer CSI RS resource configuration for the first layer and/or second layer and/or the high layer CSI RS resource configuration for the third layer.
  • the wireless node may (e.g., be configured to) use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the first layer and/or second layer and/or a cell corresponding to the third layer based upon the core CSI RS resource configuration.
  • the CSI RS resource configuration 615 may comprise one or more modifiers.
  • the wireless node may modify the core CSI RS resource configuration based upon the one or more modifiers (e.g., to generate the CSI RS resource configuration 615) .
  • the modifiers may comprise one or more CSI RS resource setting configurations which may not be comprised within the core CSI RS resource configuration. Accordingly, the CSI RS resource configuration 615 may correspond to a modified (e.g., added, supplemented, adjusted, etc. ) version of the core CSI RS resource configuration. Alternatively and/or additionally, the CSI RS resource configuration 615 may comprise zero modifiers. Accordingly, the CSI RS resource configuration 615 may correspond to an unmodified version of the core CSI RS resource configuration.
  • Fig. 7 illustrates an example of a data structure 700 of a measurement object, identified as measurement object ID 1 705.
  • the measurement object may comprise information 710 and/or a CSI RS resource configuration 715.
  • the CSI RS resource configuration 715 may comprise a CSI RS resource setting ID 1 corresponding to (e.g., linking to) a first CSI RS resource setting comprised within a core CSI RS resource configuration.
  • the CSI RS resource configuration 715 may comprise a CSI RS resource setting ID 3 corresponding to (e.g., linking to) a second CSI RS resource setting comprised within the core CSI RS resource configuration.
  • the CSI RS resource configuration 715 may comprise a CSI RS resource setting ID 1 corresponding to (e.g., linking to) a CSI RS resource setting comprised within a core CSI RS resource configuration identified with the same CSI RS resource setting ID.
  • the CSI RS resource configuration 715 may comprise a CSI RS resource setting ID 3 corresponding to (e.g., linking to) a CSI RS resource setting comprised within the core CSI RS resource configuration identified with the same CSI RS resource setting ID.
  • the CSI RS resource configuration 715 may comprise one or more CSI RS resource IDs.
  • the one or more CSI RS resource IDs may correspond to (e.g., link to) one or more CSI RS resources comprised within the core CSI RS resource configuration.
  • the one or more CSI RS resource IDs comprised within a CSI RS resource setting may correspond to one or more CSI RS resource identified with the same CSI RS ID comprised within the corresponding CSI RS resource setting identified with the same CSI RS resource setting ID within the core CSI RS resource configuration.
  • a CSI RS resource ID 1 and/or a CSI RS resource ID 5 comprised within the CSI RS resource setting identified with a CSI RS resource setting ID 1 of the CSI RS resource configuration 715 may correspond to the CSI RS resource ID1 and/or CSI RS resource ID 5 comprised within the CSI RS resource setting identified with a CSI RS resource setting ID 1 within the core CSI RS resource configuration.
  • the CSI RS resource configuration 715 may comprise (e.g., and/or be configured as) a high layer CSI RS resource configuration for a third layer and/or a low layer CSI RS resource configuration for a first layer and/or second layer.
  • a wireless node e.g., UE
  • the core CSI RS resource configuration may comprise (e.g., and/or be configured as) the low layer CSI RS resource configuration for the first layer and/or the second layer and/or the high layer CSI RS resource configuration for the third layer.
  • the wireless node may (e.g., be configured to) use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the first layer and/or the second layer and/or a cell corresponding to the third layer based upon the core CSI RS resource configuration.
  • the CSI RS resource configuration 715 may comprise the core CSI RS resource configuration.
  • Fig. 8 illustrates an example of a data structure 800 of a measurement object, identified as measurement object ID 1 805.
  • the measurement object may comprise information 810 and/or a CSI RS resource configuration 815.
  • the CSI RS resource configuration 815 may comprise a CSI RS resource setting ID 1 corresponding to (e.g., linking to) a CSI RS resource setting comprised within a core CSI RS resource configuration.
  • the CSI RS resource configuration 815 may comprise a CSI RS resource ID 2 corresponding to (e.g., linking to) a CSI RS resource comprised within the CSI RS resource setting.
  • the CSI RS resource configuration 815 may comprise (e.g., and/or be configured as) a high layer CSI RS resource configuration for a third layer and/or a low layer CSI RS resource configuration for a first layer and/or second layer.
  • a wireless node e.g., UE
  • the core CSI RS resource configuration may comprise (e.g., and/or be configured as) the low layer CSI RS resource configuration for the first layer and/or the second layer and/or the high layer CSI RS resource configuration for the third layer.
  • the wireless node may (e.g., be configured to) use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the first layer and/or the second layer and/or a cell corresponding to the third layer based upon the core CSI RS resource configuration.
  • the CSI RS resource configuration 815 may comprise one or more modifiers.
  • the modifier may comprise one or more overriding and/or additional CSI RS resource configurations.
  • the CSI RS resource configuration 815 may comprise a modifier corresponding to CSI RS resource ID 2.
  • the wireless node may modify the CSI RS resource comprised within the core CSI RS resource configuration, based upon the modifier (e.g., to generate the CSI RS resource configuration 815) . Accordingly, the CSI RS resource configuration 815 may correspond to a modified version of the core CSI RS resource configuration.
  • the modifier may comprise overriding information comprising one or more modifying parameters.
  • the one or more modifying parameters may correspond to one or more parameters of CSI RS resource information of the CSI RS resource.
  • a modifying parameter, having a first value may correspond to a parameter of the CSI RS resource information, having a second value.
  • the wireless node may modify the CSI RS resource information (e.g., and/or the core RS resource configuration) by modifying (e.g., changing) the second value of the CSI RS resource information to the first value.
  • the CSI RS resource information may comprise at least one of a first parameter comprising a number of antenna ports, a second parameter comprising a configuration for time/frequency resource mapping, a third parameter comprising a timing configuration (e.g., time offset and/or periodicity) , parameters for sequence generation and/or other parameters.
  • the modifier may comprise a first modifying parameter comprising a configuration for time/frequency resource mapping, and/or a second modifying parameter comprising a timing configuration.
  • the wireless node may modify the CSI RS resource information by modifying a value of the second parameter (e.g., the configuration for time/frequency resource mapping) to a value of the first modifying parameter (e.g., corresponding to the second parameter) .
  • the wireless node may modify the CSI RS resource information by modifying a value of the third parameter (e.g., the timing configuration) to a value of the second modifying parameter (e.g., corresponding to the third parameter) .
  • a value of the third parameter e.g., the timing configuration
  • a value of the second modifying parameter e.g., corresponding to the third parameter
  • Fig. 9 illustrates an example of a data structure 900 of a measurement object, identified as measurement object ID 1 905.
  • the measurement object may comprise information 910 and/or a CSI RS resource configuration 915.
  • the CSI RS resource configuration 915 may comprise a CSI RS resource ID 1 corresponding to (e.g., linking to) a first CSI RS resource comprised within a core CSI RS resource configuration.
  • the CSI RS resource configuration 915 may comprise a CSI RS resource ID 2 corresponding to (e.g., linking to) a second CSI RS resource comprised within the core CSI RS resource configuration.
  • the CSI RS resource configuration 915 may comprise a CSI RS resource ID 4 corresponding to (e.g., linking to) a third CSI RS resource comprised within the core CSI RS resource configuration.
  • the CSI RS resource configuration 915 may comprise (e.g., and/or be configured as) a high layer CSI RS resource configuration for a third layer and/or a low layer CSI RS resource configuration for a first layer and/or second layer.
  • a wireless node e.g., UE
  • the core CSI RS resource configuration may comprise (e.g., and/or be configured as) the low layer CSI RS resource configuration for the first layer and/or the second layer and/or the high layer CSI RS resource configuration for the third layer.
  • the wireless node may (e.g., be configured to) use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the first layer and/or the second layer and/or a cell corresponding to the third layer based upon the core CSI RS resource configuration.
  • the CSI RS resource configuration 915 may comprise one or more modifiers.
  • the modifier may comprise one or more overriding and/or additional CSI RS resource configurations.
  • the CSI RS resource configuration 915 may comprise a first modifier corresponding to CSI RS resource ID 2 (e.g., and/or corresponding to the second CSI RS resource) .
  • the wireless node may modify the second CSI RS resource comprised within the core CSI RS resource configuration, based upon the first modifier (e.g., to generate the CSI RS resource configuration 915) .
  • the CSI RS resource configuration 915 may comprise a second modifier corresponding to CSI RS resource ID 4 (e.g., and/or corresponding to the third CSI RS resource) .
  • the wireless node may modify the third CSI RS resource comprised within the core CSI RS resource configuration, based upon the second modifier (e.g., to generate the CSI RS resource configuration 915) .
  • the CSI RS resource configuration 915 may correspond to a modified version of the core CSI RS resource configuration.
  • the first modifier may comprise overriding information comprising one or more modifying parameters.
  • the first modifier may comprise a first modifying parameter (e.g., configuration for time/frequency resource mapping) corresponding to a first parameter (e.g., configuration for time/frequency resource mapping) of second CSI RS resource information of the second CSI RS resource.
  • the wireless node may modify the second CSI RS resource information by modifying (e.g., changing) a value of the first parameter to a value of the first modifying parameter.
  • the first modifier may comprise a second modifying parameter (e.g., timing configuration) corresponding to a second parameter (e.g., timing configuration) of the second CSI RS resource information.
  • the wireless node may modify the second CSI RS resource information by modifying (e.g., changing) a value of the second parameter to a value of the second modifying parameter.
  • the second modifier may comprise overriding information comprising one or more modifying parameters.
  • the second modifier may comprise a third modifying parameter (e.g., number of antenna ports) corresponding to a third parameter (e.g., number of antenna ports) of third CSI RS resource information of the third CSI RS resource.
  • the wireless node may modify the third CSI RS resource information by modifying (e.g., changing) a value of the third parameter to a value of the third modifying parameter.
  • the second modifier may comprise a fourth modifying parameter (e.g., configuration for time/frequency resource mapping) corresponding to a fourth parameter (e.g., configuration for time/frequency resource mapping) of the third CSI RS resource information.
  • the wireless node may modify the third CSI RS resource information by modifying (e.g., changing) a value of the fourth parameter to a value of the fourth modifying parameter.
  • the wireless node may modify the second CSI RS resource information of the second CSI RS resource (e.g., identified by CSI RS resource ID 2) and/or the third CSI RS resource information of the third CSI RS resource (e.g., identified by CSI RS resource ID 4) , without modifying first CSI RS resource information of the first CSI RS resource (e.g., identified by CSI RS resource ID 1) .
  • Fig. 10 illustrates an example of a data structure 1000 of a measurement object, identified as measurement object ID 1 1005.
  • the measurement object may comprise information 1010 and/or a CSI RS resource configuration 1015.
  • the CSI RS resource configuration 1015 may comprise a CSI RS resource ID 1 corresponding to (e.g., linking to) a CSI RS resource comprised within a core CSI RS resource configuration.
  • the CSI RS resource configuration 1015 may comprise (e.g., and/or be configured as) a high layer CSI RS resource configuration for a third layer and/or a low layer CSI RS resource configuration for a first layer and/or a second layer.
  • a wireless node e.g., UE
  • the core CSI RS resource configuration may comprise (e.g., and/or be configured as) the low layer CSI RS resource configuration for the first layer and/or the second layer and/or the high layer CSI RS resource configuration for the third layer.
  • the wireless node may (e.g., be configured to) use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the first layer and/or the second layer and/or a cell corresponding to the third layer based upon the core CSI RS resource configuration.
  • the CSI RS resource configuration 1015 may comprise one or more modifiers.
  • the modifier may comprise one or more overriding and/or additional CSI RS resource configurations.
  • the CSI RS resource configuration 1015 may comprise a modifier corresponding to CSI RS resource ID 1 (e.g., and/or corresponding to the CSI RS resource) .
  • the wireless node may modify the CSI RS resource within the core CSI RS resource configuration, based upon the modifier (e.g., to generate the CSI RS resource configuration 1015) .
  • the CSI RS resource configuration 1015 may correspond to a modified version of the core CSI RS resource configuration.
  • CSI RS resource information of the CSI RS resource may comprise one or more parameters corresponding to one or more values.
  • the modifier may comprise overriding information comprising one or more modifying parameters (e.g., corresponding to the one or more parameters) corresponding to one or more modifying values.
  • the wireless node may modify the CSI RS resource information by modifying (e.g., and/or changing) (e.g., each of) (e.g., all of) the one or more values corresponding to the one or more parameters to the one or more modifying values corresponding to the one or more modifying parameters.
  • Fig. 11 illustrates an example of a data structure 1100 of a measurement object, identified as measurement object ID 1 1105.
  • the measurement object may comprise information 1110, a core CSI RS resource configuration 1115, a first cell CSI RS resource configuration 1125, identified as cell ID 1 1120, and/or a second cell CSI RS resource configuration 1135, identified as cell ID 2 1130.
  • the information 1110 comprises at least one of a carrier frequency, a measurement bandwidth, timing configuration (e.g., time offset and/or periodicity) , information for antenna port and/or other information (e.g., and/or parameters) .
  • timing configuration e.g., time offset and/or periodicity
  • information for antenna port e.g., and/or parameters
  • at least one of the core CSI RS resource configuration 1115, the first cell CSI RS resource configuration 1125 and/or the second cell CSI RS resource configuration 1135 may correspond to the carrier frequency.
  • the core CSI RS resource configuration 1115 may comprise (e.g., and/or be configured as) a high layer CSI RS resource configuration for a third layer and/or a low layer CSI RS resource configuration for a first layer and/or a second layer.
  • a wireless node e.g., UE
  • the core CSI RS resource configuration 1115 may comprise one or more CSI RS resource settings. Accordingly, the core CSI RS resource configuration 1115 may comprise a first CSI RS resource setting, identified as CSI resource setting ID 1, and/or a second CSI RS resource setting, identified as CSI resource setting ID 2.
  • the first CSI RS resource setting and/or the second CSI RS resource setting may comprise one or more CSI RS resources. Accordingly, the first CSI RS resource setting may comprise a first CSI RS resource, identified as CSI RS resource ID 1, and/or the second CSI RS resource setting may comprise a second RS resource, identified as CSI RS resource ID 1.
  • the first CSI RS resource may be configured with first CSI RS resource information and/or the second CSI RS resource may be configured with second CSI RS resource information.
  • the first cell CSI RS resource configuration 1125 may correspond to a cell corresponding to the cell ID 1 1120.
  • the first cell CSI RS resource configuration 1125 may comprise a CSI RS resource setting ID 1 corresponding to (e.g., linking to) the first CSI RS resource setting within the core CSI RS resource configuration 1115.
  • the first cell CSI RS resource configuration 1125 may comprise a CSI RS resource ID 1 corresponding to (e.g., linking to) the first CSI RS resource of the first CSI RS resource setting within the core CSI RS resource configuration 1115.
  • the second cell CSI RS resource configuration 1135 may correspond to a cell corresponding to the cell ID 2 1130.
  • the second cell CSI RS resource configuration 1135 may comprise a CSI RS resource setting 2 corresponding (e.g., linking to) the second CSI RS resource setting within the core CSI RS resource configuration 1115.
  • the second cell CSI RS resource configuration 1135 may comprise a CSI RS resource ID 1 corresponding to (e.g., linking to) the first CSI RS resource of the second CSI RS resource setting within the core CSI RS resource configuration 1115.
  • the first cell CSI RS resource configuration 1125 and/or the second cell CSI RS resource configuration 1135 may comprise (e.g., and/or be configured as) a high layer CSI RS resource configuration for a third layer and/or a low layer CSI RS resource configuration for a first layer and/or a second layer.
  • a wireless node e.g., UE
