WO2018227386A1 - 测量小区信号质量的方法、装置、用户设备及基站 - Google Patents
测量小区信号质量的方法、装置、用户设备及基站 Download PDFInfo
- Publication number
- WO2018227386A1 WO2018227386A1 PCT/CN2017/088082 CN2017088082W WO2018227386A1 WO 2018227386 A1 WO2018227386 A1 WO 2018227386A1 CN 2017088082 W CN2017088082 W CN 2017088082W WO 2018227386 A1 WO2018227386 A1 WO 2018227386A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tested
- signal
- cell
- measurement
- system message
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
- H04W56/001—Synchronization between nodes
- H04W56/0015—Synchronization between nodes one node acting as a reference for the others
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/318—Received signal strength
- H04B17/327—Received signal code power [RSCP]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0069—Cell search, i.e. determining cell identity [cell-ID]
- H04J11/0073—Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0069—Cell search, i.e. determining cell identity [cell-ID]
- H04J11/0076—Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0069—Cell search, i.e. determining cell identity [cell-ID]
- H04J11/0079—Acquisition of downlink reference signals, e.g. detection of cell-ID
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0057—Physical resource allocation for CQI
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W56/00—Synchronisation arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0069—Cell search, i.e. determining cell identity [cell-ID]
Definitions
- the present disclosure relates to the field of wireless communication technologies, and in particular, to a method, an apparatus, a user equipment, and a base station for measuring cell signal quality.
- a user equipment In an omni-directional transmission system (Long Term Evolution, LTE for short), a user equipment (User Equipment, UE for short) may measure a reference signal of a cell-specific reference signal (CRS).
- the Receive Signal Receiving Power (RSRP) is used to measure the cell signal quality.
- the embodiments of the present disclosure provide a method, an apparatus, a user equipment, and a base station for measuring a cell signal quality, so as to implement accurate measurement based on a synchronization block by a UE in an inactive state or an idle state in a 5G system.
- Cell signal quality
- determining a synchronization block reference signal to be tested for each cell to be tested includes:
- the value of the reference quantity is the first value, determining that the synchronization block signal to be tested is a secondary synchronization signal
- the synchronization block signal to be tested is a secondary synchronization signal and a PBCH demodulation reference signal (DMRS).
- DMRS PBCH demodulation reference signal
- performing quality measurement on the to-be-tested sync block signal of each of the to-be-tested cells, and obtaining a measurement result corresponding to each of the to-be-tested cells including:
- the first average value and the second average value are normalized to obtain the measurement result of the cell to be tested, including:
- the method further includes:
- the method further includes:
- a method of measuring a cell signal quality comprising:
- determining a synchronization block signal to be tested of each cell to be tested includes:
- the measurement capability supported by the user equipment is determined based on the user equipment capability reported when the user equipment accesses the network.
- the method further includes:
- the method further includes:
- the second system message is sent, where the second system message carries the power boosting value of the secondary synchronization signal.
- a first determining module configured to: after receiving the first system message carrying the measurement configuration information, determine, according to the measurement configuration information, a synchronization block signal to be tested of each cell to be tested;
- the first determining module comprises:
- the first parsing sub-module is configured to parse, from the first system message, a reference quantity of the to-be-tested sync block signal of each cell to be tested;
- the second determining submodule is configured to determine that the synchronization block signal to be tested is a secondary synchronization signal and a demodulation reference signal, if the value of the first reference quantity obtained by the first parsing submodule is a second value.
- the signal measurement module comprises:
- a first calculation submodule configured to calculate a first average value of signal powers of respective resource elements of the secondary synchronization signal when the to-be-tested synchronization block signal of the to-be-tested cell is a secondary synchronization signal and a demodulation reference signal And a second average of signal powers of respective resource elements of the demodulation reference signal;
- the normalization sub-module is configured to perform normalization processing on the first average value and the second average value calculated by the first calculation sub-module to obtain a measurement result of the to-be-tested cell.
- the normalized sub-module comprises:
- a weight determination submodule configured to be based on a power boost value of the secondary synchronization signal, Determining, by the number of resource elements of the secondary synchronization signal, and the number of resource elements of the demodulation reference signal, determining a weight of the secondary synchronization signal relative to the demodulation reference signal;
- a second calculation submodule configured to calculate the measurement result of the cell to be tested based on the weight, the first average value, and the second average value determined by the weight determination submodule.
- the apparatus further includes:
- the first receiving module is configured to receive the second system message sent by the base station
- the parsing module is configured to parse the power boost value of the secondary synchronization signal from the second system message.
- the second receiving module is configured to receive a measurement control message in a signaling process of accessing an RRC of the local cell
- a second determining module configured to determine, according to the measurement control message received by the second receiving module, a synchronization block to be tested of other cells to be tested except the cell to be tested determined according to the first system message signal;
- the signal measurement module is configured to perform the operation of performing quality measurement on the to-be-tested sync block signal of each of the to-be-tested cells.
- an apparatus for measuring a cell signal quality comprising:
- a first generating module configured to generate the first system message according to the to-be-tested sync block signal of each of the to-be-tested cells determined by the third determining module, where the first system message carries a capability to monitor a synchronization block signal to be tested of a common cell to be tested of all user equipments of the first system message;
- the third determining module comprises:
- the third determining sub-module is configured to determine a synchronization block signal to be tested of each of the tested cells based on a network coverage parameter of the cell where the user equipment is located and/or a measurement capability supported by the user equipment.
- the measurement capability supported by the user equipment is determined based on the user equipment capability reported when the user equipment accesses the network.
- the apparatus further includes:
- a second generation module configured to generate a measurement control message, where the measurement control message carries the common one indicated in the first system message, based on the to-be-tested synchronization block signal of each of the to-be-tested cells The synchronization block signal to be tested of the cell to be tested outside the cell to be tested.
- the apparatus further includes:
- the third sending module is configured to send a second system message when the current cell or the neighboring cell performs power boosting on the secondary synchronization signal, where the second system message carries the power boosting value of the secondary synchronization signal.
- a user equipment including:
- a memory for storing processor executable instructions
- processor is configured to:
- a base station including:
- a memory for storing processor executable instructions
- processor is configured to:
- a non-transitory computer readable storage medium having stored thereon computer instructions that, when executed by a processor, implement the following steps:
- a non-transitory computer readable storage medium having stored thereon computer instructions that, when executed by a processor, implement the following steps:
- the base station may indicate the synchronization block signal to be tested by using the first system message.
- the base station may determine the synchronization block signal to be tested, and then measure the signal quality of the to-be-tested cell based on the synchronization block signal to be tested, and implement the base station.
- Flexible setting of the synchronization block signal to be tested based on the coverage of the cell network can improve the accuracy of measurement of the signal quality of the cell and can be avoided.
- the problem that the user equipment measures multiple reference signals in any cell has high measurement complexity and high power consumption.
- FIG. 1A is a flowchart illustrating a method of measuring cell signal quality according to an exemplary embodiment.
- FIG. 1B is a scenario diagram of a method of measuring cell signal quality, according to an exemplary embodiment.
- FIG. 1C is a schematic structural diagram of a synchronization block used in a method for measuring cell signal quality according to an exemplary embodiment.
- 2A is a flow chart of still another method of measuring cell signal quality, according to an exemplary embodiment.
- FIG. 2B is a flow chart of a method for determining a sync block signal to be tested for each cell to be tested in the embodiment shown in FIG. 2A.
- FIG. 3 is a flow chart showing still another method of measuring cell signal quality according to an exemplary embodiment.
- FIG. 4 is a flowchart of a method of measuring cell signal quality according to an exemplary embodiment.
- FIG. 5 is a flow chart showing still another method of measuring cell signal quality according to an exemplary embodiment.
- FIG. 6 is a block diagram of an apparatus for measuring cell signal quality, according to an exemplary embodiment.
- FIG. 7 is a block diagram of another apparatus for measuring cell signal quality, according to an exemplary embodiment.
- FIG. 8 is a block diagram of an apparatus for measuring cell signal quality, according to an exemplary embodiment.
- FIG. 9 is a block diagram of another apparatus for measuring cell signal quality, according to an exemplary embodiment.
- FIG. 10 is a block diagram of an apparatus suitable for measuring cell signal quality, according to an exemplary embodiment.
- FIG. 11 is a block diagram of an apparatus suitable for measuring cell signal quality, according to an exemplary embodiment.
- step 101 after receiving the first system message carrying the measurement configuration information, Determining a sync block signal to be tested for each cell to be tested based on the measurement configuration information.
- the measurement configuration information is used to indicate a reference quantity that the user equipment needs to measure for each cell to be tested. For example, for each cell to be tested, one bit (1 bit) may be configured in the first system message.
- the reference quantity of the metric and the configurable reference quantity is 0, the synchronous block signal of the corresponding cell is the secondary reference signal, and the referenced block is 1 when the referenced block is the auxiliary block in the synchronization block.
- DMRS Demodulation Reference Signal
- n bits need to be used correspondingly.
- the first system message may carry the common neighboring cell of the UE in a certain direction and the measurement configuration information of the current cell.
- the structure of the synchronization block can be referred to as FIG. 1C, including a primary synchronization signal, a secondary synchronization signal, a Physical Broadcast Channel (PBCH) indication information, and a DMRS interpolated with the PBCH indication information in the frequency domain.
- the DMRS may generally be a cyclic shift sequence generated using a ZC (Zadoff-Chu) sequence generation algorithm.
- step 102 quality measurement is performed on the to-be-tested sync block signal of each cell to be tested, and a measurement result corresponding to each cell to be tested is obtained.
- the synchronization block signal to be tested is a secondary synchronization block signal and a demodulation reference signal
- quality measurement is performed on each of the to-be-tested synchronization block signals of the to-be-tested cell, and a measurement result corresponding to each of the to-be-tested cells is obtained.
