WO2018225906A1 - Microbubble generating apparatus - Google Patents

Microbubble generating apparatus Download PDF

Info

Publication number
WO2018225906A1
WO2018225906A1 PCT/KR2017/011808 KR2017011808W WO2018225906A1 WO 2018225906 A1 WO2018225906 A1 WO 2018225906A1 KR 2017011808 W KR2017011808 W KR 2017011808W WO 2018225906 A1 WO2018225906 A1 WO 2018225906A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
bubble
water
flow path
inner diameter
Prior art date
Application number
PCT/KR2017/011808
Other languages
French (fr)
Korean (ko)
Inventor
황재구
황주현
황성현
Original Assignee
황재구
황주현
황성현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황재구, 황주현, 황성현 filed Critical 황재구
Priority to KR1020197033658A priority Critical patent/KR20190137885A/en
Publication of WO2018225906A1 publication Critical patent/WO2018225906A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23121Diffusers having injection means, e.g. nozzles with circumferential outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2311Mounting the bubbling devices or the diffusers
    • B01F23/23114Mounting the bubbling devices or the diffusers characterised by the way in which the different elements of the bubbling installation are mounted
    • B01F23/231143Mounting the bubbling elements or diffusors, e.g. on conduits, using connecting elements; Connections therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23123Diffusers consisting of rigid porous or perforated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23126Diffusers characterised by the shape of the diffuser element
    • B01F23/231265Diffusers characterised by the shape of the diffuser element being tubes, tubular elements, cylindrical elements or set of tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2373Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media for obtaining fine bubbles, i.e. bubbles with a size below 100 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/237Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media
    • B01F23/2376Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids characterised by the physical or chemical properties of gases or vapours introduced in the liquid media characterised by the gas being introduced
    • B01F23/23761Aerating, i.e. introducing oxygen containing gas in liquids
    • B01F23/237611Air

