WO2018225484A1 - Array coil and magnetic resonance imaging device - Google Patents

Array coil and magnetic resonance imaging device Download PDF

Info

Publication number
WO2018225484A1
WO2018225484A1 PCT/JP2018/019388 JP2018019388W WO2018225484A1 WO 2018225484 A1 WO2018225484 A1 WO 2018225484A1 JP 2018019388 W JP2018019388 W JP 2018019388W WO 2018225484 A1 WO2018225484 A1 WO 2018225484A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
loop
array
electric field
subject
Prior art date
Application number
PCT/JP2018/019388
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 大竹
浩二郎 岩澤
悦久 五月女
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2018225484A1 publication Critical patent/WO2018225484A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR

Definitions

  • the present invention relates to a magnetic resonance imaging (MRI) apparatus, and more particularly to an RF coil that detects a nuclear magnetic resonance signal by irradiating a high frequency magnetic field (RF magnetic field).
  • MRI magnetic resonance imaging
  • RF magnetic field high frequency magnetic field
  • the MRI apparatus is an apparatus that images an arbitrary cross section across a subject using a nuclear magnetic resonance phenomenon. Specifically, the MRI apparatus irradiates a subject placed in a spatially uniform magnetic field (static magnetic field) with an RF magnetic field to cause nuclear magnetic resonance, and detects and detects the generated nuclear magnetic resonance signal. A cross-sectional image is acquired by performing image processing on the processed signal.
  • a device that irradiates a subject with an RF magnetic field and detects a nuclear magnetic resonance signal generated from the subject is called an RF coil (hereinafter referred to as an RF (Radio Frequency) coil).
  • the RF coil has a loop unit (coil loop) that performs irradiation and detection of an RF magnetic field.
  • the smaller the coil loop the narrower the sensitivity region, but the higher the sensitivity.
  • the sensitivity region can be expanded.
  • the RF coil there is a trade-off relationship between the high sensitivity and the wide sensitivity area.
  • the nuclear magnetic resonance signal is a signal of a rotating magnetic field generated in a direction perpendicular to the static magnetic field generated by the magnet
  • the RF coil is preferably arranged in a direction in which a magnetic field perpendicular to the static magnetic field can be irradiated and detected.
  • the RF coil As described above, the smaller the RF coil, the higher the sensitivity but the narrower the sensitivity region.
  • a multi-channel array coil in which a plurality of highly sensitive small-diameter RF coils are arranged in an array (see, for example, Non-Patent Document 1). Since the multi-channel array coil has high sensitivity and a wide sensitivity region, it can acquire a high SNR (Signal to Noise Ratio) image, which is the mainstream of the current receiving RF coil.
  • SNR Signal to Noise Ratio
  • Non-Patent Document 1 When RF coils with the same resonance characteristics are usually arranged close to each other, they interfere with each other by magnetic coupling. Since interference due to magnetic coupling degrades the performance of the RF coil, it is essential to remove the magnetic coupling between the RF coils in a multi-channel array coil. Therefore, in Non-Patent Document 1, the magnetic coupling is reduced to the maximum by arranging the coil loops of adjacent RF coils so that a part of the coil loops overlap each other. Further, by using a low-input preamplifier, an inductor, and a capacitor, a part of the coil loop is made to have a high impedance, thereby reducing interference from other than the RF coil.
  • Patent Documents 1 and 2 disclose techniques for reducing magnetic coupling between RF coils constituting a multichannel coil by providing decoupling means for the multichannel coil.
  • Patent Document 3 discloses a technology that can realize high sensitivity by effectively using magnetic coupling.
  • RF coils have been increased in sensitivity by increasing the number of channels and reducing interference due to magnetic coupling.
  • thermal noise generated from the subject is also detected as noise through the electric field created by the coil. For this reason, in order to improve the sensitivity of the RF coil, it is not sufficient to reduce interference due to magnetic coupling, and it is necessary to consider noise due to thermal noise generated from the subject.
  • noise due to thermal noise is Gaussian noise. Therefore, when the noise is ideally independent, the noise of the combined signal increases by the 1/2 power of the number of channels.
  • the electric field generated by one RF coil induces a current to the other RF coil through the subject, so the detected noise is shared through the subject and has a correlation. Noise is detected on both channels. For this reason, when noise is shared, the noise of the composite signal increases at a faster rate than the 1/2 power of the number of channels.
  • Non-Patent Document 1 proposes an image reconstruction method that uses a noise correlation matrix to minimize noise and maximize SNR.
  • Patent Document 3 proposes a method of obtaining high sensitivity by magnetically coupling coils, but the coils that are magnetically coupled are RF coils that detect signals from each other, so that adjustment of the coils may be difficult. . Therefore, in any of the methods, noise reduction may not be sufficient, and it is difficult to improve the SNR.
  • the present invention has been made in view of the above circumstances, and an object thereof is to obtain an image in which noise in an array coil is reduced and SNR is improved.
  • One embodiment of the present invention includes a first loop coil portion made of a conductor, a first RF coil capable of receiving a magnetic resonance signal from a subject, and a second loop coil portion made of a conductor.
  • the magnetic resonance signal can be received from the subject, the second RF coil from which the magnetic coupling is removed from the first RF coil, and a loop portion in which at least one conductor end is connected to each other.
  • an electric field generation circuit magnetically coupled to the first RF coil and the second RF coil, wherein the electric field generation circuit is induced in the electric field generation circuit by the first RF coil.