- the synchronization block signal to be tested is a secondary synchronization block signal
- the signal reception power of the synchronization block signal to be tested of each cell to be tested may be directly measured to obtain a measurement result.
- step 103 a measurement report message is sent to the base station, and the measurement report message carries the measurement result.
- a base is included.
- the station 10 the user equipment (such as a smart phone, a tablet computer, etc.) 20, wherein the base station 10 can indicate the synchronization block signal to be tested by using the first system message, and when the user equipment 20 receives the first system message, it can determine the synchronization to be tested.
- the block signal, and then the signal quality of the cell to be tested is measured based on the sync block signal to be tested.
- the base station can flexibly set the synchronization block signal to be tested based on the coverage of the cell network, which can improve the accuracy of measurement of the signal quality of the cell, and can prevent the user equipment from measuring in any cell.
- determining a synchronization block reference signal to be tested for each cell to be tested includes:
- performing quality measurement on the to-be-tested sync block signal of each cell to be tested, and obtaining a measurement result corresponding to each cell to be tested including:
- the to-be-tested sync block signal of the cell to be tested is the secondary synchronization signal and the demodulation reference signal, calculating a first average value of signal powers of the respective resource elements of the secondary synchronization signal, and demodulating signal power of each resource element of the reference signal Second average;
- the first average value and the second average value are normalized to obtain a measurement result of the cell to be tested.
- the power boost value of the secondary synchronization signal is parsed from the second system message.
- the method for measuring cell signal quality may further include:
- FIG. 2A is a flowchart of still another method for measuring cell signal quality according to an exemplary embodiment
- FIG. 2B is a flowchart of a method for determining a synchronization block signal to be tested of each cell to be tested in the embodiment shown in FIG. 2A
- FIG. 2C is a flowchart 1 of a method for performing quality measurement on a to-be-tested sync block signal of each cell to be tested in the embodiment shown in FIG. 2A.
- This embodiment uses the foregoing method provided by the embodiment of the present disclosure to determine how the UE measures.
- the cell signal quality is exemplified as an example. As shown in FIG. 2A, the following steps are included:
- step 201 after receiving the first system message carrying the measurement configuration information, determining the synchronization block signal to be tested of each cell to be tested based on the measurement configuration information, and performing step 204.
- step 201 can be seen in the embodiment shown in FIG. 2B, as shown in FIG. 2B, including the following steps:
- step 211 the reference quantity of the to-be-tested sync block signal of each cell to be tested is parsed from the first system message, and step 212 and step 213 are performed.
- the reference quantity of the synchronization block signal to be tested of each cell to be tested occupies 1 bit of data, and the value of the reference quantity may be 1 or 0.
- the first value may be 0 or 1, and the specific value may be agreed by the system.
- step 213 if the value of the reference quantity is the second value, it is determined that the synchronization block signal to be tested is the secondary synchronization signal and the demodulation reference signal.
- the second value may be 0 or 1.
- the specific value may be agreed by the system.
- the first value and the second value may be: the first value is 0, and the second value is 1; or, The first value is 1 and the second value is 0.
- step 202 a second system message sent by the base station is received.
- the base station when the base station or the neighboring cell performs boosting on the transmit power of the secondary synchronization signal, the base station sends a second system message to the user equipment, where the second system message carries the boost power of the secondary synchronization signal.
- the power boost value of the cell for example, the primary power of the secondary synchronization signal is M, and the power boost value is 2*M, and the transmit power of the secondary synchronization signal is 3*M.
- step 203 the power boost value of the secondary synchronization signal is parsed from the second system message, and step 204 is performed.
- step 204 quality measurement is performed on the to-be-tested sync block signal of each cell to be tested, and a measurement result corresponding to each cell to be tested is obtained.
- the measurement result can be obtained based on the embodiment shown in FIG. 2C, as shown in FIG. 2C, including the following steps:
- step 221 when the to-be-tested sync block signal of the to-be-tested cell is the secondary synchronization signal and the demodulation reference signal, the first average value of the signal power of each resource element of the secondary synchronization signal is calculated, and each of the demodulation reference signals is The second average of the signal power of the resource element.
- the method for calculating the average value of the signal power of each resource element can be referred to the related technical solution, which is not described in detail herein.
- step 222 the first average value and the second average value are normalized to obtain a measurement result of the cell to be tested.
- the first average value and the second average value are normalized, including: a power boost value based on the secondary synchronization signal, a number of resource elements of the secondary synchronization signal, and a resource element of the demodulation reference signal And determining a weight of the secondary synchronization signal relative to the demodulation reference signal; and calculating a measurement result of the cell to be tested based on the weight, the first average value, and the second average value.
- the number of resource elements of the secondary synchronization signal is 144
- the first average value is M
- the power boost value is 1/2 of the original power
- the number of resource elements of the demodulation reference signal is 72
- the second average value is N
- the signal reception power of the synchronization block signal to be tested of each of the cells to be tested may be directly measured to obtain a measurement result.
- the user equipment may be indicated by the second system message, so that the user equipment performs normalization processing of the signal receiving power of the secondary synchronization signal and the demodulation reference signal to obtain the final measurement. result.
- FIG. 3 is a flowchart of still another method for measuring cell signal quality according to an exemplary embodiment.
- This embodiment uses the foregoing method provided by the embodiment of the present disclosure to interact with a RRC signaling of a user equipment based on accessing a local cell.
- the received measurement control message in the process performs cell signal measurement as an example.
- the method includes the following steps:
- step 301 receiving measurement control in a signaling procedure of accessing the RRC of the local cell Message.
- the measurement control message may be sent to the user equipment in the RRC signaling process of the user equipment to access the local device, to indicate that the user equipment measures the synchronization block signal to be tested of the other mandatory cell.
- only the measurement configuration information of the common neighboring cell of the user equipment in the direction of the cell is configured in the first system message, so as to reduce the transmission efficiency of the system message caused by configuring the information of the excessive cell. problem.
- the measurement control message may also carry measurement configuration information, which is used to indicate the synchronization block signal to be tested of other cells to be tested.
- step 303 can be referred to the description of step 102 of the embodiment shown in FIG. 1A, and will not be described in detail herein.
- the base station may use the measurement control message in the RRC signaling process to instruct the user equipment to determine the synchronization block signal to be tested of other cells to be tested, and then measure the signal quality of the cell to be tested based on the synchronization block signal to be tested, and implement the base station based cell.
- the network coverage condition flexibly sets the synchronization block signal to be tested, which can not only achieve the signal quality of the cell that the user equipment must measure, but also reduce the first system message caused by configuring the information of the excessive cell in the first system message. The problem of sending efficiency.
- FIG. 4 is a flowchart of a method for measuring cell signal quality according to an exemplary embodiment.
- the method for measuring cell signal quality may be applied to a base station. As shown in FIG. 4, the method for measuring cell signal quality includes The following steps 401-403:
- the network coverage parameter of the cell in which the cell is located may be used to measure the network coverage. For example, the coverage of the general suburban network is poor, and only the secondary synchronization signal may be measured, while the dense urban network coverage is strong, and the secondary synchronization signal and the demodulation may be measured. Reference signals for more accurate signal quality.
- the measurement capability supported by the user equipment is determined based on the user equipment capability reported when the user equipment accesses the network. For example, some user equipments only support measurement of secondary synchronization signals, and some user equipments support measurement of secondary synchronization signals and solutions. Adjust the reference signal.
- step 402 a first system message is generated based on the to-be-tested sync block signal of each cell to be tested.
- the first system message carries a to-be-tested sync block signal of a common cell to be tested that can listen to all user equipments of the first system message.
- the reference quantity of the synchronization block signal to be tested of each cell to be tested occupies 1 bit of data, and the value of the reference quantity may be 1 or 0.
- the synchronization block signal of the current cell may be carried in the first system message only; or the synchronization block signal to be tested of the current cell and the user equipment in a certain direction may be carried in the first system message.
- the side sync block signal of the common neighboring area may be carried in the first system message only; or the synchronization block signal to be tested of the current cell and the user equipment in a certain direction may be carried in the first system message.
- step 403 a first system message is sent.
- the second system message when determining the power of the secondary synchronization signal of the cell or the neighboring cell, the second system message may be sent, where the second system message carries the power boost value of the secondary synchronization signal, so that the user equipment is based on the The power boosting value performs the normalization processing in the embodiment shown in FIG. 2A when the cell signal quality is measured by the secondary synchronization signal and the demodulation reference signal.
- a base station 10 in the scenario shown in FIG. 1B, a base station 10, a user equipment (such as a smart phone, a tablet, etc.) 20, including a base station 10, and a user equipment (such as smart) are included. a mobile phone, a tablet computer, or the like) 20, wherein the base station 10 can indicate the synchronization block signal to be tested by using the first system message, and when the user equipment 20 receives the first system message, The sync block signal to be measured is determined, and then the signal quality of the cell to be tested is measured based on the sync block signal to be tested.
- a base station 10 can indicate the synchronization block signal to be tested by using the first system message, and when the user equipment 20 receives the first system message, The sync block signal to be measured is determined, and then the signal quality of the cell to be tested is measured based on the sync block signal to be tested.
- the base station can flexibly set the synchronization block signal to be tested based on the coverage of the cell network, which can improve the accuracy of measurement of the signal quality of the cell, and can prevent the user equipment from measuring in any cell.
- determining a synchronization block signal to be tested of each cell to be tested includes:
- the signal of the synchronization block to be tested of each cell to be tested is determined based on the network coverage parameter of the cell where the user equipment is located and/or the measurement capability supported by the user equipment.