  • may use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the third layer and/or a cell corresponding to the first layer and/or the second layer based upon the first cell CSI RS resource configuration 1125 and/or the second cell CSI RS resource configuration 1135 (e.g., and/or the measurement object) .
  • the first cell CSI RS resource configuration 1125 may comprise a modifier corresponding to the first CSI RS resource.
  • the modifier may comprise one or more overriding and/or additional CSI RS resource configurations.
  • the wireless node may modify the first CSI RS resource within the core CSI RS resource configuration 1115, based upon the modifier (e.g., to generate the first cell CSI RS resource configuration 1125) . Accordingly, the first cell CSI RS resource configuration 1125 may correspond to a modified version of the core CSI RS resource configuration 1115.
  • the modifier may comprise overriding information comprising one or more modifying parameters.
  • the modifier may comprise a first modifying parameter (e.g., configuration for time/frequency resource mapping) corresponding to a first parameter (e.g., configuration for time/frequency resource mapping) of the first CSI RS resource information of the first CSI RS resource.
  • the wireless node may modify the first CSI RS resource information by modifying (e.g., changing) a value of the first parameter to a value of the first modifying parameter.
  • the modifier may comprise a second modifying parameter (e.g., timing configuration) corresponding to a second parameter (e.g., timing configuration) of the first CSI RS resource information.
  • the wireless node may modify the first CSI RS resource information by modifying (e.g., changing) a value of the second parameter to a value of the second modifying parameter.
  • the first cell CSI RS resource configuration 1125 may correspond to a modified version of the core CSI RS resource configuration 1115 and/or the second cell CSI RS resource configuration 1135 may correspond to an unmodified version of the core CSI RS resource configuration 1115.
  • Fig. 12 illustrates an example of a data structure 1200 of a measurement object, identified as measurement object ID 1 1205.
  • the measurement object may comprise information 1210, a first cell CSI RS resource configuration 1220, identified as cell ID 1 1215, a second cell CSI RS resource configuration 1230, identified as cell ID 2 1225, and/or a third cell CSI RS resource configuration 1240, identified as cell ID 3 1235.
  • the information 1210 comprises at least one of a carrier frequency, a measurement bandwidth, timing configuration (e.g., time offset and/or periodicity) , information for antenna port and/or other information (e.g., and/or parameters) .
  • timing configuration e.g., time offset and/or periodicity
  • information for antenna port e.g., and/or parameters
  • at least one of the first cell CSI RS resource configuration 1220, the second cell CSI RS resource configuration 1230 and/or the third cell CSI RS resource configuration 1240 may correspond to the carrier frequency.
  • the first cell CSI RS resource configuration 1220 may comprise (e.g., and/or be configured as) a high layer CSI RS resource configuration for a third layer and/or a low layer CSI RS resource configuration for a first layer and/or a second layer.
  • a wireless node e.g., UE
  • the first cell CSI RS resource configuration 1220 may comprise one or more CSI RS resource settings, the one or more CSI RS resource settings comprising one or more CSI resources. Accordingly, the first cell CSI RS resource configuration 1220 may comprise a CSI RS resource setting, identified as CRS resource setting ID 1 and/or a CSI RS resource, identified as CSI RS resource ID 1.
  • Fig. 13A illustrates an example of a system 1300A of a plurality of cells corresponding to a plurality of cell CSI RS resource configurations.
  • the plurality of cell CSI RS resource configurations may correspond to a (e.g., specific and/or defined) frequency.
  • the system 1300A may be applied to the data structure 1200 illustrated in Fig. 12.
  • the first cell CSI RS resource configuration 1220, corresponding to a first cell 1 1305A, of the plurality of cell CSI RS resource configurations may correspond to (e.g., serve as) a core CSI RS resource configuration..
  • the first cell CSI RS configuration 1220 may be representative of a configuration baseline for one or more cell CSI RS resource configurations of the plurality of cell CSI RS resource configurations (e.g., other than the first cell CSI RS resource configuration 1220) .
  • the one or more cell CSI RS resource configurations may comprise the second cell CSI RS resource configuration 1230, corresponding to a second cell 2 1310A, and/or the third cell CSI RS resource configuration 1240, corresponding to a third cell 3 1315A.
  • the second cell CSI RS resource configuration 1230 may comprise a CSI RS resource setting ID 1, corresponding to (e.g., linking to) a CSI RS resource setting of the first cell CSI RS configuration 1220, and/or a CSI RS resource ID 1, corresponding to (e.g., linking to) a CSI RS resource of the first cell CSI RS configuration 1220.
  • the third cell RS resource configuration 1240 may comprise a resource setting ID 1 corresponding to (e.g., linking to) the CSI RS resource setting and/or a CSI RS resource ID 1 corresponding to (e.g., linking to) the CSI RS resource (e.g., corresponding to the first cell CSI RS resource configuration 1220) .
  • the second cell CSI RS resource configuration 1230 may comprise a modifier corresponding to the CSI RS resource.
  • the modifier may comprise one or more overriding and/or additional CSI RS resource configurations.
  • the wireless node may modify the CSI RS resource within the first cell CSI RS resource configuration 1220, based upon the modifier (e.g., to generate the second cell CSI RS resource configuration 1230) .
  • the second cell CSI RS resource configuration 1230 may correspond to a modified version of the first cell CSI RS resource configuration 1220.
  • the third cell CSI RS resource configuration 1240 may correspond to an unmodified version of the first cell CSI RS resource configuration 1220.
  • Fig. 13B illustrates an example of a system 1300B of a plurality of cells corresponding to a plurality of cell CSI RS resource configurations.
  • the plurality of cell CSI RS resource configurations may correspond to a (e.g., specific and/or defined) frequency.
  • a cell CSI RS resource configuration of the plurality of cell CSI RS resource configurations may be representative of a configuration baseline for (e.g., no more than) one (e.g., next and/or following) cell CSI RS resource configuration of the plurality of cell CSI RS resource configurations.
  • the system 1300B may be applied to the data structure 1200 illustrated in Fig. 12.
  • the first cell CSI RS resource configuration 1220 corresponding to a first cell 1 1305B, of the plurality of cell CSI RS resource configurations may be representative of a configuration baseline for the (e.g., next and/or following) second cell CSI RS resource configuration 1230, corresponding to a second cell 2 1310B, of the plurality of cell CSI RS resource configurations.
  • the second cell CSI RS resource configuration 1230 may be representative of a configuration baseline for the (e.g., next and/or following) third cell CSI RS resource configuration 1240, corresponding to a third cell 3 1315B, of the plurality of cell CSI RS resource configurations.
  • the second cell CSI RS resource configuration 1230 may comprise the CSI RS resource setting ID 1, corresponding to (e.g., linking to) the CSI RS resource setting of the first cell CSI RS configuration 1220, and/or the CSI RS resource ID 1, corresponding to (e.g., linking to) the CSI RS resource of the first cell CSI RS configuration 1220.
  • the third cell RS resource configuration 1240 may comprise a resource setting ID 1, corresponding to (e.g., linking to) a second CSI RS resource setting of the second cell CSI RS resource configuration 1220, and/or a CSI RS resource ID 1, corresponding to (e.g., linking to) a second CSI RS resource of the second cell CSI RS resource configuration 1230.
  • the second cell CSI RS resource configuration 1230 may comprise a modifier corresponding to the CSI RS resource.
  • the modifier may comprise one or more overriding and/or additional CSI RS resource configurations.
  • the wireless node may modify the CSI RS resource within the first cell CSI RS resource configuration 1220, based upon the modifier (e.g., to generate the second cell CSI RS resource configuration 1230) .
  • the second cell CSI RS resource configuration 1230 may correspond to a modified version of the first cell CSI RS resource configuration 1220.
  • the third cell CSI RS resource configuration 1240 may correspond to an unmodified version of the second cell CSI RS resource configuration 1230.
  • Fig. 14A illustrates an example of a system 1400A of a plurality of CSI RS resources.
  • the plurality of CSI RS resources may correspond to a (e.g., specific and/or defined) frequency and/or a cell and/or a CSI RS resource setting.
  • the plurality of CSI RS resources may be comprised within one or more measurement objects (e.g., and/or cells) .
  • the plurality of CSI RS resources may comprise a first CSI RS resource 1 1405A.
  • the first CSI RS resource 1 1405A may correspond to (e.g., serve as) a core CSI RS resource.
  • the first CSI RS resource 1 1405A may be representative of a configuration baseline for one or more CSI RS resources of the plurality of cell CSI RS resources (e.g., other than the first cell CSI RS resource 1 1405A) .
  • the one or more CSI RS resources may comprise a second CSI RS resource 2 1410A and/or a third CSI RS resource 3 1415A.
  • Fig. 14B illustrates an example of a system 1400B of a plurality of CSI RS resources.
  • the plurality of CSI RS resources may correspond to a (e.g., specific and/or defined) frequency and/or a cell and/or a CSI RS resource setting.
  • the plurality of CSI RS resources may be comprised within one or more measurement objects (e.g., and/or cells) .
  • a CSI RS resource of the plurality of CSI RS resources may be representative of a configuration baseline for (e.g., no more than) one (e.g., next and/or following) CSI RS resource of the plurality of CSI RS resources.
  • the plurality of CSI RS resources may comprise a first CSI RS resource 1 1405B.
  • the first CSI RS resource 1 1405B may be representative of a configuration baseline for a (e.g., next and/or following) second CSI RS resource 2 1410B.
  • the second CSI resource 3 1415B may be representative of a configuration for a (e.g., next and/or following) third CSI RS resource 3 1415B.
  • Fig. 15 illustrates an example of a data structure 1500 of a core IDLE RS measurement configuration.
  • the core IDLE RS measurement configuration may comprise (e.g., and/or be configured as) an IDLE RS measurement configuration for an IDLE state.
  • a wireless node e.g., UE
  • the core IDLE RS measurement configuration may comprise (e.g., and/or be configured as) an IDLE RS measurement configuration for a CONNECTED state.
  • the wireless node may then perform a second (e.g., RRM) measurement (e.g., and/or perform cell detection) in the CONNECTED state based upon the core IDLE RS measurement configuration and/or a corresponding cell.
  • the core IDLE RS measurement configuration may comprise one or more carrier frequency IDLE RS measurement configurations. Accordingly, the core IDLE RS measurement configuration may comprise a first IDLE RS measurement configuration 1505, corresponding to a first frequency, and/or a second IDLE RS measurement configuration 1510, corresponding to a second frequency. The first frequency may be the same as, or different than, the second frequency.
  • the first IDLE RS measurement configuration 1505 may be configured with first IDLE RS information and/or the second IDLE RS measurement configuration 1510 may be configured with second IDLE RS information.
  • the first IDLE RS information and/or the second IDLE RS information may comprise at least one of IDLE RS periodicity, IDLE RS timing window (e.g., timing offset and/or duration) , actual transmitted IDLE RS information and/or other information (e.g., and/or parameters) .
  • IDLE RS information and/or the second IDLE RS information may comprise different (e.g., or similar) information.
  • the core IDLE RS measurement configuration may be representative of a configuration baseline for one or more IDLE RS measurement configurations.
  • Fig. 16 illustrates an example of a data structure 1600 of one or more IDLE RS measurement configurations.
  • the one or more IDLE RS measurement configurations may comprise a carrier frequency 1 IDLE RS measurement configuration 1605 corresponding to a carrier frequency 1, and/or a carrier frequency 2 IDLE RS measurement configuration 1610 corresponding to a carrier frequency 2, and/or a carrier frequency 3 IDLE RS measurement configuration 1615 corresponding to a carrier frequency 3.
  • the carrier frequency 1 may correspond to (e.g., link to) a first frequency of a first IDLE RS measurement configuration comprised within a core IDLE RS measurement configuration.
  • the carrier frequency 2 may correspond to (e.g., link to) a second frequency of a second IDLE RS measurement configuration comprised within the core IDLE RS measurement configuration.
  • the first frequency may be the same as, or different than, the second frequency.
  • the carrier frequency 3 may correspond to an additional carrier frequency other than the first and the second carrier frequency within a core IDLE RS measurement configuration.
  • the carrier frequency 1 IDLE RS measurement configuration 1605 may comprise a first modifier corresponding to the first IDLE RS measurement configuration.
  • a wireless node may modify the first IDLE RS measurement configuration within the core IDLE RS measurement configuration based upon the first modifier (e.g., to generate the carrier frequency 1 IDLE RS measurement configuration 1605) . Accordingly, the carrier frequency 1 IDLE RS measurement configuration 1605 may correspond to a modified version of the first IDLE RS measurement configuration.
  • the first modifier may comprise overriding information comprising one or more modifying parameters.
  • the first modifier may comprise a first modifying parameter (e.g., IDLE timing window) corresponding to a first parameter (e.g., IDLE timing window) of first IDLE RS information of the first IDLE RS measurement configuration.
  • the wireless node may modify the first IDLE RS information by modifying (e.g., changing) a value of the first parameter to a value of the first modifying parameter.
  • the carrier frequency 2 IDLE RS measurement configuration 1610 may comprise a second modifier corresponding to the second IDLE RS measurement configuration.
  • the wireless node may modify the second IDLE RS measurement configuration within the core IDLE RS measurement configuration based upon the second modifier (e.g., to generate the carrier frequency 2 IDLE RS measurement configuration 1610) .
  • the carrier frequency 2 IDLE RS measurement configuration 1610 may correspond to a modified version of the second IDLE RS measurement configuration.
  • the second modifier may comprise overriding information comprising one or more modifying parameters.
  • the second modifier may comprise a second modifying parameter (e.g., actual transmitted IDLE RS information) corresponding to a second parameter (e.g., actual transmitted IDLE RS information) of second IDLE RS information of the second IDLE RS measurement configuration.
  • the wireless node may modify the second IDLE RS information by modifying (e.g., changing) a value of the second parameter to a value of the second modifying parameter.
  • a third modifier may add a third IDLE RS measurement configuration 1615, corresponding to a third frequency (e.g., carrier frequency 3) .
  • the third IDLE RS measurement configuration 1615 may be configured with third IDLE RS information.
  • the third IDLE RS information may comprise at least one of IDLE RS periodicity, IDLE RS timing window (e.g., timing offset and/or duration) , actual transmitted IDLE RS information and/or other information (e.g., and/or parameters) .
  • the wireless node may add the third IDLE RS configuration in addition to the first and second IDLE RS configuration.
  • the carrier frequency 1 IDLE RS measurement configuration 1605 and/or the carrier frequency 2 IDLE RS measurement configuration 1610 may comprise (e.g., and/or be configured as) an IDLE RS measurement configuration for an IDLE state. Accordingly, the wireless node (e.g., UE) may then perform a first (e.g., RRM) measurement (e.g., and/or perform cell detection) in the IDLE state, based upon the carrier frequency 1 IDLE RS measurement configuration 1605, the carrier frequency 2 IDLE RS measurement configuration 1610 and/or a corresponding cell.
  • a first e.g., RRM
  • the carrier frequency 1 IDLE RS measurement configuration 1605 and/or the carrier frequency 2 IDLE RS measurement configuration 1610) may comprise (e.g., and/or be configured as) an IDLE RS measurement configuration for a CONNECTED state.
  • the wireless node may then perform a second (e.g., RRM) measurement (e.g., and/or perform cell detection) in the CONNECTED state based upon the carrier frequency 1 IDLE RS measurement configuration 1605, the carrier frequency 2 IDLE RS measurement configuration 1610) and/or a corresponding cell.
  • a second (e.g., RRM) measurement e.g., and/or perform cell detection
  • Fig. 17 illustrates an example of a data structure 1700 of a core IDLE RS measurement configuration 1705 and/or a cell IDLE RS measurement configuration 1710, identified as cell ID 1.
  • the cell IDLE RS measurement configuration 1710 may correspond to a carrier frequency 1 corresponding (e.g., linking) to a frequency of the core IDLE RS measurement configuration 1705.
  • the cell IDLE RS measurement configuration 1710 may comprise a modifier corresponding to the core IDLE RS measurement configuration 1705.
  • a wireless node may modify the core IDLE RS measurement configuration 1705 based upon the modifier (e.g., to generate the cell IDLE RS measurement configuration 1710) . Accordingly, the cell IDLE RS measurement configuration 1710 may correspond to a modified version of the core IDLE RS measurement configuration 1705.
  • the modifier may comprise overriding information comprising one or more modifying parameters.
  • the modifier may comprise a modifying parameter (e.g., actual transmitted IDLE RS information) corresponding to a parameter (e.g., actual transmitted IDLE RS information) of core IDLE RS information of the core IDLE RS measurement configuration 1705.
  • the wireless node may modify the core IDLE RS information by modifying (e.g., changing) a value of the parameter to a value of the modifying parameter.
