WO2018225489A1 - Image forming apparatus and method for controlling same - Google Patents

Image forming apparatus and method for controlling same Download PDF

Info

Publication number
WO2018225489A1
WO2018225489A1 PCT/JP2018/019497 JP2018019497W WO2018225489A1 WO 2018225489 A1 WO2018225489 A1 WO 2018225489A1 JP 2018019497 W JP2018019497 W JP 2018019497W WO 2018225489 A1 WO2018225489 A1 WO 2018225489A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
recording medium
ejection
chart
unit
Prior art date
Application number
PCT/JP2018/019497
Other languages
French (fr)
Japanese (ja)
Inventor
忠 京相
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2019523427A priority Critical patent/JP6761545B2/en
Publication of WO2018225489A1 publication Critical patent/WO2018225489A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads

Definitions

  • the present invention relates to an image forming apparatus and a control method thereof, and more particularly, to an image forming apparatus in which a plurality of liquid discharge heads are arranged along a recording medium conveyance direction and a control method thereof.
  • an inkjet printer a configuration is known in which a plurality of inkjet heads capable of ejecting the same color ink are arranged along the sheet conveyance direction in order to improve the printing speed to improve the conveyance speed of the recording medium.
  • Patent Document 1 by ejecting ink from nozzles of four nozzle arrays that eject ink of the same color arranged along the transport direction, the transport speed is four times faster than when recording with one nozzle array.
  • An ink jet printer capable of printing by conveying a recording medium is disclosed.
  • inkjet heads have variations in the amount of ejected droplets due to manufacturing variations. In order to correct this variation, it is necessary to perform a correction operation for adjusting to an appropriate ejection droplet amount. In addition, it is necessary to check whether or not each ejection element is in a normal ejection state.
  • Patent Document 1 discloses a method for detecting defective ejection elements by analyzing an analysis pattern recorded for each nozzle row.
  • the analysis pattern cannot be formed properly and the analysis accuracy cannot be ensured.
  • the present invention has been made in view of such circumstances, and an image forming apparatus that appropriately performs discharge droplet amount adjustment and discharge direction measurement for a plurality of liquid discharge heads arranged along the conveyance direction of the recording medium, and the image forming apparatus
  • An object is to provide a control method.
  • an image forming apparatus includes a conveyance unit that conveys a recording medium along a conveyance direction and a plurality of ejection elements that eject liquid, and is arranged side by side along the conveyance direction.
  • a plurality of liquid ejection heads a liquid supply unit that supplies the same liquid to each of the plurality of liquid ejection heads, and a conveyance unit that conveys the recording medium at a first conveyance speed, and a plurality of ejections from the plurality of liquid ejection heads
  • An image formation control unit that discharges liquid from the element to form an image on a recording medium, and a conveyance unit conveys the recording medium at a second conveyance speed that is lower than the first conveyance speed, and a plurality of liquid ejection heads
  • a chart formation control unit that discharges liquid from the discharge elements to form a chart on the recording medium, and sets the diameter of dots formed on the recording medium by the liquid discharged from the discharge elements to D [ m], the ejection frequency of the liquid discharge device for forming the chart f [kHz], the second conveying speed and Vh [m / s], satisfies the Vh ⁇ D ⁇ f / 1000.
  • the recording medium is transported by the transport unit at the second transport speed that is slower than the first transport speed at the time of image formation, and the liquid is ejected from the plurality of ejecting elements of one liquid ejecting head.
  • a chart formation control unit for forming a chart on the medium is provided, the diameter of dots formed on the recording medium by the liquid discharged from the discharge elements is D [ ⁇ m], and the liquid discharge frequency of the discharge elements when forming the chart is Assuming that f [kHz] and the second transport speed are Vh [m / s], Vh ⁇ D ⁇ f / 1000 is satisfied. Therefore, by adjusting the discharge droplet amount and measuring the discharge direction appropriately by reading the chart. be able to.
  • Vh ⁇ Vm / N is satisfied when the first transport speed is Vm [m / s] and the number of liquid ejection heads is an integer N of 2 or more. Thereby, the discharge droplet amount adjustment and the discharge direction measurement can be appropriately performed.
  • Vm / N ⁇ Vh When the first transport speed is Vm [m / s] and the number of liquid ejection heads is an integer N of 2 or more, Vm / N ⁇ Vh may be satisfied. Thereby, the discharge droplet amount adjustment and the discharge direction measurement can be appropriately performed.
  • An inline scanner that reads an image and a chart formed on a recording medium on the downstream side of a plurality of liquid ejection heads in the conveying direction is provided, and the reading frequency of the inline scanner and chart formation when reading the image formed by the image formation control unit It is preferable that the reading frequency of the inline scanner when reading the chart formed by the control unit is equal. As a result, the number of times of reading by the in-line scanner increases, so that noise in reading can be reduced.
  • a pretreatment liquid application unit that applies a pretreatment liquid to the recording medium upstream of the plurality of liquid ejection heads in the transport direction is provided, and the image formation control unit applies a first recording medium that has an uncoated ink absorbing layer to the surface.
  • the pretreatment liquid is applied by the pretreatment liquid application section, and the chart formation control section uses the second recording medium having the surface coated with the ink absorption layer, and the pretreatment liquid application section applies the pretreatment liquid. Is preferably stopped. Thereby, the fluctuation
  • a pretreatment liquid application unit that applies a pretreatment liquid to the recording medium is provided upstream of the plurality of liquid ejection heads in the transport direction, and the pretreatment liquid application unit includes an inkjet head that discharges the pretreatment liquid. .
  • the application quantity of a pretreatment liquid can be made into an appropriate quantity.
  • the distance between the liquid ejection head and the recording medium when the chart is formed on the recording medium by the chart formation control unit is larger than the distance between the liquid ejection head and the recording medium when the image formation control unit forms an image on the recording medium. It is preferable that this is smaller.
  • the conveyance speed is slower than when the image is formed, so that the risk of contact between the liquid ejection head and the recording medium is low, and the damage caused by contact is small. For this reason, the distance between the liquid ejection head and the recording medium can be reduced, and noise in the chart can be reduced by reducing the distance.
  • the image formation control unit may have a normal print mode in which the recording unit conveys the recording medium at the first conveyance speed, and a high-speed printing mode in which the conveyance unit conveys the recording medium at a speed higher than the first conveyance speed.
  • the second transport speed is slower than the first transport speed in the normal printing mode.
  • the liquid discharge head can form a plurality of dots having different diameters, and the diameter of the smallest dot among the plurality of dots having different diameters is preferably D [ ⁇ m]. Thereby, a chart can be appropriately formed in the smallest dot.
  • the chart preferably includes density patches formed for each liquid ejection head. By reading this chart, it is possible to appropriately adjust the ejection droplet amount.
  • the chart preferably includes a line pattern formed for each ejection element. By reading this chart, the discharge direction can be measured appropriately.
  • the liquid discharge head is preferably arranged with a plurality of head modules arranged in a first direction intersecting the transport direction.
  • the present embodiment is applicable to a liquid discharge head in which a plurality of head modules are arranged side by side.
  • one aspect of a method for controlling an image forming apparatus includes a transport unit that transports a recording medium along a transport direction and a plurality of ejection elements that eject liquid, respectively, along the transport direction.
  • a control method for an image forming apparatus comprising: a plurality of liquid discharge heads arranged side by side; and a liquid supply unit that supplies the same liquid to each of the plurality of liquid discharge heads.
  • An image forming control process for forming an image on a recording medium by ejecting liquid from a plurality of ejection elements of a plurality of liquid ejection heads and conveying the recording medium at a speed lower than the first conveyance speed by a conveyance unit;
  • the diameter of the dots formed on the recording medium by the liquid to be formed is D [ ⁇ m]
  • the liquid discharge frequency of the discharge element when forming the chart is f [kHz]
  • the second transport speed is Vh [m / s].
  • Vh ⁇ D ⁇ f / 1000 is satisfied.
  • the recording medium is transported by the transport unit at the second transport speed that is slower than the first transport speed at the time of image formation, and the liquid is ejected from the plurality of ejecting elements of one liquid ejecting head.
  • a chart formation control unit for forming a chart on the medium is provided, the diameter of dots formed on the recording medium by the liquid discharged from the discharge elements is D [ ⁇ m], and the liquid discharge frequency of the discharge elements when forming the chart is Assuming that f [kHz] and the second transport speed are Vh [m / s], Vh ⁇ D ⁇ f / 1000 is satisfied. Therefore, by adjusting the discharge droplet amount and measuring the discharge direction appropriately by reading the chart. be able to.
  • FIG. 1 Perspective view of inkjet head Enlarged view of inkjet head viewed from nozzle side Plan view showing an example of the nozzle surface of the head module Sectional drawing which shows the structural example of the droplet discharge element for 1 nozzle of a head module Top view of single bar inkjet printer Side view of inkjet printer
  • Block diagram showing system configuration of inkjet printer The figure which shows an example of the chart for density adjustment printed on paper with an inkjet printer
  • the figure for demonstrating the landing position shift of the ink droplet discharged from the nozzle Enlarged view of one line constituting the chart for measuring the discharge direction An example of a read image obtained by reading three lines printed by three nozzle
  • FIG. 1 is a perspective view of an inkjet head 10 used in this embodiment.
  • a plurality of (n integers greater than or equal to 2) head modules 12-i (i 1, 2,... N) in the X direction (an example of a first direction intersecting the transport direction).
  • the frame 16 functions as a frame for fixing the plurality of head modules 12-i.
  • Each head module 12-i is fixed to the frame 16 with the nozzle surface 20 facing the common direction.
  • the structures of the head modules 12-i are common.
  • a flexible substrate 18 is connected to each head module 12-i.
  • a drive signal, a discharge control signal, and the like are supplied to each head module 12-i via the flexible substrate 18.
  • FIG. 2 is an enlarged view of the inkjet head 10 as viewed from the nozzle surface 20 side.
  • Each head module 12-i is supported by the head module holding member 22 from both sides in the Y direction, and both ends in the X direction are supported by the head protection member 24.
  • FIG. 3 is a plan view showing an example of the nozzle surface 20 of the head module 12-i.
  • the head module 12-i has an end surface on the long side along the v direction having an inclination of angle ⁇ with respect to the X direction, and a short side on the short side along the w direction having an inclination of angle ⁇ with respect to the Y direction. It is a parallelogram planar view shape which has an end surface.
  • the nozzles 28 are two-dimensionally arranged on the nozzle surface 20 of the head module 12-i.
  • the projection nozzle row LN projected in the X direction is equivalent to a single nozzle row in which the nozzles 28 are arranged at equal intervals at a nozzle density that achieves the recording resolution.
  • the inkjet head 10 By connecting a plurality of head modules 12-i in the X direction (see FIG. 2), the inkjet head 10 forms a nozzle array that covers the entire printing range of the recording medium.
  • the ink-jet head 10 is a full-line bar head capable of printing at a recording resolution with a single conveyance of a recording medium.
  • the full-line bar head applied to the single-pass method is not limited to the case where the entire surface of the recording medium is set as the printing range, but when a part of the recording medium is a printing area (for example, around the recording medium). In the case of providing a blank portion, etc.), it is sufficient that the nozzle rows necessary for printing are formed.
  • the number of nozzles of the head module 12-i, the nozzle density, and the arrangement form of the nozzles are not particularly limited.
  • the head module 12-i includes an ejection energy generation element (for example, a piezoelectric element or a heating element) that generates ejection energy necessary for ink ejection corresponding to each nozzle 28.
  • the head module 12-i ejects ink droplets (an example of a liquid) on demand according to the drive signal and the ejection control signal supplied via the flexible substrate 18.
  • FIG. 4 is a cross-sectional view showing an example of the internal structure of a droplet discharge element for one nozzle of the head module 12-i.
  • the head module 12-i has a nozzle plate 30 on which nozzles 28 serving as ink droplet ejection ports are formed, and a pressure chamber 32, a supply port 34, a common channel 36, and the like corresponding to the nozzles 28. And a flow path plate 38.
  • the flow path plate 38 constitutes a side wall portion of the pressure chamber 32 and a flow path forming a supply port 34 as a narrowed portion (most narrowed portion) of an individual supply path that guides ink from the common flow path 36 to the pressure chamber 32. It is a forming member.
  • the flow path plate 38 may be composed of a single substrate, or may have a structure in which a plurality of substrates are stacked.
  • the nozzle plate 30 and the flow path plate 38 can be processed into a required shape using a semiconductor manufacturing technique using silicon as a material.
  • a plurality of pressure chambers 32 are connected to the common flow path 36 via respective supply ports 34. Ink is supplied to the common flow path 36 from the outside of the head module 12-i.
  • the diaphragm 40 constituting a part of the pressure chamber 32 (the top surface in FIG. 4) is provided with a piezoelectric element 44 having an individual electrode 42 for each pressure chamber 32.
  • the diaphragm 40 of this example is made of silicon with a conductive layer functioning as a common electrode 46 corresponding to the lower electrode of the piezoelectric element 44, and also serves as a common electrode of the piezoelectric element 44 disposed corresponding to each pressure chamber 32. . It is also possible to form the diaphragm with a non-conductive material such as resin. In this case, a common electrode layer made of a conductive material such as metal is formed on the surface of the diaphragm member. Moreover, you may comprise the diaphragm which serves as a common electrode with metals (electroconductive material), such as stainless steel.
  • the piezoelectric element 44 is deformed to change the volume of the pressure chamber 32, and ink is ejected from the nozzle 28 due to the pressure change accompanying this. After ink ejection, the pressure chamber 32 is refilled with new ink from the common flow path 36 through the supply port 34.
  • the head module 12-i selects a driving voltage to be applied to the individual electrode 42, so that a small droplet having a relatively small amount of ink from each nozzle 28, a medium droplet having a relatively large amount of ink than a small droplet, and One of the three types of ink droplets, a large droplet having a relatively large ink amount than the middle droplet, can be ejected. Accordingly, an ink dot having a diameter of 30 [ ⁇ m] for a small ink droplet, an ink dot having a diameter of 40 [ ⁇ m] for a medium ink droplet, and an ink having a diameter of 50 [ ⁇ m] for a large ink droplet. Dots are formed on the recording medium. As described above, the head module 12-i can form a plurality of ink dots having different diameters on the recording medium.
  • the ink chamber unit 50 including the nozzle 28, the pressure chamber 32, the supply port 34, and the piezoelectric element 44 is a droplet discharge element as a recording element unit for recording one pixel.
  • the head module 12-i includes a plurality of ink chamber units 50 corresponding to the two-dimensional nozzle array described with reference to FIG.
  • FIG. 5 is a top view of a single bar type inkjet printer 200 in which the number of inkjet heads (bar heads) that eject the same color ink is one
  • FIG. 6 is a side view of the inkjet printer 200.
  • the inkjet printer 200 includes a platen 102, ink tanks 106K, 106C, 106M, and 106Y, and inkjet heads 204K, 204C, 204M, and 204Y.
  • the platen 102 places the paper 1 as a recording medium and conveys it in the Y direction.
  • the ink tanks 106K, 106C, 106M, and 106Y (an example of a liquid supply unit) store black (K), cyan (C), magenta (M), and yellow (Y) inks, respectively.
  • the ink tanks 106K, 106C, 106M, and 106Y supply the respective color inks to the inkjet heads 204K, 204C, 204M, and 204Y, respectively.
  • the inkjet head 10 described above is applied to each of the inkjet heads 204K, 204C, 204M, and 204Y.
  • the inkjet heads 204K, 204C, 204M, and 204Y are sequentially arranged with a certain interval in the Y direction.
  • the inkjet heads 204K, 204C, 204M, and 204Y are arranged with the nozzle surface 20 facing the platen 102.
  • a control unit (not shown) that supervises the recording control of the inkjet printer 200 controls the platen 102 to convey the paper 1 at the conveyance speed Vs [m / s]. Further, the inkjet heads 204K, 204C, 204M, and 204Y are controlled, and black ink droplets, cyan ink droplets, magenta ink droplets, and yellow ink droplets are respectively discharged from the nozzles 28 at an ejection frequency f [kHz]. Depending on the image data, small, medium, or large ink droplets are ejected. As a result, an image is printed on the recording surface of the sheet 1 conveyed by the platen 102.
  • the ejection frequency is the number of ink droplets ejected by one nozzle 28 per unit time.
  • the 17 head modules 12-i constituting the inkjet heads 204K, 204C, 204M, and 204Y have variations in the amount of ink ejected from the nozzles 28 due to variations in manufacturing.
  • the printed image has a density variation in the X direction. Therefore, in order to obtain a high-quality image, it is necessary to appropriately adjust the amount of ink ejected from the nozzles 28.
  • a control unit (not shown) of the ink jet printing machine 200 transports the paper 1 at the same transport speed Vs as the transport speed during normal image printing, and the ink jet heads 204K, 204C, 204M, and 204Y.
  • a small ink droplet is ejected at an ejection frequency f [kHz] to print a density adjustment chart on the paper 1.
  • FIG. 7 is a diagram illustrating an example of a density adjustment chart printed on the paper 1 by the inkjet printer 200.
  • Each density patch 210K-i, 210C-i, 210M-i, and 210Y-i has a conveyance speed Vs [m / s] of the paper 1, an ejection frequency f [kHz] of the nozzle 28, and a small ink drop. Printing is performed at a dot recording rate determined by the diameter D [ ⁇ m] of dots formed on the paper 1.
  • the density of the density patch 210K-i is read by a scanner or the like (not shown), and the read density data is analyzed to adjust the drive voltage applied to the piezoelectric element 44 of each head module 12-i of the inkjet head 204K. Thereby, the amount of ink ejected from the nozzle 28 of each head module 12-i of the inkjet head 204K can be adjusted appropriately.
  • FIG. 8 is a top view of a dual bar type inkjet printer 100 (an example of an image forming apparatus) in which the number of inkjet heads (bar heads) that eject the same color ink is two, and FIG. 9 is an inkjet printer.
  • FIG. 8 is a top view of a dual bar type inkjet printer 100 (an example of an image forming apparatus) in which the number of inkjet heads (bar heads) that eject the same color ink is two
  • FIG. 9 is an inkjet printer.
  • the inkjet printer 100 includes a platen 102, inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, 104Yb, ink tanks 106K, 106C, 106M, and 106Y (an example of a liquid ejection head).
  • the platen 102 places the paper 1 as a recording medium and conveys it in the Y direction (an example of the conveyance direction).
  • the ink tanks 106K, 106C, 106M, and 106Y store black (K), cyan (C), magenta (M), and yellow (Y) inks, respectively.
  • the ink tank 106K supplies the respective inks to the ink-jet heads 104Ka and 104Kb
  • the ink tank 106C supplies the ink-jet heads 104Ca and 104Cb
  • the ink tank 106M supplies the ink-jet heads 104Ma and 104Mb
  • the ink tank 106Y supplies the ink-jet heads 104Ya and 104Yb.
  • the inkjet head 10 described above is applied to each of the inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and 104Yb.
  • the inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and 104Yb are sequentially arranged at a certain interval in the Y direction.
  • the inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and 104Yb are disposed with the nozzle surface 20 facing the platen 102.
  • the inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and 104Yb are arranged at the same position in the X direction, and the nozzles 28 arranged on the respective nozzle surfaces 20 have the same position in the X direction. To do.
  • FIG. 10 is a block diagram showing a system configuration of the ink jet printing machine 100.
  • the inkjet printer 100 includes the platen 102, inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, 104Yb, ink tanks 106K, 106C, 106M, 106Y, A storage unit 108, an image formation control unit 110, and a chart formation control unit 112 are provided.
  • the storage unit 108 stores image data and chart data to be printed by the inkjet printer 100.
  • the image formation control unit 110 controls the platen 102 and the inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, 104Yb based on the image data stored in the storage unit 108, and prints an image on the paper 1. To do.
  • the chart formation control unit 112 controls the platen 102 and the inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, 104Yb based on the chart data stored in the storage unit 108, and prints an image on the paper 1. To do.
  • the image formation control unit 110 controls the platen 102 and causes the sheet 1 to be conveyed at the conveyance speed Vd (an example of the first conveyance speed). Further, the inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and 104Yb are controlled, and black ink droplets are respectively ejected from the nozzles 28 of the inkjet heads 104Ka and 104Kb, and the nozzles 28 of the inkjet heads 104Ca and 104Cb are respectively.
  • small, medium, or large ink droplets are ejected (an example of an image formation control process).
  • the inkjet printer 100 can ideally print at twice the printing speed of the inkjet printer 200.
  • the transport speed Vd of the dual-bar inkjet printer 100 can be expressed by the following formula 1 with respect to the transport speed Vs of the single-bar inkjet printer 200.
  • Vd 2 ⁇ Vs (Formula 1)
  • the transport speed Vm (an example of the first transport speed) of a multi-bar inkjet printer having N inkjet heads that eject the same color ink can be expressed by the following Equation 2.
  • the ink jet printer 100 has the nozzle 28 in a state where the head modules 12-i constituting the ink jet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and 104Yb are not adjusted.
  • the amount of ink discharged from the ink varies. Therefore, in order to obtain a high-quality image, it is necessary to appropriately adjust the amount of ink ejected from the nozzles 28.
  • the inkjet printer 100 when printing the density adjustment chart group C 1 shown in FIG. 7, for example be read density of the density patch 210K-i, the adjustment of the head module 12-i of the ink jet head 104Ka It is difficult to individually know the adjustment amount of the head module 12-i of the inkjet head 104Kb. Therefore, in the case of the inkjet printer 100, it is necessary to print density patches on each of the inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and 104Yb.
  • FIG. 11 is a density adjustment chart printed on the paper 1 by the ink jet printer 100.
  • the ink jet heads 104Ka, 104Kb, 104Ca, Vd and the discharge frequency are the same f [kHz] as in normal image printing.
  • 10 is a diagram illustrating an example of a density adjustment chart including density patches formed for each of 104Cb, 104Ma, 104Mb, 104Ya, and 104Yb (an example of each liquid ejection head).
  • the conveyance speed Vd is single. Since it is faster than the conveyance speed Vs of the bar-type ink jet printer 200, the density of the density patch is insufficient, and an appropriate density area is not obtained. As a result of the density gradation of the density patch being narrowed, it becomes vulnerable to noise and density measurement accuracy is reduced.
  • the conveyance speed Vh during printing of the density adjustment chart is set to the conveyance speed Vd during normal image printing.
  • the chart formation control unit 112 controls the platen 102 and transports the paper 1 at a transport speed Vh that satisfies Equation 3. Further, the ink-jet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and 104Yb eject small droplets of ink at a discharge frequency f [kHz] to print a density adjustment chart on the paper 1 (chart formation). An example of a control process).
  • FIG. 12 is a density adjustment chart printed on the paper 1 by the ink jet printer 100.
  • FIG. 10 is a diagram illustrating an example of a density adjustment chart group including density patches formed for each of 104Ya and 104Yb (an example of each liquid ejection head).
  • each density patch 210K-i of the density adjustment chart group C 3, the 210C-i, 210M-i, and 210Y-i concentration is the concentration adjustment chart group C 1 shown in FIG. 7 It is the same as the density of each density patch 210K-i, 210C-i, 210M-i, and 210Y-i.
  • an ink jet head 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and piezoelectric head modules 12-i of 104Yb The drive voltage applied to the element 44 is adjusted.
  • the amount of ink ejected from each nozzle 28 of the inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and 104Yb is appropriately adjusted. can do.
  • the conveyance speed Vh at the time of printing the density adjustment chart is set to the conveyance speed Vm at the time of normal image printing.
  • FIG. 13 is a diagram illustrating an example of a discharge direction measurement chart printed on the paper 1 by the inkjet printer 200.
  • Discharge direction measurement chart C 4 is composed of a pattern by a line segment (line), a so-called 1-one n-off type test chart image for nozzle check.
  • line segment line
  • FIG. 13 shows a 1 on 7 off type discharge direction measurement chart C 4 of.
  • a control unit (not shown) that supervises the recording control of the inkjet printer 200 controls the platen 102 and transports the paper 1 at the transport speed Vs. Further, the printing ink jet head 204K, 204C, 204M, and ejects ink droplets of the droplet at ejection frequency f [kHz] by 204Y in the sheet 1 the discharge direction measurement chart C 4.
  • control unit divides the nozzles 28 (see FIG. 3) constituting the projection nozzle row LN of each inkjet head into eight groups every seven, and sequentially discharges them in units of groups.
  • one line LD along the Y direction is formed by one nozzle 28, and a line LD of all nozzles is formed.
  • FIG. 14 is a diagram for explaining the landing position deviation of the ink droplets ejected from the nozzles.
  • the ink formed by the small ink droplets discharged from the three nozzles 28-1, 28-2, and 28-3 disposed on the nozzle surface 20 of the inkjet head 10 landing on the paper 1 is formed.
  • Dot ID-1, ID-2, and ID-3 are shown.
  • the ink droplets ejected from the nozzle 28 fly in parallel with the Z direction and land on the paper 1. Accordingly, the normal X position of the nozzle 28 and the X dot position of the ink dot ID ejected and landed from the nozzle 28 are the same position. As shown in FIG. 14, the X direction position of the nozzle 28-1 and the X direction position of the ink dot ID-1, and the X direction position of the nozzle 28-3 and the X direction position of the ink dot ID-3 are the same position, respectively. It has become.
  • the X direction position of the nozzle 28-2 and the X direction position of the ink dot ID-2 are shifted by ⁇ X.
  • This deviation is called a landing position deviation, and ⁇ X is called a landing position deviation amount.
  • Figure 15 is an enlarged view of one line LD constituting the discharge direction measurement chart C 4.
  • the line LD is configured by connecting the ink dots ID formed by landing the small ink droplets ejected from the nozzles 28 on the paper 1 in the Y direction.
  • the landing position deviation amount ⁇ X for each nozzle 28 can be measured by reading the ejection direction measurement chart C 4 printed in this way with a scanner.
  • the scanner scans three lines LD-1, LD-2, and LD-3 printed by the three nozzles 28-1, 28-2, and 28-3 shown in FIG. 14, respectively. It is an example of a read image.
  • the landing position deviation of the landing position deviation amount ⁇ X has occurred in the ink droplets constituting the line LD-2, the interval between the line LD-1 and the line LD-2, and the line LD-2 and the line LD. The interval from ⁇ 3 is not equal.
  • this landing position deviation amount ⁇ X By measuring this landing position deviation amount ⁇ X, it is possible to inspect the presence or absence of a non-ejection state nozzle and the presence or absence of a nozzle with a defective ejection direction.
  • the inkjet head 104Ka also discharge direction measurement, 104Kb, 104Ca, 104Cb, 104Ma , 104Mb, 104Ya, and the segment of the ejection direction measurement chart C 4 in each 104Yb Need to print. That is, the ejection direction measurement chart C 4 includes a line pattern formed respectively for each of the plurality of nozzles 28 (an example of each ejecting element).
  • FIG. 17 is a diagram showing an example of a line LD printed on the paper 1 by one nozzle 28 (see FIG. 3) with the ejection frequency set to f [kHz] at the conveyance speed Vd at the conveyance speed Vd. It is. As shown in FIG. 17, the ink dot IDs constituting the line LD are not connected in the Y direction. When reading the ejection direction measurement chart C 4 having such a line LD in the scanner, or the concentration becomes insufficient line LD, to or longer recognize the line LD as a line segment, easily out parsing errors become.
  • the chart formation control unit 112 controls the platen 102 and transports the paper 1 at a transport speed Vh that satisfies Equation 3. Further, the printing ink jet head 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and ejects ink droplets of the droplet at ejection frequency f [kHz] by 104Yb the paper 1 a discharging direction measurement chart C 4 .
  • the chart formation control unit 112 divides the nozzles 28 (see FIG. 3) constituting the projection nozzle row LN of each ink jet head into eight groups every seven, and sequentially in groups. To discharge. Thus, one line LD along the Y direction is formed by one nozzle 28, and a line LD of all nozzles is formed.
  • the conveying speed at the time of printing of the ejection direction measurement chart C 4 it may be the conveyance speed Vh satisfying the equation 4.
  • FIG. 18 is a diagram for explaining the diameters of ink dots and the inter-dot distances formed on the paper 1 by the ink droplets ejected from the nozzles 28. If multiple dots of different diameters can be formed, consider the smallest dot.
  • each ink dot ID is formed by a small droplet ejected from one nozzle 28 landing on the paper 1.
  • D the diameter of the ink dot ID
  • L the distance in the Y direction between the two ink dot IDs (inter-dot distance)
  • D ⁇ L (Formula 5)
  • Equation 7 From Equation 5 and Equation 6, the following Equation 7 can be derived.
  • Vh ⁇ D ⁇ f / 1000 (Expression 7) That is, the chart formation control unit 112 (see FIG. 10) determines the ink dot ID diameter D [ ⁇ m] satisfying Expression 7, the paper 1 conveyance speed Vh [m / s], and the nozzle 28 ejection frequency f [kHz]. it may be printed ejection direction measurement chart C 4.
  • the ink dot ID is Y if the transport speed Vh of the paper 1 is 1.5 [m / s] or less. Connect in the direction. Thereby, the amount of landing position deviation can be measured with high accuracy.
  • the conveyance speed of the paper 1 during normal image printing is about 2 [m / s] or higher.
  • dpi dots per inch
  • dot per inch is a unit representing the number of dots per [inch].
  • One [inch] is about 25.4 [mm].
  • the conveyance speed Vh may be determined as in the following Expression 8.
  • the line LD may be formed using ink droplets having a size other than small droplets.
  • FIG. 19 is a graph showing the relationship between the ink dot ID diameter (dot diameter) and the density of the density patch when the density patch is printed.
  • the dot diameter is such that adjacent ink dot IDs are connected in the Y direction
  • the density rises steeply. This is because the ink dot IDs are connected to each other so that the ink can easily fill the recording surface of the paper 1 without a gap. Thereby, when the density is low, it is easily affected by measurement noise, but when the density is high, the measurement is stable.
  • the density patch density adjustment chart group C 3 it is preferable that the ink dots ID adjacent to each other in Y direction leads to the Y direction. That is, the chart formation control unit 112 (see FIG. 10) determines the density depending on the diameter D [ ⁇ m] of the ink dot ID satisfying Expression 7, the transport speed Vh [ ⁇ m] of the paper 1, and the ejection frequency f [kHz] of the nozzle 28. each concentration patch of the adjustment chart group C 3 may be printed.
  • FIG. 20 is a diagram illustrating a configuration example of the inkjet printer 300.
  • the inkjet printer 300 forms a desired color image by ejecting ink from the inkjet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb onto the paper 1 that is conveyed in the conveyance direction by the drawing drum 370.
  • This is a dual bar ink jet printer.
  • the inkjet printer 300 mainly includes a paper feed unit 312, a pretreatment liquid application unit 314, a drawing unit 316, a drying unit 318, a fixing unit 320, and a paper discharge unit 322. .
  • a sheet 1 that is a sheet is stacked on the sheet feeding unit 312.
  • the sheets 1 are fed one by one from the sheet feeding tray 350 of the sheet feeding unit 312 to the pretreatment liquid application unit 314.
  • a sheet (cut paper) is used as the paper 1, but a configuration in which a continuous paper (roll paper) is cut to a required size and fed is also possible.
  • the pretreatment liquid application unit 314 is disposed upstream of the drawing unit 316 in the conveyance direction of the paper 1.
  • the pretreatment liquid application unit 314 is a mechanism that applies the pretreatment liquid to the recording surface of the paper 1.
  • the pretreatment liquid contains a color material aggregating agent that aggregates the color material (pigment in this example) in the ink applied by the drawing unit 316, and the ink comes into contact with the pretreatment liquid and the ink. Separation of the colorant and the solvent is promoted.
  • the pretreatment liquid application unit 314 includes a paper feed cylinder 352, a pretreatment liquid drum 354, and a pretreatment liquid application unit 356.
  • the pretreatment liquid drum 354 includes a claw-shaped holding means (gripper) 355 on its outer peripheral surface, and the paper 1 is sandwiched between the claw of the holding means 355 and the peripheral surface of the pretreatment liquid drum 354. The tip can be held.
  • the pretreatment liquid application unit 356 applies the pretreatment liquid to the recording surface of the paper 1 conveyed by the pretreatment liquid drum 354.
  • the pretreatment liquid application unit 356 can employ various methods such as a spray method in addition to an application method using a roller.
  • the sheet 1 to which the pretreatment liquid is applied is transferred from the pretreatment liquid drum 354 to the drawing drum 370 of the drawing unit 316 via the intermediate conveyance unit 326.
  • the drawing unit 316 includes a drawing drum 370, a paper holding roller 374, and an inkjet head 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb.
  • the drawing drum 370 (an example of a transport unit) includes a claw-shaped holding unit (gripper) 371 on the outer peripheral surface thereof. Suction holes are provided on the outer peripheral surface of the drawing drum 370, and the sheet 1 is sucked and held on the outer peripheral surface of the drum by negative pressure suction.
  • the inkjet head 10 described above is applied to each of the inkjet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb.
  • Each of the inkjet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb has a length corresponding to the maximum width of the image forming area on the sheet 1.
  • the drawing unit 316 includes an ink tank (not shown) that supplies ink to each of the inkjet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb.
  • Black ink is supplied from the ink tank to the inkjet heads 372Ka and 372Kb.
  • the inkjet heads 372Ca and 372Cb are supplied with cyan ink from an ink tank.
  • Magenta ink is supplied from the ink tank to the inkjet heads 372Ma and 372Mb.
  • the inkjet heads 372Ya and 372Yb are supplied with yellow ink from the ink tank.
  • the inkjet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb are installed so as to extend in a direction orthogonal to the conveyance direction of the paper 1 (the rotation direction of the drawing drum 370).
  • FIG. 21 is a diagram illustrating a distance TD between the nozzle surface 20 of the inkjet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb and the outer peripheral surface 370A of the drawing drum 370.
  • the inkjet printer 300 can change the distance TD by changing the positions of the inkjet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb by a motor 496 (see FIG. 22).
  • the drawing drum 370 conveys the sheet 1 at a constant speed, and the movement of the sheet 1 and the inkjet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb is relatively performed in this conveying direction.
  • the image can be recorded in the image forming area of the paper 1 by performing only once (that is, by one sub-scan).
  • the inkjet printing machine 300 using four colors of ink of black, cyan, magenta, and yellow is illustrated, but the combination of the ink color and the number of colors is not limited to this embodiment, and the arrangement order of each color head There is no particular limitation.
  • the sheet 1 on which the image is formed by the drawing unit 316 is transferred from the drawing drum 370 to the drying drum 376 of the drying unit 318 via the intermediate conveyance unit 328.
  • the drying unit 318 is a mechanism for drying moisture contained in the solvent separated by the color material aggregation action, and includes a drying drum 376 and a solvent drying device 378. Similarly to the pretreatment liquid drum 354, the drying drum 376 includes a claw-shaped holding means (gripper) 377 on the outer peripheral surface thereof.
  • the solvent drying device 378 includes a plurality of halogen heaters 380 and a hot air jet nozzle 382. The sheet 1 that has been dried by the drying unit 318 is transferred from the drying drum 376 to the fixing drum 384 of the fixing unit 320 via the intermediate conveyance unit 330.
  • the fixing unit 320 is disposed downstream of the drawing unit 316 in the conveyance direction of the paper 1.
  • the fixing unit 320 includes a fixing drum 384, a halogen heater 386, a fixing roller 388, and an inline scanner 390.
  • the fixing drum 384 includes a claw-shaped holding means (gripper) 385 on the outer peripheral surface thereof.
  • Line scanner 390 reads the paper 1 to the printed image and chart (the density patch of density adjustment chart group C 3, including a discharge direction measurement chart C 4) at a fixed reading frequency (sampling frequency), the image In this case, a CCD (Charge Coupled Device) line sensor or the like is applied.
  • a CCD (Charge Coupled Device) line sensor or the like is applied.
  • the paper discharge unit 322 includes a discharge tray 392, and a transfer drum 394, a conveyance belt 396, and a stretching roller 398 are provided between the discharge tray 392 and the fixing drum 384 of the fixing unit 320 so as to be in contact therewith. Is provided.
  • the sheet 1 is sent to the transport belt 396 by the transfer drum 394 and discharged to the discharge tray 392. Although the details of the paper transport mechanism by the transport belt 396 are not shown, the printed paper 1 is held at the leading end of the paper by a gripper (not shown) that is stretched between the endless transport belt 396, and the transport belt 396 rotates. It is carried above the discharge tray 392.
  • the ink jet printing machine 300 of the present example includes means for supplying a pretreatment liquid to the pretreatment liquid application unit 314, and each ink jet head 372 Ka, 372 Kb, 372 Ca. , 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb cleaning (nozzle surface wiping, purging, nozzle suction, etc.), a head maintenance unit, a position detection sensor for detecting the position of the sheet 1 on the sheet conveyance path, and the temperature of each part of the apparatus A temperature sensor or the like is detected.
  • FIG. 22 is a block diagram showing a system configuration of the inkjet printer 300.
  • the inkjet printer 300 includes an inkjet head 450, a communication interface 470, a system controller 472, a print controller 474, a head driver 478, a motor driver 480, a heater driver 482, a pretreatment liquid application controller 484, a drying controller 486, and a fixing control. 488, a memory 490, a ROM (Read Only Memory) 492, an encoder 494, and the like.
  • the inkjet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb are represented as the inkjet head 450.
  • the communication interface 470 is an interface unit that receives image data sent from the host computer 550 that is a host controller.
  • a serial interface or a parallel interface can be applied to the communication interface 470.
  • a buffer memory (not shown) for speeding up communication may be mounted.
  • the image data sent from the host computer 550 is taken into the ink jet printer 300 via the communication interface 470 and temporarily stored in the memory 490.
  • the memory 490 is a storage unit that temporarily stores an image input via the communication interface 470, and data is read and written through the system controller 472.
  • the memory 490 is not limited to a memory made of a semiconductor element, and a magnetic medium such as a hard disk may be used.
  • the system controller 472 is composed of a central processing unit (CPU: Central Processing Unit) and its peripheral circuits, and functions as a control device that controls the entire inkjet printing machine 300 according to a predetermined program and performs various calculations. Functions as a device.
  • CPU Central Processing Unit
  • the ROM 492 stores programs executed by the CPU of the system controller 472 and various data necessary for control.
  • the ROM 492 may be a non-rewritable storage unit or a rewritable storage unit.
  • the memory 490 is used as a temporary storage area for image data, and is also used as a program development area and a calculation work area for the CPU.
  • the motor driver 480 is a driver that drives the motor 496 in accordance with an instruction from the system controller 472.
  • various motors arranged in each unit in the apparatus are represented by reference numeral 496.
  • the motor 496 includes a feed drum 352, a pretreatment liquid drum 354, a drawing drum 370, a drying drum 376, a fixing drum 384, a transfer drum 394, and other motors that drive rotation of the drawing drum 370.
  • a motor for changing the distance TD see FIG.
  • a motor or the like of a retraction mechanism that moves the inkjet head 450 to a maintenance area outside the drawing drum 370 is included.
  • the heater driver 482 is a driver that drives the heater 498 in accordance with an instruction from the system controller 472.
  • various heaters arranged in each unit in the apparatus are represented by reference numeral 498.
  • the print control unit 474 has a signal processing function for performing various processing and correction processing for generating a print control signal from the image data in the memory 490 according to the control of the system controller 472.
  • the generated print data This is a control unit that supplies (dot data) to the head driver 478.
  • the required signal processing is performed in the print control unit 474, and the ejection amount and ejection timing of the ink droplets of the inkjet head 450 are controlled via the head driver 478 based on the obtained dot data.
  • the print control unit 474 includes an image buffer memory (not shown), and image data, parameters, and other data are temporarily stored in the image buffer memory when the print control unit 474 processes image data. Also possible is an aspect in which the print control unit 474 and the system controller 472 are integrated to form a single processor.
  • the head driver 478 outputs a drive signal for driving the ejection energy generating element corresponding to each nozzle of the inkjet head 450 based on the print data provided from the print control unit 474.
  • the head driver 478 may include a feedback control system for keeping the head driving condition constant.
  • the pretreatment liquid application controller 484 controls the operation of the pretreatment liquid application unit 356 (see FIG. 20) in accordance with an instruction from the system controller 472.
  • the drying control unit 486 controls the operation of the solvent drying device 378 (see FIG. 20) according to an instruction from the system controller 472.
  • the fixing controller 488 controls the operation of the fixing pressure unit 499 including the halogen heater 386 and the fixing roller 388 (see FIG. 20) of the fixing unit 320 in accordance with an instruction from the system controller 472.
  • the in-line scanner 390 reads an image printed on the paper 1 and performs necessary signal processing and the like to detect a printing situation (whether ejection is performed, droplet ejection variation, optical density, etc.), and the detection result is a system controller 472. And the print control unit 474.
  • the encoder 494 is provided on the drawing drum 370 (see FIG. 20).
  • a discharge trigger signal (pixel trigger) is issued based on the detection signal of the encoder 494.
  • the droplet ejection timing of the inkjet head 450 is synchronized with the detection signal of the encoder 494. Thereby, the landing position can be determined with high accuracy.
  • the print controller 474 performs various corrections (non-discharge correction and density correction) on the inkjet head 450 based on information obtained from the in-line scanner 390, and cleaning operations (nozzles such as preliminary discharge, suction, and wiping as necessary) Control to implement recovery operation).
  • the inkjet printer 300 conveys the image by conveying the paper 1 at the conveyance speed Vd and printing the image with a high-definition printing mode (an example of the normal printing mode) and conveying the paper 1 at a conveyance speed faster than the conveyance speed Vd.
  • the high-speed printing mode is a mode in which the printing speed is given priority over the printing quality. In the high-speed printing mode, printing is performed at a conveyance speed in which ink dot IDs formed by small ink droplets ejected from one nozzle 28 (see FIG. 3) are connected in the Y direction (see FIG. 14).
  • the user of the inkjet printer 300 can determine the print mode of the inkjet printer 300 by operating an operation unit (not shown) of the inkjet printer 300.
  • the system controller 472 controls the motor 496 to control the inkjet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya,
  • the distance TD between the nozzle surface 20 of 372Yb and the outer peripheral surface 370A of the drawing drum 370 is TD1 [mm].
  • the system controller 472 feeds the sheet 1 (an example of the first recording medium) with the ink absorption layer uncoated on the surface by the sheet feeding unit 312, and feeds the sheet feeding cylinder 352, the pretreatment liquid drum 354, the drawing drum 370, and the drying.
  • the drum 376, the fixing drum 384, and the transfer drum 394 are controlled to convey the sheet 1 at the conveyance speed Vd.
  • the system controller 472 applies the pretreatment liquid to the recording surface of the paper 1 by the pretreatment liquid application unit 356. Further, the system controller 472 causes the drawing drum 370 to convey the paper 1 at the conveyance speed Vd, and based on the image data in the memory 490, the inkjet head 450 (each inkjet head 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya). , 372Yb), and ejects small, medium, or large ink droplets according to the image data at an ejection frequency f [kHz], and prints an image on the paper 1 (an example of an image formation control process). .
  • system controller 472 controls the inline scanner 390 and reads the image on the recording surface of the paper 1 conveyed by the fixing drum 384 at the conveyance speed Vd at the reading frequency fr [kHz].
  • the system controller 472 determines the quality of the image printed on the paper 1 based on the read data of the inline scanner 390.
  • the system controller 472 controls the motor 496, the ink jet head 372Ka, A distance TD between the nozzle surface 20 of 372 Kb, 372 Ca, 372 Cb, 372 Ma, 372 Mb, 372 Ya, and 372 Yb and the outer peripheral surface 370 A of the drawing drum 370 is TD 2 [mm].
  • TD2 is a value smaller than TD1.
  • the ink jet head 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya since slower transport speed than when printing images, the ink jet head 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, In addition, the risk of contact between 372Yb and the paper 1 is low, and the damage caused by contact is small. Therefore, when printing the density adjustment chart group C 3 and the ejection direction measurement chart C 4 , the distance TD can be made smaller than when printing an image, and the density adjustment can be performed by reducing the distance TD. noise use charts group C 3 and discharge direction measurement chart C 4 can be reduced.
  • the system controller 472 feeds the paper 1 by the paper feed unit 312.
  • the sheet 1 has a recording surface (front surface) coated with an ink absorbing layer (ink receiving layer) (an example of a second recording medium).
  • the ink absorption layer is a layer for preventing bleeding due to ink by absorbing ink and accelerating drying.
  • the system controller 472 controls the paper feed cylinder 352, the pretreatment liquid drum 354, the drawing drum 370, the drying drum 376, the fixing drum 384, and the transfer cylinder 394 to convey the paper 1 at the conveyance speed Vh.
  • the conveyance speed Vh is a speed slower than the conveyance speed Vd and satisfies Expression 4 or Expression 7.
  • the system controller 472 does not apply the pretreatment liquid to the recording surface of the paper 1. That is, the system controller 472 stops the application of the pretreatment liquid by the pretreatment liquid application unit 356. In this way, by not using the paper 1 whose surface is coated with the ink absorbing layer and not applying the pretreatment liquid, it is possible to eliminate fluctuations in the application amount of the pretreatment liquid accompanying fluctuations in the conveyance speed.
  • the paper 1 that does not have the ink absorbing layer may be used, and the pretreatment liquid may be applied by the inkjet head in the pretreatment liquid application unit 356.
  • the pretreatment liquid By applying the pretreatment liquid with the ink jet head, the application amount of the pretreatment liquid can be easily adjusted, and the pretreatment liquid can be applied in an appropriate amount even if the conveyance speed fluctuates.
  • the system controller 472 causes the drawing drum 370 to convey the paper 1 at the conveyance speed Vh, and based on the data of the density adjustment chart group C 3 or the ejection direction measurement chart C 4 in the memory 490, the inkjet head 450 (each inkjet head 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb) by ejecting ink droplets of the droplet at ejection frequency f [kHz], the concentration control chart group C 3 or ejection direction measured sheet 1 print use chart C 4 (an example of a chart formation control step).
  • the system controller 472 controls the line scanner 390, a recording surface density adjustment chart group C 3 or read the ejection direction measurement chart C 4 frequency fr of the sheet 1 transported at the transportation speed Vh by the fixing drum 384 Read in [kHz].
  • the system controller 472 analyzes the read data of the density adjustment chart group C 3, the ink jet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, corresponding to 372Ya, and 372Yb nozzle 28 (see FIG. 3) adjusting each driving voltage applied to the piezoelectric element 44, or by analyzing the read data in the ejection direction measurement chart C 4, for measuring the landing position shift amount ⁇ X of each nozzle 28.
  • the reading frequency fr [kHz] of the inline scanner 390 at the time of chart formation at the conveyance speed Vh is equal to that at the time of normal image formation at the conveyance speed Vd.
  • the number of readings by the inline scanner 390 during chart formation is greater than the number of readings during image formation. Therefore, it is possible to reduce the noise in the read density adjustment chart group C 3 and discharge direction measurement chart C 4.
  • a processing unit that executes various processes such as the image formation control unit 110, the chart formation control unit 112, the system controller 472, the print control unit 474, and the pretreatment liquid application control unit 484.
  • the hardware structure of unit is various processors as shown below.
  • the circuit configuration can be changed after manufacturing a CPU (Central Processing Unit), FPGA (Field Programmable Gate Array), which is a general-purpose processor that functions as various processing units by executing software (programs).
  • a dedicated electrical circuit that is a processor having a circuit configuration specifically designed to execute a specific process such as a programmable logic device (PLD) or ASIC (Application Specific Integrated Circuit) It is.
  • PLD programmable logic device
  • ASIC Application Specific Integrated Circuit
  • One processing unit may be configured by one of these various processors, or may be configured by two or more processors of the same type or different types (for example, a plurality of FPGAs or a combination of CPUs and FPGAs). May be. Further, the plurality of processing units may be configured by one processor. As an example of configuring a plurality of processing units with one processor, first, as represented by a computer such as a server and a client, one processor is configured with a combination of one or more CPUs and software. There is a form in which the processor functions as a plurality of processing units.
  • SoC system-on-chip
  • various processing units are configured using one or more various processors as a hardware structure.
  • circuitry circuitry in which circuit elements such as semiconductor elements are combined.