  • the volume integral value of the inner product of the electric fields generated in the subject by the one sub current and the second sub current induced in the electric field generation circuit by the second RF coil is the first loop coil.
  • the arrangement is adjusted such that the volume integral value of the inner product of the electric field generated in the subject is canceled by the current and the second current flowing in the RF coil of the second loop coil section.
  • An array coil is provided.
  • a static magnetic field forming unit that forms a static magnetic field
  • a gradient magnetic field forming unit that forms a gradient magnetic field
  • a transmission RF coil that irradiates an inspection target placed in the static magnetic field with an RF magnetic field
  • a magnetic resonance imaging apparatus that is a coil is provided.
  • (A) is a figure which shows one Embodiment of the array coil used as a receiving RF coil
  • (b) And (c) is a figure which shows the example of the magnetic coupling prevention circuit between transmission / reception of a receiving RF coil.
  • (A)-(b) is explanatory drawing for demonstrating operation
  • (A)-(d) is explanatory drawing for demonstrating operation
  • FIG. (A)-(c) is a figure which shows the modification of this embodiment, respectively.
  • (A) is a figure explaining the adjustment example of Example 1
  • (b) is a figure explaining the arrangement
  • FIG. 10 is a diagram illustrating a circuit for explaining an operation of the array coil according to the second embodiment.
  • A) And (b) is explanatory drawing explaining the inner product distribution of the electric field which two conventional RF coils which do not use a conductor loop make.
  • (C) shows the operation when a second current flows through the second RF coil during signal reception
  • (d) shows the concept of the distribution of the inner product of the electric fields produced by the two RF coils.
  • Indicates It is a figure which shows the structure of the array coil at the time of providing three RF coils. It is a figure which shows the structure at the time of providing the inductor for performing the magnetic coupling of RF coil and a conductor loop in the coil element and conductor loop of RF coil.
  • FIG. 1 shows the appearance of an example of an MRI apparatus to which the present embodiment can be applied.
  • FIG. 1A shows a horizontal magnetic field type MRI apparatus 100 using a tunnel magnet 110 that generates a static magnetic field by a solenoid coil.
  • FIG. 1B shows an open-type vertical magnetic field type MRI apparatus 101 in which a magnet 111 is separated into upper and lower parts to enhance the feeling of opening.
  • These MRI apparatuses 100 and 101 include a table 102 on which an inspection target (subject) 103 is placed. The subject 103 is placed on a table and placed in an examination space where a uniform magnetic field (static magnetic field) is generated by the magnets 110 and 111.
  • Magnets 110 and 111 constitute a static magnetic field forming unit that forms a static magnetic field.
  • the MRI apparatus applies a so-called multi-channel RF coil having a plurality of RF coils and a conductor pool as a reception RF coil.
  • the above-described horizontal magnetic field type MRI apparatus 100 and vertical magnetic field type MRI apparatus are used. Any of the devices 101 can be applied.
  • the form of the MRI apparatus shown in FIG. 1 is an example, and various known MRI apparatuses can be used in the present invention regardless of the form and type of the apparatus.
  • a coordinate system 090 in which the static magnetic field direction is the z direction and the two directions perpendicular thereto are the x direction and the y direction, respectively.
  • the MRI apparatus 100 includes a horizontal magnetic field type magnet (static magnetic field magnet) 110, a gradient magnetic field coil 131, a transmission RF coil 151, a reception RF coil 161, a gradient magnetic field power supply 132, a shim coil 121, and a shim power supply 122. , An RF magnetic field generator 152, a receiver 162, a magnetic coupling prevention circuit driving device 180, a computer (PC) 170, a sequencer 140, and a display device 171.
  • Reference numeral 102 denotes a table on which the inspection object (subject) 103 is placed.
  • the gradient magnetic field coil 131 is connected to the gradient magnetic field power supply 132 and generates a gradient magnetic field.
  • the gradient magnetic field coil 131 and the gradient magnetic field power source 132 constitute a gradient magnetic field forming unit that forms a gradient magnetic field.
  • the shim coil 121 is connected to the shim power source 122 and adjusts the uniformity of the magnetic field.
  • the transmission RF coil 151 is connected to the RF magnetic field generator 152 and irradiates (transmits) the subject 103 with the RF magnetic field.
  • the reception RF coil 161 is connected to the receiver 162 and receives a nuclear magnetic resonance signal from the subject 103.
  • a multi-channel RF coil (hereinafter referred to as an array coil) including a plurality of RF coils and a conductor loop is applied.
  • the number of RF coils constituting the array coil and the number of channels are assumed to be the same. Details of the array coil as the reception RF coil 161 will be described later.
  • the magnetic coupling prevention circuit driving device 180 is connected to a magnetic coupling prevention circuit (described later).
  • the magnetic coupling prevention circuit is a circuit that prevents magnetic coupling between the transmission RF coil 151 and the reception RF coil 161 connected to the transmission RF coil 151 and the reception RF coil 161, respectively.
  • the sequencer 140 sends commands to the gradient magnetic field power supply 132, the RF magnetic field generator 152, and the magnetic coupling prevention circuit driving device 180 to operate them.
  • the command is sent in accordance with an instruction from the computer (PC) 170.
  • the receiver 162 sets a magnetic resonance frequency as a reference for detection.
  • the subject 103 is irradiated with the RF magnetic field through the transmission RF coil 151 in accordance with a command from the sequencer 140.
  • the nuclear magnetic resonance signal generated from the subject 103 by irradiating the RF magnetic field is detected by the reception RF coil 161 and detected by the receiver 162.