  • the core IDLE RS measurement configuration 1705 and/or the cell IDLE RS measurement configuration 1710 may comprise (e.g., and/or be configured as) an IDLE RS measurement configuration for an IDLE state. Accordingly, a wireless node (e.g., UE) may then perform a first (e.g., RRM) measurement (e.g., and/or perform cell detection) in the IDLE state, based upon the core IDLE RS measurement configuration 1705, the cell IDLE RS measurement configuration 1710 and/or a corresponding cell.
  • a wireless node e.g., UE
  • RRM e.g., cell detection
  • the core IDLE RS measurement configuration 1705 and/or the cell IDLE RS measurement configuration 1710 may correspond to (e.g., and/or be configured as) an IDLE RS measurement configuration for a CONNECTED state.
  • the wireless node may then perform a second (e.g., RRM) measurement (e.g., and/or perform cell detection) in the CONNECTED state based upon the core IDLE RS measurement configuration 1705, the cell IDLE RS measurement configuration 1710 and/or a corresponding cell.
  • a second (e.g., RRM) measurement e.g., and/or perform cell detection
  • Fig. 18 illustrates an example of a data structure 1800 of a first cell IDLE RS measurement configuration 1810, identified as cell ID 1, a second cell IDLE RS measurement configuration 1815, identified as cell ID 2 and/or a third cell IDLE RS measurement configuration 1820, identified as cell ID 3.
  • the first cell IDLE RS measurement configuration 1810, the second cell IDLE RS measurement configuration 1815 and/or the third cell IDLE RS measurement configuration 1820 may correspond to a carrier frequency 1 1805.
  • Fig. 19A illustrates an example of a system 1900A of a plurality of cells corresponding to a plurality of cell IDLE RS measurement configurations.
  • the plurality of cell IDLE RS measurement configurations may correspond to a (e.g., specific and/or defined) frequency.
  • the system 1900A may be applied to the data structure 1800 illustrated in Fig. 18.
  • the first cell IDLE RS measurement configuration 1810, corresponding to a first cell 1 1905A, of the plurality of cell IDLE RS measurement configurations may correspond to (e.g., serve as) a core IDLE RS measurement configuration.
  • the first cell IDLE RS measurement configuration 1810 may be representative of a configuration baseline for one or more cell IDLE RS measurement configurations of the plurality of cell IDLE RS measurement configurations (e.g., other than the first cell IDLE RS measurement configuration 1810) .
  • the one or more cell IDLE RS measurement configurations may comprise the second cell IDLE RS measurement configuration 1815, corresponding to a second cell 2 1910A, and/or the third cell IDLE RS measurement configuration 1820, corresponding to a third cell 3 1915A.
  • the second cell IDLE RS measurement configuration 1815 may correspond to (e.g., link to) the first cell IDLE RS measurement configuration 1810.
  • the third cell IDLE RS measurement configuration 1820 may correspond to (e.g., link to) the first cell IDLE RS measurement configuration 1810.
  • the second cell IDLE RS measurement configuration 1815 may comprise a first modifier corresponding to the first cell IDLE RS measurement configuration 1810.
  • a wireless node may modify the first cell IDLE RS measurement configuration 1810 based upon the first modifier (e.g., to generate the second cell IDLE RS measurement configuration 1815) .
  • the second cell IDLE RS measurement configuration 1815 may correspond to a modified version of the first cell IDLE RS measurement configuration 1810.
  • the third cell IDLE RS 1820 configuration may correspond to an unmodified version of the first cell IDLE RS measurement configuration 1810.
  • Fig. 19B illustrates an example of a system 1900B of a plurality of cells corresponding to a plurality of cell IDLE RS measurement configurations.
  • the plurality of cell IDLE RS measurement configurations may correspond to a (e.g., specific and/or defined) frequency.
  • a cell IDLE RS measurement configuration of the plurality of cell IDLE RS measurement configurations may be representative of a configuration baseline for (e.g., no more than) one (e.g., next and/or following) cell IDLE RS measurement configuration of the plurality of cell IDLE RS measurement configurations.
  • the system 1900B may be applied to the data structure 1800 illustrated in Fig. 18.
  • the first cell IDLE RS measurement configuration 1810 corresponding to a first cell 1 1905B, of the plurality of cell IDLE RS measurement configurations may be representative of a configuration baseline for the (e.g., next and/or following) second cell IDLE RS measurement configuration 1815, corresponding to a second cell 2 1910B, of the plurality of cell IDLE RS measurement configurations.
  • the second cell IDLE RS measurement configuration 1815 may be representative of a configuration baseline for the (e.g., next and/or following) third cell IDLE RS measurement configuration 1820, corresponding to a third cell 3 1915B, of the plurality of cell IDLE RS measurement configurations.
  • the second cell IDLE RS measurement configuration 1815 may comprise a second modifier corresponding to the first cell IDLE RS measurement configuration 1810.
  • a wireless node may modify the first cell IDLE RS measurement configuration 1810 based upon the second modifier (e.g., to generate the second cell IDLE RS measurement configuration 1815) .
  • the second cell IDLE RS measurement configuration 1815 may correspond to a modified version of the first cell IDLE RS measurement configuration 1810.
  • the third cell IDLE RS 1820 configuration may correspond to an unmodified version of the second cell IDLE RS measurement configuration 1815.
  • Fig. 20 presents a schematic architecture diagram 2000 of a base station 2050 (e.g., a node) that may utilize at least a portion of the techniques provided herein.
  • a base station 2050 e.g., a node
  • Such a base station 2050 may vary widely in configuration and/or capabilities, alone or in conjunction with other base stations, nodes, end units and/or servers, etc. in order to provide a service, such as at least some of one or more of the other disclosed techniques, scenarios, etc.
  • the base station 2050 may connect one or more user equipment (UE) to a (e.g., wireless and/or wired) network (e.g., which may be connected and/or include one or more other base stations) , such as Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, Single-Carrier FDMA (SC-FDMA) networks, etc.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal FDMA
  • SC-FDMA Single-Carrier FDMA
  • the network may implement a radio technology, such as Universal Terrestrial Radio Access (UTRA) , CDMA2000, Global System for Mobile Communications (GSM) , Evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, Flash-OFDM, etc.
  • UTRA Universal Terrestrial Radio Access
  • GSM Global System for Mobile Communications
  • E-UTRA Evolved UTRA
  • IEEE 802.11, IEEE 802.16, IEEE 802.20, Flash-OFDM etc.
  • the base station 2050 and/or the network may communicate using a standard, such as Long-Term Evolution (LTE) .
  • LTE Long-Term Evolution
  • the base station 2050 may comprise one or more (e.g., hardware) processors 2010 that process instructions.
  • the one or more processors 2010 may optionally include a plurality of cores; one or more coprocessors, such as a mathematics coprocessor or an integrated graphical processing unit (GPU) ; and/or one or more layers of local cache memory.
  • the base station 2050 may comprise memory 2002 storing various forms of applications, such as an operating system 2004; one or more base station applications 2006; and/or various forms of data, such as a database 2008 and/or a file system, etc.
  • the base station 2050 may comprise a variety of peripheral components, such as a wired and/or wireless network adapter 2014 connectible to a local area network and/or wide area network; one or more storage components 2016, such as a hard disk drive, a solid-state storage device (SSD) , a flash memory device, and/or a magnetic and/or optical disk reader; and/or other peripheral components.
  • peripheral components such as a wired and/or wireless network adapter 2014 connectible to a local area network and/or wide area network; one or more storage components 2016, such as a hard disk drive, a solid-state storage device (SSD) , a flash memory device, and/or a magnetic and/or optical disk reader; and/or other peripheral components.
  • the base station 2050 may comprise a mainboard featuring one or more communication buses 2012 that interconnect the processor 2010, the memory 2002, and/or various peripherals, using a variety of bus technologies, such as a variant of a serial or parallel AT Attachment (ATA) bus protocol; a Uniform Serial Bus (USB) protocol; and/or Small Computer System Interface (SCI) bus protocol.
  • a communication bus 2012 may interconnect the base station 2050 with at least one other server.
  • Other components may optionally be included with the base station 2050 (though not shown in the schematic diagram 2000 of Fig.
  • a display such as a graphical processing unit (GPU)
  • input peripherals such as a keyboard and/or mouse
  • flash memory device may store a basic input/output system (BIOS) routine that facilitates booting the base station 2050 to a state of readiness, etc.
  • BIOS basic input/output system
  • the base station 2050 may operate in various physical enclosures, such as a desktop or tower, and/or may be integrated with a display as an “all-in-one” device.
  • the base station 2050 may be mounted horizontally and/or in a cabinet or rack, and/or may simply comprise an interconnected set of components.
  • the base station 2050 may comprise a dedicated and/or shared power supply 2018 that supplies and/or regulates power for the other components.
  • the base station 2050 may provide power to and/or receive power from another base station and/or server and/or other devices.
  • the base station 2050 may comprise a shared and/or dedicated climate control unit 2020 that regulates climate properties, such as temperature, humidity, and/or airflow. Many such base stations 2050 may be configured and/or adapted to utilize at least a portion of the techniques presented herein.
  • Fig. 21 presents a schematic architecture diagram 2100 of a user equipment (UE) 2150 (e.g., a node) whereupon at least a portion of the techniques presented herein may be implemented.
  • UE user equipment
  • Such a UE 2150 may vary widely in configuration and/or capabilities, in order to provide a variety of functionality to a user.
  • the UE 2150 may be provided in a variety of form factors, such as a mobile phone (e.g., a smartphone) ; a desktop or tower workstation; an “all-in-one” device integrated with a display 2108; a laptop, tablet, convertible tablet, or palmtop device; a wearable device, such as mountable in a headset, eyeglass, earpiece, and/or wristwatch, and/or integrated with an article of clothing; and/or a component of a piece of furniture, such as a tabletop, and/or of another device, such as a vehicle or residence.
  • the UE 2150 may serve the user in a variety of roles, such as a telephone, a workstation, kiosk, media player, gaming device, and/or appliance.
  • the UE 2150 may comprise one or more (e.g., hardware) processors 2110 that process instructions.
  • the one or more processors 2110 may optionally include a plurality of cores; one or more coprocessors, such as a mathematics coprocessor or an integrated graphical processing unit (GPU) ; and/or one or more layers of local cache memory.
  • the UE 2150 may comprise memory 2101 storing various forms of applications, such as an operating system 2103; one or more user applications 2102, such as document applications, media applications, file and/or data access applications, communication applications, such as web browsers and/or email clients, utilities, and/or games; and/or drivers for various peripherals.
  • the UE 2150 may comprise a variety of peripheral components, such as a wired and/or wireless network adapter 2106 connectible to a local area network and/or wide area network; one or more output components, such as a display 2108 coupled with a display adapter (optionally including a graphical processing unit (GPU) ) , a sound adapter coupled with a speaker, and/or a printer; input devices for receiving input from the user, such as a keyboard 2111, a mouse, a microphone, a camera, and/or a touch-sensitive component of the display 2108; and/or environmental sensors, such as a GPS receiver 2119 that detects the location, velocity, and/or acceleration of the UE 2150, a compass, accelerometer, and/or gyroscope that detects a physical orientation of the UE 2150.
  • peripheral components such as a wired and/or wireless network adapter 2106 connectible to a local area network and/or wide area network
  • one or more output components such as a display
  • UE 2150 may optionally be included with the UE 2150 (though not shown in the schematic architecture diagram 2100 of Fig. 21) include one or more storage components, such as a hard disk drive, a solid-state storage device (SSD) , a flash memory device, and/or a magnetic and/or optical disk reader; a flash memory device that may store a basic input/output system (BIOS) routine that facilitates booting the UE 2150 to a state of readiness; and/or a climate control unit that regulates climate properties, such as temperature, humidity, and airflow, etc.
  • storage components such as a hard disk drive, a solid-state storage device (SSD) , a flash memory device, and/or a magnetic and/or optical disk reader; a flash memory device that may store a basic input/output system (BIOS) routine that facilitates booting the UE 2150 to a state of readiness; and/or a climate control unit that regulates climate properties, such as temperature, humidity, and airflow, etc.
  • the UE 2150 may comprise a mainboard featuring one or more communication buses 2112 that interconnect the processor 2110, the memory 2101, and/or various peripherals, using a variety of bus technologies, such as a variant of a serial or parallel AT Attachment (ATA) bus protocol; the Uniform Serial Bus (USB) protocol; and/or the Small Computer System Interface (SCI) bus protocol.
  • the UE 2150 may comprise a dedicated and/or shared power supply 2118 that supplies and/or regulates power for other components, and/or a battery 2104 that stores power for use while the UE 2150 is not connected to a power source via the power supply 2118.
  • the UE 2150 may provide power to and/or receive power from other client devices.
  • Fig. 22 is an illustration of a scenario 2200 involving an example non-transitory computer readable medium 2202.
  • the non-transitory computer readable medium 2202 may comprise processor-executable instructions 2212 that when executed by a processor 2216 cause performance (e.g., by the processor 2216) of at least some of the provisions herein.
  • the non-transitory computer readable medium 2202 may comprise a memory semiconductor (e.g., a semiconductor utilizing static random access memory (SRAM) , dynamic random access memory (DRAM) , and/or synchronous dynamic random access memory (SDRAM) technologies) , a platter of a hard disk drives, a flash memory device, or a magnetic or optical disc (such as a compact disc (CD) , digital versatile disc (DVD) , and/or floppy disk) .
  • a memory semiconductor e.g., a semiconductor utilizing static random access memory (SRAM) , dynamic random access memory (DRAM) , and/or synchronous dynamic random access memory (SDRAM) technologies
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • CD compact disc
  • DVD digital versatile disc
  • floppy disk floppy disk
  • the example non-transitory computer readable medium 2202 stores computer-readable data 2204 that, when subjected to reading 2206 by a reader 2210 of a device 2208 (e.g., a read head of a hard disk drive, or a read operation invoked on a solid-state storage device) , express the processor-executable instructions 2212.
  • the processor-executable instructions 2212 when executed, cause performance of operations, such as at least some of the example method 100A of Fig. 1A, the example method 100B of Fig. 1B, and/or the example method 100C of Fig. 1C, for example.
  • the processor-executable instructions 2212 are configured to cause implementation of a system and/or scenario, such as at least some of the example system 200 of Fig. 2, the example system 300 of Fig. 3, the example system 400 of Fig. 4, the example system corresponding to the data structure 500 of Fig. 5, the example system corresponding to the data structure 600 of Fig. 6, the example system corresponding to the data structure 700 of Fig. 7, the example system corresponding to the data structure 800 of Fig. 8, the example system corresponding to the data structure 900 of Fig. 9, the example system corresponding to the data structure 1000 of Fig. 10, the example system corresponding to the data structure 1100 of Fig. 11, the example system corresponding to the data structure 1200 of Fig.
  • a system and/or scenario such as at least some of the example system 200 of Fig. 2, the example system 300 of Fig. 3, the example system 400 of Fig. 4, the example system corresponding to the data structure 500 of Fig. 5, the example system corresponding to the data structure 600 of Fig. 6, the example system
  • ком ⁇ онент As used in this application, "component, “ “module, “ “system” , “interface” , and/or the like are generally intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a controller and the controller can be a component.
  • One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers (e.g., nodes (s) ) .
  • first, ” “second, ” and/or the like are not intended to imply a temporal aspect, a spatial aspect, an ordering, etc. Rather, such terms are merely used as identifiers, names, etc. for features, elements, items, etc.
  • a first object and a second object generally correspond to object A and object B or two different or two identical objects or the same object.
  • example is used herein to mean serving as an instance, illustration, etc., and not necessarily as advantageous.
  • “or” is intended to mean an inclusive “or” rather than an exclusive “or” .
  • “a” and “an” as used in this application are generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.
  • at least one of A and B and/or the like generally means A or B or both A and B.
  • the claimed subject matter may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer (e.g., node) to implement the disclosed subject matter.
  • a computer e.g., node
  • article of manufacture is intended to encompass a computer program accessible from any computer-readable device, carrier, or media.