- the measurement capability supported by the user equipment is determined based on the user equipment capability reported when the user equipment accesses the network.
- the method for measuring cell signal quality may further include:
- the method for measuring cell signal quality may further include:
- the second system message is sent, and the second system message carries the power boost value of the secondary synchronization signal.
- FIG. 5 is a flowchart of still another method for measuring cell signal quality according to an exemplary embodiment.
- This embodiment uses the foregoing method provided by an embodiment of the present disclosure to determine how to base an RRC signaling procedure with a user equipment.
- the measurement control message is sent to indicate that the user equipment performs cell signal measurement as an example.
- the method includes the following steps:
- step 502 a measurement control message is generated based on the to-be-tested sync block signal of each cell to be tested.
- step 503 a measurement control message is sent.
- the base station may use the measurement control message in the RRC signaling process to indicate that the user equipment determines the synchronization block signal to be tested of other cells to be tested, and then measures the cell to be tested based on the synchronization block signal to be tested.
- the signal quality is implemented, and the base station can flexibly set the synchronization block signal to be tested based on the coverage of the cell network, so that the signal quality of the cell that the user equipment must measure must be realized, and the information of the excessive cell in the first system message can be avoided. The resulting problem of reducing the transmission efficiency of the first system message.
- FIG. 6 is a block diagram of an apparatus for measuring cell signal quality, which is applied to a user equipment, as shown in FIG. 6, the apparatus for measuring cell signal quality, according to an exemplary embodiment, includes:
- the first determining module 61 is configured to: after receiving the first system message carrying the measurement configuration information, determine, according to the measurement configuration information, a synchronization block signal to be tested of each cell to be tested;
- the signal measurement module 62 is configured to perform quality measurement on the to-be-tested sync block signal of each cell to be tested determined by the first determining module 61, to obtain a measurement result corresponding to each cell to be tested;
- the first sending module 63 is configured to send a measurement report message to the base station, where the measurement report message carries the measurement result obtained by the signal measurement module 62.
- the first calculation sub-module 621 is configured to calculate a first average value of the signal power of each resource element of the secondary synchronization signal and a solution when the to-be-tested synchronization block signal of the to-be-tested cell is the secondary synchronization signal and the demodulation reference signal Adjusting a second average of signal powers of respective resource elements of the reference signal;
- the normalization sub-module 622 is configured to perform normalization processing on the first average value and the second average value calculated by the first calculation sub-module to obtain a measurement result of the cell to be tested.
- the weight determining sub-module 6221 is configured to determine a weight of the secondary synchronization signal relative to the demodulation reference signal based on a power boost value of the secondary synchronization signal, a number of resource elements of the secondary synchronization signal, and a number of resource elements of the demodulation reference signal;
- the second calculation sub-module 6222 is configured to calculate a measurement result of the cell to be tested based on the weight, the first average value, and the second average value determined by the weight determination sub-module 6221.
- the apparatus further includes:
- the first receiving module 64 is configured to receive a second system message sent by the base station
- the parsing module 65 is configured to parse the power boost value of the secondary synchronization signal from the second system message.
- the second receiving module 66 is configured to receive a measurement control message in a signaling procedure of accessing an RRC of the local cell.
- FIG. 9 is a block diagram of another apparatus for measuring cell signal quality according to an exemplary embodiment. As shown in FIG. 9, on the basis of the foregoing embodiment shown in FIG. 8, in an embodiment, a third determination is performed.
- Module 81 includes:
- the third determining sub-module 811 is configured to determine a synchronization block signal to be tested for each cell to be tested based on a network coverage parameter of a cell where the user equipment is located and/or a measurement capability supported by the user equipment.
- the apparatus further includes:
- the apparatus further includes:
- the third sending module 85 is configured to send a second system message when the current cell or the neighboring cell performs power boosting on the secondary synchronization signal, where the second system message carries the power boosting value of the secondary synchronization signal.
- FIG. 10 is a block diagram of an apparatus suitable for measuring cell signal quality, according to an exemplary embodiment.
- Apparatus 1000 can be provided as a base station.
- apparatus 1000 includes a processing component 1022, a wireless transmit/receive component 1024, an antenna component 1026, and a signal processing portion specific to the wireless interface.
- the processing component 1022 can further include one or more processors.
- One of the processing components 1022 can be configured to perform the method of measuring cell signal quality as described above.
- non-transitory computer readable storage medium comprising instructions executable by processing component 1022 of apparatus 1000 to perform the method described in the second aspect above.
- the non-transitory computer readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
- device 1100 can be a first device, such as a smart phone.
- apparatus 1100 can include one or more of the following components: processing component 1102, memory 1104, power component 1106, multimedia component 1108, audio component 1110, input/output (I/O) interface 1112, sensor component 1114, And a communication component 1116.
- Processing component 1102 typically controls the overall operation of device 1100, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
- Processing component 1102 can include one or more processors 1120 to execute instructions to perform all or part of the steps described above.
- processing component 1102 can include one or more modules to facilitate interaction between component 1102 and other components.
- processing component 1102 can include a multimedia module to facilitate interaction between multimedia component 1108 and processing component 1102.
- the memory 1104 is configured to store various types of data to support operation at the device 1100. Examples of such data include instructions, messages, pictures, etc. for any application or method operating on device 1100.
- the memory 1104 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable. Programming read only memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Disk or Optical Disk.
- SRAM static random access memory
- EEPROM electrically erasable programmable read only memory
- EPROM Electrically erasable programmable read only memory
- PROM Programmable Read Only Memory
- ROM Read Only Memory
- Magnetic Memory Flash Memory
- Disk Disk or Optical Disk.
- Power component 1106 provides power to various components of device 1100.
- Power component 1106 can include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power for device 1100.
- the multimedia component 1108 includes a screen between the device 1100 and the user that provides an output interface.
- the screen can include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen can be implemented as a touch screen to receive input signals from the user.
- the touch panel includes one or more touch sensors to sense touches, slides, and gestures on the touch panel. The touch sensor can sense not only the boundaries of the touch or sliding action, but also the duration and pressure associated with the touch or slide operation.
- the multimedia component 1108 includes a front camera and/or a rear camera. When the device 1100 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front and rear camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
- the audio component 1110 is configured to output and/or input an audio signal.
- the audio component 1110 includes a microphone (MIC) that is configured to receive an external audio signal when the device 1100 is in an operational mode, such as a call mode, a recording mode, and a voice recognition mode.
- the received audio signal may be further stored in memory 1104 or transmitted via communication component 1116.
- the audio component 1110 also includes a speaker for outputting an audio signal.
- the I/O interface 1112 provides an interface between the processing component 1102 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to, a home button, a volume button, a start button, and a lock button.
- Sensor assembly 1114 includes one or more sensors for providing a status assessment of various aspects to device 1100.
- the sensor assembly 1114 can detect an open/closed state of the device 1100, the relative positioning of the components, such as a display and a keypad of the device 1100, and the sensor assembly 1114 can also detect a change in position of a component of the device 1100 or device 1100, with The presence or absence of contact with the device 1100, the orientation or acceleration/deceleration of the device 1100 and the temperature change of the device 1100.
- Sensor assembly 1114 can include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
- Sensor assembly 1114 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
- the sensor assembly 1114 can also include an acceleration sensor, a gyro sensor, a magnetic sensor, a distance sensor, a pressure sensor, or a temperature sensor.
- Communication component 1116 is configured to facilitate wired or wireless communication between device 1100 and other devices.
- the device 1100 can access a wireless network based on a communication standard, such as WIFI, 2G or 3G, or a combination thereof.
- the communication component 1116 receives a broadcast signal or broadcast associated information from an external broadcast management system via a broadcast channel.
- communication component 1116 also includes a near field communication (NFC) module to facilitate short range communication.
- NFC near field communication
- the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology, and other technologies.
- RFID radio frequency identification
- IrDA infrared data association
- UWB ultra-wideband
- Bluetooth Bluetooth
- apparatus 1100 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the above method of measuring cell signal quality.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGA field programmable A gate array
- controller microcontroller, microprocessor or other electronic component implementation for performing the above method of measuring cell signal quality.
- non-transitory computer readable storage medium comprising instructions, such as a memory 1104 comprising instructions executable by processor 1120 of apparatus 1100 to perform the first aspect described above.