Definitions

  • the present invention relates to a device for generating microbubbles (in the present invention, microbubbles include microbubbles), and more particularly, to an apparatus capable of generating abundant microbubbles by pulverizing air bubbles smaller with no power.
  • the present invention relates to a microbubble generating device, including microbubbles.
  • Microbubbles are generally microbubbles that are much smaller than ordinary bubbles and are bubbles having a diameter of 50 ⁇ m or less. These microbubbles are floating as if they are floating in the water because of their small buoyancy and have a long resistance to buoyancy due to their high resistance to buoyancy. Therefore, microbubbles including microbubbles are widely used in various industrial fields due to characteristics such as charging action and self-pressurizing effect.
  • bubbles are used in a washing tank to improve washing power.
  • bubbles are used in the cleaning process, the etching process, the strip process, and the like.
  • bubbles in the bath can be easily removed without special tools, as well as bringing the effect of drinking on the skin, etc., is also used in many bathrooms.
  • Patent Document 1 Korean Patent Publication No. 10-1285914 (Patent Document 1) has a body having a generation chamber provided with an inlet and discharge outlet for supplying the feed water containing bubbles, the outer peripheral surface and the inner peripheral surface of the generating chamber of the body and A generating member which is received in close contact and has a plurality of micro-channels in the advancing direction of the feed water, and is provided through the body, one end of which is fixed to the generating member and the other end of which is exposed to the outside of the body, and a power source.
  • a generation chamber provided with an inlet and discharge outlet for supplying the feed water containing bubbles, the outer peripheral surface and the inner peripheral surface of the generating chamber of the body and A generating member which is received in close contact and has a plurality of micro-channels in the advancing direction of the feed water, and is provided through the body, one end of which is fixed to the generating member and the other end of which is exposed to the outside of the body, and a power source.
  • a driving means configured to receive the rotational force of the supplied and driven motor to forward and reverse rotation of the rotating shaft, and a pair of sensing sensors which detect the contact with the operating link and the operating link rotating in synchronization with the rotating shaft;
  • the microphone further comprises a control means including a control unit for controlling the driving of the motor in accordance with the detection of the detection sensor.
  • the microbubble path of the generating member provided in the generating chamber is in the process of being discharged to the outlet via the generating chamber.
  • the bubbles are finely separated and compressed during the passage to generate microbubbles.
  • Patent Document 1 is a bar that requires a power source for driving the pump, in the present invention is to provide a device that can generate a richer fine bubble without a power source.
  • the present invention has been made in view of the above, the object of the present invention is to provide a fine bubble generator that can generate abundant fine bubbles by pulverizing the air bubbles more finely with no power.
  • the microbubble generating device of the present invention has a plate shape, a plurality of through holes are formed, the through holes are composed of an inflow region and an outflow region, the inner diameter of the inflow region is It characterized in that it comprises a bubble grinding plate formed smaller than the inner diameter of the outlet area.
  • the present invention is installed in a position higher than the bubble crushing plate bubble generating tube for generating water containing air bubbles sent to the bubble crushing plate; And a bubble crushing nozzle installed at a lower position than the bubble crushing plate to receive water passing through the bubble crushing plate and pulverize the air bubbles more finely and then discharge the fine bubbles.
  • the bubble grinding tank having a hollow portion inside the bubble grinding plate, the bubble generating tube and the bubble grinding nozzle is characterized in that it is installed outside the bubble grinding tank.
  • the bubble grinding plate is characterized in that it is fixed inside the grinding tank through a support rod extending up and down.
  • the bubble generating tube, the water supply unit configured to allow the first flow path, the boosting structure and the second flow path are arranged in sequence to flow the water in that order, the water supply A water supply part connected to a second flow path of the water supply part, through which the water supplied from the water supply part is discharged, and an air supply pipe formed at a side of the water supply part to supply air to the drainage part, wherein
  • the inner diameter is smaller than the inner diameter of the drainage portion or the inner diameter of the first flow path, the pressure increase that is interposed between the first flow path and the second flow path to pass water from the first flow path to the second flow path;
  • the structure is a structure in which the inner diameter gradually decreases from a portion adjacent to the first flow path to a portion adjacent to the second flow path, and a hill and a valley are formed on an inner slope thereof. And that is characterized.
  • each of the peaks and valleys of the boost structure is characterized in that formed at least three or more odd numbers.
  • the inner circumferential surface of the second flow passage is characterized in that the screw of the spiral shape for inducing the rotation of the flowing water protrudes.
  • the air control valve is mounted on the end of the air supply pipe.
  • the bubble grinding nozzle is made of a pipe shape including an inlet for the water containing the bubble flows, and a flow passage communicating with the inlet and having an inner diameter larger than the inner diameter of the inlet, the water in the flow path
  • the first plate is provided with a plurality of first flow paths for passing through and the second plate formed with a plurality of second flow paths are sequentially formed at a predetermined interval so that the water entering the inlet is formed in a predetermined space with the first plate. It characterized in that it is configured to pass through the second plate.
  • the second flow path of the second plate may include an inflow area of water and an outflow area of water, and an inner diameter of the inflow area may be smaller than an inner diameter of the outflow area.
  • a third plate having a plurality of third passages for passing water is further formed in a position having a predetermined distance from the first plate and the second plate It is done.
  • the number of third flow paths of the third plate is the same as or less than the number of first flow paths of the first plate, and the number of first flow paths of the first plate is the second of the second plate. Characterized in less than the number of distribution channels.
  • the inside angle of the outlet area of the second flow path of the second plate is characterized in that the right angle.
  • a predetermined interval between the first plate and the third plate is formed by a first ring chamber filled with water passing through a plurality of first flow paths of the first plate, the second plate and the third plate
  • the predetermined interval between the three plates is characterized in that formed by the second ring chamber is filled with water passing through the plurality of third passages of the third plate.
  • the bubble grinding nozzle is formed in a pipe shape including an inlet through which water containing bubbles is introduced, and a flow passage communicating with the inlet and having an inner diameter larger than that of the inlet, wherein the water passes through
  • a first plate provided with a plurality of first flow paths and a second plate formed with a plurality of second flow paths are sequentially formed at a predetermined interval so that water entering the inlet may pass through the first plate and a predetermined space. And configured to pass through the plate.
  • the water containing the air bubbles fall into the bubble grinding plate of the bubble grinding tank, bumping and mixing process, the outflow having a relatively large inner diameter in the inlet region having a small inner diameter of the plurality of through holes of the bubble grinding plate
  • the outflow having a relatively large inner diameter in the inlet region having a small inner diameter of the plurality of through holes of the bubble grinding plate
  • the bubble generating tube produces water having a bubble state containing air bubbles, finely crushes the air bubbles in the bubble pulverization tank, and finely pulverizes the fine air bubbles in the bubble pulverizing nozzle to produce abundant fines. It has the effect of generating bubbles.
  • FIG. 1 is a schematic cross-sectional view for illustrating the concept of a fine bubble generator according to the present invention
  • FIG. 2 is a schematic perspective view of a micro bubble generator of an embodiment according to the present invention.
  • FIG. 3 is an exploded perspective view of FIG. 2;
  • Figure 4 is a top view of the lower housing of the bubble grinding tank applied in accordance with the present invention.
  • FIG. 5 is a bottom perspective view of a bubble grinding plate applied according to the present invention.
  • FIG. 6 is a cross-sectional view of a bubble grinding plate applied according to the present invention.
  • FIG. 7 is a perspective view of a bubble generating tube according to the present invention.
  • FIG. 8 is a schematic cross-sectional view of a bubble generating tube according to the present invention.
  • FIGS. 9 and 10 are top views of a first embodiment of a boosting structure applied according to the present invention.
  • FIG. 11 is a top view of a second embodiment of a boosting structure applied according to the present invention.
  • FIG. 12 is a top view showing a modification of the second embodiment of the boosting structure applied according to the present invention.
  • Figure 13 is a top view of a third embodiment of a boosting structure applied according to the present invention.
  • FIG. 14 is an assembled perspective view of the air control valve assembled to the bubble generating tube according to the present invention.
  • FIG. 15 is an exploded perspective view of a first embodiment of the bubble grinding nozzle of the present invention.
  • FIG. 16 is an assembly cross-sectional view of FIG. 15;
  • FIG. 17 is an exploded perspective view of a bubble grinding nozzle according to a second embodiment of the present invention.
  • FIG. 17 is an assembled sectional view of FIG. 17;
  • 19 is a cross-sectional view of the bubble grinding nozzle according to the third embodiment of the present invention.
  • FIG. 1 is a schematic cross-sectional view for illustrating the concept of a microbubble generating device according to the present invention.
  • the microbubble generating device comprises an inflow area 3321 and an outflow area 3322, and a bubble having a plurality of through holes 3320 having an inner diameter smaller than an inner diameter of the outflow area 3322.
  • the inside of the bubble grinding tank 3800 has a hollow portion
  • the bubble grinding plate 3300 is located in the hollow portion
  • the inlet 3801 and the outlet 3802 communicating with the hollow portion is formed in the housing 3800
  • the water containing air bubbles is input from the outside to the inlet 3801, and the water containing the generated fine bubbles is discharged to the outlet 3802.
  • the shape of the bubble grinding tank 3800 is not limited to the shape of FIG. 1 and various shapes may be applied.
  • At least one bubble grinding plate 3300 is installed in the hollow of the bubble grinding tank 3800.
  • the microbubble generating device of FIG. 1 may be variously modified based on a basic configuration, and the following description will describe embodiments in which the microbubble generating device is implemented in a specific manner.
  • Figure 2 is a schematic perspective view of the microbubble generating device of the embodiment according to the present invention
  • Figure 3 is an exploded perspective view of Figure 2
  • Figure 4 is a top view of the lower housing of the bubble grinding tank applied in accordance with the present invention.
  • Microbubble generating device of the embodiment of the present invention includes a bubble grinding plate (3300).
  • a bubble generating tube may be mounted at the inlet 3801 of the bubble grinding tank 3800 of FIG. 1, and a bubble grinding nozzle may be mounted at the outlet 3802.
  • the embodiment of FIG. 2 illustrates such a case. .
  • the microbubble generating device of the embodiment may include a bubble generating tube 3200, a bubble grinding tank 3000, and a bubble grinding nozzle 3700.
  • the bubble generating tube 3200 allows air to be absorbed by the constant supplied, thereby discharging water containing air bubbles (bubbles).
  • the bubble generating tube 3200 is mounted to the bubble crushing tank 3000 so that the water containing the air bubbles is introduced, and the bubble crushing tank 3000 finely bubbles the air bubbles contained in the water discharged from the bubble generating tube 3200. To grind.
  • the bubble grinding nozzle 3700 is mounted in the lower region of the bubble grinding tank 3000 and discharges water containing abundant fine bubbles by pulverizing the fine air bubbles pulverized in the bubble grinding tank 3000 smaller.
  • the microbubble generating device generates water having a bubble state containing air bubbles in the bubble generating tube 3200, and finely crushes the air bubbles in the bubble grinding tank 3000, In the bubble grinding nozzle 3700, fine air bubbles are more finely pulverized to generate rich fine bubbles.
  • Bubble crushing tank 3000 has a lower portion and a hollow portion is formed therein.
  • the bubble grinding tank 3000 may include an upper housing 3100, a bubble grinding plate 3300, and a lower housing 3500.
  • the upper housing 3100 is provided with a coupling through hole 3110 for inserting and fixing the bubble generating tube 3200 to discharge water containing air bubbles from the bubble generating tube 3200 to the hollow portion.
  • the bubble crushing plate 3300 is located in the hollow portion of the upper housing 3100, and a plurality of penetrations through which the bubble is crushed by separating and mixing water containing air bubbles discharged from the bubble generating tube 3200.
  • a hole 3320 is formed.
  • the lower housing 3500 is coupled to the lower portion of the upper housing 3100 and has a discharge passage 3520 for discharging water containing air bubbles pulverized from the bubble crushing plate 3300.
  • connection pipe 3600 is connected to the discharge passage 3520 of the lower housing 3500, and the bubble grinding nozzle 3700 is connected to the connection pipe 3600.
  • the bubble generating tube 3200 is located above the upper housing 3100 higher than the bubble crushing plate 3300.
  • the bubble generating tube 3200 is mounted in the coupling through hole 3110 of the upper housing 3100 of the bubble grinding tank 3000, in the bubble generating tube 3200 mounted on the upper side of the upper housing 3100. Water containing air bubbles is discharged to the bubble crushing plate 3300 located in the hollow portion of the upper housing 3100.
  • the bubble crushing plate 3300 has a plurality of through-holes 3320, so that the water containing the air bubbles discharged from the bubble generating tube 3200 is separated from the plurality of through-holes 3320 and then mixed. Thus, the air bubbles contained in the water are more finely pulverized.
  • a discharge passage 3520 is formed in the lower housing 3500 to discharge water containing the air bubbles pulverized from the bubble crushing plate 3300.
  • the water containing the crushed air bubbles discharged to the discharge passage 3520 of the lower housing 3500 is injected into the bubble grinding nozzle 3700 through the connecting pipe 3600, the bubble grinding nozzle 3700 is water
  • the bubbles contained in the pulverizer are further crushed to discharge water containing the rich fine bubbles.
  • the fine bubble generating device may further include a support bar 3400 formed on the outer circumferential surface of the engaging jaw (3410) for supporting the bubble crushing plate (3300), as shown in Figure 4, the lower housing 3500
  • a fixing groove 3510 may be formed to fix one end of the support bar 3400 to the support bar 3400.
  • a fitting hole 3310 for passing the support bar 3400 may be formed in the central region of the plate-shaped bubble crushing plate 3300.
  • the support rod 3400 is inserted into the fitting hole 3310 of the bubble crushing plate 3300, and the bubble crushing plate 3300 fitted to the support rod 3400 is caught by the catching jaw 3410, and thus the lower portion of the catching jaw 3410.
  • the support rod 3400 does not go down, and one end of the support rod 3400 is fixed to the fixing groove 3510 of the lower housing 3500.
  • the microbubble generating device of the embodiment of the present invention in order to maintain the balance of the bubble crushing plate 3300 inserted in the support rod 3400, the fitting fixing hole (3451) that can be fixed to the support rod 3400 and the fitting fixed
  • the balance plate 3450 may be further configured to include a plurality of water flow passages 3451 formed around the hole 3451.
  • FIG. 5 is a bottom perspective view of a bubble grinding plate applied according to the present invention
  • FIG. 6 is a cross-sectional view of a bubble grinding plate applied according to the present invention.
  • the bubble crushing plate 3300 has a plate shape (including a disc shape), and a fitting hole 3310 is formed in the center area, and a plurality of through holes formed in the bubble crushing plate 3300 are formed.
  • the hole 3320 is formed in an area around the fitting hole 3310.
  • Water containing the air bubbles discharged from the bubble generating tube 3200 to the bubble crushing plate 3300 passes through the plurality of through holes 3320 of the bubble crushing plate 3300 and the housing (upper housing and lower housing are combined). State) to the bottom.
  • At least some of the plurality of through holes 3320 of the bubble crushing plate 3300 may be formed of an inflow area 3321 and an outflow area 3322 of water, and an inner diameter of the inflow area 3321 may be an outflow area 3322. It is designed smaller than the inner diameter of.
  • the water containing air bubbles introduced into the plurality of through holes 3320 of the bubble crushing plate 3300 passes through the inflow area 3321 with a small inner diameter, and then flows out into the outflow area 3322 with a large inner diameter. By mixing, the fine air bubbles are broken down to finer size.
  • the inner diameters D1, D2, and D3 of the outlet regions 3322 of the plurality of through holes 3320 of the bubble crushing plate 3300 are gradually increased in the radial direction from the fitting hole 3310 as shown in FIG. 5.
  • the inner diameter of the inflow area 3321 of the plurality of through holes 3320 is small, The water containing the introduced air bubbles may not quickly exit the plurality of through holes 3320 and may remain above the bubble crushing plate 3300.
  • the flow rate through the through hole increases toward the edge of the bubble grinding plate 3300 far from the fitting hole 3310 to reduce water staying on the upper side of the bubble grinding plate 3300 as much as possible and
  • the inner diameters D1, D2, and D3 of the outlet regions 3322 of the plurality of through holes 3320 may be gradually increased in the fitting holes 3310 so that air bubbles may be crushed in the through holes 3320. will be.
  • the area of the bubble crushing plate 3300 increases as the radial direction increases in the fitting hole 3310. For this reason, the area of the bubble crushing plate 3300 farther from the edge of the bubble crushing plate 3300 farther from the fitting hole 3310 is increased.
  • the inner diameter of the outlet area 3322 of the through hole 3320 may not be large in the area of the bubble grinding plate 3300 adjacent to the fitting hole 3310 because the area of the adjacent bubble grinding plate 3300 is small.
  • the inner diameters D1, D2, and D3 of the outflow areas 3322 of the plurality of through holes 3320 are formed by the coupling relationship between the bubble crushing plate 3300, the fitting hole 3310, and the plurality of through holes 3320.
  • the fitting hole 3310 is to be designed to increase gradually in the radial direction.
  • FIG. 7 is a perspective view of a bubble generating tube according to the present invention
  • Figure 8 is a schematic cross-sectional view of the bubble generating tube according to the present invention.
  • the first flow path 11, the boosting structure 200, and the second flow path 111 are sequentially arranged to flow water in that order.
  • a water supply part configured to be connected to the water supply part, a drain part connected to the second flow path 111 of the water supply part to discharge water supplied from the water supply part, and an air supply formed at a side of the drain part to supply air to the drain part; Pipe 300.
  • the inner diameter (D2) of the second flow path 111 is smaller than the inner diameter (D3) of the drainage portion or the inner diameter (D1) of the first flow path (11), the first flow path 11 and the first
  • the boosting structure 200 interposed between the two flow passages 111 and passing the water from the first flow passage 11 to the second flow passage 111 is a portion adjacent to the first flow passage 11.
  • the inner diameter gradually decreases from (a) to the portion (b) adjacent to the second flow path 111.
  • a mountain and a valley are formed on the inner inclined surface thereof.
  • the second flow path 111 is located at the center of the boosting structure 200.
  • the water supply part of the present invention is composed of a first flow passage 11, the pressure-increasing structure 200 and the second flow passage 111,
  • Figure 8 is a first horizontal pipe 100 and the second horizontal pipe (10) 2
  • the above configuration is shown by connecting two pipes.
  • the first horizontal pipe 100 and the second horizontal pipe 10 are screwed.
  • the constant supplied through the first flow path 11 of the water supply part is increased in pressure in the booster structure 200 and flows to the second flow path 111, and the water pressure of the water flowing into the second flow path 111 is the first flow path. It becomes larger than the water pressure of the constant supplied to the furnace 11.
  • the constant is the water pressure of the water flowing in the second flow path 111 while being bumped out of the mountain and valley formed in the pressure-increasing structure 200 to the second flow path 111 is greater than the water pressure of the constant.
  • a spiral screw (not shown) may be protruded from the inner circumferential surface of the second flow passage 111 to guide the rotation of the flowing water.
  • the water flowing through the second flow passage 111 may be rotated by the screw.
  • the second flow path 111 may be defined as extending from the pressure-increasing structure 200 to the drain.
  • the booster structure may be formed integrally with the first horizontal pipe 100 or may be manufactured separately from the first horizontal pipe 100.
  • the pressure-increasing structure is composed of a component manufactured separately from the horizontal pipe 100.
  • the inner diameter D1 of the first flow passage 11 is designed to be larger than the inner diameter D2 of the second flow passage 111 of the water supply unit 110.
  • the constant supplied through the first flow path 11 flows through the second flow path 111 of the water supply unit 110 at the center of the pressure-increasing structure 200 by increasing the pressure in the pressure-increasing structure 200.
  • the water pressure of the water flowing into the second flow passage 111 of 110 becomes greater than the water pressure of the constant.
  • the water pressure of the water flowing into the second flow passage 111 of the water supply unit 110 while the constant hits the booster structure 200 quickly exits the second flow passage 111 is greater than the water pressure of the constant.
  • the inner diameter D3 of the third flow path 121 of the drainage part 120 is designed to be larger than the inner diameter D2 of the second flow path 111 of the water supply part 110, the water supply part having a smaller inner diameter is provided. Water flowing into the second flow passage 111 of 110 suddenly exits to the third flow passage 121 having a large inner diameter and negative pressure is generated.
  • Water exiting from the second flow passage 111 of the water supply portion 110 to the third flow passage 121 of the drain portion 120 by the negative pressure is disposed perpendicular to the horizontal axis of the first horizontal pipe 100. It sucks in the air supplied from the air supply pipe (300).
  • the water discharged from the third flow passage 121 of the drainage portion 120 becomes bubbled water containing air (air bubble form).
  • the bubble generating tube according to the present invention distributes the constant of which the water pressure is increased through the pressure-increasing structure to the second flow passage of the water supply portion having the small inner diameter, and the third portion of the drain having the relatively large inner diameter of the water flowing in the second flow passage.
  • FIG. 9 and 10 are top views of a first embodiment of a boosting structure applied according to the invention
  • FIG. 11 is a top view of a second embodiment of a boosting structure applied according to the invention
  • FIG. It is a top view which shows the modification of 2nd Example.
  • the pressure-increasing structure has a predetermined thickness and may have a circular ring shape centering on the second flow passage 111 of the water supply unit 110.
  • each of the hills and valleys of the boost structure is formed with at least three or more odd numbers.
  • the peaks 205a1, 205a2, and 205a3 are positioned on 360 ° of the one surface 205 of the booster structure with the second flow path 111 of the water supply unit 110 as the central axis.
  • the valleys 205b1, 205b2, and 205b3 are formed in three, the angles ⁇ 1, ⁇ 2, and ⁇ 3 between the mountains are 120 °, the valleys are formed between the mountains, and the booster structure separately manufactured is illustrated in FIG. 3B.
  • the boosting structure 200 of FIG. 9B functions as the second flow path 111 beyond the range from the portion a adjacent to the first flow passage to the portion b adjacent to the second flow passage 111. It shows the case that the part is made to include part.
  • the first embodiment of the booster structure formed in this way implements the booster structure in a circular ring shape centering on the second flow passage 111 of the water supply unit 110, and the mountains 211a, 211b, 211c, 211d, and 211e) and the valleys 212a, 212b, 212c, 212d, and 212e are formed on a line connected from the second flow path 111 of the water supply unit 110 to the outer circumferential surface of the booster structure.
  • the acid is formed on a line connected to the second flow passage 111 of the water supply unit 110 on the outer circumferential surfaces of the boosting structures 220 and 230, and the bone is a boosting structure ( It is formed on a line connected to the second flow path 111 of the water supply unit 110 from the inner side spaced apart from the outer circumferential surface of 220 and 230 (or vice versa).
  • FIG. 11 is a second embodiment of the pressure-increasing structure in which three hills 221a, 221b, 221c and three valleys 222a, 222b, and 222c are formed
  • FIG. 12 shows mountains 231a, 231b, 231c, 231d, and 231e. This is a modification of the second embodiment of the pressure-increasing structure in which five bones 232a, 232b, 232c, 232d, and 232e are formed.
  • Figure 13 is a top view of a third embodiment of a boosting structure applied according to the present invention.
  • a third embodiment of the booster structure may be realized by forming a hill and a valley on a line connected to the second flow passage 111 of the water supply unit 110 at an inner side spaced apart from the outer circumferential surface of the booster structure 250.
  • concave bends of the peaks 251a, 251b, 251c, 251d, 251e and the valleys 252a, 252b, 252c, 252d, 252e are located inwardly spaced from the outer circumferential surface of the boost structure 250. .
  • FIG. 14 is an assembled perspective view of the air control valve assembled to the bubble generating tube according to the present invention.
  • the air control valve 520 by mounting the air control valve 520 to the bubble generating tube to adjust the amount of air supplied to the drain, it can be configured to adjust the amount of air bubbles that can be absorbed by the water flowing in the third flow passage of the drain. .
  • the air control valve 520 forms a screw groove on the inner surface of the air supply pipe 300 so that the air control valve 520 can be coupled to, and extending the screw groove coupled to the screw groove extending pipe 510. It is formed at one end of the.
  • the other end of the extension pipe 510 is equipped with an air control valve 520.
  • the air regulating valve 520 is provided with an inflow port through which air flows, and an air flow path communicating with the inflow port communicates with the extension pipe 510.
  • An opening and closing means is formed on the air flow path.
  • FIG. 15 is an exploded perspective view of a first embodiment of the bubble grinding nozzle of the present invention
  • FIG. 16 is an assembled cross-sectional view of FIG. 15.
  • Bubble crushing nozzle of the present invention is made of a pipe shape including an inlet in which the water containing the bubble is introduced, and a flow passage communicating with the inlet and having an inner diameter larger than the inner diameter of the inlet, a plurality of passages through the water
  • the first plate having a first flow path of the second plate and the second plate formed with a plurality of second flow paths are formed sequentially at a predetermined interval so that the water entering the inlet through the first plate and a predetermined space through the second plate It is configured to pass through.
  • 15 and 16 illustrate a first embodiment implementing the above configuration.
  • the bubble grinding nozzle according to the first embodiment of the present invention is in communication with the inlet 1101, and the inlet 1101 through which the water containing the fine air bubbles made from the outside is in communication with the A first nozzle pipe 1100 including a flow path 1102 having an inner diameter greater than that of the inlet 1101; A first plate (1200) opposed to the inlet (1101) and inserted into the flow path (1102) and having a plurality of first flow paths (1210) through which the water passes; A first ring chamber 1300 contacted with the first plate 1200 and inserted into the flow path 1102 and filled with water passing through the plurality of first flow paths 1210 of the first plate 1200.
  • a second plate contacting the first ring chamber 1300 and inserted into the flow path 1102, and having a plurality of second flow paths 1610 passing through the water filled in the first ring chamber 1300. (1600); And a second nozzle pipe 1800 contacted with the second plate 1600 and inserted into the flow path 1102, and coupled to an end of the flow path 1102 of the first nozzle pipe 1100. .
  • the second nozzle pipe 1800 is coupled to the first outlet 1103. do.
  • a predetermined interval between the first plate and the third plate may be implemented by various configurations, but in the first embodiment, the above-described constant interval is formed by the first ring chamber. will be.
  • the first embodiment exemplifies a case in which the two nozzle pipes, the first nozzle pipe 1100 and the second nozzle pipe 1800, are used. It was.
  • the inlet 1101 of the first nozzle pipe 1100 is introduced into the water containing the fine air bubbles generated by any fine bubble generator, the water is located on the flow path 1102 More finely pulverized while passing through the first plate 1200, the first ring chamber 1300, and the second plate 1600 is discharged to the second nozzle pipe 1800 coupled with the first outlet 1103.
  • the inner diameter of the flow path 1102 of the first nozzle pipe 1100 is larger than the inner diameter of the inlet port 1101.
  • the first plate 1200 and the first ring chamber located on the flow path 1102. This is to prevent the 1300 and the second plate 1600 from being separated into the inlet 1101. Therefore, as long as it has an appropriate structure, it is also possible to design the inner diameter of the flow path 1102 of the 1st nozzle pipe 1100, and the inner diameter of the inflow port 1101, for example.
  • the second nozzle pipe 1800 is inserted into the flow path 1102 to be coupled to the first outlet 1103 of the first nozzle pipe 1100 while being in contact with the second plate 1600.
  • the plate 1200, the first ring chamber 1300, and the second plate 1600 serve to closely contact the inlet 1101.
  • the end of the second nozzle pipe 1800 is coupled with the first outlet 1103 of the first nozzle pipe 1100, so that the end of the second nozzle pipe 1800 is second.
  • the first plate 1200, the first ring chamber 1300, and the second plate 1600 are in close contact with each other, and the first plate 1200 is in close contact with the inlet 1101.
  • the water passing through the inlet 1101 passes through the first flow path 1210 of the first plate 1200, the first ring chamber 1300, and the second flow path 1610 of the second plate 1600. do.
  • first and second plates 1200 and 1600 are plate-shaped (preferably disc-shaped).
  • the number of the second flow paths 1610 of the second plate 1600 may be larger than the number of the first flow paths 1210 of the first plate 1200.
  • the mixing of water may be promoted by varying the water passage flow rates of the first flow path 1210 and the second flow path 1610 of the second plate 1600.
  • the inner diameter of the second flow path 1610 of the second plate 1600 may be designed to be smaller than the inner diameter of the first flow path 1210 of the first plate 1200.
  • the first ring chamber 1300 is interposed between the first and second plates 1600 in a ring shape, so that the inside of the ring functions as a chamber in which water is filled.
  • the water passing through the first flow path 1210 of the first plate 1200 is filled in the first ring chamber 1300 and mixed to separate the fine air bubbles contained in the water to a finer size.
  • the water filled in the first ring chamber 1300 exits to the second flow path 1610 of the second plate 1600.
  • each of the plurality of second flow paths 1610 of the second plate 1600 includes an inflow area 1611 and an outflow area 1612 of water, and an inner diameter of the inflow area 1611 is an outflow area 1612. It is designed smaller than the inner diameter of.
  • the outflow region 1612 having a large inner diameter of the second plate 1600 is formed by processing into a concave cylindrical (preferably cylindrical) groove, and the inflow region 1611 having a small inner diameter has an outflow region 1612. It can be implemented as a hole having a smaller inner diameter than).
  • the inside angle of the outlet area 1612 of the second flow path 1610 of the second plate 1600 is preferably at right angles, from the inlet area 1611 having a small inner diameter to the outlet area 1612 having a large inner diameter.
  • the water filled in the first ring chamber 1300 first flows into the inlet area 1611 having a smaller inner diameter of each of the second flow passages 1610, and then has a relatively large inner diameter outlet region 1612.
  • the fine air bubbles contained in the water are pulverized to a finer size through the outflow process to).
  • the length of the water outlet area 1612 of the second flow path 1610 in the second plate 1600 is preferably designed to be longer than the length of the water inlet area 1611.
  • the inflow area 1611 of the second flow path 1610 is simply an area through which water passes, whereas the outflow area 1612 substantially mixes water, thereby pulverizing fine air bubbles contained in the water. This is because it is an area.
  • the water containing the introduced fine air bubbles is the first flow path of the first plate, the first ring chamber, the second flow path of the second plate By passing through the mixing and grinding process, it is possible to produce abundantly finer bubbles.
  • FIG. 17 is an exploded perspective view of a bubble grinding nozzle according to a second embodiment of the present invention
  • FIG. 18 is an assembled cross-sectional view of FIG. 17.
  • the bubble grinding nozzle according to the second embodiment of the present invention may include a third plate 1400 and a second ring chamber between the first ring chamber 1300 and the second plate 1600 of the bubble grinding nozzle of the first embodiment. 1500) are sequentially configured to further intervene.
  • one surface of the third plate 1400 contacts the first ring chamber 1300, and one surface of the second ring chamber 1500 contacts the other surface of the third plate 1400, and the second ring chamber 1500.
  • the second plate 1600 is in contact with the other surface.
  • the second ring chamber 1500 is interposed between the third plate 1400 and the second plate 1600 to form a chamber inside the ring structure of the second ring chamber 1500.
  • the third plate 1400 includes a plurality of third flow passages 1410 through which water passes, and the third flow passage 1410 is implemented as a hole penetrated from one surface of the third plate 1400 to the other surface.
  • the end of the second nozzle pipe 1800 when the end of the second nozzle pipe 1800 is coupled with the first outlet 1103 of the first nozzle pipe 1100, the first plate 1200, the first ring chamber 1300, The third plate 1400, the second ring chamber 1500, and the second plate 1600 may be in close contact with the inlet 1101 so that the third plate 1600 and the second nozzle pipe 1800 may be more closely adhered to each other.
  • the contact ring 1700 may be further interposed between the ends.
  • the first and third plates 1400, the first and second ring chambers 1500, and the second plate 1600 are configured to adjust the flow rate and the filling amount of the chamber to maximize the mixing of water to more fine air bubbles. By pulverization, water with increased bubble generation can be discharged.
  • the number of the third flow paths 1410 of the third plate 1400 is equal to or less than the number of the first flow paths 1210 of the first plate 1200, and the first plate 1200.
  • the number of first flow paths 1210 of the second plate 1600 may be designed to be less than the number of second flow paths 1610 of the. That is, by differently designating the number of distribution channels of the first to third plates 1200, 1600 and 1400, the water mixture passing through the distribution channels of the first to third plates 1200, 1600 and 1400 may be further increased. It is.
  • designing the number of the third flow paths 1410 of the third plate 1400 to be equal to or less than the number of the first flow paths 1210 of the first plate 1200 may include the first plate 1200.
  • the number of second flow paths 1610 of the second plate 1600 may be determined by the number of first flow paths 1210 of the first plate 1200 and the third flow paths 1410 of the third plate 1400. More than the number is to increase the mixing action of the water in the second flow path 1610 of the second plate 1600 and the grinding action of the fine air bubbles contained in the water.
  • the first nozzle pipe 1100, the first plate 1200, the first ring chamber 1300, the second plate 1600, and the second nozzle pipe 1800 are illustrated as separate configurations. However, some or all of these configurations may be formed in one configuration. The same applies to the second embodiment.
  • the first plate 1200 and the first ring chamber 1300 may be integrally formed.
  • FIG. 19 is a cross-sectional view of the bubble grinding nozzle according to the third embodiment of the present invention.
  • the third embodiment of the present invention shows a case in which the second plate 1600 and the second nozzle pipe 1800 are integrally implemented in the first or second embodiment.
  • the present invention provides a fine bubble generator for crushing air bubbles more finely.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)

Abstract

The present invention relates to a microbubble generating apparatus. The microbubble generating apparatus comprises a bubble crushing plate which has a plate shape and has a plurality of through-holes formed thereon, wherein the through-holes comprise an inflow region and an outflow region, wherein the inner diameter of the inflow region is smaller than that of the outflow region.