Abstract

The present invention addresses the problem of providing an image forming apparatus and a method for controlling the same that appropriately perform ejection droplet amount adjustment and ejection direction measurement for a plurality of liquid ejection heads arranged along a conveyance direction of a recording medium. The above problem is solved by the image forming apparatus provided with a chart forming control unit that causes a conveyance unit to convey a recording medium at a second conveyance speed slower than a first conveyance speed during image formation and causes a liquid to be ejected from a plurality of ejection elements of one liquid ejection head to form a chart on the recording medium, wherein Vh ≤ D × f/1000 is satisfied when a diameter of dots formed on the recording medium by the liquid ejected from the ejection elements is D[μm], an ejection frequency of the liquid of the ejection elements at the time of forming the chart is f[kHz], and the second conveyance speed is Vh[m/s].

Description

画像形成装置及びその制御方法Image forming apparatus and control method thereof
 本発明は画像形成装置及びその制御方法に係り、特に記録媒体の搬送方向に沿って複数の液体吐出ヘッドが配置された画像形成装置及びその制御方法に関する。 The present invention relates to an image forming apparatus and a control method thereof, and more particularly, to an image forming apparatus in which a plurality of liquid discharge heads are arranged along a recording medium conveyance direction and a control method thereof.
 インクジェット印刷機において、印刷速度を向上させるために、同色インクを吐出可能なインクジェットヘッドを用紙の搬送方向に沿って複数配置して記録媒体の搬送速度を向上させる構成が知られている。 In an inkjet printer, a configuration is known in which a plurality of inkjet heads capable of ejecting the same color ink are arranged along the sheet conveyance direction in order to improve the printing speed to improve the conveyance speed of the recording medium.
 特許文献1には、搬送方向に沿って配置された同色インクを吐出する4つのノズル列のノズルからインクを吐出することにより、1つのノズル列で記録する場合に比べて4倍の搬送速度で記録媒体を搬送して印刷を行うことができるインクジェットプリンタが開示されている。 In Patent Document 1, by ejecting ink from nozzles of four nozzle arrays that eject ink of the same color arranged along the transport direction, the transport speed is four times faster than when recording with one nozzle array. An ink jet printer capable of printing by conveying a recording medium is disclosed.
特開2014-024209号公報JP 2014-024209 A
 一般に、インクジェットヘッドは、製造ばらつきに起因する吐出滴量のばらつきを有している。このばらつきを補正するためには、適切な吐出滴量に調整するための補正作業が必要となる。また、吐出素子毎に、正常吐出状態であるか否かの確認作業も必要となる。 Generally, inkjet heads have variations in the amount of ejected droplets due to manufacturing variations. In order to correct this variation, it is necessary to perform a correction operation for adjusting to an appropriate ejection droplet amount. In addition, it is necessary to check whether or not each ejection element is in a normal ejection state.
 特許文献1には、ノズル列毎に記録した解析用パターンを解析することで、不良の吐出素子を検出する方法が開示されている。しかしながら、4つのノズル列を活かした高速搬送時は、解析用パターンを適切に形成することができず、解析精度が確保できないという問題点があった。 Patent Document 1 discloses a method for detecting defective ejection elements by analyzing an analysis pattern recorded for each nozzle row. However, at the time of high-speed conveyance utilizing the four nozzle rows, there is a problem that the analysis pattern cannot be formed properly and the analysis accuracy cannot be ensured.
 本発明はこのような事情に鑑みてなされたもので、記録媒体の搬送方向に沿って配置された複数の液体吐出ヘッドについて、吐出滴量調整及び吐出方向測定を適切に行う画像形成装置及びその制御方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and an image forming apparatus that appropriately performs discharge droplet amount adjustment and discharge direction measurement for a plurality of liquid discharge heads arranged along the conveyance direction of the recording medium, and the image forming apparatus An object is to provide a control method.
 上記目的を達成するために画像形成装置の一の態様は、搬送方向に沿って記録媒体を搬送する搬送部と、液体を吐出する複数の吐出素子をそれぞれ有し、搬送方向に沿って並べて配置された複数の液体吐出ヘッドと、複数の液体吐出ヘッドにそれぞれ同じ液体を供給する液体供給部と、搬送部により記録媒体を第1搬送速度で搬送させ、かつ複数の液体吐出ヘッドの複数の吐出素子から液体を吐出させて、記録媒体に画像を形成する画像形成制御部と、搬送部により記録媒体を第1搬送速度よりも遅い第2搬送速度で搬送させ、かつ1つの液体吐出ヘッドの複数の吐出素子から液体を吐出させて、記録媒体にチャートを形成するチャート形成制御部と、を備え、吐出素子から吐出される液体によって記録媒体に形成されるドットの径をD[μm]、チャートを形成する際の吐出素子の液体の吐出周波数をf[kHz]、第2搬送速度をVh[m/s]とすると、Vh≦D×f/1000を満たす。 In order to achieve the above object, one aspect of an image forming apparatus includes a conveyance unit that conveys a recording medium along a conveyance direction and a plurality of ejection elements that eject liquid, and is arranged side by side along the conveyance direction. A plurality of liquid ejection heads, a liquid supply unit that supplies the same liquid to each of the plurality of liquid ejection heads, and a conveyance unit that conveys the recording medium at a first conveyance speed, and a plurality of ejections from the plurality of liquid ejection heads An image formation control unit that discharges liquid from the element to form an image on a recording medium, and a conveyance unit conveys the recording medium at a second conveyance speed that is lower than the first conveyance speed, and a plurality of liquid ejection heads A chart formation control unit that discharges liquid from the discharge elements to form a chart on the recording medium, and sets the diameter of dots formed on the recording medium by the liquid discharged from the discharge elements to D [ m], the ejection frequency of the liquid discharge device for forming the chart f [kHz], the second conveying speed and Vh [m / s], satisfies the Vh ≦ D × f / 1000.
 本態様によれば、搬送部により記録媒体を画像形成時の第1搬送速度よりも遅い第2搬送速度で搬送させ、かつ1つの液体吐出ヘッドの複数の吐出素子から液体を吐出させて、記録媒体にチャートを形成するチャート形成制御部を備え、吐出素子から吐出される液体によって記録媒体に形成されるドットの径をD[μm]、チャートを形成する際の吐出素子の液体の吐出周波数をf[kHz]、第2搬送速度をVh[m/s]とすると、Vh≦D×f/1000を満たすようにしたので、チャートを読み取ることで吐出滴量調整及び吐出方向測定を適切に行うことができる。 According to this aspect, the recording medium is transported by the transport unit at the second transport speed that is slower than the first transport speed at the time of image formation, and the liquid is ejected from the plurality of ejecting elements of one liquid ejecting head. A chart formation control unit for forming a chart on the medium is provided, the diameter of dots formed on the recording medium by the liquid discharged from the discharge elements is D [μm], and the liquid discharge frequency of the discharge elements when forming the chart is Assuming that f [kHz] and the second transport speed are Vh [m / s], Vh ≦ D × f / 1000 is satisfied. Therefore, by adjusting the discharge droplet amount and measuring the discharge direction appropriately by reading the chart. be able to.
 第1搬送速度をVm[m/s]、液体吐出ヘッドの数を2以上の整数Nとすると、Vh≦Vm/Nを満たすことが好ましい。これにより、吐出滴量調整及び吐出方向測定を適切に行うことができる。 It is preferable that Vh ≦ Vm / N is satisfied when the first transport speed is Vm [m / s] and the number of liquid ejection heads is an integer N of 2 or more. Thereby, the discharge droplet amount adjustment and the discharge direction measurement can be appropriately performed.
 第1搬送速度をVm[m/s]、液体吐出ヘッドの数を2以上の整数Nとすると、Vm/N<Vhを満たしてもよい。これにより、吐出滴量調整及び吐出方向測定を適切に行うことができる。 When the first transport speed is Vm [m / s] and the number of liquid ejection heads is an integer N of 2 or more, Vm / N <Vh may be satisfied. Thereby, the discharge droplet amount adjustment and the discharge direction measurement can be appropriately performed.
 搬送方向の複数の液体吐出ヘッドよりも下流側に記録媒体に形成された画像及びチャートを読み取るインラインスキャナを備え、画像形成制御部により形成された画像を読み取る際のインラインスキャナの読取周波数とチャート形成制御部により形成されたチャートを読み取る際のインラインスキャナの読取周波数とが等しいことが好ましい。これにより、インラインスキャナによる読取回数が増えるので、読取におけるノイズを低減することができる。 An inline scanner that reads an image and a chart formed on a recording medium on the downstream side of a plurality of liquid ejection heads in the conveying direction is provided, and the reading frequency of the inline scanner and chart formation when reading the image formed by the image formation control unit It is preferable that the reading frequency of the inline scanner when reading the chart formed by the control unit is equal. As a result, the number of times of reading by the in-line scanner increases, so that noise in reading can be reduced.
 搬送方向の複数の液体吐出ヘッドよりも上流側に記録媒体に前処理液を塗布する前処理液塗布部を備え、画像形成制御部は、表面にインク吸収層が未コーティングの第1記録媒体を使用し、前処理液塗布部により前処理液を塗布させ、チャート形成制御部は、表面にインク吸収層がコーティングされた第2記録媒体を使用し、前処理液塗布部による前処理液の塗布を停止させることが好ましい。これにより、搬送速度の変動に伴う前処理液の塗布量の変動を排除することができる。 A pretreatment liquid application unit that applies a pretreatment liquid to the recording medium upstream of the plurality of liquid ejection heads in the transport direction is provided, and the image formation control unit applies a first recording medium that has an uncoated ink absorbing layer to the surface. The pretreatment liquid is applied by the pretreatment liquid application section, and the chart formation control section uses the second recording medium having the surface coated with the ink absorption layer, and the pretreatment liquid application section applies the pretreatment liquid. Is preferably stopped. Thereby, the fluctuation | variation of the coating amount of the pretreatment liquid accompanying the fluctuation | variation of a conveyance speed can be excluded.
 搬送方向の複数の液体吐出ヘッドよりも上流側に記録媒体に前処理液を塗布する前処理液塗布部を備え、前処理液塗布部は、前処理液を吐出するインクジェットヘッドを有することが好ましい。これにより、搬送速度が変動しても前処理液の塗布量を適切な量にすることができる。 It is preferable that a pretreatment liquid application unit that applies a pretreatment liquid to the recording medium is provided upstream of the plurality of liquid ejection heads in the transport direction, and the pretreatment liquid application unit includes an inkjet head that discharges the pretreatment liquid. . Thereby, even if a conveyance speed fluctuates, the application quantity of a pretreatment liquid can be made into an appropriate quantity.
 画像形成制御部によって記録媒体に画像を形成する場合の液体吐出ヘッドと記録媒体との距離よりも、チャート形成制御部によって記録媒体にチャートを形成する場合の液体吐出ヘッドと記録媒体との距離の方が小さいことが好ましい。チャートを形成する場合は画像を形成する場合よりも搬送速度が遅いため、液体吐出ヘッドと記録媒体との接触リスクが低く、また接触した際の被害が少ない。このため、液体吐出ヘッドと記録媒体との距離を小さくすることができ、また距離を小さくすることでチャートのノイズを低減することができる。 The distance between the liquid ejection head and the recording medium when the chart is formed on the recording medium by the chart formation control unit is larger than the distance between the liquid ejection head and the recording medium when the image formation control unit forms an image on the recording medium. It is preferable that this is smaller. When the chart is formed, the conveyance speed is slower than when the image is formed, so that the risk of contact between the liquid ejection head and the recording medium is low, and the damage caused by contact is small. For this reason, the distance between the liquid ejection head and the recording medium can be reduced, and noise in the chart can be reduced by reducing the distance.
 画像形成制御部は、搬送部により記録媒体を第1搬送速度で搬送させる通常印刷モードと、搬送部により記録媒体を第1搬送速度よりも速い速度で搬送させる高速印刷モードと、を有することが好ましい。この場合、第2搬送速度は通常印刷モードにおける第1搬送速度よりも遅い。これにより、1つの液体吐出ヘッドにおいてチャートを適切に形成することができる。 The image formation control unit may have a normal print mode in which the recording unit conveys the recording medium at the first conveyance speed, and a high-speed printing mode in which the conveyance unit conveys the recording medium at a speed higher than the first conveyance speed. preferable. In this case, the second transport speed is slower than the first transport speed in the normal printing mode. Thereby, a chart can be appropriately formed in one liquid discharge head.
 液体吐出ヘッドは、複数の異なる径のドットを形成可能であり、複数の異なる径のドットのうち最も小さいドットの径がD[μm]であることが好ましい。これにより、最も小さいドットにおいてチャートを適切に形成することができる。 The liquid discharge head can form a plurality of dots having different diameters, and the diameter of the smallest dot among the plurality of dots having different diameters is preferably D [μm]. Thereby, a chart can be appropriately formed in the smallest dot.
 チャートは、液体吐出ヘッド毎にそれぞれ形成される濃度パッチを含むことが好ましい。このチャートを読み取ることにより、吐出滴量調整を適切に行うことができる。 The chart preferably includes density patches formed for each liquid ejection head. By reading this chart, it is possible to appropriately adjust the ejection droplet amount.
 チャートは、吐出素子毎にそれぞれ形成されるラインパターンを含むことが好ましい。このチャートを読み取ることにより、吐出方向測定を適切に行うことができる。 The chart preferably includes a line pattern formed for each ejection element. By reading this chart, the discharge direction can be measured appropriately.
 液体吐出ヘッドは、複数のヘッドモジュールが搬送方向に交差する第1方向に並べて配置されていることが好ましい。本実施形態は、複数のヘッドモジュールが並べて配置された液体吐出ヘッドに適用可能である。 The liquid discharge head is preferably arranged with a plurality of head modules arranged in a first direction intersecting the transport direction. The present embodiment is applicable to a liquid discharge head in which a plurality of head modules are arranged side by side.
 上記目的を達成するために画像形成装置の制御方法の一の態様は、搬送方向に沿って記録媒体を搬送する搬送部と、液体を吐出する複数の吐出素子をそれぞれ有し、搬送方向に沿って並べて配置された複数の液体吐出ヘッドと、複数の液体吐出ヘッドにそれぞれ同じ液体を供給する液体供給部と、を備える画像形成装置の制御方法であって、搬送部により記録媒体を第1搬送速度で搬送させ、かつ複数の液体吐出ヘッドの複数の吐出素子から液体を吐出させて、記録媒体に画像を形成する画像形成制御工程と、搬送部により記録媒体を第1搬送速度よりも遅い第2搬送速度で搬送させ、かつ1つの液体吐出ヘッドの複数の吐出素子から液体を吐出させて、記録媒体にチャートを形成するチャート形成制御工程と、を備え、吐出素子から吐出される液体によって記録媒体に形成されるドットの径をD[μm]、チャートを形成する際の吐出素子の液体の吐出周波数をf[kHz]、第2搬送速度をVh[m/s]とすると、Vh≦D×f/1000を満たす。 In order to achieve the above object, one aspect of a method for controlling an image forming apparatus includes a transport unit that transports a recording medium along a transport direction and a plurality of ejection elements that eject liquid, respectively, along the transport direction. A control method for an image forming apparatus comprising: a plurality of liquid discharge heads arranged side by side; and a liquid supply unit that supplies the same liquid to each of the plurality of liquid discharge heads. An image forming control process for forming an image on a recording medium by ejecting liquid from a plurality of ejection elements of a plurality of liquid ejection heads and conveying the recording medium at a speed lower than the first conveyance speed by a conveyance unit; A chart forming control step of forming a chart on a recording medium by transporting at two transport speeds and ejecting liquid from a plurality of ejection elements of one liquid ejection head, and ejecting from the ejection elements The diameter of the dots formed on the recording medium by the liquid to be formed is D [μm], the liquid discharge frequency of the discharge element when forming the chart is f [kHz], and the second transport speed is Vh [m / s]. Vh ≦ D × f / 1000 is satisfied.
 本態様によれば、搬送部により記録媒体を画像形成時の第1搬送速度よりも遅い第2搬送速度で搬送させ、かつ1つの液体吐出ヘッドの複数の吐出素子から液体を吐出させて、記録媒体にチャートを形成するチャート形成制御部を備え、吐出素子から吐出される液体によって記録媒体に形成されるドットの径をD[μm]、チャートを形成する際の吐出素子の液体の吐出周波数をf[kHz]、第2搬送速度をVh[m/s]とすると、Vh≦D×f/1000を満たすようにしたので、チャートを読み取ることで吐出滴量調整及び吐出方向測定を適切に行うことができる。 According to this aspect, the recording medium is transported by the transport unit at the second transport speed that is slower than the first transport speed at the time of image formation, and the liquid is ejected from the plurality of ejecting elements of one liquid ejecting head. A chart formation control unit for forming a chart on the medium is provided, the diameter of dots formed on the recording medium by the liquid discharged from the discharge elements is D [μm], and the liquid discharge frequency of the discharge elements when forming the chart is Assuming that f [kHz] and the second transport speed are Vh [m / s], Vh ≦ D × f / 1000 is satisfied. Therefore, by adjusting the discharge droplet amount and measuring the discharge direction appropriately by reading the chart. be able to.
 本発明によれば、記録媒体の搬送方向に沿って配置された複数の液体吐出ヘッドについて、吐出滴量調整及び吐出方向測定を適切に行うことができる。 According to the present invention, it is possible to appropriately perform discharge droplet amount adjustment and discharge direction measurement for a plurality of liquid discharge heads arranged along the conveyance direction of the recording medium.
インクジェットヘッドの斜視図Perspective view of inkjet head インクジェットヘッドをノズル面側から見た拡大図Enlarged view of inkjet head viewed from nozzle side ヘッドモジュールのノズル面の一例を示す平面図Plan view showing an example of the nozzle surface of the head module ヘッドモジュールの1ノズル分の液滴吐出素子の構造例を示す断面図Sectional drawing which shows the structural example of the droplet discharge element for 1 nozzle of a head module シングルバー方式のインクジェット印刷機の上面図Top view of single bar inkjet printer インクジェット印刷機の側面図Side view of inkjet printer インクジェット印刷機によって用紙に印刷される濃度調整用チャート群の一例を示す図The figure which shows an example of the chart for density adjustment printed on paper with an inkjet printer デュアルバー方式のインクジェット印刷機の上面図Top view of dual-bar inkjet printer インクジェット印刷機100の側面図Side view of inkjet printer 100 インクジェット印刷機のシステム構成を示すブロック図Block diagram showing system configuration of inkjet printer インクジェット印刷機によって用紙に印刷される濃度調整用チャート群の一例を示す図The figure which shows an example of the chart for density adjustment printed on paper with an inkjet printer インクジェット印刷機によって用紙に印刷される濃度調整用チャート群の一例を示す図The figure which shows an example of the chart for density adjustment printed on paper with an inkjet printer インクジェット印刷機によって用紙に印刷される吐出方向測定用チャートの一例を示す図The figure which shows an example of the chart for discharge direction measurement printed on a paper by an inkjet printer ノズルから吐出されたインク滴の着弾位置ずれを説明するための図The figure for demonstrating the landing position shift of the ink droplet discharged from the nozzle 吐出方向測定用チャート群を構成する1本のラインの拡大図Enlarged view of one line constituting the chart for measuring the discharge direction 3つのノズルによってそれぞれ印刷された3本のラインをスキャナで読み取った読取画像の一例An example of a read image obtained by reading three lines printed by three nozzles with a scanner 1つのノズルによって用紙に印刷したラインの一例を示す図The figure which shows an example of the line printed on the paper by one nozzle ノズルから吐出されたインク滴が用紙に形成するインクドットの径とドット間距離とを説明するための図The figure for demonstrating the diameter of the ink dot which the ink droplet discharged from the nozzle forms on paper, and the distance between dots 濃度パッチを印刷した際のインクドットの径と濃度パッチの濃度との関係を示すグラフGraph showing the relationship between the ink dot diameter and the density of the density patch when the density patch is printed インクジェット印刷機の構成例を示す図Diagram showing an example configuration of an inkjet printer インクジェットヘッドのノズル面と描画ドラムの外周面との間の距離TDを示す図The figure which shows distance TD between the nozzle surface of an inkjet head, and the outer peripheral surface of a drawing drum. インクジェット印刷機のシステム構成を示すブロック図Block diagram showing system configuration of inkjet printer
 以下、添付図面に従って本発明の好ましい実施形態について詳説する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
 <インクジェットヘッドの構成例>
 本実施形態に用いられるインクジェットヘッドの構成例について説明する。図1は、本実施形態に用いられるインクジェットヘッド10の斜視図である。インクジェットヘッド10は、複数個(2以上の整数n個)のヘッドモジュール12-i(i=1,2,…n)をX方向(搬送方向に交差する第1方向の一例)に繋ぎ合わせて構成される。ここでは17個(n=17)のヘッドモジュール12-iを並べた例を示している。フレーム16は、複数個のヘッドモジュール12-iを固定するための枠体として機能する。各ヘッドモジュール12-iは、ノズル面20を共通の方向に向けてフレーム16に固定されている。各ヘッドモジュール12-iの構造は共通している。
<Configuration example of inkjet head>
A configuration example of the inkjet head used in the present embodiment will be described. FIG. 1 is a perspective view of an inkjet head 10 used in this embodiment. The inkjet head 10 is formed by connecting a plurality of (n integers greater than or equal to 2) head modules 12-i (i = 1, 2,... N) in the X direction (an example of a first direction intersecting the transport direction). Composed. Here, an example in which 17 (n = 17) head modules 12-i are arranged is shown. The frame 16 functions as a frame for fixing the plurality of head modules 12-i. Each head module 12-i is fixed to the frame 16 with the nozzle surface 20 facing the common direction. The structures of the head modules 12-i are common.
 各ヘッドモジュール12-iには、それぞれフレキシブル基板18が接続される。フレキシブル基板18を介して各ヘッドモジュール12-iに駆動信号及び吐出制御信号等が供給される。 A flexible substrate 18 is connected to each head module 12-i. A drive signal, a discharge control signal, and the like are supplied to each head module 12-i via the flexible substrate 18.
 図2は、インクジェットヘッド10をノズル面20側から見た拡大図である。各ヘッドモジュール12-iは、Y方向の両側からヘッドモジュール保持部材22によって支持され、X方向における両端部はヘッド保護部材24によって支持されている。 FIG. 2 is an enlarged view of the inkjet head 10 as viewed from the nozzle surface 20 side. Each head module 12-i is supported by the head module holding member 22 from both sides in the Y direction, and both ends in the X direction are supported by the head protection member 24.