- the non-transitory computer readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Databases & Information Systems (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开是关于一种测量小区信号质量的方法、装置、用户设备及基站。测量小区信号质量的方法包括:在接收到携带测量配置信息的第一系统消息之后,基于所述测量配置信息确定每一个待测小区的待测同步块信号;对所述每一个待测小区的待测同步块信号进行质量测量,得到对应每一个待测小区的测量结果;向基站发送测量报告消息,所述测量报告消息中携带有所述测量结果。本公开技术方可以实现5G系统中处于非激活态或者空闲态的UE基于同步块准确测量小区信号质量。
Description
本公开涉及无线通信技术领域,尤其涉及一种测量小区信号质量的方法、装置、用户设备及基站。
在长期演进(Long Term Evolution,简称为LTE)全向发送系统中,用户设备(User Equipment,简称为UE)可以通过测量小区特定的参考信号(Cell-specific reference signals,简称为CRS)的参考信号接收功率(Reference Signal Receiving Power,简称为RSRP)测量小区信号质量。
相关技术中,在第五代移动通信技术(5th Generation,简称为5G)项目的研究讨论中,不存在LTE中设计的全带宽CRS信号,因此5G系统中需要提出一种新的测量配置方案,例如,对于处于连接态的UE,可以配置特定的参考信号来测量业务信道的质量,而对于处于非激活态和空闲态的UE,相关技术并没有提供相应的测量配置方案,因此5G系统中需要提出一种新的测量方案,来解决处于非激活态或者空闲态的UE的小区信号质量测量问题。
发明内容
为克服相关技术中存在的问题,本公开实施例提供一种测量小区信号质量的方法、装置、用户设备及基站,用以实现5G系统中处于非激活态或者空闲态的UE基于同步块准确测量小区信号质量。
根据本公开实施例的第一方面,提供一种测量小区信号质量的方法,包括:
在接收到携带测量配置信息的第一系统消息之后,基于所述测量配
置信息确定每一个待测小区的待测同步块信号;
对所述每一个待测小区的待测同步块信号进行质量测量,得到对应每一个待测小区的测量结果;
向基站发送测量报告消息,所述测量报告消息中携带有所述测量结果。
在一实施例中,确定每一个待测小区的待测同步块参考信号,包括:
从所述第一系统消息中解析得到每一个待测小区的待测同步块信号的参考量;
若所述参考量的值为第一数值,则确定待测同步块信号为辅同步信号;
若所述参考量的值为第二数值,则确定待测同步块信号为辅同步信号和PBCH解调参考信号(DMRS)。
在一实施例中,对所述每一个待测小区的待测同步块信号进行质量测量,得到对应每一个待测小区的测量结果,包括:
当所述待测小区的待测同步块信号为辅同步信号和解调参考信号时,计算所述辅同步信号的各个资源元素的信号功率的第一平均值,以及所述解调参考信号的各个资源元素的信号功率的第二平均值;
对所述第一平均值和所述第二平均值进行归一化处理,得到所述待测小区的测量结果。
在一实施例中,对所述第一平均值和所述第二平均值进行归一化处理,得到所述待测小区的测量结果,包括:
基于所述辅同步信号的功率提升值、所述辅同步信号的资源元素的数目,以及所述解调参考信号的资源元素的数目,确定所述辅同步信号相对所述解调参考信号的权重;
基于所述权重、所述第一平均值和所述第二平均值,计算得到所述待测小区的测量结果。
在一实施例中,方法还包括:
接收基站发送的第二系统消息;
从所述第二系统消息中解析得到所述辅同步信号的功率提升值。
在一实施例中,方法还包括:
在接入本小区的RRC的信令流程中,接收测量控制消息;
基于所述测量控制消息,确定除基于所述第一系统消息确定的待测小区之外的其他待测小区的待测同步块信号;
执行所述对所述每一个待测小区的待测同步块信号进行质量测量的操作。
根据本公开实施例的第二方面,提供一种测量小区信号质量的方法,包括:
确定每一个待测小区的待测同步块信号;
基于所述每一个待测小区的待测同步块信号,生成所述第一系统消息,所述第一系统消息中携带有能够监听到所述第一系统消息的所有用户设备的共同的待测小区的待测同步块信号;
发送所述第一系统消息。
在一实施例中,确定每一个待测小区的待测同步块信号,包括:
基于所述用户设备所在小区的网络覆盖参数和/或所述用户设备支持的测量能力,确定所述每一个待测小区的待测同步块信号。
在一实施例中,用户设备支持的测量能力基于所述用户设备接入网络时上报的用户设备能力确定。
在一实施例中,方法还包括:
基于所述每一个待测小区的待测同步块信号,生成测量控制消息,所述测量控制消息中携带有除所述第一系统消息中指示的所述共同的待测小区之外的待测小区的待测同步块信号。
在一实施例中,方法还包括:
在本小区或者邻小区对辅同步信号做功率提升时,发送第二系统消息,所述第二系统消息中携带有所述辅同步信号的功率提升值。
根据本公开实施例的第三方面,提供一种测量小区信号质量的装置,包括:
第一确定模块,被配置为在接收到携带测量配置信息的第一系统消息之后,基于所述测量配置信息确定每一个待测小区的待测同步块信号;
信号测量模块,被配置为对所述第一确定模块确定的所述每一个待测小区的待测同步块信号进行质量测量,得到对应每一个待测小区的测量结果;
第一发送模块,被配置为向基站发送测量报告消息,所述测量报告消息中携带有所述信号测量模块得到的所述测量结果。
在一实施例中,第一确定模块包括:
第一解析子模块,被配置为从所述第一系统消息中解析得到每一个待测小区的待测同步块信号的参考量;
第一确定子模块,被配置为若所述第一解析子模块解析得到的所述参考量的值为第一数值,则确定待测同步块信号为辅同步信号;
第二确定子模块,被配置为若所述第一解析子模块解析得到的所述第一参考量的值为第二数值,则确定待测同步块信号为辅同步信号和解调参考信号。
在一实施例中,信号测量模块包括:
第一计算子模块,被配置为当所述待测小区的待测同步块信号为辅同步信号和解调参考信号时,计算所述辅同步信号的各个资源元素的信号功率的第一平均值,以及所述解调参考信号的各个资源元素的信号功率的第二平均值;
归一化子模块,被配置为对所述第一计算子模块计算得到的所述第一平均值和所述第二平均值进行归一化处理,得到所述待测小区的测量结果。
在一实施例中,归一化子模块包括:
权重确定子模块,被配置为基于所述辅同步信号的功率提升值、所
述辅同步信号的资源元素的数目,以及所述解调参考信号的资源元素的数目,确定所述辅同步信号相对所述解调参考信号的权重;
第二计算子模块,被配置为基于所述权重确定子模块确定的所述权重、所述第一平均值和所述第二平均值,计算得到所述待测小区的测量结果。
在一实施例中,装置还包括:
第一接收模块,被配置为接收基站发送的第二系统消息;
解析模块,被配置为从所述第二系统消息中解析得到所述辅同步信号的功率提升值。
在一实施例中,装置还包括:
第二接收模块,被配置为在接入本小区的RRC的信令流程中,接收测量控制消息;
第二确定模块,被配置为基于所述第二接收模块接收到的所述测量控制消息,确定除基于所述第一系统消息确定的待测小区之外的其他待测小区的待测同步块信号;
所述信号测量模块,被配置为执行所述对所述每一个待测小区的待测同步块信号进行质量测量的操作。
根据本公开实施例的第四方面,提供一种测量小区信号质量的装置,包括:
第三确定模块,被配置为确定每一个待测小区的待测同步块信号;
第一生成模块,被配置为基于所述第三确定模块确定的所述每一个待测小区的待测同步块信号,生成所述第一系统消息,所述第一系统消息中携带有能够监听到所述第一系统消息的所有用户设备的共同的待测小区的待测同步块信号;
第二发送模块,被配置为发送所述第一生成模块生成的所述第一系统消息。
在一实施例中,第三确定模块包括:
第三确定子模块,被配置为基于所述用户设备所在小区的网络覆盖参数和/或所述用户设备支持的测量能力,确定所述每一个待测小区的待测同步块信号。
在一实施例中,用户设备支持的测量能力基于所述用户设备接入网络时上报的用户设备能力确定。
在一实施例中,装置还包括:
第二生成模块,被配置为基于所述每一个待测小区的待测同步块信号,生成测量控制消息,所述测量控制消息中携带有除所述第一系统消息中指示的所述共同的待测小区之外的待测小区的待测同步块信号。
在一实施例中,装置还包括:
第三发送模块,被配置为在本小区或者邻小区对辅同步信号做功率提升时,发送第二系统消息,所述第二系统消息中携带有所述辅同步信号的功率提升值。
根据本公开实施例的第五方面,提供一种用户设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
在接收到携带测量配置信息的第一系统消息之后,基于所述测量配置信息确定每一个待测小区的待测同步块信号;
对所述每一个待测小区的待测同步块信号进行质量测量,得到对应每一个待测小区的测量结果;
向基站发送测量报告消息,所述测量报告消息中携带有所述测量结果。
根据本公开实施例的第六方面,提供一种基站,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
确定每一个待测小区的待测同步块信号;
基于所述每一个待测小区的待测同步块信号,生成所述第一系统消息,所述第一系统消息中携带有能够监听到所述第一系统消息的所有用户设备的共同的待测小区的待测同步块信号;
发送所述第一系统消息。
根据本公开实施例的第七方面,提供一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,指令被处理器执行时实现以下步骤:
在接收到携带测量配置信息的第一系统消息之后,基于所述测量配置信息确定每一个待测小区的待测同步块信号;
对所述每一个待测小区的待测同步块信号进行质量测量,得到对应每一个待测小区的测量结果;
向基站发送测量报告消息,所述测量报告消息中携带有所述测量结果。
根据本公开实施例的第八方面,提供一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,所述指令被处理器执行时实现以下步骤:
确定每一个待测小区的待测同步块信号;
基于所述每一个待测小区的待测同步块信号,生成所述第一系统消息,所述第一系统消息中携带有能够监听到所述第一系统消息的所有用户设备的共同的待测小区的待测同步块信号;
发送所述第一系统消息。
本公开实施例提供的技术方案可以包括以下有益效果:
基站可以通过第一系统消息指示待测同步块信号,当用户设备接收到第一系统消息时,可以确定待测同步块信号,进而基于待测同步块信号测量待测小区的信号质量,实现基站基于小区网络覆盖情况灵活地设置待测同步块信号,既可以提高小区信号质量的测量的准确度,又可以避免用
户设备在任意小区都测量多个参考信号所导致的测量复杂度高、耗电量高等问题。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1A是根据一示例性实施例示出的一种测量小区信号质量的方法的流程图。
图1B是根据一示例性实施例示出的一种测量小区信号质量的方法的场景图。
图1C是根据一示例性实施例示出的一种测量小区信号质量的方法中所使用的同步块的结构示意图。
图2A是根据一示例性实施例示出的又一种测量小区信号质量的方法的流程图。
图2B是图2A所示实施例中确定每一个待测小区的待测同步块信号的方法流程图。