  • the computer (PC) 170 controls the operation of the entire MRI apparatus 100 and performs various signal processing. For example, a signal detected by the receiver 162 is received via an A / D conversion circuit, and signal processing such as image reconstruction (function of the image reconstruction unit) is performed. The result is displayed on the display device 171. The detected signal and measurement conditions are stored in a storage medium as necessary.
  • the sequencer 140 is made to send an instruction so that each device operates at a preprogrammed timing and intensity. Further, when it is necessary to adjust the static magnetic field uniformity, the sequencer 140 sends a command to the shim power supply 122 to cause the shim coil 121 to adjust the magnetic field uniformity.
  • the MRI apparatus uses two types of RF coils, that is, the transmission RF coil 151 and the reception RF coil 161.
  • the transmission RF coil 151 and the reception RF coil 161 one RF coil can serve both, or separate RF coils can be used.
  • the transmission RF coil 151 and the reception RF coil 161 are separate RF coils
  • the transmission RF coil 151 is an RF coil having a birdcage shape (birdcage type RF coil)
  • the reception RF coil 161 is composed of a plurality of RF coils. The details of the RF coil will be described using a multi-channel array coil as an example.
  • a connection mode of the coupling prevention circuit driving device 180 will be described with reference to FIG.
  • the birdcage type RF coil 300 has a substantially cylindrical shape (including an elliptical column and a polygonal column) in appearance, and the axis of the substantially cylindrical axis is the central axis of the magnet 110 (in the Z direction). Arranged so as to be coaxial with the shaft.
  • the subject 103 is disposed inside the birdcage type RF coil 300.
  • the array coil 400 is disposed in the birdcage type RF coil 300 in the vicinity of the subject 103. Further, as described above, the birdcage type RF coil 300 is connected to the RF magnetic field generator 152.
  • Array coil 400 is connected to receiver 162.
  • the birdcage type RF coil 300 is provided with a magnetic coupling prevention circuit 210 that prevents magnetic coupling with the array coil 400, and the array coil 400 includes magnetic coupling prevention that prevents magnetic coupling with the birdcage type RF coil 300.
  • a circuit 220 is provided. These are called a magnetic coupling prevention circuit between transmission and reception.
  • the inter-transmission / reception magnetic coupling prevention circuit enables transmission of an RF magnetic field and reception of a nuclear magnetic resonance signal without magnetic coupling to each other in the arrangement as described above.
  • a birdcage type RF coil 300 used as the transmission RF coil 151 of this embodiment will be described with reference to FIG.
  • the birdcage type RF coil 300 of this embodiment is adjusted so that the resonance frequency (magnetic resonance frequency) of the element to be excited becomes the resonance frequency, and irradiates the RF magnetic field of the magnetic resonance frequency.
  • it is adjusted to the magnetic resonance frequency f0 of the hydrogen nucleus that can excite the hydrogen nucleus.
  • the magnetic resonance frequency of the irradiated RF magnetic field is set to f0.
  • FIG. 4A is a block diagram for explaining the configuration of the birdcage type RF coil 300 of the present embodiment.
  • the birdcage type RF coil 300 of this embodiment includes a plurality of straight conductors 301, end conductors 302 connecting the ends of the respective straight conductors 301, and a capacitor inserted into the end conductors 302. 303.
  • the birdcage type RF coil 300 includes two input ports 311 and 312.
  • the first input port 311 and the second input port 312 are configured so that transmission signals having phases different from each other by 90 degrees are input and an RF magnetic field is efficiently applied to the subject 103.
  • a transmission / reception magnetic coupling prevention circuit 210 for preventing magnetic coupling with the reception RF coil 161 (array coil 400) is provided on the linear conductor 301 of the birdcage type RF coil 300. Inserted in series.
  • the inter-transmission / reception magnetic coupling prevention circuit 210 can be constituted by a PIN diode 211 inserted in series with a straight conductor 301, and control signal lines 212 are provided at both ends thereof. Connected.
  • the control signal line 212 is connected to the magnetic coupling prevention circuit driving device 180. It is desirable to insert a choke coil (not shown) into the control signal line 212 in order to avoid high frequency mixing.
  • the PIN diode 211 normally has a high resistance (off), and has a characteristic of being generally in a conductive state (on) when the value of the direct current flowing in the forward direction of the PIN diode 211 exceeds a certain value. In this embodiment, this characteristic is used, and on / off of the PIN diode 211 is controlled by a direct current output from the magnetic coupling prevention circuit driving device 180. That is, at the time of high-frequency signal transmission, a control current for turning on the PIN diode 211 is passed through the control signal line 212 to cause the birdcage RF coil 300 to function as the transmission RF coil 151. Further, when receiving a nuclear magnetic resonance signal, the control current is stopped, and the birdcage type RF coil 300 is made to have a high impedance and opened.
  • the birdcage type RF coil 300 is made to function as the transmission RF coil 151 at the time of high-frequency signal transmission, and the nuclear magnetism.
  • the magnetic coupling with the array coil 400 which is the reception RF coil 161 is removed as an open state.
  • the array coil 400 used as the reception RF coil 161 of this embodiment will be described with reference to FIG.
  • an electric field generation circuit having two RF coils (surface coils) having a loop-shaped coil loop portion and a loop portion in which ends of one conductor are connected to each other as an example.
  • a description will be given using arrayed coils.
  • the loop portion of the electric field generation circuit is simply referred to as “conductor loop”.