 図3はヘッドモジュール12-iのノズル面20の一例を示す平面図である。ヘッドモジュール12-iは、X方向に対して角度γの傾きを有するv方向に沿った長辺側の端面と、Y方向に対して角度αの傾きを持つw方向に沿った短辺側の端面とを有する平行四辺形の平面視形状である。ヘッドモジュール12-iのノズル面20には、ノズル28が二次元配列されている。X方向に投影される投影ノズル列LNは、記録解像度を達成するノズル密度でノズル28が等間隔で並ぶ一列のノズル列と等価なものである。 FIG. 3 is a plan view showing an example of the nozzle surface 20 of the head module 12-i. The head module 12-i has an end surface on the long side along the v direction having an inclination of angle γ with respect to the X direction, and a short side on the short side along the w direction having an inclination of angle α with respect to the Y direction. It is a parallelogram planar view shape which has an end surface. The nozzles 28 are two-dimensionally arranged on the nozzle surface 20 of the head module 12-i. The projection nozzle row LN projected in the X direction is equivalent to a single nozzle row in which the nozzles 28 are arranged at equal intervals at a nozzle density that achieves the recording resolution.
 ヘッドモジュール12-iをX方向に複数個繋ぎ合わせることにより(図2参照)、インクジェットヘッド10は、記録媒体の全印刷範囲をカバーするノズル列が形成される。インクジェットヘッド10は、記録媒体の1回の搬送で記録解像度による印刷が可能なフルライン型のバーヘッドである。 By connecting a plurality of head modules 12-i in the X direction (see FIG. 2), the inkjet head 10 forms a nozzle array that covers the entire printing range of the recording medium. The ink-jet head 10 is a full-line bar head capable of printing at a recording resolution with a single conveyance of a recording medium.
 シングルパス方式に適用されるフルライン型のバーヘッドは、記録媒体の全面を印刷範囲とする場合に限らず、記録媒体の一部が印刷領域となっている場合(例えば、記録媒体の周囲に余白部を設ける場合等)には、印刷に必要なノズル列が形成されていればよい。 The full-line bar head applied to the single-pass method is not limited to the case where the entire surface of the recording medium is set as the printing range, but when a part of the recording medium is a printing area (for example, around the recording medium). In the case of providing a blank portion, etc.), it is sufficient that the nozzle rows necessary for printing are formed.
 ヘッドモジュール12-iのノズル数、ノズル密度、及びノズルの配列形態は特に限定されない。 The number of nozzles of the head module 12-i, the nozzle density, and the arrangement form of the nozzles are not particularly limited.
 <ヘッドモジュールの内部構造例>
 ヘッドモジュール12-iは、各ノズル28に対応してインク吐出に必要な吐出エネルギーを発生させる吐出エネルギー発生素子(例えば、圧電素子又は発熱素子)を備えている。ヘッドモジュール12-iは、フレキシブル基板18を介して供給される駆動信号及び吐出制御信号に従い、オンデマンドでインク滴(液体の一例)を吐出する。
<Internal structure example of head module>
The head module 12-i includes an ejection energy generation element (for example, a piezoelectric element or a heating element) that generates ejection energy necessary for ink ejection corresponding to each nozzle 28. The head module 12-i ejects ink droplets (an example of a liquid) on demand according to the drive signal and the ejection control signal supplied via the flexible substrate 18.
 図4は、ヘッドモジュール12-iの1ノズル分の液滴吐出素子の内部構造例を示す断面図である。ヘッドモジュール12-iは、インク滴の吐出口であるノズル28が形成されたノズルプレート30と、ノズル28に対応する圧力室32、供給口34、共通流路36等の流路が形成された流路板38とを含んでいる。 FIG. 4 is a cross-sectional view showing an example of the internal structure of a droplet discharge element for one nozzle of the head module 12-i. The head module 12-i has a nozzle plate 30 on which nozzles 28 serving as ink droplet ejection ports are formed, and a pressure chamber 32, a supply port 34, a common channel 36, and the like corresponding to the nozzles 28. And a flow path plate 38.
 流路板38は、圧力室32の側壁部を構成するとともに、共通流路36から圧力室32にインクを導く個別供給路の絞り部(最狭窄部)としての供給口34を形成する流路形成部材である。流路板38は一枚の基板で構成してもよいし、複数枚の基板を積層した構造であってもよい。ノズルプレート30及び流路板38は、シリコンを材料として半導体製造技術を利用して所要の形状に加工することが可能である。 The flow path plate 38 constitutes a side wall portion of the pressure chamber 32 and a flow path forming a supply port 34 as a narrowed portion (most narrowed portion) of an individual supply path that guides ink from the common flow path 36 to the pressure chamber 32. It is a forming member. The flow path plate 38 may be composed of a single substrate, or may have a structure in which a plurality of substrates are stacked. The nozzle plate 30 and the flow path plate 38 can be processed into a required shape using a semiconductor manufacturing technique using silicon as a material.
 共通流路36には複数の圧力室32がそれぞれの供給口34を介して接続されている。共通流路36にはヘッドモジュール12-iの外部からインクが供給される。 A plurality of pressure chambers 32 are connected to the common flow path 36 via respective supply ports 34. Ink is supplied to the common flow path 36 from the outside of the head module 12-i.
 圧力室32の一部の面(図4において天面)を構成する振動板40には、圧力室32毎に個別電極42を備えた圧電素子44が設けられている。本例の振動板40は、圧電素子44の下部電極に相当する共通電極46として機能する導電層付きのシリコンから成り、各圧力室32に対応して配置される圧電素子44の共通電極を兼ねる。なお、樹脂等の非導電性材料によって振動板を形成する態様も可能であり、この場合は、振動板部材の表面に金属等の導電性材料による共通電極層が形成される。また、ステンレス鋼等の金属(導電性材料)によって共通電極を兼ねる振動板を構成してもよい。 The diaphragm 40 constituting a part of the pressure chamber 32 (the top surface in FIG. 4) is provided with a piezoelectric element 44 having an individual electrode 42 for each pressure chamber 32. The diaphragm 40 of this example is made of silicon with a conductive layer functioning as a common electrode 46 corresponding to the lower electrode of the piezoelectric element 44, and also serves as a common electrode of the piezoelectric element 44 disposed corresponding to each pressure chamber 32. . It is also possible to form the diaphragm with a non-conductive material such as resin. In this case, a common electrode layer made of a conductive material such as metal is formed on the surface of the diaphragm member. Moreover, you may comprise the diaphragm which serves as a common electrode with metals (electroconductive material), such as stainless steel.
 個別電極42に駆動電圧を印加することによって圧電素子44が変形して圧力室32の容積が変化し、これに伴う圧力変化によりノズル28からインクが吐出される。インク吐出後、共通流路36から供給口34を通って新しいインクが圧力室32に再充填される。 By applying a driving voltage to the individual electrode 42, the piezoelectric element 44 is deformed to change the volume of the pressure chamber 32, and ink is ejected from the nozzle 28 due to the pressure change accompanying this. After ink ejection, the pressure chamber 32 is refilled with new ink from the common flow path 36 through the supply port 34.
 ヘッドモジュール12-iは、個別電極42に印加する駆動電圧を選択することによって、各ノズル28から相対的にインク量の少ない小滴、小滴よりも相対的にインク量の多い中滴、及び中滴よりも相対的にインク量の多い大滴、の3種類のインク滴のうちいずれかのインク滴を吐出することができる。これにより、小滴のインク滴では径が30[μm]のインクドット、中滴のインク滴では径が40[μm]のインクドット、及び大滴のインク滴では径が50[μm]のインクドットが記録媒体に形成される。このように、ヘッドモジュール12-iは、記録媒体に複数の異なる径のインクドットを形成可能である。 The head module 12-i selects a driving voltage to be applied to the individual electrode 42, so that a small droplet having a relatively small amount of ink from each nozzle 28, a medium droplet having a relatively large amount of ink than a small droplet, and One of the three types of ink droplets, a large droplet having a relatively large ink amount than the middle droplet, can be ejected. Accordingly, an ink dot having a diameter of 30 [μm] for a small ink droplet, an ink dot having a diameter of 40 [μm] for a medium ink droplet, and an ink having a diameter of 50 [μm] for a large ink droplet. Dots are formed on the recording medium. As described above, the head module 12-i can form a plurality of ink dots having different diameters on the recording medium.
 ノズル28、圧力室32、供給口34、圧電素子44を含んだインク室ユニット50が、1画素の記録を担う記録素子単位としての液滴吐出素子である。ヘッドモジュール12-iは、図3で説明した二次元ノズル配列に対応した複数のインク室ユニット50を備えている。 The ink chamber unit 50 including the nozzle 28, the pressure chamber 32, the supply port 34, and the piezoelectric element 44 is a droplet discharge element as a recording element unit for recording one pixel. The head module 12-i includes a plurality of ink chamber units 50 corresponding to the two-dimensional nozzle array described with reference to FIG.
 <シングルバー方式のインクジェット印刷機>
 図5は、同色インクを吐出するインクジェットヘッド(バーヘッド)の数が1本であるシングルバー方式のインクジェット印刷機200の上面図であり、図6は、インクジェット印刷機200の側面図である。
<Single bar inkjet printer>
FIG. 5 is a top view of a single bar type inkjet printer 200 in which the number of inkjet heads (bar heads) that eject the same color ink is one, and FIG. 6 is a side view of the inkjet printer 200.
 インクジェット印刷機200は、プラテン102、インクタンク106K、106C、106M、及び106Y、インクジェットヘッド204K、204C、204M、及び204Yを備えている。 The inkjet printer 200 includes a platen 102, ink tanks 106K, 106C, 106M, and 106Y, and inkjet heads 204K, 204C, 204M, and 204Y.
 プラテン102は、記録媒体である用紙1を載置してY方向に搬送する。 The platen 102 places the paper 1 as a recording medium and conveys it in the Y direction.
 インクタンク106K、106C、106M、及び106Y(液体供給部の一例)は、それぞれ黒(K)、シアン(C)、マゼンタ(M)、及びイエロー(Y)の各色のインクを貯留している。インクタンク106K、106C、106M、及び106Yは、それぞれインクジェットヘッド204K、204C、204M、及び204Yに各色インクを供給する。 The ink tanks 106K, 106C, 106M, and 106Y (an example of a liquid supply unit) store black (K), cyan (C), magenta (M), and yellow (Y) inks, respectively. The ink tanks 106K, 106C, 106M, and 106Y supply the respective color inks to the inkjet heads 204K, 204C, 204M, and 204Y, respectively.
 インクジェットヘッド204K、204C、204M、及び204Yは、それぞれ前述したインクジェットヘッド10が適用される。インクジェットヘッド204K、204C、204M、及び204Yは、Y方向に一定の間隔を空けて順に配置されている。インクジェットヘッド204K、204C、204M、及び204Yは、ノズル面20をプラテン102に対向させて配置されている。 The inkjet head 10 described above is applied to each of the inkjet heads 204K, 204C, 204M, and 204Y. The inkjet heads 204K, 204C, 204M, and 204Y are sequentially arranged with a certain interval in the Y direction. The inkjet heads 204K, 204C, 204M, and 204Y are arranged with the nozzle surface 20 facing the platen 102.
 通常画像印刷時において、インクジェット印刷機200の記録制御を統括する不図示の制御部は、プラテン102を制御し、用紙1を搬送速度Vs[m/s]で搬送させる。また、インクジェットヘッド204K、204C、204M、及び204Yを制御し、各ノズル28から黒のインク滴、シアンのインク滴、マゼンタのインク滴、及びイエローのインク滴をそれぞれ吐出周波数f[kHz]で、画像データに応じて小滴、中滴、又は大滴のインク滴を吐出させる。これにより、プラテン102によって搬送される用紙1の記録面に画像が印刷される。なお、吐出周波数とは、1つのノズル28が単位時間当たりに吐出するインク滴の数である。 During normal image printing, a control unit (not shown) that supervises the recording control of the inkjet printer 200 controls the platen 102 to convey the paper 1 at the conveyance speed Vs [m / s]. Further, the inkjet heads 204K, 204C, 204M, and 204Y are controlled, and black ink droplets, cyan ink droplets, magenta ink droplets, and yellow ink droplets are respectively discharged from the nozzles 28 at an ejection frequency f [kHz]. Depending on the image data, small, medium, or large ink droplets are ejected. As a result, an image is printed on the recording surface of the sheet 1 conveyed by the platen 102. The ejection frequency is the number of ink droplets ejected by one nozzle 28 per unit time.
 <シングルバー方式における滴量調整>
 インクジェットヘッド204K、204C、204M、及び204Yをそれぞれ構成する17個のヘッドモジュール12-iは、未調整の状態では、製造時のバラツキにより、ノズル28から吐出するインク量にバラツキが生じる。その結果、印刷した画像には、X方向に濃度のばらつきが発生する。したがって、高画質の画像を得るためには、ノズル28から吐出されるインク量を適切に調整することが必要である。
<Drop volume adjustment in single bar method>
In the unadjusted state, the 17 head modules 12-i constituting the inkjet heads 204K, 204C, 204M, and 204Y have variations in the amount of ink ejected from the nozzles 28 due to variations in manufacturing. As a result, the printed image has a density variation in the X direction. Therefore, in order to obtain a high-quality image, it is necessary to appropriately adjust the amount of ink ejected from the nozzles 28.
 このインク滴量調整のために、インクジェット印刷機200の不図示の制御部は、通常画像印刷時の搬送速度と同じ搬送速度Vsで用紙1を搬送し、インクジェットヘッド204K、204C、204M、及び204Yによって吐出周波数f[kHz]で小滴のインク滴を吐出して用紙1に濃度調整用チャートを印刷する。この濃度調整用チャートの濃度を読み取ることで、ばらつきを検出し、濃度が適切な値になるように各ノズル28から吐出されるインク量を適切に調整することができる。 In order to adjust the ink droplet amount, a control unit (not shown) of the ink jet printing machine 200 transports the paper 1 at the same transport speed Vs as the transport speed during normal image printing, and the ink jet heads 204K, 204C, 204M, and 204Y. As a result, a small ink droplet is ejected at an ejection frequency f [kHz] to print a density adjustment chart on the paper 1. By reading the density of this density adjustment chart, it is possible to detect variations and appropriately adjust the amount of ink ejected from each nozzle 28 so that the density becomes an appropriate value.
 図7は、インクジェット印刷機200によって用紙1に印刷される濃度調整用チャートの一例を示す図である。濃度調整用チャート群Cは、インクジェットヘッド204Kの各ヘッドモジュール12-i(i=1,2,…n)によってそれぞれ印刷された濃度パッチ210K-i(i=1,2,…n)、インクジェットヘッド204Yの各ヘッドモジュール12-iによってそれぞれ印刷された濃度パッチ210Y-i(i=1,2,…n)、インクジェットヘッド204Mの各ヘッドモジュール12-iによってそれぞれ印刷された濃度パッチ210M-i(i=1,2,…n)、及びインクジェットヘッド204Cの各ヘッドモジュール12-iによってそれぞれ印刷された濃度パッチ210C-i(i=1,2,…n)を有している。 FIG. 7 is a diagram illustrating an example of a density adjustment chart printed on the paper 1 by the inkjet printer 200. Concentration adjustment chart group C 1, each head module of the ink jet head 204K 12-i (i = 1,2 , ... n) density patch 210K-i printed respectively by (i = 1,2, ... n) , Density patches 210Y-i (i = 1, 2,... N) printed by the respective head modules 12-i of the inkjet head 204Y and density patches 210M- printed by the respective head modules 12-i of the inkjet head 204M. i (i = 1, 2,... n) and density patches 210C-i (i = 1, 2,... n) respectively printed by the head modules 12-i of the inkjet head 204C.
 各濃度パッチ210K-i、210C-i、210M-i、及び210Y-iは、用紙1の搬送速度Vs[m/s]、ノズル28の吐出周波数f[kHz]、及び小滴のインク滴が用紙1に形成するドットの径D[μm]により決まるドット記録率で印刷される。 Each density patch 210K-i, 210C-i, 210M-i, and 210Y-i has a conveyance speed Vs [m / s] of the paper 1, an ejection frequency f [kHz] of the nozzle 28, and a small ink drop. Printing is performed at a dot recording rate determined by the diameter D [μm] of dots formed on the paper 1.
 濃度パッチ210K-iの濃度を不図示のスキャナ等でそれぞれ読み取り、読み取った濃度データを解析して、インクジェットヘッド204Kの各ヘッドモジュール12-iの圧電素子44に印加する駆動電圧をそれぞれ調整する。これにより、インクジェットヘッド204Kの各ヘッドモジュール12-iのノズル28から吐出されるインク量を適切に調整することができる。インクジェットヘッド204C、204M、及び204Yについても同様である。 The density of the density patch 210K-i is read by a scanner or the like (not shown), and the read density data is analyzed to adjust the drive voltage applied to the piezoelectric element 44 of each head module 12-i of the inkjet head 204K. Thereby, the amount of ink ejected from the nozzle 28 of each head module 12-i of the inkjet head 204K can be adjusted appropriately. The same applies to the inkjet heads 204C, 204M, and 204Y.
 <デュアルバー方式のインクジェット印刷機>
 図8は、同色インクを吐出するインクジェットヘッド(バーヘッド)の数が2本であるデュアルバー方式のインクジェット印刷機100(画像形成装置の一例)の上面図であり、図9は、インクジェット印刷機100の側面図である。
<Dual bar inkjet printer>
FIG. 8 is a top view of a dual bar type inkjet printer 100 (an example of an image forming apparatus) in which the number of inkjet heads (bar heads) that eject the same color ink is two, and FIG. 9 is an inkjet printer. FIG.
 インクジェット印刷機100は、プラテン102、インクジェットヘッド104Ka、104Kb、104Ca、104Cb、104Ma、104Mb、104Ya、104Yb、インクタンク106K、106C、106M、及び106Y(液体吐出ヘッドの一例)を備えている。 The inkjet printer 100 includes a platen 102, inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, 104Yb, ink tanks 106K, 106C, 106M, and 106Y (an example of a liquid ejection head).
 プラテン102(搬送部の一例)は、記録媒体である用紙1を載置してY方向(搬送方向の一例)に搬送する。 The platen 102 (an example of a conveyance unit) places the paper 1 as a recording medium and conveys it in the Y direction (an example of the conveyance direction).
 インクタンク106K、106C、106M、及び106Yは、それぞれ黒(K)、シアン(C)、マゼンタ(M)、及びイエロー(Y)の各色のインクを貯留している。インクタンク106Kはインクジェットヘッド104Ka及び104Kbに、インクタンク106Cはインクジェットヘッド104Ca及び104Cbに、インクタンク106Mはインクジェットヘッド104Ma及び104Mbに、インクタンク106Yはインクジェットヘッド104Ya及び104Ybに、各色インクを供給する。 The ink tanks 106K, 106C, 106M, and 106Y store black (K), cyan (C), magenta (M), and yellow (Y) inks, respectively. The ink tank 106K supplies the respective inks to the ink-jet heads 104Ka and 104Kb, the ink tank 106C supplies the ink-jet heads 104Ca and 104Cb, the ink tank 106M supplies the ink-jet heads 104Ma and 104Mb, and the ink tank 106Y supplies the ink-jet heads 104Ya and 104Yb.
 インクジェットヘッド104Ka、104Kb、104Ca、104Cb、104Ma、104Mb、104Ya、及び104Ybは、それぞれ前述のインクジェットヘッド10が適用される。 The inkjet head 10 described above is applied to each of the inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and 104Yb.
 インクジェットヘッド104Ka、104Kb、104Ca、104Cb、104Ma、104Mb、104Ya、及び104Ybは、Y方向に一定の間隔を空けて順に配置されている。また、インクジェットヘッド104Ka、104Kb、104Ca、104Cb、104Ma、104Mb、104Ya、及び104Ybは、ノズル面20をプラテン102に対向させて配置されている。インクジェットヘッド104Ka、104Kb、104Ca、104Cb、104Ma、104Mb、104Ya、及び104Ybは、X方向について同じ位置に配置されており、それぞれのノズル面20に配置された各ノズル28はX方向の位置が一致する。 The inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and 104Yb are sequentially arranged at a certain interval in the Y direction. The inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and 104Yb are disposed with the nozzle surface 20 facing the platen 102. The inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and 104Yb are arranged at the same position in the X direction, and the nozzles 28 arranged on the respective nozzle surfaces 20 have the same position in the X direction. To do.
 図10は、インクジェット印刷機100のシステム構成を示すブロック図である。図10に示すように、インクジェット印刷機100は、前述のプラテン102、インクジェットヘッド104Ka、104Kb、104Ca、104Cb、104Ma、104Mb、104Ya、104Yb、インクタンク106K、106C、106M、106Y、の他に、記憶部108、画像形成制御部110、及びチャート形成制御部112を備えている。 FIG. 10 is a block diagram showing a system configuration of the ink jet printing machine 100. As shown in FIG. 10, the inkjet printer 100 includes the platen 102, inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, 104Yb, ink tanks 106K, 106C, 106M, 106Y, A storage unit 108, an image formation control unit 110, and a chart formation control unit 112 are provided.
 記憶部108には、インクジェット印刷機100が印刷する画像データ及びチャートデータが記憶されている。 The storage unit 108 stores image data and chart data to be printed by the inkjet printer 100.
 画像形成制御部110は、記憶部108に記憶されている画像データに基づいてプラテン102及びインクジェットヘッド104Ka、104Kb、104Ca、104Cb、104Ma、104Mb、104Ya、104Ybを制御し、用紙1に画像を印刷する。 The image formation control unit 110 controls the platen 102 and the inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, 104Yb based on the image data stored in the storage unit 108, and prints an image on the paper 1. To do.
 チャート形成制御部112は、記憶部108に記憶されているチャートデータに基づいてプラテン102及びインクジェットヘッド104Ka、104Kb、104Ca、104Cb、104Ma、104Mb、104Ya、104Ybを制御し、用紙1に画像を印刷する。 The chart formation control unit 112 controls the platen 102 and the inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, 104Yb based on the chart data stored in the storage unit 108, and prints an image on the paper 1. To do.
 ここでは、画像形成制御部110は、プラテン102を制御し、用紙1を搬送速度Vd(第1搬送速度の一例)で搬送させる。また、インクジェットヘッド104Ka、104Kb、104Ca、104Cb、104Ma、104Mb、104Ya、及び104Ybを制御し、インクジェットヘッド104Ka及び104Kbの各ノズル28からそれぞれ黒のインク滴、インクジェットヘッド104Ca及び104Cbの各ノズル28からそれぞれシアンのインク滴、インクジェットヘッド104Ma及び104Mbの各ノズル28からそれぞれマゼンタのインク滴、インクジェットヘッド104Ya及び104Ybの各ノズル28からそれぞれイエローのインク滴を、それぞれ吐出周波数f[kHz]で、画像データに応じて小滴、中滴、又は大滴のインク滴を吐出させる(画像形成制御工程の一例)。 Here, the image formation control unit 110 controls the platen 102 and causes the sheet 1 to be conveyed at the conveyance speed Vd (an example of the first conveyance speed). Further, the inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and 104Yb are controlled, and black ink droplets are respectively ejected from the nozzles 28 of the inkjet heads 104Ka and 104Kb, and the nozzles 28 of the inkjet heads 104Ca and 104Cb are respectively. Image data of cyan ink droplets, magenta ink droplets from the nozzles 28 of the inkjet heads 104Ma and 104Mb, respectively, and yellow ink droplets of the nozzles 28 of the inkjet heads 104Ya and 104Yb, respectively, at an ejection frequency f [kHz]. In response to this, small, medium, or large ink droplets are ejected (an example of an image formation control process).
 このように、インクジェット印刷機100では、単位時間当たりに吐出されるインク滴の量がインクジェット印刷機200の場合の2倍になる。したがって、インクジェット印刷機100は、理想的にはインクジェット印刷機200の2倍の印刷速度で印刷が可能になる。 Thus, in the ink jet printer 100, the amount of ink droplets discharged per unit time is double that of the ink jet printer 200. Therefore, the inkjet printer 100 can ideally print at twice the printing speed of the inkjet printer 200.
 すなわち、シングルバー方式のインクジェット印刷機200の搬送速度Vsに対し、デュアルバー方式のインクジェット印刷機100の搬送速度Vdは、以下の式1で表すことができる。 That is, the transport speed Vd of the dual-bar inkjet printer 100 can be expressed by the following formula 1 with respect to the transport speed Vs of the single-bar inkjet printer 200.
 Vd=2×Vs …(式1)
 同様にして、同色インクを吐出するインクジェットヘッド(バーヘッド)の数を3本、4本と増やすことにより、印刷速度を理想的には3倍、4倍に向上させることが可能である。同色インクを吐出するインクジェットヘッドがN本あるマルチバー方式のインクジェット印刷機の搬送速度Vm(第1搬送速度の一例)は、以下の式2で表すことができる。
Vd = 2 × Vs (Formula 1)
Similarly, by increasing the number of inkjet heads (bar heads) that eject the same color ink to three and four, it is possible to increase the printing speed ideally three times and four times. The transport speed Vm (an example of the first transport speed) of a multi-bar inkjet printer having N inkjet heads that eject the same color ink can be expressed by the following Equation 2.
 Vm=N×Vs …(式2)
 <デュアルバー方式における滴量調整>
 インクジェット印刷機200と同様に、インクジェット印刷機100は、インクジェットヘッド104Ka、104Kb、104Ca、104Cb、104Ma、104Mb、104Ya、及び104Ybをそれぞれ構成するヘッドモジュール12-iが未調整の状態では、ノズル28から吐出するインク量にバラツキが生じる。したがって、高画質の画像を得るためには、ノズル28から吐出されるインク量を適切に調整することが必要である。
Vm = N × Vs (Formula 2)
<Drop volume adjustment in the dual bar method>