Description

미세 버블 발생장치Fine bubble generator
본 발명은 미세 버블(본 발명에서 미세 버블은 마이크로 버블을 포함한다) 발생장치에 관한 것으로, 더욱 상세하게는, 무전원으로 공기 기포를 더욱 작게 분쇄하여 풍부한 미세 버블을 발생할 수 있는 장치에 관한 것이다.The present invention relates to a device for generating microbubbles (in the present invention, microbubbles include microbubbles), and more particularly, to an apparatus capable of generating abundant microbubbles by pulverizing air bubbles smaller with no power.
본 발명은 미세 버블 발생 장치에 관한 것으로, 여기에는 마이크로 버블도 포함된다.The present invention relates to a microbubble generating device, including microbubbles.
일반적으로 마이크로 버블이란 일반 기포보다 아주 작은 미세 기포로 50㎛ 이하의 직경을 가진 기포이다. 이러한 마이크로 버블은 부력이 작아서 수중에서 유영하듯 부유하며 부력에 대한 저항이 커서 수중에 장시간 유영하게 된다. 따라서 마이크로 버블을 포함하여 미세 버블은 대전작용이나 자기가압효과 등의 특성에 의해 각종 산업분야에서 널리 이용되고 있다.Microbubbles are generally microbubbles that are much smaller than ordinary bubbles and are bubbles having a diameter of 50 μm or less. These microbubbles are floating as if they are floating in the water because of their small buoyancy and have a long resistance to buoyancy due to their high resistance to buoyancy. Therefore, microbubbles including microbubbles are widely used in various industrial fields due to characteristics such as charging action and self-pressurizing effect.
예컨대, 세탁기의 경우 세탁력을 향상시키기 위해 세탁조에서 버블을 이용하고 있다. 그리고 반도체나 액정표시장치의 제조공정의 경우 그 세정 공정이나 식각 공정 및 스트립 공정 등에서 버블이 이용되고 있다.For example, in the case of a washing machine, bubbles are used in a washing tank to improve washing power. In the process of manufacturing a semiconductor or a liquid crystal display, bubbles are used in the cleaning process, the etching process, the strip process, and the like.
또한 목욕시 버블을 이용하면 특별한 도구 없이도 용이하게 때를 제거할 수 있을 뿐만 아니라 피부 등에 마시지 효과를 가져올 수도 있기 때문에, 욕실 등에서도 많이 사용되고 있다.In addition, the use of bubbles in the bath can be easily removed without special tools, as well as bringing the effect of drinking on the skin, etc., is also used in many bathrooms.
한국 등록특허공보 제10-1285914호(특허문헌 1)에는 기포가 포함된 공급수를 공급받는 유입구와 배출되는 배출구가 구비된 발생실이 구비된 몸체와, 외주면이 상기 몸체의 발생실의 내주면과 밀착된 상태로 수용되며 공급수의 진행방향으로 다수의 미세관로가 형성된 발생부재와, 상기 몸체를 관통하여 구비되며 일단은 상기 발생부재에 고정되고 타단은 몸체의 외부로 노출된 회전축과, 전원을 공급받아 구동하는 모터의 회전력을 전달받아 상기 회전축을 정역회전하도록 된 구동수단을 포함하며, 상기 회전축과 동조하여 회전하는 작동링크와 상기 작동링크와 접촉되면 이를 감지하는 한 쌍의 감지센서와, 상기 감지센서의 감지에 따라 모터의 구동을 제어하는 제어부를 포함하여 이루어진 제어수단을 더 포함하여 이루어진 것을 특징으로 하는 마이크로 버블 발생 장치가 개시되어 있다.Korean Patent Publication No. 10-1285914 (Patent Document 1) has a body having a generation chamber provided with an inlet and discharge outlet for supplying the feed water containing bubbles, the outer peripheral surface and the inner peripheral surface of the generating chamber of the body and A generating member which is received in close contact and has a plurality of micro-channels in the advancing direction of the feed water, and is provided through the body, one end of which is fixed to the generating member and the other end of which is exposed to the outside of the body, and a power source. And a driving means configured to receive the rotational force of the supplied and driven motor to forward and reverse rotation of the rotating shaft, and a pair of sensing sensors which detect the contact with the operating link and the operating link rotating in synchronization with the rotating shaft; The microphone further comprises a control means including a control unit for controlling the driving of the motor in accordance with the detection of the detection sensor The bubble generation apparatus is disclosed.
특허문헌 1의 마이크로 버블 발생 장치는 별도의 펌프에 의해 기포가 혼합된 공급수가 유입구를 통해 공급되면, 공급수가 발생실을 경유하여 배출구로 배출되는 과정에서, 발생실에 구비된 발생부재의 미세관로를 통과하는 중에 기포가 미세하게 분리 및 압축되어 마이크로 버블이 발생된다.In the microbubble generating device of Patent Literature 1, when the feed water mixed with bubbles by a separate pump is supplied through an inlet, the microbubble path of the generating member provided in the generating chamber is in the process of being discharged to the outlet via the generating chamber. The bubbles are finely separated and compressed during the passage to generate microbubbles.
다만 특허문헌 1은 펌프를 구동할 전원이 필요한바, 본 발명에서는 무전원이며 보다 풍부한 미세 버블을 발생시킬 수 있는 장치를 제공하고자 한다.However, Patent Document 1 is a bar that requires a power source for driving the pump, in the present invention is to provide a device that can generate a richer fine bubble without a power source.
본 발명은 상기와 같은 점을 감안하여 안출된 것으로, 그 목적은 무전원으로, 공기 기포를 더욱 미세하게 분쇄하여 풍부한 미세 버블을 발생할 수 있는 미세 버블 발생장치를 제공하는데 있다.The present invention has been made in view of the above, the object of the present invention is to provide a fine bubble generator that can generate abundant fine bubbles by pulverizing the air bubbles more finely with no power.
상술된 목적을 달성하기 위한, 본 발명의 미세 버블 발생장치는, 판 형상이고, 다수의 관통홀이 형성돼 있으며, 상기 관통홀은 유입영역 및 유출영역으로 이루어지고, 상기 유입영역의 내경은 상기 유출영역의 내경보다 작게 형성된 버블 분쇄 플레이트를 구비하는 것을 특징으로 한다.In order to achieve the above object, the microbubble generating device of the present invention has a plate shape, a plurality of through holes are formed, the through holes are composed of an inflow region and an outflow region, the inner diameter of the inflow region is It characterized in that it comprises a bubble grinding plate formed smaller than the inner diameter of the outlet area.
여기서, 본 발명은 상기 버블 분쇄 플레이트보다 높은 위치에 설치되어 공기 기포가 함유된 물을 생성하여 상기 버블 분쇄 플레이트로 보내주는 버블 발생관; 및 상기 버블 분쇄 플레이트보다 낮은 위치에 설치되어 상기 버블 분쇄 플레이트를 통과한 물을 받아서 공기 기포를 더욱 미세하게 분쇄한 다음 배출하는 버블 분쇄노즐;을 더 포함하는 것을 특징으로 한다.Here, the present invention is installed in a position higher than the bubble crushing plate bubble generating tube for generating water containing air bubbles sent to the bubble crushing plate; And a bubble crushing nozzle installed at a lower position than the bubble crushing plate to receive water passing through the bubble crushing plate and pulverize the air bubbles more finely and then discharge the fine bubbles.
그리고, 상기 버블 분쇄 플레이트 내부에 중공부가 형성된 버블 분쇄탱크 내부에 설치되고, 상기 버블 발생관과 상기 버블 분쇄노즐은 상기 버블 분쇄탱크의 외부에 설치되는 것을 특징으로 한다.And, it is installed in the bubble grinding tank having a hollow portion inside the bubble grinding plate, the bubble generating tube and the bubble grinding nozzle is characterized in that it is installed outside the bubble grinding tank.
또, 상기 버블 분쇄 플레이트는 상하로 연장되는 지지봉을 통해 상기 분쇄탱크 내부에 고정되는 것을 특징으로 한다.In addition, the bubble grinding plate is characterized in that it is fixed inside the grinding tank through a support rod extending up and down.
또한, 본 발명의 미세 버블 발생장치에서, 상기 버블 발생관은, 제1유통로와 증압 구조물 및 제2유통로가 순차적으로 배열되어 그 순서대로 물을 흘려보낼 수 있도록 구성된 급수부와, 상기 급수부의 제2유통로에 연결되어 상기 급수부에서 공급된 물이 배출되는 배수부, 그리고 상기 배수부의 측면에 형성되어 상기 배수부로 공기를 공급하는 공기공급 파이프로 이루어지며, 이때 상기 제2유통로의 내경은 상기 배수부의 내경이나 상기 제1유통로의 내경보다 작고, 상기 제1유통로와 상기 제2유통로 사이에 개재되어 상기 제1유통로에서 상기 제2유통로로 물을 통과시키는 상기 증압 구조물은 상기 제1유통로에 인접한 부분에서 상기 제2유통로에 인접한 부분에 이르기까지 내경이 점진적으로 작아지는 구조로서 그 내측 경사면에 산(山)과 골이 형성되어 있는 것을 특징으로 한다.In addition, in the microbubble generating device of the present invention, the bubble generating tube, the water supply unit configured to allow the first flow path, the boosting structure and the second flow path are arranged in sequence to flow the water in that order, the water supply A water supply part connected to a second flow path of the water supply part, through which the water supplied from the water supply part is discharged, and an air supply pipe formed at a side of the water supply part to supply air to the drainage part, wherein The inner diameter is smaller than the inner diameter of the drainage portion or the inner diameter of the first flow path, the pressure increase that is interposed between the first flow path and the second flow path to pass water from the first flow path to the second flow path; The structure is a structure in which the inner diameter gradually decreases from a portion adjacent to the first flow path to a portion adjacent to the second flow path, and a hill and a valley are formed on an inner slope thereof. And that is characterized.
또한, 상기 증압 구조물의 산과 골 각각은 적어도 3개 이상의 홀수개로 형성된 것을 특징으로 한다.In addition, each of the peaks and valleys of the boost structure is characterized in that formed at least three or more odd numbers.
또, 상기 제2유통로의 내주면에는 흐르는 물의 회전을 유도하는 나선형태의 스크류가 돌출되어 있는 것을 특징으로 한다.In addition, the inner circumferential surface of the second flow passage is characterized in that the screw of the spiral shape for inducing the rotation of the flowing water protrudes.
그리고, 상기 공기공급 파이프의 단부에 공기 조절 밸브가 장착된 것을 특징으로 한다.And, it is characterized in that the air control valve is mounted on the end of the air supply pipe.
그리고, 본 발명은 상기 버블 분쇄노즐은, 기포가 함유된 물이 유입되는 유입구, 및 상기 유입구와 연통되고 상기 유입구의 내경보다 큰 내경을 가지는 유로를 포함하는 파이프 형상으로 이루어지며, 상기 유로에는 물을 통과시키는 다수의 제1유통로가 구비된 제1플레이트와 다수의 제2유통로가 형성되는 제2플레이트가 일정 간격을 두고 순차적으로 형성되어 상기 유입구에서 들어온 물이 제1플레이트와 일정 공간을 거쳐 제2플레이트를 통과하도록 구성된 것을 특징으로 한다.In addition, the present invention, the bubble grinding nozzle is made of a pipe shape including an inlet for the water containing the bubble flows, and a flow passage communicating with the inlet and having an inner diameter larger than the inner diameter of the inlet, the water in the flow path The first plate is provided with a plurality of first flow paths for passing through and the second plate formed with a plurality of second flow paths are sequentially formed at a predetermined interval so that the water entering the inlet is formed in a predetermined space with the first plate. It characterized in that it is configured to pass through the second plate.
또, 상기 제2플레이트의 제2유통로는 물의 유입영역 및 물의 유출영역으로 이루어지고, 상기 유입영역의 내경은 상기 유출영역의 내경보다 작은 것을 특징으로 한다.The second flow path of the second plate may include an inflow area of water and an outflow area of water, and an inner diameter of the inflow area may be smaller than an inner diameter of the outflow area.
또한, 상기 제1플레이트와 상기 제2플레이트 사이에, 물을 통과시키는 다수의 제3유통로가 구비된 제3플레이트가 상기 제1플레이트 및 제2플레이트와 일정 간격을 갖는 위치에 더 형성된 것을 특징으로 한다.In addition, between the first plate and the second plate, a third plate having a plurality of third passages for passing water is further formed in a position having a predetermined distance from the first plate and the second plate It is done.
그리고, 상기 제3플레이트의 제3유통로의 개수는 상기 제1플레이트의 제1유통로의 개수와 같거나 그보다 적고, 상기 제1플레이트의 제1유통로의 개수는 상기 제2플레이트의 제2유통로의 개수보다 적은 것을 특징으로 한다.The number of third flow paths of the third plate is the same as or less than the number of first flow paths of the first plate, and the number of first flow paths of the first plate is the second of the second plate. Characterized in less than the number of distribution channels.
또, 상기 제2플레이트의 제2유통로의 유출영역의 내각은 직각인 것을 특징으로 한다.In addition, the inside angle of the outlet area of the second flow path of the second plate is characterized in that the right angle.
또한, 상기 제1플레이트와 상기 제3플레이트 사이의 일정 간격은 상기 제1플레이트의 다수의 제1유통로를 통과한 물이 충진되는 제1링챔버에 의해 형성되고, 상기 제2플레이트와 상기 제3플레이트 사이의 일정 간격은 상기 제3플레이트의 다수의 제3유통로를 통과한 물이 충진되는 제2링챔버에 의해 형성된 것을 특징으로 한다.In addition, a predetermined interval between the first plate and the third plate is formed by a first ring chamber filled with water passing through a plurality of first flow paths of the first plate, the second plate and the third plate The predetermined interval between the three plates is characterized in that formed by the second ring chamber is filled with water passing through the plurality of third passages of the third plate.
또, 상기 버블 분쇄노즐은, 기포가 함유된 물이 유입되는 유입구, 및 상기 유입구와 연통되고 상기 유입구의 내경보다 큰 내경을 가지는 유로를 포함하는 파이프 형상으로 이루어지며, 상기 유로에는 물을 통과시키는 다수의 제1유통로가 구비된 제1플레이트와 다수의 제2유통로가 형성되는 제2플레이트가 일정 간격을 두고 순차적으로 형성되어 상기 유입구에서 들어온 물이 제1플레이트와 일정 공간을 거쳐 제2플레이트를 통과하도록 구성된 것을 특징으로 한다.In addition, the bubble grinding nozzle is formed in a pipe shape including an inlet through which water containing bubbles is introduced, and a flow passage communicating with the inlet and having an inner diameter larger than that of the inlet, wherein the water passes through A first plate provided with a plurality of first flow paths and a second plate formed with a plurality of second flow paths are sequentially formed at a predetermined interval so that water entering the inlet may pass through the first plate and a predetermined space. And configured to pass through the plate.
본 발명에 의하면, 공기 기포가 함유된 물은 버블 분쇄탱크의 버블 분쇄 플레이트로 낙하되면서 부딪쳐서 혼합과정을 거치고, 버블 분쇄 플레이트의 다수의 관통홀의 작은 내경을 가지는 유입영역에서 상대적으로 큰 내경을 가지는 유출영역으로 물이 빠져나오면서 서로 섞이고 상대적으로 큰 내경을 가지는 유출영역의 측벽에 부딪치게 되면서, 공기 기포를 더 미세하게 분쇄하여 미세 버블을 발생한다.According to the present invention, the water containing the air bubbles fall into the bubble grinding plate of the bubble grinding tank, bumping and mixing process, the outflow having a relatively large inner diameter in the inlet region having a small inner diameter of the plurality of through holes of the bubble grinding plate As water escapes into the zone, it mixes with each other and strikes the side wall of the outlet zone having a relatively large inner diameter, thereby pulverizing the air bubbles more finely to generate fine bubbles.
본 발명에 의하면, 버블 발생관에서 공기 기포가 함유된 버블 상태를 가지는 물을 생성하고, 버블 분쇄탱크에서 공기 기포를 미세하게 분쇄하고, 버블 분쇄노즐에서 미세 공기 기포를 더욱 미세하게 분쇄하여 풍부한 미세 버블을 발생할 수 있는 효과가 있다.According to the present invention, the bubble generating tube produces water having a bubble state containing air bubbles, finely crushes the air bubbles in the bubble pulverization tank, and finely pulverizes the fine air bubbles in the bubble pulverizing nozzle to produce abundant fines. It has the effect of generating bubbles.
도 1은 본 발명에 따른 미세 버블 발생장치의 개념을 보여주기 위한 개략적인 단면도,1 is a schematic cross-sectional view for illustrating the concept of a fine bubble generator according to the present invention,
도 2는 본 발명에 따른 실시예의 미세 버블 발생장치의 개략적인 사시도, 2 is a schematic perspective view of a micro bubble generator of an embodiment according to the present invention;
도 3은 도 2의 분해사시도, 3 is an exploded perspective view of FIG. 2;
도 4는 본 발명에 따라 적용된 버블 분쇄탱크의 하부하우징의 상면도,Figure 4 is a top view of the lower housing of the bubble grinding tank applied in accordance with the present invention,
도 5는 본 발명에 따라 적용된 버블 분쇄 플레이트의 저면사시도,5 is a bottom perspective view of a bubble grinding plate applied according to the present invention;
도 6은 본 발명에 따라 적용된 버블 분쇄 플레이트의 단면도, 6 is a cross-sectional view of a bubble grinding plate applied according to the present invention,
도 7은 본 발명에 따른 버블 발생관의 사시도, 7 is a perspective view of a bubble generating tube according to the present invention;
도 8은 본 발명에 따른 버블 발생관의 개략적인 단면도,8 is a schematic cross-sectional view of a bubble generating tube according to the present invention;
도 9 및 도 10은 본 발명에 따라 적용된 증압 구조물의 제1실시예의 상면도, 9 and 10 are top views of a first embodiment of a boosting structure applied according to the present invention;
도 11은 본 발명에 따라 적용된 증압 구조물의 제2실시예의 상면도, 11 is a top view of a second embodiment of a boosting structure applied according to the present invention;
도 12는 본 발명에 따라 적용된 증압 구조물의 제2실시예의 변형례를 도시한 상면도, 12 is a top view showing a modification of the second embodiment of the boosting structure applied according to the present invention;
도 13은 본 발명에 따라 적용된 증압 구조물의 제3실시예의 상면도,Figure 13 is a top view of a third embodiment of a boosting structure applied according to the present invention;
도 14는 본 발명에 따른 버블 발생관에 공기 조절 밸브가 조립되는 조립 사시도,14 is an assembled perspective view of the air control valve assembled to the bubble generating tube according to the present invention;
도 15는 본 발명의 버블 분쇄노즐의 제1실시예에 관한 분해 사시도, 15 is an exploded perspective view of a first embodiment of the bubble grinding nozzle of the present invention;
도 16은 도 15의 조립 단면도,16 is an assembly cross-sectional view of FIG. 15;
도 17은 본 발명의 제2실시예에 따른 버블 분쇄노즐의 분해 사시도, 17 is an exploded perspective view of a bubble grinding nozzle according to a second embodiment of the present invention;
도 18은 도 17의 조립 단면도,18 is an assembled sectional view of FIG. 17;
도 19는 본 발명의 제3실시예에 따른 버블 분쇄노즐의 단면도이다.19 is a cross-sectional view of the bubble grinding nozzle according to the third embodiment of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 실시를 위한 구체적인 내용을 설명하도록 한다.Hereinafter, with reference to the accompanying drawings will be described in detail for the practice of the present invention.
실시예를 설명하기 전에 부연해 두면, 본 발명의 청구범위의 구성을 구현하는 방법에는 여러 가지가 있을 수 있는바, 하기 실시예는 청구범위에 있는 구성을 구현하는 하나의 예를 보여주기 위한 것임을 밝힌다. 따라서 본 발명의 범위는 하기 실시예에 의해 제한되지 아니한다.Before explaining the embodiments, there may be a number of ways to implement the configuration of the claims of the present invention, the following embodiments are intended to illustrate one example of implementing the configuration of the claims Say. Therefore, the scope of the present invention is not limited by the following examples.
도 1은 본 발명에 따른 미세 버블 발생장치의 개념을 보여주기 위한 개략적인 단면도이다.1 is a schematic cross-sectional view for illustrating the concept of a microbubble generating device according to the present invention.
본 발명의 미세 버블 발생장치는 유입영역(3321) 및 유출영역(3322)으로 이루어지고, 유입영역(3321)의 내경이 유출영역(3322)의 내경보다 작은 다수의 관통홀(3320)이 형성된 버블 분쇄 플레이트(3300); 및 상기 버블 분쇄 플레이트(3300)가 구비되며, 입구(3801)로 유입된 공기 기포가 함유된 물이 상기 버블 분쇄 플레이트(3300)를 통하여 출구(3802)로 배출되는 버블 분쇄탱크(3800);를 포함하여 구성된다.The microbubble generating device according to the present invention comprises an inflow area 3321 and an outflow area 3322, and a bubble having a plurality of through holes 3320 having an inner diameter smaller than an inner diameter of the outflow area 3322. Grinding plate 3300; And a bubble crushing plate 3300, and a bubble crushing tank 3800 in which water containing air bubbles introduced into the inlet 3801 is discharged to the outlet 3802 through the bubble crushing plate 3300. It is configured to include.
버블 분쇄탱크(3800)의 입구(3801)로 유입된 공기 기포가 함유된 물은 버블 분쇄 플레이트(3300)로 낙하되면서 부딪쳐서 혼합과정을 거치고, 버블 분쇄 플레이트(3300)의 다수의 관통홀(3320)의 작은 내경을 가지는 유입영역(3321)에서 상대적으로 큰 내경을 가지는 유출영역(3322)으로 물이 빠져나오면서 서로 섞이고 상대적으로 큰 내경을 가지는 유출영역(3322)의 측벽에 부딪치게 되면서, 공기 기포를 더 미세하게 분쇄하여 미세 버블이 발생된다.Water containing air bubbles introduced into the inlet 3801 of the bubble crushing tank 3800 collides while falling into the bubble crushing plate 3300 to undergo a mixing process, and a plurality of through holes 3320 of the bubble crushing plate 3300. Water flows out from the inflow region 3321 having a small inner diameter to the outlet region 3322 having a relatively large inner diameter, and is mixed with each other and hits the side wall of the outlet region 3322 having a relatively large inner diameter, thereby further adding air bubbles. Fine grinding results in fine bubbles.
여기서, 버블 분쇄탱크(3800) 내부는 중공부가 존재하고, 이 중공부에 버블 분쇄 플레이트(3300)가 위치되며, 중공부와 연통되는 입구(3801)와 출구(3802)가 하우징(3800)에 형성되고, 입구(3801)로는 외부에서 공기 기포가 함유된 물이 입력되고, 출구(3802)로는 발생된 미세 버블이 함유된 물이 배출된다.Here, the inside of the bubble grinding tank 3800 has a hollow portion, the bubble grinding plate 3300 is located in the hollow portion, the inlet 3801 and the outlet 3802 communicating with the hollow portion is formed in the housing 3800 The water containing air bubbles is input from the outside to the inlet 3801, and the water containing the generated fine bubbles is discharged to the outlet 3802.
버블 분쇄탱크(3800)의 형상은 도 1의 형상에 한정되지 않고 다양한 형상을 적용할 수 있다.The shape of the bubble grinding tank 3800 is not limited to the shape of FIG. 1 and various shapes may be applied.
또한, 버블 분쇄탱크(3800)의 중공부에 적어도 하나의 버블 분쇄 플레이트(3300)가 설치된다.In addition, at least one bubble grinding plate 3300 is installed in the hollow of the bubble grinding tank 3800.
도 1의 미세 버블 발생장치는 기본적인 구성을 바탕으로 다양하게 변형가능한바, 후술하는 설명에서는 이를 특정한 방식으로 구현한 실시예를 설명한다.The microbubble generating device of FIG. 1 may be variously modified based on a basic configuration, and the following description will describe embodiments in which the microbubble generating device is implemented in a specific manner.
도 2는 본 발명에 따른 실시예의 미세 버블 발생장치의 개략적인 사시도이고, 도 3은 도 2의 분해사시도이며, 도 4는 본 발명에 따라 적용된 버블 분쇄탱크의 하부하우징의 상면도이다.Figure 2 is a schematic perspective view of the microbubble generating device of the embodiment according to the present invention, Figure 3 is an exploded perspective view of Figure 2, Figure 4 is a top view of the lower housing of the bubble grinding tank applied in accordance with the present invention.
본 발명의 실시예의 미세 버블 발생장치는 버블 분쇄 플레이트(3300)를 포함한다. 도 1의 버블 분쇄탱크(3800)의 입구(3801)에는 버블 발생관이 장착될 수 있고, 출구(3802)에는 버블 분쇄노즐이 장착될 수 있는바, 도 2의 실시예는 그러한 경우를 나타낸 것이다.Microbubble generating device of the embodiment of the present invention includes a bubble grinding plate (3300). A bubble generating tube may be mounted at the inlet 3801 of the bubble grinding tank 3800 of FIG. 1, and a bubble grinding nozzle may be mounted at the outlet 3802. The embodiment of FIG. 2 illustrates such a case. .
즉, 도 2 내지 도 4를 참조하면, 실시예의 미세 버블 발생장치는 버블 발생관(3200), 버블 분쇄탱크(3000) 및 버블 분쇄노즐(3700)을 포함하여 구성될 수 있다.That is, referring to FIGS. 2 to 4, the microbubble generating device of the embodiment may include a bubble generating tube 3200, a bubble grinding tank 3000, and a bubble grinding nozzle 3700.
버블 발생관(3200)은 공급되는 상수에 공기가 흡수되도록 하여, 공기 기포(버블)가 함유된 물을 배출한다.The bubble generating tube 3200 allows air to be absorbed by the constant supplied, thereby discharging water containing air bubbles (bubbles).
공기 기포가 함유된 물이 유입되도록 버블 발생관(3200)이 버블 분쇄탱크(3000)에 장착되고, 버블 분쇄탱크(3000)는 버블 발생관(3200)에서 배출되는 물에 함유된 공기 기포를 미세하게 분쇄한다.The bubble generating tube 3200 is mounted to the bubble crushing tank 3000 so that the water containing the air bubbles is introduced, and the bubble crushing tank 3000 finely bubbles the air bubbles contained in the water discharged from the bubble generating tube 3200. To grind.
버블 분쇄노즐(3700)은 버블 분쇄탱크(3000)의 하부영역에 장착되며, 버블 분쇄탱크(3000)에서 분쇄된 미세 공기 기포를 더욱 작게 분쇄하여 풍부한 미세 버블이 포함된 물을 배출한다.The bubble grinding nozzle 3700 is mounted in the lower region of the bubble grinding tank 3000 and discharges water containing abundant fine bubbles by pulverizing the fine air bubbles pulverized in the bubble grinding tank 3000 smaller.
그러므로, 본 발명의 실시예에 의한 미세 버블 발생장치는 버블 발생관(3200)에서 공기 기포가 함유된 버블 상태를 가지는 물을 생성하고, 버블 분쇄탱크(3000)에서 공기 기포를 미세하게 분쇄하고, 버블 분쇄노즐(3700)에서 미세 공기 기포를 더욱 미세하게 분쇄하여 풍부한 미세 버블을 발생하는 것이다.Therefore, the microbubble generating device according to an embodiment of the present invention generates water having a bubble state containing air bubbles in the bubble generating tube 3200, and finely crushes the air bubbles in the bubble grinding tank 3000, In the bubble grinding nozzle 3700, fine air bubbles are more finely pulverized to generate rich fine bubbles.
버블 분쇄탱크(3000)는 하부가 개방되고 내부에 중공부가 형성된다. 상기 버블 분쇄탱크(3000)는 상부하우징(3100), 버블 분쇄 플레이트(3300) 및 하부하우징(3500);을 포함하여 구성될 수 있다. Bubble crushing tank 3000 has a lower portion and a hollow portion is formed therein. The bubble grinding tank 3000 may include an upper housing 3100, a bubble grinding plate 3300, and a lower housing 3500.
상기 상부하우징(3100)에는 상기 버블 발생관(3200)에서 상기 중공부로 공기 기포가 함유된 물을 배출하도록 상기 버블 발생관(3200)이 삽입 고정되기 위한 결합관통홀(3110)이 형성된다.The upper housing 3100 is provided with a coupling through hole 3110 for inserting and fixing the bubble generating tube 3200 to discharge water containing air bubbles from the bubble generating tube 3200 to the hollow portion.
또한 상기 버블 분쇄 플레이트(3300)는 상기 상부하우징(3100)의 중공부에 위치하며, 상기 버블 발생관(3200)에서 배출된 공기 기포가 함유된 물을 분리 및 혼합하여 버블을 분쇄하는 다수의 관통홀(3320)이 형성돼 있다.In addition, the bubble crushing plate 3300 is located in the hollow portion of the upper housing 3100, and a plurality of penetrations through which the bubble is crushed by separating and mixing water containing air bubbles discharged from the bubble generating tube 3200. A hole 3320 is formed.
하부하우징(3500)은 상기 상부하우징(3100) 하부와 결합되는 구성으로, 상기 버블 분쇄 플레이트(3300)에서 분쇄된 공기 기포가 함유된 물을 배출시키는 배출통로(3520)가 형성돼 있다.The lower housing 3500 is coupled to the lower portion of the upper housing 3100 and has a discharge passage 3520 for discharging water containing air bubbles pulverized from the bubble crushing plate 3300.
여기서, 하부하우징(3500)의 배출통로(3520)에는 연결 파이프(3600)가 연결되고, 그 연결 파이프(3600)에 버블 분쇄노즐(3700)이 연결된다.Here, the connection pipe 3600 is connected to the discharge passage 3520 of the lower housing 3500, and the bubble grinding nozzle 3700 is connected to the connection pipe 3600.
그리고, 버블 발생관(3200)은 버블 분쇄 플레이트(3300)보다 높은 상부하우징(3100)의 상측부에 위치된다.The bubble generating tube 3200 is located above the upper housing 3100 higher than the bubble crushing plate 3300.
그러므로, 버블 분쇄탱크(3000)의 상부하우징(3100)의 결합관통홀(3110)에 버블 발생관(3200)이 장착되므로, 상부하우징(3100)의 상측부에 장착된 버블 발생관(3200)에서 공기 기포가 함유된 물이 상부하우징(3100)의 중공부에 위치된 버블 분쇄 플레이트(3300)로 토출된다.Therefore, since the bubble generating tube 3200 is mounted in the coupling through hole 3110 of the upper housing 3100 of the bubble grinding tank 3000, in the bubble generating tube 3200 mounted on the upper side of the upper housing 3100. Water containing air bubbles is discharged to the bubble crushing plate 3300 located in the hollow portion of the upper housing 3100.
버블 분쇄 플레이트(3300)는 다수의 관통홀(3320)이 형성되어 있어, 버블 발생관(3200)에서 토출된 공기 기포가 함유된 물을 다수의 관통홀(3320)에서 분리하여 통과시킨 후 혼합되게 하여, 물에 함유된 공기 기포를 보다 미세하게 분쇄한다. The bubble crushing plate 3300 has a plurality of through-holes 3320, so that the water containing the air bubbles discharged from the bubble generating tube 3200 is separated from the plurality of through-holes 3320 and then mixed. Thus, the air bubbles contained in the water are more finely pulverized.
하부하우징(3500)에 배출통로(3520)가 형성되어 있어, 버블 분쇄 플레이트(3300)에서 분쇄된 공기 기포가 함유된 물을 배출시킨다.A discharge passage 3520 is formed in the lower housing 3500 to discharge water containing the air bubbles pulverized from the bubble crushing plate 3300.
또한, 하부하우징(3500)의 배출통로(3520)로 배출된 분쇄된 공기 기포가 함유된 물은 연결 파이프(3600)를 통하여 버블 분쇄노즐(3700)로 주입되고, 버블 분쇄노즐(3700)은 물에 함유된 버블을 더욱 작게 분쇄하여 풍부한 미세 버블이 포함된 물을 배출한다.In addition, the water containing the crushed air bubbles discharged to the discharge passage 3520 of the lower housing 3500 is injected into the bubble grinding nozzle 3700 through the connecting pipe 3600, the bubble grinding nozzle 3700 is water The bubbles contained in the pulverizer are further crushed to discharge water containing the rich fine bubbles.
또한, 미세 버블 발생 장치는 상기 버블 분쇄 플레이트(3300)를 지지하는 걸림턱(3410)이 외주면에 형성된 지지봉(3400)을 더 포함하여 구성할 수 있고, 도 4에 도시된 바와 같이 하부하우징(3500)에 상기 지지봉(3400)의 일단을 고정시키기 위한 고정홈(3510)이 형성될 수 있다. 아울러, 판 형상의 버블 분쇄 플레이트(3300)의 중심 영역에는 상기 지지봉(3400)을 통과시키기 위한 끼움홀(3310)을 형성할 수 있다.In addition, the fine bubble generating device may further include a support bar 3400 formed on the outer circumferential surface of the engaging jaw (3410) for supporting the bubble crushing plate (3300), as shown in Figure 4, the lower housing 3500 A fixing groove 3510 may be formed to fix one end of the support bar 3400 to the support bar 3400. In addition, a fitting hole 3310 for passing the support bar 3400 may be formed in the central region of the plate-shaped bubble crushing plate 3300.
따라서, 버블 분쇄 플레이트(3300)의 끼움홀(3310)에 지지봉(3400)이 끼워지고, 지지봉(3400)에 끼워진 버블 분쇄 플레이트(3300)는 걸림턱(3410)에 걸려서 걸림턱(3410) 하부의 지지봉(3400) 영역으로 내려가지 않으며, 지지봉(3400)의 일단이 하부하우징(3500)의 고정홈(3510)에 고정된다.Accordingly, the support rod 3400 is inserted into the fitting hole 3310 of the bubble crushing plate 3300, and the bubble crushing plate 3300 fitted to the support rod 3400 is caught by the catching jaw 3410, and thus the lower portion of the catching jaw 3410. The support rod 3400 does not go down, and one end of the support rod 3400 is fixed to the fixing groove 3510 of the lower housing 3500.
또한, 본 발명의 실시예의 미세 버블 발생장치는 지지봉(3400)에 끼워진 버블 분쇄 플레이트(3300)의 균형을 유지하기 위하여 지지봉(3400)에 끼워 고정될 수 있는 끼움고정홀(3451) 및 상기 끼움고정홀(3451) 주변에 다수의 물흐름 통로(3451)가 형성된 균형 플레이트(3450)를 더 포함하여 구성할 수 있다.In addition, the microbubble generating device of the embodiment of the present invention in order to maintain the balance of the bubble crushing plate 3300 inserted in the support rod 3400, the fitting fixing hole (3451) that can be fixed to the support rod 3400 and the fitting fixed The balance plate 3450 may be further configured to include a plurality of water flow passages 3451 formed around the hole 3451.
도 5는 본 발명에 따라 적용된 버블 분쇄 플레이트의 저면사시도, 도 6은 본 발명에 따라 적용된 버블 분쇄 플레이트의 단면도이다.5 is a bottom perspective view of a bubble grinding plate applied according to the present invention, and FIG. 6 is a cross-sectional view of a bubble grinding plate applied according to the present invention.
도 5 및 도 6을 참조하면, 버블 분쇄 플레이트(3300)는 판형상(원판 형상을 포함)으로, 중심 영역에 끼움홀(3310)이 형성되어 있으며, 버블 분쇄 플레이트(3300)에 형성된 다수의 관통홀(3320)은 끼움홀(3310) 주변영역에 형성되어 있다.5 and 6, the bubble crushing plate 3300 has a plate shape (including a disc shape), and a fitting hole 3310 is formed in the center area, and a plurality of through holes formed in the bubble crushing plate 3300 are formed. The hole 3320 is formed in an area around the fitting hole 3310.
버블 발생관(3200)에서 버블 분쇄 플레이트(3300)로 토출된 공기 기포가 함유된 물은 버블 분쇄 플레이트(3300)의 다수의 관통홀(3320)을 통과하여 하우징(상부하우징과 하부하우징이 결합된 상태) 하부로 낙하된다.Water containing the air bubbles discharged from the bubble generating tube 3200 to the bubble crushing plate 3300 passes through the plurality of through holes 3320 of the bubble crushing plate 3300 and the housing (upper housing and lower housing are combined). State) to the bottom.
여기서, 버블 분쇄 플레이트(3300)의 다수의 관통홀(3320) 중 적어도 일부는 물의 유입영역(3321) 및 물의 유출영역(3322)으로 이루어지고, 유입영역(3321)의 내경은 유출영역(3322)의 내경보다 작게 설계된다.Here, at least some of the plurality of through holes 3320 of the bubble crushing plate 3300 may be formed of an inflow area 3321 and an outflow area 3322 of water, and an inner diameter of the inflow area 3321 may be an outflow area 3322. It is designed smaller than the inner diameter of.
즉, 버블 분쇄 플레이트(3300)의 다수의 관통홀(3320)로 유입된 공기 기포가 함유된 물은 내경이 작은 유입영역(3321)을 통과한 다음, 내경이 큰 유출영역(3322)으로 유출되면서 혼합되어 미세 공기 기포는 더 미세한 크기로 분쇄된다.That is, the water containing air bubbles introduced into the plurality of through holes 3320 of the bubble crushing plate 3300 passes through the inflow area 3321 with a small inner diameter, and then flows out into the outflow area 3322 with a large inner diameter. By mixing, the fine air bubbles are broken down to finer size.
이때, 버블 분쇄 플레이트(3300)의 다수의 관통홀(3320)의 유출영역(3322)의 내경(D1,D2,D3)은 도 5와 같이 끼움홀(3310)에서 방사 방향으로 나아갈수록 점점 증가되도록 설계할 수 있다.In this case, the inner diameters D1, D2, and D3 of the outlet regions 3322 of the plurality of through holes 3320 of the bubble crushing plate 3300 are gradually increased in the radial direction from the fitting hole 3310 as shown in FIG. 5. Can be designed.
유입된 공기 기포가 함유된 물이 버블 분쇄 플레이트(3300)의 다수의 관통홀(3320)의 유입영역(3321)으로 흐를 때, 다수의 관통홀(3320)의 유입영역(3321)의 내경이 작아서 유입된 공기 기포가 함유된 물이 다수의 관통홀(3320)을 신속하게 빠져나가지 못하고 버블 분쇄 플레이트(3300) 상측에 머무를 수 있다.When the water containing the introduced air bubbles flows into the inflow area 3321 of the plurality of through holes 3320 of the bubble breaking plate 3300, the inner diameter of the inflow area 3321 of the plurality of through holes 3320 is small, The water containing the introduced air bubbles may not quickly exit the plurality of through holes 3320 and may remain above the bubble crushing plate 3300.
이런 문제점을 해결하기 위하여, 끼움홀(3310)에서 먼 버블 분쇄 플레이트(3300) 가장자리 방향으로 갈수록 관통홀을 통과하는 유량을 크게하여 버블 분쇄 플레이트(3300) 상측에 물이 머무르는 것을 최대한 감소시키고 다수의 관통홀(3320)에서 공기 기포가 분쇄될 수 있도록, 다수의 관통홀(3320)의 유출영역(3322)의 내경(D1,D2,D3)을 끼움홀(3310)에서 방사방향으로 점점 증가하도록 하는 것이다.In order to solve this problem, the flow rate through the through hole increases toward the edge of the bubble grinding plate 3300 far from the fitting hole 3310 to reduce water staying on the upper side of the bubble grinding plate 3300 as much as possible and The inner diameters D1, D2, and D3 of the outlet regions 3322 of the plurality of through holes 3320 may be gradually increased in the fitting holes 3310 so that air bubbles may be crushed in the through holes 3320. will be.
이때, 끼움홀(3310)에서 방사방향으로 점점 증가될수록 버블 분쇄 플레이트(3300) 영역의 면적이 커진다, 이러한 이유로 끼움홀(3310)에서 먼 버블 분쇄 플레이트(3300) 가장자리 영역보다 끼움홀(3310)에 근접된 버블 분쇄 플레이트(3300) 영역의 면적이 작아 끼움홀(3310)에 근접된 버블 분쇄 플레이트(3300) 영역에서는 관통홀(3320)의 유출영역(3322)의 내경을 크게 형성할 수 없다.At this time, the area of the bubble crushing plate 3300 increases as the radial direction increases in the fitting hole 3310. For this reason, the area of the bubble crushing plate 3300 farther from the edge of the bubble crushing plate 3300 farther from the fitting hole 3310 is increased. The inner diameter of the outlet area 3322 of the through hole 3320 may not be large in the area of the bubble grinding plate 3300 adjacent to the fitting hole 3310 because the area of the adjacent bubble grinding plate 3300 is small.
그러므로, 버블 분쇄 플레이트(3300), 끼움홀(3310) 및 다수의 관통홀(3320)의 결합관계에 의해, 다수의 관통홀(3320)의 유출영역(3322)의 내경(D1,D2,D3)을 끼움홀(3310)에서 방사방향으로 점점 증가되도록 설계하는 것이다.Therefore, the inner diameters D1, D2, and D3 of the outflow areas 3322 of the plurality of through holes 3320 are formed by the coupling relationship between the bubble crushing plate 3300, the fitting hole 3310, and the plurality of through holes 3320. In the fitting hole 3310 is to be designed to increase gradually in the radial direction.
도 7은 본 발명에 따른 버블 발생관의 사시도이고, 도 8은 본 발명에 따른 버블 발생관의 개략적인 단면도이다.7 is a perspective view of a bubble generating tube according to the present invention, Figure 8 is a schematic cross-sectional view of the bubble generating tube according to the present invention.
도 7 및 도 8을 참조하면, 본 발명에 따른 버블 발생관은 제1유통로(11)와 증압 구조물(200) 및 제2유통로(111)가 순차적으로 배열되어 그 순서대로 물을 흘려보낼 수 있도록 구성된 급수부와, 상기 급수부의 제2유통로(111)에 연결되어 상기 급수부에서 공급된 물이 배출되는 배수부, 그리고 상기 배수부의 측면에 형성되어 상기 배수부로 공기를 공급하는 공기공급 파이프(300)로 이루어진다. 이때 상기 제2유통로(111)의 내경(D2)은 상기 배수부의 내경(D3)이나 상기 제1유통로(11)의 내경(D1)보다 작고, 상기 제1유통로(11)와 상기 제2유통로(111) 사이에 개재되어 상기 제1유통로(11)에서 상기 제2유통로(111)로 물을 통과시키는 상기 증압 구조물(200)은 상기 제1유통로(11)에 인접한 부분(a)에서 상기 제2유통로(111)에 인접한 부분(b)에 이르기까지 내경이 점진적으로 작아지는 구조로서 그 내측 경사면에 산(山)과 골이 형성되어 있다.7 and 8, in the bubble generating tube according to the present invention, the first flow path 11, the boosting structure 200, and the second flow path 111 are sequentially arranged to flow water in that order. A water supply part configured to be connected to the water supply part, a drain part connected to the second flow path 111 of the water supply part to discharge water supplied from the water supply part, and an air supply formed at a side of the drain part to supply air to the drain part; Pipe 300. At this time, the inner diameter (D2) of the second flow path 111 is smaller than the inner diameter (D3) of the drainage portion or the inner diameter (D1) of the first flow path (11), the first flow path 11 and the first The boosting structure 200 interposed between the two flow passages 111 and passing the water from the first flow passage 11 to the second flow passage 111 is a portion adjacent to the first flow passage 11. The inner diameter gradually decreases from (a) to the portion (b) adjacent to the second flow path 111. A mountain and a valley are formed on the inner inclined surface thereof.
즉, 증압 구조물(200)의 중심에는 제2유통로(111)가 위치된다.That is, the second flow path 111 is located at the center of the boosting structure 200.
본 발명의 급수부는 제1유통로(11), 증압 구조물(200) 및 제2유통로(111)로 구성되는바, 도 8은 제1수평파이프(100)와 제2수평파이프(10) 2개의 파이프를 연결하여 위와 같은 구성을 구현한 경우를 보인 것이다. 여기서, 제1수평파이프(100)와 제2수평파이프(10)는 나사결합된다.The water supply part of the present invention is composed of a first flow passage 11, the pressure-increasing structure 200 and the second flow passage 111, Figure 8 is a first horizontal pipe 100 and the second horizontal pipe (10) 2 The above configuration is shown by connecting two pipes. Here, the first horizontal pipe 100 and the second horizontal pipe 10 are screwed.
급수부의 제1유통로(11)를 통해 공급된 상수는 증압 구조물(200)에서 압이 증강되어 제2유통로(111)로 흐르며, 제2유통로(111)로 흐르는 물의 수압은 제1유통로(11)로 공급되는 상수의 수압보다 커진다.The constant supplied through the first flow path 11 of the water supply part is increased in pressure in the booster structure 200 and flows to the second flow path 111, and the water pressure of the water flowing into the second flow path 111 is the first flow path. It becomes larger than the water pressure of the constant supplied to the furnace 11.
여기서, 상수는 증압 구조물(200)에 형성된 산과 골에서 부딪히면서 빠르게 제2유통로(111)로 빠져나가면서 제2유통로(111)로 흐르는 물의 수압은 상수의 수압보다 커지게 되는 것이다.Here, the constant is the water pressure of the water flowing in the second flow path 111 while being bumped out of the mountain and valley formed in the pressure-increasing structure 200 to the second flow path 111 is greater than the water pressure of the constant.
그리고 제2유통로(111)의 내주면에는 흐르는 물의 회전을 유도하는 나선형태의 스크류(미도시)가 돌출될 수 있으며, 이 경우, 제2유통로(111)를 유동하는 물이 스크류에 의해 회전류를 형성하여 배수부(120)의 제3유통로(121)로 강하게 토출될 수 있는 것이다.In addition, a spiral screw (not shown) may be protruded from the inner circumferential surface of the second flow passage 111 to guide the rotation of the flowing water. In this case, the water flowing through the second flow passage 111 may be rotated by the screw. By forming a current it can be strongly discharged to the third flow path 121 of the drain portion (120).
이때, 제2유통로(111)는 증압 구조물(200)에서 배수구까지 연장되는 것으로 정의할 수 있다.At this time, the second flow path 111 may be defined as extending from the pressure-increasing structure 200 to the drain.
증압 구조물은 제1수평파이프(100)에 일체로 형성될 수도 있고 제1수평파이프(100)와 별도로 제작될 수도 있다.The booster structure may be formed integrally with the first horizontal pipe 100 or may be manufactured separately from the first horizontal pipe 100.
이후의 설명에서는 증압 구조물을 수평파이프(100)와 별도로 제작된 부품으로 구성한 경우를 상정하여 설명한다. In the following description, it is assumed that the pressure-increasing structure is composed of a component manufactured separately from the horizontal pipe 100.
제1유통로(11)의 내경(D1)은 급수부(110)의 제2유통로(111)의 내경(D2)보다 크게 설계한다.The inner diameter D1 of the first flow passage 11 is designed to be larger than the inner diameter D2 of the second flow passage 111 of the water supply unit 110.
제1유통로(11)를 통해 공급된 상수는 증압 구조물(200)에서 압이 증강되어 증압 구조물(200) 중심에 있는 급수부(110)의 제2유통로(111)를 통하여 흐르며, 급수부(110)의 제2유통로(111)로 흐르는 물의 수압은 상수의 수압보다 커진다.The constant supplied through the first flow path 11 flows through the second flow path 111 of the water supply unit 110 at the center of the pressure-increasing structure 200 by increasing the pressure in the pressure-increasing structure 200. The water pressure of the water flowing into the second flow passage 111 of 110 becomes greater than the water pressure of the constant.
즉, 상수가 증압 구조물(200)에 부딪히면서 빠르게 제2유통로(111)로 빠져나가면서 급수부(110)의 제2유통로(111)로 흐르는 물의 수압은 상수의 수압보다 커지게 되는 것이다.That is, the water pressure of the water flowing into the second flow passage 111 of the water supply unit 110 while the constant hits the booster structure 200 quickly exits the second flow passage 111 is greater than the water pressure of the constant.
그리고, 배수부(120)의 제3유통로(121)의 내경(D3)은 급수부(110)의 제2유통로(111)의 내경(D2)보다 크게 설계되어 있으므로, 작은 내경의 급수부(110)의 제2유통로(111)로 흐르는 물은 갑자기 큰 내경의 제3유통로(121)로 빠져나가면서 부압이 발생된다.Since the inner diameter D3 of the third flow path 121 of the drainage part 120 is designed to be larger than the inner diameter D2 of the second flow path 111 of the water supply part 110, the water supply part having a smaller inner diameter is provided. Water flowing into the second flow passage 111 of 110 suddenly exits to the third flow passage 121 having a large inner diameter and negative pressure is generated.
이 부압에 의해 급수부(110)의 제2유통로(111)에서 배수부(120)의 제3유통로(121)로 빠져나오는 물이 제1수평파이프(100)의 수평축에 수직하게 배치되는 공기공급 파이프(300)에서 공급된 공기를 빨아들인다.Water exiting from the second flow passage 111 of the water supply portion 110 to the third flow passage 121 of the drain portion 120 by the negative pressure is disposed perpendicular to the horizontal axis of the first horizontal pipe 100. It sucks in the air supplied from the air supply pipe (300).
즉, 배수부(120)의 제3유통로(121)에 유동되는 물에 공기가 흡수되어 버블을 함유한 물이 된다.That is, air is absorbed into the water flowing in the third flow passage 121 of the drainage portion 120 to form water containing bubbles.
그러므로 배수부(120)의 제3유통로(121)로부터 배출되는 물은 공기(공기 기포 형태)를 함유한 버블 상태의 물이 된다.Therefore, the water discharged from the third flow passage 121 of the drainage portion 120 becomes bubbled water containing air (air bubble form).
따라서 본 발명에 따른 버블 발생관은 증압 구조물을 통하여 수압이 증가된 상수를 내경이 작은 급수부의 제2유통로로 유통시키고, 제2유통로에 유통되는 물을 상대적으로 내경이 큰 배수부의 제3유통로로 배출시켜 배수부의 제3유통로에 부압을 발생시킴으로써, 그 부압을 통하여 급수부의 제2유통로에서 배수부의 제3유통로로 배출되는 물에 공기공급 파이프에서 공급된 공기가 흡수되도록 하여, 배수부의 제3유통로에서 버블을 함유한 물을 배출시킬 수 있는 것이다.Accordingly, the bubble generating tube according to the present invention distributes the constant of which the water pressure is increased through the pressure-increasing structure to the second flow passage of the water supply portion having the small inner diameter, and the third portion of the drain having the relatively large inner diameter of the water flowing in the second flow passage. By discharging to the distribution channel to generate a negative pressure in the third flow path of the drain, the air supplied from the air supply pipe is absorbed by the water discharged from the second flow path of the water supply to the third flow path of the drain through the negative pressure In this case, the water containing the bubbles may be discharged from the third flow passage of the drain.
도 9 및 도 10은 본 발명에 따라 적용된 증압 구조물의 제1실시예의 상면도, 도 11은 본 발명에 따라 적용된 증압 구조물의 제2실시예의 상면도, 도 12는 본 발명에 따라 적용된 증압 구조물의 제2실시예의 변형례를 도시한 상면도이다.9 and 10 are top views of a first embodiment of a boosting structure applied according to the invention, FIG. 11 is a top view of a second embodiment of a boosting structure applied according to the invention, and FIG. It is a top view which shows the modification of 2nd Example.
증압 구조물은 소정 두께를 가지고 있고 급수부(110)의 제2유통로(111)를 중심으로 하는 원형 링 형상일 수 있다.The pressure-increasing structure has a predetermined thickness and may have a circular ring shape centering on the second flow passage 111 of the water supply unit 110.
이때, 발명자의 경험에 비추어 증압 구조물의 산과 골 각각은 적어도 3개 이상의 홀수개로 형성하는 것이 바람직하다.At this time, in view of the inventor's experience, it is preferable that each of the hills and valleys of the boost structure is formed with at least three or more odd numbers.
즉, 도 9a에 도시된 바와 같이, 급수부(110)의 제2유통로(111)를 중심축으로 하여, 증압 구조물의 일면(205)의 360°상에 산(205a1, 205a2, 205a3)과 골(205b1, 205b2, 205b3) 각각을 3개씩 형성하는 경우, 산과 산 사이의 각도(α1, α2, α3)는 120°이고, 산과 산 사이에 골이 형성되고, 별도로 제작된 증압 구조물은 도 3b와 같은 구조가 된다. 여기서, 도 9b의 증압 구조물(200)은 제1유통로에 인접한 부분(a)부터 제2유통로(111)에 인접한 부분(b)까지의 범위를 넘어 제2유통로(111)로 기능하는 부분까지 일부 포함하도록 제작한 경우를 도시한 것이다.That is, as shown in FIG. 9A, the peaks 205a1, 205a2, and 205a3 are positioned on 360 ° of the one surface 205 of the booster structure with the second flow path 111 of the water supply unit 110 as the central axis. When each of the valleys 205b1, 205b2, and 205b3 is formed in three, the angles α1, α2, and α3 between the mountains are 120 °, the valleys are formed between the mountains, and the booster structure separately manufactured is illustrated in FIG. 3B. It becomes a structure like Here, the boosting structure 200 of FIG. 9B functions as the second flow path 111 beyond the range from the portion a adjacent to the first flow passage to the portion b adjacent to the second flow passage 111. It shows the case that the part is made to include part.
이러한 방법으로 형성된 증압 구조물의 제1실시예는 도 10과 같이, 증압 구조물을 급수부(110)의 제2유통로(111)를 중심으로 하는 원형링 형상으로 구현하고, 산(211a, 211b, 211c, 211d, 211e)과 골(212a, 212b, 212c, 212d, 212e)은 급수부(110)의 제2유통로(111)에서 증압 구조물의 외주면까지 연결되는 선상에 형성하는 것이다.The first embodiment of the booster structure formed in this way, as shown in FIG. 10, implements the booster structure in a circular ring shape centering on the second flow passage 111 of the water supply unit 110, and the mountains 211a, 211b, 211c, 211d, and 211e) and the valleys 212a, 212b, 212c, 212d, and 212e are formed on a line connected from the second flow path 111 of the water supply unit 110 to the outer circumferential surface of the booster structure.
그리고 도 11 및 도 12에 도시한 제2실시예의 경우, 산은 증압 구조물(220,230)의 외주면에서 급수부(110)의 제2유통로(111)까지 연결되는 선상에 형성하고, 골은 증압 구조물(220,230)의 외주면으로부터 이격된 내측에서 급수부(110)의 제2유통로(111)까지 연결되는 선상에 형성한다(그 역도 가능).11 and 12, the acid is formed on a line connected to the second flow passage 111 of the water supply unit 110 on the outer circumferential surfaces of the boosting structures 220 and 230, and the bone is a boosting structure ( It is formed on a line connected to the second flow path 111 of the water supply unit 110 from the inner side spaced apart from the outer circumferential surface of 220 and 230 (or vice versa).
도 11은 산(221a,221b,221c)과 골(222a,222b,222c) 각각을 3개씩 형성한 증압 구조물의 제2실시예이고, 도 12는 산(231a,231b,231c,231d,231e)과 골(232a,232b,232c,232d,232e) 각각을 5개씩 형성한 증압 구조물의 제2실시예의 변형례이다.FIG. 11 is a second embodiment of the pressure-increasing structure in which three hills 221a, 221b, 221c and three valleys 222a, 222b, and 222c are formed, and FIG. 12 shows mountains 231a, 231b, 231c, 231d, and 231e. This is a modification of the second embodiment of the pressure-increasing structure in which five bones 232a, 232b, 232c, 232d, and 232e are formed.
도 13은 본 발명에 따라 적용된 증압 구조물의 제3실시예의 상면도이다.Figure 13 is a top view of a third embodiment of a boosting structure applied according to the present invention.
본 발명에서는 증압 구조물(250)의 외주면으로부터 이격된 내측에서 급수부(110)의 제2유통로(111)까지 연결되는 선상에 산과 골을 형성하여 증압 구조물의 제3실시예를 구현할 수 있다.In the present invention, a third embodiment of the booster structure may be realized by forming a hill and a valley on a line connected to the second flow passage 111 of the water supply unit 110 at an inner side spaced apart from the outer circumferential surface of the booster structure 250.
즉, 도 13과 같이, 산(251a,251b,251c,251d,251e)과 골(252a,252b,252c,252d,252e)의 오목한 굴곡은 증압 구조물(250)의 외주면으로부터 이격된 내측에 위치된다.That is, as shown in FIG. 13, concave bends of the peaks 251a, 251b, 251c, 251d, 251e and the valleys 252a, 252b, 252c, 252d, 252e are located inwardly spaced from the outer circumferential surface of the boost structure 250. .
도 14는 본 발명에 따른 버블 발생관에 공기 조절 밸브가 조립되는 조립 사시도이다.14 is an assembled perspective view of the air control valve assembled to the bubble generating tube according to the present invention.
본 발명에서는 버블 발생관에 공기 조절 밸브(520)를 장착하여 배수부로 공급되는 공기량을 조절함으로써, 배수부의 제3유통로에서 흐르는 물에 흡수될 수 있는 공기 기포량을 조절할 수 있도록 구성할 수 있다.In the present invention, by mounting the air control valve 520 to the bubble generating tube to adjust the amount of air supplied to the drain, it can be configured to adjust the amount of air bubbles that can be absorbed by the water flowing in the third flow passage of the drain. .
여기서, 공기 조절 밸브(520)는 공기공급 파이프(300)에 결합될 수 있도록, 공기공급 파이프(300) 내측면에 나사홈을 형성하고, 이 나사홈에 결합하는 나사홈을 연장 파이프(510)의 일단부에 형성한다.Here, the air control valve 520 forms a screw groove on the inner surface of the air supply pipe 300 so that the air control valve 520 can be coupled to, and extending the screw groove coupled to the screw groove extending pipe 510. It is formed at one end of the.
그리고, 연장 파이프(510)의 타단부에는 공기 조절 밸브(520)가 장착된다.The other end of the extension pipe 510 is equipped with an air control valve 520.
이 공기 조절 밸브(520)는 공기가 유입되는 유입구가 마련되어 있고, 이 유입구와 연통하는 공기 유로가 연장 파이프(510)에 연통되어 있는데, 공기 유로 상에는 개폐 수단이 형성되어 있다.The air regulating valve 520 is provided with an inflow port through which air flows, and an air flow path communicating with the inflow port communicates with the extension pipe 510. An opening and closing means is formed on the air flow path.
즉, 공기 조절 밸브(520)의 외부에 돌출된 나사를 돌려서 개폐 수단의 다수의 공기홀의 개폐 정도를 제어함으로써, 연장 파이프(510)와 연통하는 공기공급 파이프(300)로 공급되는 공기량을 조절하는 것이다.That is, by controlling the opening and closing degree of the plurality of air holes of the opening and closing means by turning the screw protruding to the outside of the air control valve 520, to control the amount of air supplied to the air supply pipe 300 in communication with the extension pipe 510 will be.
도 15는 본 발명의 버블 분쇄노즐의 제1실시예에 관한 분해 사시도이고, 도 16은 도 15의 조립 단면도이다. 15 is an exploded perspective view of a first embodiment of the bubble grinding nozzle of the present invention, and FIG. 16 is an assembled cross-sectional view of FIG. 15.
본 발명의 버블 분쇄노즐은 기포가 함유된 물이 유입되는 유입구, 및 상기 유입구와 연통되고 상기 유입구의 내경보다 큰 내경을 가지는 유로를 포함하는 파이프 형상으로 이루어지며, 상기 유로에는 물을 통과시키는 다수의 제1유통로가 구비된 제1플레이트와 다수의 제2유통로가 형성되는 제2플레이트가 일정 간격을 두고 순차적으로 형성되어 상기 유입구에서 들어온 물이 제1플레이트와 일정 공간을 거쳐 제2플레이트를 통과하도록 구성된다. 그리고 위와 같은 구성을 구현한 제1실시예를 도 15 및 도 16에 나타내었다.  Bubble crushing nozzle of the present invention is made of a pipe shape including an inlet in which the water containing the bubble is introduced, and a flow passage communicating with the inlet and having an inner diameter larger than the inner diameter of the inlet, a plurality of passages through the water The first plate having a first flow path of the second plate and the second plate formed with a plurality of second flow paths are formed sequentially at a predetermined interval so that the water entering the inlet through the first plate and a predetermined space through the second plate It is configured to pass through. 15 and 16 illustrate a first embodiment implementing the above configuration.
도 15 및 도 16을 참조하면, 본 발명의 제1실시예에 따른 버블 분쇄노즐은 외부에서 만들어진 미세 공기 기포가 함유된 물이 유입되는 유입구(1101), 및 상기 유입구(1101)와 연통되고 상기 유입구(1101)의 내경보다 큰 내경을 가지는 유로(1102)를 포함하는 제1노즐파이프(1100); 상기 유입구(1101)에 대향되어 상기 유로(1102)에 삽입되며, 상기 물을 통과시키는 다수의 제1유통로(1210)가 구비된 제1플레이트(1200); 상기 제1플레이트(1200)에 접촉되어 상기 유로(1102)에 삽입되며, 상기 제1플레이트(1200)의 다수의 제1유통로(1210)를 통과한 물이 충진되는 제1링챔버(1300); 상기 제1링챔버(1300)에 접촉되어 상기 유로(1102)에 삽입되며, 상기 제1링챔버(1300)에 충진된 물을 통과시키는 다수의 제2유통로(1610)가 형성되는 제2플레이트(1600); 및 상기 제2플레이트(1600)에 접촉되어 상기 유로(1102)에 삽입되며, 상기 제1노즐파이프(1100)의 유로(1102) 말단과 결합되는 제2노즐파이프(1800);를 포함하여 구성된다.15 and 16, the bubble grinding nozzle according to the first embodiment of the present invention is in communication with the inlet 1101, and the inlet 1101 through which the water containing the fine air bubbles made from the outside is in communication with the A first nozzle pipe 1100 including a flow path 1102 having an inner diameter greater than that of the inlet 1101; A first plate (1200) opposed to the inlet (1101) and inserted into the flow path (1102) and having a plurality of first flow paths (1210) through which the water passes; A first ring chamber 1300 contacted with the first plate 1200 and inserted into the flow path 1102 and filled with water passing through the plurality of first flow paths 1210 of the first plate 1200. ; A second plate contacting the first ring chamber 1300 and inserted into the flow path 1102, and having a plurality of second flow paths 1610 passing through the water filled in the first ring chamber 1300. (1600); And a second nozzle pipe 1800 contacted with the second plate 1600 and inserted into the flow path 1102, and coupled to an end of the flow path 1102 of the first nozzle pipe 1100. .
또한 제1실시예에 있어서, 제1노즐파이프(1100)의 유로(1102)의 말단을 제1유출구(1103)로 정의하는 경우, 제2노즐파이프(1800)는 제1유출구(1103)와 결합된다.In addition, in the first embodiment, when the end of the flow path 1102 of the first nozzle pipe 1100 is defined as the first outlet 1103, the second nozzle pipe 1800 is coupled to the first outlet 1103. do.
참고로 덧붙이면, 본 발명에서 제1플레이트와 제3플레이트 사이의 일정 간격은 다양한 구성에 의해 구현할 수 있지만, 제1실시예에서는 위와 같은 일정 간격을 제1링챔버에 의해 형성되는 경우로 예시한 것이다.For reference, in the present invention, a predetermined interval between the first plate and the third plate may be implemented by various configurations, but in the first embodiment, the above-described constant interval is formed by the first ring chamber. will be.
또한 본 발명의 실시에 있어서 반드시 2개의 노즐파이프가 필요한 것은 아니지만, 제1실시예에서는 제1노즐파이프(1100)와 제2노즐파이프(1800)라는, 두 개의 노즐파이프를 사용하여 실시한 경우를 예시하였다.In addition, although the two nozzle pipes are not necessarily required in the practice of the present invention, the first embodiment exemplifies a case in which the two nozzle pipes, the first nozzle pipe 1100 and the second nozzle pipe 1800, are used. It was.
위와 같은 구성에 의하여, 제1노즐파이프(1100)의 유입구(1101)로는 임의의 미세 버블 발생장치에서 생성된 미세 공기 기포가 포함된 물이 유입되고, 그 물은 유로(1102) 상에 위치된 제1플레이트(1200), 제1링챔버(1300) 및 제2플레이트(1600)를 통과하면서 더욱 미세하게 분쇄되어 제1유출구(1103)와 결합된 제2노즐파이프(1800)로 배출된다.By the above configuration, the inlet 1101 of the first nozzle pipe 1100 is introduced into the water containing the fine air bubbles generated by any fine bubble generator, the water is located on the flow path 1102 More finely pulverized while passing through the first plate 1200, the first ring chamber 1300, and the second plate 1600 is discharged to the second nozzle pipe 1800 coupled with the first outlet 1103.
제1실시예에서 제1노즐파이프(1100)의 유로(1102)의 내경을 유입구(1101)의 내경보다 크게 한 이유는 유로(1102)상에 위치된 제1플레이트(1200), 제1링챔버(1300) 및 제2플레이트(1600)가 유입구(1101)로 이탈되지 않도록 하기 위함이다. 따라서 적절한 구조를 갖춘다면, 예컨대 제1노즐파이프(1100)의 유로(1102)의 내경과 유입구(1101)의 내경을 동일하게 설계하는 것도 얼마든지 가능하다.In the first embodiment, the inner diameter of the flow path 1102 of the first nozzle pipe 1100 is larger than the inner diameter of the inlet port 1101. The first plate 1200 and the first ring chamber located on the flow path 1102. This is to prevent the 1300 and the second plate 1600 from being separated into the inlet 1101. Therefore, as long as it has an appropriate structure, it is also possible to design the inner diameter of the flow path 1102 of the 1st nozzle pipe 1100, and the inner diameter of the inflow port 1101, for example.
제1실시예에 있어서 제2노즐파이프(1800)는 유로(1102)에 삽입되어 제2플레이트(1600)에 접촉되면서 제1노즐파이프(1100)의 제1유출구(1103)와 결합됨으로써, 제1플레이트(1200), 제1링챔버(1300) 및 제2플레이트(1600)를 유입구(1101)에 밀착시키는 역할을 한다.In the first embodiment, the second nozzle pipe 1800 is inserted into the flow path 1102 to be coupled to the first outlet 1103 of the first nozzle pipe 1100 while being in contact with the second plate 1600. The plate 1200, the first ring chamber 1300, and the second plate 1600 serve to closely contact the inlet 1101.
즉, 도 16에 도시된 바와 같이, 제2노즐파이프(1800)의 단부가 제1노즐파이프(1100)의 제1유출구(1103)와 결합되어, 제2노즐파이프(1800)의 단부가 제2플레이트(1600)에 접촉되면서 제1플레이트(1200), 제1링챔버(1300) 및 제2플레이트(1600)는 서로 밀착됨과 동시에, 제1플레이트(1200)가 유입구(1101)에 밀착된다. 그리하여 유입구(1101)를 통과한 물은 제1플레이트(1200)의 제1유통로(1210), 제1링챔버(1300), 제2플레이트(1600)의 제2유통로(1610) 순서로 통과한다.That is, as shown in FIG. 16, the end of the second nozzle pipe 1800 is coupled with the first outlet 1103 of the first nozzle pipe 1100, so that the end of the second nozzle pipe 1800 is second. While contacting the plate 1600, the first plate 1200, the first ring chamber 1300, and the second plate 1600 are in close contact with each other, and the first plate 1200 is in close contact with the inlet 1101. Thus, the water passing through the inlet 1101 passes through the first flow path 1210 of the first plate 1200, the first ring chamber 1300, and the second flow path 1610 of the second plate 1600. do.
여기서, 제1 및 제2플레이트(1200,1600)는 판형상(바람직하게는, 원판형상)이다. 제2플레이트(1600)의 제2유통로(1610)의 개수는 제1플레이트(1200)의 제1유통로(1210)의 개수보다 많게 하는 것이 바람직하며, 이러한 것에 의해 제1플레이트(1200)의 제1유통로(1210) 및 제2플레이트(1600)의 제2유통로(1610)의 물 통과유속을 다르게 하여 물의 혼합을 촉진할 수 있다.Here, the first and second plates 1200 and 1600 are plate-shaped (preferably disc-shaped). The number of the second flow paths 1610 of the second plate 1600 may be larger than the number of the first flow paths 1210 of the first plate 1200. The mixing of water may be promoted by varying the water passage flow rates of the first flow path 1210 and the second flow path 1610 of the second plate 1600.
또한, 단독으로 물 혼합 및 분쇄작용을 수행할 수 있는 제2플레이트(1600)의 제2유통로(1610)의 개수를 많게 함으로써, 물 혼합 및 분쇄작용을 증대시킬 수도 있다.In addition, by increasing the number of the second flow path 1610 of the second plate 1600 that can perform the water mixing and grinding action alone, it is also possible to increase the water mixing and grinding action.
여기서, 제2플레이트(1600)의 제2유통로(1610)의 내경은 제1플레이트(1200)의 제1유통로(1210)의 내경보다 작게 설계될 수 있다.Here, the inner diameter of the second flow path 1610 of the second plate 1600 may be designed to be smaller than the inner diameter of the first flow path 1210 of the first plate 1200.
또한, 제1실시예에 있어서, 제1링챔버(1300)는 링형상으로 제1과 제2플레이트(1600) 사이에 개재되어, 링 내측은 물이 채워지는 챔버의 기능을 수행한다. 그리하여 제1플레이트(1200)의 제1유통로(1210)를 통과한 물은 제1링챔버(1300)에서 충진되면서 혼합되어 물에 함유된 미세 공기 기포가 더 미세한 크기로 분리된다. 그다음 제1링챔버(1300)에서 충진된 물은 제2플레이트(1600)의 제2유통로(1610)로 빠져나간다.In addition, in the first embodiment, the first ring chamber 1300 is interposed between the first and second plates 1600 in a ring shape, so that the inside of the ring functions as a chamber in which water is filled. Thus, the water passing through the first flow path 1210 of the first plate 1200 is filled in the first ring chamber 1300 and mixed to separate the fine air bubbles contained in the water to a finer size. Then, the water filled in the first ring chamber 1300 exits to the second flow path 1610 of the second plate 1600.
한편, 제2플레이트(1600)의 다수의 제2유통로(1610) 각각은 물의 유입영역(1611)과 물의 유출영역(1612)으로 이루어지며, 유입영역(1611)의 내경은 유출영역(1612)의 내경보다 작게 설계된다. 그리하여 물이 제2유통로(1610)의 작은 내경을 가지는 유입영역을 통과하여 상대적으로 큰 내경을 가지는 유출영역으로 빠져나오면서 물은 서로 섞이고 유출영역(1612)의 측벽에 부딪치게 된다. 이렇게 미세 공기 기포가 물과 섞이는 혼합과정 및 측벽에 대한 충돌과정을 통해 공기 기포가 더 미세하게 분쇄되는 것이다.Meanwhile, each of the plurality of second flow paths 1610 of the second plate 1600 includes an inflow area 1611 and an outflow area 1612 of water, and an inner diameter of the inflow area 1611 is an outflow area 1612. It is designed smaller than the inner diameter of. Thus, as water passes through the inflow region having the small inner diameter of the second flow path 1610 and exits to the outflow region having the relatively large inner diameter, the water mixes with each other and strikes the side wall of the outlet region 1612. The air bubbles are more finely crushed through the mixing process in which the fine air bubbles are mixed with water and the collision process against the side walls.
여기서, 제2플레이트(1600)의 내경이 큰 유출영역(1612)은 오목한 통형상(바람직하게는, 원통형상)의 홈으로 가공되어 형성되고, 내경이 작은 유입영역(1611)은 유출영역(1612)보다 내경이 작은 구멍으로 구현될 수 있다. Here, the outflow region 1612 having a large inner diameter of the second plate 1600 is formed by processing into a concave cylindrical (preferably cylindrical) groove, and the inflow region 1611 having a small inner diameter has an outflow region 1612. It can be implemented as a hole having a smaller inner diameter than).
그리고, 제2플레이트(1600)의 제2유통로(1610)의 유출영역(1612)의 내각은 바람직하게는 직각으로 함으로써, 내경이 작은 유입영역(1611)에서 내경이 큰 유출영역(1612)으로 물이 토출될 때, 물의 혼합작용을 증가시켜 기포의 분쇄효과를 향상시킬 수 있다.The inside angle of the outlet area 1612 of the second flow path 1610 of the second plate 1600 is preferably at right angles, from the inlet area 1611 having a small inner diameter to the outlet area 1612 having a large inner diameter. When water is discharged, the mixing action of the water can be increased to improve the crushing effect of the bubbles.
위와 같은 구조에 의하여, 제1링챔버(1300)에 충진된 물은 먼저 제2유통로(1610) 각각의 내경이 작은 유입영역(1611)으로 유입된 다음, 상대적으로 내경이 큰 유출영역(1612)으로 유출되는 과정을 통하여 물에 함유된 미세 공기 기포를 더 미세한 크기로 분쇄하게 된다.By the above structure, the water filled in the first ring chamber 1300 first flows into the inlet area 1611 having a smaller inner diameter of each of the second flow passages 1610, and then has a relatively large inner diameter outlet region 1612. The fine air bubbles contained in the water are pulverized to a finer size through the outflow process to).
한편, 제2플레이트(1600)에서 제2유통로(1610)의 물의 유출영역(1612) 길이는 물의 유입영역(1611)의 길이보다 길게 설계하는 게 바람직하다. 제2유통로(1610)의 유입영역(1611)은 단순히 물이 통과되는 영역임에 비하여, 유출영역(1612)은 물의 혼합과정이 실질적으로 발생되어 물에 함유된 미세 공기 기포가 더 미세하게 분쇄되는 영역이기 때문이다.On the other hand, the length of the water outlet area 1612 of the second flow path 1610 in the second plate 1600 is preferably designed to be longer than the length of the water inlet area 1611. The inflow area 1611 of the second flow path 1610 is simply an area through which water passes, whereas the outflow area 1612 substantially mixes water, thereby pulverizing fine air bubbles contained in the water. This is because it is an area.
위에서 살펴본 본 발명의 제1실시예에 따른 버블 분쇄노즐에 의해서, 유입된 미세 공기 기포가 함유된 물이 제1플레이트의 제1유통로, 제1링챔버, 제2플레이트의 제2유통로를 통과하면서 혼합과정 및 분쇄과정을 거침으로써 보다 미세한 크기의 버블을 풍부하게 생성할 수 있게 되는 것이다.By the bubble grinding nozzle according to the first embodiment of the present invention described above, the water containing the introduced fine air bubbles is the first flow path of the first plate, the first ring chamber, the second flow path of the second plate By passing through the mixing and grinding process, it is possible to produce abundantly finer bubbles.
다음으로 버블 분쇄노즐의 제2실시예를 설명한다.Next, a second embodiment of the bubble grinding nozzle will be described.
도 17은 본 발명의 제2실시예에 따른 버블 분쇄노즐의 분해 사시도이고, 도 18은 도 17의 조립 단면도이다. 17 is an exploded perspective view of a bubble grinding nozzle according to a second embodiment of the present invention, and FIG. 18 is an assembled cross-sectional view of FIG. 17.
본 발명의 제2실시예에 따른 버블 분쇄노즐은 제1실시예의 버블 분쇄노즐의 제1링챔버(1300)와 제2플레이트(1600) 사이에, 제3플레이트(1400) 및 제2링챔버(1500)를 순차적으로 더 개재시켜 구성하는 것이다.The bubble grinding nozzle according to the second embodiment of the present invention may include a third plate 1400 and a second ring chamber between the first ring chamber 1300 and the second plate 1600 of the bubble grinding nozzle of the first embodiment. 1500) are sequentially configured to further intervene.
여기서, 제1링챔버(1300)에는 제3플레이트(1400) 일면이 접촉되고, 제3플레이트(1400)의 타면에는 제2링챔버(1500)의 일면이 접촉되며, 제2링챔버(1500)의 타면에 제2플레이트(1600)가 접촉된다.Here, one surface of the third plate 1400 contacts the first ring chamber 1300, and one surface of the second ring chamber 1500 contacts the other surface of the third plate 1400, and the second ring chamber 1500. The second plate 1600 is in contact with the other surface.
그러므로, 제2링챔버(1500)가 제3플레이트(1400)와 제2플레이트(1600) 사이에 개재되어 제2링챔버(1500)의 링구조물 내측에 챔버가 형성된다.Therefore, the second ring chamber 1500 is interposed between the third plate 1400 and the second plate 1600 to form a chamber inside the ring structure of the second ring chamber 1500.
제3플레이트(1400)에는 물을 통과시키는 다수의 제3유통로(1410)가 구비되고, 제3유통로(1410)는 제3플레이트(1400)의 일면에서 타면으로 관통된 홀로 구현된다.The third plate 1400 includes a plurality of third flow passages 1410 through which water passes, and the third flow passage 1410 is implemented as a hole penetrated from one surface of the third plate 1400 to the other surface.
나아가 제2실시예에서는 제2노즐파이프(1800)의 단부가 제1노즐파이프(1100)의 제1유출구(1103)와 결합될 때, 제1플레이트(1200), 제1링챔버(1300), 제3플레이트(1400), 제2링챔버(1500), 제2플레이트(1600)가 유입구(1101)에 더 강력하게 밀착될 수 있도록, 제2플레이트(1600)와 제2노즐파이프(1800)의 단부 사이에 밀착링(1700)을 더 개재시킬 수 있다.Furthermore, in the second embodiment, when the end of the second nozzle pipe 1800 is coupled with the first outlet 1103 of the first nozzle pipe 1100, the first plate 1200, the first ring chamber 1300, The third plate 1400, the second ring chamber 1500, and the second plate 1600 may be in close contact with the inlet 1101 so that the third plate 1600 and the second nozzle pipe 1800 may be more closely adhered to each other. The contact ring 1700 may be further interposed between the ends.
이와 같은 제1 및 제3플레이트(1400), 제1 및 제2링챔버(1500), 제2플레이트(1600)는 통과 유량 및 챔버 충진량을 조절하여 물의 혼합을 극대화하여 미세 공기 기포를 더욱 미세하게 분쇄함으로써, 버블 생성이 증가된 물을 배출시킬 수 있다.The first and third plates 1400, the first and second ring chambers 1500, and the second plate 1600 are configured to adjust the flow rate and the filling amount of the chamber to maximize the mixing of water to more fine air bubbles. By pulverization, water with increased bubble generation can be discharged.
아울러, 본 발명에서는 제3플레이트(1400)의 제3유통로(1410)의 개수는 제1플레이트(1200)의 제1유통로(1210)의 개수와 같거나 그보다 적고, 제1플레이트(1200)의 제1유통로(1210)의 개수는 제2플레이트(1600)의 제2유통로(1610)의 개수보다 적게 설계할 수 있다. 즉, 제1 내지 제3플레이트(1200,1600,1400)의 유통로의 개수를 다르게 설계하여 제1 내지 제3플레이트(1200,1600,1400)의 유통로를 통과하는 물 혼합이 더욱 증대될 수 있는 것이다.In addition, in the present invention, the number of the third flow paths 1410 of the third plate 1400 is equal to or less than the number of the first flow paths 1210 of the first plate 1200, and the first plate 1200. The number of first flow paths 1210 of the second plate 1600 may be designed to be less than the number of second flow paths 1610 of the. That is, by differently designating the number of distribution channels of the first to third plates 1200, 1600 and 1400, the water mixture passing through the distribution channels of the first to third plates 1200, 1600 and 1400 may be further increased. It is.
여기에서, 제3플레이트(1400)의 제3유통로(1410)의 개수를 제1플레이트(1200)의 제1유통로(1210)의 개수와 같거나 그보다 적게 설계하는 것은, 제1플레이트(1200)의 제1유통로(1210)에 토출된 물이 제3플레이트(1400)의 제3유통로(1410)를 통과할 때 물 압력이 증가되도록 하여 기포의 혼합을 활성화시켜 기포의 분쇄효과를 향상시키기 위함이다.Here, designing the number of the third flow paths 1410 of the third plate 1400 to be equal to or less than the number of the first flow paths 1210 of the first plate 1200 may include the first plate 1200. When the water discharged into the first flow passage 1210 of the (3) passes through the third flow passage 1410 of the third plate 1400, the water pressure is increased to activate the mixing of the bubbles to improve the crushing effect of the bubbles To do so.
또한 제2플레이트(1600)의 제2유통로(1610)의 개수를 제1플레이트(1200)의 제1유통로(1210)의 개수 및 제3플레이트(1400)의 제3유통로(1410)의 개수보다 많게 하는 것은 제2플레이트(1600)의 제2유통로(1610)에서 물의 혼합작용 및 물에 함유된 미세 공기 기포의 분쇄작용을 증가시키기 위함이다.In addition, the number of second flow paths 1610 of the second plate 1600 may be determined by the number of first flow paths 1210 of the first plate 1200 and the third flow paths 1410 of the third plate 1400. More than the number is to increase the mixing action of the water in the second flow path 1610 of the second plate 1600 and the grinding action of the fine air bubbles contained in the water.
한편, 제1실시예에서는 제1노즐파이프(1100), 제1플레이트(1200), 제1링챔버(1300), 제2플레이트(1600) 및 제2노즐파이프(1800)를 별개의 구성으로 예시하였으나, 이들 구성 중 일부나 전부는 일체의 구성으로 형성하는 것도 가능하다. 제2실시예 역시 마찬가지이다. 예컨대, 제1플레이트(1200)와 제1링챔버(1300)는 일체로 형성될 수 있는 것이다.Meanwhile, in the first embodiment, the first nozzle pipe 1100, the first plate 1200, the first ring chamber 1300, the second plate 1600, and the second nozzle pipe 1800 are illustrated as separate configurations. However, some or all of these configurations may be formed in one configuration. The same applies to the second embodiment. For example, the first plate 1200 and the first ring chamber 1300 may be integrally formed.
위와 같이 구성 일부를 일체화한 경우를 제3실시예로 나타내었다. 도 19는 본 발명의 제3실시예에 따른 버블 분쇄노즐의 단면도이다.A case where a part of the configuration is integrated as described above is shown as a third embodiment. 19 is a cross-sectional view of the bubble grinding nozzle according to the third embodiment of the present invention.
본 발명의 제3실시예는 제1 또는 제2실시예에 있어서 제2플레이트(1600)와 제2노즐파이프(1800)를 일체형으로 구현하는 경우를 보여준 것이다.The third embodiment of the present invention shows a case in which the second plate 1600 and the second nozzle pipe 1800 are integrally implemented in the first or second embodiment.
도 19를 참조하면, 제2플레이트(1600)와 제2노즐파이프(1800)가 일체형으로 구현된 제3실시예에 따르면, 부품을 보다 단순화할 수 있는 장점이 있다.Referring to FIG. 19, according to the third embodiment in which the second plate 1600 and the second nozzle pipe 1800 are integrally implemented, there is an advantage of simplifying the component.
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments, and the present invention is not limited to the spirit of the present invention. Various changes and modifications will be possible by those who have the same.
본 발명은 공기 기포를 더 미세하게 분쇄하는 미세 버블 발생장치를 제공한다.The present invention provides a fine bubble generator for crushing air bubbles more finely.