Abstract

One or more devices, systems, and/or methods for facilitating transmission of one or more configurations are provided. For example, a wireless node may receive a core configuration. The wireless node may receive a modifier. The wireless node may generate a modified configuration by modifying the core configuration based upon the modifier. The wireless node may perform a measurement based upon the modified configuration.

Description

CONFIGURATION TRANSMISSION BACKGROUND
A communication link between wireless nodes, such as between a user equipment (UE) and a network, may be facilitated by transmitting reference signals (RS) between the wireless nodes. For example, the network may transmit one or more RS to the UE. The UE may use the one or more RS to perform radio resource management (RRM) measurements. Information about the communication link may be determined based upon the RRM measurements.
SUMMARY
In accordance with the present disclosure, one or more devices and/or methods for facilitating transmission of a configuration are provided. In an example, a core configuration may be generated. A modifier corresponding to the core configuration may be generated. The core configuration and the modifier may be transmitted to a node.
In an example, a core configuration may be determined. A cell configuration corresponding to a cell may be determined. One or more distinctions between the core configuration and the cell configuration may be determined. A modifier may be generated based upon the one or more distinctions. The core configuration and the modifier may be transmitted to a node.
In an example, a core configuration and a modifier may be received from a node. A modified configuration may be generated by modifying the core configuration based upon the modifier. A first action may be performed based upon the core configuration. A second action may be performed based upon the modified configuration.
DESCRIPTION OF THE DRAWINGS
While the techniques presented herein may be embodied in alternative forms, the particular embodiments illustrated in the drawings are only a few examples that are supplemental of the description provided herein. These embodiments are not to be interpreted in a limiting manner, such as limiting the claims appended hereto.
Fig. 1A is a flow chart illustrating an example method of facilitating transmission of a configuration.
Fig. 1B is a flow chart illustrating an example method of facilitating transmission of a configuration.
Fig. 1C is a flow chart illustrating an example method of facilitating reception of a configuration.
Fig. 2 is a component block diagram illustrating an example system for facilitating transmission of a configuration.
Fig. 3 is a component block diagram illustrating an example system for facilitating transmission of a configuration.
Fig. 4 is a component block diagram illustrating an example system for facilitating transmission of a configuration.
Fig. 5 is a diagram illustrating an example of a core channel state information (CSI) resource signal (RS) configuration.
Fig. 6 is a diagram illustrating an example of a measurement object.
Fig. 7 is a diagram illustrating an example of a measurement object.
Fig. 8 is a diagram illustrating an example of a measurement object.
Fig. 9 is a diagram illustrating an example of a measurement object.
Fig. 10 is a diagram illustrating an example of a measurement object.
Fig. 11 is a diagram illustrating an example of a measurement object.
Fig. 12 is a diagram illustrating an example of a measurement object.
Fig. 13A is a component block diagram illustrating an example system of a plurality of cells.
Fig. 13B is a component block diagram illustrating an example system of a plurality of cells.
Fig. 14A is a component block diagram illustrating an example system of a plurality of CSI RS resources.
Fig. 14B is a component block diagram illustrating an example system of a plurality of CSI RS resources.
Fig. 15 is a diagram illustrating an example of a core IDLE RS measurement configuration.
Fig. 16 is a diagram illustrating an example of one or more IDLE RS measurement configurations.
Fig. 17 is a diagram illustrating an example of a core IDLE RS measurement configuration.
Fig. 18 is a diagram illustrating an example of a cell IDLE RS measurement configuration.
Fig. 19A is a component block diagram illustrating an example system of a plurality of cells.
Fig. 19B is a component block diagram illustrating an example system of a plurality of cells.
Fig. 20 is an illustration of a scenario involving an example configuration of a base station (BS) that may utilize and/or implement at least a portion of the techniques presented herein.
Fig. 21 is an illustration of a scenario involving an example configuration of a user equipment (UE) that may utilize and/or implement at least a portion of the techniques presented herein.
Fig. 22 is an illustration of a scenario featuring an example non-transitory computer readable medium in accordance with one or more of the provisions set forth herein.
DETAILED DESCRIPTION
Subject matter will now be described more fully hereinafter with reference to the accompanying drawings, which form a part hereof, and which show, by way of illustration, specific example embodiments. This description is not intended as an extensive or detailed discussion of known concepts. Details that are known generally to those of ordinary skill in the relevant art may have been omitted, or may be handled in summary fashion.
The following subject matter may be embodied in a variety of different forms, such as methods, devices, components, and/or systems. Accordingly, this subject matter is not intended to be construed as limited to any example embodiments set forth herein. Rather, example embodiments are provided merely to be illustrative. Such embodiments may, for example, take the form of hardware, software, firmware or any combination thereof.
One or more computing devices and/or techniques for facilitating transmission of a configuration are provided. For example, a user equipment (UE) may connect to a (e.g., wireless communication) network. The UE may perform cell-specific radio resource management (RRM) measurements. The RRM measurements may be (e.g., transmitted and/or) used, for example, to enable the network to communicate with the UE reliably and/or with high data rates. The UE may perform an RRM measurement based upon a cell to derive one or more qualities of the cell (e.g., and/or a signal corresponding to the cell) . The UE may use a configuration corresponding to the cell to perform a RRM measurement based upon the cell. The UE may perform a RRM measurement based upon the cell (e.g., and/or perform cell detection) based upon a configuration comprised within an IDLE reference signal (RS) (e.g., received from the network) . The configuration may correspond to an IDLE RS measurement configuration in an IDLE state and/or an IDLE RS measurement configuration in a CONNECTED state. The UE may perform a RRM measurement based upon the cell (e.g., and/or cell detection) based upon one or more other (e.g., additional) RS. The one or more other RS may comprise a channel state information (CSI) RS and/or other information. The CSI RS may comprise a low layer CSI RS resource configuration for a first layer and/or a second layer and/or a high layer CSI RS resource configuration for a  third layer. The UE may perform RRM measurements based upon a cell, manage (e.g., multiple antenna) beamforming applications and/or manage the first layer (e.g., physical layer) and/or the second layer (e.g., medium access control (MAC) layer) based upon the low layer CSI RS resource configuration for the first layer and/or the second layer. The UE may perform RRM measurements based upon a cell, manage the third layer (e.g., radio resource control (RRC) layer) and/or perform measurements for third layer mobility (e.g., and/or RRM mobility) based upon the high layer CSI RS resource configuration for the third layer. These RS configurations (e.g., their transmission, processing, etc. ) may result in signaling overhead, especially when the UE is functioning at high frequencies. The high layer CSI RS resource configuration for the third layer may be the same, partly the same, and/or different than the low layer CSI RS resource configuration for the first layer and/or the second layer. Accordingly, the UE may use the low layer CSI RS resource configuration for the first layer and/or the second layer as a configuration baseline for the high layer CSI RS resource configuration for the third layer to reduce signaling overhead. Alternatively and/or additionally, the UE may use the IDLE RS measurement configuration in an IDLE state as a configuration baseline for the IDLE RS measurement configuration in a CONNECTED state to reduce signaling overhead.
An example method 100A of facilitating transmission of a configuration from a first wireless node to a second wireless node is illustrated in Fig. 1A. The first wireless node may be a network and/or base station (BS) and the second wireless node may be a UE. The first wireless node may be required to transmit a configuration (e.g., CSI RS resource configuration, IDLE RS measurement configuration, etc. ) to the second wireless node.
Accordingly, at 105A, the first wireless node generates a core configuration. In some examples, the core configuration may be representative of a configuration baseline for one or more configurations. The one or more configurations may (e.g., respectively) correspond to a (e.g., specific and/or defined) configuration type for one or more layers and/or one or more states. For example, one or more low layer CSI RS resource configurations for a first layer and/or a second layer may correspond to a first  configuration type, one or more high layer CSI RS resource configuration for a third layer may correspond to a second configuration type, one or more IDLE RS measurement configurations for an IDLE state may correspond to a third configuration type, one or more IDLE RS measurement configurations for a CONNECTED state may correspond to a fourth configuration type, etc. In some examples, the core configuration may correspond to the (e.g., same) configuration type as the one or more configurations for whom the core configuration represents a configuration baseline. In some examples, the core configuration may correspond to a (e.g., different) configuration type than the one or more configurations for whom the core configuration represents a configuration baseline.
At 110A, the first wireless node generates a modifier corresponding to the core configuration. In some examples, the core configuration and/or the modifier correspond to a (e.g., specific and/or defined) frequency. In some examples, the modifier may comprise overriding information, corresponding to information comprised within the core configuration, that may override at least some information comprised within the core configuration. In some examples, the modifier may comprise additional information that may be added and/or combined with information comprised within the core configuration.
The modifier may correspond to a configuration type, which may be the same as, or different than, the configuration type of the core configuration. In some examples, the core configuration may comprise a low layer CSI RS resource configuration for the first layer and/or second layer and/or the modifier may correspond to (e.g., and/or be representative of) a high layer CSI RS resource configuration for the third layer. Alternatively and/or additionally, the core configuration may comprise an IDLE RS measurement configuration for the IDLE state and/or the modifier may correspond to (e.g., and/or be representative of) an IDLE RS measurement configuration for the CONNECTED state. Alternatively and/or additionally, the core configuration may comprise a first IDLE RS measurement configuration for the IDLE state and/or the modifier may correspond to (e.g., and/or be representative of) a second IDLE RS measurement configuration for the IDLE state. Alternatively and/or additionally, the core configuration may comprise a first IDLE RS  measurement configuration for the CONNECTED state and/or the modifier may correspond to (e.g., and/or be representative of) a second IDLE RS measurement configuration for the CONNECTED state.
At 115A, the first wireless node transmits the core configuration and/or the modifier to the second wireless node.
Alternatively and/or additionally, the first wireless node may generate a second modifier corresponding to the core configuration. The first wireless node may transmit the second modifier to the second wireless node. In some examples, the second modifier may correspond to the core configuration (e.g., and/or the configuration type corresponding to the core configuration) .
An example method 100B of facilitating transmission of a configuration from a first wireless node to a second wireless node is illustrated in Fig. 1B. The first wireless node may be a network and/or the second wireless node may be a UE. Accordingly, at 105B, the first wireless node determines a core configuration. At 110B, the first wireless node determines a cell configuration corresponding to a cell.
The core configuration may be representative of a configuration baseline for one or more configurations corresponding to one or more cells. The one or more configurations may comprise the cell configuration. The core configuration and/or the one or more configurations may correspond to a (e.g., specific and/or defined) frequency. At 115B, the first wireless node determines one or more distinctions between the core configuration and the cell configuration. At 120B, the first wireless node generates a modifier based upon the one or more distinctions. In some examples, the modifier may comprise overriding information, corresponding to information comprised within the core configuration, that may override at least some information comprised within the core configuration. In some examples, the modifier may comprise additional information that may be added and/or combined with information comprised within the core configuration.
The modifier may correspond to a configuration type, which may be the same as, or different than, a configuration type of the core configuration.  In some examples, the core configuration may comprise a first high layer CSI RS resource configuration for a third layer and/or the modifier (e.g., and/or the one or more configurations) may correspond to (e.g., and/or be representative of) a second high layer CSI RS resource configuration for the third layer.
In some examples, a core cell configuration corresponding to a second cell may comprise the core configuration. At 125B, the first wireless node transmits the core configuration and the modifier to the second wireless node.
An example method 100C of facilitating reception of a configuration at a second wireless node from a first wireless node is illustrated in Fig. 1C. The first wireless node may be a network and the second wireless node may be a UE. The second wireless node may perform one or more actions using one or more configurations from the first wireless node. Accordingly, at 105C, the second wireless node receives a core configuration and a modifier from the first wireless node. The core configuration may comprise information and/or the modifier may comprise overriding information that may override at least some information comprised within the core configuration and/or additional information that may be added and/or combined with information comprised within the core configuration.
Alternatively and/or additionally, at 110C, the second wireless node generates a modified configuration by modifying the core configuration based upon the modifier. The second wireless node may modify the information (e.g., of the core configuration) based upon the overriding information and/or the additional information (e.g., of the modifier) to generate the modified configuration.
In some examples, the core configuration may be representative of a configuration baseline for one or more configurations corresponding to a (e.g., specific and/or defined) configuration type (e.g., a low layer CSI RS resource configuration for a first layer and/or a second layer, a high layer CSI RS resource configuration for a third layer, an IDLE RS measurement configuration for an IDLE state, an IDLE RS measurement configuration for a  CONNECTED state, etc. ) . The one or more configurations may comprise the modified configuration.
In some examples, the core configuration may correspond to a (e.g., different) configuration type than the one or more configurations for whom the core configuration represents a configuration baseline. For example, the core configuration may comprise a low layer CSI RS resource configuration for a first layer and/or second layer and/or the one or more configurations may comprise a high layer CSI RS resource configuration for a third layer (e.g., and/or vice versa) . Alternatively and/or additionally, the core configuration may comprise an IDLE RS measurement configuration for an IDLE state and/or the one or more configurations may comprise an IDLE RS measurement configuration for a CONNECTED state (e.g., and/or vice versa) .
In some examples, the core configuration may correspond to the (e.g., same) configuration type as the one or more configurations for whom the core configuration represents a configuration baseline. For example, the core configuration may comprise a first high layer CSI RS resource configuration for the third layer and/or the one or more configurations may comprise a second high layer CSI RS resource configuration for the third layer. Alternatively and/or additionally, the core configuration may comprise a first IDLE RS measurement configuration for the IDLE state and/or the one or more configurations may comprise a second IDLE RS measurement configuration for the IDLE state. Alternatively and/or additionally, the core configuration may comprise a first IDLE RS measurement configuration for the CONNECTED state and/or the one or more configurations may comprise a second IDLE RS measurement configuration for the CONNECTED state.
At 115C, the second wireless node performs a first action based upon the core configuration. In some examples, the core configuration may comprise a low layer CSI RS resource configuration for the first layer and/or the second layer (e.g., and/or management of the first layer and/or the second layer) . The second wireless node may perform the first action based upon the core configuration by using (e.g., and/or managing and/or performing a RRM measurement based upon) a cell corresponding to the first layer and/or the second layer based upon the core configuration.
Alternatively and/or additionally, the core configuration may comprise a high layer CSI RS resource configuration for the third layer (e.g., and/or a third layer mobility) . The second wireless node may perform the first action based upon the core configuration by using (e.g., and/or managing and/or performing a RRM measurement based upon) a cell corresponding to the third layer based upon the core configuration.
In some examples, the core configuration may comprise an IDLE RS measurement configuration for an IDLE state. The second wireless node may then perform the first action based upon the core configuration by performing a first (e.g., RRM) measurement (e.g., and/or performing cell detection) in the IDLE state, based upon the core configuration and/or a corresponding cell. Alternatively and/or additionally, the core configuration may comprise an IDLE RS measurement configuration for a CONNECTED state. The second wireless node may then perform the first action based upon the core configuration by performing a second (e.g., RRM) measurement (e.g., and/or performing cell detection) in the CONNECTED state based upon the core configuration and/or a corresponding cell.
At 120C, the second wireless node performs a second action based upon the modified configuration. In some examples, the modified configuration may comprise a low layer CSI RS resource configuration for the first layer and/or the second layer (e.g., and/or management of the first layer and/or the second layer) . The second wireless node may perform the second action based upon the modified configuration by using (e.g., and/or managing and/or performing a RRM measurement based upon) a cell corresponding to the first layer and/or the second layer based upon the modified configuration.
Alternatively and/or additionally, the modified configuration may comprise a high layer CSI RS resource configuration for the third layer (e.g., and/or a third layer mobility) . The second wireless node may perform the second action based upon the modified configuration by using (e.g., and/or managing and/or performing a RRM measurement based upon) a cell corresponding to the third layer based upon the modified configuration.
In some examples, the modified configuration may comprise an IDLE RS measurement configuration for an IDLE state. The second wireless node may then perform the second action based upon the modified configuration by performing a first (e.g., RRM) measurement (e.g., and/or performing cell detection) in the IDLE state, based upon the modified configuration and/or a corresponding cell. Alternatively and/or additionally, the modified configuration may comprise an IDLE RS measurement configuration for a CONNECTED state. The second wireless node may then perform the second action based upon the modified configuration) by performing a second (e.g., RRM) measurement (e.g., and/or performing cell detection) in the CONNECTED state based upon the modified configuration and/or a corresponding cell.
Alternatively and/or additionally, the second wireless node may receive a second modifier. The second wireless node may then generate a second modified configuration by modifying the core configuration based upon the second modifier. In some examples, the second modified configuration may comprise a low layer CSI RS resource configuration for the first layer and/or the second layer. The second wireless node may then use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the first layer and/or the second layer based upon the second modified configuration.
Alternatively and/or additionally, the second modified configuration may comprise an IDLE state measurement configuration for the IDLE state. The second wireless node may then perform a (e.g., RRM) measurement (e.g., and/or perform cell detection) in the IDLE state, based upon the second modified configuration and/or a corresponding cell.
The core configuration may correspond to a (e.g., specific and/or defined) frequency. The core configuration may be representative of a configuration baseline for one or more configurations corresponding to the frequency. The one or more configurations may comprise a cell configuration corresponding to a cell. Accordingly, the second wireless node may use (e.g., and/or manage and/or perform a RRM measurement based upon) one or more cells based upon the core configuration. The cell configuration may  comprise the modified configuration. Accordingly, the second wireless node may use (e.g., and/or manage and/or perform a RRM measurement based upon) the cell based upon the modified configuration.
In some examples, a core cell configuration corresponding to a second cell may comprise the core configuration. Accordingly, the second wireless node may use (e.g., and/or manage and/or perform a RRM measurement based upon) the second cell based upon the core configuration (e.g., core cell configuration) .
In some examples, the second wireless node may perform a RRM measurement based upon a cell to derive one or more qualities of the cell (e.g., and/or a signal corresponding to the cell) . The second wireless node may perform a RRM measurement based upon (e.g., and/or using) at least one of a low layer CSI RS resource configuration for the first layer and/or the second layer, a high layer CSI RS resource configuration for the third layer, an IDLE RS measurement configuration for the IDLE state and/or an IDLE RS measurement configuration for the CONNECTED state.
The first layer may comprise a physical layer. The physical layer may carry information such as power control measurements and/or cell search measurements (e.g., and/or other information and/or measurements) . The second layer may comprise at least one of a MAC layer, a radio link control (RLC) layer and/or a packet data convergence control (PDCP) layer. The MAC layer may provide a connection between logical channels and transport channels and/or a connection between the physical layer and the transport channels (e.g., and/or perform other functions) . The third layer may comprise a RRC layer and/or a non-access stratum (NAS) protocol. The RRC layer may broadcast system information related to the NAS protocol (e.g., and/or perform other functions) .
Fig. 2 illustrates an example of a system 200 for facilitating transmission of a configuration from a first wireless node 205 (e.g., a network) to a second wireless node 210 (e.g., a UE) . The first wireless node 205 may generate a core configuration 215 representative of a configuration baseline  for one or more configurations. The first wireless node 205 may generate a modifier 220.
The first wireless node 205 may transmit the core configuration 215 and/or the modifier 220 to the second wireless node 210. In some examples, the core configuration 215 and/or the modifier 220 may be transmitted together and/or in a common signal. In some examples, the core configuration 215 and/or the modifier 220 may be transmitted separately and/or in separate signals.
The second wireless node 210 may generate a modified configuration 225 by modifying the core configuration 215 based upon the modifier 220. The core configuration 215 may correspond to a first configuration type and/or the modified configuration 225 may correspond to a second configuration type.
The first configuration type and the second configuration type may be different types. For example, the core configuration 215 comprise a low layer CSI RS resource configuration for a first layer and/or second layer and/or the modified configuration 225 may comprise a high layer CSI RS resource configuration for a third layer. Alternatively and/or additionally, the core configuration 215 may comprise an IDLE RS measurement configuration for an IDLE state and/or the modified configuration 225 may comprise an IDLE RS measurement configuration for a CONNECTED state.
Alternatively and/or additionally, the first configuration type and the second configuration type may be similar types and/or the same type. For example, the core configuration 215 may comprise a high layer CSI RS resource configuration for a third layer and/or the modified configuration 225 may comprise a high layer CSI RS resource configuration for a third layer. Alternatively and/or additionally, the core configuration 215 may comprise an IDLE RS measurement configuration for a CONNECTED state and/or the modified configuration 225 may comprise an IDLE RS measurement configuration for a CONNECTED state.
Fig. 3 illustrates an example of a system 300 for facilitating transmission of a configuration from a first wireless node 305 (e.g., a network)  to a second wireless node 310 (e.g., a UE) . The first wireless node 305 may generate a core configuration 315, a modifier 320 and/or a second modifier 325. The core configuration 315 may be representative of a configuration baseline for one or more configurations.
The first wireless node 305 may transmit the core configuration 315, the modifier 320 and/or the second modifier 325 to the second wireless node 310. In some examples, the core configuration 315, the modifier 320 and/or the second modifier 325 may be transmitted together and/or in a common signal. In some examples, the core configuration 315, the modifier 320 and/or the second modifier 325 may be transmitted separately and/or in separate signals. In some examples, at least some of the core configuration 315, the modifier 320 and/or the second modifier 325 may be transmitted in a first signal, while a remainder of the core configuration 315, the modifier 320 and/or the second modifier 325 may be transmitted in a second signal.
The second wireless node 310 may generate a modified configuration 330 by modifying the core configuration 315 based upon the modifier 320. The second wireless node 310 may generate a second modified configuration 335, by modifying the core configuration 315 based upon the second modifier 325.
The second modified configuration 335 may correspond to a first configuration type and/or the modified configuration 330 may correspond to a second configuration type. The first configuration type and the second configuration type may be different types. For example, the second modified configuration 335 may comprise a low layer CSI RS resource configuration for a first layer and/or second layer and/or the modified configuration 330 may comprise a high layer CSI RS resource configuration for a third layer. Alternatively and/or additionally, the second modified configuration 335 may comprise an IDLE RS measurement configuration for an IDLE state and/or the modified configuration 330 may comprise an IDLE RS measurement configuration for a CONNECTED state.
Alternatively and/or additionally, the first configuration type and the second configuration type may be similar types and/or the same type. For  example, the second modified configuration 335 may comprise a high layer CSI RS resource configuration for a third layer and/or the modified configuration 330 may comprise a high layer CSI RS resource configuration for a third layer. Alternatively and/or additionally, the second modified configuration 335 may comprise an IDLE RS measurement configuration for a CONNECTED state and/or the modified configuration 330 may comprise an IDLE RS measurement configuration for a CONNECTED state.
Fig. 4 illustrates an example of a system 400 for facilitating transmission of a configuration from a first wireless node 405 (e.g., a network) to a second wireless node 410 (e.g., a UE) . The first wireless node 405 may determine (e.g., and/or generate) a core configuration 415. Alternatively and/or additionally, the first wireless node 405 may determine (e.g., and/or generate) a cell configuration 425 corresponding to a cell. The first wireless node 405 may then use an analyzer 430 to determine one or more or more distinctions between the core configuration 415 and the cell configuration 425. The first wireless node 405 may then generate (e.g., and/or determine) a modifier 420 based upon the one or more distinctions.
The first wireless node 405 may transmit the core configuration 415 and/or the modifier 420 to the second wireless node 410. In some examples, the core configuration 415 and/or the modifier 420 may be transmitted together and/or in a common signal. In some examples, the core configuration 415 and/or the modifier 420 may be transmitted separately and/or in separate signals.
The core configuration 415 may be representative of a configuration baseline for one or more configurations corresponding to one or more cells, the one or more configurations comprising the cell configuration 425. Accordingly, the second wireless node 410 may generate the cell configuration 425 by modifying the core configuration 415 based upon the modifier 420.
It may be appreciated that a core configuration, a cell configuration and/or a modified configuration (e.g., as discussed with relation to Figs. 1-4) may comprise a (e.g., core, carrier frequency, cell, high layer, low layer, etc. )  CSI RS resource configuration and/or a (e.g., core, carrier frequency, cell, etc. ) IDLE RS measurement configuration (e.g., as discussed with relation to Figs. 5-19B) .
Fig. 5 illustrates an example of a data structure 500 of a core CSI RS resource configuration. In some examples, the core CSI RS resource configuration may comprise (e.g., and/or be configured as) a low layer CSI RS resource configuration for a first layer and/or a second layer. Accordingly, a wireless node (e.g., UE) may (e.g., be configured to) use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the first layer and/or the second layer based upon the core CSI RS resource configuration.
The core CSI RS resource configuration may comprise one or more CSI RS resource settings. Accordingly, the core CSI RS resource configuration may comprise a CSI RS resource setting, identified as CSI resource setting identification (ID) 1 505. In some examples, the CSI RS resource setting may be configured outside of a measurement object and/or measurement configuration information (e.g., measConfig) . Alternatively and/or additionally, the CSI RS resource setting may be configured within a dedicated physical configuration (e.g., physicalConfigDedicated) .
The CSI RS resource setting may comprise one or more CSI RS resources. Accordingly, the CSI RS resource setting may comprise a first CSI RS resource, identified as CSI RS resource ID 1 510, and/or a second CSI RS resource, identified as CSI resource ID 2 520.
The first CSI RS resource may comprise (e.g., and/or be configured with) first CSI RS resource information 515 and/or the second CSI RS resource may comprise (e.g., and/or be configured with) second CSI RS resource information 525. The first CSI RS resource information 515 and/or the second CSI RS resource information 525 may comprise at least one of a cell ID, a number of antenna ports, a configuration for time/frequency resource mapping, a timing configuration (e.g., time offset and/or periodicity) , parameters for sequence generation and/or other information (e.g., and/or parameters) . The first CSI RS resource information 515 and/or the second  CSI RS resource information 525 may comprise different (e.g., and/or similar) information.
In some examples, the core CSI RS resource configuration may be representative of a configuration baseline for one or more CSI RS resource configurations (e.g., in one or more measurement objects) .
Fig. 6 illustrates an example of a data structure 600 of a measurement object, identified as a measurement object ID 1 605. The measurement object may comprise information 610 and/or a CSI RS resource configuration 615. In some examples, the information 610 comprises at least one of a carrier frequency, a measurement bandwidth, timing configuration (e.g., time offset and/or periodicity) , information for antenna port and/or other information (e.g., and/or parameters) .
In some examples, the CSI RS resource configuration 615 may comprise one or more CSI RS resource setting IDs. The one or more CSI RS resource setting IDs may correspond to (e.g., link to) one or more CSI RS resource settings comprised within a core CSI RS resource configuration. For example, a CSI RS resource setting ID 1 of the CSI RS resource configuration 615 corresponds to (e.g., links to) a first CSI RS resource setting comprised within the core CSI RS resource configuration. Accordingly, a CSI RS resource setting ID 3 of the CSI RS resource configuration 615 corresponds to (e.g., links to) a second CSI RS resource setting comprised within the core CSI RS resource configuration.
In some examples, a CSI RS resource setting ID 1 of the CSI RS resource configuration 615 corresponds to (e.g., links to) a CSI RS resource setting comprised within the core CSI RS resource configuration identified with the same CSI RS resource setting ID. Accordingly, a CSI RS resource setting ID 3 of the CSI RS resource configuration 615 corresponds to (e.g., links to) a CSI RS resource setting comprised within the core CSI RS resource configuration identified with the same CSI RS resource setting ID.
In some examples, the CSI RS resource configuration 615 may comprise (e.g., and/or be configured as) a high layer CSI RS resource configuration for a third layer and/or a low layer CSI RS resource configuration  for a first layer and/or second layer. Accordingly, a wireless node (e.g., UE) may (e.g., be configured to) use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the third layer based upon the CSI RS resource configuration 615 (e.g., and/or the measurement object) . In some examples, the core CSI RS resource configuration may comprise (e.g., and/or be configured as) the low layer CSI RS resource configuration for the first layer and/or second layer and/or the high layer CSI RS resource configuration for the third layer. Accordingly, the wireless node may (e.g., be configured to) use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the first layer and/or second layer and/or a cell corresponding to the third layer based upon the core CSI RS resource configuration.
In some examples, the CSI RS resource configuration 615 may comprise one or more modifiers. In some examples, the wireless node may modify the core CSI RS resource configuration based upon the one or more modifiers (e.g., to generate the CSI RS resource configuration 615) . The modifiers may comprise one or more CSI RS resource setting configurations which may not be comprised within the core CSI RS resource configuration. Accordingly, the CSI RS resource configuration 615 may correspond to a modified (e.g., added, supplemented, adjusted, etc. ) version of the core CSI RS resource configuration. Alternatively and/or additionally, the CSI RS resource configuration 615 may comprise zero modifiers. Accordingly, the CSI RS resource configuration 615 may correspond to an unmodified version of the core CSI RS resource configuration.
Fig. 7 illustrates an example of a data structure 700 of a measurement object, identified as measurement object ID 1 705. The measurement object may comprise information 710 and/or a CSI RS resource configuration 715.
In some examples, the CSI RS resource configuration 715 may comprise a CSI RS resource setting ID 1 corresponding to (e.g., linking to) a first CSI RS resource setting comprised within a core CSI RS resource configuration. Alternatively and/or additionally, the CSI RS resource configuration 715 may comprise a CSI RS resource setting ID 3  corresponding to (e.g., linking to) a second CSI RS resource setting comprised within the core CSI RS resource configuration. In some examples, the CSI RS resource configuration 715 may comprise a CSI RS resource setting ID 1 corresponding to (e.g., linking to) a CSI RS resource setting comprised within a core CSI RS resource configuration identified with the same CSI RS resource setting ID. Alternatively and/or additionally, the CSI RS resource configuration 715 may comprise a CSI RS resource setting ID 3 corresponding to (e.g., linking to) a CSI RS resource setting comprised within the core CSI RS resource configuration identified with the same CSI RS resource setting ID.
In some examples, the CSI RS resource configuration 715 may comprise one or more CSI RS resource IDs. The one or more CSI RS resource IDs may correspond to (e.g., link to) one or more CSI RS resources comprised within the core CSI RS resource configuration. In some examples, the one or more CSI RS resource IDs comprised within a CSI RS resource setting may correspond to one or more CSI RS resource identified with the same CSI RS ID comprised within the corresponding CSI RS resource setting identified with the same CSI RS resource setting ID within the core CSI RS resource configuration. For example, a CSI RS resource ID 1 and/or a CSI RS resource ID 5 comprised within the CSI RS resource setting identified with a CSI RS resource setting ID 1 of the CSI RS resource configuration 715 may correspond to the CSI RS resource ID1 and/or CSI RS resource ID 5 comprised within the CSI RS resource setting identified with a CSI RS resource setting ID 1 within the core CSI RS resource configuration.
In some examples, the CSI RS resource configuration 715 may comprise (e.g., and/or be configured as) a high layer CSI RS resource configuration for a third layer and/or a low layer CSI RS resource configuration for a first layer and/or second layer. Accordingly, a wireless node (e.g., UE) may (e.g., be configured to) use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the third layer and/or a cell corresponding to the first layer and/or the second layer based upon the CSI RS resource configuration 715 (e.g., and/or the measurement object) . In some examples, the core CSI RS resource configuration may comprise (e.g.,  and/or be configured as) the low layer CSI RS resource configuration for the first layer and/or the second layer and/or the high layer CSI RS resource configuration for the third layer. Accordingly, the wireless node may (e.g., be configured to) use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the first layer and/or the second layer and/or a cell corresponding to the third layer based upon the core CSI RS resource configuration. In some examples, the CSI RS resource configuration 715 may comprise the core CSI RS resource configuration.
Fig. 8 illustrates an example of a data structure 800 of a measurement object, identified as measurement object ID 1 805. The measurement object may comprise information 810 and/or a CSI RS resource configuration 815.
The CSI RS resource configuration 815 may comprise a CSI RS resource setting ID 1 corresponding to (e.g., linking to) a CSI RS resource setting comprised within a core CSI RS resource configuration. In some examples, the CSI RS resource configuration 815 may comprise a CSI RS resource ID 2 corresponding to (e.g., linking to) a CSI RS resource comprised within the CSI RS resource setting.
In some examples, the CSI RS resource configuration 815 may comprise (e.g., and/or be configured as) a high layer CSI RS resource configuration for a third layer and/or a low layer CSI RS resource configuration for a first layer and/or second layer. Accordingly, a wireless node (e.g., UE) may (e.g., be configured to) use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the third layer and/or a cell corresponding to the first layer and/or the second layer based upon the CSI RS resource configuration 815 (e.g., and/or the measurement object) . In some examples, the core CSI RS resource configuration may comprise (e.g., and/or be configured as) the low layer CSI RS resource configuration for the first layer and/or the second layer and/or the high layer CSI RS resource configuration for the third layer. Accordingly, the wireless node may (e.g., be configured to) use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the first layer and/or the second layer  and/or a cell corresponding to the third layer based upon the core CSI RS resource configuration.
In some examples, the CSI RS resource configuration 815 may comprise one or more modifiers. The modifier may comprise one or more overriding and/or additional CSI RS resource configurations. For example, the CSI RS resource configuration 815 may comprise a modifier corresponding to CSI RS resource ID 2. The wireless node may modify the CSI RS resource comprised within the core CSI RS resource configuration, based upon the modifier (e.g., to generate the CSI RS resource configuration 815) . Accordingly, the CSI RS resource configuration 815 may correspond to a modified version of the core CSI RS resource configuration.
In some examples, the modifier may comprise overriding information comprising one or more modifying parameters. The one or more modifying parameters may correspond to one or more parameters of CSI RS resource information of the CSI RS resource. For example, a modifying parameter, having a first value, may correspond to a parameter of the CSI RS resource information, having a second value. Accordingly, the wireless node may modify the CSI RS resource information (e.g., and/or the core RS resource configuration) by modifying (e.g., changing) the second value of the CSI RS resource information to the first value.
For example, the CSI RS resource information may comprise at least one of a first parameter comprising a number of antenna ports, a second parameter comprising a configuration for time/frequency resource mapping, a third parameter comprising a timing configuration (e.g., time offset and/or periodicity) , parameters for sequence generation and/or other parameters. Alternatively and/or additionally, the modifier may comprise a first modifying parameter comprising a configuration for time/frequency resource mapping, and/or a second modifying parameter comprising a timing configuration. Accordingly, the wireless node may modify the CSI RS resource information by modifying a value of the second parameter (e.g., the configuration for time/frequency resource mapping) to a value of the first modifying parameter (e.g., corresponding to the second parameter) . Alternatively and/or additionally, the wireless node may modify the CSI RS resource information  by modifying a value of the third parameter (e.g., the timing configuration) to a value of the second modifying parameter (e.g., corresponding to the third parameter) .
Fig. 9 illustrates an example of a data structure 900 of a measurement object, identified as measurement object ID 1 905. The measurement object may comprise information 910 and/or a CSI RS resource configuration 915.
The CSI RS resource configuration 915 may comprise a CSI RS resource ID 1 corresponding to (e.g., linking to) a first CSI RS resource comprised within a core CSI RS resource configuration. Alternatively and/or additionally, the CSI RS resource configuration 915 may comprise a CSI RS resource ID 2 corresponding to (e.g., linking to) a second CSI RS resource comprised within the core CSI RS resource configuration. Alternatively and/or additionally, the CSI RS resource configuration 915 may comprise a CSI RS resource ID 4 corresponding to (e.g., linking to) a third CSI RS resource comprised within the core CSI RS resource configuration.
In some examples, the CSI RS resource configuration 915 may comprise (e.g., and/or be configured as) a high layer CSI RS resource configuration for a third layer and/or a low layer CSI RS resource configuration for a first layer and/or second layer. Accordingly, a wireless node (e.g., UE) may (e.g., be configured to) use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the third layer and/or a cell corresponding to the first layer and/or the second layer based upon the CSI RS resource configuration 915 (e.g., and/or the measurement object) . In some examples, the core CSI RS resource configuration may comprise (e.g., and/or be configured as) the low layer CSI RS resource configuration for the first layer and/or the second layer and/or the high layer CSI RS resource configuration for the third layer. Accordingly, the wireless node may (e.g., be configured to) use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the first layer and/or the second layer and/or a cell corresponding to the third layer based upon the core CSI RS resource configuration.
In some examples, the CSI RS resource configuration 915 may comprise one or more modifiers. The modifier may comprise one or more overriding and/or additional CSI RS resource configurations. For example, the CSI RS resource configuration 915 may comprise a first modifier corresponding to CSI RS resource ID 2 (e.g., and/or corresponding to the second CSI RS resource) . The wireless node may modify the second CSI RS resource comprised within the core CSI RS resource configuration, based upon the first modifier (e.g., to generate the CSI RS resource configuration 915) . Alternatively and/or additionally, the CSI RS resource configuration 915 may comprise a second modifier corresponding to CSI RS resource ID 4 (e.g., and/or corresponding to the third CSI RS resource) . The wireless node may modify the third CSI RS resource comprised within the core CSI RS resource configuration, based upon the second modifier (e.g., to generate the CSI RS resource configuration 915) . Accordingly, the CSI RS resource configuration 915 may correspond to a modified version of the core CSI RS resource configuration.