Similar to the ink jet printer 200, the ink jet printer 100 has the nozzle 28 in a state where the head modules 12-i constituting the ink jet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and 104Yb are not adjusted. The amount of ink discharged from the ink varies. Therefore, in order to obtain a high-quality image, it is necessary to appropriately adjust the amount of ink ejected from the nozzles 28.
 ここで、インクジェット印刷機100において、図7に示す濃度調整用チャート群Cを印刷した場合、例えば濃度パッチ210K-iの濃度を読み取っても、インクジェットヘッド104Kaのヘッドモジュール12-iの調整量とインクジェットヘッド104Kbのヘッドモジュール12-iの調整量とを個々に知ることは困難である。したがって、インクジェット印刷機100の場合は、インクジェットヘッド104Ka、104Kb、104Ca、104Cb、104Ma、104Mb、104Ya、及び104Ybのそれぞれにおいて濃度パッチを印刷する必要がある。 Here, in the inkjet printer 100, when printing the density adjustment chart group C 1 shown in FIG. 7, for example be read density of the density patch 210K-i, the adjustment of the head module 12-i of the ink jet head 104Ka It is difficult to individually know the adjustment amount of the head module 12-i of the inkjet head 104Kb. Therefore, in the case of the inkjet printer 100, it is necessary to print density patches on each of the inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and 104Yb.
 図11は、インクジェット印刷機100によって用紙1に印刷される濃度調整用チャートであって、搬送速度をVd、吐出周波数を通常画像印刷時と同じf[kHz]としてインクジェットヘッド104Ka、104Kb、104Ca、104Cb、104Ma、104Mb、104Ya、及び104Yb毎(液体吐出ヘッド毎の一例)にそれぞれ形成される濃度パッチを含む濃度調整用チャートの一例を示す図である。濃度調整用チャート群Cは、インクジェットヘッド104Kaの各ヘッドモジュール12-i(i=1,2,…n)によってそれぞれ印刷された濃度パッチ210Ka-i(i=1,2,…n)、インクジェットヘッド104Kbの各ヘッドモジュール12-i(i=1,2,…n)によってそれぞれ印刷された濃度パッチ210Kb-i(i=1,2,…n)、インクジェットヘッド104Yaの各ヘッドモジュール12-i(i=1,2,…n)によってそれぞれ印刷された濃度パッチ210Ya-i(i=1,2,…n)、インクジェットヘッド104Ybの各ヘッドモジュール12-i(i=1,2,…n)によってそれぞれ印刷された濃度パッチ210Yb-i(i=1,2,…n)、インクジェットヘッド104Maの各ヘッドモジュール12-i(i=1,2,…n)によってそれぞれ印刷された濃度パッチ210Ma-i(i=1,2,…n)、インクジェットヘッド104Mbの各ヘッドモジュール12-i(i=1,2,…n)によってそれぞれ印刷された濃度パッチ210Mb-i(i=1,2,…n)、インクジェットヘッド104Caの各ヘッドモジュール12-i(i=1,2,…n)によってそれぞれ印刷された濃度パッチ210Ca-i(i=1,2,…n)、及びインクジェットヘッド104Cbの各ヘッドモジュール12-i(i=1,2,…n)によってそれぞれ印刷された濃度パッチ210Cb-i(i=1,2,…n)を有している。 FIG. 11 is a density adjustment chart printed on the paper 1 by the ink jet printer 100. The ink jet heads 104Ka, 104Kb, 104Ca, Vd and the discharge frequency are the same f [kHz] as in normal image printing. 10 is a diagram illustrating an example of a density adjustment chart including density patches formed for each of 104Cb, 104Ma, 104Mb, 104Ya, and 104Yb (an example of each liquid ejection head). FIG. Concentration adjustment chart group C 2, each head module of the ink jet head 104Ka 12-i (i = 1,2 , ... n) the density patch 210 kA-i printed respectively by (i = 1,2, ... n) , Density patches 210Kb-i (i = 1, 2,... N) respectively printed by the head modules 12-i (i = 1, 2,... N) of the inkjet head 104Kb, and each head module 12- of the inkjet head 104Ya. .., density patches 210Ya-i (i = 1, 2,... n) respectively printed by i (i = 1, 2,... n), and each head module 12-i (i = 1, 2,... n) of the inkjet head 104Yb. n) printed by the density patches 210Yb-i (i = 1, 2,... n) respectively, and the head modules 12-i (i = 1, 2,... n) of the inkjet head 104Ma. Density patches 210Ma-i (i = 1, 2,... N) respectively printed and density patches 210Mb-i respectively printed by the head modules 12-i (i = 1, 2,... N) of the inkjet head 104Mb. (I = 1, 2,... N), density patches 210Ca-i (i = 1, 2,... N) respectively printed by the head modules 12-i (i = 1, 2,... N) of the inkjet head 104Ca. ), And density patches 210Cb-i (i = 1, 2,... N) respectively printed by the head modules 12-i (i = 1, 2,... N) of the inkjet head 104Cb.
 搬送速度をVd、吐出周波数を通常画像印刷時と同じf[kHz]としてインクジェットヘッド104Ka、104Kb、104Ca、104Cb、104Ma、104Mb、104Ya、及び104Yb毎に濃度パッチを印刷すると、搬送速度Vdがシングルバー方式のインクジェット印刷機200の搬送速度Vsよりも速いため、濃度パッチの濃度が不足し、適切な濃度領域とならない。濃度パッチの濃度階調が狭くなる結果、ノイズに弱くなり、濃度測定精度が低下してしまう。 When density patches are printed for each inkjet head 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and 104Yb with the conveyance speed set to Vd and the discharge frequency set to the same f [kHz] as during normal image printing, the conveyance speed Vd is single. Since it is faster than the conveyance speed Vs of the bar-type ink jet printer 200, the density of the density patch is insufficient, and an appropriate density area is not obtained. As a result of the density gradation of the density patch being narrowed, it becomes vulnerable to noise and density measurement accuracy is reduced.
 そこで、同色インクを吐出するインクジェットヘッドの数が2本であるインクジェット印刷機100では、通常画像印刷時の搬送速度Vdに対して、濃度調整用チャートの印刷時の搬送速度Vhを、
 Vh≦Vd/2 …(式3)
 とする。
Therefore, in the inkjet printer 100 having two inkjet heads that discharge the same color ink, the conveyance speed Vh during printing of the density adjustment chart is set to the conveyance speed Vd during normal image printing.
Vh ≦ Vd / 2 (Formula 3)
And
 チャート形成制御部112は、プラテン102を制御し、式3を満たす搬送速度Vhで用紙1を搬送させる。また、インクジェットヘッド104Ka、104Kb、104Ca、104Cb、104Ma、104Mb、104Ya、及び104Ybによって吐出周波数f[kHz]で小滴のインク滴を吐出して用紙1に濃度調整用チャートを印刷する(チャート形成制御工程の一例)。 The chart formation control unit 112 controls the platen 102 and transports the paper 1 at a transport speed Vh that satisfies Equation 3. Further, the ink-jet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and 104Yb eject small droplets of ink at a discharge frequency f [kHz] to print a density adjustment chart on the paper 1 (chart formation). An example of a control process).
 図12は、インクジェット印刷機100によって用紙1に印刷される濃度調整用チャートであって、搬送速度をVh、吐出周波数をf[kHz]としてインクジェットヘッド104Ka、104Kb、104Ca、104Cb、104Ma、104Mb、104Ya、及び104Yb毎(液体吐出ヘッド毎の一例)にそれぞれ形成される濃度パッチを含む濃度調整用チャート群の一例を示す図である。 FIG. 12 is a density adjustment chart printed on the paper 1 by the ink jet printer 100. The ink jet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, the transport speed is Vh, and the discharge frequency is f [kHz]. FIG. 10 is a diagram illustrating an example of a density adjustment chart group including density patches formed for each of 104Ya and 104Yb (an example of each liquid ejection head).
 濃度調整用チャート群Cは、濃度調整用チャート群Cと同様に、インクジェットヘッド104Kaの各ヘッドモジュール12-i(i=1,2,…n)によってそれぞれ印刷された濃度パッチ210Ka-i(i=1,2,…n)(チャートの一例)、インクジェットヘッド104Kbの各ヘッドモジュール12-i(i=1,2,…n)によってそれぞれ印刷された濃度パッチ210Kb-i(i=1,2,…n)、インクジェットヘッド104Yaの各ヘッドモジュール12-i(i=1,2,…n)によってそれぞれ印刷された濃度パッチ210Ya-i(i=1,2,…n)、インクジェットヘッド104Ybの各ヘッドモジュール12-i(i=1,2,…n)によってそれぞれ印刷された濃度パッチ210Yb-i(i=1,2,…n)、インクジェットヘッド104Maの各ヘッドモジュール12-i(i=1,2,…n)によってそれぞれ印刷された濃度パッチ210Ma-i(i=1,2,…n)、インクジェットヘッド104Mbの各ヘッドモジュール12-i(i=1,2,…n)によってそれぞれ印刷された濃度パッチ210Mb-i(i=1,2,…n)、インクジェットヘッド104Caの各ヘッドモジュール12-i(i=1,2,…n)によってそれぞれ印刷された濃度パッチ210Ca-i(i=1,2,…n)、及びインクジェットヘッド104Cbの各ヘッドモジュール12-i(i=1,2,…n)によってそれぞれ印刷された濃度パッチ210Cb-i(i=1,2,…n)を有している。 Similarly to the density adjustment chart group C 2 , the density adjustment chart group C 3 is a density patch 210 Ka-i printed by each head module 12-i (i = 1, 2,... N) of the inkjet head 104 Ka. (I = 1, 2,... N) (an example of a chart), density patches 210Kb-i (i = 1) respectively printed by the head modules 12-i (i = 1, 2,... N) of the inkjet head 104Kb. , 2,... N), density patches 210Ya-i (i = 1, 2,... N) respectively printed by the head modules 12-i (i = 1, 2,... N) of the inkjet head 104Ya, inkjet heads A density patch 210Yb-i (i = 1, 2,... N) printed by each head module 12-i (i = 1, 2,... N) of 104Yb, an inkjet head 104M. Density patches 210Ma-i (i = 1, 2,... n) respectively printed by the head modules 12-i (i = 1, 2,... n) of a, and the head modules 12-i (i.e., inkjet heads 104Mb). density patches 210Mb-i (i = 1, 2,... n) respectively printed by i = 1, 2,... n), and each head module 12-i (i = 1, 2,... n) of the inkjet head 104Ca. Density patches 210Ca-i (i = 1, 2,... N) respectively printed by, and density patches 210Cb respectively printed by the head modules 12-i (i = 1, 2,... N) of the inkjet head 104Cb. -I (i = 1, 2,... N)
 図12に示すように、濃度調整用チャート群Cの各濃度パッチ210K-i、210C-i、210M-i、及び210Y-iの濃度は、図7に示す濃度調整用チャート群Cの各濃度パッチ210K-i、210C-i、210M-i、及び210Y-iの濃度と同様である。 As shown in FIG. 12, each density patch 210K-i of the density adjustment chart group C 3, the 210C-i, 210M-i, and 210Y-i concentration is the concentration adjustment chart group C 1 shown in FIG. 7 It is the same as the density of each density patch 210K-i, 210C-i, 210M-i, and 210Y-i.
 このように印刷した濃度調整用チャート群Cを読み取り、読み取った濃度データを解析して、インクジェットヘッド104Ka、104Kb、104Ca、104Cb、104Ma、104Mb、104Ya、及び104Ybのヘッドモジュール12-iの圧電素子44に印加する駆動電圧をそれぞれ調整する。これにより、インクジェットヘッド104Ka、104Kb、104Ca、104Cb、104Ma、104Mb、104Ya、及び104Ybの各ノズル28から吐出されるインク量(ノズル28による吐出1回あたりのインク滴のインク量)を適切に調整することができる。 Thus reading the density adjustment chart group C 3 printed, read and analyze the density data, an ink jet head 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and piezoelectric head modules 12-i of 104Yb The drive voltage applied to the element 44 is adjusted. As a result, the amount of ink ejected from each nozzle 28 of the inkjet heads 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and 104Yb (ink droplet ink amount per ejection by the nozzle 28) is appropriately adjusted. can do.
 なお、同色インクを吐出するインクジェットヘッドがN本ある場合は、通常画像印刷時の搬送速度Vmに対して、濃度調整用チャートの印刷時の搬送速度Vhを、
 Vh≦Vm/N …(式4)
 とすればよい。
When there are N inkjet heads that discharge the same color ink, the conveyance speed Vh at the time of printing the density adjustment chart is set to the conveyance speed Vm at the time of normal image printing.
Vh ≦ Vm / N (Formula 4)
And it is sufficient.
 <シングルバー方式における吐出方向測定>
 図13は、インクジェット印刷機200によって用紙1に印刷される吐出方向測定用チャートの一例を示す図である。吐出方向測定用チャートCは、線分(ライン)によるパターンで構成される、いわゆる1オンnオフ型のノズルチェック用のテストチャート画像である。図13に示す例では、1オン7オフ型の吐出方向測定用チャートCを示している。
<Measurement of discharge direction in single bar method>
FIG. 13 is a diagram illustrating an example of a discharge direction measurement chart printed on the paper 1 by the inkjet printer 200. Discharge direction measurement chart C 4 is composed of a pattern by a line segment (line), a so-called 1-one n-off type test chart image for nozzle check. In the example shown in FIG. 13 shows a 1 on 7 off type discharge direction measurement chart C 4 of.
 インクジェット印刷機200の記録制御を統括する不図示の制御部は、プラテン102を制御し、用紙1を搬送速度Vsで搬送させる。また、インクジェットヘッド204K、204C、204M、及び204Yによって吐出周波数f[kHz]で小滴のインク滴を吐出して用紙1に吐出方向測定用チャートCを印刷する。 A control unit (not shown) that supervises the recording control of the inkjet printer 200 controls the platen 102 and transports the paper 1 at the transport speed Vs. Further, the printing ink jet head 204K, 204C, 204M, and ejects ink droplets of the droplet at ejection frequency f [kHz] by 204Y in the sheet 1 the discharge direction measurement chart C 4.
 ここで、制御部は、各インクジェットヘッドの投影ノズル列LNを構成するノズル28(図3参照)を7個おきの8つのグループに分け、グループ単位で順番に吐出させる。これにより、1つのノズル28によってY方向に沿う1本のラインLDが形成され、全ノズルのラインLDが形成される。 Here, the control unit divides the nozzles 28 (see FIG. 3) constituting the projection nozzle row LN of each inkjet head into eight groups every seven, and sequentially discharges them in units of groups. Thus, one line LD along the Y direction is formed by one nozzle 28, and a line LD of all nozzles is formed.
 図14は、ノズルから吐出されたインク滴の着弾位置ずれを説明するための図である。ここでは、インクジェットヘッド10のノズル面20に配置された3つのノズル28-1、28-2、及び28-3からそれぞれ吐出された小滴のインク滴が用紙1に着弾して形成されたインクドットID-1、ID-2、及びID-3を示している。 FIG. 14 is a diagram for explaining the landing position deviation of the ink droplets ejected from the nozzles. Here, the ink formed by the small ink droplets discharged from the three nozzles 28-1, 28-2, and 28-3 disposed on the nozzle surface 20 of the inkjet head 10 landing on the paper 1 is formed. Dot ID-1, ID-2, and ID-3 are shown.
 ノズル28から吐出されたインク滴は、Z方向と平行に飛翔して用紙1に着弾することが理想である。したがって、正常なノズル28のX方向位置とノズル28から吐出されて着弾したインクドットIDのX方向位置とは、同一位置となる。図14に示すように、ノズル28-1のX方向位置とインクドットID-1のX方向位置、及びノズル28-3のX方向位置とインクドットID-3のX方向位置は、それぞれ同一位置となっている。 Ideally, the ink droplets ejected from the nozzle 28 fly in parallel with the Z direction and land on the paper 1. Accordingly, the normal X position of the nozzle 28 and the X dot position of the ink dot ID ejected and landed from the nozzle 28 are the same position. As shown in FIG. 14, the X direction position of the nozzle 28-1 and the X direction position of the ink dot ID-1, and the X direction position of the nozzle 28-3 and the X direction position of the ink dot ID-3 are the same position, respectively. It has become.
 一方、ノズル28-2のX方向位置とインクドットID-2のX方向位置とは、ΔXだけずれている。このずれを着弾位置ずれ、ΔXを着弾位置ずれ量と呼ぶ。 On the other hand, the X direction position of the nozzle 28-2 and the X direction position of the ink dot ID-2 are shifted by ΔX. This deviation is called a landing position deviation, and ΔX is called a landing position deviation amount.
 図15は、吐出方向測定用チャートCを構成する1本のラインLDの拡大図である。図15に示すように、ラインLDは、ノズル28から吐出された小滴のインク滴が用紙1に着弾して形成されたインクドットIDがY方向に繋がって構成されている。 Figure 15 is an enlarged view of one line LD constituting the discharge direction measurement chart C 4. As shown in FIG. 15, the line LD is configured by connecting the ink dots ID formed by landing the small ink droplets ejected from the nozzles 28 on the paper 1 in the Y direction.
 このように印刷された吐出方向測定用チャートCをスキャナで読み取ることにより、ノズル28毎の着弾位置ずれ量ΔXを測定することができる。 The landing position deviation amount ΔX for each nozzle 28 can be measured by reading the ejection direction measurement chart C 4 printed in this way with a scanner.
 図16は、図14に示した3つのノズル28-1、28-2、及び28-3によってそれぞれ印刷された3本のラインLD-1、LD-2、及びLD-3をスキャナで読み取った読取画像の一例である。ここでは、ラインLD-2を構成するインク滴に着弾位置ずれ量ΔXの着弾位置ずれが発生しているため、ラインLD-1とラインLD-2との間隔、及びラインLD-2とラインLD-3との間隔は、等間隔となっていない。 In FIG. 16, the scanner scans three lines LD-1, LD-2, and LD-3 printed by the three nozzles 28-1, 28-2, and 28-3 shown in FIG. 14, respectively. It is an example of a read image. Here, since the landing position deviation of the landing position deviation amount ΔX has occurred in the ink droplets constituting the line LD-2, the interval between the line LD-1 and the line LD-2, and the line LD-2 and the line LD. The interval from −3 is not equal.
 この着弾位置ずれ量ΔXを測定することで、不吐出状態のノズルの有無及び吐出方向不良ノズルの有無を検査することができる。 By measuring this landing position deviation amount ΔX, it is possible to inspect the presence or absence of a non-ejection state nozzle and the presence or absence of a nozzle with a defective ejection direction.
 <デュアルバー方式における吐出方向測定>
 インクジェット印刷機100は、滴量調整と同様に、吐出方向測定についてもインクジェットヘッド104Ka、104Kb、104Ca、104Cb、104Ma、104Mb、104Ya、及び104Ybのそれぞれにおいて吐出方向測定用チャートCの線分を印刷する必要がある。すなわち、吐出方向測定用チャートCは、複数のノズル28毎(吐出素子毎の一例)にそれぞれ形成されるラインパターンを含む。
<Measurement of discharge direction in dual bar method>
Inkjet printer 100, similar to the droplet amount adjustment, the inkjet head 104Ka also discharge direction measurement, 104Kb, 104Ca, 104Cb, 104Ma , 104Mb, 104Ya, and the segment of the ejection direction measurement chart C 4 in each 104Yb Need to print. That is, the ejection direction measurement chart C 4 includes a line pattern formed respectively for each of the plurality of nozzles 28 (an example of each ejecting element).
 図17は、インクジェット印刷機100において、搬送速度Vdにおいて吐出周波数を通常画像印刷時と同じf[kHz]として1つのノズル28(図3参照)によって用紙1に印刷したラインLDの一例を示す図である。図17に示すように、ラインLDを構成するインクドットIDは、Y方向に繋がらない。このようなラインLDからなる吐出方向測定用チャートCをスキャナで読み取った場合、ラインLDの濃度が不十分になったり、ラインLDを線分として認識しなくなったりするため、解析エラーが出やすくなる。 FIG. 17 is a diagram showing an example of a line LD printed on the paper 1 by one nozzle 28 (see FIG. 3) with the ejection frequency set to f [kHz] at the conveyance speed Vd at the conveyance speed Vd. It is. As shown in FIG. 17, the ink dot IDs constituting the line LD are not connected in the Y direction. When reading the ejection direction measurement chart C 4 having such a line LD in the scanner, or the concentration becomes insufficient line LD, to or longer recognize the line LD as a line segment, easily out parsing errors Become.
 そこで、インクジェット印刷機100において吐出方向測定用チャートCを印刷する場合は、搬送速度を遅くすることで、図15に示すようにインクドットIDがY方向に繋がった適切なラインLDを印刷する。 Therefore, when printing the ejection direction measurement chart C 4 in the ink-jet printer 100, by slowing down the conveying speed for printing the appropriate line LD of ink dots ID led in the Y direction as shown in FIG. 15 .
 例えば、通常画像印刷時の搬送速度Vdに対して、吐出方向測定用チャートCの印刷時の搬送速度を、式3を満たす搬送速度Vhとする。 For example, with respect to the conveying speed Vd of the normal image printing, the conveying speed at the time of printing of the ejection direction measurement chart C 4, and the conveying speed Vh satisfying the formula 3.
 チャート形成制御部112(図10参照)は、プラテン102を制御し、式3を満たす搬送速度Vhで用紙1を搬送させる。また、インクジェットヘッド104Ka、104Kb、104Ca、104Cb、104Ma、104Mb、104Ya、及び104Ybによって吐出周波数f[kHz]で小滴のインク滴を吐出して用紙1に吐出方向測定用チャートCを印刷する。 The chart formation control unit 112 (see FIG. 10) controls the platen 102 and transports the paper 1 at a transport speed Vh that satisfies Equation 3. Further, the printing ink jet head 104Ka, 104Kb, 104Ca, 104Cb, 104Ma, 104Mb, 104Ya, and ejects ink droplets of the droplet at ejection frequency f [kHz] by 104Yb the paper 1 a discharging direction measurement chart C 4 .
 インクジェット印刷機200の場合と同様に、チャート形成制御部112は、各インクジェットヘッドの投影ノズル列LNを構成するノズル28(図3参照)を7個おきの8つのグループに分け、グループ単位で順番に吐出させる。これにより、1つのノズル28によってY方向に沿う1本のラインLDが形成され、全ノズルのラインLDが形成される。 As in the case of the ink jet printing machine 200, the chart formation control unit 112 divides the nozzles 28 (see FIG. 3) constituting the projection nozzle row LN of each ink jet head into eight groups every seven, and sequentially in groups. To discharge. Thus, one line LD along the Y direction is formed by one nozzle 28, and a line LD of all nozzles is formed.
 なお、同色インクを吐出するインクジェットヘッドがN本ある場合は、吐出方向測定用チャートCの印刷時の搬送速度を、式4に満たす搬送速度Vhにすればよい。 Incidentally, if the ink jet head for ejecting the same color ink is the N, the conveying speed at the time of printing of the ejection direction measurement chart C 4, it may be the conveyance speed Vh satisfying the equation 4.
 <インク滴を繋げるための搬送速度>
 図18は、ノズル28から吐出されたインク滴が用紙1に形成するインクドットの径とドット間距離とを説明するための図である。複数の異なる径のドットを形成可能な場合、最も小さいドットについて考える。図18に示す例では、各インクドットIDは、1つのノズル28から吐出された小滴が用紙1に着弾して形成したものである。インクドットIDの径をD[μm]、2つのインクドットIDの間のY方向の距離(ドット間距離)をL[μm]とすると、
 D≧L …(式5)
 を満たすことで、インクドットID同士がY方向に繋がる。
<Conveying speed for connecting ink droplets>
FIG. 18 is a diagram for explaining the diameters of ink dots and the inter-dot distances formed on the paper 1 by the ink droplets ejected from the nozzles 28. If multiple dots of different diameters can be formed, consider the smallest dot. In the example shown in FIG. 18, each ink dot ID is formed by a small droplet ejected from one nozzle 28 landing on the paper 1. When the diameter of the ink dot ID is D [μm] and the distance in the Y direction between the two ink dot IDs (inter-dot distance) is L [μm],
D ≧ L (Formula 5)
By satisfying the above, the ink dot IDs are connected in the Y direction.
 ここで、吐出方向測定用チャートCの印刷時の、用紙1の搬送速度(第2搬送速度の一例)をVh[m/s]、ノズル28の吐出周波数をf[kHz]、とすると、
 L=1000×Vh/f …(式6)
 と表すことができる。
Here, when printing in the discharge direction measurement chart C 4, the conveying speed of the sheet 1 (an example of a second conveying speed) Vh [m / s], the ejection frequency of the nozzle 28 f [kHz], and to,
L = 1000 × Vh / f (Formula 6)
It can be expressed as.
 式5及び式6から、以下の式7を導くことができる。 From Equation 5 and Equation 6, the following Equation 7 can be derived.
 Vh≦D×f/1000 …(式7)
 すなわち、チャート形成制御部112(図10参照)は、式7を満たすインクドットIDの径D[μm]、用紙1の搬送速度Vh[m/s]、ノズル28の吐出周波数f[kHz]によって、吐出方向測定用チャートCを印刷すればよい。
Vh ≦ D × f / 1000 (Expression 7)
That is, the chart formation control unit 112 (see FIG. 10) determines the ink dot ID diameter D [μm] satisfying Expression 7, the paper 1 conveyance speed Vh [m / s], and the nozzle 28 ejection frequency f [kHz]. it may be printed ejection direction measurement chart C 4.
 例えば、吐出周波数f=50[kHz]、インクドットIDの径D=30[μm]とすると、用紙1の搬送速度Vhは1.5[m/s]以下であれば、インクドットIDがY方向に繋がる。これにより、精度よく着弾位置ずれ量を測定することができる。 For example, if the ejection frequency f = 50 [kHz] and the ink dot ID diameter D = 30 [μm], the ink dot ID is Y if the transport speed Vh of the paper 1 is 1.5 [m / s] or less. Connect in the direction. Thereby, the amount of landing position deviation can be measured with high accuracy.
 インクジェット印刷機100において、吐出周波数f=50[kHz]の場合に画像解像度1200[dpi]を実現するには、通常画像印刷時の用紙1の搬送速度は約2[m/s]強となる。吐出方向測定用チャートCの印刷時には、搬送速度をVh≦1.5[m/s]を満たす搬送速度とすることで、インクドットIDをY方向に繋げることができる。なお、dpi(dot per inch)は、1[インチ]当りのドット数を表す単位である。1[インチ]は約25.4[mm]である。 In the inkjet printer 100, in order to achieve an image resolution of 1200 [dpi] when the discharge frequency is f = 50 [kHz], the conveyance speed of the paper 1 during normal image printing is about 2 [m / s] or higher. . When printing of the ejection direction measurement chart C 4, by the conveying speed to satisfy the Vh ≦ 1.5 [m / s] of the transport speed, it is possible to connect the ink dots ID in the Y direction. In addition, dpi (dot per inch) is a unit representing the number of dots per [inch]. One [inch] is about 25.4 [mm].