  • the receiving RF coil of the present embodiment is not limited to this, as long as it is an array coil in which at least two or more RF coils and one or more conductor loops (electric field generating circuits) are arranged.
  • the array coil 400 of the present embodiment includes two RF coils 410 and a conductor loop 415 as shown in FIG.
  • the two RF coils 410 constituting the array coil 400 are referred to as a first RF coil 410A and a second RF coil 410B, respectively.
  • the components of each RF coil 410 constituting the array coil 400 are not particularly distinguished from each RF coil 410, and the last letter of the symbol is omitted (hereinafter the same).
  • the first RF coil 410 ⁇ / b> A, the second RF coil 410 ⁇ / b> B, and the conductor loop 415 are surface coils each having a loop arranged and configured to cover a subject on a substantially plane. This magnetic coupling is prevented by an overlap 451A that overlaps a part of the conductors of the coil loop, which is one of magnetic coupling preventing means.
  • the conductor loop is arranged so as to have a figure of 8 when the direction in which the two RF coils are arranged, that is, the X direction is the vertical direction.
  • each RF coil 410 and the conductor loop 415 are arranged and configured so as to be intentionally magnetically coupled 450. The function and details of each magnetic coupling will be described later.
  • Each of the two RF coils 410 is adjusted so that the birdcage RF coil 300 can receive a nuclear magnetic resonance signal of an excitable element in a state where each of the two RF coils 410 is magnetically coupled to the conductor loop. Function.
  • the signals received by the first RF coil 410A and the second RF coil 410B are sent to the receiver 162, respectively.
  • the first RF coil 410A includes a loop coil unit 420 (first loop coil unit 420A) that detects a nuclear magnetic resonance signal (RF magnetic field), a low input impedance preamplifier 430 (first low input impedance preamplifier 430A), and the like.
  • the inductor 441 (first inductor 441A) that connects the loop coil unit 420 and the low input impedance preamplifier 430 is connected to the receiver 162 via the low input impedance preamplifier 430.
  • the inductor 441 may be substituted for a capacitor. Looking at the low input impedance preamplifier side from the coil loop, the impedance of the parallel resonant circuit composed of the capacitor 421, the low input impedance preamplifier, the inductor 441 or the capacitor to be substituted, and the conductor connecting them is f0 and becomes higher than the impedance of other frequencies. Configured as follows.
  • the loop portion of the first loop coil portion 420A is formed by the conductor 21A.
  • the first loop coil section 420A includes a capacitor 424 that is inserted in series with the inductor component of the first loop coil section 420A.
  • the inductor component and the capacitor 424 constitute a parallel resonance circuit. This capacitor 424 is referred to as a parallel capacitor 424 in order to distinguish it from other capacitors.
  • a capacitor 422A for adjusting the resonance frequency and a magnetic coupling prevention circuit 220 between transmission and reception are inserted in series in the first loop coil section 420A.
  • the capacitor 422A is called a series capacitor in order to distinguish it from other capacitors.
  • a case where two first series capacitors (422A) are provided is illustrated, but the number of first series capacitors may be one or more.
  • the first RF coil 410A is a circuit element for adjustment, the first inductor 441A and the first series capacitor 422A inserted in series with the inductor component of the first loop coil section 421A. And a first parallel capacitor 424 that is inserted in series with the inductor component and uses the first loop coil portion 420A as a parallel resonant circuit.
  • the second RF coil 410B includes, as adjustment circuit elements, a second inductor 441B and a second series capacitor 422B inserted in series with respect to the inductor component of the second loop coil portion 421B. And a second parallel capacitor 424B inserted in series with the inductor component and having the second loop coil portion 420B as a parallel resonant circuit.
  • One terminal on the loop coil unit 420 side of the low input impedance preamplifier 430 is connected to one end of the parallel capacitor 424 of the loop coil unit 420 via the inductor 441.
  • the other terminal on the loop coil unit 420 side of the low input impedance preamplifier 430 is directly connected to the other end of the parallel capacitor 424 of the loop coil unit 420.
  • the transmission / reception magnetic coupling prevention circuit 220 removes magnetic coupling with the birdcage type RF coil 300 which is the transmission RF coil 151.
  • the inter-transmission / reception magnetic coupling prevention circuit 220 includes a capacitor 423 inserted in series with the conductor 21 constituting the loop 421, and a PIN diode 221 connected in parallel with the capacitor 423. , And inductor 222.
  • a control signal line 223 is connected to both ends of the PIN diode 221.
  • the control signal line 223 is connected to the magnetic coupling prevention circuit driving device 180. It is preferable that a choke coil (not shown) is inserted in the control signal line 223 in order to avoid high frequency mixing. Inductor 222 and capacitor 423 are adjusted to resonate in parallel at the frequency of the received nuclear magnetic resonance signal.
  • a parallel resonant circuit has a characteristic that a resonance frequency has a higher impedance (high resistance) than other frequencies. Therefore, when a current flows through the PIN diode 221, the PIN diode 221 is turned on, and the capacitor 423 of the loop 421 enters into a high impedance state in parallel with the inductor 222 at the frequency of the received nuclear magnetic resonance signal. Therefore, a part of the loop coil unit 420 becomes high impedance and opens at the frequency of the received nuclear magnetic resonance signal, and the RF coil 410 having the loop coil unit 420 is also opened.