图2C是图2A所示实施例中对每一个待测小区的待测同步块信号进行质量测量的方法流程图。
图3是根据一示例性实施例示出的又一种测量小区信号质量的方法的流程图。
图4是根据一示例性实施例示出的一种测量小区信号质量的方法的流程图。
图5是根据一示例性实施例示出的又一种测量小区信号质量的方法的流程图。
图6是根据一示例性实施例示出的一种测量小区信号质量的装置的框图。
图7是根据一示例性实施例示出的另一种测量小区信号质量的装置的框图。
图8是根据一示例性实施例示出的一种测量小区信号质量的装置的框图。
图9是根据一示例性实施例示出的另一种测量小区信号质量的装置的框图。
图10是根据一示例性实施例示出的一种适用于测量小区信号质量的装置的框图。
图11是根据一示例性实施例示出的一种适用于测量小区信号质量的装置的框图。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
图1A是根据一示例性实施例示出的一种测量小区信号质量的方法的流程图,图1B是根据一示例性实施例示出的一种测量小区信号质量的方法的场景图,图1C是根据一示例性实施例示出的一种测量小区信号质量的方法中所使用的同步块的结构示意图;该测量小区信号质量的方法可以应用在用户设备上,如图1A所示,该测量小区信号质量的方法包括以下步骤101-103:
在步骤101中,在接收到携带测量配置信息的第一系统消息之后,
基于测量配置信息确定每一个待测小区的待测同步块信号。
在一实施例中,测量配置信息为用于指示对于每一个待测小区,用户设备需要测量的参考量,例如,对于每一个待测小区,可以在第一系统消息中配置一位(1bit)的参考量,并且可配置参考量所在bit为0时,对应小区的待测同步块信号为辅参考信号,参考量所在bit为1时,对应小区的待测同步块信号为同步块中的辅参考信号和解调参考信号(Demodulation Reference Signal,简称为DMRS)。
在一实施例中,如果第一系统消息中为n个待测小区配置了测量配置信息,则对应需要使用n个bit。
在一实施例中,第一系统消息中可以携带某个方向的UE的共同的邻区和本小区的测量配置信息。
在一实施例中,同步块的结构可参见图1C,包括主同步信号、辅同步信号、物理广播信道(Physical Broadcast Channel,简称为PBCH)指示信息以及与PBCH指示信息穿插在频域上的DMRS。在一实施例中,DMRS一般可以为使用ZC(Zadoff-Chu)序列生成算法生成的循环移位序列。
在步骤102中,对每一个待测小区的待测同步块信号进行质量测量,得到对应每一个待测小区的测量结果。
在一实施例中,通常可通过测量待测同步块信号的信号接收功率来得到每一个待测小区的测量结果。
在一实施例中,待测同步块信号为辅同步块信号和解调参考信号时,对每一个待测小区的待测同步块信号进行质量测量,得到对应每一个待测小区的测量结果的过程可参见图2C所示实施例;待测同步块信号为辅同步块信号时,可以直接对每一个待测小区的待测同步块信号的信号接收功率进行测量,得到测量结果。
在步骤103中,向基站发送测量报告消息,测量报告消息中携带有测量结果。
在一示例性场景中,如图1B所示,在图1B所示的场景中,包括基
站10、用户设备(如智能手机、平板电脑等)20,其中,基站10可以通过第一系统消息指示待测同步块信号,当用户设备20接收到第一系统消息时,可以确定待测同步块信号,进而基于待测同步块信号测量待测小区的信号质量。
本实施例通过上述步骤101-步骤103,可以实现基站基于小区网络覆盖情况灵活地设置待测同步块信号,既可以提高小区信号质量的测量的准确度,又可以避免用户设备在任意小区都测量多个参考信号所导致的测量复杂度高、耗电量高等问题。
在一实施例中,确定每一个待测小区的待测同步块参考信号,包括:
从第一系统消息中解析得到每一个待测小区的待测同步块信号的参考量;
若参考量的值为第一数值,则确定待测同步块信号为辅同步信号;
若参考量的值为第二数值,则确定待测同步块信号为辅同步信号和解调参考信号。
在一实施例中,对每一个待测小区的待测同步块信号进行质量测量,得到对应每一个待测小区的测量结果,包括:
当待测小区的待测同步块信号为辅同步信号和解调参考信号时,计算辅同步信号的各个资源元素的信号功率的第一平均值,以及解调参考信号的各个资源元素的信号功率的第二平均值;
对第一平均值和第二平均值进行归一化处理,得到待测小区的测量结果。
在一实施例中,对第一平均值和第二平均值进行归一化处理,得到待测小区的测量结果,包括:
基于辅同步信号的功率提升值、辅同步信号的资源元素的数目,以及解调参考信号的资源元素的数目,确定辅同步信号相对解调参考信号的权重;
基于权重、第一平均值和第二平均值,计算得到待测小区的测量结
果。
在一实施例中,测量小区信号质量的方法进一步还可以包括:
接收基站发送的第二系统消息;
从第二系统消息中解析得到辅同步信号的功率提升值。
在一实施例中,测量小区信号质量的方法进一步还可以包括:
在接入本小区的RRC的信令流程中,接收测量控制消息;
基于测量控制消息,确定除基于第一系统消息确定的待测小区之外的其他待测小区的待测同步块信号;
执行对每一个待测小区的待测同步块信号进行质量测量的操作。
具体如何测量小区信号质量的,请参考后续实施例。
下面以具体实施例来说明本公开实施例提供的技术方案。
图2A是根据一示例性实施例示出的又一种测量小区信号质量的方法的流程图,图2B是图2A所示实施例中确定每一个待测小区的待测同步块信号的方法流程图,图2C是图2A所示实施例中对每一个待测小区的待测同步块信号进行质量测量的方法流程图一;本实施例利用本公开实施例提供的上述方法,以如何UE如何测量小区信号质量为例进行示例性说明,如图2A所示,包括如下步骤:
在步骤201中,在接收到携带测量配置信息的第一系统消息之后,基于测量配置信息确定每一个待测小区的待测同步块信号,执行步骤204。
在一实施例中,步骤201的描述可参见图2B所示实施例,如图2B所示,包括以下步骤:
在步骤211中,从第一系统消息中解析得到每一个待测小区的待测同步块信号的参考量,执行步骤212和步骤213。
在一实施例中,每一个待测小区的待测同步块信号的参考量占用1bit数据,参考量的值可以为1或者0。
在步骤212中,若参考量的值为第一数值,则确定待测同步块信号为辅同步信号。
在一实施例中,第一数值可以为0或者1,具体数值可以由系统约定好。
在步骤213中,若参考量的值为第二数值,则确定待测同步块信号为辅同步信号和解调参考信号。
在一实施例中,第二数值可以为0或者1,具体数值可以由系统约定好,第一数值和第二数值的取值可以为:第一数值为0,第二数值为1;或者,第一数值为1,第二数值为0。
在步骤202中,接收基站发送的第二系统消息。
在一实施例中,基站在本小区或者邻小区对辅同步信号的发射功率做提升(boosting)时,向用户设备发送第二系统消息,第二系统消息中携带有做辅同步信号发射功率提升的小区的功率提升值,例如,辅同步信号原功率值为M,功率提升值2*M,则辅同步信号的发射功率为3*M。
在一实施例中,每一个小区的功率提升值可以相同,也可以不相同,本公开并不对功率提升值的大小做限定。
在步骤203中,从第二系统消息中解析得到辅同步信号的功率提升值,执行步骤204。
在步骤204中,对每一个待测小区的待测同步块信号进行质量测量,得到对应每一个待测小区的测量结果。
在一实施例中,当待测同步块信号为辅同步信号和解调参考信号时,可以基于图2C所示实施例得到测量结果,如图2C所示,包括以下步骤:
在步骤221中,当待测小区的待测同步块信号为辅同步信号和解调参考信号时,计算辅同步信号的各个资源元素的信号功率的第一平均值,以及解调参考信号的各个资源元素的信号功率的第二平均值。
在一实施例中,计算各个资源元素的信号功率的平均值的方法可以参考相关技术方案,这里不详述。
在步骤222中,对第一平均值和第二平均值进行归一化处理,得到待测小区的测量结果。
在一实施例中,对第一平均值和第二平均值进行归一化处理,包括:基于辅同步信号的功率提升值、辅同步信号的资源元素的数目,以及解调参考信号的资源元素的数目,确定辅同步信号相对解调参考信号的权重;基于权重、第一平均值和第二平均值,计算得到待测小区的测量结果。例如,辅同步信号的资源元素的数目为144个,第一平均值为M,功率提升值为原功率的1/2,解调参考信号的资源元素的数目为72个,第二平均值为N,则辅同步信号相对解调参考信号的权重为144×(1+1/2)/72=3,测量结果为(3×M+N)/(3+1)=(3×M+N)/4;另外,如果没有做辅同步信号的功率提升,则辅同步信号相对解调参考信号的权重为144/72=2,测量结果为(2*M+N)/3。
在一实施例中,当待测同步块信号为辅同步信号时,可以直接对每一个待测小区的待测同步块信号的信号接收功率进行测量,得到测量结果。
在步骤205中,向基站发送测量报告消息,测量报告消息中携带有测量结果。
本实施例中,通过上述步骤201-步骤205,可以实现在待测同步块信号为辅同步信号和解调参考信号时,通过计算辅同步信号和解调参考信号的信号接收功率做归一化处理,得到对待测小区的信号质量进行测量的测量结果,由此可实现即使待测同步块信号为两种以上,上报的值也可以只上报一个,节省了系统用于小区信号质量测量的控制信息;此外,在辅同步信号做发射功率提升时,可以通过第二系统消息指示用户设备,以便用户设备进行辅同步信号和解调参考信号的信号接收功率的归一化处理,得到最后的测量结果。
图3是根据一示例性实施例示出的又一种测量小区信号质量的方法的流程图;本实施例利用本公开实施例提供的上述方法,以用户设备基于接入本小区的RRC信令交互过程中的接收到的测量控制消息进行小区信号测量为例进行示例性说明,如图3所示,包括如下步骤:
在步骤301中,在接入本小区的RRC的信令流程中,接收测量控制
消息。
在一实施例中,当用户设备接入本小区时,如果基站确定该用户设备除了第一系统消息内设置的待测小区之外,该用户设备还有必要测量更多小区的信号质量,则可在用户设备接入本小区的RRC信令流程中,向用户设备发送测量控制消息,以指示用户设备测量其他必测小区的待测同步块信号。
在一实施例中,通常在第一系统消息内只配置小区的该方向的用户设备的共同的邻区的测量配置信息,以避免配置过多小区的信息所导致的降低系统消息的发送效率的问题。
在步骤302中,基于测量控制消息,确定除基于第一系统消息确定的待测小区之外的其他待测小区的待测同步块信号。
在一实施例中,测量控制消息中也可以携带测量配置信息,用于指示其他待测小区的待测同步块信号。
在步骤303中,执行对每一个待测小区的待测同步块信号进行质量测量的操作。
在一实施例中,步骤303的描述可参见图1A所示实施例的步骤102的描述,这里不再详述。
本实施例中,基站可以RRC信令流程中的测量控制消息指示用户设备确定其他待测小区的待测同步块信号,进而基于待测同步块信号测量待测小区的信号质量,实现基站基于小区网络覆盖情况灵活地设置待测同步块信号,既可以实现用户设备测量必须要测的小区的信号质量,又可以避免在第一系统消息中配置过多小区的信息所导致的降低第一系统消息的发送效率的问题。
图4是根据一示例性实施例示出的一种测量小区信号质量的方法的流程图;该测量小区信号质量的方法可以应用在基站上,如图4所示,该测量小区信号质量的方法包括以下步骤401-403:
在步骤401中,确定每一个待测小区的待测同步块信号。
在一实施例中,可以基于用户设备所在小区的网络覆盖参数和/或用户设备支持的测量能力,确定每一个待测小区的待测同步块信号。