 なお、搬送速度Vhが遅すぎると、吐出方向測定用チャートCの印刷に時間がかかりすぎるため好ましくない。したがって、搬送速度Vhは、以下の式8のように決めてもよい。 Incidentally, when the conveyance speed Vh is too slow, undesirable because it takes too much time to print discharge direction measurement chart C 4. Therefore, the conveyance speed Vh may be determined as in the following Expression 8.
 Vd/2<Vh …(式8)
 また、同色インクを吐出するインクジェットヘッドがN本ある場合は、吐出方向測定用チャートCの印刷時の搬送速度Vhは、通常画像印刷時の搬送速度Vmを用いて、以下の式9で表すことができる。
Vd / 2 <Vh (Formula 8)
Further, if the ink jet head for ejecting the same color ink is N the conveyance speed Vh at the time of printing of the ejection direction measurement chart C 4, using the conveying speed Vm of the normal image printing, expressed by the following equation 9 be able to.
 Vm/N<Vh …(式9)
 なお、ラインLDは、小滴以外の大きさのインク滴を用いて形成してもよい。
Vm / N <Vh (Formula 9)
The line LD may be formed using ink droplets having a size other than small droplets.
 ここでは、吐出方向測定用チャートCについて説明したが、濃度調整用チャート群Cの各濃度パッチについても同様である。 Here has been described the ejection direction measurement chart C 4, it is the same for each concentration patch of density adjustment chart group C 3.
 図19は、濃度パッチを印刷した際の、インクドットIDの径(ドット径)と濃度パッチの濃度との関係を示すグラフである。図19に示すように、隣接するインクドットID同士がY方向に繋がるドット径になると、濃度が急峻に立ち上がる。これは、インクドットID同士が繋がることにより、インクが用紙1の記録面を隙間なく埋めやすくなるためである。これにより、濃度が低い場合は測定ノイズの影響を受けやすいが、濃度が高い場合は測定が安定する。 FIG. 19 is a graph showing the relationship between the ink dot ID diameter (dot diameter) and the density of the density patch when the density patch is printed. As shown in FIG. 19, when the dot diameter is such that adjacent ink dot IDs are connected in the Y direction, the density rises steeply. This is because the ink dot IDs are connected to each other so that the ink can easily fill the recording surface of the paper 1 without a gap. Thereby, when the density is low, it is easily affected by measurement noise, but when the density is high, the measurement is stable.
 したがって、濃度調整用チャート群Cの各濃度パッチについても、Y方向に隣接するインクドットID同士がY方向に繋がることが好ましい。すなわち、チャート形成制御部112(図10参照)は、式7を満たすインクドットIDの径D[μm]、用紙1の搬送速度Vh[μm]、ノズル28の吐出周波数f[kHz]によって、濃度調整用チャート群Cの各濃度パッチを印刷すればよい。 Therefore, also the density patch density adjustment chart group C 3, it is preferable that the ink dots ID adjacent to each other in Y direction leads to the Y direction. That is, the chart formation control unit 112 (see FIG. 10) determines the density depending on the diameter D [μm] of the ink dot ID satisfying Expression 7, the transport speed Vh [μm] of the paper 1, and the ejection frequency f [kHz] of the nozzle 28. each concentration patch of the adjustment chart group C 3 may be printed.
 <インクジェット印刷機の他の態様>
 インクジェット印刷機の他の態様について説明する。図20は、インクジェット印刷機300の構成例を示す図である。このインクジェット印刷機300は、描画ドラム370によって搬送方向に搬送される用紙1にインクジェットヘッド372Ka、372Kb、372Ca、372Cb、372Ma、372Mb、372Ya、及び372Ybからインクを吐出して所望のカラー画像を形成するデュアルバー方式のインクジェットプリンタである。
<Other aspects of inkjet printer>
Another aspect of the ink jet printer will be described. FIG. 20 is a diagram illustrating a configuration example of the inkjet printer 300. The inkjet printer 300 forms a desired color image by ejecting ink from the inkjet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb onto the paper 1 that is conveyed in the conveyance direction by the drawing drum 370. This is a dual bar ink jet printer.
 図20に示すように、インクジェット印刷機300は、主として、給紙部312、前処理液付与部314、描画部316、乾燥部318、定着部320、及び排紙部322を備えて構成される。 As shown in FIG. 20, the inkjet printer 300 mainly includes a paper feed unit 312, a pretreatment liquid application unit 314, a drawing unit 316, a drying unit 318, a fixing unit 320, and a paper discharge unit 322. .
 〔給紙部〕
 給紙部312には、枚葉紙である用紙1が積層されている。給紙部312の給紙トレイ350から用紙1が一枚ずつ前処理液付与部314に給紙される。用紙1として、枚葉紙(カット紙)を用いているが、連続用紙(ロール紙)から必要なサイズに切断して給紙する構成も可能である。
[Paper Feeder]
A sheet 1 that is a sheet is stacked on the sheet feeding unit 312. The sheets 1 are fed one by one from the sheet feeding tray 350 of the sheet feeding unit 312 to the pretreatment liquid application unit 314. A sheet (cut paper) is used as the paper 1, but a configuration in which a continuous paper (roll paper) is cut to a required size and fed is also possible.
 〔前処理液付与部〕
 前処理液付与部314は、用紙1の搬送方向の描画部316よりも上流側に配置される。前処理液付与部314は、用紙1の記録面に前処理液を付与する機構である。前処理液は、描画部316で付与されるインク中の色材(本例では顔料)を凝集させる色材凝集剤を含んでおり、この前処理液とインクとが接触することによって、インクは色材と溶媒との分離が促進される。
[Pretreatment liquid application part]
The pretreatment liquid application unit 314 is disposed upstream of the drawing unit 316 in the conveyance direction of the paper 1. The pretreatment liquid application unit 314 is a mechanism that applies the pretreatment liquid to the recording surface of the paper 1. The pretreatment liquid contains a color material aggregating agent that aggregates the color material (pigment in this example) in the ink applied by the drawing unit 316, and the ink comes into contact with the pretreatment liquid and the ink. Separation of the colorant and the solvent is promoted.
 前処理液付与部314は、給紙胴352、前処理液ドラム354、及び前処理液塗布部356を備えている。前処理液ドラム354は、その外周面に爪形状の保持手段(グリッパ)355を備え、この保持手段355の爪と前処理液ドラム354の周面の間に用紙1を挟み込むことによって用紙1の先端を保持できるようになっている。前処理液塗布部356は、前処理液ドラム354によって搬送される用紙1の記録面に前処理液を塗布する。前処理液塗布部356は、ローラによる塗布方式の他、スプレー方式等の各種方式を適用することも可能である。 The pretreatment liquid application unit 314 includes a paper feed cylinder 352, a pretreatment liquid drum 354, and a pretreatment liquid application unit 356. The pretreatment liquid drum 354 includes a claw-shaped holding means (gripper) 355 on its outer peripheral surface, and the paper 1 is sandwiched between the claw of the holding means 355 and the peripheral surface of the pretreatment liquid drum 354. The tip can be held. The pretreatment liquid application unit 356 applies the pretreatment liquid to the recording surface of the paper 1 conveyed by the pretreatment liquid drum 354. The pretreatment liquid application unit 356 can employ various methods such as a spray method in addition to an application method using a roller.
 前処理液が付与された用紙1は、前処理液ドラム354から中間搬送部326を介して描画部316の描画ドラム370へ受け渡される。 The sheet 1 to which the pretreatment liquid is applied is transferred from the pretreatment liquid drum 354 to the drawing drum 370 of the drawing unit 316 via the intermediate conveyance unit 326.
 〔描画部〕
 描画部316は、描画ドラム370、用紙抑えローラ374、及びインクジェットヘッド372Ka、372Kb、372Ca、372Cb、372Ma、372Mb、372Ya、及び372Ybを備えている。描画ドラム370(搬送部の一例)は、前処理液ドラム354と同様に、その外周面に爪形状の保持手段(グリッパ)371を備える。描画ドラム370の外周面に吸引孔が設けられ、負圧吸引によって用紙1はドラム外周面に吸着保持される。
[Drawing part]
The drawing unit 316 includes a drawing drum 370, a paper holding roller 374, and an inkjet head 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb. Similar to the pretreatment liquid drum 354, the drawing drum 370 (an example of a transport unit) includes a claw-shaped holding unit (gripper) 371 on the outer peripheral surface thereof. Suction holes are provided on the outer peripheral surface of the drawing drum 370, and the sheet 1 is sucked and held on the outer peripheral surface of the drum by negative pressure suction.
 インクジェットヘッド372Ka、372Kb、372Ca、372Cb、372Ma、372Mb、372Ya、及び372Ybは、それぞれ前述したインクジェットヘッド10が適用される。インクジェットヘッド372Ka、372Kb、372Ca、372Cb、372Ma、372Mb、372Ya、及び372Ybは、用紙1における画像形成領域の最大幅に対応する長さをそれぞれ有する。 The inkjet head 10 described above is applied to each of the inkjet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb. Each of the inkjet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb has a length corresponding to the maximum width of the image forming area on the sheet 1.
 描画部316は、各インクジェットヘッド372Ka、372Kb、372Ca、372Cb、372Ma、372Mb、372Ya、及び372Ybにそれぞれインクを供給する不図示のインクタンクを備えている。 The drawing unit 316 includes an ink tank (not shown) that supplies ink to each of the inkjet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb.
 インクジェットヘッド372Ka及び372Kbには、インクタンクから黒のインクが供給される。インクジェットヘッド372Ca及び372Cbには、インクタンクからシアンのインクが供給される。インクジェットヘッド372Ma及び372Mbには、インクタンクからマゼンタのインクが供給される。インクジェットヘッド372Ya及び372Ybには、インクタンクからイエローのインクが供給される。 Black ink is supplied from the ink tank to the inkjet heads 372Ka and 372Kb. The inkjet heads 372Ca and 372Cb are supplied with cyan ink from an ink tank. Magenta ink is supplied from the ink tank to the inkjet heads 372Ma and 372Mb. The inkjet heads 372Ya and 372Yb are supplied with yellow ink from the ink tank.
 各インクジェットヘッド372Ka、372Kb、372Ca、372Cb、372Ma、372Mb、372Ya、及び372Ybは、用紙1の搬送方向(描画ドラム370の回転方向)と直交する方向に延在するように設置される。 The inkjet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb are installed so as to extend in a direction orthogonal to the conveyance direction of the paper 1 (the rotation direction of the drawing drum 370).
 図21は、インクジェットヘッド372Ka、372Kb、372Ca、372Cb、372Ma、372Mb、372Ya、及び372Ybのノズル面20と描画ドラム370の外周面370Aとの間の距離TDを示す図である。インクジェット印刷機300は、モータ496(図22参照)によりインクジェットヘッド372Ka、372Kb、372Ca、372Cb、372Ma、372Mb、372Ya、及び372Ybの位置を変更することで、この距離TDを変更可能である。 FIG. 21 is a diagram illustrating a distance TD between the nozzle surface 20 of the inkjet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb and the outer peripheral surface 370A of the drawing drum 370. The inkjet printer 300 can change the distance TD by changing the positions of the inkjet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb by a motor 496 (see FIG. 22).
 描画ドラム370によって用紙1を一定の速度で搬送し、この搬送方向について、用紙1と各インクジェットヘッド372Ka、372Kb、372Ca、372Cb、372Ma、372Mb、372Ya、及び372Ybを相対的に移動させる動作を1回行うだけで(即ち1回の副走査で)、用紙1の画像形成領域に画像を記録することができる。 The drawing drum 370 conveys the sheet 1 at a constant speed, and the movement of the sheet 1 and the inkjet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb is relatively performed in this conveying direction. The image can be recorded in the image forming area of the paper 1 by performing only once (that is, by one sub-scan).
 ここでは、黒、シアン、マゼンタ、イエローの4色のインクを用いるインクジェット印刷機300を例示しているが、インク色及び色数の組み合わせについては本実施形態に限定されず、各色ヘッドの配置順序も特に限定はない。 Here, the inkjet printing machine 300 using four colors of ink of black, cyan, magenta, and yellow is illustrated, but the combination of the ink color and the number of colors is not limited to this embodiment, and the arrangement order of each color head There is no particular limitation.
 図20の説明に戻り、描画部316で画像が形成された用紙1は、描画ドラム370から中間搬送部328を介して乾燥部318の乾燥ドラム376へ受け渡される。 Returning to the description of FIG. 20, the sheet 1 on which the image is formed by the drawing unit 316 is transferred from the drawing drum 370 to the drying drum 376 of the drying unit 318 via the intermediate conveyance unit 328.
 〔乾燥部〕
 乾燥部318は、色材凝集作用により分離された溶媒に含まれる水分を乾燥させる機構であり、乾燥ドラム376、及び溶媒乾燥装置378を備えている。乾燥ドラム376は、前処理液ドラム354と同様に、その外周面に爪形状の保持手段(グリッパ)377を備える。溶媒乾燥装置378は、複数のハロゲンヒータ380と、温風噴出しノズル382とで構成される。乾燥部318で乾燥処理が行われた用紙1は、乾燥ドラム376から中間搬送部330を介して定着部320の定着ドラム384へ受け渡される。
(Dry part)
The drying unit 318 is a mechanism for drying moisture contained in the solvent separated by the color material aggregation action, and includes a drying drum 376 and a solvent drying device 378. Similarly to the pretreatment liquid drum 354, the drying drum 376 includes a claw-shaped holding means (gripper) 377 on the outer peripheral surface thereof. The solvent drying device 378 includes a plurality of halogen heaters 380 and a hot air jet nozzle 382. The sheet 1 that has been dried by the drying unit 318 is transferred from the drying drum 376 to the fixing drum 384 of the fixing unit 320 via the intermediate conveyance unit 330.
 〔定着部〕
 定着部320は、用紙1の搬送方向の描画部316よりも下流側に配置される。定着部320は、定着ドラム384、ハロゲンヒータ386、定着ローラ388、及びインラインスキャナ390で構成される。定着ドラム384は、前処理液ドラム354と同様に、その外周面に爪形状の保持手段(グリッパ)385を備える。
[Fixing part]
The fixing unit 320 is disposed downstream of the drawing unit 316 in the conveyance direction of the paper 1. The fixing unit 320 includes a fixing drum 384, a halogen heater 386, a fixing roller 388, and an inline scanner 390. Like the pretreatment liquid drum 354, the fixing drum 384 includes a claw-shaped holding means (gripper) 385 on the outer peripheral surface thereof.
 インラインスキャナ390は、用紙1に印刷された画像及びチャート(濃度調整用チャート群Cの各濃度パッチ、吐出方向測定用チャートCを含む)を一定の読取周波数(サンプリング周波数)で読み取り、画像の濃度、及び画像の欠陥等を検出するための手段であり、CCD(Charge Coupled Device)ラインセンサ等が適用される。 Line scanner 390 reads the paper 1 to the printed image and chart (the density patch of density adjustment chart group C 3, including a discharge direction measurement chart C 4) at a fixed reading frequency (sampling frequency), the image In this case, a CCD (Charge Coupled Device) line sensor or the like is applied.
 〔排紙部〕
 排紙部322は、排出トレイ392を備えており、この排出トレイ392と定着部320の定着ドラム384との間に、これらに対接するように渡し胴394、搬送ベルト396、張架ローラ398が設けられている。用紙1は、渡し胴394により搬送ベルト396に送られ、排出トレイ392に排出される。搬送ベルト396による用紙搬送機構の詳細は図示しないが、印刷後の用紙1は無端状の搬送ベルト396間に掛け渡された不図示のグリッパによって用紙先端部が保持され、搬送ベルト396の回転によって排出トレイ392の上方に運ばれる。
[Paper output section]
The paper discharge unit 322 includes a discharge tray 392, and a transfer drum 394, a conveyance belt 396, and a stretching roller 398 are provided between the discharge tray 392 and the fixing drum 384 of the fixing unit 320 so as to be in contact therewith. Is provided. The sheet 1 is sent to the transport belt 396 by the transfer drum 394 and discharged to the discharge tray 392. Although the details of the paper transport mechanism by the transport belt 396 are not shown, the printed paper 1 is held at the leading end of the paper by a gripper (not shown) that is stretched between the endless transport belt 396, and the transport belt 396 rotates. It is carried above the discharge tray 392.
 また、図20には示されていないが、本例のインクジェット印刷機300には、前処理液付与部314に対して前処理液を供給する手段を備えるとともに、各インクジェットヘッド372Ka、372Kb、372Ca、372Cb、372Ma、372Mb、372Ya、及び372Ybのクリーニング(ノズル面のワイピング、パージ、ノズル吸引等)を行うヘッドメンテナンス部、用紙搬送路上における用紙1の位置を検出する位置検出センサ、装置各部の温度を検出する温度センサ等を備えている。 Although not shown in FIG. 20, the ink jet printing machine 300 of the present example includes means for supplying a pretreatment liquid to the pretreatment liquid application unit 314, and each ink jet head 372 Ka, 372 Kb, 372 Ca. , 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb cleaning (nozzle surface wiping, purging, nozzle suction, etc.), a head maintenance unit, a position detection sensor for detecting the position of the sheet 1 on the sheet conveyance path, and the temperature of each part of the apparatus A temperature sensor or the like is detected.
 〔制御系〕
 図22は、インクジェット印刷機300のシステム構成を示すブロック図である。インクジェット印刷機300は、インクジェットヘッド450、通信インターフェース470、システムコントローラ472、プリント制御部474、ヘッドドライバ478、モータドライバ480、ヒータドライバ482、前処理液付与制御部484、乾燥制御部486、定着制御部488、メモリ490、ROM(Read Only Memory)492、及びエンコーダ494等を備えている。
[Control system]
FIG. 22 is a block diagram showing a system configuration of the inkjet printer 300. The inkjet printer 300 includes an inkjet head 450, a communication interface 470, a system controller 472, a print controller 474, a head driver 478, a motor driver 480, a heater driver 482, a pretreatment liquid application controller 484, a drying controller 486, and a fixing control. 488, a memory 490, a ROM (Read Only Memory) 492, an encoder 494, and the like.
 なお、ここではインクジェットヘッド372Ka、372Kb、372Ca、372Cb、372Ma、372Mb、372Ya、及び372Ybをインクジェットヘッド450と表記している。 Here, the inkjet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb are represented as the inkjet head 450.
 通信インターフェース470は、上位制御装置であるホストコンピュータ550から送られてくる画像データを受信するインターフェース部である。通信インターフェース470にはシリアルインターフェース又はパラレルインターフェースを適用することができる。この部分には、通信を高速化するための不図示のバッファメモリを搭載してもよい。 The communication interface 470 is an interface unit that receives image data sent from the host computer 550 that is a host controller. A serial interface or a parallel interface can be applied to the communication interface 470. In this part, a buffer memory (not shown) for speeding up communication may be mounted.
 ホストコンピュータ550から送出された画像データは通信インターフェース470を介してインクジェット印刷機300に取り込まれ、一旦メモリ490に記憶される。 The image data sent from the host computer 550 is taken into the ink jet printer 300 via the communication interface 470 and temporarily stored in the memory 490.
 メモリ490は、通信インターフェース470を介して入力された画像を一旦格納する記憶手段であり、システムコントローラ472を通じてデータの読み書きが行われる。メモリ490は、半導体素子からなるメモリに限らず、ハードディスク等磁気媒体を用いてもよい。 The memory 490 is a storage unit that temporarily stores an image input via the communication interface 470, and data is read and written through the system controller 472. The memory 490 is not limited to a memory made of a semiconductor element, and a magnetic medium such as a hard disk may be used.
 システムコントローラ472は、中央演算処理装置(CPU:Central Processing Unit)及びその周辺回路等から構成され、所定のプログラムに従ってインクジェット印刷機300の全体を制御する制御装置として機能するとともに、各種演算を行う演算装置として機能する。 The system controller 472 is composed of a central processing unit (CPU: Central Processing Unit) and its peripheral circuits, and functions as a control device that controls the entire inkjet printing machine 300 according to a predetermined program and performs various calculations. Functions as a device.
 ROM492にはシステムコントローラ472のCPUが実行するプログラム及び制御に必要な各種データ等が格納されている。ROM492は、書き換え不能な記憶手段であってもよいし、書き換え可能な記憶手段であってもよい。メモリ490は、画像データの一時記憶領域として利用されるとともに、プログラムの展開領域及びCPUの演算作業領域としても利用される。 The ROM 492 stores programs executed by the CPU of the system controller 472 and various data necessary for control. The ROM 492 may be a non-rewritable storage unit or a rewritable storage unit. The memory 490 is used as a temporary storage area for image data, and is also used as a program development area and a calculation work area for the CPU.
 モータドライバ480は、システムコントローラ472からの指示に従ってモータ496を駆動するドライバである。図22では、装置内の各部に配置される様々なモータを代表して符号496で図示している。モータ496には、図20の給紙胴352、前処理液ドラム354、描画ドラム370、乾燥ドラム376、定着ドラム384、渡し胴394等の回転を駆動するモータ、描画ドラム370の吸引孔から負圧吸引するためのポンプの駆動モータ、インクジェットヘッド450の位置を変更することでインクジェットヘッド450のノズル面20と描画ドラム370の外周面との間の距離TD(図21参照)を変更するモータ、インクジェットヘッド450を描画ドラム370外のメンテナンスエリアに移動させる退避機構のモータ等が含まれている。 The motor driver 480 is a driver that drives the motor 496 in accordance with an instruction from the system controller 472. In FIG. 22, various motors arranged in each unit in the apparatus are represented by reference numeral 496. The motor 496 includes a feed drum 352, a pretreatment liquid drum 354, a drawing drum 370, a drying drum 376, a fixing drum 384, a transfer drum 394, and other motors that drive rotation of the drawing drum 370. A motor for changing the distance TD (see FIG. 21) between the nozzle surface 20 of the inkjet head 450 and the outer peripheral surface of the drawing drum 370 by changing the position of the inkjet head 450; A motor or the like of a retraction mechanism that moves the inkjet head 450 to a maintenance area outside the drawing drum 370 is included.
 ヒータドライバ482は、システムコントローラ472からの指示に従って、ヒータ498を駆動するドライバである。図22では、装置内の各部に配置される様々なヒータを代表して符号498で図示している。 The heater driver 482 is a driver that drives the heater 498 in accordance with an instruction from the system controller 472. In FIG. 22, various heaters arranged in each unit in the apparatus are represented by reference numeral 498.
 プリント制御部474は、システムコントローラ472の制御に従い、メモリ490内の画像データから印字制御用の信号を生成するための各種加工、補正等の処理を行う信号処理機能を有し、生成した印字データ(ドットデータ)をヘッドドライバ478に供給する制御部である。 The print control unit 474 has a signal processing function for performing various processing and correction processing for generating a print control signal from the image data in the memory 490 according to the control of the system controller 472. The generated print data This is a control unit that supplies (dot data) to the head driver 478.
 プリント制御部474において所要の信号処理が施され、得られたドットデータに基づいて、ヘッドドライバ478を介してインクジェットヘッド450のインク滴の吐出量及び吐出タイミングの制御が行われる。 The required signal processing is performed in the print control unit 474, and the ejection amount and ejection timing of the ink droplets of the inkjet head 450 are controlled via the head driver 478 based on the obtained dot data.
 プリント制御部474には不図示の画像バッファメモリが備えられており、プリント制御部474における画像データ処理時に画像データ及びパラメータ等のデータが画像バッファメモリに一時的に格納される。また、プリント制御部474とシステムコントローラ472とを統合して1つのプロセッサで構成する態様も可能である。 The print control unit 474 includes an image buffer memory (not shown), and image data, parameters, and other data are temporarily stored in the image buffer memory when the print control unit 474 processes image data. Also possible is an aspect in which the print control unit 474 and the system controller 472 are integrated to form a single processor.
 ヘッドドライバ478は、プリント制御部474から与えられる印字データに基づき、インクジェットヘッド450の各ノズルに対応する吐出エネルギー発生素子を駆動するための駆動信号を出力する。ヘッドドライバ478にはヘッドの駆動条件を一定に保つためのフィードバック制御系を含んでいてもよい。 The head driver 478 outputs a drive signal for driving the ejection energy generating element corresponding to each nozzle of the inkjet head 450 based on the print data provided from the print control unit 474. The head driver 478 may include a feedback control system for keeping the head driving condition constant.