  • 5A shows an example in which one transmission / reception magnetic coupling prevention circuit 220 is inserted into the RF coil 410, but the number of transmission / reception magnetic coupling prevention circuits 220 inserted into the RF coil 410 is as follows. It is not limited to one. Two or more may be inserted into each loop 421. By inserting a plurality, the magnetic coupling between the transmission RF coil 151 and the reception RF coil 161 can be sufficiently lowered.
  • the configuration of the transmission / reception magnetic coupling prevention circuit 220 is not limited to the above configuration.
  • a cross diode 221m may be used instead of the PIN diode 221 as in a modification of the transmission / reception magnetic coupling prevention circuit 220m shown in FIG.
  • the cross diode 221m is turned on, and the capacitor 423 of the loop 421 resonates in parallel with the inductor 222 at the frequency of the received nuclear magnetic resonance signal to generate high impedance. It becomes a state.
  • the magnetic coupling prevention circuit driving device 180 may not be provided.
  • each RF coil 410A is adjusted by adjusting the inductance and capacitance of the circuit elements for adjustment included in the RF coils 410A and 410B and the value of the inductance and capacitance provided by the electromagnetic coupling unit 450.
  • 410B can receive nuclear magnetic resonance signals, and each RF coil and conductor loop are magnetically coupled so that part of the current flowing in the RF coil flows as a sub-current in the conductor loop. Adjusted.
  • the magnetic field generated by the first RF coil 410A during signal reception is applied to the loop 416 on the first RF coil side, which is the left loop in the figure of the conductor loop.
  • the conductor loop is arranged so as to induce a stronger current than the loop 417 on the second RF coil side which is the loop on the right side of the conductor loop, and the current induced in the loop 416 on the first RF coil side is intentionally controlled.
  • the target current is made to flow through the conductor loop.
  • the magnetic field generated by the second RF coil 410B is transferred to the second RF coil side loop 417, which is the right-hand side loop of the conductor loop, and the first RF coil, which is the left-hand side loop of the conductor loop. It arrange
  • the noise of each channel of the reception RF coil of the MRI apparatus is mainly thermal noise generated from the subject, and is Gaussian noise detected by electric field coupling between the coil and the subject.
  • Such noise is random noise that follows a Gaussian distribution with the same intensity as long as the input impedance of each coil is adjusted to 50 ⁇ .
  • the noise when the square sum square root synthesis of each channel is performed, the noise generally increases by a power of 1/2 according to the number of synthesis channels.
  • the array coil a plurality of RF coils are arranged adjacent to each other so as to cover the subject, so that the RF coil is electrically coupled via the subject, so that some noise signals are shared. Therefore, the detected noise does not have an independent Gaussian distribution, but a correlation occurs in the noise signal. This correlation (noise correlation) takes a value from ⁇ 1 to +1. If it is 0, it is an independent noise, if it is +1, it is the same noise, and if it is ⁇ 1, it is the same noise with a different sign.
  • the noise correlation ⁇ between the RF coils is obtained by the following equations (1) and (2).
  • is the conductivity of the subject
  • V is the volume of the subject
  • Ei is the electric field (complex number) created by the i-th RF coil
  • Ej is the electric field (complex number) created by the j-th RF coil.
  • E * represents the complex conjugate of E. That is, the magnitude of the noise correlation is determined by the volume integral Rij of the inner product of the electric fields created by each coil in the subject. By reducing Rij, the noise correlation can be kept low, and the SNR can be prevented from decreasing due to an increase in noise correlation.
  • the inner product of the electric field generated by the electric field generated when the first RF coil 410A and the second RF coil 410B are magnetically coupled to the conductor loop 415 to induce a current is shown in FIG. The reduction of noise will be described with reference to FIG.
  • FIG. 6 is a diagram for explaining the inner product distribution of the electric field created by the two conventional RF coils 410A and 410B, in which the conductor loop 415 is not used.
  • the first RF coil 410A and the second RF coil forming the array coil are arranged so as to cover the object 103 and not be magnetically coupled.
  • a clockwise first current flows through the first RF coil 410A as shown in the figure
  • a clockwise second current flows through the second RF coil 410B as shown in the figure.
  • (Broken line in the figure) flows.
  • the two RF coils 410 are arranged adjacent to each other, have substantially the same sensitivity region when viewed from a distance, and detect similar signals, so that the currents induced in the RF coils are handled in the same direction.
  • FIG. 6B is a view of FIG. 6A viewed from the Z-axis direction, and shows the concept of the inner product distribution of the electric field created by the two RF coils.
  • the area where the inner product of the electric field is positive is indicated by fine dots, and the negative area is indicated by coarse dots.
  • the first RF coil 410A and the second RF coil 410B exhibit a positive inner product distribution in the subject.
  • the first RF coil 410A and the second RF coil 410B are present in substantially the same direction when viewed from the subject, and currents flowing in the same direction flow in the first RF coil. This is because the electric fields generated by 410A and the second RF coil 410B in the subject are similar.
  • the integral value is positive, and the noise correlation obtained by Expression (2) is a large positive value. Therefore, the noise of the synthesized value of the signals acquired with these configurations is larger than that without correlation. That is, the SNR is lowered.
  • FIG. 7 is a diagram for explaining the inner product distribution of the present embodiment.
  • the first RF coil 410A and the second RF coil 410B forming the array coil are arranged so as to cover the object 103 and not to be magnetically coupled, and further, the conductor loop 415 is provided.
  • the first RF coil 410A and the second RF coil 410B are magnetically coupled to each other and are arranged to cover the subject.