Claims (15)

  1. 판 형상이고, 다수의 관통홀이 형성돼 있으며, 상기 관통홀은 유입영역 및 유출영역으로 이루어지고, 상기 유입영역의 내경은 상기 유출영역의 내경보다 작게 형성된 버블 분쇄 플레이트를 구비하는 것을 특징으로 하는 미세 버블 발생장치.It is plate-shaped, and a plurality of through-holes are formed, wherein the through-holes are composed of the inlet region and the outlet region, the inner diameter of the inlet region is characterized in that it comprises a bubble grinding plate formed smaller than the inner diameter of the outlet region Fine bubble generator.
  2. 제1항에 있어서, The method of claim 1,
    상기 버블 분쇄 플레이트보다 높은 위치에 설치되어 공기 기포가 함유된 물을 생성하여 상기 버블 분쇄 플레이트로 보내주는 버블 발생관; 및A bubble generating tube installed at a position higher than the bubble crushing plate to generate water containing air bubbles and to send the water to the bubble crushing plate; And
    상기 버블 분쇄 플레이트보다 낮은 위치에 설치되어 상기 버블 분쇄 플레이트를 통과한 물을 받아서 공기 기포를 더욱 미세하게 분쇄한 다음 배출하는 버블 분쇄노즐;을 더 포함하는 것을 특징으로 하는 미세 버블 발생장치.And a bubble crushing nozzle installed at a lower position than the bubble crushing plate to receive water passing through the bubble crushing plate to pulverize the air bubbles more finely and then discharge them.
  3. 제2항에 있어서, The method of claim 2,
    상기 버블 분쇄 플레이트 내부에 중공부가 형성된 버블 분쇄탱크 내부에 설치되고, It is installed in the bubble crushing tank having a hollow portion inside the bubble crushing plate,
    상기 버블 발생관과 상기 버블 분쇄노즐은 상기 버블 분쇄탱크의 외부에 설치되는 것을 특징으로 하는 미세 버블 발생장치.The bubble generating tube and the bubble grinding nozzle is fine bubble generator, characterized in that installed on the outside of the bubble grinding tank.
  4. 제2항 또는 제3항에 있어서, The method according to claim 2 or 3,
    상기 버블 분쇄 플레이트는 상하로 연장되는 지지봉을 통해 상기 분쇄탱크 내부에 고정되는 것을 특징으로 하는 미세 버블 발생장치.The bubble grinding plate is fine bubble generator, characterized in that fixed to the inside of the grinding tank through a support rod extending up and down.
  5. 제2항 또는 제3항에 있어서, The method according to claim 2 or 3,
    상기 버블 발생관은,The bubble generating tube,
    제1유통로와 증압 구조물 및 제2유통로가 순차적으로 배열되어 그 순서대로 물을 흘려보낼 수 있도록 구성된 급수부와, 상기 급수부의 제2유통로에 연결되어 상기 급수부에서 공급된 물이 배출되는 배수부, 그리고 상기 배수부의 측면에 형성되어 상기 배수부로 공기를 공급하는 공기공급 파이프로 이루어지며,A water supply unit configured to sequentially flow the first flow path, the boosting structure, and the second flow path, and to flow water in that order; and to be connected to the second flow path of the water supply part to discharge water supplied from the water supply part. It is made of a drain, and the air supply pipe is formed on the side of the drain to supply air to the drain,
    이때 상기 제2유통로의 내경은 상기 배수부의 내경이나 상기 제1유통로의 내경보다 작고,At this time, the inner diameter of the second flow path is smaller than the inner diameter of the drain portion or the inner diameter of the first flow path,
    상기 제1유통로와 상기 제2유통로 사이에 개재되어 상기 제1유통로에서 상기 제2유통로로 물을 통과시키는 상기 증압 구조물은 상기 제1유통로에 인접한 부분에서 상기 제2유통로에 인접한 부분에 이르기까지 내경이 점진적으로 작아지는 구조로서 그 내측 경사면에 산(山)과 골이 형성되어 있는 것을 특징으로 하는 미세 버블 발생장치.The boosting structure interposed between the first flow passage and the second flow passage to pass water from the first flow passage to the second flow passage may be connected to the second flow passage at a portion adjacent to the first flow passage. A microbubble generating device characterized in that the internal diameter gradually decreases to the adjacent portion, and a hill and a valley are formed on the inner inclined surface thereof.
  6. 제5항에 있어서, The method of claim 5,
    상기 증압 구조물의 산과 골 각각은 적어도 3개 이상의 홀수개로 형성된 것을 특징으로 하는 미세 버블 발생장치.Each of the peaks and valleys of the boost structure is formed of at least three odd number of fine bubble generator.
  7. 제5항에 있어서, The method of claim 5,
    상기 제2유통로의 내주면에는 흐르는 물의 회전을 유도하는 나선형태의 스크류가 돌출되어 있는 것을 특징으로 하는 미세 버블 발생장치.Microbubble generating device, characterized in that the spiral screw which induces the rotation of the flowing water protrudes on the inner peripheral surface of the second flow path.
  8. 제5항에 있어서, The method of claim 5,
    상기 공기공급 파이프의 단부에 공기 조절 밸브가 장착된 것을 특징으로 하는 미세 버블 발생장치.Fine bubble generator, characterized in that the air control valve is mounted on the end of the air supply pipe.
  9. 제2항에 있어서, The method of claim 2,
    상기 버블 분쇄노즐은,The bubble grinding nozzle,
    기포가 함유된 물이 유입되는 유입구, 및 상기 유입구와 연통되고 상기 유입구의 내경보다 큰 내경을 가지는 유로를 포함하는 파이프 형상으로 이루어지며,It is made of a pipe shape including an inlet in which water containing bubbles is introduced, and a flow passage communicating with the inlet and having an inner diameter larger than the inner diameter of the inlet,
    상기 유로에는 물을 통과시키는 다수의 제1유통로가 구비된 제1플레이트와 다수의 제2유통로가 형성되는 제2플레이트가 일정 간격을 두고 순차적으로 형성되어 상기 유입구에서 들어온 물이 제1플레이트와 일정 공간을 거쳐 제2플레이트를 통과하도록 구성된 것을 특징으로 하는 미세 버블 발생장치.In the flow path, a first plate having a plurality of first flow paths for passing water therethrough and a second plate having a plurality of second flow paths are sequentially formed at predetermined intervals so that water entering the inlet may be first plate. And a second bubble generator passing through the second plate through a predetermined space.
  10. 제9항에 있어서, The method of claim 9,
    상기 제2플레이트의 제2유통로는 물의 유입영역 및 물의 유출영역으로 이루어지고, 상기 유입영역의 내경은 상기 유출영역의 내경보다 작은 것을 특징으로 하는 미세 버블 발생장치.The second flow path of the second plate is composed of the water inlet region and the water outlet region, wherein the inner diameter of the inlet area is fine bubble generating device, characterized in that smaller than the inner diameter of the outlet area.
  11. 제9항 또는 제10항에 있어서, The method of claim 9 or 10,
    상기 제1플레이트와 상기 제2플레이트 사이에, 물을 통과시키는 다수의 제3유통로가 구비된 제3플레이트가 상기 제1플레이트 및 제2플레이트와 일정 간격을 갖는 위치에 더 형성된 것을 특징으로 하는 미세 버블 발생장치.Between the first plate and the second plate, a third plate provided with a plurality of third passages for passing water is further formed in a position having a predetermined distance from the first plate and the second plate Fine bubble generator.
  12. 제11항에 있어서, The method of claim 11,
    상기 제3플레이트의 제3유통로의 개수는 상기 제1플레이트의 제1유통로의 개수와 같거나 그보다 적고, 상기 제1플레이트의 제1유통로의 개수는 상기 제2플레이트의 제2유통로의 개수보다 적은 것을 특징으로 하는 미세 버블 발생장치.The number of third flow paths of the third plate is equal to or less than the number of first flow paths of the first plate, and the number of first flow paths of the first plate is the second flow path of the second plate. Microbubble generating device, characterized in that less than the number of.
  13. 제10항에 있어서, The method of claim 10,
    상기 제2플레이트의 제2유통로의 유출영역의 내각은 직각인 것을 특징으로 하는 미세 버블 발생장치.Fine bubble generating apparatus, characterized in that the inner angle of the outlet region of the second flow path of the second plate is a right angle.
  14. 제11항에 있어서, The method of claim 11,
    상기 제1플레이트와 상기 제3플레이트 사이의 일정 간격은 상기 제1플레이트의 다수의 제1유통로를 통과한 물이 충진되는 제1링챔버에 의해 형성되고,The predetermined interval between the first plate and the third plate is formed by a first ring chamber filled with water passing through a plurality of first flow paths of the first plate,
    상기 제2플레이트와 상기 제3플레이트 사이의 일정 간격은 상기 제3플레이트의 다수의 제3유통로를 통과한 물이 충진되는 제2링챔버에 의해 형성된 것을 특징으로 하는 미세 버블 발생장치.The predetermined spacing between the second plate and the third plate is formed by a second ring chamber filled with water passing through a plurality of third flow paths of the third plate.
  15. 제5항에 있어서, The method of claim 5,
    상기 버블 분쇄노즐은,The bubble grinding nozzle,
    기포가 함유된 물이 유입되는 유입구, 및 상기 유입구와 연통되고 상기 유입구의 내경보다 큰 내경을 가지는 유로를 포함하는 파이프 형상으로 이루어지며,It is made of a pipe shape including an inlet in which water containing bubbles is introduced, and a flow passage communicating with the inlet and having an inner diameter larger than the inner diameter of the inlet,
    상기 유로에는 물을 통과시키는 다수의 제1유통로가 구비된 제1플레이트와 다수의 제2유통로가 형성되는 제2플레이트가 일정 간격을 두고 순차적으로 형성되어 상기 유입구에서 들어온 물이 제1플레이트와 일정 공간을 거쳐 제2플레이트를 통과하도록 구성된 것을 특징으로 하는 미세 버블 발생장치.In the flow path, a first plate having a plurality of first flow paths for passing water therethrough and a second plate having a plurality of second flow paths are sequentially formed at predetermined intervals so that water entering the inlet may be first plate. And a second bubble generator passing through the second plate through a predetermined space.
PCT/KR2017/011808 2017-06-07 2017-10-25 Microbubble generating apparatus WO2018225906A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020197033658A KR20190137885A (en) 2017-06-07 2017-10-25 Fine bubble generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0070781 2017-06-07
KR1020170070781 2017-06-07