In some examples, the first modifier may comprise overriding information comprising one or more modifying parameters. For example, the first modifier may comprise a first modifying parameter (e.g., configuration for time/frequency resource mapping) corresponding to a first parameter (e.g., configuration for time/frequency resource mapping) of second CSI RS resource information of the second CSI RS resource. Accordingly, the wireless node may modify the second CSI RS resource information by modifying (e.g., changing) a value of the first parameter to a value of the first modifying parameter. Alternatively and or additionally, the first modifier may comprise a second modifying parameter (e.g., timing configuration) corresponding to a second parameter (e.g., timing configuration) of the second CSI RS resource information. Accordingly, the wireless node may modify the second CSI RS resource information by modifying (e.g., changing) a value of the second parameter to a value of the second modifying parameter.
In some examples, the second modifier may comprise overriding information comprising one or more modifying parameters. For example, the second modifier may comprise a third modifying parameter (e.g., number of  antenna ports) corresponding to a third parameter (e.g., number of antenna ports) of third CSI RS resource information of the third CSI RS resource. Accordingly, the wireless node may modify the third CSI RS resource information by modifying (e.g., changing) a value of the third parameter to a value of the third modifying parameter. Alternatively and or additionally, the second modifier may comprise a fourth modifying parameter (e.g., configuration for time/frequency resource mapping) corresponding to a fourth parameter (e.g., configuration for time/frequency resource mapping) of the third CSI RS resource information. Accordingly, the wireless node may modify the third CSI RS resource information by modifying (e.g., changing) a value of the fourth parameter to a value of the fourth modifying parameter.
Accordingly, the wireless node may modify the second CSI RS resource information of the second CSI RS resource (e.g., identified by CSI RS resource ID 2) and/or the third CSI RS resource information of the third CSI RS resource (e.g., identified by CSI RS resource ID 4) , without modifying first CSI RS resource information of the first CSI RS resource (e.g., identified by CSI RS resource ID 1) .
Fig. 10 illustrates an example of a data structure 1000 of a measurement object, identified as measurement object ID 1 1005. The measurement object may comprise information 1010 and/or a CSI RS resource configuration 1015. The CSI RS resource configuration 1015 may comprise a CSI RS resource ID 1 corresponding to (e.g., linking to) a CSI RS resource comprised within a core CSI RS resource configuration.
In some examples, the CSI RS resource configuration 1015 may comprise (e.g., and/or be configured as) a high layer CSI RS resource configuration for a third layer and/or a low layer CSI RS resource configuration for a first layer and/or a second layer. Accordingly, a wireless node (e.g., UE) may (e.g., be configured to) use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the third layer and/or a cell corresponding to the first layer and/or the second layer based upon the CSI RS resource configuration 1015 (e.g., and/or the measurement object) . In some examples, the core CSI RS resource configuration may comprise (e.g., and/or be configured as) the low layer CSI RS resource configuration for the  first layer and/or the second layer and/or the high layer CSI RS resource configuration for the third layer. Accordingly, the wireless node may (e.g., be configured to) use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the first layer and/or the second layer and/or a cell corresponding to the third layer based upon the core CSI RS resource configuration.
In some examples, the CSI RS resource configuration 1015 may comprise one or more modifiers. The modifier may comprise one or more overriding and/or additional CSI RS resource configurations. For example, the CSI RS resource configuration 1015 may comprise a modifier corresponding to CSI RS resource ID 1 (e.g., and/or corresponding to the CSI RS resource) . The wireless node may modify the CSI RS resource within the core CSI RS resource configuration, based upon the modifier (e.g., to generate the CSI RS resource configuration 1015) . Accordingly, the CSI RS resource configuration 1015 may correspond to a modified version of the core CSI RS resource configuration.
CSI RS resource information of the CSI RS resource may comprise one or more parameters corresponding to one or more values. The modifier may comprise overriding information comprising one or more modifying parameters (e.g., corresponding to the one or more parameters) corresponding to one or more modifying values. The wireless node may modify the CSI RS resource information by modifying (e.g., and/or changing) (e.g., each of) (e.g., all of) the one or more values corresponding to the one or more parameters to the one or more modifying values corresponding to the one or more modifying parameters.
Fig. 11 illustrates an example of a data structure 1100 of a measurement object, identified as measurement object ID 1 1105. The measurement object may comprise information 1110, a core CSI RS resource configuration 1115, a first cell CSI RS resource configuration 1125, identified as cell ID 1 1120, and/or a second cell CSI RS resource configuration 1135, identified as cell ID 2 1130.
In some examples, the information 1110 comprises at least one of a carrier frequency, a measurement bandwidth, timing configuration (e.g., time offset and/or periodicity) , information for antenna port and/or other information (e.g., and/or parameters) . In some examples, at least one of the core CSI RS resource configuration 1115, the first cell CSI RS resource configuration 1125 and/or the second cell CSI RS resource configuration 1135 may correspond to the carrier frequency.
In some examples, the core CSI RS resource configuration 1115 may comprise (e.g., and/or be configured as) a high layer CSI RS resource configuration for a third layer and/or a low layer CSI RS resource configuration for a first layer and/or a second layer. Accordingly, a wireless node (e.g., UE) may (e.g., be configured to) use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the third layer and/or a cell corresponding to the first layer and/or the second layer based upon the core CSI RS resource configuration 1115 (e.g., and/or the measurement object) .
The core CSI RS resource configuration 1115 may comprise one or more CSI RS resource settings. Accordingly, the core CSI RS resource configuration 1115 may comprise a first CSI RS resource setting, identified as CSI resource setting ID 1, and/or a second CSI RS resource setting, identified as CSI resource setting ID 2. The first CSI RS resource setting and/or the second CSI RS resource setting may comprise one or more CSI RS resources. Accordingly, the first CSI RS resource setting may comprise a first CSI RS resource, identified as CSI RS resource ID 1, and/or the second CSI RS resource setting may comprise a second RS resource, identified as CSI RS resource ID 1. The first CSI RS resource may be configured with first CSI RS resource information and/or the second CSI RS resource may be configured with second CSI RS resource information.
The first cell CSI RS resource configuration 1125 may correspond to a cell corresponding to the cell ID 1 1120. The first cell CSI RS resource configuration 1125 may comprise a CSI RS resource setting ID 1 corresponding to (e.g., linking to) the first CSI RS resource setting within the core CSI RS resource configuration 1115. The first cell CSI RS resource configuration 1125 may comprise a CSI RS resource ID 1 corresponding to  (e.g., linking to) the first CSI RS resource of the first CSI RS resource setting within the core CSI RS resource configuration 1115.
The second cell CSI RS resource configuration 1135 may correspond to a cell corresponding to the cell ID 2 1130. The second cell CSI RS resource configuration 1135 may comprise a CSI RS resource setting 2 corresponding (e.g., linking to) the second CSI RS resource setting within the core CSI RS resource configuration 1115. The second cell CSI RS resource configuration 1135 may comprise a CSI RS resource ID 1 corresponding to (e.g., linking to) the first CSI RS resource of the second CSI RS resource setting within the core CSI RS resource configuration 1115.
In some examples, the first cell CSI RS resource configuration 1125 and/or the second cell CSI RS resource configuration 1135 may comprise (e.g., and/or be configured as) a high layer CSI RS resource configuration for a third layer and/or a low layer CSI RS resource configuration for a first layer and/or a second layer. Accordingly, a wireless node (e.g., UE) may (e.g., be configured to) use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the third layer and/or a cell corresponding to the first layer and/or the second layer based upon the first cell CSI RS resource configuration 1125 and/or the second cell CSI RS resource configuration 1135 (e.g., and/or the measurement object) .
In some examples, the first cell CSI RS resource configuration 1125 may comprise a modifier corresponding to the first CSI RS resource. The modifier may comprise one or more overriding and/or additional CSI RS resource configurations. The wireless node may modify the first CSI RS resource within the core CSI RS resource configuration 1115, based upon the modifier (e.g., to generate the first cell CSI RS resource configuration 1125) . Accordingly, the first cell CSI RS resource configuration 1125 may correspond to a modified version of the core CSI RS resource configuration 1115.
In some examples, the modifier may comprise overriding information comprising one or more modifying parameters. For example, the modifier may comprise a first modifying parameter (e.g., configuration for time/frequency resource mapping) corresponding to a first parameter (e.g.,  configuration for time/frequency resource mapping) of the first CSI RS resource information of the first CSI RS resource. Accordingly, the wireless node may modify the first CSI RS resource information by modifying (e.g., changing) a value of the first parameter to a value of the first modifying parameter. Alternatively and or additionally, the modifier may comprise a second modifying parameter (e.g., timing configuration) corresponding to a second parameter (e.g., timing configuration) of the first CSI RS resource information. Accordingly, the wireless node may modify the first CSI RS resource information by modifying (e.g., changing) a value of the second parameter to a value of the second modifying parameter.
Accordingly, the first cell CSI RS resource configuration 1125 may correspond to a modified version of the core CSI RS resource configuration 1115 and/or the second cell CSI RS resource configuration 1135 may correspond to an unmodified version of the core CSI RS resource configuration 1115.
Fig. 12 illustrates an example of a data structure 1200 of a measurement object, identified as measurement object ID 1 1205. The measurement object may comprise information 1210, a first cell CSI RS resource configuration 1220, identified as cell ID 1 1215, a second cell CSI RS resource configuration 1230, identified as cell ID 2 1225, and/or a third cell CSI RS resource configuration 1240, identified as cell ID 3 1235.
In some examples, the information 1210 comprises at least one of a carrier frequency, a measurement bandwidth, timing configuration (e.g., time offset and/or periodicity) , information for antenna port and/or other information (e.g., and/or parameters) . In some examples, at least one of the first cell CSI RS resource configuration 1220, the second cell CSI RS resource configuration 1230 and/or the third cell CSI RS resource configuration 1240 may correspond to the carrier frequency.
In some examples, the first cell CSI RS resource configuration 1220 may comprise (e.g., and/or be configured as) a high layer CSI RS resource configuration for a third layer and/or a low layer CSI RS resource configuration for a first layer and/or a second layer. Accordingly, a wireless  node (e.g., UE) may (e.g., be configured to) use (e.g., and/or manage and/or perform a RRM measurement based upon) a cell corresponding to the third layer and/or a cell corresponding to the first layer and/or the second layer based upon the first cell CSI RS resource configuration 1220 (e.g., and/or the measurement object) .
The first cell CSI RS resource configuration 1220 may comprise one or more CSI RS resource settings, the one or more CSI RS resource settings comprising one or more CSI resources. Accordingly, the first cell CSI RS resource configuration 1220 may comprise a CSI RS resource setting, identified as CRS resource setting ID 1 and/or a CSI RS resource, identified as CSI RS resource ID 1.
Fig. 13A illustrates an example of a system 1300A of a plurality of cells corresponding to a plurality of cell CSI RS resource configurations. The plurality of cell CSI RS resource configurations may correspond to a (e.g., specific and/or defined) frequency. The system 1300A may be applied to the data structure 1200 illustrated in Fig. 12. The first cell CSI RS resource configuration 1220, corresponding to a first cell 1 1305A, of the plurality of cell CSI RS resource configurations may correspond to (e.g., serve as) a core CSI RS resource configuration..
In some examples, the first cell CSI RS configuration 1220 may be representative of a configuration baseline for one or more cell CSI RS resource configurations of the plurality of cell CSI RS resource configurations (e.g., other than the first cell CSI RS resource configuration 1220) . The one or more cell CSI RS resource configurations may comprise the second cell CSI RS resource configuration 1230, corresponding to a second cell 2 1310A, and/or the third cell CSI RS resource configuration 1240, corresponding to a third cell 3 1315A. Accordingly, the second cell CSI RS resource configuration 1230 may comprise a CSI RS resource setting ID 1, corresponding to (e.g., linking to) a CSI RS resource setting of the first cell CSI RS configuration 1220, and/or a CSI RS resource ID 1, corresponding to (e.g., linking to) a CSI RS resource of the first cell CSI RS configuration 1220. The third cell RS resource configuration 1240 may comprise a resource setting ID 1 corresponding to (e.g., linking to) the CSI RS resource setting  and/or a CSI RS resource ID 1 corresponding to (e.g., linking to) the CSI RS resource (e.g., corresponding to the first cell CSI RS resource configuration 1220) .
In some examples, the second cell CSI RS resource configuration 1230 may comprise a modifier corresponding to the CSI RS resource. The modifier may comprise one or more overriding and/or additional CSI RS resource configurations. The wireless node may modify the CSI RS resource within the first cell CSI RS resource configuration 1220, based upon the modifier (e.g., to generate the second cell CSI RS resource configuration 1230) . Accordingly, the second cell CSI RS resource configuration 1230 may correspond to a modified version of the first cell CSI RS resource configuration 1220. The third cell CSI RS resource configuration 1240 may correspond to an unmodified version of the first cell CSI RS resource configuration 1220.
Fig. 13B illustrates an example of a system 1300B of a plurality of cells corresponding to a plurality of cell CSI RS resource configurations. The plurality of cell CSI RS resource configurations may correspond to a (e.g., specific and/or defined) frequency. In some examples, a cell CSI RS resource configuration of the plurality of cell CSI RS resource configurations may be representative of a configuration baseline for (e.g., no more than) one (e.g., next and/or following) cell CSI RS resource configuration of the plurality of cell CSI RS resource configurations. The system 1300B may be applied to the data structure 1200 illustrated in Fig. 12. The first cell CSI RS resource configuration 1220, corresponding to a first cell 1 1305B, of the plurality of cell CSI RS resource configurations may be representative of a configuration baseline for the (e.g., next and/or following) second cell CSI RS resource configuration 1230, corresponding to a second cell 2 1310B, of the plurality of cell CSI RS resource configurations. The second cell CSI RS resource configuration 1230 may be representative of a configuration baseline for the (e.g., next and/or following) third cell CSI RS resource configuration 1240, corresponding to a third cell 3 1315B, of the plurality of cell CSI RS resource configurations.
Accordingly, the second cell CSI RS resource configuration 1230 may comprise the CSI RS resource setting ID 1, corresponding to (e.g., linking to) the CSI RS resource setting of the first cell CSI RS configuration 1220, and/or the CSI RS resource ID 1, corresponding to (e.g., linking to) the CSI RS resource of the first cell CSI RS configuration 1220. The third cell RS resource configuration 1240 may comprise a resource setting ID 1, corresponding to (e.g., linking to) a second CSI RS resource setting of the second cell CSI RS resource configuration 1220, and/or a CSI RS resource ID 1, corresponding to (e.g., linking to) a second CSI RS resource of the second cell CSI RS resource configuration 1230.
In some examples, the second cell CSI RS resource configuration 1230 may comprise a modifier corresponding to the CSI RS resource. The modifier may comprise one or more overriding and/or additional CSI RS resource configurations. The wireless node may modify the CSI RS resource within the first cell CSI RS resource configuration 1220, based upon the modifier (e.g., to generate the second cell CSI RS resource configuration 1230) . Accordingly, the second cell CSI RS resource configuration 1230 may correspond to a modified version of the first cell CSI RS resource configuration 1220. The third cell CSI RS resource configuration 1240 may correspond to an unmodified version of the second cell CSI RS resource configuration 1230.
Fig. 14A illustrates an example of a system 1400A of a plurality of CSI RS resources. The plurality of CSI RS resources may correspond to a (e.g., specific and/or defined) frequency and/or a cell and/or a CSI RS resource setting. Alternatively and/or additionally, the plurality of CSI RS resources may be comprised within one or more measurement objects (e.g., and/or cells) . The plurality of CSI RS resources may comprise a first CSI RS resource 1 1405A. In some examples, the first CSI RS resource 1 1405A may correspond to (e.g., serve as) a core CSI RS resource. In some examples, the first CSI RS resource 1 1405A may be representative of a configuration baseline for one or more CSI RS resources of the plurality of cell CSI RS resources (e.g., other than the first cell CSI RS resource 1 1405A) . The one  or more CSI RS resources may comprise a second CSI RS resource 2 1410A and/or a third CSI RS resource 3 1415A.
Fig. 14B illustrates an example of a system 1400B of a plurality of CSI RS resources. The plurality of CSI RS resources may correspond to a (e.g., specific and/or defined) frequency and/or a cell and/or a CSI RS resource setting. Alternatively and/or additionally, the plurality of CSI RS resources may be comprised within one or more measurement objects (e.g., and/or cells) . In some examples, a CSI RS resource of the plurality of CSI RS resources may be representative of a configuration baseline for (e.g., no more than) one (e.g., next and/or following) CSI RS resource of the plurality of CSI RS resources. For example, the plurality of CSI RS resources may comprise a first CSI RS resource 1 1405B. The first CSI RS resource 1 1405B may be representative of a configuration baseline for a (e.g., next and/or following) second CSI RS resource 2 1410B. The second CSI resource 3 1415B may be representative of a configuration for a (e.g., next and/or following) third CSI RS resource 3 1415B.
Fig. 15 illustrates an example of a data structure 1500 of a core IDLE RS measurement configuration. In some examples, the core IDLE RS measurement configuration may comprise (e.g., and/or be configured as) an IDLE RS measurement configuration for an IDLE state. Accordingly, a wireless node (e.g., UE) may then perform a first (e.g., RRM) measurement (e.g., and/or perform cell detection) in the IDLE state, based upon the core IDLE RS measurement configuration and/or a corresponding cell. Alternatively and/or additionally, the core IDLE RS measurement configuration may comprise (e.g., and/or be configured as) an IDLE RS measurement configuration for a CONNECTED state. The wireless node may then perform a second (e.g., RRM) measurement (e.g., and/or perform cell detection) in the CONNECTED state based upon the core IDLE RS measurement configuration and/or a corresponding cell.
The core IDLE RS measurement configuration may comprise one or more carrier frequency IDLE RS measurement configurations. Accordingly, the core IDLE RS measurement configuration may comprise a first IDLE RS measurement configuration 1505, corresponding to a first frequency, and/or a  second IDLE RS measurement configuration 1510, corresponding to a second frequency. The first frequency may be the same as, or different than, the second frequency.
The first IDLE RS measurement configuration 1505 may be configured with first IDLE RS information and/or the second IDLE RS measurement configuration 1510 may be configured with second IDLE RS information.
The first IDLE RS information and/or the second IDLE RS information) may comprise at least one of IDLE RS periodicity, IDLE RS timing window (e.g., timing offset and/or duration) , actual transmitted IDLE RS information and/or other information (e.g., and/or parameters) . The first IDLE RS information and/or the second IDLE RS information may comprise different (e.g., or similar) information.
In some examples, the core IDLE RS measurement configuration may be representative of a configuration baseline for one or more IDLE RS measurement configurations.
Fig. 16 illustrates an example of a data structure 1600 of one or more IDLE RS measurement configurations. The one or more IDLE RS measurement configurations may comprise a carrier frequency 1 IDLE RS measurement configuration 1605 corresponding to a carrier frequency 1, and/or a carrier frequency 2 IDLE RS measurement configuration 1610 corresponding to a carrier frequency 2, and/or a carrier frequency 3 IDLE RS measurement configuration 1615 corresponding to a carrier frequency 3. The carrier frequency 1 may correspond to (e.g., link to) a first frequency of a first IDLE RS measurement configuration comprised within a core IDLE RS measurement configuration. The carrier frequency 2 may correspond to (e.g., link to) a second frequency of a second IDLE RS measurement configuration comprised within the core IDLE RS measurement configuration. The first frequency may be the same as, or different than, the second frequency. The carrier frequency 3 may correspond to an additional carrier frequency other than the first and the second carrier frequency within a core IDLE RS measurement configuration.
In some examples, the carrier frequency 1 IDLE RS measurement configuration 1605 may comprise a first modifier corresponding to the first IDLE RS measurement configuration. A wireless node may modify the first IDLE RS measurement configuration within the core IDLE RS measurement configuration based upon the first modifier (e.g., to generate the carrier frequency 1 IDLE RS measurement configuration 1605) . Accordingly, the carrier frequency 1 IDLE RS measurement configuration 1605 may correspond to a modified version of the first IDLE RS measurement configuration.
In some examples, the first modifier may comprise overriding information comprising one or more modifying parameters. For example, the first modifier may comprise a first modifying parameter (e.g., IDLE timing window) corresponding to a first parameter (e.g., IDLE timing window) of first IDLE RS information of the first IDLE RS measurement configuration. Accordingly, the wireless node may modify the first IDLE RS information by modifying (e.g., changing) a value of the first parameter to a value of the first modifying parameter.