在一实施例中,所在小区的网络覆盖参数可以用来衡量网络覆盖情况,例如,一般郊区网络覆盖差,可以只测量辅同步信号,而密集城区网络覆盖强,可以测量辅同步信号和解调参考信号,以便得到更为准确的信号质量。
在一实施例中,用户设备支持的测量能力基于用户设备接入网络时上报的用户设备能力确定,例如,有的用户设备只支持测量辅同步信号,有的用户设备支持测量辅同步信号和解调参考信号。
在步骤402中,基于每一个待测小区的待测同步块信号,生成第一系统消息。
在一实施例中,第一系统消息中携带有能够监听到第一系统消息的所有用户设备的共同的待测小区的待测同步块信号。
在一实施例中,每一个待测小区的待测同步块信号的参考量占用1bit数据,参考量的值可以为1或者0。
在一实施例中,可以只在第一系统消息中携带本小区的待测同步块信号;或者,可以在第一系统消息中携带本小区的待测同步块信号和某个方向的用户设备的共同邻区的待侧同步块信号。
在步骤403中,发送第一系统消息。
在一实施例中,在确定为本小区或者邻小区的辅同步信号做功率提升时,可以发送第二系统消息,第二系统消息中携带有辅同步信号的功率提升值,以便用户设备基于该功率提升值在通过辅同步信号和解调参考信号做测量小区信号质量时,进行图2A所示实施例中的归一化处理。
在一示例性场景中,如图1B所示,在图1B所示的场景中,包括基站10、用户设备(如智能手机、平板电脑等)20,其中,包括基站10、用户设备(如智能手机、平板电脑等)20,其中,基站10可以通过第一系统消息指示待测同步块信号,当用户设备20接收到第一系统消息时,可以确
定待测同步块信号,进而基于待测同步块信号测量待测小区的信号质量。
本实施例通过上述步骤401-步骤403,可以实现基站基于小区网络覆盖情况灵活地设置待测同步块信号,既可以提高小区信号质量的测量的准确度,又可以避免用户设备在任意小区都测量多个参考信号所导致的测量复杂度高、耗电量高等问题。
在一实施例中,确定每一个待测小区的待测同步块信号,包括:
基于用户设备所在小区的网络覆盖参数和/或用户设备支持的测量能力,确定每一个待测小区的待测同步块信号。
在一实施例中,用户设备支持的测量能力基于用户设备接入网络时上报的用户设备能力确定。
在一实施例中,测量小区信号质量的方法进一步还可以包括:
基于每一个待测小区的待测同步块信号,生成测量控制消息,测量控制消息中携带有除第一系统消息中指示的共同的待测小区之外的待测小区的待测同步块信号。
在一实施例中,测量小区信号质量的方法进一步还可以包括:
在本小区或者邻小区对辅同步信号做功率提升时,发送第二系统消息,第二系统消息中携带有辅同步信号的功率提升值。
具体如何测量小区信号质量的,请参考后续实施例。
下面以具体实施例来说明本公开实施例提供的技术方案。
图5是根据一示例性实施例示出的又一种测量小区信号质量的方法的流程图;本实施例利用本公开实施例提供的上述方法,以如何基于与用户设备之间的RRC信令流程发送测量控制消息以指示用户设备进行小区信号测量为例进行示例性说明,如图5所示,包括如下步骤:
在步骤501中,确定每一个待测小区的待测同步块信号。
在步骤502中,基于每一个待测小区的待测同步块信号,生成测量控制消息。
在一实施例中,如果基站确定该用户设备除了第一系统消息内设置
的待测小区之外,该用户设备还有必要测量更多小区的信号质量,则可进一步生成测量控制消息,测量控制消息中携带有除第一系统消息中指示的共同的待测小区之外的待测小区的待测同步块信号。
在步骤503中,发送测量控制消息。
本实施例中,通过上述步骤501-步骤503,基站可以RRC信令流程中的测量控制消息指示用户设备确定其他待测小区的待测同步块信号,进而基于待测同步块信号测量待测小区的信号质量,实现基站基于小区网络覆盖情况灵活地设置待测同步块信号,既可以实现用户设备测量必须要测的小区的信号质量,又可以避免在第一系统消息中配置过多小区的信息所导致的降低第一系统消息的发送效率的问题。
图6是根据一示例性实施例示出的一种测量小区信号质量的装置的框图,该装置应用在用户设备上,如图6所示,测量小区信号质量的装置包括:
第一确定模块61,被配置为在接收到携带测量配置信息的第一系统消息之后,基于测量配置信息确定每一个待测小区的待测同步块信号;
信号测量模块62,被配置为对第一确定模块61确定的每一个待测小区的待测同步块信号进行质量测量,得到对应每一个待测小区的测量结果;
第一发送模块63,被配置为向基站发送测量报告消息,测量报告消息中携带有信号测量模块62得到的测量结果。
图7是根据一示例性实施例示出的另一种测量小区信号质量的装置的框图,如图7所示,在上述图6所示实施例的基础上,在一实施例中,第一确定模块61包括:
第一解析子模块611,被配置为从第一系统消息中解析得到每一个待测小区的待测同步块信号的参考量;
第一确定子模块612,被配置为若第一解析子模块611解析得到的参考量的值为第一数值,则确定待测同步块信号为辅同步信号;
第二确定子模块613,被配置为若第一解析子模块611解析得到的第一参考量的值为第二数值,则确定待测同步块信号为辅同步信号和解调参考信号。
在一实施例中,信号测量模块62包括:
第一计算子模块621,被配置为当待测小区的待测同步块信号为辅同步信号和解调参考信号时,计算辅同步信号的各个资源元素的信号功率的第一平均值,以及解调参考信号的各个资源元素的信号功率的第二平均值;
归一化子模块622,被配置为对第一计算子模块计算得到的第一平均值和第二平均值进行归一化处理,得到待测小区的测量结果。
在一实施例中,归一化子模块622包括:
权重确定子模块6221,被配置为基于辅同步信号的功率提升值、辅同步信号的资源元素的数目,以及解调参考信号的资源元素的数目,确定辅同步信号相对解调参考信号的权重;
第二计算子模块6222,被配置为基于权重确定子模块6221确定的权重、第一平均值和第二平均值,计算得到待测小区的测量结果。
在一实施例中,装置还包括:
第一接收模块64,被配置为接收基站发送的第二系统消息;
解析模块65,被配置为从第二系统消息中解析得到辅同步信号的功率提升值。
在一实施例中,装置还包括:
第二接收模块66,被配置为在接入本小区的RRC的信令流程中,接收测量控制消息;
第二确定模块67,被配置为基于第二接收模块66接收到的测量控制消息,确定除基于第一系统消息确定的待测小区之外的其他待测小区的待测同步块信号;
信号测量模块62,被配置为执行对每一个待测小区的待测同步块信
号进行质量测量的操作。
图8是根据一示例性实施例示出的一种测量小区信号质量的装置的框图,该装置应用在基站上,如图8所示,测量小区信号质量的装置包括:
第三确定模块81,被配置为确定每一个待测小区的待测同步块信号;
第一生成模块82,被配置为基于第三确定模块81确定的每一个待测小区的待测同步块信号,生成第一系统消息,第一系统消息中携带有能够监听到第一系统消息的所有用户设备的共同的待测小区的待测同步块信号;
第二发送模块83,被配置为发送第一生成模块82生成的第一系统消息。
图9是根据一示例性实施例示出的另一种测量小区信号质量的装置的框图,如图9所示,在上述图8所示实施例的基础上,在一实施例中,第三确定模块81包括:
第三确定子模块811,被配置为基于用户设备所在小区的网络覆盖参数和/或用户设备支持的测量能力,确定每一个待测小区的待测同步块信号。
在一实施例中,用户设备支持的测量能力基于用户设备接入网络时上报的用户设备能力确定。
在一实施例中,装置还包括:
第二生成模块84,被配置为基于每一个待测小区的待测同步块信号,生成测量控制消息,测量控制消息中携带有除第一系统消息中指示的共同的待测小区之外的待测小区的待测同步块信号。
在一实施例中,装置还包括:
第三发送模块85,被配置为在本小区或者邻小区对辅同步信号做功率提升时,发送第二系统消息,第二系统消息中携带有辅同步信号的功率提升值。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经
在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图10是根据一示例性实施例示出的一种适用于测量小区信号质量的装置的框图。装置1000可以被提供为一个基站。参照图10,装置1000包括处理组件1022、无线发射/接收组件1024、天线组件1026、以及无线接口特有的信号处理部分,处理组件1022可进一步包括一个或多个处理器。
处理组件1022中的其中一个处理器可以被配置为执行上述测量小区信号质量的方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,上述指令可由装置1000的处理组件1022执行以完成上述第二方面所描述的方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图11是根据一示例性实施例示出的一种适用于测量小区信号质量的装置的框图。例如,装置1100可以是第一设备,例如智能手机。
参照图11,装置1100可以包括以下一个或多个组件:处理组件1102,存储器1104,电源组件1106,多媒体组件1108,音频组件1110,输入/输出(I/O)的接口1112,传感器组件1114,以及通信组件1116。
处理组件1102通常控制装置1100的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理元件1102可以包括一个或多个处理器1120来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1102可以包括一个或多个模块,便于处理组件1102和其他组件之间的交互。例如,处理部件1102可以包括多媒体模块,以方便多媒体组件1108和处理组件1102之间的交互。
存储器1104被配置为存储各种类型的数据以支持在设备1100的操作。这些数据的示例包括用于在装置1100上操作的任何应用程序或方法的指令,消息,图片等。存储器1104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),
可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1106为装置1100的各种组件提供电力。电力组件1106可以包括电源管理系统,一个或多个电源,及其他与为装置1100生成、管理和分配电力相关联的组件。
多媒体组件1108包括在装置1100和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1108包括一个前置摄像头和/或后置摄像头。当设备1100处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1110被配置为输出和/或输入音频信号。例如,音频组件1110包括一个麦克风(MIC),当装置1100处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1104或经由通信组件1116发送。在一些实施例中,音频组件1110还包括一个扬声器,用于输出音频信号。
I/O接口1112为处理组件1102和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1114包括一个或多个传感器,用于为装置1100提供各个方面的状态评估。例如,传感器组件1114可以检测到设备1100的打开/关闭状态,组件的相对定位,例如组件为装置1100的显示器和小键盘,传感器组件1114还可以检测装置1100或装置1100一个组件的位置改变,用