  • FIG. 7B shows the operation when a first clockwise current (solid line in the figure) flows through the first RF coil 410A as shown in the figure at the time of signal reception, as in the conventional configuration of FIG. Show.
  • the magnetic field generated by the first RF coil 410A is on the first RF coil side, which is the left loop in the figure of the conductor loop.
  • a left-handed current is induced in the loop 416, and a first sub-current 418A as shown in FIG.
  • FIG. 7C shows the operation when a second clockwise current (broken line in the figure) flows through the second RF coil 410B as shown in the figure at the time of signal reception, as in the conventional configuration of FIG. Show.
  • the magnetic field generated by the second RF coil 410B is on the second RF coil side, which is the loop on the right side of the conductor loop in the figure.
  • a left-handed current is induced in the loop 417, and a second sub-current 418B as shown in FIG.
  • the induced first sub-current 418A and the second sub-current 418A and the second RF coil even if the directions of the currents flowing through the conductor loop are both clockwise and the same direction.
  • the sub-current 418B has a reverse current direction on the conductor loop 415.
  • FIG. 7D is a view of FIG. 7A viewed from the Z-axis direction, and shows the concept of the inner product distribution of the electric field created by the two RF coils. Positive electric fields are indicated by fine dots, and negative electric fields are indicated by coarse dots.
  • the first RF coil 410A and the second RF coil 410B form a current similar to that in the conventional configuration shown in FIG. 6, and thus show the same positive inner product distribution in the subject.
  • a negative inner product distribution is shown near the conductor loop 415. As described above, the negative polarity is because the direction of the current generated by the magnetic coupling is reversed. Since the sign of the current is different, the sign of the electric field is also different, and the inner product is negative.
  • the integral value can be brought close to zero by configuring positive and negative in this embodiment. . Therefore, if it is close to zero, the noise can be reduced and the SNR can be improved compared to the conventional configuration shown in FIG.
  • the direction of the current flowing through each RF coil and the direction of the current flowing through the loop (416 or 417) in the vicinity of the conductor loop are reversed (the phase difference of the current is 180 degrees).
  • the integral value of the inner product of the electric field generated in the subject by the first sub-current 418A and the second sub-current 418B is determined by the loop coil portion 420A of the first RF coil 410A and the loop coil portion 420B of the second RF coil 410B. What is necessary is just to be comprised so that the sign of the integral value of the inner product of the electric field produced in a to-be-photographed object may differ. As a result, the degree of freedom in design is improved, and the SNR in the region of interest can be improved.
  • the symmetry of the two loops constituting the figure 8 is not limited to this. It may be asymmetric as shown in FIG. It is sufficient that the current can be configured so that the integral value of the inner product of the sub-currents to be configured is negative even if it is asymmetric. As a result, the degree of freedom in design is improved, and the SNR in the region of interest can be improved.
  • the imaging method using the MRI apparatus configured as described above is the same as the operation of the conventional MRI apparatus, and the subject 103 arranged in the static magnetic field space generated by the static magnetic field magnet 110 is subjected to, for example, the imaging method.
  • an RF magnetic field pulse is applied from the transmission RF coil 151 (for example, the birdcage type RF coil 300) and a gradient magnetic field pulse is applied by the gradient magnetic field coil 131.
  • the transmission / reception magnetic coupling prevention circuit 220 of the reception RF coil 161 is opened, and the magnetic coupling with the reception RF coil 161 is removed.
  • a reception RF coil 161 (multi-channel coil: array coil 400) arranged close to the subject 103 after a predetermined time has elapsed from the application of the RF magnetic field pulse, and a nuclear magnetic resonance signal generated from an atomic nucleus of an element constituting the living tissue of the subject 103 Receive at.
  • the transmission / reception magnetic coupling prevention circuit 210 is opened, and the magnetic coupling between the transmission RF coil 151 and the reception RF coil 161 is removed.
  • the computer (signal processing unit) 170 processes each MR signal received by the RF coil of the reception RF coil 161.
  • the imaging method is a high-speed imaging method employing parallel imaging, it follows a parallel imaging algorithm.
  • An image of the subject is created by the image reconstruction method.
  • the image obtained by the signal of each channel is MAC synthesized to create an image.
  • sensitivity distribution information of each RF coil is used as appropriate.
  • the MRI apparatus of the present embodiment by using a multi-channel coil with specific adjustment as a reception RF coil, noise correlation between each RF coil is reduced, and a high-quality image can be obtained.
  • the MRI apparatus includes a static magnetic field forming unit that forms a static magnetic field, a gradient magnetic field forming unit that forms a gradient magnetic field, and a transmission RF coil that irradiates an RF magnetic field to an inspection object arranged in the static magnetic field, A reception RF coil for detecting a nuclear magnetic resonance signal from the inspection object, and a signal processing unit for processing the nuclear magnetic resonance signal detected by the reception RF coil.
  • the reception RF coil includes at least two RF coils and a conductor loop as an electric field generation circuit, and the integral value of the inner product of the electric fields generated in the subject by the current flowing through the first RF coil and the second RF coil is The integral value and sign of the inner product of the electric field generated in the subject by the current induced in the conductor loop by the magnetic coupling of one RF coil and the current induced in the conductor loop by the magnetic coupling of the second RF coil.
  • RF coils array coils for the MRI apparatus that are arranged and adjusted so as to be different from each other.
  • an array coil including a first RF coil, a second RF coil, and a conductor loop (electric field generation circuit), and the coil loops of the first RF coil and the second RF coil are mutually connected. Arranged and configured so as not to be magnetically coupled.