In some examples, the carrier frequency 2 IDLE RS measurement configuration 1610 may comprise a second modifier corresponding to the second IDLE RS measurement configuration. The wireless node may modify the second IDLE RS measurement configuration within the core IDLE RS measurement configuration based upon the second modifier (e.g., to generate the carrier frequency 2 IDLE RS measurement configuration 1610) . Accordingly, the carrier frequency 2 IDLE RS measurement configuration 1610 may correspond to a modified version of the second IDLE RS measurement configuration.
In some examples, the second modifier may comprise overriding information comprising one or more modifying parameters. For example, the second modifier may comprise a second modifying parameter (e.g., actual transmitted IDLE RS information) corresponding to a second parameter (e.g., actual transmitted IDLE RS information) of second IDLE RS information of the second IDLE RS measurement configuration. Accordingly, the wireless node  may modify the second IDLE RS information by modifying (e.g., changing) a value of the second parameter to a value of the second modifying parameter.
In some example, a third modifier may add a third IDLE RS measurement configuration 1615, corresponding to a third frequency (e.g., carrier frequency 3) . The third IDLE RS measurement configuration 1615 may be configured with third IDLE RS information. The third IDLE RS information may comprise at least one of IDLE RS periodicity, IDLE RS timing window (e.g., timing offset and/or duration) , actual transmitted IDLE RS information and/or other information (e.g., and/or parameters) . Accordingly, the wireless node may add the third IDLE RS configuration in addition to the first and second IDLE RS configuration.
In some examples, the carrier frequency 1 IDLE RS measurement configuration 1605 and/or the carrier frequency 2 IDLE RS measurement configuration 1610 may comprise (e.g., and/or be configured as) an IDLE RS measurement configuration for an IDLE state. Accordingly, the wireless node (e.g., UE) may then perform a first (e.g., RRM) measurement (e.g., and/or perform cell detection) in the IDLE state, based upon the carrier frequency 1 IDLE RS measurement configuration 1605, the carrier frequency 2 IDLE RS measurement configuration 1610 and/or a corresponding cell. Alternatively and/or additionally, the carrier frequency 1 IDLE RS measurement configuration 1605 and/or the carrier frequency 2 IDLE RS measurement configuration 1610) may comprise (e.g., and/or be configured as) an IDLE RS measurement configuration for a CONNECTED state. The wireless node may then perform a second (e.g., RRM) measurement (e.g., and/or perform cell detection) in the CONNECTED state based upon the carrier frequency 1 IDLE RS measurement configuration 1605, the carrier frequency 2 IDLE RS measurement configuration 1610) and/or a corresponding cell.
Fig. 17 illustrates an example of a data structure 1700 of a core IDLE RS measurement configuration 1705 and/or a cell IDLE RS measurement configuration 1710, identified as cell ID 1. The cell IDLE RS measurement configuration 1710 may correspond to a carrier frequency 1 corresponding (e.g., linking) to a frequency of the core IDLE RS measurement configuration 1705.
In some examples, the cell IDLE RS measurement configuration 1710 may comprise a modifier corresponding to the core IDLE RS measurement configuration 1705. A wireless node may modify the core IDLE RS measurement configuration 1705 based upon the modifier (e.g., to generate the cell IDLE RS measurement configuration 1710) . Accordingly, the cell IDLE RS measurement configuration 1710 may correspond to a modified version of the core IDLE RS measurement configuration 1705.
In some examples, the modifier may comprise overriding information comprising one or more modifying parameters. For example, the modifier may comprise a modifying parameter (e.g., actual transmitted IDLE RS information) corresponding to a parameter (e.g., actual transmitted IDLE RS information) of core IDLE RS information of the core IDLE RS measurement configuration 1705. Accordingly, the wireless node may modify the core IDLE RS information by modifying (e.g., changing) a value of the parameter to a value of the modifying parameter.
In some examples, the core IDLE RS measurement configuration 1705 and/or the cell IDLE RS measurement configuration 1710 may comprise (e.g., and/or be configured as) an IDLE RS measurement configuration for an IDLE state. Accordingly, a wireless node (e.g., UE) may then perform a first (e.g., RRM) measurement (e.g., and/or perform cell detection) in the IDLE state, based upon the core IDLE RS measurement configuration 1705, the cell IDLE RS measurement configuration 1710 and/or a corresponding cell. Alternatively and/or additionally, the core IDLE RS measurement configuration 1705 and/or the cell IDLE RS measurement configuration 1710 may correspond to (e.g., and/or be configured as) an IDLE RS measurement configuration for a CONNECTED state. The wireless node may then perform a second (e.g., RRM) measurement (e.g., and/or perform cell detection) in the CONNECTED state based upon the core IDLE RS measurement configuration 1705, the cell IDLE RS measurement configuration 1710 and/or a corresponding cell.
Fig. 18 illustrates an example of a data structure 1800 of a first cell IDLE RS measurement configuration 1810, identified as cell ID 1, a second cell IDLE RS measurement configuration 1815, identified as cell ID 2 and/or a  third cell IDLE RS measurement configuration 1820, identified as cell ID 3. The first cell IDLE RS measurement configuration 1810, the second cell IDLE RS measurement configuration 1815 and/or the third cell IDLE RS measurement configuration 1820 may correspond to a carrier frequency 1 1805.
Fig. 19A illustrates an example of a system 1900A of a plurality of cells corresponding to a plurality of cell IDLE RS measurement configurations. The plurality of cell IDLE RS measurement configurations may correspond to a (e.g., specific and/or defined) frequency. The system 1900A may be applied to the data structure 1800 illustrated in Fig. 18. The first cell IDLE RS measurement configuration 1810, corresponding to a first cell 1 1905A, of the plurality of cell IDLE RS measurement configurations may correspond to (e.g., serve as) a core IDLE RS measurement configuration.
In some examples, the first cell IDLE RS measurement configuration 1810 may be representative of a configuration baseline for one or more cell IDLE RS measurement configurations of the plurality of cell IDLE RS measurement configurations (e.g., other than the first cell IDLE RS measurement configuration 1810) . The one or more cell IDLE RS measurement configurations may comprise the second cell IDLE RS measurement configuration 1815, corresponding to a second cell 2 1910A, and/or the third cell IDLE RS measurement configuration 1820, corresponding to a third cell 3 1915A. Accordingly, the second cell IDLE RS measurement configuration 1815 may correspond to (e.g., link to) the first cell IDLE RS measurement configuration 1810. Alternatively and/or additionally, the third cell IDLE RS measurement configuration 1820 may correspond to (e.g., link to) the first cell IDLE RS measurement configuration 1810.
In some examples, the second cell IDLE RS measurement configuration 1815 may comprise a first modifier corresponding to the first cell IDLE RS measurement configuration 1810. A wireless node may modify the first cell IDLE RS measurement configuration 1810 based upon the first modifier (e.g., to generate the second cell IDLE RS measurement configuration 1815) . Accordingly, the second cell IDLE RS measurement configuration 1815 may correspond to a modified version of the first cell IDLE  RS measurement configuration 1810. The third cell IDLE RS 1820 configuration may correspond to an unmodified version of the first cell IDLE RS measurement configuration 1810.
Fig. 19B illustrates an example of a system 1900B of a plurality of cells corresponding to a plurality of cell IDLE RS measurement configurations. The plurality of cell IDLE RS measurement configurations may correspond to a (e.g., specific and/or defined) frequency. In some examples, a cell IDLE RS measurement configuration of the plurality of cell IDLE RS measurement configurations may be representative of a configuration baseline for (e.g., no more than) one (e.g., next and/or following) cell IDLE RS measurement configuration of the plurality of cell IDLE RS measurement configurations. The system 1900B may be applied to the data structure 1800 illustrated in Fig. 18. The first cell IDLE RS measurement configuration 1810, corresponding to a first cell 1 1905B, of the plurality of cell IDLE RS measurement configurations may be representative of a configuration baseline for the (e.g., next and/or following) second cell IDLE RS measurement configuration 1815, corresponding to a second cell 2 1910B, of the plurality of cell IDLE RS measurement configurations. The second cell IDLE RS measurement configuration 1815 may be representative of a configuration baseline for the (e.g., next and/or following) third cell IDLE RS measurement configuration 1820, corresponding to a third cell 3 1915B, of the plurality of cell IDLE RS measurement configurations.
In some examples, the second cell IDLE RS measurement configuration 1815 may comprise a second modifier corresponding to the first cell IDLE RS measurement configuration 1810. A wireless node may modify the first cell IDLE RS measurement configuration 1810 based upon the second modifier (e.g., to generate the second cell IDLE RS measurement configuration 1815) . Accordingly, the second cell IDLE RS measurement configuration 1815 may correspond to a modified version of the first cell IDLE RS measurement configuration 1810. The third cell IDLE RS 1820 configuration may correspond to an unmodified version of the second cell IDLE RS measurement configuration 1815.
Fig. 20 presents a schematic architecture diagram 2000 of a base station 2050 (e.g., a node) that may utilize at least a portion of the techniques provided herein. Such a base station 2050 may vary widely in configuration and/or capabilities, alone or in conjunction with other base stations, nodes, end units and/or servers, etc. in order to provide a service, such as at least some of one or more of the other disclosed techniques, scenarios, etc. For example, the base station 2050 may connect one or more user equipment (UE) to a (e.g., wireless and/or wired) network (e.g., which may be connected and/or include one or more other base stations) , such as Code Division Multiple Access (CDMA) networks, Time Division Multiple Access (TDMA) networks, Frequency Division Multiple Access (FDMA) networks, Orthogonal FDMA (OFDMA) networks, Single-Carrier FDMA (SC-FDMA) networks, etc. The network may implement a radio technology, such as Universal Terrestrial Radio Access (UTRA) , CDMA2000, Global System for Mobile Communications (GSM) , Evolved UTRA (E-UTRA) , IEEE 802.11, IEEE 802.16, IEEE 802.20, Flash-OFDM, etc. The base station 2050 and/or the network may communicate using a standard, such as Long-Term Evolution (LTE) .
The base station 2050 may comprise one or more (e.g., hardware) processors 2010 that process instructions. The one or more processors 2010 may optionally include a plurality of cores; one or more coprocessors, such as a mathematics coprocessor or an integrated graphical processing unit (GPU) ; and/or one or more layers of local cache memory. The base station 2050 may comprise memory 2002 storing various forms of applications, such as an operating system 2004; one or more base station applications 2006; and/or various forms of data, such as a database 2008 and/or a file system, etc. The base station 2050 may comprise a variety of peripheral components, such as a wired and/or wireless network adapter 2014 connectible to a local area network and/or wide area network; one or more storage components 2016, such as a hard disk drive, a solid-state storage device (SSD) , a flash memory device, and/or a magnetic and/or optical disk reader; and/or other peripheral components.
The base station 2050 may comprise a mainboard featuring one or more communication buses 2012 that interconnect the processor 2010, the memory 2002, and/or various peripherals, using a variety of bus technologies, such as a variant of a serial or parallel AT Attachment (ATA) bus protocol; a Uniform Serial Bus (USB) protocol; and/or Small Computer System Interface (SCI) bus protocol. In a multibus scenario, a communication bus 2012 may interconnect the base station 2050 with at least one other server. Other components that may optionally be included with the base station 2050 (though not shown in the schematic diagram 2000 of Fig. 20) include a display; a display adapter, such as a graphical processing unit (GPU) ; input peripherals, such as a keyboard and/or mouse; and/or a flash memory device that may store a basic input/output system (BIOS) routine that facilitates booting the base station 2050 to a state of readiness, etc.
The base station 2050 may operate in various physical enclosures, such as a desktop or tower, and/or may be integrated with a display as an “all-in-one” device. The base station 2050 may be mounted horizontally and/or in a cabinet or rack, and/or may simply comprise an interconnected set of components. The base station 2050 may comprise a dedicated and/or shared power supply 2018 that supplies and/or regulates power for the other components. The base station 2050 may provide power to and/or receive power from another base station and/or server and/or other devices. The base station 2050 may comprise a shared and/or dedicated climate control unit 2020 that regulates climate properties, such as temperature, humidity, and/or airflow. Many such base stations 2050 may be configured and/or adapted to utilize at least a portion of the techniques presented herein.
Fig. 21 presents a schematic architecture diagram 2100 of a user equipment (UE) 2150 (e.g., a node) whereupon at least a portion of the techniques presented herein may be implemented. Such a UE 2150 may vary widely in configuration and/or capabilities, in order to provide a variety of functionality to a user. The UE 2150 may be provided in a variety of form factors, such as a mobile phone (e.g., a smartphone) ; a desktop or tower workstation; an “all-in-one” device integrated with a display 2108; a laptop,  tablet, convertible tablet, or palmtop device; a wearable device, such as mountable in a headset, eyeglass, earpiece, and/or wristwatch, and/or integrated with an article of clothing; and/or a component of a piece of furniture, such as a tabletop, and/or of another device, such as a vehicle or residence. The UE 2150 may serve the user in a variety of roles, such as a telephone, a workstation, kiosk, media player, gaming device, and/or appliance.
The UE 2150 may comprise one or more (e.g., hardware) processors 2110 that process instructions. The one or more processors 2110 may optionally include a plurality of cores; one or more coprocessors, such as a mathematics coprocessor or an integrated graphical processing unit (GPU) ; and/or one or more layers of local cache memory. The UE 2150 may comprise memory 2101 storing various forms of applications, such as an operating system 2103; one or more user applications 2102, such as document applications, media applications, file and/or data access applications, communication applications, such as web browsers and/or email clients, utilities, and/or games; and/or drivers for various peripherals. The UE 2150 may comprise a variety of peripheral components, such as a wired and/or wireless network adapter 2106 connectible to a local area network and/or wide area network; one or more output components, such as a display 2108 coupled with a display adapter (optionally including a graphical processing unit (GPU) ) , a sound adapter coupled with a speaker, and/or a printer; input devices for receiving input from the user, such as a keyboard 2111, a mouse, a microphone, a camera, and/or a touch-sensitive component of the display 2108; and/or environmental sensors, such as a GPS receiver 2119 that detects the location, velocity, and/or acceleration of the UE 2150, a compass, accelerometer, and/or gyroscope that detects a physical orientation of the UE 2150. Other components that may optionally be included with the UE 2150 (though not shown in the schematic architecture diagram 2100 of Fig. 21) include one or more storage components, such as a hard disk drive, a solid-state storage device (SSD) , a flash memory device, and/or a magnetic and/or optical disk reader; a flash memory device that may store a basic input/output system (BIOS) routine that facilitates booting the UE 2150 to a  state of readiness; and/or a climate control unit that regulates climate properties, such as temperature, humidity, and airflow, etc.
The UE 2150 may comprise a mainboard featuring one or more communication buses 2112 that interconnect the processor 2110, the memory 2101, and/or various peripherals, using a variety of bus technologies, such as a variant of a serial or parallel AT Attachment (ATA) bus protocol; the Uniform Serial Bus (USB) protocol; and/or the Small Computer System Interface (SCI) bus protocol. The UE 2150 may comprise a dedicated and/or shared power supply 2118 that supplies and/or regulates power for other components, and/or a battery 2104 that stores power for use while the UE 2150 is not connected to a power source via the power supply 2118. The UE 2150 may provide power to and/or receive power from other client devices.
Fig. 22 is an illustration of a scenario 2200 involving an example non-transitory computer readable medium 2202. The non-transitory computer readable medium 2202 may comprise processor-executable instructions 2212 that when executed by a processor 2216 cause performance (e.g., by the processor 2216) of at least some of the provisions herein. The non-transitory computer readable medium 2202 may comprise a memory semiconductor (e.g., a semiconductor utilizing static random access memory (SRAM) , dynamic random access memory (DRAM) , and/or synchronous dynamic random access memory (SDRAM) technologies) , a platter of a hard disk drives, a flash memory device, or a magnetic or optical disc (such as a compact disc (CD) , digital versatile disc (DVD) , and/or floppy disk) . The example non-transitory computer readable medium 2202 stores computer-readable data 2204 that, when subjected to reading 2206 by a reader 2210 of a device 2208 (e.g., a read head of a hard disk drive, or a read operation invoked on a solid-state storage device) , express the processor-executable instructions 2212. In some embodiments, the processor-executable instructions 2212, when executed, cause performance of operations, such as at least some of the example method 100A of Fig. 1A, the example method 100B of Fig. 1B, and/or the example method 100C of Fig. 1C, for example. In some embodiments, the processor-executable instructions 2212 are configured to cause implementation of a system and/or scenario, such as at  least some of the example system 200 of Fig. 2, the example system 300 of Fig. 3, the example system 400 of Fig. 4, the example system corresponding to the data structure 500 of Fig. 5, the example system corresponding to the data structure 600 of Fig. 6, the example system corresponding to the data structure 700 of Fig. 7, the example system corresponding to the data structure 800 of Fig. 8, the example system corresponding to the data structure 900 of Fig. 9, the example system corresponding to the data structure 1000 of Fig. 10, the example system corresponding to the data structure 1100 of Fig. 11, the example system corresponding to the data structure 1200 of Fig. 12, the example system 1300A of Fig. 13A, the example system 1300B of Fig. 13B, the example system 1400A of Fig. 14A, the example system 1400B of Fig. 14B, the example system corresponding to the data structure 1500 of Fig. 15, the example system corresponding to the data structure 1600 of Fig. 16, the example system corresponding to the data structure 1700 of Fig. 17, the example system corresponding to the data structure 1800 of Fig. 18, the example system 1900A of Fig. 19A and/or the example system 1900B of Fig. 19B, for example.
As used in this application, "component, " "module, " "system" , "interface" , and/or the like are generally intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a controller and the controller can be a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers (e.g., nodes (s) ) .
Unless specified otherwise, “first, ” “second, ” and/or the like are not intended to imply a temporal aspect, a spatial aspect, an ordering, etc. Rather, such terms are merely used as identifiers, names, etc. for features, elements, items, etc. For example, a first object and a second object generally correspond to object A and object B or two different or two identical objects or the same object.
Moreover, "example" is used herein to mean serving as an instance, illustration, etc., and not necessarily as advantageous. As used herein, "or" is intended to mean an inclusive "or" rather than an exclusive "or" . In addition, "a" and "an" as used in this application are generally be construed to mean "one or more" unless specified otherwise or clear from context to be directed to a singular form. Also, at least one of A and B and/or the like generally means A or B or both A and B. Furthermore, to the extent that "includes" , "having" , "has" , "with" , and/or variants thereof are used in either the detailed description or the claims, such terms are intended to be inclusive in a manner similar to the term "comprising” .
Although the subject matter has been described in language specific to structural features and/or methodological acts, it is to be understood that the subject matter defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing at least some of the claims.
Furthermore, the claimed subject matter may be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer (e.g., node) to implement the disclosed subject matter. The term "article of manufacture" as used herein is intended to encompass a computer program accessible from any computer-readable device, carrier, or media. Of course, many modifications may be made to this configuration without departing from the scope or spirit of the claimed subject matter.
Various operations of embodiments and/or examples are provided herein. The order in which some or all of the operations are described herein should not be construed as to imply that these operations are necessarily order dependent. Alternative ordering will be appreciated by one skilled in the art having the benefit of this description. Further, it will be understood that not all operations are necessarily present in each embodiment and/or example provided herein. Also, it will be understood that not all operations are necessary in some embodiments and/or examples.
Also, although the disclosure has been shown and described with respect to one or more implementations, equivalent alterations and modifications will occur to others skilled in the art based upon a reading and understanding of this specification and the annexed drawings. The disclosure includes all such modifications and alterations and is limited only by the scope of the following claims. In particular regard to the various functions performed by the above described components (e.g., elements, resources, etc. ) , the terms used to describe such components are intended to correspond, unless otherwise indicated, to any component which performs the specified function of the described component (e.g., that is functionally equivalent) , even though not structurally equivalent to the disclosed structure. In addition, while a particular feature of the disclosure may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application.