户与装置1100接触的存在或不存在,装置1100方位或加速/减速和装置1100的温度变化。传感器组件1114可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1114还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1114还可以包括加速度传感器,陀螺仪传感器,磁传感器,距离感应器,压力传感器或温度传感器。
通信组件1116被配置为便于装置1100和其他设备之间有线或无线方式的通信。装置1100可以接入基于通信标准的无线网络,如WIFI,2G或3G,或它们的组合。在一个示例性实施例中,通信部件1116经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信部件1116还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1100可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述测量小区信号质量的方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1104,上述指令可由装置1100的处理器1120执行以完成上述第一方面所描述的方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指
出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
Claims (26)
- 一种测量小区信号质量的方法,其特征在于,所述方法包括:在接收到携带测量配置信息的第一系统消息之后,基于所述测量配置信息确定每一个待测小区的待测同步块信号;对所述每一个待测小区的待测同步块信号进行质量测量,得到对应每一个待测小区的测量结果;向基站发送测量报告消息,所述测量报告消息中携带有所述测量结果。
- 根据权利要求1所述的方法,其特征在于,所述确定每一个待测小区的待测同步块参考信号,包括:从所述第一系统消息中解析得到每一个待测小区的待测同步块信号的参考量;若所述参考量的值为第一数值,则确定待测同步块信号为辅同步信号;若所述参考量的值为第二数值,则确定待测同步块信号为辅同步信号和解调参考信号。
- 根据权利要求1所述的方法,其特征在于,所述对所述每一个待测小区的待测同步块信号进行质量测量,得到对应每一个待测小区的测量结果,包括:当所述待测小区的待测同步块信号为辅同步信号和解调参考信号时,计算所述辅同步信号的各个资源元素的信号功率的第一平均值,以及所述解调参考信号的各个资源元素的信号功率的第二平均值;对所述第一平均值和所述第二平均值进行归一化处理,得到所述待测小区的测量结果。
- 根据权利要求3所述的方法,其特征在于,所述对所述第一平均值和所述第二平均值进行归一化处理,得到所述待测小区的测量结果,包括:基于所述辅同步信号的功率提升值、所述辅同步信号的资源元素的数目,以及所述解调参考信号的资源元素的数目,确定所述辅同步信号相对 所述解调参考信号的权重;基于所述权重、所述第一平均值和所述第二平均值,计算得到所述待测小区的测量结果。
- 根据权利要求4所述的方法,其特征在于,所述方法还包括:接收基站发送的第二系统消息;从所述第二系统消息中解析得到所述辅同步信号的功率提升值。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:在接入本小区的RRC的信令流程中,接收测量控制消息;基于所述测量控制消息,确定除基于所述第一系统消息确定的待测小区之外的其他待测小区的待测同步块信号;执行所述对所述每一个待测小区的待测同步块信号进行质量测量的操作。
- 一种测量小区信号质量的方法,其特征在于,所述方法包括:确定每一个待测小区的待测同步块信号;基于所述每一个待测小区的待测同步块信号,生成所述第一系统消息,所述第一系统消息中携带有能够监听到所述第一系统消息的所有用户设备的共同的待测小区的待测同步块信号;发送所述第一系统消息。
- 根据权利要求7所述的方法,其特征在于,所述确定每一个待测小区的待测同步块信号,包括:基于所述用户设备所在小区的网络覆盖参数和/或所述用户设备支持的测量能力,确定所述每一个待测小区的待测同步块信号。
- 根据权利要求7所述的方法,其特征在于,所述用户设备支持的测量能力基于所述用户设备接入网络时上报的用户设备能力确定。
- 根据权利要求7所述的方法,其特征在于,所述方法还包括:基于所述每一个待测小区的待测同步块信号,生成测量控制消息,所述测量控制消息中携带有除所述第一系统消息中指示的所述共同的待测小 区之外的待测小区的待测同步块信号。
- 根据权利要求7所述的方法,其特征在于,所述方法还包括:在本小区或者邻小区对辅同步信号做功率提升时,发送第二系统消息,所述第二系统消息中携带有所述辅同步信号的功率提升值。
- 一种测量小区信号质量的装置,其特征在于,所述装置包括:第一确定模块,被配置为在接收到携带测量配置信息的第一系统消息之后,基于所述测量配置信息确定每一个待测小区的待测同步块信号;信号测量模块,被配置为对所述第一确定模块确定的所述每一个待测小区的待测同步块信号进行质量测量,得到对应每一个待测小区的测量结果;第一发送模块,被配置为向基站发送测量报告消息,所述测量报告消息中携带有所述信号测量模块得到的所述测量结果。
- 根据权利要求12所述的装置,其特征在于,所述第一确定模块包括:第一解析子模块,被配置为从所述第一系统消息中解析得到每一个待测小区的待测同步块信号的参考量;第一确定子模块,被配置为若所述第一解析子模块解析得到的所述参考量的值为第一数值,则确定待测同步块信号为辅同步信号;第二确定子模块,被配置为若所述第一解析子模块解析得到的所述第一参考量的值为第二数值,则确定待测同步块信号为辅同步信号和解调参考信号。
- 根据权利要求12所述的装置,其特征在于,所述信号测量模块包括:第一计算子模块,被配置为当所述待测小区的待测同步块信号为辅同步信号和解调参考信号时,计算所述辅同步信号的各个资源元素的信号功率的第一平均值,以及所述解调参考信号的各个资源元素的信号功率的第二平均值;归一化子模块,被配置为对所述第一计算子模块计算得到的所述第一平均值和所述第二平均值进行归一化处理,得到所述待测小区的测量结果。
- 根据权利要求14所述的装置,其特征在于,所述归一化子模块包括:权重确定子模块,被配置为基于所述辅同步信号的功率提升值、所述辅同步信号的资源元素的数目,以及所述解调参考信号的资源元素的数目,确定所述辅同步信号相对所述解调参考信号的权重;第二计算子模块,被配置为基于所述权重确定子模块确定的所述权重、所述第一平均值和所述第二平均值,计算得到所述待测小区的测量结果。
- 根据权利要求15所述的装置,其特征在于,所述装置还包括:第一接收模块,被配置为接收基站发送的第二系统消息;解析模块,被配置为从所述第二系统消息中解析得到所述辅同步信号的功率提升值。
- 根据权利要求12所述的装置,其特征在于,所述装置还包括:第二接收模块,被配置为在接入本小区的RRC的信令流程中,接收测量控制消息;第二确定模块,被配置为基于所述第二接收模块接收到的所述测量控制消息,确定除基于所述第一系统消息确定的待测小区之外的其他待测小区的待测同步块信号;所述信号测量模块,被配置为执行所述对所述每一个待测小区的待测同步块信号进行质量测量的操作。
- 一种测量小区信号质量的装置,其特征在于,所述装置包括:第三确定模块,被配置为确定每一个待测小区的待测同步块信号;第一生成模块,被配置为基于所述第三确定模块确定的所述每一个待测小区的待测同步块信号,生成所述第一系统消息,所述第一系统消息中携带有能够监听到所述第一系统消息的所有用户设备的共同的待测小区的待测同步块信号;第二发送模块,被配置为发送所述第一生成模块生成的所述第一系统消息。
- 根据权利要求18所述的装置,其特征在于,所述第三确定模块包括:第三确定子模块,被配置为基于所述用户设备所在小区的网络覆盖参数和/或所述用户设备支持的测量能力,确定所述每一个待测小区的待测同步块信号。
- 根据权利要求18所述的装置,其特征在于,所述用户设备支持的测量能力基于所述用户设备接入网络时上报的用户设备能力确定。
- 根据权利要求18所述的装置,其特征在于,所述装置还包括:第二生成模块,被配置为基于所述每一个待测小区的待测同步块信号,生成测量控制消息,所述测量控制消息中携带有除所述第一系统消息中指示的所述共同的待测小区之外的待测小区的待测同步块信号。
- 根据权利要求18所述的装置,其特征在于,所述装置还包括:第三发送模块,被配置为在本小区或者邻小区对辅同步信号做功率提升时,发送第二系统消息,所述第二系统消息中携带有所述辅同步信号的功率提升值。
- 一种用户设备,其特征在于,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:在接收到携带测量配置信息的第一系统消息之后,基于所述测量配置信息确定每一个待测小区的待测同步块信号;对所述每一个待测小区的待测同步块信号进行质量测量,得到对应每一个待测小区的测量结果;向基站发送测量报告消息,所述测量报告消息中携带有所述测量结果。
- 一种基站,其特征在于,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:确定每一个待测小区的待测同步块信号;基于所述每一个待测小区的待测同步块信号,生成所述第一系统消息,所述第一系统消息中携带有能够监听到所述第一系统消息的所有用户设备的共同的待测小区的待测同步块信号;发送所述第一系统消息。
- 一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,其特征在于,所述指令被处理器执行时实现以下步骤:在接收到携带测量配置信息的第一系统消息之后,基于所述测量配置信息确定每一个待测小区的待测同步块信号;对所述每一个待测小区的待测同步块信号进行质量测量,得到对应每一个待测小区的测量结果;向基站发送测量报告消息,所述测量报告消息中携带有所述测量结果。
- 一种非临时计算机可读存储介质,所述存储介质上存储有计算机指令,其特征在于,所述指令被处理器执行时实现以下步骤:确定每一个待测小区的待测同步块信号;基于所述每一个待测小区的待测同步块信号,生成所述第一系统消息,所述第一系统消息中携带有能够监听到所述第一系统消息的所有用户设备的共同的待测小区的待测同步块信号;发送所述第一系统消息。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17913921.7A EP3609220B1 (en) | 2017-06-13 | 2017-06-13 | Method and device for measuring cell signal quality, user equipment, and base station |
PCT/CN2017/088082 WO2018227386A1 (zh) | 2017-06-13 | 2017-06-13 | 测量小区信号质量的方法、装置、用户设备及基站 |
CN201780000503.0A CN108353304B (zh) | 2017-06-13 | 2017-06-13 | 测量小区信号质量的方法、装置、用户设备及基站 |