  • the array coil 400 of this embodiment arranged and adjusted as described above is tuned to the magnetic resonance frequency f0.
  • the integral value of the inner product of the electric field generated in the subject by the first RF coil 410A and the second RF coil 410B is obtained by magnetically coupling the first RF coil 410A and the second RF coil 410B.
  • Each of the currents flowing through the conductor loops is configured to have a sign different from the sign of the integral value of the inner product of the electric field, and the sum of the integral values of these inner products approaches zero.
  • the noise correlation between the first RF coil 410A and the second RF coil 410B decreases, and the SNR of the composite image increases.
  • the array coil 400 of this embodiment both multi-channel and low noise can be achieved.
  • this multi-channel and low noise is realized by arrangement and adjustment of circuit element values. Therefore, the configuration is not complicated.
  • the MRI apparatus of this embodiment can obtain a high-quality image in a wide area.
  • the MRI apparatus according to the present embodiment is characterized by using a reception RF coil that has been subjected to specific adjustment, and various changes can be made to the other configurations. For example, omitting some of the elements shown in FIG. 2 and adding elements not shown in FIG. 2 are also included in the present embodiment.
  • the horizontal magnetic field type MRI apparatus has been described.
  • the present invention can be similarly applied to a vertical magnetic field type MRI apparatus.
  • the array coil is a multi-channel RF coil used as a reception RF coil of the MRI apparatus, and includes a plurality of RF coils.
  • Each of the plurality of RF coils can receive a nuclear magnetic resonance signal generated by an MRI apparatus, and is adjusted so that an electric field generated in a subject is strengthened between adjacent RF coils by a current flowing through each RF coil.
  • the reception RF coil according to the present embodiment includes two RF coils, a first RF coil 410A, a second RF coil 410B, and a conductor loop 415.
  • the first coil surface created by the coil element of the first RF coil 410A and the second coil surface created by the coil element of the second RF coil 410B are arranged so as to cover the subject, and
  • the cosine of the angle formed by the perpendicular line of the coil surface and the perpendicular line of the second coil surface is arranged at a positive position.
  • the vertical direction on the paper is the X-axis direction
  • the horizontal direction is the Y-axis direction
  • the direction perpendicular to the paper surface is the Z-axis direction.
  • the RF coils are arranged substantially in the XZ plane, so the perpendiculars of these coil elements intersect at infinity, and the angle formed by the coils is almost 0 degrees. That is, the cosine is +1.
  • the coil surface in each Example including the above-mentioned embodiment handles not only the inside of a coil loop but the surface extended outside as a coil surface.
  • the perpendicular of the first coil surface and the perpendicular of the second coil surface are not limited to the inside of the coil loop. Think of an infinite plane so that these perpendiculars intersect, draw a perpendicular.
  • Each RF coil 410A, 410B is arranged with a magnetic coupling removing portion 451 partially overlapping each other so that the magnetic coupling is removed, thereby removing the magnetic coupling between the RF coils.
  • a magnetic coupling portion 450 is provided between each of the RF coils 410A and 410B and the conductor loop.
  • magnetic coupling is achieved by the arrangement of each RF coil and the conductor loop.
  • the first RF coil 410A and the second RF coil 410B are each adjusted to the same frequency as the magnetic resonance frequency fo so that a magnetic resonance signal can be received in a state of being coupled to the conductor loop.
  • the conductor loop 415 includes a capacitor 422C and a magnetic coupling adjustment circuit.
  • a part of the current (sub-current: first sub-current) detected by the first RF coil 410A flows through the conductor loop 415 when the signal of the first RF coil 410A is received, and the second RF coil
  • a part of the current detected by the second RF coil 410B (sub-current: second sub-current) is adjusted to flow.
  • the resonance frequency of the conductor loop is adjusted to a lower frequency f L from the gas resonance frequency f 0.
  • the intensity of the sub-current can be adjusted by the arrangement or the magnetic coupling adjustment circuit 452 inserted in the conductor loop and / or the RF coil, and the first RF coil or the current flowing through the second RF coil can be adjusted. 5% to 30% is preferable. As a result, the integral value of the inner product of the electric fields generated by the coils approaches zero, and the noise correlation can be effectively reduced.
  • the first RF coil 410A and the second RF coil 410B are arranged on substantially the same plane so as to cover the subject.
  • substantially the same plane means that the surfaces of adjacent coil elements are arranged substantially along the subject surface, and other regions (other end portions) may be bent. Note that the coil elements of the first RF coil 410A and the second RF coil 410B do not have to be overlapped as long as the magnetic coupling is sufficiently removed.
  • the first RF coil 410A and the second RF coil 410B have surfaces formed by the loops 421 of the respective loop coil portions 420 in the direction of the static magnetic field of the magnet. They are arranged so as to be substantially parallel to the (Z-axis direction).
  • the surface of the conductor loop is a surface substantially perpendicular to the static magnetic field direction of the magnet.
  • the shape of the loop 421 of the loop coil unit 420 may be a polygon or a circle (including an ellipse) in addition to a rectangle as illustrated, and is arbitrary.
  • the two RF coils 410A and 410B have magnetic couplings removed by an overlapping method in which magnetic couplings can be removed by overlapping part of the coil elements.
  • Two techniques are used to adjust the magnetic coupling between the two RF coils 410A, 410B and the conductor loop. That is, in order to adjust the magnetic coupling, one adjusts the distance between the loop coil section 420 and the conductor loop 415, and the other is provided with a magnetic coupling adjusting circuit 452 on the circuit.