 ヘッドドライバ478から出力された駆動信号がインクジェットヘッド450に加えられることによって、対応するノズルからインク滴が吐出される。用紙1を搬送速度で搬送しながらインクジェットヘッド450からのインク吐出を制御することにより、用紙1の記録面に画像が形成される。 When the drive signal output from the head driver 478 is applied to the inkjet head 450, ink droplets are ejected from the corresponding nozzle. An image is formed on the recording surface of the paper 1 by controlling ink ejection from the ink jet head 450 while transporting the paper 1 at the transport speed.
 前処理液付与制御部484は、システムコントローラ472からの指示にしたがい、前処理液塗布部356(図20参照)の動作を制御する。乾燥制御部486は、システムコントローラ472からの指示にしたがい、溶媒乾燥装置378(図20参照)の動作を制御する。 The pretreatment liquid application controller 484 controls the operation of the pretreatment liquid application unit 356 (see FIG. 20) in accordance with an instruction from the system controller 472. The drying control unit 486 controls the operation of the solvent drying device 378 (see FIG. 20) according to an instruction from the system controller 472.
 定着制御部488は、システムコントローラ472からの指示にしたがい、定着部320のハロゲンヒータ386及び定着ローラ388(図20参照)から成る定着加圧部499の動作を制御する。 The fixing controller 488 controls the operation of the fixing pressure unit 499 including the halogen heater 386 and the fixing roller 388 (see FIG. 20) of the fixing unit 320 in accordance with an instruction from the system controller 472.
 インラインスキャナ390は、用紙1に印字された画像を読み取り、所要の信号処理等を行って印字状況(吐出の有無、打滴のばらつき、光学濃度等)を検出し、その検出結果をシステムコントローラ472及びプリント制御部474に提供する。 The in-line scanner 390 reads an image printed on the paper 1 and performs necessary signal processing and the like to detect a printing situation (whether ejection is performed, droplet ejection variation, optical density, etc.), and the detection result is a system controller 472. And the print control unit 474.
 エンコーダ494は、描画ドラム370(図20参照)に設けられている。エンコーダ494の検出信号に基づいて吐出トリガー信号(画素トリガー)が発せされる。インクジェットヘッド450の打滴タイミングは、エンコーダ494の検出信号に同期させる。これにより、高精度に着弾位置を決定することができる。 The encoder 494 is provided on the drawing drum 370 (see FIG. 20). A discharge trigger signal (pixel trigger) is issued based on the detection signal of the encoder 494. The droplet ejection timing of the inkjet head 450 is synchronized with the detection signal of the encoder 494. Thereby, the landing position can be determined with high accuracy.
 プリント制御部474は、インラインスキャナ390から得られる情報に基づいてインクジェットヘッド450に対する各種補正(不吐補正及び濃度補正)を行うとともに、必要に応じて予備吐出及び吸引、ワイピング等のクリーニング動作(ノズル回復動作)を実施する制御を行う。 The print controller 474 performs various corrections (non-discharge correction and density correction) on the inkjet head 450 based on information obtained from the in-line scanner 390, and cleaning operations (nozzles such as preliminary discharge, suction, and wiping as necessary) Control to implement recovery operation).
 〔画像印刷とチャート印刷(画像形成装置の制御方法)〕
 インクジェット印刷機300は、用紙1を搬送速度Vdで搬送させて画像を印刷する高精細印刷モード(通常印刷モードの一例)と、用紙1を搬送速度Vdよりも速い搬送速度で搬送させて画像を印刷する高速印刷モードと、インクジェットヘッド372Ka、372Kb、372Ca、372Cb、372Ma、372Mb、372Ya、及び372Yb毎の滴量調整及び吐出方向測定のためのチャートを印刷するチャート印刷モードと、を有する。高速印刷モードは、印刷品質よりも印刷速度を優先するモードである。高速印刷モードでは、1つのノズル28(図3参照)において吐出された小滴のインク滴により形成されたインクドットIDがY方向に繋がる(図14参照)搬送速度で印刷する。
[Image printing and chart printing (control method of image forming apparatus)]
The inkjet printer 300 conveys the image by conveying the paper 1 at the conveyance speed Vd and printing the image with a high-definition printing mode (an example of the normal printing mode) and conveying the paper 1 at a conveyance speed faster than the conveyance speed Vd. A high-speed printing mode for printing, and a chart printing mode for printing a chart for adjusting the droplet amount and measuring the ejection direction for each of the inkjet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb. The high-speed printing mode is a mode in which the printing speed is given priority over the printing quality. In the high-speed printing mode, printing is performed at a conveyance speed in which ink dot IDs formed by small ink droplets ejected from one nozzle 28 (see FIG. 3) are connected in the Y direction (see FIG. 14).
 インクジェット印刷機300の使用者は、インクジェット印刷機300の不図示の操作部を操作することで、インクジェット印刷機300の印刷モードを決定することができる。 The user of the inkjet printer 300 can determine the print mode of the inkjet printer 300 by operating an operation unit (not shown) of the inkjet printer 300.
 高精細印刷モードにおいて通常の画像を印刷する場合は、まずシステムコントローラ472(画像形成制御部の一例)は、モータ496を制御し、インクジェットヘッド372Ka、372Kb、372Ca、372Cb、372Ma、372Mb、372Ya、及び372Ybのノズル面20と描画ドラム370の外周面370Aとの間の距離TDをTD1[mm]とする。 When printing a normal image in the high-definition printing mode, first, the system controller 472 (an example of an image formation control unit) controls the motor 496 to control the inkjet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, The distance TD between the nozzle surface 20 of 372Yb and the outer peripheral surface 370A of the drawing drum 370 is TD1 [mm].
 システムコントローラ472は、給紙部312によって表面にインク吸収層が未コーティングの用紙1(第1記録媒体の一例)を給紙させ、給紙胴352、前処理液ドラム354、描画ドラム370、乾燥ドラム376、定着ドラム384、渡し胴394を制御して用紙1を搬送速度Vdで搬送させる。 The system controller 472 feeds the sheet 1 (an example of the first recording medium) with the ink absorption layer uncoated on the surface by the sheet feeding unit 312, and feeds the sheet feeding cylinder 352, the pretreatment liquid drum 354, the drawing drum 370, and the drying. The drum 376, the fixing drum 384, and the transfer drum 394 are controlled to convey the sheet 1 at the conveyance speed Vd.
 システムコントローラ472は、前処理液塗布部356によって用紙1の記録面に前処理液を塗布する。また、システムコントローラ472は、描画ドラム370によって用紙1を搬送速度Vdで搬送させ、メモリ490内の画像データに基づいてインクジェットヘッド450(各インクジェットヘッド372Ka、372Kb、372Ca、372Cb、372Ma、372Mb、372Ya、及び372Yb)によって吐出周波数f[kHz]で、画像データに応じて小滴、中滴、又は大滴のインク滴を吐出させて、用紙1に画像を印刷する(画像形成制御工程の一例)。 The system controller 472 applies the pretreatment liquid to the recording surface of the paper 1 by the pretreatment liquid application unit 356. Further, the system controller 472 causes the drawing drum 370 to convey the paper 1 at the conveyance speed Vd, and based on the image data in the memory 490, the inkjet head 450 (each inkjet head 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya). , 372Yb), and ejects small, medium, or large ink droplets according to the image data at an ejection frequency f [kHz], and prints an image on the paper 1 (an example of an image formation control process). .
 さらに、システムコントローラ472は、インラインスキャナ390を制御し、定着ドラム384によって搬送速度Vdで搬送される用紙1の記録面の画像を読取周波数fr[kHz]で読み取る。システムコントローラ472は、インラインスキャナ390の読取データによって、用紙1に印刷された画像の良否を判断する。 Furthermore, the system controller 472 controls the inline scanner 390 and reads the image on the recording surface of the paper 1 conveyed by the fixing drum 384 at the conveyance speed Vd at the reading frequency fr [kHz]. The system controller 472 determines the quality of the image printed on the paper 1 based on the read data of the inline scanner 390.
 一方、チャート印刷モードにおいて濃度調整用チャート群C又は吐出方向測定用チャートCを印刷する場合は、システムコントローラ472(チャート形成制御部の一例)は、モータ496を制御し、インクジェットヘッド372Ka、372Kb、372Ca、372Cb、372Ma、372Mb、372Ya、及び372Ybのノズル面20と描画ドラム370の外周面370Aとの間の距離TDをTD2[mm]とする。ここで、TD2はTD1よりも小さい値である。 On the other hand, when printing the density adjustment chart group C 3 or ejection direction measurement chart C 4 in the chart printing mode, the system controller 472 (an example of a chart formation control unit) controls the motor 496, the ink jet head 372Ka, A distance TD between the nozzle surface 20 of 372 Kb, 372 Ca, 372 Cb, 372 Ma, 372 Mb, 372 Ya, and 372 Yb and the outer peripheral surface 370 A of the drawing drum 370 is TD 2 [mm]. Here, TD2 is a value smaller than TD1.
 濃度調整用チャート群C及び吐出方向測定用チャートCを印刷する場合は、画像を印刷する場合よりも搬送速度が遅いため、インクジェットヘッド372Ka、372Kb、372Ca、372Cb、372Ma、372Mb、372Ya、及び372Ybと用紙1との接触リスクが低く、また接触した際の被害が少ない。このため、濃度調整用チャート群C及び吐出方向測定用チャートCを印刷する場合は、画像を印刷する場合よりも距離TDを小さくすることができ、また距離TDを小さくすることで濃度調整用チャート群C及び吐出方向測定用チャートCのノイズを低減することができる。 When printing a density adjustment chart group C 3 and discharge direction measurement chart C 4, since slower transport speed than when printing images, the ink jet head 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, In addition, the risk of contact between 372Yb and the paper 1 is low, and the damage caused by contact is small. Therefore, when printing the density adjustment chart group C 3 and the ejection direction measurement chart C 4 , the distance TD can be made smaller than when printing an image, and the density adjustment can be performed by reducing the distance TD. noise use charts group C 3 and discharge direction measurement chart C 4 can be reduced.
 次に、システムコントローラ472は、給紙部312によって用紙1を給紙させる。この用紙1は、記録面(表面)にインク吸収層(インク受容層)がコーティングされている(第2記録媒体の一例)。インク吸収層とは、インクを吸収して乾燥を早めることで、インクによる滲みを防止するための層である。 Next, the system controller 472 feeds the paper 1 by the paper feed unit 312. The sheet 1 has a recording surface (front surface) coated with an ink absorbing layer (ink receiving layer) (an example of a second recording medium). The ink absorption layer is a layer for preventing bleeding due to ink by absorbing ink and accelerating drying.
 システムコントローラ472は、給紙胴352、前処理液ドラム354、描画ドラム370、乾燥ドラム376、定着ドラム384、渡し胴394を制御して用紙1を搬送速度Vhで搬送させる。搬送速度Vhは、搬送速度Vdよりも遅い速度であり、式4又は式7を満たす。 The system controller 472 controls the paper feed cylinder 352, the pretreatment liquid drum 354, the drawing drum 370, the drying drum 376, the fixing drum 384, and the transfer cylinder 394 to convey the paper 1 at the conveyance speed Vh. The conveyance speed Vh is a speed slower than the conveyance speed Vd and satisfies Expression 4 or Expression 7.
 ここでは、システムコントローラ472は、用紙1の記録面に前処理液を塗布しない。すなわち、システムコントローラ472は、前処理液塗布部356による前処理液の塗布を停止させる。このように、表面にインク吸収層がコーティングされた用紙1を使用して前処理液を塗布しないことで、搬送速度の変動に伴う前処理液の塗布量の変動を排除することができる。 Here, the system controller 472 does not apply the pretreatment liquid to the recording surface of the paper 1. That is, the system controller 472 stops the application of the pretreatment liquid by the pretreatment liquid application unit 356. In this way, by not using the paper 1 whose surface is coated with the ink absorbing layer and not applying the pretreatment liquid, it is possible to eliminate fluctuations in the application amount of the pretreatment liquid accompanying fluctuations in the conveyance speed.
 なお、インク吸収層を有しない用紙1を使用し、前処理液塗布部356においてインクジェットヘッドによって前処理液を塗布してもよい。インクジェットヘッドによって前処理液を塗布することで、前処理液の塗布量の調整が容易となり、搬送速度が変動しても適切な量だけ前処理液を塗布することができる。 Note that the paper 1 that does not have the ink absorbing layer may be used, and the pretreatment liquid may be applied by the inkjet head in the pretreatment liquid application unit 356. By applying the pretreatment liquid with the ink jet head, the application amount of the pretreatment liquid can be easily adjusted, and the pretreatment liquid can be applied in an appropriate amount even if the conveyance speed fluctuates.
 また、システムコントローラ472は、描画ドラム370によって用紙1を搬送速度Vhで搬送させ、メモリ490内の濃度調整用チャート群C又は吐出方向測定用チャートCのデータに基づいてインクジェットヘッド450(各インクジェットヘッド372Ka、372Kb、372Ca、372Cb、372Ma、372Mb、372Ya、及び372Yb)によって吐出周波数f[kHz]で小滴のインク滴を吐出させ、用紙1に濃度調整用チャート群C又は吐出方向測定用チャートCを印刷する(チャート形成制御工程の一例)。 Further, the system controller 472 causes the drawing drum 370 to convey the paper 1 at the conveyance speed Vh, and based on the data of the density adjustment chart group C 3 or the ejection direction measurement chart C 4 in the memory 490, the inkjet head 450 (each inkjet head 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, 372Ya, and 372Yb) by ejecting ink droplets of the droplet at ejection frequency f [kHz], the concentration control chart group C 3 or ejection direction measured sheet 1 print use chart C 4 (an example of a chart formation control step).
 さらに、システムコントローラ472は、インラインスキャナ390を制御し、定着ドラム384によって搬送速度Vhで搬送される用紙1の記録面の濃度調整用チャート群C又は吐出方向測定用チャートCを読取周波数fr[kHz]で読み取る。システムコントローラ472は、濃度調整用チャート群Cの読取データを解析して、各インクジェットヘッド372Ka、372Kb、372Ca、372Cb、372Ma、372Mb、372Ya、及び372Ybのノズル28(図3参照)に対応する圧電素子44に印加する駆動電圧をそれぞれ調整する、又は吐出方向測定用チャートCの読取データを解析して、ノズル28毎の着弾位置ずれ量ΔXを測定する。 Further, the system controller 472 controls the line scanner 390, a recording surface density adjustment chart group C 3 or read the ejection direction measurement chart C 4 frequency fr of the sheet 1 transported at the transportation speed Vh by the fixing drum 384 Read in [kHz]. The system controller 472 analyzes the read data of the density adjustment chart group C 3, the ink jet heads 372Ka, 372Kb, 372Ca, 372Cb, 372Ma, 372Mb, corresponding to 372Ya, and 372Yb nozzle 28 (see FIG. 3) adjusting each driving voltage applied to the piezoelectric element 44, or by analyzing the read data in the ejection direction measurement chart C 4, for measuring the landing position shift amount ΔX of each nozzle 28.
 このように、搬送速度Vhのチャート形成時におけるインラインスキャナ390の読取周波数fr[kHz]は、搬送速度Vdの通常画像形成時と等しい。その結果、チャート形成時のインラインスキャナ390による読取回数は、画像形成時の読取回数よりも増加する。したがって、濃度調整用チャート群C及び吐出方向測定用チャートCの読取におけるノイズを低減することができる。 Thus, the reading frequency fr [kHz] of the inline scanner 390 at the time of chart formation at the conveyance speed Vh is equal to that at the time of normal image formation at the conveyance speed Vd. As a result, the number of readings by the inline scanner 390 during chart formation is greater than the number of readings during image formation. Therefore, it is possible to reduce the noise in the read density adjustment chart group C 3 and discharge direction measurement chart C 4.
 <その他>
 ここまで説明した実施形態において、例えば、画像形成制御部110、チャート形成制御部112、システムコントローラ472、プリント制御部474、前処理液付与制御部484等の各種の処理を実行する処理部(processing unit)のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。各種のプロセッサには、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。
<Others>
In the embodiments described so far, for example, a processing unit (processing) that executes various processes such as the image formation control unit 110, the chart formation control unit 112, the system controller 472, the print control unit 474, and the pretreatment liquid application control unit 484. The hardware structure of unit) is various processors as shown below. For various processors, the circuit configuration can be changed after manufacturing a CPU (Central Processing Unit), FPGA (Field Programmable Gate Array), which is a general-purpose processor that functions as various processing units by executing software (programs). Includes a dedicated electrical circuit that is a processor having a circuit configuration specifically designed to execute a specific process such as a programmable logic device (PLD) or ASIC (Application Specific Integrated Circuit) It is.
 1つの処理部は、これら各種のプロセッサのうちの1つで構成されていてもよいし、同種又は異種の2つ以上のプロセッサ(例えば、複数のFPGA、あるいはCPUとFPGAの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。複数の処理部を1つのプロセッサで構成する例としては、第1に、サーバ及びクライアント等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組合せで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、各種のプロセッサを1つ以上用いて構成される。 One processing unit may be configured by one of these various processors, or may be configured by two or more processors of the same type or different types (for example, a plurality of FPGAs or a combination of CPUs and FPGAs). May be. Further, the plurality of processing units may be configured by one processor. As an example of configuring a plurality of processing units with one processor, first, as represented by a computer such as a server and a client, one processor is configured with a combination of one or more CPUs and software. There is a form in which the processor functions as a plurality of processing units. Second, as represented by a system-on-chip (SoC) or the like, a form using a processor that realizes the functions of the entire system including a plurality of processing units with a single IC (integrated circuit) chip. is there. As described above, various processing units are configured using one or more various processors as a hardware structure.
 さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(circuitry)である。 Further, the hardware structure of these various processors is more specifically an electric circuit (circuitry) in which circuit elements such as semiconductor elements are combined.
 本発明の技術的範囲は、上記の実施形態に記載の範囲には限定されない。各実施形態における構成等は、本発明の趣旨を逸脱しない範囲で、各実施形態間で適宜組み合わせることができる。 The technical scope of the present invention is not limited to the scope described in the above embodiment. The configurations and the like in the embodiments can be appropriately combined between the embodiments without departing from the gist of the present invention.
1 用紙
10 インクジェットヘッド
12-i ヘッドモジュール
16 フレーム
18 フレキシブル基板
20 ノズル面
22 ヘッドモジュール保持部材
24 ヘッド保護部材
28 ノズル
28-1 ノズル
28-2 ノズル
28-3 ノズル
30 ノズルプレート
32 圧力室
34 供給口
36 共通流路
38 流路板
40 振動板
42 個別電極
44 圧電素子
46 共通電極
50 インク室ユニット
100 インクジェット印刷機
102 プラテン
104Ca インクジェットヘッド
104Cb インクジェットヘッド
104Ka インクジェットヘッド
104Kb インクジェットヘッド
104Ma インクジェットヘッド
104Mb インクジェットヘッド
104Ya インクジェットヘッド
104Yb インクジェットヘッド
106C インクタンク
106K インクタンク
106M インクタンク
106Y インクタンク
108 記憶部
110 画像形成制御部
112 チャート形成制御部
200 インクジェット印刷機
204C インクジェットヘッド
204K インクジェットヘッド
204M インクジェットヘッド
204Y インクジェットヘッド
210C-i 濃度パッチ
210Ca-i 濃度パッチ
210Cb-i 濃度パッチ
210K-i 濃度パッチ
210Ka-i 濃度パッチ
210Kb-i 濃度パッチ
210M-i 濃度パッチ
210Ma-i 濃度パッチ
210Mb-i 濃度パッチ
210Y-i 濃度パッチ
210Ya-i 濃度パッチ
210Yb-i 濃度パッチ
300 インクジェット印刷機
312 給紙部
314 前処理液付与部
316 描画部
318 乾燥部
320 定着部
322 排紙部
326 中間搬送部
328 中間搬送部
330 中間搬送部
350 給紙トレイ
352 給紙胴
354 前処理液ドラム
355 保持手段
356 前処理液塗布部
370 描画ドラム
370A 外周面
371 保持手段
372Ca インクジェットヘッド
372Cb インクジェットヘッド
372Ka インクジェットヘッド
372Kb インクジェットヘッド
372Ma インクジェットヘッド
372Mb インクジェットヘッド
372Ya インクジェットヘッド
372Yb インクジェットヘッド
374 ローラ
376 乾燥ドラム
377 保持手段
378 溶媒乾燥装置
380 ハロゲンヒータ
382 温風噴出しノズル
384 定着ドラム
385 保持手段
386 ハロゲンヒータ
388 定着ローラ
390 インラインスキャナ
392 排出トレイ
394 渡し胴
396 搬送ベルト
398 張架ローラ
450 インクジェットヘッド
470 通信インターフェース
472 システムコントローラ
474 プリント制御部
478 ヘッドドライバ
480 モータドライバ
482 ヒータドライバ
484 前処理液付与制御部
486 乾燥制御部
488 定着制御部
490 メモリ
492 ROM
494 エンコーダ
496 モータ
498 ヒータ
499 定着加圧部
550 ホストコンピュータ
 濃度調整用チャート
 濃度調整用チャート
 濃度調整用チャート
 吐出方向測定用チャート
ID-1 インクドット
ID-2 インクドット
ID-3 インクドット
LD ライン
LD-1 ライン
LD-2 ライン
LD-3 ライン
LN 投影ノズル列
1 Paper 10 Inkjet head 12-i Head module 16 Frame 18 Flexible substrate 20 Nozzle surface 22 Head module holding member 24 Head protection member 28 Nozzle 28-1 Nozzle 28-2 Nozzle 28-3 Nozzle 30 Nozzle plate 32 Pressure chamber 34 Supply port 36 common channel 38 channel plate 40 diaphragm 42 individual electrode 44 piezoelectric element 46 common electrode 50 ink chamber unit 100 inkjet printer 102 platen 104Ca inkjet head 104Cb inkjet head 104Ka inkjet head 104Kb inkjet head 104Ma inkjet head 104Mb inkjet head 104Ya inkjet Head 104Yb Inkjet head 106C Ink tank 106K Ink tank 1 06M Ink tank 106Y Ink tank 108 Storage unit 110 Image formation control unit 112 Chart formation control unit 200 Inkjet printer 204C Inkjet head 204K Inkjet head 204M Inkjet head 204Y Inkjet head 210C-i Density patch 210Ca-i Density patch 210Cb-i Density patch 210K-i density patch 210Ka-i density patch 210Kb-i density patch 210M-i density patch 210Ma-i density patch 210Mb-i density patch 210Y-i density patch 210Ya-i density patch 210Yb-i density patch 300 inkjet printer 312 Paper feed unit 314 Pretreatment liquid application unit 316 Drawing unit 318 Drying unit 320 Fixing unit 322 Paper discharge unit 326 Intermediate transport unit 328 Intermediate transport Feed unit 330 Intermediate transport unit 350 Paper feed tray 352 Paper feed drum 354 Pretreatment liquid drum 355 Holding means 356 Pretreatment liquid application part 370 Drawing drum 370A Outer peripheral surface 371 Holding means 372Ca Inkjet head 372Cb Inkjet head 372Ka Inkjet head 372Kb Inkjet head 372Ma Inkjet head 372Mb Inkjet head 372Ya Inkjet head 372Yb Inkjet head 374 Roller 376 Drying drum 377 Holding means 378 Solvent drying device 380 Halogen heater 382 Hot air ejection nozzle 384 Fixing drum 385 Holding means 386 Halogen heater 388 Fixing roller 390 Inline scanner 392 Discharge tray 394 Transfer drum 396 Conveyor belt 398 Tension roller 450 Inkjet head 470 communications interface 472 system controller 474 print controller 478 a head driver 480 a motor driver 482 heater driver 484 pre-treatment liquid deposition control unit 486 drying control unit 488 fixing control unit 490 memory 492 ROM
494 Encoder 496 Motor 498 Heater 499 Fixing pressure unit 550 Host computer C 1 Density adjustment chart C 2 Density adjustment chart C 3 Density adjustment chart C 4 Ejection direction measurement chart ID-1 Ink dot ID-2 Ink dot ID -3 Ink dots LD Line LD-1 Line LD-2 Line LD-3 Line LN Projection nozzle row