US16/655,502 US11076311B2 (en) | 2017-06-13 | 2019-10-17 | Methods and devices for measuring cell signal quality |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2017/088082 WO2018227386A1 (zh) | 2017-06-13 | 2017-06-13 | 测量小区信号质量的方法、装置、用户设备及基站 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/655,502 Continuation US11076311B2 (en) | 2017-06-13 | 2019-10-17 | Methods and devices for measuring cell signal quality |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018227386A1 true WO2018227386A1 (zh) | 2018-12-20 |
Family
ID=62961542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/088082 WO2018227386A1 (zh) | 2017-06-13 | 2017-06-13 | 测量小区信号质量的方法、装置、用户设备及基站 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11076311B2 (zh) |
EP (1) | EP3609220B1 (zh) |
CN (1) | CN108353304B (zh) |
WO (1) | WO2018227386A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12047793B2 (en) * | 2018-11-02 | 2024-07-23 | Nokia Technologies Oy | Method for power consumption reduction for measurement configurations |
CN111147213B (zh) * | 2018-11-02 | 2022-04-08 | 大唐移动通信设备有限公司 | 一种信号的发送方法及终端 |
US12120761B2 (en) * | 2019-09-03 | 2024-10-15 | Telefonaktiebolaget Lm Ericsson (Publ) | Uplink aware dual connectivity |
WO2022151393A1 (en) * | 2021-01-15 | 2022-07-21 | Nokia Shanghai Bell Co., Ltd. | Measuring a reference signal with associated synchronization signal |
WO2024072858A1 (en) * | 2022-09-28 | 2024-04-04 | Interdigital Patent Holdings, Inc. | Adaptive measurements for l1/l2 mobility |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101562833A (zh) * | 2008-04-18 | 2009-10-21 | 华为技术有限公司 | 一种测量控制方法、设备及系统 |
US20100130202A1 (en) * | 2007-08-17 | 2010-05-27 | Huawei Technologies Co., Ltd. | Method and user equipment for measuring cells and reading control channels |
CN101998439A (zh) * | 2009-08-18 | 2011-03-30 | 大唐移动通信设备有限公司 | 一种进行测量的方法、系统和装置 |
CN105338566A (zh) * | 2014-08-07 | 2016-02-17 | 上海贝尔股份有限公司 | 通信系统中用于测量增强的方法和装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018084676A1 (ko) * | 2016-11-04 | 2018-05-11 | 엘지전자 주식회사 | 무선 통신 시스템에서 기지국의 주파수 대역을 이용한 통신 방법 및 상기 방법을 이용하는 장치 |
CN108632007B (zh) * | 2017-03-22 | 2020-08-14 | 华为技术有限公司 | 用于传输数据的方法和终端设备 |
CN108632867A (zh) * | 2017-03-24 | 2018-10-09 | 维沃移动通信有限公司 | 一种小区选择和重选的方法及终端 |
-
2017
- 2017-06-13 EP EP17913921.7A patent/EP3609220B1/en active Active
- 2017-06-13 CN CN201780000503.0A patent/CN108353304B/zh active Active
- 2017-06-13 WO PCT/CN2017/088082 patent/WO2018227386A1/zh unknown
-
2019
- 2019-10-17 US US16/655,502 patent/US11076311B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100130202A1 (en) * | 2007-08-17 | 2010-05-27 | Huawei Technologies Co., Ltd. | Method and user equipment for measuring cells and reading control channels |
CN101562833A (zh) * | 2008-04-18 | 2009-10-21 | 华为技术有限公司 | 一种测量控制方法、设备及系统 |
CN101998439A (zh) * | 2009-08-18 | 2011-03-30 | 大唐移动通信设备有限公司 | 一种进行测量的方法、系统和装置 |
CN105338566A (zh) * | 2014-08-07 | 2016-02-17 | 上海贝尔股份有限公司 | 通信系统中用于测量增强的方法和装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3609220A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3609220A4 (en) | 2020-02-12 |
EP3609220A1 (en) | 2020-02-12 |
US20200053587A1 (en) | 2020-02-13 |
CN108353304A (zh) | 2018-07-31 |
CN108353304B (zh) | 2020-08-14 |
EP3609220B1 (en) | 2023-05-10 |
US11076311B2 (en) | 2021-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7134236B2 (ja) | パスロスを決定する方法および装置 | |
WO2018227386A1 (zh) | 测量小区信号质量的方法、装置、用户设备及基站 | |
US11178637B2 (en) | Paging message receiving method and device, and paging configuration method and device | |
WO2019104541A1 (zh) | 资源配置方法、装置、用户设备及基站 | |
US11910212B2 (en) | Methods and apparatuses for MDT measurement | |
WO2022141186A1 (zh) | 信息传输方法、装置、通信设备和存储介质 | |
CN109451787B (zh) | 小区间信号干扰控制方法、装置、用户设备及基站 | |
WO2022141263A1 (zh) | 信息传输方法、装置、通信设备和存储介质 | |
WO2019061085A1 (zh) | 信道检测、信息发送方法、装置及通信设备 | |
WO2019023885A1 (zh) | 蜂窝网络中实现全双工传输的方法、装置、设备及基站 | |
WO2021063195A1 (zh) | 直连链路的参考信号接收功率rsrp测量方法及装置 | |
WO2019140685A1 (zh) | 进行最小化路测测量的方法、装置和系统 | |
EP3737139B1 (en) | Information reporting method and apparatus | |
WO2022205385A1 (zh) | 测量间隔处理方法、装置、通信设备及存储介质 | |
US20240195522A1 (en) | Method for sending downlink information, method for receiving downlink information, and device | |
US11218940B2 (en) | Cell reselection method and device, and storage medium | |
WO2019113757A1 (zh) | 确定用户设备移动速度的方法及装置、基站和用户设备 | |
CN113796110A (zh) | 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质 | |
WO2019153117A1 (zh) | 测量配置方法及装置 | |
WO2019104507A1 (zh) | 网络配置方法、网络测量方法及装置 | |
WO2023019392A1 (zh) | 终端能力上报方法及装置、存储介质 | |
WO2019183893A1 (zh) | 邻小区类型的指示方法及装置 | |
WO2022188157A1 (zh) | Ue省电处理方法、装置、通信设备及存储介质 | |
WO2019056384A1 (zh) | 无线链路监测方法及装置和指示接收方法及装置 | |
WO2019023880A1 (zh) | 传输方向的指示方法及装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17913921 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017913921 Country of ref document: EP Effective date: 20191106 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |