WO2018225725A1 - Glass for information recording medium substrate, information recording medium substrate, and glass spacer for information recording medium and recording reproduction device - Google Patents

Glass for information recording medium substrate, information recording medium substrate, and glass spacer for information recording medium and recording reproduction device Download PDF

Info

Publication number
WO2018225725A1
WO2018225725A1 PCT/JP2018/021546 JP2018021546W WO2018225725A1 WO 2018225725 A1 WO2018225725 A1 WO 2018225725A1 JP 2018021546 W JP2018021546 W JP 2018021546W WO 2018225725 A1 WO2018225725 A1 WO 2018225725A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
content
information recording
recording medium
less
Prior art date
Application number
PCT/JP2018/021546
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 浩一
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to JP2019523906A priority Critical patent/JP7165655B2/en
Publication of WO2018225725A1 publication Critical patent/WO2018225725A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths

Definitions

  • the present invention relates to a glass for an information recording medium substrate, an information recording medium substrate, an information recording medium, and a glass spacer for a recording / reproducing apparatus.
  • an aluminum alloy substrate (aluminum substrate) has been mainly used as a substrate for an information recording medium such as a hard disk (information recording medium substrate).
  • the aluminum substrate has high rigidity, it has been pointed out that it is easily deformed, and the smoothness of the substrate surface after polishing is not sufficient. Therefore, in recent years, an information recording medium substrate made of glass has been proposed (see, for example, Patent Document 1).
  • an HDD Hard Disk Drive
  • an HDD has a structure in which a magnetic disk is rotated by pressing a central portion of the magnetic disk with a spindle and a clamp of a spindle motor. If the magnetic disk is warped or bent during this rotation, the magnetic head for writing or reading information is likely to come into contact with the surface of the magnetic disk. When the magnetic head is impacted by contact with the magnetic disk surface, the head is damaged (head crash).
  • the glass for the information recording medium substrate has a high rigidity, specifically, a high Young's modulus.
  • the information recording medium substrate can be reduced in weight by reducing the specific gravity.
  • the weight of the information recording medium is reduced.
  • the power required for rotating the magnetic disk can be reduced, and the power consumption of the HDD can be suppressed.
  • the lower the flying height of the magnetic head above the surface of the information recording medium in the recording / reproducing apparatus the more advantageous for high density recording.
  • the information recording medium is inferior in surface smoothness
  • the magnetic head comes into contact with a protrusion higher than the flying height existing on the surface of the information recording medium and receives an impact, causing a head crash. Therefore, in order to further increase the recording density by lowering the flying height, it is desirable to increase the surface smoothness of the information recording medium.
  • the surface smoothness of the information recording medium substrate should be increased. desirable.
  • a cleaning process is usually performed in order to remove foreign matters attached to the substrate.
  • the chemical durability for example, acid resistance and / or water resistance
  • the chemical durability of the glass constituting the substrate is not sufficiently excellent, surface roughening occurs due to the cleaning treatment, and the surface smoothness of the substrate decreases. . Therefore, it is desired that the glass for an information recording medium substrate has excellent chemical durability.
  • One embodiment of the present invention provides a glass for an information recording medium substrate having high rigidity, low specific gravity, and excellent chemical durability.
  • One embodiment of the present invention is expressed in mol%, SiO 2 content is 55 to 68%, B 2 O 3 content is 0-5%, Al 2 O 3 content is 1 to 14%, MgO content is 8-23%, CaO content is 1-10%, Li 2 O content is 5-18%, The total content of Li 2 O, Na 2 O and K 2 O is 5-18%, The total content of ZrO 2 , TiO 2 , BaO, SrO and rare earth oxide is 0-5%, The total content of Li 2 O and MgO is 20 to 32%, Molar ratio of total content of Li 2 O and MgO to total content of alkali metal oxide and alkaline earth metal oxide ⁇ (Li 2 O + MgO) / (alkali metal oxide + alkaline earth metal oxide) ⁇ Is 0.60-0.95, The molar ratio of SiO 2 content to the total content of alkali metal oxides (SiO 2 / alkali metal oxide) is 3 to 13, And A glass for an information recording medium substrate, which
  • the glass for an information recording medium substrate can have a high rigidity of Young's modulus of 86 GPa or more and a specific gravity of 2.75 or less, and can exhibit excellent chemical durability. .
  • a glass for an information recording medium substrate having high rigidity and low specific gravity and excellent chemical durability. Furthermore, according to one aspect, an information recording medium substrate made of the above glass for information recording medium substrate and an information recording medium including the substrate can be provided. Furthermore, according to one aspect, a glass spacer for a recording / reproducing apparatus can be provided.
  • Glass for information recording medium substrate is a glass for an information recording medium substrate (hereinafter, also simply referred to as “glass”) which is an amorphous glass having the above glass composition, a Young's modulus of 86 GPa or more and a specific gravity of 2.75 or less. )
  • the glass is amorphous glass.
  • Amorphous glass unlike crystallized glass, is a glass that does not contain a crystalline phase and exhibits a glass transition phenomenon at an elevated temperature.
  • the glass can be an oxide glass.
  • An oxide glass is a glass whose main network forming component is an oxide.
  • the glass composition is represented by an oxide-based glass composition.
  • the “oxide-based glass composition” refers to a glass composition obtained by converting all glass raw materials to be decomposed at the time of melting and existing as oxides in the glass. Unless otherwise specified, the glass composition is expressed on a molar basis (mol%, molar ratio).
  • the glass composition of the present invention and the present specification can be determined by a method such as ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Quantitative analysis is performed for each element using ICP-AES. The analytical value is then converted to oxide notation.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • the analysis value by ICP-AES may include a measurement error of about ⁇ 5% of the analysis value, for example. Therefore, the oxide notation value converted from the analysis value may also contain an error of about ⁇ 5%. Further, in the present invention and the present specification, the content of the constituent component is 0% or does not contain (does not contain) or does not introduce, which means that the constituent component is not substantially contained, The amount is less than or equal to the impurity level. An impurity level of about or less means, for example, less than 0.01%.
  • SiO 2 is a glass network-forming component and has a function of improving glass stability.
  • SiO 2 is a component that contributes to improvement of chemical durability.
  • the SiO 2 content in the glass is 68% or less from the viewpoint of increasing the Young's modulus, and 55% or more from the viewpoint of increasing the chemical durability.
  • the SiO 2 content is preferably 65% or less, more preferably 64% or less, still more preferably 63% or less, and 62% or less from the viewpoint of improvement of Young's modulus and glass stability. It is more preferable that The SiO 2 content is preferably 56% or more, more preferably 57% or more, still more preferably 58% or more, and more preferably 59% or more, from the viewpoint of improving chemical durability. It is more preferable that
  • B 2 O 3 is also a glass network-forming component, a component that contributes to lowering the specific gravity of the glass, and a component that improves meltability. B 2 O 3 tends to volatilize during melting and tends to make the glass component ratio unstable. Moreover, there exists a tendency to reduce chemical durability by excessive introduction
  • the B 2 O 3 content is preferably 3% or less, more preferably 2% or less, still more preferably 1% or less, still more preferably 0.5% or less, and 0% More preferably, it is 3% or less.
  • Al 2 O 3 is also a glass network forming component and has a function of increasing the Young's modulus of glass and a function of improving chemical durability.
  • the Al 2 O 3 content in the glass is 1% or more, preferably 3% or more, more preferably 5% or more, 6% More preferably, it is more preferably 7% or more.
  • the Al 2 O 3 content in the glass is 14% or less, preferably 13% or less, and more preferably 12% or less. More preferably, it is 11% or less.
  • the alkaline earth metal oxide is at least one selected from the group consisting of MgO, CaO, SrO and BaO.
  • MgO is a component having a function of increasing the Young's modulus of glass and a function of improving the meltability and / or moldability of the glass.
  • the glass contains MgO as an essential component, and the MgO content is 8% or more, preferably 10% or more, more preferably 11% or more, It is more preferably 12% or more, and further preferably 13% or more.
  • the MgO content in the glass is 23% or less, preferably 21% or less, more preferably 20% or less, and further preferably 19% or less. 18% or less, more preferably 17% or less.
  • CaO like MgO, has a function of increasing the Young's modulus of glass and a function of improving the meltability and / or stability of glass.
  • the CaO content in the glass is 1% or more, preferably 2% or more, more preferably 3% or more, and more preferably 4% or more. More preferably, it is more preferably 5% or more.
  • the CaO content in the glass is 10% or less, preferably 9% or less, more preferably 8% or less, and 7.5% or less. More preferably.
  • SrO has a function of improving the meltability, formability, and glass stability of glass.
  • SrO is a component that increases the specific gravity and causes a decrease in chemical durability.
  • the SrO content in the glass is preferably 0 to 5%.
  • a more preferable range of the SrO content is 0 to 3%, a more preferable range is 0 to 2%, and a more preferable range is 0 to 1%, and no SrO is contained, that is, the SrO content is 0%. Most preferred.
  • BaO also has the function of improving the meltability, moldability and glass stability of glass.
  • BaO is a component that increases the specific gravity and causes a decrease in chemical durability.
  • the BaO content in the glass is preferably 0 to 5%.
  • a more preferable range of the BaO content is 0 to 3%, a further preferable range is 0 to 2%, and a more preferable range is 0 to 1%, and that no BaO is contained, that is, the BaO content is 0%. Most preferred.
  • the total content of alkaline earth metal oxides in the glass is preferably 15% or more, and from 17% or more, from the viewpoint of improving the Young's modulus of the glass and meltability and / or stability. More preferably, it is 18% or more, more preferably 19% or more. Further, from the viewpoint of further improving the chemical durability of the glass, the total content (MgO + CaO + SrO + BaO) of the alkaline earth metal oxide in the glass is preferably 30% or less, and preferably 28% or less. More preferably, it is 26% or less, more preferably 25% or less.
  • the molar ratio ⁇ MgO / (MgO + CaO + SrO + BaO) ⁇ of the content of MgO to the total content of alkaline earth metal oxides is preferably 0.5 or more.
  • the lower limit of the molar ratio is more preferably 0.55 or more, still more preferably 0.60 or more, and still more preferably 0.65 or more.
  • the upper limit of the molar ratio is preferably 0.95 or less, more preferably 0.90 or less, and still more preferably 0.85 or less, from the viewpoint of glass stabilization. More preferably, it is 0.80 or less.
  • MgO and CaO have the function of increasing the Young's modulus of the glass.
  • the total content of MgO and CaO (MgO + CaO) in the glass is preferably 15 to 35%.
  • the minimum of the said total amount it is preferable that it is 17% or more from a viewpoint of the further improvement of a Young's modulus, It is more preferable that it is 19% or more, It is still more preferable that it is 20% or more.
  • the upper limit of the total amount is preferably 30% or less, more preferably 26% or less, and further preferably 25% or less from the viewpoint of maintaining the stability of the glass.
  • MgO has a greater function to increase the Young's modulus of glass than CaO. Therefore, in the said glass, it is preferable that MgO content shall be more than the same amount as CaO content.
  • alkaline earth metal oxides can add mixed alkaline earth effect by adding a plurality of kinds rather than adding only a single component to glass, and improve the meltability and / or stability of glass. it can. Therefore, in the glass, the molar ratio of MgO content to MgO content (MgO / CaO) is preferably 1.0 to 20.0. The lower limit of the molar ratio is preferably 1.25 or more, more preferably 1.50 or more, and still more preferably 1.70 or more from the viewpoint of further improving the Young's modulus.
  • the upper limit of the molar ratio is preferably 10.0 or less, more preferably 8.0 or less, still more preferably 6.0 or less, from the viewpoint of maintaining the stability of the glass. Is more preferably 0.0 or less, and even more preferably 4.0 or less.
  • the alkali metal oxide is an oxide of an alkali metal (Li, Na, K, Rb, Cs, Fr), preferably one or more selected from the group consisting of Li 2 O, Na 2 O and K 2 O. is there.
  • Li 2 O has a strong effect of improving the meltability and moldability of glass among alkali metal oxides, and is a suitable component for increasing the Young's modulus and imparting a suitable rigidity to the information recording medium substrate. .
  • Li 2 O is also a component that increases the thermal expansion coefficient.
  • Li 2 O has a function of lowering the viscosity of the glass, so when introduced excessively, the viscosity at the liquidus temperature tends to decrease and the glass tends to be unstable (devitrified easily).
  • Li 2 O is also a component that lowers the glass transition temperature. Considering the above functions, the Li 2 O content in the glass is 5 to 18%.
  • the lower limit of the content of Li 2 O preferably at least 6%, more preferably 7% or more, even more preferably 8% or more.
  • the upper limit of the Li 2 O content is preferably 16% or less, more preferably 14% or less, further preferably 13% or less, and further preferably 12% or less. .
  • Na 2 O content in the glass is preferably 10% or less. Also, from the viewpoint of suppressing alkali elution from the substrate surface when glass is used as the substrate, the Na 2 O content in the glass is preferably 10% or less. Suppressing alkali elution from the substrate surface is preferable because the physical properties of a film such as a recording layer formed on the substrate can be prevented from being affected by the alkali eluted and precipitated from the substrate. Na 2 O is also a component that improves the meltability and moldability of the glass and increases the thermal expansion coefficient. A preferable range of the Na 2 O content is 0 to 10%.
  • the upper limit of the Na 2 O content is more preferably 8% or less, still more preferably 6% or less, still more preferably 5% or less, and even more preferably 4% or less. It is also preferable not to contain (that is, the content is 0%).
  • K 2 O content in the glass is preferably 5% or less.
  • K 2 O has a function of improving the meltability and moldability of glass and is also a component that increases the thermal expansion coefficient.
  • the K 2 O content in the glass is preferably 0 to 5%, more preferably 0 to 3%, still more preferably 0 to 2%, and more preferably 0 to 1%. It is more preferable that K 2 O is not contained (that is, the content is 0%).
  • Li 2 O, Na 2 O, and K 2 O are components that improve the meltability and moldability of the glass and increase the thermal expansion coefficient as described above. From the viewpoint of obtaining the functions of these components satisfactorily, the contents of Li 2 O, Na 2 O and K 2 O in the glass are 5% or more. From the viewpoint of obtaining the functions of these components better, the total content is preferably 6% or more, more preferably 7% or more, and further preferably 8% or more. On the other hand, from the viewpoints of glass heat resistance, suppression of alkali elution, and further improvement in chemical durability, the total content of Li 2 O, Na 2 O and K 2 O in the glass (Li 2 O + Na 2 O + K 2 O). ) Is 18% or less, preferably 16.5% or less, more preferably 15.5% or less, and still more preferably 15.0% or less.
  • Li 2 O and MgO are useful components for increasing the Young's modulus of the glass and maintaining the stability of the glass. Therefore, in the glass, the total content of Li 2 O and MgO (Li 2 O + MgO) is 20 to 32%. If the said total content is 32% or less, it can suppress that stability of glass falls by the raise of liquidus temperature.
  • the lower limit of the total content of Li 2 O and MgO (Li 2 O + MgO) is preferably 21% or more, more preferably 22% or more, and further preferably 22.5% or more.
  • the upper limit of the total content is preferably 30% or less, more preferably 28.5% or less, and further preferably 27.5% or less.
  • Li 2 O and MgO are useful components for increasing the Young's modulus of the glass and maintaining the stability of the glass among the alkali metal oxides and alkaline earth metal oxides as described above. Therefore, in order to efficiently exert its action, in the glass, the molar ratio of the total content of Li 2 O and MgO to the total content of alkali metal oxide and alkaline earth metal oxide ⁇ ( Li 2 O + MgO) / (alkali metal oxide + alkaline earth metal oxide) ⁇ is 0.60 to 0.95.
  • the lower limit of the molar ratio is preferably 0.65 or more, more preferably 0.70 or more, still more preferably 0.72 or more, from the viewpoint of improving the Young's modulus of the glass. More preferably, it is 74 or more.
  • the upper limit of the molar ratio is preferably 0.90 or less, more preferably 0.85 or less, and 0.82 or less from the viewpoint of improving the meltability and / or stability of the glass. Is more preferable, and 0.80 or less is still more preferable.
  • the molar ratio of SiO 2 content to the total content of alkali metal oxides is 3 to 13 in the glass.
  • the upper limit of the molar ratio is 13 or less, preferably 11 or less, more preferably 10 or less, still more preferably 9 or less, from the viewpoint of improving the Young's modulus and improving the meltability of the glass. More preferably, it is 8 or less.
  • the lower limit of the molar ratio is 3 or more from the viewpoint of improving the chemical durability of the glass, preferably 3.5 or more, more preferably 4.0 or more, and 4.2 or more. More preferably, it is 4.5 or more.
  • the ZnO has the function of improving the chemical durability as well as improving the meltability. On the other hand, if ZnO is excessively introduced, the liquidus temperature rises and the glass tends to become unstable. Considering the above points, the ZnO content in the glass is preferably 0 to 10%, more preferably 0 to 5%, still more preferably 0 to 3%, and more preferably 0 to 1%. % Is more preferable, and ZnO may not be contained (that is, the content may be 0%).
  • the ZrO 2 has a function of improving chemical durability and a function of increasing Young's modulus. However, excessive melting may lower the meltability of the glass and cause the remainder of the raw material to melt. Considering the above points, the ZrO 2 content in the glass is preferably 0 to 4%, more preferably 0 to 3%, still more preferably 0 to 2%, and more preferably 0 to 1% is more preferable, and it may not be contained (that is, the content may be 0%).
  • SiO 2 and Al 2 O 3 are glass network forming components and have a function of improving chemical durability.
  • CaO and ZrO 2 are common in that they function to increase the Young's modulus.
  • the inventors set the molar ratio of the total content of SiO 2 and CaO to the total content of Al 2 O 3 and ZrO 2 (SiO 2 + CaO) / (Al 2 O 3 + ZrO 2 ) within an appropriate range.
  • the molar ratio is preferably in the range of 5.0 to 25.0.
  • the lower limit of the molar ratio is more preferably 5.5 or more, still more preferably 6.0 or more, and still more preferably 6.5 or more.
  • the upper limit of the molar ratio is more preferably 20 or less, still more preferably 16 or less, still more preferably 14 or less, and even more preferably 12 or less.
  • the phenomenon that the information recording medium (magnetic disk) itself vibrates due to external vibration in the HDD is called fluttering.
  • This fluttering causes a head crash due to a collision between the magnetic head and the surface of the information recording medium. Even if fluttering occurs due to external vibration, if the vibration of the information recording medium itself is settled early, the occurrence of head crash can be suppressed.
  • an index called fluttering characteristics is known for glass.
  • the fluttering characteristic d means that fluttering is settled earlier as the value is smaller.
  • the molar ratio ⁇ Al 2 O 3 / (Li 2 O + Na 2 O) ⁇ of the Al 2 O 3 content to the total content of Li 2 O and Na 2 O is 0.25 to 1.
  • the molar ratio is preferably 0.4 or more, and more preferably 0.6 or more. From the same viewpoint, the molar ratio is preferably 1.20 or less, and more preferably 1.15 or less.
  • TiO 2 functions to improve chemical durability and glass stability and to increase Young's modulus. However, it is a component that causes an increase in the specific gravity of glass. Accordingly, the TiO 2 content in the glass is preferably 0 to 5%, more preferably 0 to 4%, and still more preferably 0 to 3%.
  • the rare earth oxide is an oxide of rare earth (Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb), preferably La 2. It is at least one selected from the group consisting of O 3 , Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 .
  • Rare earth oxides, as well as ZrO 2 , TiO 2 , SrO and BaO are components that cause an increase in specific gravity.
  • the total content of ZrO 2 , TiO 2 , SrO, BaO and rare earth oxide (ZrO 2 + TiO 2 + SrO + BaO + rare earth oxide) in the glass is 0 to 5%.
  • the upper limit of the total content is preferably 4% or less, more preferably 3% or less, and still more preferably 2% or less.
  • La 2 O 3 , Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 can all improve the Young's modulus of the glass by introducing an appropriate amount.
  • the specific gravity of the glass is increased, so the La 2 O 3 content, the Y 2 O 3 content, the Gd 2 O 3 content and the Yb 2 O 3 content in the glass are each 1%. Is preferably less than 0.5%, more preferably 0.5% or less, and may be 0%.
  • the total content of rare earth oxides is preferably 0 to less than 3%, more preferably 0 to less than 2%, and even more preferably 0 to 1%, from the viewpoint of improving Young's modulus and lowering the specific gravity. More preferably, it is not introduced.
  • Nb 2 O 5 , WO 3 and Ta 2 O 5 can all improve the Young's modulus of the glass by introducing an appropriate amount. On the other hand, excessive introduction increases the specific gravity of the glass and increases the material cost. Therefore, the total content of Nb 2 O 5 , WO 3 and Ta 2 O 5 is preferably less than 1%, more preferably 0.5% or less, and may be 0%.
  • the content of P 2 O 5 in the glass is preferably 0 to 2%.
  • the said glass can contain at least 1 type chosen from the group which consists of Sn oxide, Ce oxide, and Sb oxide from a viewpoint of obtaining a clarification effect.
  • the content of Sn oxide (for example, SnO 2 ) is preferably 0.01% or more and 0.05% or more from the viewpoint of obtaining a fining effect. Is more preferably 0.10% or more, still more preferably 0.15% or more. Further, the content of Sn oxide is preferably less than 1%, and more preferably 0.80% or less. In one aspect, the Sn oxide content may be 0%.
  • Ce oxide e.g., CeO 2 content
  • the Ce oxide content is preferably less than 1%, more preferably 0.80% or less, further preferably 0.50% or less, and 0.30% or less. More preferably.
  • the Ce oxide content may be 0%.
  • the glass containing Sb oxide content of Sb oxide (e.g. Sb 2 O 3) is preferably 1 less than percent, more preferably 0.5% or less. In one aspect, the Sb oxide content may be 0%.
  • the glass is a Fe, in terms of Fe 2 O 3, it may include a degree of 0.5% or less.
  • the Fe content is preferably 0.2% or less, more preferably 0.1% or less, still more preferably 0.05% or less, in terms of Fe 2 O 3 , More preferably, it does not contain Fe.
  • the said glass can contain about 0.5% or less of transition metals, such as Cr, Mn, Fe, Cu, Ni, like Fe. The content of these transition metals is preferably 0.2% or less in terms of oxides, more preferably 0.1% or less, still more preferably 0.05% or less. More preferably, it is not contained.
  • the glass is weighed and mixed with glass raw materials such as oxides, carbonates, nitrates, sulfates, hydroxides, etc., mixed well, and, for example, 1400 It can be produced by molding a homogenized molten glass that is sufficiently blown out by heating, melting, clarification and stirring in the range of ⁇ 1600 ° C.
  • a glass raw material is heated and melted at 1400 to 1550 ° C. in a melting tank, and the obtained molten glass is heated in a clarification tank and maintained at 1450 to 1600 ° C., and then cooled to 1200 to 1400 ° C. It is preferable to flow out and mold.
  • the said glass can have the various glass characteristics described below by performing the composition adjustment described above.
  • the glass for the information recording medium substrate has high rigidity.
  • the glass has a Young's modulus, which is an index of rigidity, of 86 G or more. According to the glass for an information recording medium substrate having a high rigidity exhibiting a Young's modulus of 86 G or more, since the deformation of the substrate in the recording / reproducing apparatus can be suppressed, the warp and the deflection of the information recording medium accompanying the substrate deformation are suppressed. can do.
  • the Young's modulus of the glass is preferably 88 GPa or more, more preferably 90 GPa or more, still more preferably 92 GPa or more, and even more preferably 93 GPa or more.
  • the upper limit of the Young's modulus is, for example, about 120 GPa, but is not particularly limited because the higher the Young's modulus, the higher the rigidity and the better.
  • the specific gravity of the glass is 2.75 or less, preferably 2.72 or less, more preferably 2.70 or less, still more preferably 2.68 or less, and 2.66 or less. More preferably.
  • the specific gravity of the glass for the information recording medium substrate By reducing the specific gravity of the glass for the information recording medium substrate, the information recording medium substrate can be reduced in weight, and further, the information recording medium can be reduced in weight, thereby reducing the power consumption of the recording / reproducing apparatus such as an HDD.
  • the lower limit of the specific gravity is not particularly limited because the lower the specific gravity, the better.
  • the specific elastic modulus is obtained by dividing the Young's modulus of glass by the density.
  • the density may be considered as a value obtained by adding a unit of g / cm 3 to the specific gravity of glass.
  • the specific elastic modulus of the glass is preferably 33 MNm / kg or more, more preferably 34 MNm / kg or more, and further preferably 35 MNm / kg or more. More preferably, it is 36 MNm / kg.
  • the upper limit of the specific modulus is not particularly limited because the higher the specific modulus, the better.
  • the glass can exhibit excellent chemical durability.
  • Examples of the chemical durability evaluation method include acid resistance Da and water resistance Dw, which will be described later in detail.
  • the acid resistance Da is preferably less than 0.20, more preferably 0.10 or less, still more preferably 0.08 or less, and even more preferably 0.06 or less.
  • the water resistance Dw is preferably less than 0.05, more preferably 0.04 or less, and still more preferably 0.03 or less. Since Da and Dw are preferably as low as possible, the lower limit is not particularly limited.
  • a recording / reproducing apparatus incorporating an information recording medium such as an HDD (Hard Disk Drive)
  • HDD Hard Disk Drive
  • a recording / reproducing apparatus incorporating an information recording medium has a structure in which the information recording medium itself is rotated by pressing a central portion with a spindle and a clamp of a spindle motor. Therefore, if there is a large difference in the thermal expansion coefficient between the information recording medium substrate and the spindle material constituting the spindle portion, the thermal expansion / contraction of the spindle and the thermal expansion of the information recording medium substrate with respect to the ambient temperature change during use. -There may be a phenomenon in which the information recording medium is deformed as a result of deviation in heat shrinkage.
  • the glass for an information recording medium substrate has an appropriate thermal expansion coefficient.
  • the average linear expansion coefficient (hereinafter also referred to as “ ⁇ ”) of the glass at 100 to 300 ° C. is preferably in the range of 55 ⁇ 10 ⁇ 7 / ° C. to 100 ⁇ 10 ⁇ 7 / ° C.
  • a range of 60 ⁇ 10 ⁇ 7 / ° C. to 90 ⁇ 10 ⁇ 7 / ° C. is more preferable.
  • the glass can exhibit high glass stability.
  • the glass stability evaluation method include a 1250 ° C. holding test and a 1200 ° C. holding test described later in detail. It is preferable that the evaluation result is A in the 1250 ° C. holding test, the evaluation result is A in the 1250 ° C. holding test, and more preferably the evaluation result A or B in the 1200 ° C. holding test. A is more preferable.
  • the glass stability the better the evaluation result at a lower temperature in the above holding test, the harder the crystals are precipitated in the molten state, and the glass can be molded at a lower molding temperature.
  • the molding temperature is lowered, the lifetime of the components of the molding apparatus such as the heating element, the furnace body, and the pipe can be extended.
  • the molding temperature is preferably as low as possible. Further, if the molding temperature can be lowered, the glass viscosity can be increased and molding can be performed, so that volatilization, striae and generation of molding bubbles can be suppressed.
  • the glass may have a glass transition temperature (hereinafter also referred to as “Tg”) of 620 ° C. or less.
  • Tg glass transition temperature
  • a low Tg of glass is desirable for suppressing deterioration of glass production equipment.
  • Tg can be 615 ° C. or lower or 610 ° C. or lower, for example.
  • Tg can be 500 ° C. or more, for example, but is not particularly limited.
  • the Tg of the glass may be higher than 620 ° C. (for example, 625 ° C. or higher).
  • a glass having a high Tg can maintain high flatness even when it is exposed to a high temperature, for example, when a magnetic recording layer is formed on a substrate.
  • Tg can be, for example, 630 ° C. or higher, 640 ° C. or higher, or 650 ° C. or higher. In one embodiment, Tg can be, for example, about 770 ° C. or lower, but is not particularly limited.
  • the glass is not limited to a glass for an information recording medium having a magnetic recording layer containing a magnetic material that requires film formation at a high temperature, and may be a glass having a low Tg.
  • An information recording medium substrate according to an aspect of the present invention is made of the above glass for an information recording medium substrate.
  • An information recording medium substrate is prepared by heating a glass raw material to prepare a molten glass, and this molten glass is formed into a plate shape by any one of a press molding method, a down draw method, and a float method, and the obtained plate shape It can manufacture through the process of processing glass.
  • a press molding method molten glass flowing out from a glass outflow pipe is cut into a predetermined volume to obtain a required molten glass lump, which is press-molded with a press mold to produce a thin disk-shaped substrate blank. .
  • a center hole is provided in the obtained substrate blank, inner and outer peripheral processing, lapping and polishing are performed on both main surfaces.
  • a disk-shaped substrate can be obtained through a cleaning process (for example, acid cleaning and / or alkali cleaning).
  • the information recording medium substrate has a uniform surface and internal composition.
  • that the composition of the surface and the inside is homogeneous means that ion exchange is not performed (that is, there is no ion exchange layer).
  • An information recording medium substrate that does not have an ion exchange layer is not subjected to an ion exchange treatment, and thus can greatly reduce manufacturing costs.
  • the information recording medium substrate has an ion exchange layer on part or all of the surface. Since the ion exchange layer exhibits compressive stress, the presence or absence of the ion exchange layer can be confirmed by breaking the substrate perpendicular to the main surface and obtaining a stress profile by the Babinet method at the fracture surface.
  • the “main surface” is the surface on which the magnetic recording layer of the substrate is provided or the surface provided. Such a surface is called the main surface because it is the surface with the largest area among the surfaces of the information recording medium substrate.
  • the circular surface of the disk (when there is a central hole) Corresponds to (except for the central hole).
  • the presence or absence of the ion exchange layer can also be confirmed by a method of measuring the concentration distribution of alkali metal ions in the depth direction from the substrate surface.
  • the ion exchange layer can be formed by bringing an alkali salt into contact with the substrate surface at a high temperature and exchanging alkali metal ions in the alkali salt with alkali metal ions in the substrate.
  • ion exchange also referred to as “strengthening treatment” or “chemical strengthening”
  • paragraphs 0068 to 0069 of WO2011 / 0190010A1 can be referred to.
  • the information recording medium substrate has, for example, a thickness of 1.5 mm or less, preferably 1.2 mm or less, more preferably 1 mm or less, and the lower limit of the thickness is preferably 0.3 mm.
  • the information recording medium substrate is preferably a magnetic recording medium substrate, and more preferably a disk shape having a central hole.
  • the information recording medium substrate is made of amorphous glass.
  • crystallized glass the surface of the substrate after processing such as polishing is affected by unevenness due to crystal particles, and the surface smoothness of the substrate tends to be lowered.
  • amorphous glass superior surface smoothness can be realized when processed into a substrate as compared with crystallized glass.
  • the surface roughness (Ra) of the main surface of the information recording medium substrate is preferably 0.25 nm or less, more preferably 0.20 nm or less, and further preferably 0.15 nm or less.
  • One aspect of the present invention relates to an information recording medium having an information recording layer on the information recording medium substrate.
  • a preferred embodiment of the information recording medium is a magnetic recording medium.
  • Disk-shaped magnetic recording media called magnetic disks, hard disks, etc., record and reproduce internal storage devices (such as fixed disks) such as desktop computers, server computers, notebook computers, and mobile computers, and images and / or audio. It is suitable for an internal storage device of a portable recording / reproducing apparatus, an in-vehicle audio recording / reproducing apparatus, and the like.
  • the magnetic recording medium has at least an adhesion layer, an underlayer, a magnetic layer (magnetic recording layer), a protective layer, and a lubricating layer stacked on the main surface of the information recording medium substrate in order from the side closer to the main surface. It has been configured.
  • an information recording medium substrate is introduced into a vacuum-deposited film forming apparatus, and a magnetic layer is formed from an adhesion layer on the main surface of the information recording medium substrate in an Ar atmosphere by a DC (Direct Current) magnetron sputtering method. The film is formed sequentially.
  • DC Direct Current
  • a protective layer is formed using C 2 H 4 by, for example, CVD (Chemical Vapor Deposition), and a magnetic recording medium is formed by performing nitridation treatment in which nitrogen is introduced into the surface in the same chamber. can do.
  • PFPE polyfluoropolyether
  • the DFH mechanism is a function in which a heating unit such as a very small heater is provided in the vicinity of the recording / reproducing element unit of the magnetic head, and only the periphery of the element unit is projected toward the medium surface.
  • the gap (flying height) between the element portion of the magnetic head and the medium surface is extremely small. If the magnetic head is brought close to the surface of the information recording medium with poor surface smoothness, the magnetic head may come into contact with the surface of the information recording medium and a head crash may occur. Therefore, it is necessary to secure a certain flying height to prevent contact. I don't get it. From the above points, it is desirable to increase the surface smoothness of the information recording medium substrate in order to increase the surface smoothness of the information recording medium. In this regard, a glass excellent in chemical durability is preferable because there is little decrease in surface smoothness after the cleaning treatment. An information recording medium having such a glass substrate is also suitable for a recording / reproducing apparatus equipped with a DFH mechanism in which the flying height is extremely narrowed.
  • the information recording medium substrate for example, a magnetic disk substrate
  • the information recording medium for example, a magnetic disk
  • the medium and the substrate can be downsized. Is also possible.
  • a nominal diameter of 2.5 inches can of course be of a smaller diameter (eg, 1 inch, 1.8 inches) or 3 inches, 3.5 inches, etc.
  • the SiO 2 content is 55 to 68%
  • the B 2 O 3 content is 0 to 5%
  • the Al 2 O 3 content is 1 to 14%
  • the MgO content is expressed in mol%.
  • the present invention relates to a glass spacer for a recording / reproducing apparatus including amorphous glass having a (Lukari metal oxide) of 3 to 13, a Young's modulus of 86 GPa or more and a specific gravity of
  • the information recording medium can be used for recording and / or reproducing information in a recording / reproducing apparatus.
  • the magnetic recording medium can be used for magnetically recording and / or reproducing information in a magnetic recording / reproducing apparatus.
  • the recording / reproducing apparatus includes a spacer in order to fix the information recording medium to the spindle of the spindle motor and / or to maintain a distance between the plurality of information recording media.
  • glass spacers it has been proposed to use glass spacers as such spacers. This glass spacer is also desired to have high rigidity, low specific gravity, and excellent chemical durability for the same reason as described above in detail for the glass for the information recording medium substrate.
  • the glass is suitable as a glass spacer for a recording / reproducing apparatus because it has high rigidity and low specific gravity and excellent chemical durability as described above.
  • the spacer for the recording / reproducing apparatus is a ring-shaped member, and details of the structure and manufacturing method of the glass spacer are well known.
  • the manufacturing method of the glass spacer the above description regarding the manufacturing method of the information recording medium substrate glass and the manufacturing method of the information recording medium substrate can also be referred to.
  • the glass composition and glass characteristics of the glass spacer for recording / reproducing apparatus according to one aspect of the present invention information recording medium substrate glass, information recording medium substrate, and information recording according to one aspect of the present invention Reference may be made to the above description regarding the medium.
  • the glass spacer for recording / reproducing apparatuses can be made of the glass, or can have a structure in which one or more films such as a conductive film are provided on the surface of the glass.
  • a conductive film such as a NiP alloy can be formed on the surface of the glass spacer by plating, dipping, vapor deposition, sputtering, or the like.
  • the glass spacer can increase the surface smoothness by polishing (for example, the average surface roughness is 1 ⁇ m or less), thereby strengthening the adhesion between the information recording medium and the spacer and suppressing the occurrence of misalignment. can do.
  • One embodiment of the present invention provides: An information recording medium according to an aspect of the present invention; and a glass spacer according to an aspect of the present invention, A recording / reproducing apparatus including at least one of About.
  • the recording / reproducing apparatus includes at least one information recording medium and at least one spacer, and usually further includes a spindle motor for rotationally driving the information recording medium, and recording and / or information on the information magnetic recording medium. It includes at least one recording / reproducing head for performing reproduction.
  • the recording / reproducing apparatus according to one aspect of the present invention can include the information recording medium according to one aspect of the present invention as at least one information recording medium, and includes a plurality of information recording media according to one aspect of the present invention. You can also The recording / reproducing apparatus according to one embodiment of the present invention can include the glass spacer according to one embodiment of the present invention as at least one spacer, and can also include a plurality of glass spacers according to one embodiment of the present invention.
  • the physical properties of the information recording medium and the spacer are preferably similar from the viewpoint of suppressing the occurrence of a phenomenon caused by the difference in physical properties between the information recording medium and the spacer.
  • the fact that the difference between the thermal expansion coefficient of the information recording medium and the thermal expansion coefficient of the spacer is small is a phenomenon that can occur due to the difference between the two thermal expansion coefficients, for example, distortion of the information recording medium, This is preferable from the viewpoint of suppressing the occurrence of a decrease in stability during rotation due to a position shift.
  • the recording / reproducing apparatus is applied to one aspect of the present invention as at least one information recording medium, and more information recording media when a plurality of information recording media are included.
  • the glass spacer according to one embodiment of the present invention is included as the information recording medium, and as at least one spacer and as a larger number of spacers when a plurality of spacers are included.
  • the glass constituting the information recording medium substrate included in the information recording medium and the glass constituting the glass spacer have the same glass composition. be able to.
  • the recording / reproducing apparatus may include at least one of the information recording medium according to one aspect of the present invention and the glass spacer according to one aspect of the present invention.
  • the magnetic head includes an energy source (for example, a heat source such as a laser light source, a microwave, etc.) for assisting magnetization reversal (assuming writing of a magnetic signal), a recording element unit, and a reproducing element unit.
  • An energy-assisted magnetic recording head can be used.
  • Such an energy-assisted recording type magnetic recording / reproducing apparatus including an energy-assisted magnetic recording head is useful as a magnetic recording / reproducing apparatus having high recording density and high reliability.
  • an information recording medium used in a magnetic recording / reproducing apparatus of an energy assist recording system such as a heat assist recording system having a heat assist magnetic recording head having a laser light source or the like
  • magnetic anisotropy energy In some cases, a magnetic recording layer containing a high magnetic material is formed on an information recording medium substrate. In order to form such a magnetic recording layer, film formation is usually performed at a high temperature, or heat treatment is performed at a high temperature after the film formation.
  • the information recording medium substrate according to one embodiment of the present invention is preferable as an information recording medium substrate that can have high heat resistance that can withstand such high-temperature processing.
  • the recording / reproducing apparatus according to one embodiment of the present invention is not limited to the energy-assisted magnetic recording / reproducing apparatus.
  • Glass No. 1-No. 48 In order to obtain glasses having the compositions shown in Table 1 (Table 1-1 to Table 1-3), raw materials such as oxides, carbonates, nitrates, and hydroxides were weighed and mixed to obtain blended raw materials. The molten glass obtained by adding this blended raw material to the melting tank and heating and melting it in the range of 1400-1600 ° C is held at 1400-1550 ° C for 6 hours in the clarification tank, and then the temperature is lowered (decreased). The glass was held in the range of 1200 to 1400 ° C. for 1 hour and then a molten glass was formed to obtain a glass (amorphous oxide glass) for the following evaluation.
  • Table 1 Table 1-1 to Table 1-3
  • Liquid phase temperature For each glass, put a glass sample (100 g) into a platinum crucible, put each crucible into a heating furnace set at a predetermined furnace temperature, and maintain the furnace temperature. Left for 16 hours. After 16 hours, the crucible was taken out from the heating furnace, the glass in the crucible was transferred onto a refractory and cooled to room temperature, and the presence or absence of crystals of each glass was observed with an optical microscope.
  • the liquid crystal temperature was defined as the lowest temperature at which no crystal was observed by magnifying observation (magnification 40 to 100 times) with an optical microscope.
  • the liquidus temperature is an index of devitrification resistance, preferably 1250 ° C. or less, more preferably 1220 ° C. or less, and still more preferably 1200 ° C. or less.
  • the lower mold on which the molten glass block was placed was immediately taken out from below the pipe, and was pressed into a thin disk shape having a diameter of 66 mm and a thickness of 1.2 mm using the upper mold and the barrel mold opposed to the lower mold.
  • the press molded product was cooled to a temperature at which it was not deformed, it was taken out of the mold and annealed to obtain a substrate blank.
  • the molten glass flowing out using a plurality of lower molds was successively formed into a disk-shaped substrate blank.
  • Method B For each glass shown in Table 1, the molten glass of the above-described embodiment, which has been clarified and homogenized, is continuously cast from above into a through hole of a heat-resistant mold provided with a cylindrical through hole, and formed into a cylindrical shape. It was taken out from the lower side of the through hole. The annealed glass was annealed, and then the glass was sliced at regular intervals in a direction perpendicular to the cylinder axis using a multi-wire saw to produce a disk-shaped substrate blank. Although the above-described methods A and B are employed here, the following methods C and D are also suitable as a method for manufacturing a disk-shaped substrate blank.
  • Method C The molten glass is poured onto a float bath, formed into a sheet-like glass (forming by a float method), and then annealed, and then a disc-like glass is cut out from the sheet glass to obtain a substrate blank.
  • Method D The molten glass is formed into a sheet-like glass by the overflow down draw method (fusion method) and annealed, and then the disc-like glass is cut out from the sheet glass to obtain a substrate blank.
  • an adhesion layer, an underlayer, and a magnetic recording layer were sequentially formed in an Ar atmosphere by a DC magnetron sputtering method using a vacuum-deposited film forming apparatus.
  • the adhesion layer was formed using a CrTi target so as to be an amorphous CrTi layer having a thickness of 20 nm.
  • a 10 nm thick layer made of CrRu was formed as a base layer by a DC magnetron sputtering method in an Ar atmosphere using a single wafer / stationary facing type film forming apparatus.
  • the magnetic recording layer was formed at a film formation temperature of 400 ° C. using a hard magnetic target made of CoCrPt containing chromium oxide.
  • a protective layer made of hydrogenated carbon was formed to 3 nm by a CVD method using ethylene as a material gas.
  • a lubricating layer using PFPE perfluoropolyether
  • the thickness of the lubricating layer was 1 nm.
  • a magnetic disk was obtained by the above manufacturing process. The obtained magnetic disk is mounted on a hard disk drive (flying height: 8 nm) equipped with a DFH mechanism, and a magnetic signal is recorded at a recording density of 20 gigabits per square inch in a recording area on the main surface of the magnetic disk. As a result, a phenomenon (head crash) in which the magnetic head and the magnetic disk surface collide was not confirmed.
  • an information recording medium optimal for high density recording can be provided.
  • the SiO 2 content is 55 to 68%
  • the B 2 O 3 content is 0 to 5%
  • the Al 2 O 3 content is 1 to 14%
  • the MgO content is expressed in mol%. 8-23%
  • CaO content 1-10% Li 2 O content 5-18%, total content of Li 2 O, Na 2 O and K 2 O 5-18%, ZrO 2 , TiO 2 , the total content of BaO, SrO and rare earth oxides is 0-5%
  • the total content of Li 2 O and MgO is 20-32%
  • the molar ratio of the total content of Li 2 O and MgO to the amount ⁇ (Li 2 O + MgO) / (alkali metal oxide + alkaline earth metal oxide) ⁇ is 0.60 to 0.95
  • Molar ratio of SiO 2 content to total content (SiO 2 / Al There is provided a glass for an information recording medium substrate which is an amorphous glass having
  • the glass has high rigidity, low specific gravity, and can exhibit excellent chemical durability.
  • the molar ratio ⁇ (SiO 2 + CaO) / (Al 2 O 3 + ZrO 2 ) ⁇ of the total content of SiO 2 and CaO to the total content of Al 2 O 3 and ZrO 2 in the glass is: It can range from 5.0 to 25.0.
  • the total content of MgO and CaO in the glass can be in the range of 15-35%.
  • the molar ratio (MgO / CaO) of the MgO content to the CaO content of the glass can be in the range of 1.0 to 20.0.
  • the molar ratio of MgO content to the total content of alkaline earth metal oxides in the glass can be 0.5 or more.
  • the molar ratio ⁇ Al 2 O 3 / (Li 2 O + Na 2 O) ⁇ of the Al 2 O 3 content to the total content of Li 2 O and Na 2 O in the glass is 0.25 to 1 .25 range.
  • the TiO 2 content of the glass can range from 0 to 5%.
  • the ZrO 2 content of the glass can range from 0 to 3 mol%.
  • the SiO 2 content of the glass can be in the range of 58-65 mol%.
  • the specific elastic modulus of the glass can be 33 MNm / kg or more.
  • an information recording medium substrate comprising the information recording medium is provided.
  • an information recording medium having an information recording layer on the information recording medium substrate is provided.
  • the SiO 2 content is 55 to 68%
  • the B 2 O 3 content is 0 to 5%
  • the Al 2 O 3 content is 1 to 14%
  • the MgO content is expressed in mol%. 8-23%
  • CaO content 1-10% Li 2 O content 5-18%, total content of Li 2 O, Na 2 O and K 2 O 5-18%, ZrO 2 , TiO 2 , the total content of BaO, SrO and rare earth oxides is 0-5%
  • the total content of Li 2 O and MgO is 20-32%
  • the molar ratio of the total content of Li 2 O and MgO to the amount ⁇ (Li 2 O + MgO) / (alkali metal oxide + alkaline earth metal oxide) ⁇ is 0.60 to 0.95
  • Molar ratio of SiO 2 content to total content (SiO 2 / Al There is provided a glass spacer for a recording / reproducing apparatus including amorphous
  • the embodiment disclosed this time should be considered as illustrative in all points and not restrictive.
  • the scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
  • the glass for an information recording medium substrate according to one embodiment of the present invention can be manufactured by adjusting the composition described in the specification for the glass composition exemplified above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Magnetic Record Carriers (AREA)
  • Holding Or Fastening Of Disk On Rotational Shaft (AREA)

Abstract

Provided is a glass for an information recording medium substrate, said glass being an an amorphous glass which has, in terms of mol%, an SiO2 content of 55-68%, a B2O3 content of 0-5%, an Al2O3 content of 1-14%, an MgO content of 8-23%, a CaO content of 1-10%, an Li2O content of 5-18%, the total content of Li2O, Na2O and K2O of 5-18%, the total content of ZrO2, TiO2, BaO, SrO and rare earth oxide(s) of 0-5%, the total content of Li2O and MgO of 20-32%, the molar ratio of the total content of Li2O and MgO to the total content of the alkali metal oxides and alkaline earth metal oxides of 0.60-0.95, the molar ratio of the SiO2 content to the total content of the alkali metal oxides of 3-13, a Young's modulus of 86 GPa or more and a specific gravity of 2.75 or less.

Description

情報記録媒体基板用ガラス、情報記録媒体基板、情報記録媒体および記録再生装置用ガラススペーサGlass for information recording medium substrate, information recording medium substrate, information recording medium, and glass spacer for recording / reproducing apparatus
 本発明は、情報記録媒体基板用ガラス、情報記録媒体基板、情報記録媒体および記録再生装置用ガラススペーサに関する。 The present invention relates to a glass for an information recording medium substrate, an information recording medium substrate, an information recording medium, and a glass spacer for a recording / reproducing apparatus.
 ハードディスク等の情報記録媒体用の基板(情報記録媒体基板)としては、従来、アルミニウム合金製の基板(アルミニウム基板)が主に用いられていた。しかし、アルミニウム基板は、剛性は高いものの、変形しやすい、研磨後の基板表面の平滑性が十分ではない等の点が指摘されている。そのため近年、ガラス製の情報記録媒体基板が提案されている(例えば特許文献1参照)。 Conventionally, an aluminum alloy substrate (aluminum substrate) has been mainly used as a substrate for an information recording medium such as a hard disk (information recording medium substrate). However, although the aluminum substrate has high rigidity, it has been pointed out that it is easily deformed, and the smoothness of the substrate surface after polishing is not sufficient. Therefore, in recent years, an information recording medium substrate made of glass has been proposed (see, for example, Patent Document 1).
特開平11-302031号公報Japanese Patent Laid-Open No. 11-302031
 近年、情報記録媒体の薄型化および高密度記録化に伴い、HDD(ハードディスクドライブ)等の記録再生装置内での情報記録媒体の反りおよびたわみを低減することが求められている。例えば、HDDは、磁気ディスクの中央部分をスピンドルモータのスピンドルおよびクランプで押さえて磁気ディスクを回転させる構造となっている。この回転中に磁気ディスクの反りやたわみが発生すると、情報の書き込みまたは読み出しを行う磁気ヘッドが磁気ディスク表面と接触しやすくなる。磁気ヘッドが磁気ディスク表面との接触により衝撃を受けると、ヘッドの損傷(ヘッドクラッシュ)が発生してしまう。反りおよびたわみを低減するためには、情報記録媒体基板用のガラスの剛性が高いこと、具体的にはヤング率が高いことが望ましい。 In recent years, with the thinning and high-density recording of information recording media, it has been required to reduce warping and deflection of the information recording medium in a recording / reproducing apparatus such as an HDD (Hard Disk Drive). For example, an HDD has a structure in which a magnetic disk is rotated by pressing a central portion of the magnetic disk with a spindle and a clamp of a spindle motor. If the magnetic disk is warped or bent during this rotation, the magnetic head for writing or reading information is likely to come into contact with the surface of the magnetic disk. When the magnetic head is impacted by contact with the magnetic disk surface, the head is damaged (head crash). In order to reduce warpage and deflection, it is desirable that the glass for the information recording medium substrate has a high rigidity, specifically, a high Young's modulus.
 更に、情報記録媒体基板用のガラスは、低比重化することが望ましい。低比重化することにより情報記録媒体基板を軽量化することができるからである。基板の軽量化により、情報記録媒体の軽量化がなされ、例えばHDDにおいては磁気ディスクの回転に要する電力を減少させ、HDDの消費電力を抑えることができる。 Furthermore, it is desirable to reduce the specific gravity of the glass for the information recording medium substrate. This is because the information recording medium substrate can be reduced in weight by reducing the specific gravity. By reducing the weight of the substrate, the weight of the information recording medium is reduced. For example, in the HDD, the power required for rotating the magnetic disk can be reduced, and the power consumption of the HDD can be suppressed.
 また、記録再生装置内での情報記録媒体表面上方における磁気ヘッドの浮上高さ(フライングハイト)は、低くするほど高密度記録化に有利である。しかし、情報記録媒体が表面平滑性に劣るものであると、磁気ヘッドが情報記録媒体表面に存在するフライングハイトよりも高い突起と接触して衝撃を受け、ヘッドクラッシュが発生してしまう。したがって、フライングハイトをより低くして更なる高密度記録化を進行させるためには、情報記録媒体の表面平滑性を高めることが望ましく、そのためには情報記録媒体基板の表面平滑性を高めることが望ましい。
 一方、情報記録媒体基板の製造工程では、通常、基板に付着した異物を除去するために洗浄処理が行われる。しかし、基板を構成するガラスの化学的耐久性(例えば耐酸性および/または耐水性)が十分優れていないと、洗浄処理により表面粗れが生じてしまい、基板の表面平滑性が低下してしまう。そのため、情報記録媒体基板用のガラスには、優れた化学的耐久性を有することも望まれる。
Further, the lower the flying height of the magnetic head above the surface of the information recording medium in the recording / reproducing apparatus, the more advantageous for high density recording. However, if the information recording medium is inferior in surface smoothness, the magnetic head comes into contact with a protrusion higher than the flying height existing on the surface of the information recording medium and receives an impact, causing a head crash. Therefore, in order to further increase the recording density by lowering the flying height, it is desirable to increase the surface smoothness of the information recording medium. For this purpose, the surface smoothness of the information recording medium substrate should be increased. desirable.
On the other hand, in the manufacturing process of the information recording medium substrate, a cleaning process is usually performed in order to remove foreign matters attached to the substrate. However, if the chemical durability (for example, acid resistance and / or water resistance) of the glass constituting the substrate is not sufficiently excellent, surface roughening occurs due to the cleaning treatment, and the surface smoothness of the substrate decreases. . Therefore, it is desired that the glass for an information recording medium substrate has excellent chemical durability.
 本発明の一態様は、剛性が高く、比重が低く、かつ化学的耐久性に優れる情報記録媒体基板用ガラスを提供する。 One embodiment of the present invention provides a glass for an information recording medium substrate having high rigidity, low specific gravity, and excellent chemical durability.
 本発明の一態様は、モル%表示にて、
 SiO含有量が55~68%、
 B含有量が0~5%、
 Al含有量が1~14%、
 MgO含有量が8~23%、
 CaO含有量が1~10%、
 LiO含有量が5~18%、
 LiO、NaOおよびKOの合計含有量が5~18%、
 ZrO、TiO、BaO、SrOおよび希土類酸化物の合計含有量が0~5%、
 LiOとMgOとの合計含有量が20~32%、
 アルカリ金属酸化物とアルカリ土類金属酸化物との合計含有量に対するLiOとMgOとの合計含有量のモル比{(LiO+MgO)/(アルカリ金属酸化物+アルカリ土類金属酸化物)}が0.60~0.95、
 アルカリ金属酸化物の合計含有量に対するSiO含有量のモル比(SiO/アルカリ金属酸化物)が3~13、
 であり、
 ヤング率が86GPa以上かつ比重が2.75以下の非晶質ガラスである情報記録媒体基板用ガラス、
 に関する。
One embodiment of the present invention is expressed in mol%,
SiO 2 content is 55 to 68%,
B 2 O 3 content is 0-5%,
Al 2 O 3 content is 1 to 14%,
MgO content is 8-23%,
CaO content is 1-10%,
Li 2 O content is 5-18%,
The total content of Li 2 O, Na 2 O and K 2 O is 5-18%,
The total content of ZrO 2 , TiO 2 , BaO, SrO and rare earth oxide is 0-5%,
The total content of Li 2 O and MgO is 20 to 32%,
Molar ratio of total content of Li 2 O and MgO to total content of alkali metal oxide and alkaline earth metal oxide {(Li 2 O + MgO) / (alkali metal oxide + alkaline earth metal oxide) } Is 0.60-0.95,
The molar ratio of SiO 2 content to the total content of alkali metal oxides (SiO 2 / alkali metal oxide) is 3 to 13,
And
A glass for an information recording medium substrate, which is an amorphous glass having a Young's modulus of 86 GPa or more and a specific gravity of 2.75 or less,
About.
 上記情報記録媒体基板用ガラスは、上記ガラス組成を有することにより、ヤング率が86GPa以上の高い剛性および2.75以下の比重を兼ね備えることができ、かつ優れた化学的耐久性を示すことができる。 By having the glass composition, the glass for an information recording medium substrate can have a high rigidity of Young's modulus of 86 GPa or more and a specific gravity of 2.75 or less, and can exhibit excellent chemical durability. .
 本発明の一態様によれば、高剛性および低比重を有し、かつ化学的耐久性に優れる情報記録媒体基板用ガラスを提供することができる。更に、一態様によれば、上記情報記録媒体基板用ガラスからなる情報記録媒体基板、およびこの基板を含む情報記録媒体を提供することができる。更に一態様によれば、記録再生装置用ガラススペーサを提供することができる。 According to one embodiment of the present invention, it is possible to provide a glass for an information recording medium substrate having high rigidity and low specific gravity and excellent chemical durability. Furthermore, according to one aspect, an information recording medium substrate made of the above glass for information recording medium substrate and an information recording medium including the substrate can be provided. Furthermore, according to one aspect, a glass spacer for a recording / reproducing apparatus can be provided.
[情報記録媒体基板用ガラス]
 本発明の一態様は、上記ガラス組成を有し、ヤング率が86GPa以上かつ比重が2.75以下の非晶質ガラスである情報記録媒体基板用ガラス(以下、単に「ガラス」とも記載する。)に関する。
[Glass for information recording medium substrate]
One embodiment of the present invention is a glass for an information recording medium substrate (hereinafter, also simply referred to as “glass”) which is an amorphous glass having the above glass composition, a Young's modulus of 86 GPa or more and a specific gravity of 2.75 or less. )
 上記ガラスは、非晶質ガラスである。非晶質ガラスとは、結晶化ガラスとは異なり、結晶相を含まず、昇温によりガラス転移現象を示すガラスである。また、上記ガラスは、酸化物ガラスであることができる。酸化物ガラスとは、ガラスの主要ネットワーク形成成分が酸化物であるガラスである。 The glass is amorphous glass. Amorphous glass, unlike crystallized glass, is a glass that does not contain a crystalline phase and exhibits a glass transition phenomenon at an elevated temperature. The glass can be an oxide glass. An oxide glass is a glass whose main network forming component is an oxide.
<ガラス組成>
 本発明および本明細書では、ガラス組成を、酸化物基準のガラス組成で表示する。ここで「酸化物基準のガラス組成」とは、ガラス原料が熔融時にすべて分解されてガラス中で酸化物として存在するものとして換算することにより得られるガラス組成をいうものとする。また、特記しない限り、ガラス組成はモル基準(モル%、モル比)で表示するものとする。
 本発明および本明細書におけるガラス組成は、例えばICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)等の方法により求めることができる。定量分析は、ICP-AESを用い、各元素別に行われる。その後、分析値は酸化物表記に換算される。ICP-AESによる分析値は、例えば、分析値の±5%程度の測定誤差を含んでいることがある。したがって、分析値から換算された酸化物表記の値についても、同様に±5%程度の誤差を含んでいることがある。
 また、本発明および本明細書において、構成成分の含有量が0%または含まない(含有しない)もしくは導入しないとは、この構成成分を実質的に含まないことを意味し、この構成成分の含有量が不純物レベル程度以下であることを指す。不純物レベル程度以下とは、例えば、0.01%未満であることを意味する。
<Glass composition>
In the present invention and the present specification, the glass composition is represented by an oxide-based glass composition. Here, the “oxide-based glass composition” refers to a glass composition obtained by converting all glass raw materials to be decomposed at the time of melting and existing as oxides in the glass. Unless otherwise specified, the glass composition is expressed on a molar basis (mol%, molar ratio).
The glass composition of the present invention and the present specification can be determined by a method such as ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Quantitative analysis is performed for each element using ICP-AES. The analytical value is then converted to oxide notation. The analysis value by ICP-AES may include a measurement error of about ± 5% of the analysis value, for example. Therefore, the oxide notation value converted from the analysis value may also contain an error of about ± 5%.
Further, in the present invention and the present specification, the content of the constituent component is 0% or does not contain (does not contain) or does not introduce, which means that the constituent component is not substantially contained, The amount is less than or equal to the impurity level. An impurity level of about or less means, for example, less than 0.01%.
 以下に、上記ガラスのガラス組成について説明する。 Hereinafter, the glass composition of the glass will be described.
 SiOは、ガラスのネットワーク形成成分であり、ガラス安定性を向上させる働きを有する。また、SiOは、化学的耐久性の向上に寄与する成分である。上記ガラスにおけるSiO含有量は、ヤング率を高める観点から68%以下であり、化学的耐久性を高める観点から55%以上である。SiO含有量は、ヤング率の向上およびガラス安定性の観点から、65%以下であることが好ましく、64%以下であることがより好ましく、63%以下であることが更に好ましく、62%以下であることが一層好ましい。また、SiO含有量は、化学的耐久性の向上の観点から、56%以上であることが好ましく、57%以上であることがより好ましく、58%以上であることが更に好ましく、59%以上であることが一層好ましい。 SiO 2 is a glass network-forming component and has a function of improving glass stability. In addition, SiO 2 is a component that contributes to improvement of chemical durability. The SiO 2 content in the glass is 68% or less from the viewpoint of increasing the Young's modulus, and 55% or more from the viewpoint of increasing the chemical durability. The SiO 2 content is preferably 65% or less, more preferably 64% or less, still more preferably 63% or less, and 62% or less from the viewpoint of improvement of Young's modulus and glass stability. It is more preferable that The SiO 2 content is preferably 56% or more, more preferably 57% or more, still more preferably 58% or more, and more preferably 59% or more, from the viewpoint of improving chemical durability. It is more preferable that
 Bもガラスのネットワーク形成成分であり、ガラスの比重を低下させることに寄与する成分であり、熔融性を向上させる成分でもある。Bは、熔融時に揮発しやすく、ガラス成分比率を不安定にしやすい。また、過剰導入により、化学的耐久性を低下させる傾向がある。以上の点から、上記ガラスにおけるB含有量は、0~5%とする。B含有量は、3%以下であることが好ましく、2%以下であることがより好ましく、1%以下であることが更に好ましく、0.5%以下であることが一層好ましく、0.3%以下であることがより一層好ましい。 B 2 O 3 is also a glass network-forming component, a component that contributes to lowering the specific gravity of the glass, and a component that improves meltability. B 2 O 3 tends to volatilize during melting and tends to make the glass component ratio unstable. Moreover, there exists a tendency to reduce chemical durability by excessive introduction | transduction. From the above points, the B 2 O 3 content in the glass is 0 to 5%. The B 2 O 3 content is preferably 3% or less, more preferably 2% or less, still more preferably 1% or less, still more preferably 0.5% or less, and 0% More preferably, it is 3% or less.
 Alもガラスのネットワーク形成成分であり、ガラスのヤング率を高める働きおよび化学的耐久性を向上させる働きを有する。ヤング率および化学的耐久性向上の観点から、上記ガラスにおけるAl含有量は、1%以上であり、3%以上であることが好ましく、5%以上であることがより好ましく、6%以上であることが更に好ましく、7%以上であることが一層好ましい。また、ガラスの熔解性および/または安定性の観点から、上記ガラスにおけるAl含有量は、14%以下であり、13%以下であることが好ましく、12%以下であることがより好ましく、11%以下であることが更に好ましい。 Al 2 O 3 is also a glass network forming component and has a function of increasing the Young's modulus of glass and a function of improving chemical durability. From the viewpoint of improving Young's modulus and chemical durability, the Al 2 O 3 content in the glass is 1% or more, preferably 3% or more, more preferably 5% or more, 6% More preferably, it is more preferably 7% or more. Further, from the viewpoint of glass melting and / or stability, the Al 2 O 3 content in the glass is 14% or less, preferably 13% or less, and more preferably 12% or less. More preferably, it is 11% or less.
 アルカリ土類金属酸化物とは、MgO、CaO、SrOおよびBaOからなる群から選ばれる一種以上である。アルカリ土類金属酸化物の中で、MgOは、ガラスのヤング率を高める働き、ならびにガラスの熔融性および/または成形性を良化する働きを有する成分である。上記の働きを良好に得る観点から、上記ガラスはMgOを必須成分として含み、MgO含有量は、8%以上であり、10%以上であることが好ましく、11%以上であることがより好ましく、12%以上であることが更に好ましく、13%以上であることが一層好ましい。また、ガラス安定性の観点から、上記ガラスにおけるMgO含有量は23%以下であり、21%以下であることが好ましく、20%以下であることがより好ましく、19%以下であることが更に好ましく、18%以下であることが一層好ましく、17%以下であることがより一層好ましい。 The alkaline earth metal oxide is at least one selected from the group consisting of MgO, CaO, SrO and BaO. Among the alkaline earth metal oxides, MgO is a component having a function of increasing the Young's modulus of glass and a function of improving the meltability and / or moldability of the glass. From the viewpoint of obtaining the above functions well, the glass contains MgO as an essential component, and the MgO content is 8% or more, preferably 10% or more, more preferably 11% or more, It is more preferably 12% or more, and further preferably 13% or more. Further, from the viewpoint of glass stability, the MgO content in the glass is 23% or less, preferably 21% or less, more preferably 20% or less, and further preferably 19% or less. 18% or less, more preferably 17% or less.
 CaOも、MgOと同様に、ガラスのヤング率を高める働き、ならびにガラスの熔融性および/または安定性を良化する働きを有する。これらの働きを良好に得る観点から、上記ガラスにおけるCaO含有量は、1%以上であり、2%以上であることが好ましく、3%以上であることがより好ましく、4%以上であることが更に好ましく、5%以上であることが一層好ましい。また、化学的耐久性の向上の観点から、上記ガラスにおけるCaO含有量は、10%以下であり、9%以下であることが好ましく、8%以下であることがより好ましく、7.5%以下であることが更に好ましい。 CaO, like MgO, has a function of increasing the Young's modulus of glass and a function of improving the meltability and / or stability of glass. From the viewpoint of obtaining these functions well, the CaO content in the glass is 1% or more, preferably 2% or more, more preferably 3% or more, and more preferably 4% or more. More preferably, it is more preferably 5% or more. From the viewpoint of improving chemical durability, the CaO content in the glass is 10% or less, preferably 9% or less, more preferably 8% or less, and 7.5% or less. More preferably.
 SrOは、ガラスの熔融性、成形性およびガラス安定性を良化する働きを有する。他方、SrOは、比重を大きくし、化学的耐久性の低下を招く成分である。以上の点を考慮し、上記ガラスにおけるSrO含有量は、0~5%であることが好ましい。SrO含有量のより好ましい範囲は、0~3%、更に好ましい範囲は0~2%、一層好ましい範囲は0~1%であり、SrOを含有しないこと、即ちSrOの含有量が0%であることが最も好ましい。 SrO has a function of improving the meltability, formability, and glass stability of glass. On the other hand, SrO is a component that increases the specific gravity and causes a decrease in chemical durability. Considering the above points, the SrO content in the glass is preferably 0 to 5%. A more preferable range of the SrO content is 0 to 3%, a more preferable range is 0 to 2%, and a more preferable range is 0 to 1%, and no SrO is contained, that is, the SrO content is 0%. Most preferred.
 BaOも、ガラスの熔融性、成形性およびガラス安定性を良化する働きを有する。他方、BaOは、比重を大きくし、化学的耐久性の低下を招く成分である。以上の点を考慮し、上記ガラスにおけるBaO含有量は、0~5%であることが好ましい。BaO含有量のより好ましい範囲は0~3%、更に好ましい範囲は0~2%、一層好ましい範囲は0~1%であり、BaOを含有しないこと、即ちBaO含有量が0%であることが最も好ましい。 BaO also has the function of improving the meltability, moldability and glass stability of glass. On the other hand, BaO is a component that increases the specific gravity and causes a decrease in chemical durability. Considering the above points, the BaO content in the glass is preferably 0 to 5%. A more preferable range of the BaO content is 0 to 3%, a further preferable range is 0 to 2%, and a more preferable range is 0 to 1%, and that no BaO is contained, that is, the BaO content is 0%. Most preferred.
 上記ガラスにおけるアルカリ土類金属酸化物の合計含有量(MgO+CaO+SrO+BaO)は、ガラスのヤング率の向上、ならびに熔融性および/または安定性の観点から、15%以上であることが好ましく、17%以上であることがより好ましく、18%以上であることが更に好ましく、19%以上であることが一層好ましい。また、ガラスの化学的耐久性をより一層向上させる観点から、上記ガラスにおけるアルカリ土類金属酸化物の合計含有量(MgO+CaO+SrO+BaO)は、30%以下であることが好ましく、28%以下であることがより好ましく、26%以下であることが更に好ましく、25%以下であることが一層好ましい。 The total content of alkaline earth metal oxides in the glass (MgO + CaO + SrO + BaO) is preferably 15% or more, and from 17% or more, from the viewpoint of improving the Young's modulus of the glass and meltability and / or stability. More preferably, it is 18% or more, more preferably 19% or more. Further, from the viewpoint of further improving the chemical durability of the glass, the total content (MgO + CaO + SrO + BaO) of the alkaline earth metal oxide in the glass is preferably 30% or less, and preferably 28% or less. More preferably, it is 26% or less, more preferably 25% or less.
 MgOはガラスのヤング率を高める働きを有し、かつ他のアルカリ土類金属酸化物と比べて比重の増大を抑えることに寄与する成分である。したがって、MgOは、ガラスの高ヤング率化および低比重化のために非常に有用な成分である。そのため、上記ガラスにおいて、アルカリ土類金属酸化物の合計含有量に対するMgOの含有量のモル比{MgO/(MgO+CaO+SrO+BaO)}は、0.5以上であることが好ましい。上記モル比の下限については、0.55以上であることがより好ましく、0.60以上であることが更に好ましく、0.65以上であることが一層好ましい。また、上記モル比の上限については、ガラスの安定化の観点から、0.95以下であることが好ましく、0.90以下であることがより好ましく、0.85以下であることが更に好ましく、0.80以下であることが一層好ましい。 MgO has a function of increasing the Young's modulus of glass, and is a component that contributes to suppressing an increase in specific gravity compared to other alkaline earth metal oxides. Therefore, MgO is a very useful component for increasing the Young's modulus and decreasing the specific gravity of glass. Therefore, in the glass, the molar ratio {MgO / (MgO + CaO + SrO + BaO)} of the content of MgO to the total content of alkaline earth metal oxides is preferably 0.5 or more. The lower limit of the molar ratio is more preferably 0.55 or more, still more preferably 0.60 or more, and still more preferably 0.65 or more. The upper limit of the molar ratio is preferably 0.95 or less, more preferably 0.90 or less, and still more preferably 0.85 or less, from the viewpoint of glass stabilization. More preferably, it is 0.80 or less.
 上述のように、MgOとCaOは同様にガラスのヤング率を高める働きを有する。ヤング率の更なる向上の観点から、上記ガラスにおけるMgOとCaOとの合計含有量(MgO+CaO)は、15~35%であることが好ましい。上記合計量の下限については、ヤング率の更なる向上の観点から17%以上であることが好ましく、19%以上であることがより好ましく、20%以上であることが更に好ましい。上記合計量の上限については、ガラスの安定性維持の観点から、30%以下であることが好ましく、26%以下であることがより好ましく、25%以下であることが更に好ましい。 As described above, MgO and CaO have the function of increasing the Young's modulus of the glass. From the viewpoint of further improving the Young's modulus, the total content of MgO and CaO (MgO + CaO) in the glass is preferably 15 to 35%. About the minimum of the said total amount, it is preferable that it is 17% or more from a viewpoint of the further improvement of a Young's modulus, It is more preferable that it is 19% or more, It is still more preferable that it is 20% or more. The upper limit of the total amount is preferably 30% or less, more preferably 26% or less, and further preferably 25% or less from the viewpoint of maintaining the stability of the glass.
 MgOは、CaOよりもガラスのヤング率を高める働きが大きい。そのため、上記ガラスにおいて、MgO含有量は、CaO含有量と同量以上とすることが好ましい。また、アルカリ土類金属酸化物は、ガラスに単一成分のみを添加するよりも、複数種添加することで混合アルカリ土類効果が生じ、ガラスの熔融性および/または安定性を向上させることができる。そこで、上記ガラスにおいて、CaO含有量に対するMgO含有量のモル比(MgO/CaO)は、1.0~20.0であることが好ましい。上記モル比の下限については、ヤング率の更なる向上の観点から1.25以上であることが好ましく、1.50以上であることがより好ましく、1.70以上であることが更に好ましい。上記モル比の上限については、ガラスの安定性維持の観点から、10.0以下であることが好ましく、8.0以下であることがより好ましく、6.0以下であることが更に好ましく、5.0以下であることが一層好ましく、4.0以下であることがより一層好ましい。 MgO has a greater function to increase the Young's modulus of glass than CaO. Therefore, in the said glass, it is preferable that MgO content shall be more than the same amount as CaO content. In addition, alkaline earth metal oxides can add mixed alkaline earth effect by adding a plurality of kinds rather than adding only a single component to glass, and improve the meltability and / or stability of glass. it can. Therefore, in the glass, the molar ratio of MgO content to MgO content (MgO / CaO) is preferably 1.0 to 20.0. The lower limit of the molar ratio is preferably 1.25 or more, more preferably 1.50 or more, and still more preferably 1.70 or more from the viewpoint of further improving the Young's modulus. The upper limit of the molar ratio is preferably 10.0 or less, more preferably 8.0 or less, still more preferably 6.0 or less, from the viewpoint of maintaining the stability of the glass. Is more preferably 0.0 or less, and even more preferably 4.0 or less.
 アルカリ金属酸化物とは、アルカリ金属(Li、Na、K、Rb、Cs、Fr)の酸化物であり、好ましくはLiO、NaOおよびKOからなる群から選ばれる一種以上である。LiOは、アルカリ金属酸化物の中でもガラスの熔融性および成形性を向上させる働きが強く、また、ヤング率を高めて情報記録媒体基板に好適な剛性を付与させるために好適な成分である。LiOは、熱膨張係数を大きくする成分でもある。他方、LiOは、ガラスの粘性を低下させる働きを有するので、過剰に導入すると液相温度における粘性が下がりガラスが不安定になる(失透しやすくなる)傾向がある。また、LiOは、ガラス転移温度を低下させる成分でもある。以上の働きを考慮し、上記ガラスにおけるLiO含有量は、5~18%である。LiO含有量の下限については、6%以上であることが好ましく、7%以上であることがより好ましく、8%以上であることが更に好ましい。また、LiO含有量の上限については、16%以下であることが好ましく、14%以下であることがより好ましく、13%以下であることが更に好ましく、12%以下であることが一層好ましい。 The alkali metal oxide is an oxide of an alkali metal (Li, Na, K, Rb, Cs, Fr), preferably one or more selected from the group consisting of Li 2 O, Na 2 O and K 2 O. is there. Li 2 O has a strong effect of improving the meltability and moldability of glass among alkali metal oxides, and is a suitable component for increasing the Young's modulus and imparting a suitable rigidity to the information recording medium substrate. . Li 2 O is also a component that increases the thermal expansion coefficient. On the other hand, Li 2 O has a function of lowering the viscosity of the glass, so when introduced excessively, the viscosity at the liquidus temperature tends to decrease and the glass tends to be unstable (devitrified easily). Li 2 O is also a component that lowers the glass transition temperature. Considering the above functions, the Li 2 O content in the glass is 5 to 18%. The lower limit of the content of Li 2 O, preferably at least 6%, more preferably 7% or more, even more preferably 8% or more. Further, the upper limit of the Li 2 O content is preferably 16% or less, more preferably 14% or less, further preferably 13% or less, and further preferably 12% or less. .
 NaOについて、ガラスのヤング率の向上および化学的耐久性(特に耐酸性)の向上の観点から、上記ガラスにおけるNaO含有量は10%以下であることが好ましい。また、ガラスを基板としたときに基板表面からのアルカリ溶出を抑制する観点からも、上記ガラスにおけるNaO含有量は10%以下であることが好ましい。基板表面からのアルカリ溶出を抑制できることは、基板上に形成される記録層等の膜の物性が基板から溶出し析出したアルカリの影響を受けることを防ぐことができるため好ましい。NaOは、ガラスの熔融性および成形性を向上させ、熱膨張係数を大きくする成分でもある。NaO含有量の好ましい範囲は、0~10%である。NaO含有量の上限については、8%以下であることがより好ましく、6%以下であることが更に好ましく、5%以下であることが一層好ましく、4%以下であることがより一層好ましく、含有しないこと(即ち含有量が0%)も好ましい。 For Na 2 O, from the viewpoint of improving the improvement of the Young's modulus of the glass and the chemical durability (especially acid resistance), Na 2 O content in the glass is preferably 10% or less. Also, from the viewpoint of suppressing alkali elution from the substrate surface when glass is used as the substrate, the Na 2 O content in the glass is preferably 10% or less. Suppressing alkali elution from the substrate surface is preferable because the physical properties of a film such as a recording layer formed on the substrate can be prevented from being affected by the alkali eluted and precipitated from the substrate. Na 2 O is also a component that improves the meltability and moldability of the glass and increases the thermal expansion coefficient. A preferable range of the Na 2 O content is 0 to 10%. The upper limit of the Na 2 O content is more preferably 8% or less, still more preferably 6% or less, still more preferably 5% or less, and even more preferably 4% or less. It is also preferable not to contain (that is, the content is 0%).
 KOについて、化学的耐久性の更なる向上およびアルカリ溶出抑制の観点から、上記ガラスにおけるKO含有量は5%以下であることが好ましい。KOは、ガラスの熔融性および成形性を向上させる働きを有するとともに熱膨張係数を大きくする成分でもある。上記ガラスにおけるKO含有量は、0~5%であることが好ましく、0~3%であることがより好ましく、0~2%であることが更に好ましく、0~1%であることが一層好ましく、KOを含有しないこと(即ち含有量が0%)が最も好ましい。 For K 2 O, from the viewpoint of chemical durability further improve and alkaline elution suppression, K 2 O content in the glass is preferably 5% or less. K 2 O has a function of improving the meltability and moldability of glass and is also a component that increases the thermal expansion coefficient. The K 2 O content in the glass is preferably 0 to 5%, more preferably 0 to 3%, still more preferably 0 to 2%, and more preferably 0 to 1%. It is more preferable that K 2 O is not contained (that is, the content is 0%).
 LiO、NaOおよびKOは、上記のようにガラスの熔融性および成形性を向上させ、熱膨張係数を大きくする成分である。これら成分の働きを良好に得る観点から、上記ガラスにおけるLiO、NaOおよびKOの含有量は、5%以上である。これら成分の働きをより良好に得る観点から、その合計含有量は、6%以上であることが好ましく、7%以上であることがより好ましく、8%以上であることが更に好ましい。一方、ガラスの耐熱性、アルカリ溶出の抑制および化学的耐久性の更なる向上の観点から、上記ガラスにおけるLiO、NaOおよびKOの合計含有量(LiO+NaO+KO)は、18%以下であり、16.5%以下であることが好ましく、15.5%以下であることがより好ましく、15.0%以下であることが更に好ましい。 Li 2 O, Na 2 O, and K 2 O are components that improve the meltability and moldability of the glass and increase the thermal expansion coefficient as described above. From the viewpoint of obtaining the functions of these components satisfactorily, the contents of Li 2 O, Na 2 O and K 2 O in the glass are 5% or more. From the viewpoint of obtaining the functions of these components better, the total content is preferably 6% or more, more preferably 7% or more, and further preferably 8% or more. On the other hand, from the viewpoints of glass heat resistance, suppression of alkali elution, and further improvement in chemical durability, the total content of Li 2 O, Na 2 O and K 2 O in the glass (Li 2 O + Na 2 O + K 2 O). ) Is 18% or less, preferably 16.5% or less, more preferably 15.5% or less, and still more preferably 15.0% or less.
 アルカリ金属酸化物およびアルカリ土類金属酸化物の中で、LiOおよびMgOは、ガラスのヤング率を高めると共にガラスの安定性維持のために有用な成分である。そこで上記ガラスにおいて、LiOとMgOとの合計含有量(LiO+MgO)は、20~32%である。上記合計含有量が32%以下であれば、液相温度の上昇によりガラスの安定性が低下することを抑制することができる。LiOとMgOとの合計含有量(LiO+MgO)の下限は、21%以上であることが好ましく、22%以上であることがより好ましく、22.5%以上であることが更に好ましい。上記合計含有量の上限は、30%以下であることが好ましく、28.5%以下であることがより好ましく、27.5%以下であることが更に好ましい。 Among the alkali metal oxides and alkaline earth metal oxides, Li 2 O and MgO are useful components for increasing the Young's modulus of the glass and maintaining the stability of the glass. Therefore, in the glass, the total content of Li 2 O and MgO (Li 2 O + MgO) is 20 to 32%. If the said total content is 32% or less, it can suppress that stability of glass falls by the raise of liquidus temperature. The lower limit of the total content of Li 2 O and MgO (Li 2 O + MgO) is preferably 21% or more, more preferably 22% or more, and further preferably 22.5% or more. The upper limit of the total content is preferably 30% or less, more preferably 28.5% or less, and further preferably 27.5% or less.
 また、LiOおよびMgOは、上述のようにアルカリ金属酸化物およびアルカリ土類金属酸化物の中でガラスのヤング率を高めると共にガラスの安定性維持のために有用な成分である。それ故、その作用を効率的に発揮させるために、上記ガラスにおいて、アルカリ金属酸化物とアルカリ土類金属酸化物との合計含有量に対するLiOとMgOとの合計含有量のモル比{(LiO+MgO)/(アルカリ金属酸化物+アルカリ土類金属酸化物)}は、0.60~0.95である。上記モル比の下限は、ガラスのヤング率向上の観点から、0.65以上であることが好ましく、0.70以上であることがより好ましく、0.72以上であることが更に好ましく、0.74以上であることが一層好ましい。上記モル比の上限は、ガラスの熔融性および/または安定性を向上させる観点から、0.90以下であることが好ましく、0.85以下であることがより好ましく、0.82以下であることが更に好ましく、0.80以下であることが一層好ましい。 Li 2 O and MgO are useful components for increasing the Young's modulus of the glass and maintaining the stability of the glass among the alkali metal oxides and alkaline earth metal oxides as described above. Therefore, in order to efficiently exert its action, in the glass, the molar ratio of the total content of Li 2 O and MgO to the total content of alkali metal oxide and alkaline earth metal oxide {( Li 2 O + MgO) / (alkali metal oxide + alkaline earth metal oxide)} is 0.60 to 0.95. The lower limit of the molar ratio is preferably 0.65 or more, more preferably 0.70 or more, still more preferably 0.72 or more, from the viewpoint of improving the Young's modulus of the glass. More preferably, it is 74 or more. The upper limit of the molar ratio is preferably 0.90 or less, more preferably 0.85 or less, and 0.82 or less from the viewpoint of improving the meltability and / or stability of the glass. Is more preferable, and 0.80 or less is still more preferable.
 アルカリ金属酸化物の合計含有量に対するSiO含有量のモル比(SiO/アルカリ金属酸化物)は、上記ガラスにおいて3~13である。上記モル比の上限は、ヤング率向上およびガラスの熔融性向上の観点から13以下であり、11以下であることが好ましく、10以下であることがより好ましく、9以下であることが更に好ましく、8以下であることが一層好ましい。また、上記モル比の下限は、ガラスの化学的耐久性向上の観点から3以上であり、3.5以上であることが好ましく、4.0以上であることがより好ましく、4.2以上であることが更に好ましく、4.5以上であることが一層好ましい。 The molar ratio of SiO 2 content to the total content of alkali metal oxides (SiO 2 / alkali metal oxide) is 3 to 13 in the glass. The upper limit of the molar ratio is 13 or less, preferably 11 or less, more preferably 10 or less, still more preferably 9 or less, from the viewpoint of improving the Young's modulus and improving the meltability of the glass. More preferably, it is 8 or less. Further, the lower limit of the molar ratio is 3 or more from the viewpoint of improving the chemical durability of the glass, preferably 3.5 or more, more preferably 4.0 or more, and 4.2 or more. More preferably, it is 4.5 or more.
 ZnOは、熔融性を向上させると共に化学的耐久性を高める働きを有する。他方、ZnOを過剰導入すると液相温度が上昇してガラスが不安定になりやすい。以上の点を考慮し、上記ガラスにおけるZnO含有量は、0~10%であることが好ましく、0~5%であることがより好ましく、0~3%であることが更に好ましく、0~1%であることが一層好ましく、ZnOを含有しなくても(即ち含有量が0%でも)よい。 ZnO has the function of improving the chemical durability as well as improving the meltability. On the other hand, if ZnO is excessively introduced, the liquidus temperature rises and the glass tends to become unstable. Considering the above points, the ZnO content in the glass is preferably 0 to 10%, more preferably 0 to 5%, still more preferably 0 to 3%, and more preferably 0 to 1%. % Is more preferable, and ZnO may not be contained (that is, the content may be 0%).
 ZrOは、化学的耐久性を向上させる働きを有すると共に、ヤング率を高める働きも有する。ただし、過剰導入によりガラスの熔融性が低下して原料の熔けの残りが生じる場合がある。以上の点を考慮し、上記ガラスにおけるZrO含有量は、0~4%であることが好ましく、0~3%であることがより好ましく、0~2%であることが更に好ましく、0~1%であることが一層好ましく、含有しなくても(即ち含有量が0%でも)よい。 ZrO 2 has a function of improving chemical durability and a function of increasing Young's modulus. However, excessive melting may lower the meltability of the glass and cause the remainder of the raw material to melt. Considering the above points, the ZrO 2 content in the glass is preferably 0 to 4%, more preferably 0 to 3%, still more preferably 0 to 2%, and more preferably 0 to 1% is more preferable, and it may not be contained (that is, the content may be 0%).
 上記のように、SiOとAlは、ガラスのネットワーク形成成分であり化学的耐久性を向上させる働きを有する。また、CaOとZrOは、ヤング率を高める働きをする点で共通する。本発明者らは、AlとZrOとの合計含有量に対するSiOとCaOとの合計含有量のモル比(SiO+CaO)/(Al+ZrO)を適切な範囲内とすることが、上記ガラスの安定性向上に寄与することを見出した。この点から、上記モル比は、5.0~25.0の範囲であることが好ましい。上記モル比の下限は、5.5以上であることがより好ましく、6.0以上であることが更に好ましく、6.5以上であることが一層好ましい。また、上記モル比の上限は、20以下であることがより好ましく、16以下であることが更に好ましく、14以下であることが一層好ましく、12以下であることがより一層好ましい。 As described above, SiO 2 and Al 2 O 3 are glass network forming components and have a function of improving chemical durability. CaO and ZrO 2 are common in that they function to increase the Young's modulus. The inventors set the molar ratio of the total content of SiO 2 and CaO to the total content of Al 2 O 3 and ZrO 2 (SiO 2 + CaO) / (Al 2 O 3 + ZrO 2 ) within an appropriate range. Has been found to contribute to improving the stability of the glass. From this point, the molar ratio is preferably in the range of 5.0 to 25.0. The lower limit of the molar ratio is more preferably 5.5 or more, still more preferably 6.0 or more, and still more preferably 6.5 or more. The upper limit of the molar ratio is more preferably 20 or less, still more preferably 16 or less, still more preferably 14 or less, and even more preferably 12 or less.
 ところで、HDDにおいて外部からの振動によって情報記録媒体(磁気ディスク)自体が振動する現象は、フラッタリングと呼ばれる。このフラッタリングは、磁気ヘッドと情報記録媒体表面とが衝突してヘッドクラッシュが発生する原因となってしまう。外部から振動が加わってフラッタリングが発生しても情報記録媒体自体の振動が早期に収まれば、ヘッドクラッシュの発生を抑制することができる。この点に関して、ガラスに関してフラッタリング特性と呼ばれる指標が知られている。フラッタリング特性dは、値が小さいほどフラッタリングが早期に収まることを意味する。フラッタリング特性dは、基板を構成するガラスのヤング率E、密度ρおよび横振動内部摩擦ξ(以下、単に「内部摩擦」という。)から、d=(ρ/E)×(1/ξ)により算出される。したがって、フラッタリング特性を小さくするためには、内部摩擦ξが大きいこと、すなわち、振動吸収によるエネルギーの減少が大きいことが望ましい。この点に関して、上記ガラスにおいて、LiOおよびNaOの合計含有量に対するAl含有量のモル比{Al/(LiO+NaO)}が0.25~1.25の範囲であることは、内部摩擦を大きくしてフラッタリング特性を小さくすることにより、フラッタリングによるヘッドクラッシュの発生を抑制するうえで好ましい。上記モル比は、フラッタリング特性を小さくする観点から、0.4以上であることが好ましく、0.6以上であることがより好ましい。また、同様の観点から、上記モル比は、1.20以下であることが好ましく、1.15以下であることがより好ましい。 By the way, the phenomenon that the information recording medium (magnetic disk) itself vibrates due to external vibration in the HDD is called fluttering. This fluttering causes a head crash due to a collision between the magnetic head and the surface of the information recording medium. Even if fluttering occurs due to external vibration, if the vibration of the information recording medium itself is settled early, the occurrence of head crash can be suppressed. In this regard, an index called fluttering characteristics is known for glass. The fluttering characteristic d means that fluttering is settled earlier as the value is smaller. The fluttering characteristic d is determined by d = (ρ / E) × (1 / ξ) from the Young's modulus E, density ρ, and transverse vibration internal friction ξ (hereinafter simply referred to as “internal friction”) of the glass constituting the substrate. Is calculated by Therefore, in order to reduce the fluttering characteristic, it is desirable that the internal friction ξ is large, that is, the energy decrease due to vibration absorption is large. In this regard, in the glass, the molar ratio {Al 2 O 3 / (Li 2 O + Na 2 O)} of the Al 2 O 3 content to the total content of Li 2 O and Na 2 O is 0.25 to 1. A range of 25 is preferable for suppressing the occurrence of head crash due to fluttering by increasing the internal friction and reducing the fluttering characteristics. From the viewpoint of reducing fluttering characteristics, the molar ratio is preferably 0.4 or more, and more preferably 0.6 or more. From the same viewpoint, the molar ratio is preferably 1.20 or less, and more preferably 1.15 or less.
 TiOは、化学的耐久性およびガラス安定性を向上させると共に、ヤング率を高める働きを有する。ただし、ガラスの比重の上昇を招く成分である。したがって、上記ガラスにおけるTiO含有量は、0~5%であることが好ましく、0~4%であることがより好ましく、0~3%であることが更に好ましい。 TiO 2 functions to improve chemical durability and glass stability and to increase Young's modulus. However, it is a component that causes an increase in the specific gravity of glass. Accordingly, the TiO 2 content in the glass is preferably 0 to 5%, more preferably 0 to 4%, and still more preferably 0 to 3%.
 希土類酸化物とは、希土類(Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb)の酸化物であり、好ましくはLa、Y、GdおよびYbからなる群から選ばれる一種以上である。希土類酸化物、ならびにZrO、TiO、SrOおよびBaOは比重の増大を招く成分である。そのため、ガラスの低比重化の観点から、上記ガラスにおけるZrO、TiO、SrO、BaOおよび希土類酸化物の合計含有量(ZrO+TiO+SrO+BaO+希土類酸化物)は、0~5%である。上記合計含有量の上限は、4%以下であることが好ましく、3%以下であることがより好ましく、2%以下であることが更に好ましい。 The rare earth oxide is an oxide of rare earth (Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb), preferably La 2. It is at least one selected from the group consisting of O 3 , Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 . Rare earth oxides, as well as ZrO 2 , TiO 2 , SrO and BaO are components that cause an increase in specific gravity. Therefore, from the viewpoint of reducing the specific gravity of the glass, the total content of ZrO 2 , TiO 2 , SrO, BaO and rare earth oxide (ZrO 2 + TiO 2 + SrO + BaO + rare earth oxide) in the glass is 0 to 5%. The upper limit of the total content is preferably 4% or less, more preferably 3% or less, and still more preferably 2% or less.
 La、Y、GdおよびYbは、いずれも適量の導入によりガラスのヤング率を向上させることができる。他方、過剰に導入するとガラスの比重を増大させるため、上記ガラスにおけるLa含有量、Y含有量、Gd含有量およびYb含有量は、それぞれ、1%未満であることが好ましく、0.5%以下であることがより好ましく、0%でもよい。
 希土類酸化物の合計含有量は、ヤング率の向上および低比重化の観点から、0~3%未満であることが好ましく、より好ましくは0~2%未満であり、更に好ましくは0~1%未満であり、導入しないことが一層好ましい。
La 2 O 3 , Y 2 O 3 , Gd 2 O 3 and Yb 2 O 3 can all improve the Young's modulus of the glass by introducing an appropriate amount. On the other hand, when introduced excessively, the specific gravity of the glass is increased, so the La 2 O 3 content, the Y 2 O 3 content, the Gd 2 O 3 content and the Yb 2 O 3 content in the glass are each 1%. Is preferably less than 0.5%, more preferably 0.5% or less, and may be 0%.
The total content of rare earth oxides is preferably 0 to less than 3%, more preferably 0 to less than 2%, and even more preferably 0 to 1%, from the viewpoint of improving Young's modulus and lowering the specific gravity. More preferably, it is not introduced.
 Nb、WOおよびTaは、いずれも適量の導入により、ガラスのヤング率を向上させることができる。他方、過剰導入によりガラスの比重を増大させると共に材料コストが高くなる。したがって、Nb、WOおよびTaの合計含有量は、1%未満であることが好ましく、0.5%以下であることがより好ましく、0%でもよい。 Nb 2 O 5 , WO 3 and Ta 2 O 5 can all improve the Young's modulus of the glass by introducing an appropriate amount. On the other hand, excessive introduction increases the specific gravity of the glass and increases the material cost. Therefore, the total content of Nb 2 O 5 , WO 3 and Ta 2 O 5 is preferably less than 1%, more preferably 0.5% or less, and may be 0%.
 Pは、少量導入することができるが、過剰導入により化学的耐久性が低下する傾向があるため、上記ガラスにおけるPの含有量は0~2%であることが好ましい。Pの含有量は、0~1%であることがより好ましく、Pを含有しないこと(即ちPの含有量が0%)が更に好ましい。 Although a small amount of P 2 O 5 can be introduced, the chemical durability tends to decrease due to excessive introduction, so the content of P 2 O 5 in the glass is preferably 0 to 2%. Content of P 2 O 5, 0 to more preferably from 1% to not contain P 2 O 5 (i.e. the content of P 2 O 5 is 0%) is more preferable.
 上記ガラスは、清澄効果を得る観点から、Sn酸化物、Ce酸化物およびSb酸化物からなる群から選ばれる少なくとも一種を含むことができる。
 Sn酸化物を含有するガラスについては、Sn酸化物(例えば、SnO)の含有量は、清澄効果を得る観点から、0.01%以上であることが好ましく、0.05%以上であることがより好ましく、0.10%以上であることが更に好ましく、0.15%以上であることが一層好ましい。また、Sn酸化物の含有量は、1%未満であることが好ましく、0.80%以下であることがより好ましい。一態様では、Sn酸化物含有量が0%であってもよい。
 Ce酸化物を含有するガラスについては、Ce酸化物(例えば、CeO)の含有量は、清澄効果を得る観点から、0.01%以上であることが好ましく、0.05%以上であることがより好ましく、0.10%以上であることが更に好ましい。また、Ce酸化物の含有量は、1%未満であることが好ましく、0.80%以下であることがより好ましく、0.50%以下であることが更に好ましく、0.30%以下であることが一層好ましい。一態様では、Ce酸化物含有量が0%であってもよい。
 Sb酸化物を含有するガラスについては、Sb酸化物(例えばSb)の含有量は、1%未満であることが好ましく、0.5%以下であることがより好ましい。一態様では、Sb酸化物含有量が0%であってもよい。
The said glass can contain at least 1 type chosen from the group which consists of Sn oxide, Ce oxide, and Sb oxide from a viewpoint of obtaining a clarification effect.
As for the glass containing Sn oxide, the content of Sn oxide (for example, SnO 2 ) is preferably 0.01% or more and 0.05% or more from the viewpoint of obtaining a fining effect. Is more preferably 0.10% or more, still more preferably 0.15% or more. Further, the content of Sn oxide is preferably less than 1%, and more preferably 0.80% or less. In one aspect, the Sn oxide content may be 0%.
It For glass containing Ce oxide, Ce oxide (e.g., CeO 2) content, from the viewpoint of obtaining a clear effect, preferably at least 0.01%, 0.05% or more Is more preferable, and it is still more preferable that it is 0.10% or more. Further, the Ce oxide content is preferably less than 1%, more preferably 0.80% or less, further preferably 0.50% or less, and 0.30% or less. More preferably. In one aspect, the Ce oxide content may be 0%.
The glass containing Sb oxide content of Sb oxide (e.g. Sb 2 O 3) is preferably 1 less than percent, more preferably 0.5% or less. In one aspect, the Sb oxide content may be 0%.
 上記ガラスは、Feを、Feに換算して、0.5%以下程度含むことができる。Feの含有量は、Feに換算して、0.2%以下であることが好ましく、0.1%以下であることがより好ましく、0.05%以下であることが更に好ましく、Feを含有しないことが一層好ましい。
 また、上記ガラスは、Feと同様に、Cr、Mn、Fe、Cu、Ni等の遷移金属を0.5%以下程度含むことができる。これらの遷移金属の含有量は、酸化物に換算してそれぞれ0.2%以下であることが好ましく、0.1%以下であることがより好ましく、0.05%以下であることが更に好ましく、含有しないことが一層好ましい。
The glass is a Fe, in terms of Fe 2 O 3, it may include a degree of 0.5% or less. The Fe content is preferably 0.2% or less, more preferably 0.1% or less, still more preferably 0.05% or less, in terms of Fe 2 O 3 , More preferably, it does not contain Fe.
Moreover, the said glass can contain about 0.5% or less of transition metals, such as Cr, Mn, Fe, Cu, Ni, like Fe. The content of these transition metals is preferably 0.2% or less in terms of oxides, more preferably 0.1% or less, still more preferably 0.05% or less. More preferably, it is not contained.
 Pb、Cd、As等は環境に悪影響を与える物質なので、これらの導入は避けることが好ましい。 Since Pb, Cd, As, etc. are substances that adversely affect the environment, it is preferable to avoid introducing them.
 上記ガラスは、所定のガラス組成が得られるように、酸化物、炭酸塩、硝酸塩、硫酸塩、水酸化物等のガラス原料を秤量、調合し、十分混合して、熔融容器内で、例えば1400~1600℃の範囲で加熱、熔解し、清澄、攪拌して十分泡切れがなされた均質化した熔融ガラスを成形することにより作製することができる。例えば、ガラス原料を熔解槽において1400~1550℃で加熱して熔解し、得られた熔融ガラスを清澄槽において昇温して1450~1600℃に保持した後、降温して1200~1400℃でガラスを流出し成形することが好ましい。 In order to obtain a predetermined glass composition, the glass is weighed and mixed with glass raw materials such as oxides, carbonates, nitrates, sulfates, hydroxides, etc., mixed well, and, for example, 1400 It can be produced by molding a homogenized molten glass that is sufficiently blown out by heating, melting, clarification and stirring in the range of ˜1600 ° C. For example, a glass raw material is heated and melted at 1400 to 1550 ° C. in a melting tank, and the obtained molten glass is heated in a clarification tank and maintained at 1450 to 1600 ° C., and then cooled to 1200 to 1400 ° C. It is preferable to flow out and mold.
<ガラス特性>
 上記ガラスは、以上記載した組成調整を行うことにより、以下に記載する各種ガラス特性を有することができる。
<Glass characteristics>
The said glass can have the various glass characteristics described below by performing the composition adjustment described above.
(ヤング率)
 先に記載した情報記録媒体の剛性向上に対する要求に対応するために、情報記録媒体基板用ガラスは、高い剛性を有することが望ましい。この点に関して、上記ガラスは、剛性の指標であるヤング率が86G以上である。86G以上のヤング率を示す高い剛性を有する情報記録媒体基板用ガラスによれば、記録再生装置内での基板変形を抑制することができるため、基板変形に伴う情報記録媒体の反りおよびたわみを抑制することができる。上記ガラスのヤング率は、88GPa以上であることが好ましく、90GPa以上であることがより好ましく、92GPa以上であることが一層好ましく、93GPa以上であることがより一層好ましい。ヤング率の上限は、例えば120GPa程度であるが、ヤング率が高いほど剛性が高く好ましいため特に限定されるものではない。
(Young's modulus)
In order to meet the above-described requirement for improving the rigidity of the information recording medium, it is desirable that the glass for the information recording medium substrate has high rigidity. In this regard, the glass has a Young's modulus, which is an index of rigidity, of 86 G or more. According to the glass for an information recording medium substrate having a high rigidity exhibiting a Young's modulus of 86 G or more, since the deformation of the substrate in the recording / reproducing apparatus can be suppressed, the warp and the deflection of the information recording medium accompanying the substrate deformation are suppressed. can do. The Young's modulus of the glass is preferably 88 GPa or more, more preferably 90 GPa or more, still more preferably 92 GPa or more, and even more preferably 93 GPa or more. The upper limit of the Young's modulus is, for example, about 120 GPa, but is not particularly limited because the higher the Young's modulus, the higher the rigidity and the better.
(比重)
 上記ガラスの比重は2.75以下であり、2.72以下であることが好ましく、2.70以下であることがより好ましく、2.68以下であることが更に好ましく、2.66以下であることが一層好ましい。情報記録媒体基板用ガラスの低比重化により、情報記録媒体基板を軽量化することができ、更には情報記録媒体の軽量化、これによりHDD等の記録再生装置の消費電力抑制が可能になる。比重の下限は、比重が低いほど好ましいため特に限定されるものではない。
(specific gravity)
The specific gravity of the glass is 2.75 or less, preferably 2.72 or less, more preferably 2.70 or less, still more preferably 2.68 or less, and 2.66 or less. More preferably. By reducing the specific gravity of the glass for the information recording medium substrate, the information recording medium substrate can be reduced in weight, and further, the information recording medium can be reduced in weight, thereby reducing the power consumption of the recording / reproducing apparatus such as an HDD. The lower limit of the specific gravity is not particularly limited because the lower the specific gravity, the better.
(比弾性率)
 比弾性率は、ガラスのヤング率を密度で除したものである。ここで密度とは、ガラスの比重に、g/cmという単位を付けた値と考えればよい。より変形しにくい基板を提供する観点から、上記ガラスの比弾性率は33MNm/kg以上であることが好ましく、34MNm/kg以上であることがより好ましく、35MNm/kg以上であることが更に好ましく、36MNm/kgであることが一層好ましい。比弾性率の上限は、比弾性率が高いほど好ましいため特に限定されるものではない。
(Specific modulus)
The specific elastic modulus is obtained by dividing the Young's modulus of glass by the density. Here, the density may be considered as a value obtained by adding a unit of g / cm 3 to the specific gravity of glass. From the viewpoint of providing a substrate that is more difficult to deform, the specific elastic modulus of the glass is preferably 33 MNm / kg or more, more preferably 34 MNm / kg or more, and further preferably 35 MNm / kg or more. More preferably, it is 36 MNm / kg. The upper limit of the specific modulus is not particularly limited because the higher the specific modulus, the better.
(化学的耐久性)
 上記ガラスは、優れた化学的耐久性を示すことができる。化学的耐久性の評価方法としては、詳細を後述する耐酸性Daおよび耐水性Dwを挙げることができる。一態様では、耐酸性Daは0.20未満であることが好ましく、0.10以下であることがより好ましく、0.08以下であることが更に好ましく、0.06以下であることが一層好ましい。また、一態様では、耐水性Dwは、0.05未満であることが好ましく、0.04以下であることがより好ましく、0.03以下であることが更に好ましい。DaおよびDwは、低いほど好ましいため下限は特に限定されるものではない。
(Chemical durability)
The glass can exhibit excellent chemical durability. Examples of the chemical durability evaluation method include acid resistance Da and water resistance Dw, which will be described later in detail. In one aspect, the acid resistance Da is preferably less than 0.20, more preferably 0.10 or less, still more preferably 0.08 or less, and even more preferably 0.06 or less. . In one embodiment, the water resistance Dw is preferably less than 0.05, more preferably 0.04 or less, and still more preferably 0.03 or less. Since Da and Dw are preferably as low as possible, the lower limit is not particularly limited.
(熱膨張係数)
 情報記録媒体を組み込んだ記録再生装置、例えばHDD(ハードディスクドライブ)は、中央部分をスピンドルモータのスピンドルおよびクランプで押さえて情報記録媒体そのものを回転させる構造となっている。そのため、情報記録媒体基板とスピンドル部分を構成するスピンドル材料との熱膨張係数に大きな差があると、使用時に周囲の温度変化に対してスピンドルの熱膨張・熱収縮と情報記録媒体基板の熱膨張・熱収縮にずれが生じてしまい、結果として情報記録媒体が変形してしまう現象が生じる場合がある。このような現象の発生を抑制する観点からは、情報記録媒体基板用ガラスは適度な熱膨張係数を有することが望ましい。この点から、上記ガラスの100~300℃における平均線膨張係数(以下、「α」とも記載する。)は55×10-7/℃~100×10-7/℃の範囲であることが好ましく、60×10-7/℃~90×10-7/℃の範囲であることがより好ましい。
(Coefficient of thermal expansion)
A recording / reproducing apparatus incorporating an information recording medium, such as an HDD (Hard Disk Drive), has a structure in which the information recording medium itself is rotated by pressing a central portion with a spindle and a clamp of a spindle motor. Therefore, if there is a large difference in the thermal expansion coefficient between the information recording medium substrate and the spindle material constituting the spindle portion, the thermal expansion / contraction of the spindle and the thermal expansion of the information recording medium substrate with respect to the ambient temperature change during use. -There may be a phenomenon in which the information recording medium is deformed as a result of deviation in heat shrinkage. From the viewpoint of suppressing the occurrence of such a phenomenon, it is desirable that the glass for an information recording medium substrate has an appropriate thermal expansion coefficient. From this point, the average linear expansion coefficient (hereinafter also referred to as “α”) of the glass at 100 to 300 ° C. is preferably in the range of 55 × 10 −7 / ° C. to 100 × 10 −7 / ° C. A range of 60 × 10 −7 / ° C. to 90 × 10 −7 / ° C. is more preferable.
(ガラス安定性)
 上記ガラスは、一態様では、高いガラス安定性を示すことができる。ガラス安定性の評価方法としては、詳細を後述する1250℃保持テストおよび1200℃保持テストを挙げることができる。1250℃保持テストにおいて評価結果Aであることが好ましく、1250℃保持テストにおいて評価結果Aであって、かつ1200℃保持テストにおいて評価結果AまたはBであることがより好ましく、両保持テストにおいて評価結果Aであることが更に好ましい。ガラス安定性に関して、上記保持テストにおいて、より低い温度で評価結果が良好なほど、熔融状態で結晶が析出しにくいガラスであり、成形温度を下げて成形することができる。成形温度を下げるほど、発熱体、炉体、パイプ等の成形装置の構成部材の寿命を延ばすことができる。特に、プレス成形により基板ブランクを作製する場合には、成形温度は低いほど好ましい。また、成形温度を下げることができれば、ガラス粘度を上げて成形することができるため、揮発、脈理および成形泡の発生を抑制することができる。
(Glass stability)
In one embodiment, the glass can exhibit high glass stability. Examples of the glass stability evaluation method include a 1250 ° C. holding test and a 1200 ° C. holding test described later in detail. It is preferable that the evaluation result is A in the 1250 ° C. holding test, the evaluation result is A in the 1250 ° C. holding test, and more preferably the evaluation result A or B in the 1200 ° C. holding test. A is more preferable. Regarding the glass stability, the better the evaluation result at a lower temperature in the above holding test, the harder the crystals are precipitated in the molten state, and the glass can be molded at a lower molding temperature. As the molding temperature is lowered, the lifetime of the components of the molding apparatus such as the heating element, the furnace body, and the pipe can be extended. In particular, when a substrate blank is produced by press molding, the molding temperature is preferably as low as possible. Further, if the molding temperature can be lowered, the glass viscosity can be increased and molding can be performed, so that volatilization, striae and generation of molding bubbles can be suppressed.
(ガラス転移温度)
 上記ガラスは、一態様では、ガラス転移温度(以下、「Tg」とも記載する。)が620℃以下であることができる。ガラスのTgが低いことは、ガラス製造設備の劣化を抑制するうえで望ましい。Tgは、例えば615℃以下または610℃以下であることもできる。また、Tgは、例えば500℃以上であることができるが特に限定されるものではない。また一態様では、上記ガラスのTgは、620℃超(例えば625℃以上)であることもできる。Tgが高いガラスは、例えば基板上への磁気記録層の成膜時に高温に晒されたとしても、高い平坦性を維持することができる。一態様では、Tgは、例えば630℃以上、640℃以上または650℃以上であることもできる。また、一態様では、Tgは、例えば770℃以下程度であることもできるが特に限定されるものではない。上記ガラスは、高温での成膜を要する磁性材料を含む磁気記録層を有する情報記録媒体の基板用ガラスに限定されるものではないため、Tgが低いガラスであってもよい。
(Glass-transition temperature)
In one embodiment, the glass may have a glass transition temperature (hereinafter also referred to as “Tg”) of 620 ° C. or less. A low Tg of glass is desirable for suppressing deterioration of glass production equipment. Tg can be 615 ° C. or lower or 610 ° C. or lower, for example. Tg can be 500 ° C. or more, for example, but is not particularly limited. In one embodiment, the Tg of the glass may be higher than 620 ° C. (for example, 625 ° C. or higher). A glass having a high Tg can maintain high flatness even when it is exposed to a high temperature, for example, when a magnetic recording layer is formed on a substrate. In one aspect, Tg can be, for example, 630 ° C. or higher, 640 ° C. or higher, or 650 ° C. or higher. In one embodiment, Tg can be, for example, about 770 ° C. or lower, but is not particularly limited. The glass is not limited to a glass for an information recording medium having a magnetic recording layer containing a magnetic material that requires film formation at a high temperature, and may be a glass having a low Tg.
[情報記録媒体基板]
 本発明の一態様にかかる情報記録媒体基板は、上記情報記録媒体基板用ガラスからなる。
[Information recording medium substrate]
An information recording medium substrate according to an aspect of the present invention is made of the above glass for an information recording medium substrate.
 情報記録媒体基板は、ガラス原料を加熱することにより熔融ガラスを調製し、この熔融ガラスをプレス成形法、ダウンドロー法またはフロート法のいずれかの方法により板状に成形し、得られた板状のガラスを加工する工程を経て製造することができる。例えば、プレス成形方法では、ガラス流出パイプから流出する熔融ガラスを所定体積に切断し、所要の熔融ガラス塊を得て、これをプレス成形型でプレス成形して薄肉円盤状の基板ブランクを作製する。次いで、得られた基板ブランクに中心孔を設けたり、内外周加工、両主表面にラッピング、ポリッシングを施す。次いで、洗浄工程(例えば酸洗浄および/またはアルカリ洗浄)を経て、ディスク状の基板を得ることができる。 An information recording medium substrate is prepared by heating a glass raw material to prepare a molten glass, and this molten glass is formed into a plate shape by any one of a press molding method, a down draw method, and a float method, and the obtained plate shape It can manufacture through the process of processing glass. For example, in the press molding method, molten glass flowing out from a glass outflow pipe is cut into a predetermined volume to obtain a required molten glass lump, which is press-molded with a press mold to produce a thin disk-shaped substrate blank. . Next, a center hole is provided in the obtained substrate blank, inner and outer peripheral processing, lapping and polishing are performed on both main surfaces. Then, a disk-shaped substrate can be obtained through a cleaning process (for example, acid cleaning and / or alkali cleaning).
 上記情報記録媒体基板は、一態様では、表面および内部の組成が均質である。ここで、表面および内部の組成が均質とは、イオン交換が行われていない(即ち、イオン交換層を有さない)ことを意味する。イオン交換層を有さない情報記録媒体基板は、イオン交換処理を施していないため、製造コストを大幅に低減できる。 In one embodiment, the information recording medium substrate has a uniform surface and internal composition. Here, that the composition of the surface and the inside is homogeneous means that ion exchange is not performed (that is, there is no ion exchange layer). An information recording medium substrate that does not have an ion exchange layer is not subjected to an ion exchange treatment, and thus can greatly reduce manufacturing costs.
 また、上記情報記録媒体基板は、一態様では、表面の一部または全部に、イオン交換層を有する。イオン交換層は圧縮応力を示すため、イオン交換層の有無は、主表面に対して垂直に基板を破断し、破断面においてバビネ法により応力プロファイルを得ることによって確認することができる。「主表面」とは、基板の磁気記録層が設けられる面または設けられている面である。こうした面は、情報記録媒体基板の表面のうち、最も面積の広い面であることから、主表面と呼ばれ、ディスク状の情報記録媒体の場合、ディスクの円形状の表面(中心孔がある場合は中心孔を除く。)に相当する。また、イオン交換層の有無は、基板表面からアルカリ金属イオンの深さ方向の濃度分布を測定する方法等によっても確認することができる。 In addition, in one aspect, the information recording medium substrate has an ion exchange layer on part or all of the surface. Since the ion exchange layer exhibits compressive stress, the presence or absence of the ion exchange layer can be confirmed by breaking the substrate perpendicular to the main surface and obtaining a stress profile by the Babinet method at the fracture surface. The “main surface” is the surface on which the magnetic recording layer of the substrate is provided or the surface provided. Such a surface is called the main surface because it is the surface with the largest area among the surfaces of the information recording medium substrate. In the case of a disk-shaped information recording medium, the circular surface of the disk (when there is a central hole) Corresponds to (except for the central hole). The presence or absence of the ion exchange layer can also be confirmed by a method of measuring the concentration distribution of alkali metal ions in the depth direction from the substrate surface.
 イオン交換層は、高温下、基板表面にアルカリ塩を接触させ、このアルカリ塩中のアルカリ金属イオンと基板中のアルカリ金属イオンを交換させることにより形成することができる。イオン交換(「強化処理」、「化学強化」とも呼ばれる。)については、公知技術を適用することができ、一例として、WO2011/019010A1の段落0068~0069を参照できる。 The ion exchange layer can be formed by bringing an alkali salt into contact with the substrate surface at a high temperature and exchanging alkali metal ions in the alkali salt with alkali metal ions in the substrate. For ion exchange (also referred to as “strengthening treatment” or “chemical strengthening”), a known technique can be applied. As an example, paragraphs 0068 to 0069 of WO2011 / 0190010A1 can be referred to.
 上記情報記録媒体基板は、例えば厚みが1.5mm以下、好ましくは1.2mm以下、より好ましくは1mm以下であり、厚みの下限は好ましくは0.3mmである。また、上記情報記録媒体基板は、好ましくは磁気記録媒体基板であり、より好ましくは中心孔を有するディスク形状である。 The information recording medium substrate has, for example, a thickness of 1.5 mm or less, preferably 1.2 mm or less, more preferably 1 mm or less, and the lower limit of the thickness is preferably 0.3 mm. The information recording medium substrate is preferably a magnetic recording medium substrate, and more preferably a disk shape having a central hole.
 上記情報記録媒体基板は、非晶質ガラスからなる。結晶化ガラスによると、研磨等の加工後の基板表面に結晶粒子による凹凸の影響が現れ基板の表面平滑性が低下する傾向がある。これに対し、非晶質ガラスによれば、結晶化ガラスと比べて基板に加工したときに優れた表面平滑性を実現できる。 The information recording medium substrate is made of amorphous glass. According to crystallized glass, the surface of the substrate after processing such as polishing is affected by unevenness due to crystal particles, and the surface smoothness of the substrate tends to be lowered. On the other hand, according to amorphous glass, superior surface smoothness can be realized when processed into a substrate as compared with crystallized glass.
 情報記録媒体基板の主表面の表面粗さ(Ra)は、0.25nm以下であることが好ましく、0.20nm以下であることがより好ましく、0.15nm以下であることが更に好ましい。 The surface roughness (Ra) of the main surface of the information recording medium substrate is preferably 0.25 nm or less, more preferably 0.20 nm or less, and further preferably 0.15 nm or less.
[情報記録媒体]
 本発明の一態様は、上記情報記録媒体基板上に情報記録層を有する情報記録媒体に関する。
[Information recording medium]
One aspect of the present invention relates to an information recording medium having an information recording layer on the information recording medium substrate.
 情報記録媒体の好ましい一態様は磁気記録媒体である。ディスク状の磁気記録媒体は、磁気ディスク、ハードディスク等と呼ばれ、デスクトップパソコン、サーバ用コンピュータ、ノート型パソコン、モバイル型パソコンなどの内部記憶装置(固定ディスクなど)、画像および/または音声を記録再生する携帯記録再生装置の内部記憶装置、車載オーディオの記録再生装置などに好適である。 A preferred embodiment of the information recording medium is a magnetic recording medium. Disk-shaped magnetic recording media, called magnetic disks, hard disks, etc., record and reproduce internal storage devices (such as fixed disks) such as desktop computers, server computers, notebook computers, and mobile computers, and images and / or audio. It is suitable for an internal storage device of a portable recording / reproducing apparatus, an in-vehicle audio recording / reproducing apparatus, and the like.
 情報記録媒体の構成および製造方法については、公知技術を採用できる。例えば磁気記録媒体は、一態様では、情報記録媒体基板の主表面上に、主表面に近いほうから順に、少なくとも付着層、下地層、磁性層(磁気記録層)、保護層、潤滑層が積層された構成になっている。例えば、情報記録媒体基板を、真空引きを行った成膜装置内に導入し、DC(Direct Current)マグネトロンスパッタリング法にてAr雰囲気中で、情報記録媒体基板の主表面上に付着層から磁性層まで順次成膜する。成膜後、例えばCVD(Chemical Vapor Deposition)法によりCを用いて保護層を成膜し、同一チャンバ内で、表面に窒素を導入する窒化処理を行うことにより、磁気記録媒体を形成することができる。その後、例えばPFPE(ポリフルオロポリエーテル)をディップコート法により保護層上に塗布することにより、潤滑層を形成することができる。 A known technique can be adopted for the configuration and manufacturing method of the information recording medium. For example, in one aspect, the magnetic recording medium has at least an adhesion layer, an underlayer, a magnetic layer (magnetic recording layer), a protective layer, and a lubricating layer stacked on the main surface of the information recording medium substrate in order from the side closer to the main surface. It has been configured. For example, an information recording medium substrate is introduced into a vacuum-deposited film forming apparatus, and a magnetic layer is formed from an adhesion layer on the main surface of the information recording medium substrate in an Ar atmosphere by a DC (Direct Current) magnetron sputtering method. The film is formed sequentially. After film formation, a protective layer is formed using C 2 H 4 by, for example, CVD (Chemical Vapor Deposition), and a magnetic recording medium is formed by performing nitridation treatment in which nitrogen is introduced into the surface in the same chamber. can do. Thereafter, for example, PFPE (polyfluoropolyether) is applied on the protective layer by a dip coating method, whereby a lubricating layer can be formed.
 ところで近年、磁気ヘッドへDFH(Dynamic Flying Height)機構を搭載させることにより、磁気ヘッドの記録再生素子部と情報記録媒体表面との間隙の大幅な狭小化(低フライングハイト化)を達成し、更なる高記録密度化を図ることが行われている。DFH機構とは、磁気ヘッドの記録再生素子部の近傍に極小のヒーター等の加熱部を設けて、素子部周辺のみを媒体表面方向に向けて突き出す機能である。こうすることで、磁気ヘッドと媒体の磁気記録層との距離(フライングハイト)が近づくため、より小さい磁性粒子の信号も拾うことができるようになり、更なる高記録密度化を達成することが可能となる。しかしその一方で、磁気ヘッドの素子部と媒体表面との間隙(フライングハイト)が極めて小さくなる。表面平滑性に劣る情報記録媒体表面に磁気ヘッドを近接させると、磁気ヘッドが情報記録媒体表面に接触してヘッドクラッシュが発生するおそれがあるため、接触を防ぐためにフライングハイトをある程度確保せざるを得ない。以上の点から、情報記録媒体の表面平滑性を高めるべく、情報記録媒体基板の表面平滑性を高めることが望ましい。この点に関して、化学的耐久性に優れるガラスは、洗浄処理後による表面平滑性の低下が少ないため好ましい。かかるガラスからなる基板を備えた情報記録媒体は、フライングハイトが極狭小化されたDFH機構を搭載した記録再生装置にも好適である。 Recently, by mounting a DFH (Dynamic Flying Height) mechanism on the magnetic head, the gap between the recording / reproducing element portion of the magnetic head and the surface of the information recording medium has been greatly reduced (low flying height). A higher recording density is being achieved. The DFH mechanism is a function in which a heating unit such as a very small heater is provided in the vicinity of the recording / reproducing element unit of the magnetic head, and only the periphery of the element unit is projected toward the medium surface. By doing so, since the distance (flying height) between the magnetic head and the magnetic recording layer of the medium becomes closer, it becomes possible to pick up signals of smaller magnetic particles and achieve further higher recording density. It becomes possible. However, on the other hand, the gap (flying height) between the element portion of the magnetic head and the medium surface is extremely small. If the magnetic head is brought close to the surface of the information recording medium with poor surface smoothness, the magnetic head may come into contact with the surface of the information recording medium and a head crash may occur. Therefore, it is necessary to secure a certain flying height to prevent contact. I don't get it. From the above points, it is desirable to increase the surface smoothness of the information recording medium substrate in order to increase the surface smoothness of the information recording medium. In this regard, a glass excellent in chemical durability is preferable because there is little decrease in surface smoothness after the cleaning treatment. An information recording medium having such a glass substrate is also suitable for a recording / reproducing apparatus equipped with a DFH mechanism in which the flying height is extremely narrowed.
 上記情報記録媒体基板(例えば磁気ディスク基板)、情報記録媒体(例えば磁気ディスク)とも、その寸法に特に制限はないが、例えば、高記録密度化が可能であるため媒体および基板を小型化することも可能である。例えば、公称直径2.5インチは勿論、更に小径(例えば1インチ、1.8インチ)、または3インチ、3.5インチ等の寸法のものとすることができる。 The information recording medium substrate (for example, a magnetic disk substrate) and the information recording medium (for example, a magnetic disk) are not particularly limited in size. For example, since the recording density can be increased, the medium and the substrate can be downsized. Is also possible. For example, a nominal diameter of 2.5 inches can of course be of a smaller diameter (eg, 1 inch, 1.8 inches) or 3 inches, 3.5 inches, etc.
[記録再生装置用ガラススペーサ]
 本発明の一態様は、モル%表示にて、SiO含有量が55~68%、B含有量が0~5%、Al含有量が1~14%、MgO含有量が8~23%、CaO含有量が1~10%、LiO含有量が5~18%、LiO、NaOおよびKOの合計含有量が5~18%、ZrO、TiO、BaO、SrOおよび希土類酸化物の合計含有量が0~5%、LiOとMgOとの合計含有量が20~32%、アルカリ金属酸化物とアルカリ土類金属酸化物との合計含有量に対するLiOとMgOとの合計含有量のモル比{(LiO+MgO)/(アルカリ金属酸化物+アルカリ土類金属酸化物)}が0.60~0.95、アルカリ金属酸化物の合計含有量に対するSiO含有量のモル比(SiO/アルカリ金属酸化物)が3~13であり、ヤング率が86GPa以上かつ比重が2.75以下の非晶質ガラスを含む記録再生装置用ガラススペーサに関する。
[Glass spacers for recording and playback equipment]
In one embodiment of the present invention, the SiO 2 content is 55 to 68%, the B 2 O 3 content is 0 to 5%, the Al 2 O 3 content is 1 to 14%, and the MgO content is expressed in mol%. Is 8 to 23%, CaO content is 1 to 10%, Li 2 O content is 5 to 18%, the total content of Li 2 O, Na 2 O and K 2 O is 5 to 18%, ZrO 2 , The total content of TiO 2 , BaO, SrO and rare earth oxide is 0 to 5%, the total content of Li 2 O and MgO is 20 to 32%, the total of alkali metal oxide and alkaline earth metal oxide The molar ratio of the total content of Li 2 O and MgO to the content {(Li 2 O + MgO) / (alkali metal oxide + alkaline earth metal oxide)} is 0.60 to 0.95, alkali metal oxide The molar ratio of the SiO 2 content to the total content (SiO 2 / A The present invention relates to a glass spacer for a recording / reproducing apparatus including amorphous glass having a (Lukari metal oxide) of 3 to 13, a Young's modulus of 86 GPa or more and a specific gravity of 2.75 or less.
 情報記録媒体は、記録再生装置において、情報を記録および/または再生するために用いることができる。例えば、磁気記録媒体は、磁気記録再生装置において、情報を磁気的に記録および/または再生するために用いることができる。通常、記録再生装置は、情報記録媒体をスピンドルモータのスピンドルに固定するため、および/または、複数の情報記録媒体の間の距離を保つために、スペーサを備えている。近年、かかるスペーサとして、ガラススペーサを用いることが提案されている。このガラススペーサにも、情報記録媒体基板用のガラスについて先に詳述した理由と類似の理由から、剛性が高く、比重が低く、かつ化学的耐久性に優れることが望まれる。これに対し、上記ガラスは、先に詳述した通り、高剛性および低比重を有し、かつ優れた化学的耐久性を有することができるため、記録再生装置用ガラススペーサとして好適である。 The information recording medium can be used for recording and / or reproducing information in a recording / reproducing apparatus. For example, the magnetic recording medium can be used for magnetically recording and / or reproducing information in a magnetic recording / reproducing apparatus. Usually, the recording / reproducing apparatus includes a spacer in order to fix the information recording medium to the spindle of the spindle motor and / or to maintain a distance between the plurality of information recording media. In recent years, it has been proposed to use glass spacers as such spacers. This glass spacer is also desired to have high rigidity, low specific gravity, and excellent chemical durability for the same reason as described above in detail for the glass for the information recording medium substrate. On the other hand, the glass is suitable as a glass spacer for a recording / reproducing apparatus because it has high rigidity and low specific gravity and excellent chemical durability as described above.
 記録再生装置用のスペーサはリング状の部材であって、ガラススペーサの構成、製造方法等の詳細は公知である。また、ガラススペーサの製造方法については、情報記録媒体基板用ガラスの製造方法および情報記録媒体基板の製造方法に関する上記記載も参照できる。また、本発明の一態様にかかる記録再生装置用ガラススペーサのガラス組成、ガラス特性等のその他の詳細については、本発明の一態様にかかる情報記録媒体基板用ガラス、情報記録媒体基板および情報記録媒体に関する上記記載を参照できる。
 なお、記録再生装置用ガラススペーサは、上記ガラスからなることもでき、または上記ガラスの表面に導電性膜等の膜を一層以上設けた構成であることもできる。例えば、情報記録媒体の回転時に生じる静電気を除去するために、ガラススペーサの表面に、メッキ法、浸漬法、蒸着法、スパッタリング法等によりNiP合金等の導電性膜を形成することができる。また、ガラススペーサは、研磨加工により表面平滑性を高くすることができ(例えば、平均表面粗さが1μm以下)、これにより情報記録媒体とスペーサとの密着度を強めて位置ずれの発生を抑制することができる。
The spacer for the recording / reproducing apparatus is a ring-shaped member, and details of the structure and manufacturing method of the glass spacer are well known. In addition, regarding the manufacturing method of the glass spacer, the above description regarding the manufacturing method of the information recording medium substrate glass and the manufacturing method of the information recording medium substrate can also be referred to. For other details such as the glass composition and glass characteristics of the glass spacer for recording / reproducing apparatus according to one aspect of the present invention, information recording medium substrate glass, information recording medium substrate, and information recording according to one aspect of the present invention Reference may be made to the above description regarding the medium.
In addition, the glass spacer for recording / reproducing apparatuses can be made of the glass, or can have a structure in which one or more films such as a conductive film are provided on the surface of the glass. For example, in order to remove static electricity generated when the information recording medium rotates, a conductive film such as a NiP alloy can be formed on the surface of the glass spacer by plating, dipping, vapor deposition, sputtering, or the like. In addition, the glass spacer can increase the surface smoothness by polishing (for example, the average surface roughness is 1 μm or less), thereby strengthening the adhesion between the information recording medium and the spacer and suppressing the occurrence of misalignment. can do.
[記録再生装置]
 本発明の一態様は、
 本発明の一態様にかかる情報記録媒体;および
 本発明の一態様にかかるガラススペーサ、
 の少なくとも一方を含む記録再生装置、
 に関する。
[Recording and playback device]
One embodiment of the present invention provides:
An information recording medium according to an aspect of the present invention; and a glass spacer according to an aspect of the present invention,
A recording / reproducing apparatus including at least one of
About.
 記録再生装置は、少なくとも1つの情報記録媒体と、少なくとも1つのスペーサを含み、更に、通常、情報記録媒体を回転駆動させるためのスピンドルモータと、情報磁気記録媒体に対して情報の記録および/または再生を行うための少なくとも1つの記録再生ヘッドを含む。
 上記の本発明の一態様にかかる記録再生装置は、少なくとも1つの情報記録媒体として本発明の一態様にかかる情報記録媒体を含むことができ、本発明の一態様にかかる情報記録媒体を複数含むこともできる。上記の本発明の一態様にかかる記録再生装置は、少なくとも1つのスペーサとして本発明の一態様にかかるガラススペーサを含むことができ、本発明の一態様にかかるガラススペーサを複数含むこともできる。情報記録媒体とスペーサの物性が類似していることは、情報記録媒体とスペーサとの物性の相違に起因して生じる現象の発生を抑制する観点から好ましい。例えば、情報記録媒体の熱膨張係数とスペーサの熱膨張係数との差が小さいことは、両者の熱膨張係数の差に起因して生じ得る現象、例えば、情報記録媒体の歪み、情報記録媒体の位置ずれによる回転時の安定性の低下等、の発生を抑制する観点から好ましい。この観点から、本発明の一態様にかかる記録再生装置は、少なくとも1つの情報記録媒体として、また複数の情報記録媒体が含まれる場合にはより多くの情報記録媒体として、本発明の一態様にかかる情報記録媒体を含み、かつ、少なくとも1つのスペーサとして、また複数のスペーサが含まれる場合にはより多くのスペーサとして、本発明の一態様にかかるガラススペーサを含むことが好ましい。また、例えば、本発明の一態様にかかる記録再生装置は、情報記録媒体に含まれる情報記録媒体基板を構成するガラスと、ガラススペーサを構成するガラスとが、同一のガラス組成を有するものであることができる。
The recording / reproducing apparatus includes at least one information recording medium and at least one spacer, and usually further includes a spindle motor for rotationally driving the information recording medium, and recording and / or information on the information magnetic recording medium. It includes at least one recording / reproducing head for performing reproduction.
The recording / reproducing apparatus according to one aspect of the present invention can include the information recording medium according to one aspect of the present invention as at least one information recording medium, and includes a plurality of information recording media according to one aspect of the present invention. You can also The recording / reproducing apparatus according to one embodiment of the present invention can include the glass spacer according to one embodiment of the present invention as at least one spacer, and can also include a plurality of glass spacers according to one embodiment of the present invention. The physical properties of the information recording medium and the spacer are preferably similar from the viewpoint of suppressing the occurrence of a phenomenon caused by the difference in physical properties between the information recording medium and the spacer. For example, the fact that the difference between the thermal expansion coefficient of the information recording medium and the thermal expansion coefficient of the spacer is small is a phenomenon that can occur due to the difference between the two thermal expansion coefficients, for example, distortion of the information recording medium, This is preferable from the viewpoint of suppressing the occurrence of a decrease in stability during rotation due to a position shift. From this point of view, the recording / reproducing apparatus according to one aspect of the present invention is applied to one aspect of the present invention as at least one information recording medium, and more information recording media when a plurality of information recording media are included. It is preferable to include the glass spacer according to one embodiment of the present invention as the information recording medium, and as at least one spacer and as a larger number of spacers when a plurality of spacers are included. For example, in the recording / reproducing apparatus according to one embodiment of the present invention, the glass constituting the information recording medium substrate included in the information recording medium and the glass constituting the glass spacer have the same glass composition. be able to.
 本発明の一態様にかかる記録再生装置は、本発明の一態様にかかる情報記録媒体および本発明の一態様にかかるガラススペーサの少なくとも一方を含むものであればよく、その他の点については記録再生装置に関する公知技術を適用することができる。一態様では、磁気ヘッドとして、磁化反転をアシスト(磁気信号の書き込みを補助)するためのエネルギー源(例えばレーザー光源等の熱源、マイクロ波等)と、記録素子部と、再生素子部とを有するエネルギーアシスト磁気記録ヘッドを用いることができる。このような、エネルギーアシスト磁気記録ヘッドを含むエネルギーアシスト記録方式の磁気記録再生装置は、高記録密度かつ高い信頼性を有する磁気記録再生装置として有用である。また、レーザー光源等を有する熱アシスト磁気記録ヘッドを備えた熱アシスト記録方式等のエネルギーアシスト記録方式の磁気記録再生装置に用いられる情報記録媒体(磁気記録媒体)の製造時には、磁気異方性エネルギーが高い磁性材料を含む磁気記録層を情報記録媒体基板上に形成することが行われる場合がある。このような磁気記録層を形成するためには、通常、高温で成膜が行われるか、または成膜後に高温で熱処理が行われる。このような高温での処理に耐え得る高い耐熱性を有し得る情報記録媒体基板として、本発明の一態様にかかる情報記録媒体基板は好ましい。ただし、本発明の一態様にかかる記録再生装置は、エネルギーアシスト方式の磁気記録再生装置に限定されるものではない。 The recording / reproducing apparatus according to one aspect of the present invention may include at least one of the information recording medium according to one aspect of the present invention and the glass spacer according to one aspect of the present invention. Known techniques relating to the apparatus can be applied. In one aspect, the magnetic head includes an energy source (for example, a heat source such as a laser light source, a microwave, etc.) for assisting magnetization reversal (assuming writing of a magnetic signal), a recording element unit, and a reproducing element unit. An energy-assisted magnetic recording head can be used. Such an energy-assisted recording type magnetic recording / reproducing apparatus including an energy-assisted magnetic recording head is useful as a magnetic recording / reproducing apparatus having high recording density and high reliability. When manufacturing an information recording medium (magnetic recording medium) used in a magnetic recording / reproducing apparatus of an energy assist recording system such as a heat assist recording system having a heat assist magnetic recording head having a laser light source or the like, magnetic anisotropy energy In some cases, a magnetic recording layer containing a high magnetic material is formed on an information recording medium substrate. In order to form such a magnetic recording layer, film formation is usually performed at a high temperature, or heat treatment is performed at a high temperature after the film formation. The information recording medium substrate according to one embodiment of the present invention is preferable as an information recording medium substrate that can have high heat resistance that can withstand such high-temperature processing. However, the recording / reproducing apparatus according to one embodiment of the present invention is not limited to the energy-assisted magnetic recording / reproducing apparatus.
 以下に、本発明を実施例により更に詳細に説明する。ただし、本発明は実施例に示す態様に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, this invention is not limited to the aspect shown in the Example.
[ガラスNo.1~No.48]
 表1(表1-1~表1-3)に示す組成のガラスが得られるように、酸化物、炭酸塩、硝酸塩、水酸化物等の原料を秤量し、混合して調合原料とした。この調合原料を熔融槽に投入して1400~1600℃の範囲で加熱、熔解して得られた熔融ガラスを、清澄槽において1400~1550℃で6時間保持した後、温度を低下(降温)させて1200~1400℃の範囲に1時間保持してから熔融ガラスを成形して、下記評価のためのガラス(非晶質の酸化物ガラス)を得た。
[Glass No. 1-No. 48]
In order to obtain glasses having the compositions shown in Table 1 (Table 1-1 to Table 1-3), raw materials such as oxides, carbonates, nitrates, and hydroxides were weighed and mixed to obtain blended raw materials. The molten glass obtained by adding this blended raw material to the melting tank and heating and melting it in the range of 1400-1600 ° C is held at 1400-1550 ° C for 6 hours in the clarification tank, and then the temperature is lowered (decreased). The glass was held in the range of 1200 to 1400 ° C. for 1 hour and then a molten glass was formed to obtain a glass (amorphous oxide glass) for the following evaluation.
[評価方法]
(1)ガラス転移温度(Tg)、平均線膨張係数(α)
 各ガラスのガラス転移温度Tgおよび100~300℃における平均線膨張係数αを、熱機械分析装置(TMA;Thermomechanical Analysis)を用いて測定した。
[Evaluation methods]
(1) Glass transition temperature (Tg), average linear expansion coefficient (α)
The glass transition temperature Tg of each glass and the average linear expansion coefficient α at 100 to 300 ° C. were measured using a thermomechanical analyzer (TMA; Thermomechanical Analysis).
(2)ヤング率
 各ガラスのヤング率を超音波法にて測定した。
(2) Young's modulus Young's modulus of each glass was measured by an ultrasonic method.
(3)比重
 各ガラスの比重をアルキメデス法にて測定した。
(3) Specific gravity The specific gravity of each glass was measured by the Archimedes method.
(4)比弾性率
 上記(2)で得られたヤング率および(3)で得られた比重から、比弾性率を算出した。
(4) Specific modulus The specific modulus was calculated from the Young's modulus obtained in (2) above and the specific gravity obtained in (3).
(5)耐水性Dw
 各ガラスの粉末法耐水性(Dw)の測定は、日本光学硝子工業会規格に定める粉末法による化学的耐久性(耐水性)の測定方法に基づき、以下の方法によって評価した。
 比重に相当する質量の粉末ガラス(粒度425~600μm)を白金かごに入れ、それを純水(pH=6.5~7.5)80mlが入った石英ガラス製丸底フラスコ内に浸漬し、沸騰水浴中で60分間処理し、その減量率(%)を求めた。
(5) Water resistance Dw
The powder method water resistance (Dw) of each glass was evaluated by the following method based on the chemical durability (water resistance) measurement method by the powder method defined in the Japan Optical Glass Industry Association standard.
Powder glass having a mass corresponding to specific gravity (particle size: 425 to 600 μm) is placed in a platinum basket and immersed in a quartz glass round bottom flask containing 80 ml of pure water (pH = 6.5 to 7.5). It processed for 60 minutes in the boiling water bath, and calculated | required the weight loss rate (%).
(6)耐酸性Da
 各ガラスの粉末法耐酸性(Da)は、粉末法耐水性Dwの測定方法に準じて、以下の方法によって評価した。
 比重に相当する質量の粉末ガラス(粒度425~600μm)を白金かごに入れ、それを0.01mol/L硝酸水溶液80mlが入った石英ガラス製丸底フラスコ内に浸漬し、沸騰水浴中で60分間処理し、その減量率(%)を求めた。
(6) Acid resistance Da
The powder method acid resistance (Da) of each glass was evaluated by the following method according to the measurement method of the powder method water resistance Dw.
Powder glass (particle size: 425 to 600 μm) having a mass corresponding to the specific gravity is placed in a platinum basket, immersed in a quartz glass round bottom flask containing 80 ml of 0.01 mol / L nitric acid aqueous solution, and in a boiling water bath for 60 minutes. The weight loss rate (%) was calculated.
(7)ガラス安定性
 各ガラス100gを白金製の坩堝に入れて、炉内温度を1250℃または1200℃に設定した加熱炉内に各坩堝を投入し、炉内温度を維持したまま16時間放置(保持テスト)した。16時間経過後、加熱炉内から坩堝を取り出し、坩堝内のガラスを耐火物上に移して室温まで冷却し、各ガラスの結晶の有無を光学顕微鏡で観察し、以下の基準で評価した。
 A:光学顕微鏡で拡大観察(倍率40~100倍)して結晶が確認されない。
 B:光学顕微鏡で拡大観察(倍率40~100倍)して結晶が確認されるが、目視観察で結晶が確認されない。
 C:目視観察で結晶が確認される。
(7) Glass stability 100 g of each glass is put in a platinum crucible, and each crucible is put in a heating furnace whose furnace temperature is set to 1250 ° C. or 1200 ° C., and left for 16 hours while maintaining the furnace temperature. (Retention test). After 16 hours, the crucible was taken out from the heating furnace, the glass in the crucible was transferred onto a refractory and cooled to room temperature, and the presence or absence of crystals in each glass was observed with an optical microscope and evaluated according to the following criteria.
A: A crystal is not confirmed by magnifying observation (magnification 40 to 100 times) with an optical microscope.
B: Crystals are confirmed by magnifying observation (magnification 40 to 100 times) with an optical microscope, but crystals are not confirmed by visual observation.
C: Crystals are confirmed by visual observation.
(8)液相温度
 各ガラスについて、白金製の坩堝にガラス試料(100g)を入れて、炉内温度を所定温度に設定した加熱炉内に各坩堝を投入し、炉内温度を維持したまま16時間放置した。16時間経過後、加熱炉内から坩堝を取り出し、坩堝内のガラスを耐火物上に移して室温まで冷却し、各ガラスの結晶の有無を光学顕微鏡により観察した。光学顕微鏡で拡大観察(倍率40~100倍)して結晶が認められない最低温度を液相温度とした。
 液相温度は、耐失透性の指標であり、1250℃以下であることが好ましく、1220℃以下であることがより好ましく、1200℃以下であることが更に好ましい。
(8) Liquid phase temperature For each glass, put a glass sample (100 g) into a platinum crucible, put each crucible into a heating furnace set at a predetermined furnace temperature, and maintain the furnace temperature. Left for 16 hours. After 16 hours, the crucible was taken out from the heating furnace, the glass in the crucible was transferred onto a refractory and cooled to room temperature, and the presence or absence of crystals of each glass was observed with an optical microscope. The liquid crystal temperature was defined as the lowest temperature at which no crystal was observed by magnifying observation (magnification 40 to 100 times) with an optical microscope.
The liquidus temperature is an index of devitrification resistance, preferably 1250 ° C. or less, more preferably 1220 ° C. or less, and still more preferably 1200 ° C. or less.
 以上の結果を表1(表1-1~表1-3)に示す。 The above results are shown in Table 1 (Table 1-1 to Table 1-3).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示す結果から、表1に示す情報記録媒体基板用ガラスは、いずれも高い剛性を有し、低比重であり、かつ化学的耐久性に優れることが確認された。 From the results shown in Table 1, it was confirmed that all the glass for information recording medium substrates shown in Table 1 had high rigidity, low specific gravity, and excellent chemical durability.
 一方、特許文献1(特開平11-302031号公報)の表1中の実施例2、6、8、9の組成を有するガラスを、上記のNo.1~No.48のガラスの作製と同様の方法で作製を試みたが、失透してしまいガラスを得ることができなかった。 On the other hand, the glass having the composition of Examples 2, 6, 8, and 9 in Table 1 of Patent Document 1 (Japanese Patent Laid-Open No. 11-302031) is referred to as No. 1 above. 1-No. Production was attempted in the same manner as for production of 48 glass, but it was devitrified and glass could not be obtained.
[情報記録媒体基板の作製]
(1)基板ブランクの作製
  次に、下記方法AまたはBにより、円盤状の基板ブランクを作製した。
(方法A)
  表1に示す各ガラスについて、清澄、均質化した上述の実施例の熔融ガラスを流出パイプから一定流量で流出するとともにプレス成形用の下型で受け、下型上に所定量の熔融ガラス塊が得られるよう流出した熔融ガラスを切断刃で切断した。そして熔融ガラス塊を載せた下型をパイプ下方から直ちに搬出し、下型と対向する上型および胴型を用いて、直径66mm、厚さ1.2mmの薄肉円盤状にプレス成形した。プレス成形品を変形しない温度にまで冷却した後、型から取り出してアニールし、基板ブランクを得た。なお、上述の成形では複数の下型を用いて流出する熔融ガラスを次々に円盤状の基板ブランクに成形した。
(方法B)
  表1に示す各ガラスについて、清澄、均質化した上述の実施例の熔融ガラスを円筒状の貫通孔が設けられた耐熱性鋳型の貫通孔に上部から連続的に鋳込み、円柱状に成形して貫通孔の下側から取り出した。取り出したガラスをアニールした後、マルチワイヤーソーを用いて円柱軸に垂直な方向に一定間隔でガラスをスライス加工し、円盤状の基板ブランクを作製した。
  なお、ここでは上述の方法A、Bを採用したが、円盤状の基板ブランクの製造方法としては、下記方法C、Dも好適である。
(方法C)
  熔融ガラスをフロートバス上に流し出し、シート状のガラスに成形(フロート法による成形)し、次いでアニールした後にシートガラスから円盤状のガラスをくり貫いて基板ブランクを得ることもできる。
(方法D)
  熔融ガラスをオーバーフローダウンドロー法(フュージョン法)によりシート状のガラスに成形、アニールし、次いでシートガラスから円盤状のガラスをくり貫いて基板ブランクを得ることもできる。
[Production of information recording medium substrate]
(1) Production of Substrate Blank Next, a disk-shaped substrate blank was produced by the following method A or B.
(Method A)
About each glass shown in Table 1, the molten glass of the above-mentioned example which was clarified and homogenized flows out from the outflow pipe at a constant flow rate and is received by the lower mold for press molding, and a predetermined amount of molten glass lump is formed on the lower mold. The molten glass that flowed out was cut with a cutting blade. Then, the lower mold on which the molten glass block was placed was immediately taken out from below the pipe, and was pressed into a thin disk shape having a diameter of 66 mm and a thickness of 1.2 mm using the upper mold and the barrel mold opposed to the lower mold. After the press molded product was cooled to a temperature at which it was not deformed, it was taken out of the mold and annealed to obtain a substrate blank. In the above-described molding, the molten glass flowing out using a plurality of lower molds was successively formed into a disk-shaped substrate blank.
(Method B)
For each glass shown in Table 1, the molten glass of the above-described embodiment, which has been clarified and homogenized, is continuously cast from above into a through hole of a heat-resistant mold provided with a cylindrical through hole, and formed into a cylindrical shape. It was taken out from the lower side of the through hole. The annealed glass was annealed, and then the glass was sliced at regular intervals in a direction perpendicular to the cylinder axis using a multi-wire saw to produce a disk-shaped substrate blank.
Although the above-described methods A and B are employed here, the following methods C and D are also suitable as a method for manufacturing a disk-shaped substrate blank.
(Method C)
The molten glass is poured onto a float bath, formed into a sheet-like glass (forming by a float method), and then annealed, and then a disc-like glass is cut out from the sheet glass to obtain a substrate blank.
(Method D)
The molten glass is formed into a sheet-like glass by the overflow down draw method (fusion method) and annealed, and then the disc-like glass is cut out from the sheet glass to obtain a substrate blank.
(2)ガラス基板の作製
  上述の各方法で得られた基板ブランクの中心に貫通孔をあけて、外周、内周の研削加工を行い、円盤の主表面をラッピング、ポリッシング(鏡面研磨加工)して直径65mm、厚さ0.8mmの磁気ディスク用ガラス基板に仕上げた。得られたガラス基板は、1.7質量%の珪弗酸(H2SiF)水溶液、次いで、1質量%の水酸化カリウム水溶液を用いて洗浄し、次いで純水ですすいだ後に乾燥させた。表1に示す各ガラスから作製した基板の表面を拡大観察したところ、表面粗れは認められず、平滑な表面であった。
(2) Production of glass substrate A through hole is made in the center of the substrate blank obtained by each of the above-mentioned methods, and the outer and inner circumferences are ground, and the main surface of the disk is lapped and polished (mirror polished). Thus, a glass substrate for a magnetic disk having a diameter of 65 mm and a thickness of 0.8 mm was finished. The obtained glass substrate was washed with a 1.7% by mass aqueous solution of silicic acid (H 2 SiF) and then with a 1% by mass aqueous potassium hydroxide solution, then rinsed with pure water and then dried. When the surface of the board | substrate produced from each glass shown in Table 1 was magnified and observed, surface roughness was not recognized but it was a smooth surface.
[情報記録媒体(磁気ディスク)の作製]
  以下の方法により、表1に示す各ガラスから得られたガラス基板の主表面上に、付着層、下地層、磁気記録層、保護層、潤滑層をこの順に形成し、磁気ディスクを得た。
[Production of information recording medium (magnetic disk)]
By the following method, an adhesion layer, an underlayer, a magnetic recording layer, a protective layer, and a lubricating layer were formed in this order on the main surface of a glass substrate obtained from each glass shown in Table 1 to obtain a magnetic disk.
  まず、真空引きを行った成膜装置を用いて、DCマグネトロンスパッタリング法にて、Ar雰囲気中で、付着層、下地層および磁気記録層を順次成膜した。 First, an adhesion layer, an underlayer, and a magnetic recording layer were sequentially formed in an Ar atmosphere by a DC magnetron sputtering method using a vacuum-deposited film forming apparatus.
  このとき、付着層は、厚さ20nmのアモルファスCrTi層となるように、CrTiターゲットを用いて成膜した。続いて枚葉・静止対向型成膜装置を用いて、Ar雰囲気中で、DCマグネトロンスパッタリング法にて下地層としてCrRuからなる10nm厚の層を形成した。また、磁気記録層は、酸化クロムを含有するCoCrPtからなる硬磁性体のターゲットを用いて成膜温度400℃にて成膜した。 At this time, the adhesion layer was formed using a CrTi target so as to be an amorphous CrTi layer having a thickness of 20 nm. Subsequently, a 10 nm thick layer made of CrRu was formed as a base layer by a DC magnetron sputtering method in an Ar atmosphere using a single wafer / stationary facing type film forming apparatus. The magnetic recording layer was formed at a film formation temperature of 400 ° C. using a hard magnetic target made of CoCrPt containing chromium oxide.
  続いて、エチレンを材料ガスとしたCVD法により水素化カーボンからなる保護層を3nm形成した。この後、PFPE(パーフロロポリエーテル)を用いてなる潤滑層をディップコート法により形成した。潤滑層の膜厚は1nmであった。
  以上の製造工程により、磁気ディスクを得た。得られた磁気ディスクを、DFH機構を備えたハードディスクドライブ(フライングハイト:8nm)に搭載し、磁気ディスクの主表面上の記録用領域に、1平方インチあたり20ギガビットの記録密度で磁気信号を記録したところ、磁気ヘッドと磁気ディスク表面が衝突する現象(ヘッドクラッシュ)は確認されなかった。
Subsequently, a protective layer made of hydrogenated carbon was formed to 3 nm by a CVD method using ethylene as a material gas. Thereafter, a lubricating layer using PFPE (perfluoropolyether) was formed by a dip coating method. The thickness of the lubricating layer was 1 nm.
A magnetic disk was obtained by the above manufacturing process. The obtained magnetic disk is mounted on a hard disk drive (flying height: 8 nm) equipped with a DFH mechanism, and a magnetic signal is recorded at a recording density of 20 gigabits per square inch in a recording area on the main surface of the magnetic disk. As a result, a phenomenon (head crash) in which the magnetic head and the magnetic disk surface collide was not confirmed.
 本発明の一態様によれば、高密度記録化に最適な情報記録媒体を提供することができる。 According to one embodiment of the present invention, an information recording medium optimal for high density recording can be provided.
  最後に、前述の各態様を総括する。 Finally, the above-mentioned aspects are summarized.
 一態様によれば、モル%表示にて、SiO含有量が55~68%、B含有量が0~5%、Al含有量が1~14%、MgO含有量が8~23%、CaO含有量が1~10%、LiO含有量が5~18%、LiO、NaOおよびKOの合計含有量が5~18%、ZrO、TiO、BaO、SrOおよび希土類酸化物の合計含有量が0~5%、LiOとMgOとの合計含有量が20~32%、アルカリ金属酸化物とアルカリ土類金属酸化物との合計含有量に対するLiOとMgOとの合計含有量のモル比{(LiO+MgO)/(アルカリ金属酸化物+アルカリ土類金属酸化物)}が0.60~0.95、アルカリ金属酸化物の合計含有量に対するSiO含有量のモル比(SiO/アルカリ金属酸化物)が3~13であり、ヤング率が86GPa以上かつ比重が2.75以下の非晶質ガラスである情報記録媒体基板用ガラスが提供される。 According to one aspect, the SiO 2 content is 55 to 68%, the B 2 O 3 content is 0 to 5%, the Al 2 O 3 content is 1 to 14%, and the MgO content is expressed in mol%. 8-23%, CaO content 1-10%, Li 2 O content 5-18%, total content of Li 2 O, Na 2 O and K 2 O 5-18%, ZrO 2 , TiO 2 , the total content of BaO, SrO and rare earth oxides is 0-5%, the total content of Li 2 O and MgO is 20-32%, the total content of alkali metal oxides and alkaline earth metal oxides The molar ratio of the total content of Li 2 O and MgO to the amount {(Li 2 O + MgO) / (alkali metal oxide + alkaline earth metal oxide)} is 0.60 to 0.95, Molar ratio of SiO 2 content to total content (SiO 2 / Al There is provided a glass for an information recording medium substrate which is an amorphous glass having a potassium metal oxide) of 3 to 13, a Young's modulus of 86 GPa or more and a specific gravity of 2.75 or less.
 上記ガラスは、高い剛性を有し、比重が低く、かつ優れた化学的耐久性を示すことができる。 The glass has high rigidity, low specific gravity, and can exhibit excellent chemical durability.
 一態様では、上記ガラスのAlとZrOとの合計含有量に対するSiOとCaOとの合計含有量のモル比{(SiO+CaO)/(Al+ZrO)}は、5.0~25.0の範囲であることができる。 In one aspect, the molar ratio {(SiO 2 + CaO) / (Al 2 O 3 + ZrO 2 )} of the total content of SiO 2 and CaO to the total content of Al 2 O 3 and ZrO 2 in the glass is: It can range from 5.0 to 25.0.
 一態様では、上記ガラスのMgOとCaOとの合計含有量は、15~35%の範囲であることができる。 In one aspect, the total content of MgO and CaO in the glass can be in the range of 15-35%.
 一態様では、上記ガラスのCaO含有量に対するMgO含有量のモル比(MgO/CaO)は、1.0~20.0の範囲であることができる。 In one aspect, the molar ratio (MgO / CaO) of the MgO content to the CaO content of the glass can be in the range of 1.0 to 20.0.
 一態様では、上記ガラスのアルカリ土類金属酸化物の合計含有量に対するMgO含有量のモル比(MgO/アルカリ土類金属酸化物)は、0.5以上であることができる。 In one embodiment, the molar ratio of MgO content to the total content of alkaline earth metal oxides in the glass (MgO / alkaline earth metal oxide) can be 0.5 or more.
 一態様では、上記ガラスのLiOおよびNaOとの合計含有量に対するAl含有量のモル比{Al/(LiO+NaO)}は、0.25~1.25の範囲であることができる。 In one embodiment, the molar ratio {Al 2 O 3 / (Li 2 O + Na 2 O)} of the Al 2 O 3 content to the total content of Li 2 O and Na 2 O in the glass is 0.25 to 1 .25 range.
 一態様では、上記ガラスのTiO含有量は、0~5%の範囲であることができる。 In one embodiment, the TiO 2 content of the glass can range from 0 to 5%.
 一態様では、上記ガラスのZrO含有量は、0~3モル%の範囲であることができる。 In one aspect, the ZrO 2 content of the glass can range from 0 to 3 mol%.
 一態様では、上記ガラスのSiO含有量は、58~65モル%の範囲であることができる。 In one embodiment, the SiO 2 content of the glass can be in the range of 58-65 mol%.
 一態様では、上記ガラスの比弾性率は、33MNm/kg以上であることができる。 In one aspect, the specific elastic modulus of the glass can be 33 MNm / kg or more.
 一態様によれば、上記情報記録媒体からなる情報記録媒体基板が提供される。 According to one aspect, an information recording medium substrate comprising the information recording medium is provided.
 一態様によれば、上記情報記録媒体基板上に情報記録層を有する情報記録媒体が提供される。 According to one aspect, an information recording medium having an information recording layer on the information recording medium substrate is provided.
 一態様によれば、モル%表示にて、SiO含有量が55~68%、B含有量が0~5%、Al含有量が1~14%、MgO含有量が8~23%、CaO含有量が1~10%、LiO含有量が5~18%、LiO、NaOおよびKOの合計含有量が5~18%、ZrO、TiO、BaO、SrOおよび希土類酸化物の合計含有量が0~5%、LiOとMgOとの合計含有量が20~32%、アルカリ金属酸化物とアルカリ土類金属酸化物との合計含有量に対するLiOとMgOとの合計含有量のモル比{(LiO+MgO)/(アルカリ金属酸化物+アルカリ土類金属酸化物)}が0.60~0.95、アルカリ金属酸化物の合計含有量に対するSiO含有量のモル比(SiO/アルカリ金属酸化物)が3~13であり、ヤング率が86GPa以上かつ比重が2.75以下の非晶質ガラスを含む記録再生装置用ガラススペーサが提供される。 According to one aspect, the SiO 2 content is 55 to 68%, the B 2 O 3 content is 0 to 5%, the Al 2 O 3 content is 1 to 14%, and the MgO content is expressed in mol%. 8-23%, CaO content 1-10%, Li 2 O content 5-18%, total content of Li 2 O, Na 2 O and K 2 O 5-18%, ZrO 2 , TiO 2 , the total content of BaO, SrO and rare earth oxides is 0-5%, the total content of Li 2 O and MgO is 20-32%, the total content of alkali metal oxides and alkaline earth metal oxides The molar ratio of the total content of Li 2 O and MgO to the amount {(Li 2 O + MgO) / (alkali metal oxide + alkaline earth metal oxide)} is 0.60 to 0.95, Molar ratio of SiO 2 content to total content (SiO 2 / Al There is provided a glass spacer for a recording / reproducing apparatus including amorphous glass having a potassium metal oxide) of 3 to 13, a Young's modulus of 86 GPa or more and a specific gravity of 2.75 or less.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 例えば、上記に例示されたガラス組成に対し、明細書に記載の組成調整を行うことにより、本発明の一態様にかかる情報記録媒体基板用ガラスを作製することができる。
 また、明細書に例示または好ましい範囲として記載した事項の2つ以上を任意に組み合わせることは、もちろん可能である。
The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
For example, the glass for an information recording medium substrate according to one embodiment of the present invention can be manufactured by adjusting the composition described in the specification for the glass composition exemplified above.
Of course, it is possible to arbitrarily combine two or more of the matters described as examples or preferred ranges in the specification.

Claims (13)

  1. モル%表示にて、
    SiO含有量が55~68%、
    含有量が0~5%、
    Al含有量が1~14%、
    MgO含有量が8~23%、
    CaO含有量が1~10%、
    LiO含有量が5~18%、
    LiO、NaOおよびKOの合計含有量が5~18%、
    ZrO、TiO、BaO、SrOおよび希土類酸化物の合計含有量が0~5%、
    LiOとMgOとの合計含有量が20~32%、
    アルカリ金属酸化物とアルカリ土類金属酸化物との合計含有量に対するLiOとMgOとの合計含有量のモル比{(LiO+MgO)/(アルカリ金属酸化物+アルカリ土類金属酸化物)}が0.60~0.95、
    アルカリ金属酸化物の合計含有量に対するSiO含有量のモル比(SiO/アルカリ金属酸化物)が3~13、
    であり、
    ヤング率が86GPa以上かつ比重が2.75以下の非晶質ガラスである情報記録媒体基板用ガラス。
    In mol% display,
    SiO 2 content is 55 to 68%,
    B 2 O 3 content is 0-5%,
    Al 2 O 3 content is 1 to 14%,
    MgO content is 8-23%,
    CaO content is 1-10%,
    Li 2 O content is 5-18%,
    The total content of Li 2 O, Na 2 O and K 2 O is 5-18%,
    The total content of ZrO 2 , TiO 2 , BaO, SrO and rare earth oxide is 0-5%,
    The total content of Li 2 O and MgO is 20 to 32%,
    Molar ratio of total content of Li 2 O and MgO to total content of alkali metal oxide and alkaline earth metal oxide {(Li 2 O + MgO) / (alkali metal oxide + alkaline earth metal oxide) } Is 0.60-0.95,
    The molar ratio of SiO 2 content to the total content of alkali metal oxides (SiO 2 / alkali metal oxide) is 3 to 13,
    And
    A glass for an information recording medium substrate, which is an amorphous glass having a Young's modulus of 86 GPa or more and a specific gravity of 2.75 or less.
  2. AlとZrOとの合計含有量に対するSiOとCaOとの合計含有量のモル比{(SiO+CaO)/(Al+ZrO)}が5.0~25.0の範囲である、請求項1に記載の情報記録媒体基板用ガラス。 The molar ratio of the total content of SiO 2 and CaO to the total content of Al 2 O 3 and ZrO 2 {(SiO 2 + CaO) / (Al 2 O 3 + ZrO 2 )} is 5.0 to 25.0 The glass for an information recording medium substrate according to claim 1, which is a range.
  3. MgOとCaOとの合計含有量が15~35%の範囲である、請求項1または2に記載の情報記録媒体基板用ガラス。 The glass for an information recording medium substrate according to claim 1 or 2, wherein the total content of MgO and CaO is in the range of 15 to 35%.
  4. CaO含有量に対するMgO含有量のモル比(MgO/CaO)が1.0~20.0の範囲である、請求項1~3のいずれか1項に記載の情報記録媒体基板用ガラス。 The glass for an information recording medium substrate according to any one of claims 1 to 3, wherein a molar ratio of MgO content to CaO content (MgO / CaO) is in the range of 1.0 to 20.0.
  5. アルカリ土類金属酸化物の合計含有量に対するMgO含有量のモル比(MgO/アルカリ土類金属酸化物)が0.5以上である、請求項1~4のいずれか1項に記載の情報記録媒体基板用ガラス。 The information recording according to any one of claims 1 to 4, wherein a molar ratio of MgO content to the total content of alkaline earth metal oxide (MgO / alkaline earth metal oxide) is 0.5 or more. Glass for medium substrate.
  6. LiOおよびNaOとの合計含有量に対するAl含有量のモル比{Al/(LiO+NaO)}が0.25~1.25の範囲である、請求項1~5のいずれか1項に記載の情報記録媒体基板用ガラス。 The molar ratio of Al 2 O 3 content to the total content of Li 2 O and Na 2 O {Al 2 O 3 / (Li 2 O + Na 2 O)} is in the range of 0.25 to 1.25. Item 6. The glass for an information recording medium substrate according to any one of Items 1 to 5.
  7. TiO含有量が0~5%の範囲である、請求項1~6のいずれか1項に記載の情報記録媒体基板用ガラス。 TiO 2 content is in the range of 0-5%, the information recording medium glass substrate according to any one of claims 1 to 6.
  8. ZrO含有量が0~3モル%の範囲である、請求項1~7のいずれか1項記載の情報記録媒体基板用ガラス。 The glass for an information recording medium substrate according to any one of claims 1 to 7, wherein the ZrO 2 content is in the range of 0 to 3 mol%.
  9. SiO含有量が58~65モル%の範囲である、請求項1~8のいずれか1項に記載の情報記録媒体基板用ガラス。 The glass for an information recording medium substrate according to any one of claims 1 to 8, wherein the SiO 2 content is in the range of 58 to 65 mol%.
  10. 比弾性率が33MNm/kg以上である、請求項1~9のいずれか1項に記載の情報記録媒体基板用ガラス。 The glass for an information recording medium substrate according to any one of claims 1 to 9, wherein the specific elastic modulus is 33 MNm / kg or more.
  11. 請求項1~10のいずれか1項に記載の情報記録媒体基板用ガラスからなる情報記録媒体基板。 An information recording medium substrate comprising the glass for an information recording medium substrate according to any one of claims 1 to 10.
  12. 請求項11に記載の情報記録媒体基板上に情報記録層を有する情報記録媒体。 An information recording medium having an information recording layer on the information recording medium substrate according to claim 11.
  13. モル%表示にて、
    SiO含有量が55~68%、
    含有量が0~5%、
    Al含有量が1~14%、
    MgO含有量が8~23%、
    CaO含有量が1~10%、
    LiO含有量が5~18%、
    LiO、NaOおよびKOの合計含有量が5~18%、
    ZrO、TiO、BaO、SrOおよび希土類酸化物の合計含有量が0~5%、
    LiOとMgOとの合計含有量が20~32%、
    アルカリ金属酸化物とアルカリ土類金属酸化物との合計含有量に対するLiOとMgOとの合計含有量のモル比{(LiO+MgO)/(アルカリ金属酸化物+アルカリ土類金属酸化物)}が0.60~0.95、
    アルカリ金属酸化物の合計含有量に対するSiO含有量のモル比(SiO/アルカリ金属酸化物)が3~13、
    であり、
    ヤング率が86GPa以上かつ比重が2.75以下の非晶質ガラスを含む記録再生装置用ガラススペーサ。
    In mol% display,
    SiO 2 content is 55 to 68%,
    B 2 O 3 content is 0-5%,
    Al 2 O 3 content is 1 to 14%,
    MgO content is 8-23%,
    CaO content is 1-10%,
    Li 2 O content is 5-18%,
    The total content of Li 2 O, Na 2 O and K 2 O is 5-18%,
    The total content of ZrO 2 , TiO 2 , BaO, SrO and rare earth oxide is 0-5%,
    The total content of Li 2 O and MgO is 20 to 32%,
    Molar ratio of total content of Li 2 O and MgO to total content of alkali metal oxide and alkaline earth metal oxide {(Li 2 O + MgO) / (alkali metal oxide + alkaline earth metal oxide) } Is 0.60-0.95,
    The molar ratio of SiO 2 content to the total content of alkali metal oxides (SiO 2 / alkali metal oxide) is 3 to 13,
    And
    A glass spacer for a recording / reproducing apparatus comprising amorphous glass having a Young's modulus of 86 GPa or more and a specific gravity of 2.75 or less.
PCT/JP2018/021546 2017-06-09 2018-06-05 Glass for information recording medium substrate, information recording medium substrate, and glass spacer for information recording medium and recording reproduction device WO2018225725A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019523906A JP7165655B2 (en) 2017-06-09 2018-06-05 Glass for information recording medium substrate, information recording medium substrate, information recording medium and glass spacer for recording/reproducing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017114565 2017-06-09
JP2017-114565 2017-06-09

Publications (1)

Publication Number Publication Date
WO2018225725A1 true WO2018225725A1 (en) 2018-12-13

Family

ID=64566145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021546 WO2018225725A1 (en) 2017-06-09 2018-06-05 Glass for information recording medium substrate, information recording medium substrate, and glass spacer for information recording medium and recording reproduction device

Country Status (2)

Country Link
JP (1) JP7165655B2 (en)
WO (1) WO2018225725A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175407A1 (en) * 2019-02-25 2020-09-03 日本板硝子株式会社 Glass composition, glass plate and method for producing same, and substrate for information recording medium
WO2021015240A1 (en) * 2019-07-22 2021-01-28 Hoya株式会社 Glass for magnetic recording medium substrates, magnetic recording medium substrate, magnetic recording medium, glass spacer for magnetic recording/reproducing devices, and magnetic recording/reproducing device
WO2022004826A1 (en) * 2020-07-03 2022-01-06 株式会社Uacj Magnetic disk substrate and magnetic disk using magnetic disk substrate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000187828A (en) * 1998-02-26 2000-07-04 Ohara Inc High rigidity glass ceramic substrate for information magnetic storage medium
JP2001019491A (en) * 1999-07-06 2001-01-23 Minolta Co Ltd Glass composition
JP2001039732A (en) * 1999-07-27 2001-02-13 Ngk Insulators Ltd Conductive glass composition and grounding parts of magnetic recording medium for hard disk
WO2001021539A1 (en) * 1999-09-21 2001-03-29 Kabushiki Kaisha Ohara Holding member for information storage disk and information storage disk drive device
US20130210962A1 (en) * 2010-06-30 2013-08-15 Ocv Intellectual Capital, Llc. Glass composition for producing high strength and high modulus fibers
WO2015029902A1 (en) * 2013-08-30 2015-03-05 Hoya株式会社 Glass substrate for information recording media
WO2015033800A1 (en) * 2013-09-09 2015-03-12 Hoya株式会社 Glass substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000187828A (en) * 1998-02-26 2000-07-04 Ohara Inc High rigidity glass ceramic substrate for information magnetic storage medium
JP2001019491A (en) * 1999-07-06 2001-01-23 Minolta Co Ltd Glass composition
JP2001039732A (en) * 1999-07-27 2001-02-13 Ngk Insulators Ltd Conductive glass composition and grounding parts of magnetic recording medium for hard disk
WO2001021539A1 (en) * 1999-09-21 2001-03-29 Kabushiki Kaisha Ohara Holding member for information storage disk and information storage disk drive device
US20130210962A1 (en) * 2010-06-30 2013-08-15 Ocv Intellectual Capital, Llc. Glass composition for producing high strength and high modulus fibers
WO2015029902A1 (en) * 2013-08-30 2015-03-05 Hoya株式会社 Glass substrate for information recording media
WO2015033800A1 (en) * 2013-09-09 2015-03-12 Hoya株式会社 Glass substrate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175407A1 (en) * 2019-02-25 2020-09-03 日本板硝子株式会社 Glass composition, glass plate and method for producing same, and substrate for information recording medium
JP7494161B2 (en) 2019-02-25 2024-06-03 日本板硝子株式会社 Glass composition, glass plate and its manufacturing method, and substrate for information recording medium
WO2021015240A1 (en) * 2019-07-22 2021-01-28 Hoya株式会社 Glass for magnetic recording medium substrates, magnetic recording medium substrate, magnetic recording medium, glass spacer for magnetic recording/reproducing devices, and magnetic recording/reproducing device
JPWO2021015240A1 (en) * 2019-07-22 2021-01-28
JP7229357B2 (en) 2019-07-22 2023-02-27 Hoya株式会社 Glass for magnetic recording medium substrate or glass spacer for magnetic recording/reproducing device, magnetic recording medium substrate, magnetic recording medium, glass spacer for magnetic recording/reproducing device, and magnetic recording/reproducing device
US11688424B2 (en) 2019-07-22 2023-06-27 Hoya Corporation Glass for magnetic recording medium substrate, magnetic recording medium substrate, magnetic recording medium, glass spacer for magnetic recording and reproducing apparatus, and magnetic recording and reproducing apparatus
WO2022004826A1 (en) * 2020-07-03 2022-01-06 株式会社Uacj Magnetic disk substrate and magnetic disk using magnetic disk substrate
JP2022013061A (en) * 2020-07-03 2022-01-18 株式会社Uacj Magnetic disk substrate and magnetic disk using the magnetic disk substrate
JP7037600B2 (en) 2020-07-03 2022-03-16 株式会社Uacj A magnetic disk substrate and a magnetic disk using the magnetic disk substrate

Also Published As

Publication number Publication date
JP7165655B2 (en) 2022-11-04
JPWO2018225725A1 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
JP5964921B2 (en) Glass for magnetic recording medium substrate, magnetic recording medium substrate and manufacturing method thereof, and magnetic recording medium
JP7135024B2 (en) Glass for magnetic recording medium substrates, magnetic recording medium substrates, magnetic recording media and glass spacers for magnetic recording/reproducing devices
WO2015037609A1 (en) Glass for magnetic recording medium substrate, and magnetic recording medium substrate
JP7229357B2 (en) Glass for magnetic recording medium substrate or glass spacer for magnetic recording/reproducing device, magnetic recording medium substrate, magnetic recording medium, glass spacer for magnetic recording/reproducing device, and magnetic recording/reproducing device
JP7328313B2 (en) Glass for magnetic recording medium substrate, magnetic recording medium substrate, magnetic recording medium, glass spacer for magnetic recording/reproducing device, and magnetic recording/reproducing device
WO2012086664A1 (en) Glass substrate for magnetic recording medium, and use thereof
JP2023166439A (en) Glass for magnetic recording medium substrate or for glass spacer for magnetic recording/reproducing device, magnetic recording medium substrate, magnetic recording medium, glass spacer for magnetic recording/reproducing device, and magnetic recording/reproducing device
JP7165655B2 (en) Glass for information recording medium substrate, information recording medium substrate, information recording medium and glass spacer for recording/reproducing device
JPWO2013146256A1 (en) Glass for magnetic recording medium substrate, glass substrate for magnetic recording medium and use thereof
WO2017002835A1 (en) Glass for magnetic recording medium substrate, magnetic recording medium substrate, and magnetic recording medium
JP7488416B2 (en) Glass for a magnetic recording medium substrate or a glass spacer for a magnetic recording/reproducing device, a magnetic recording medium substrate, a magnetic recording medium, a glass spacer for a magnetic recording/reproducing device, and a magnetic recording/reproducing device
US12040003B2 (en) Glass for magnetic recording medium substrate, magnetic recording medium substrate, magnetic recording medium and glass spacer for magnetic recording and reproducing apparatus
JP7389545B2 (en) Glass for magnetic recording media substrates, magnetic recording media substrates, magnetic recording media
WO2024053741A1 (en) Glass for magnetic recording medium substrate, magnetic recording medium substrate, and magnetic recording/reproducing apparatus
WO2024053056A1 (en) Glass for magnetic recording medium substrate or for glass spacer to be used in magnetic recording/reproduction device, magnetic recording medium substrate, magnetic recording medium, glass spacer to be used in magnetic recording/reproduction device, and magnetic recording/reproduction device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18814266

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523906

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18814266

Country of ref document: EP

Kind code of ref document: A1