Claims (13)

  1.  搬送方向に沿って記録媒体を搬送する搬送部と、
     液体を吐出する複数の吐出素子をそれぞれ有し、前記搬送方向に沿って並べて配置された複数の液体吐出ヘッドと、
     前記複数の液体吐出ヘッドにそれぞれ同じ液体を供給する液体供給部と、
     前記搬送部により前記記録媒体を第1搬送速度で搬送させ、かつ前記複数の液体吐出ヘッドの前記複数の吐出素子から前記液体を吐出させて、前記記録媒体に画像を形成する画像形成制御部と、
     前記搬送部により前記記録媒体を前記第1搬送速度よりも遅い第2搬送速度で搬送させ、かつ1つの前記液体吐出ヘッドの前記複数の吐出素子から前記液体を吐出させて、前記記録媒体にチャートを形成するチャート形成制御部と、
     を備え、
     前記吐出素子から吐出される液体によって前記記録媒体に形成されるドットの径をD[μm]、前記チャートを形成する際の前記吐出素子の前記液体の吐出周波数をf[kHz]、前記第2搬送速度をVh[m/s]とすると、
     Vh≦D×f/1000
     を満たす画像形成装置。
    A transport unit for transporting the recording medium along the transport direction;
    A plurality of liquid discharge heads each having a plurality of discharge elements for discharging liquid and arranged side by side along the transport direction;
    A liquid supply unit for supplying the same liquid to each of the plurality of liquid ejection heads;
    An image formation control unit that forms the image on the recording medium by causing the recording unit to convey the recording medium at a first conveying speed and ejecting the liquid from the plurality of ejection elements of the plurality of liquid ejection heads; ,
    The recording medium is transported at a second transport speed that is slower than the first transport speed by the transport unit, and the liquid is ejected from the plurality of ejecting elements of one liquid ejecting head, and the recording medium is charted. A chart formation control unit for forming
    With
    The diameter of dots formed on the recording medium by the liquid ejected from the ejection element is D [μm], the ejection frequency of the liquid of the ejection element when forming the chart is f [kHz], and the second When the transport speed is Vh [m / s]
    Vh ≦ D × f / 1000
    An image forming apparatus satisfying the requirements.
  2.  前記第1搬送速度をVm[m/s]、前記液体吐出ヘッドの数を2以上の整数Nとすると、
     Vh≦Vm/N
     を満たす請求項1に記載の画像形成装置。
    When the first transport speed is Vm [m / s] and the number of the liquid discharge heads is an integer N of 2 or more,
    Vh ≦ Vm / N
    The image forming apparatus according to claim 1, wherein:
  3.  前記第1搬送速度をVm[m/s]、前記液体吐出ヘッドの数を2以上の整数Nとすると、
     Vm/N<Vh
     を満たす請求項1に記載の画像形成装置。
    When the first transport speed is Vm [m / s] and the number of the liquid discharge heads is an integer N of 2 or more,
    Vm / N <Vh
    The image forming apparatus according to claim 1, wherein:
  4.  前記搬送方向の前記複数の液体吐出ヘッドよりも下流側に前記記録媒体に形成された画像及びチャートを読み取るインラインスキャナを備え、
     前記画像形成制御部により形成された画像を読み取る際の前記インラインスキャナの読取周波数と前記チャート形成制御部により形成されたチャートを読み取る際の前記インラインスキャナの読取周波数とが等しい請求項1から3のいずれか1項に記載の画像形成装置。
    An inline scanner that reads an image and a chart formed on the recording medium on the downstream side of the plurality of liquid ejection heads in the transport direction;
    The reading frequency of the inline scanner when reading an image formed by the image formation control unit is equal to the reading frequency of the inline scanner when reading a chart formed by the chart formation control unit. The image forming apparatus according to claim 1.
  5.  前記搬送方向の前記複数の液体吐出ヘッドよりも上流側に前記記録媒体に前処理液を塗布する前処理液塗布部を備え、
     前記画像形成制御部は、表面にインク吸収層が未コーティングの第1記録媒体を使用し、前記前処理液塗布部により前記前処理液を塗布させ、
     前記チャート形成制御部は、表面にインク吸収層がコーティングされた第2記録媒体を使用し、前記前処理液塗布部による前記前処理液の塗布を停止させる請求項1から4のいずれか1項に記載の画像形成装置。
    A pretreatment liquid application unit for applying a pretreatment liquid to the recording medium upstream of the plurality of liquid ejection heads in the transport direction;
    The image formation control unit uses a first recording medium having an ink absorption layer uncoated on the surface, and applies the pretreatment liquid by the pretreatment liquid application unit,
    5. The chart forming control unit uses a second recording medium having an ink absorbing layer coated on a surface thereof, and stops application of the pretreatment liquid by the pretreatment liquid application unit. The image forming apparatus described in 1.
  6.  前記搬送方向の前記複数の液体吐出ヘッドよりも上流側に前記記録媒体に前処理液を塗布する前処理液塗布部を備え、
     前記前処理液塗布部は、前記前処理液を吐出するインクジェットヘッドを有する請求項1から4のいずれか1項に記載の画像形成装置。
    A pretreatment liquid application unit for applying a pretreatment liquid to the recording medium upstream of the plurality of liquid ejection heads in the transport direction;
    The image forming apparatus according to claim 1, wherein the pretreatment liquid application unit includes an inkjet head that discharges the pretreatment liquid.
  7.  前記画像形成制御部によって前記記録媒体に画像を形成する場合の前記液体吐出ヘッドと前記記録媒体との距離よりも、前記チャート形成制御部によって前記記録媒体にチャートを形成する場合の前記液体吐出ヘッドと前記記録媒体との距離の方が小さい請求項1から6のいずれか1項に記載の画像形成装置。 The liquid ejection head when a chart is formed on the recording medium by the chart formation control unit rather than the distance between the liquid ejection head and the recording medium when an image is formed on the recording medium by the image formation control unit The image forming apparatus according to claim 1, wherein a distance between the recording medium and the recording medium is smaller.
  8.  前記画像形成制御部は、前記搬送部により前記記録媒体を前記第1搬送速度で搬送させる通常印刷モードと、前記搬送部により前記記録媒体を前記第1搬送速度よりも速い速度で搬送させる高速印刷モードと、を有する請求項1から7のいずれか1項に記載の画像形成装置。 The image forming control unit includes a normal printing mode in which the recording unit conveys the recording medium at the first conveyance speed, and high-speed printing in which the conveyance unit conveys the recording medium at a speed higher than the first conveyance speed. The image forming apparatus according to claim 1, having a mode.
  9.  前記液体吐出ヘッドは、複数の異なる径のドットを形成可能であり、
     前記複数の異なる径のドットのうち最も小さいドットの径がD[μm]である請求項1から8のいずれか1項に記載の画像形成装置。
    The liquid discharge head can form a plurality of dots having different diameters,
    9. The image forming apparatus according to claim 1, wherein a diameter of a smallest dot among the plurality of dots having different diameters is D [μm].
  10.  前記チャートは、前記液体吐出ヘッド毎にそれぞれ形成される濃度パッチを含む請求項1から9のいずれか1項に記載の画像形成装置。 10. The image forming apparatus according to claim 1, wherein the chart includes a density patch formed for each of the liquid ejection heads.
  11.  前記チャートは、前記吐出素子毎にそれぞれ形成されるラインパターンを含む請求項1から10のいずれか1項に記載の画像形成装置。 The image forming apparatus according to claim 1, wherein the chart includes a line pattern formed for each of the ejection elements.
  12.  前記液体吐出ヘッドは、複数のヘッドモジュールが前記搬送方向に交差する第1方向に並べて配置されている請求項1から11のいずれか1項に記載の画像形成装置。 12. The image forming apparatus according to claim 1, wherein the liquid ejection head includes a plurality of head modules arranged in a first direction intersecting the transport direction.
  13.  搬送方向に沿って記録媒体を搬送する搬送部と、液体を吐出する複数の吐出素子をそれぞれ有し、前記搬送方向に沿って並べて配置された複数の液体吐出ヘッドと、前記複数の液体吐出ヘッドにそれぞれ同じ液体を供給する液体供給部と、を備える画像形成装置の制御方法であって、
     前記搬送部により前記記録媒体を第1搬送速度で搬送させ、かつ前記複数の液体吐出ヘッドの前記複数の吐出素子から前記液体を吐出させて、前記記録媒体に画像を形成する画像形成制御工程と、
     前記搬送部により前記記録媒体を前記第1搬送速度よりも遅い第2搬送速度で搬送させ、かつ1つの前記液体吐出ヘッドの前記複数の吐出素子から前記液体を吐出させて、前記記録媒体にチャートを形成するチャート形成制御工程と、
     を備え、
     前記吐出素子から吐出される液体によって前記記録媒体に形成されるドットの径をD[μm]、前記チャートを形成する際の前記吐出素子の前記液体の吐出周波数をf[kHz]、前記第2搬送速度をVh[m/s]とすると、
     Vh≦D×f/1000
     を満たす画像形成装置の制御方法。
    A plurality of liquid ejection heads each having a conveyance unit that conveys a recording medium along a conveyance direction, a plurality of ejection elements that eject liquid, and arranged side by side along the conveyance direction; and the plurality of liquid ejection heads A liquid supply unit that supplies the same liquid to each of the image forming apparatuses,
    An image formation control step of forming an image on the recording medium by causing the recording unit to convey the recording medium at a first conveying speed and ejecting the liquid from the plurality of ejection elements of the plurality of liquid ejection heads; ,
    The recording medium is transported at a second transport speed that is slower than the first transport speed by the transport unit, and the liquid is ejected from the plurality of ejecting elements of one liquid ejecting head, and the recording medium is charted. A chart formation control step for forming
    With
    The diameter of dots formed on the recording medium by the liquid ejected from the ejection element is D [μm], the ejection frequency of the liquid of the ejection element when forming the chart is f [kHz], and the second When the transport speed is Vh [m / s]
    Vh ≦ D × f / 1000
    An image forming apparatus control method that satisfies the above.
PCT/JP2018/019497 2017-06-07 2018-05-21 Image forming apparatus and method for controlling same WO2018225489A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019523427A JP6761545B2 (en) 2017-06-07 2018-05-21 Image forming apparatus and its control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017112489 2017-06-07
JP2017-112489 2017-06-07

Publications (1)

Publication Number Publication Date
WO2018225489A1 true WO2018225489A1 (en) 2018-12-13

Family

ID=64567124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019497 WO2018225489A1 (en) 2017-06-07 2018-05-21 Image forming apparatus and method for controlling same

Country Status (2)

Country Link
JP (1) JP6761545B2 (en)
WO (1) WO2018225489A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112078251A (en) * 2019-06-13 2020-12-15 柯尼卡美能达株式会社 Image forming apparatus and image forming method
JP2021059448A (en) * 2019-10-09 2021-04-15 株式会社リコー Transport device and image formation system
WO2022107708A1 (en) * 2020-11-20 2022-05-27 富士フイルム株式会社 Image formation device and method for manufacturing printed matter
EP4299327A1 (en) 2022-06-28 2024-01-03 SCREEN Holdings Co., Ltd. Printing apparatus and adjustment method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6347856B1 (en) * 1999-03-05 2002-02-19 Hewlett-Packard Company Test pattern implementation for ink-jet printhead alignment
JP2011201050A (en) * 2010-03-24 2011-10-13 Fujifilm Corp Test pattern print method and inkjet recording apparatus
JP2013075372A (en) * 2011-09-29 2013-04-25 Canon Finetech Inc Inkjet recording device, and recording control method in the inkjet recording device
JP2015182297A (en) * 2014-03-24 2015-10-22 キヤノン株式会社 Printing equipment and adjustment method for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6347856B1 (en) * 1999-03-05 2002-02-19 Hewlett-Packard Company Test pattern implementation for ink-jet printhead alignment
JP2011201050A (en) * 2010-03-24 2011-10-13 Fujifilm Corp Test pattern print method and inkjet recording apparatus
JP2013075372A (en) * 2011-09-29 2013-04-25 Canon Finetech Inc Inkjet recording device, and recording control method in the inkjet recording device
JP2015182297A (en) * 2014-03-24 2015-10-22 キヤノン株式会社 Printing equipment and adjustment method for the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112078251A (en) * 2019-06-13 2020-12-15 柯尼卡美能达株式会社 Image forming apparatus and image forming method
EP3750714A1 (en) * 2019-06-13 2020-12-16 Konica Minolta, Inc. Image forming apparatus and image forming method
US11458738B2 (en) 2019-06-13 2022-10-04 Konica Minolta, Inc. Image forming apparatus and image forming method
JP2021059448A (en) * 2019-10-09 2021-04-15 株式会社リコー Transport device and image formation system
JP7344468B2 (en) 2019-10-09 2023-09-14 株式会社リコー image forming system
WO2022107708A1 (en) * 2020-11-20 2022-05-27 富士フイルム株式会社 Image formation device and method for manufacturing printed matter
EP4299327A1 (en) 2022-06-28 2024-01-03 SCREEN Holdings Co., Ltd. Printing apparatus and adjustment method thereof

Also Published As

Publication number Publication date
JP6761545B2 (en) 2020-09-23
JPWO2018225489A1 (en) 2020-03-19

Similar Documents

Publication Publication Date Title
US7387367B2 (en) Image forming apparatus
WO2018225489A1 (en) Image forming apparatus and method for controlling same
US8851619B2 (en) Apparatus for optimizing non-ejection correction parameter of ink-jet head, and ink-jet printer
JP4007357B2 (en) Image forming apparatus and method
JP5180651B2 (en) Inkjet recording apparatus, test image forming method, and test image forming program
US20110074862A1 (en) Image recording apparatus and image recording method
JP2015112792A (en) Droplet drying device, droplet drying program, and image formation device
US7255427B2 (en) Liquid ejection device and image forming apparatus
JP2005104147A (en) Inkjet recording apparatus and method for detecting discharge defect
JP5211884B2 (en) Liquid ejecting method and liquid ejecting apparatus
KR100846793B1 (en) Inkjet printer
JP5968797B2 (en) Head adjustment method, head drive device, and image forming apparatus
US8240835B2 (en) Inkjet recording apparatus
JP6417926B2 (en) Inkjet printer
JP5183086B2 (en) Image forming method and image forming apparatus
JP2012035573A (en) Liquid discharge head, and image recording device and method
US20090231602A1 (en) Image processing apparatus, image forming apparatus, and image processing method
JP2012250472A (en) State monitoring device of inkjet recording head and inkjet recording apparatus
KR20060115125A (en) Ink-jet image forming apparatus and method for compensating missing nozzle
JP2012192569A (en) Liquid ejection apparatus
JP2012066457A (en) Image forming apparatus, correction value calculator, test chart for density measurement, and correction value calculation method
JP2016060198A (en) Ink jet printing method and ink jet printing device
JP2015217525A (en) Method for setting droplet discharge condition, droplet discharge method, and droplet discharge device
JP7331396B2 (en) Liquid ejector
JP2020049741A (en) Image recording method, method for creation of data for correction, ink jet recording device, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813358

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523427

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813358

Country of ref document: EP

Kind code of ref document: A1