Publications (1)

Publication Number Publication Date
WO2018225906A1 true WO2018225906A1 (en) 2018-12-13

Family

ID=64565912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011808 WO2018225906A1 (en) 2017-06-07 2017-10-25 Microbubble generating apparatus

Country Status (2)

Country Link
KR (1) KR20190137885A (en)
WO (1) WO2018225906A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114699939A (en) * 2022-04-11 2022-07-05 北京化工大学 Hypergravity gas mixing device for cutting bubbles step by step and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100771050B1 (en) * 2006-04-03 2007-10-29 전재근 Method for injection of dissolved gas into soil and apparatus therefore
KR200449102Y1 (en) * 2009-12-10 2010-06-17 (주)엠이씨 Micro Bubble Nozzle
KR20100101513A (en) * 2009-03-09 2010-09-17 이성원 Forming implement for micro-bubbles
KR20110000768U (en) * 2009-07-16 2011-01-24 박재영 Micro bubble nozzle
KR101165818B1 (en) * 2012-06-18 2012-07-16 (주) 동양이엔지 Micro bubble generator
KR101199501B1 (en) * 2010-11-05 2012-11-09 (주)엠이씨 Micro bubble nozzle
JP2013000626A (en) * 2011-06-14 2013-01-07 Makoto Yamaguchi Fine air bubble generator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100771050B1 (en) * 2006-04-03 2007-10-29 전재근 Method for injection of dissolved gas into soil and apparatus therefore
KR20100101513A (en) * 2009-03-09 2010-09-17 이성원 Forming implement for micro-bubbles
KR20110000768U (en) * 2009-07-16 2011-01-24 박재영 Micro bubble nozzle
KR200449102Y1 (en) * 2009-12-10 2010-06-17 (주)엠이씨 Micro Bubble Nozzle
KR101199501B1 (en) * 2010-11-05 2012-11-09 (주)엠이씨 Micro bubble nozzle
JP2013000626A (en) * 2011-06-14 2013-01-07 Makoto Yamaguchi Fine air bubble generator
KR101165818B1 (en) * 2012-06-18 2012-07-16 (주) 동양이엔지 Micro bubble generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114699939A (en) * 2022-04-11 2022-07-05 北京化工大学 Hypergravity gas mixing device for cutting bubbles step by step and application thereof
CN114699939B (en) * 2022-04-11 2023-08-29 北京化工大学 Supergravity gas mixing device for gradually cutting bubbles and application thereof

Also Published As

Publication number Publication date
KR20190137885A (en) 2019-12-11

Similar Documents

Publication Publication Date Title
WO2012008805A2 (en) Micro bubble generation device based on rotating unit
WO2018225906A1 (en) Microbubble generating apparatus
WO2010110628A2 (en) Flow path control device of toilet bidet and toilet bidet having the same
WO2012030062A2 (en) Showerhead for generating micro air bubbles
WO2016114523A1 (en) Dust collecting apparatus
WO2017111314A1 (en) Ozone water treatment system using low energy
US4593420A (en) Self-draining hydromassage fitting
GB1119893A (en) Improvements in spray and aerator apparatus
WO2021071072A1 (en) Nanobubble generation system using friction
WO2021172654A1 (en) Apparatus for producing functional water using underwater plasma
WO2016068352A1 (en) Airbrush
WO2020096327A1 (en) Safety outlet
WO2019022303A1 (en) Micro bubble generator
EP3177193A1 (en) Cleaner and dust separating device applying the same
US3628529A (en) Hydromassage assembly
WO2017039327A1 (en) Gas cooker and burner for gas cooker
WO2013147506A1 (en) Solubility-amplified air diffuser
KR102059039B1 (en) Micro bubble generator
SE8803288D0 (en) PROCEDURES AND DEVICES FOR THERMAL GRINDING OF SURFACES
WO2017034192A1 (en) Cleaning apparatus using liquid mixed with gas and water discharge module structure for cleaning apparatus
WO2024128423A1 (en) Micro hydrocyclone connected in parallel and method for separating substance to be separated
WO2018097675A2 (en) Air suction type nozzle having improved air suctioning or liquid back-flow preventing function and chemical, biological, and radiological decontamination device using same
WO2014010953A1 (en) Zinc plate for corrosion-inhibiting ion water treatment apparatus and method for manufacturing same
CN101150039A (en) Gas injection device
EP3344923A1 (en) Gas cooker

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912402

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197033658

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912402

Country of ref document: EP

Kind code of ref document: A1