Claims (38)

  1. A method comprising:
    generating a core configuration;
    generating a modifier corresponding to the core configuration; and
    transmitting the core configuration and the modifier to a node.
  2. The method of claim 1,
    the core configuration representative of a configuration baseline for a low layer configuration corresponding to at least one of a first layer or a second layer and a high layer configuration corresponding to a third layer.
  3. The method of claim 2, comprising:
    generating a second modifier corresponding to the core configuration, the second modifier representative of the low layer configuration; and
    transmitting the second modifier to the node.
  4. The method of claim 1,
    the core configuration comprising a low layer configuration corresponding to at least one of a first layer or a second layer; and
    the modifier representative of a high layer configuration corresponding to a third layer.
  5. The method of claim 1,
    the core configuration representative of a configuration baseline for an idle state measurement configuration corresponding to an idle state and a connected state measurement configuration corresponding to a connected state.
  6. The method of claim 5, comprising:
    generating a second modifier corresponding to the core configuration, the second modifier representative of the idle state measurement configuration; and
    transmitting the second modifier to the node.
  7. The method of claim 1,
    the core configuration comprising an idle state measurement configuration corresponding to an idle state; and
    the modifier representative of a connected state measurement configuration corresponding to a connected state.
  8. The method of claim 1,
    the core configuration comprising a first idle state measurement configuration corresponding to an idle state; and
    the modifier representative of a second idle state measurement configuration corresponding to the idle state.
  9. The method of claim 1,
    the core configuration comprising a first connected state measurement configuration corresponding to a connected state; and
    the modifier representative of a second connected state measurement configuration corresponding to the connected state.
  10. The method of claim 1,
    the core configuration comprising information; and
    the modifier comprising overriding information corresponding to the information.
  11. The method of claim 1,
    the core configuration corresponding to a frequency; and
    the modifier corresponding to the frequency.
  12. A method comprising:
    determining a core configuration;
    determining a cell configuration corresponding to a cell;
    determining one or more distinctions between the core configuration and the cell configuration;
    generating a modifier based upon the one or more distinctions; and
    transmitting the core configuration and the modifier to a node.
  13. The method of claim 12,
    the core configuration representative of a configuration baseline for the cell configuration.
  14. The method of claim 12,
    the core configuration representative of a configuration baseline for one or more cell configurations corresponding to one or more cells, the one or more cell configurations corresponding to a frequency.
  15. The method of claim 12,
    the core configuration comprising a second cell configuration corresponding to a second cell, the second cell configuration representative of a configuration baseline for the cell configuration.
  16. The method of claim 12,
    the core configuration comprising a second cell configuration corresponding to a second cell, the second cell configuration representative of a configuration baseline for one or more cell configurations corresponding to one or more cells, the one or more cell configurations corresponding to a frequency.
  17. The method of claim 12,
    the core configuration comprising a first high layer configuration corresponding to a third layer; and
    the modifier representative of a second high layer configuration corresponding to the third layer.
  18. The method of claim 12,
    the core configuration comprising information; and
    the modifier comprising overriding information corresponding to the information.
  19. A method comprising:
    receiving a core configuration and a modifier from a node;
    generating a modified configuration by modifying the core configuration based upon the modifier;
    performing a first action based upon the core configuration; and
    performing a second action based upon the modified configuration.
  20. The method of claim 19,
    the core configuration representative of a configuration baseline for a low layer configuration corresponding to at least one of a first layer or a second layer and a high layer configuration corresponding to a third layer.
  21. The method of claim 19,
    the core configuration comprising a low layer configuration corresponding to at least one of a first layer or a second layer;
    the first action comprising using at least one of the first layer or the second layer based upon the core configuration;
    the modified configuration comprising a high layer configuration corresponding to a third layer; and
    the second action comprising using the third layer based upon the modified configuration.
  22. The method of claim 19,
    the core configuration comprising a low layer configuration corresponding to at least one of a first layer or a second layer;
    the first action comprising performing a first measurement based upon a cell corresponding to at least one of the first layer or the second layer based upon the core configuration;
    the modified configuration comprising a high layer configuration corresponding to a third layer; and
    the second action comprising performing a second measurement based upon a cell corresponding to the third layer based upon the modified configuration.
  23. The method of claim 19,
    the core configuration comprising a first high layer configuration corresponding to a third layer;
    the second action comprising performing a first measurement based upon a cell corresponding to the third layer based upon the core configuration;
    the modified configuration comprising a second high layer configuration corresponding to the third layer; and
    the second action comprising performing a second measurement based upon a cell corresponding to the third layer based upon the modified configuration.
  24. The method of claim 19, comprising:
    receiving a second modifier; and
    generating a second modified configuration by modifying the core configuration based upon the second modifier.
  25. The method of claim 24,
    the second modified configuration comprising a low layer configuration corresponding to at least one of a first layer or a second layer; and
    the first action comprising using at least one of the first layer or the second layer based upon the second modified configuration.
  26. The method of claim 19,
    the core configuration representative of a configuration baseline for an idle state measurement configuration corresponding to an idle state and a connected state measurement configuration corresponding to a connected state.
  27. The method of claim 19,
    the core configuration comprising an idle state measurement configuration corresponding to an idle state;
    the first action comprising performing a first measurement in the idle state based upon the core configuration;
    the modified configuration comprising a connected state measurement configuration corresponding to a connected state; and
    the second action comprising performing a second measurement in the connected state based upon the modified configuration.
  28. The method of claim 19,
    the core configuration comprising a first idle state measurement configuration corresponding to an idle state;
    the first action comprising performing a first measurement in the idle state based upon the core configuration;
    the modified configuration comprising a second idle state measurement configuration corresponding to the idle state; and
    the second action comprising performing a second measurement in the idle state based upon the modified configuration.
  29. The method of claim 19,
    the core configuration comprising a first connected state measurement configuration corresponding to a connected state;
    the first action comprising performing a first measurement in the connected state based upon the core configuration;
    the modified configuration comprising a second connected state measurement configuration corresponding to the connected state; and
    the second action comprising performing a second measurement in the connected state based upon the modified configuration.
  30. The method of claim 24,
    the second modified configuration comprising an idle state measurement configuration corresponding to an idle state; and
    the first action comprising performing a first measurement in the idle state based upon the second modified configuration.
  31. The method of claim 19,
    the core configuration comprising information;
    the modifier comprising overriding information corresponding to the information;
    the modifying the core configuration based upon the overriding information.
  32. The method of claim 31, comprising:
    modifying the information based upon the overriding information to generate the modified configuration.
  33. The method of claim 19,
    the core configuration corresponding to a frequency;
    the modifier corresponding to the frequency; and
    the modified configuration corresponding to the frequency.
  34. The method of claim 19,
    the core configuration representative of a configuration baseline for one or more configuration cells corresponding to one or more cells, the one or more configuration cells corresponding to a frequency; and
    the first action comprising using the one or more cells based upon the core configuration.
  35. The method of claim 19,
    the modified configuration comprising a cell configuration corresponding to a cell; and
    the second action comprising using the cell based upon the cell configuration.
  36. The method of claim 19,
    the core configuration comprising a cell configuration, corresponding to a cell, representative of a configuration baseline for one or more cell  configurations corresponding to one or more cells, the one or more cell configurations corresponding to a frequency;
    the first action comprising using the cell based upon the cell configuration;
    the modified configuration comprising a second cell configuration corresponding to a second cell; and
    the second action comprising using the second cell based upon the second cell configuration.
  37. A communication device comprising:
    a processor; and
    memory comprising processor-executable instructions that when executed by the processor cause performance of a method recited in any of claims 1 to 36.
  38. A non-transitory computer readable medium having stored thereon processor-executable instructions that when executed cause performance of a method recited in any of claims 1 to 36.
PCT/CN2017/088713 2017-06-16 2017-06-16 Configuration transmission WO2018227579A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780090314.7A CN110622541A (en) 2017-06-16 2017-06-16 Configuration transmission
PCT/CN2017/088713 WO2018227579A1 (en) 2017-06-16 2017-06-16 Configuration transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/088713 WO2018227579A1 (en) 2017-06-16 2017-06-16 Configuration transmission

Publications (1)

Publication Number Publication Date
WO2018227579A1 true WO2018227579A1 (en) 2018-12-20

Family

ID=64658851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/088713 WO2018227579A1 (en) 2017-06-16 2017-06-16 Configuration transmission

Country Status (2)

Country Link
CN (1) CN110622541A (en)
WO (1) WO2018227579A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102869105A (en) * 2011-07-07 2013-01-09 华为技术有限公司 Method for reference signal configuration, UE and eNB
CN104756576A (en) * 2012-10-29 2015-07-01 Lg电子株式会社 Method and apparatus for configuring a reference signal in a wireless communication system
CN104811288A (en) * 2014-01-29 2015-07-29 上海贝尔股份有限公司 Coordinated multiple point (CoMP) transmission method
US20160080948A1 (en) * 2010-08-13 2016-03-17 Lg Electronics Inc. Method and base station for transmitting downlink signal and method and equipment for receiving downlink signal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160080948A1 (en) * 2010-08-13 2016-03-17 Lg Electronics Inc. Method and base station for transmitting downlink signal and method and equipment for receiving downlink signal
CN102869105A (en) * 2011-07-07 2013-01-09 华为技术有限公司 Method for reference signal configuration, UE and eNB
CN104756576A (en) * 2012-10-29 2015-07-01 Lg电子株式会社 Method and apparatus for configuring a reference signal in a wireless communication system
CN104811288A (en) * 2014-01-29 2015-07-29 上海贝尔股份有限公司 Coordinated multiple point (CoMP) transmission method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "DL beam management", 3GPP TSG RAN WGI MEETING #89 R1-1708134, 19 May 2017 (2017-05-19), pages 1 - 11, XP051262269 *
ZTE: "RRM measurements on CSI-RS for L3 mobility", 3GPP TSG RAN WGI MEETING #89 RI-1707051, 19 May 2017 (2017-05-19), XP051261664 *

Also Published As

Publication number Publication date
CN110622541A (en) 2019-12-27

Similar Documents

Publication Publication Date Title
US11922937B2 (en) Electronic message transmission
US11601874B2 (en) Uplink carrier access
US9668126B2 (en) Preventing location tracking via smartphone MAC address
WO2019028847A1 (en) Resource allocation
US11051329B2 (en) Search space monitoring
US11330578B2 (en) Uplink carrier configuration
WO2018218610A1 (en) Signal processing
US11856626B2 (en) Secondary path configuration
WO2018227579A1 (en) Configuration transmission
WO2019033228A1 (en) Wireless reference transmission
WO2018227616A1 (en) Channel state information report transmission
WO2018201489A1 (en) Channel state information report transmission
US11902169B2 (en) Latency evaluation and management resolution
WO2019028753A1 (en) Random access configuration
CN111034076B (en) Candidate control channel blind detection method, equipment and computer readable medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17914066

Country of ref document: EP

Kind code of ref document: A1