  • each RF coil of the array coil of this embodiment includes a low input impedance preamplifier 431.
  • the signal detected by the loop coil unit 420 can be immediately amplified, so that data with less noise due to disturbance can be obtained.
  • both ends of the capacitor 421 have high impedance due to the parallel resonance circuit formed by the low input impedance preamplifier 431, the inductor 441, and the capacitor 421, the RF coil is difficult to be magnetically coupled when viewed from other RF coils.
  • the magnitude of the input impedance of the low input impedance preamplifier 431 is not limited, but is, for example, about 2 ⁇ or less.
  • the low input impedance preamplifier 430 is not limited to the signal amplifier 431 having a low input impedance.
  • the series capacitor 422, the transmission / reception magnetic coupling prevention circuit 220 (including the capacitor 423), and the parallel capacitor 424 inserted in each loop coil unit 420 have the same configuration as described in the array coil of FIG. Also in this embodiment, three capacitors (422, 424) are inserted into the loop 421 of the loop coil unit 420, but the present invention is not limited to this. It is not necessary.
  • the coil element 420 and the input impedance preamplifier 431 are connected using an inductor, but the inductor 441 is not limited to using an inductor.
  • the parallel capacitor 424 and the inductor 441 are connected by a conductor. Since the conductor also has an inductor component, a parallel resonant circuit is formed by the parallel capacitor 423, the inductor 441, and the inductor component of the conductor connecting them without adding an additional inductor.
  • the inductor 441 may be a capacitor as long as the resonance frequency of the parallel resonance circuit can be adjusted by some method.
  • a parallel circuit of a capacitor and an inductor may be used.
  • the conductor loop includes a magnetic coupling adjustment circuit 451.
  • the magnetic coupling adjustment circuit 451 is configured by a parallel resonance circuit of a capacitor 451A and an inductor 451B.
  • the parallel resonant circuit resonant frequency comprised capacitor 451A and inductor 451B is adjusted to a lower frequency f L from the gas resonance frequency f 0.
  • the first RF coil 410A and the second RF coil 410B of the array coil 400 of the present embodiment adjust the value of the capacitor 451A or the inductor 451B of the conductor coupling adjustment circuit 452 and the arrangement and configuration of the conductor loop. Realize the above functions.
  • FIG. 10B is an equivalent circuit of the RF coil 410 and the conductor loop 415 shown in FIG.
  • L 11 and L 21 indicate the combined reactance of the RF coil and the conductor loop.
  • L 12 represents the inductance of the inductor 441.
  • L 22 represents the inductance of the inductor 452A of the magnetic coupling adjustment circuit.
  • C 22 indicates the capacitance of the capacitor 452B of the magnetic-coupling adjusting circuit.
  • Z 11 represents an input resistance of a low input impedance preamplifier, in subsequent equivalent circuit for at 2 ⁇ or less treated as a short circuit.
  • the sensitivity of the RF coil is equivalent to the magnetic field strength generated when an RF signal of unit power is applied to the coil, and in FIG. 10B and FIG. The operation principle of this coil is shown in the operation when is applied.
  • FIG. 10B is an equivalent circuit when RF power having the same frequency as the magnetic resonance frequency f 0 is applied to the RF coil 410.
  • I 1 shown in the following formula (3) flows through the coil element.
  • i is the magnitude of the current
  • is a phase difference constant.
  • the parallel resonance circuit composed of L 22 and C 22 constituting the magnetic coupling adjustment circuit 452 is set to a frequency f L lower than the magnetic resonance frequency f 0 .
  • a parallel resonant circuit operates as a capacitor when a frequency higher than the resonant frequency is applied. That is, when a magnetic resonance frequency signal is applied to the parallel resonance circuit composed of L 22 and Cm 2 , the parallel resonance circuit operates as a capacitor (C). An equivalent circuit at that time is shown in FIG. Therefore, if Ve 2 is applied, the charge q of the capacitor can be obtained from the following equation (5).
  • I 2 becomes a current opposite to I 1 by the adjustment.
  • one RF coil 410 shown in FIG. 10A is magnetically coupled to the conductor loop 415 and forms a current in the conductor loop.
  • the resonance frequency of the series resonance circuit composed of L 22 and C 22 is set to a frequency f H higher than the magnetic resonance frequency. Then, it is possible to form a current distribution that flows in the same direction in the first RF coil 410 and the conductor loop 415.
  • the operation of the array coil of this embodiment can be explained by the above principle. First, the operation when only the first RF coil 410A and the conductor loop 415 are present will be described.
  • the conductor loop 415 of this embodiment is composed of a loop 416 on the first RF coil side and a loop 417 on the second RF coil side so that currents in opposite directions flow, and an 8-shaped current flows. It is configured.
  • the distance between the first RF 410A coil and the first RF coil side loop 416 is different from the distance between the first RF 410A coil and the second RF coil side loop 417. Therefore, the strength of the magnetic field generated by the first RF 410A generated in the loop 416 on the first RF coil side and the loop 417 on the second RF coil side is different, and the current induced in each loop is different.
  • the amount of current induced is attenuated in proportion to the distance.
  • the result of combining them with different signs is a sub-current that is formed in the conductor loop by magnetically coupling the first RF 410A coil and the conductor loop 415. That is, in this embodiment, because of the distance relationship, a stronger current is induced in the loop 416 on the first RF coil side closer to the first RF coil 410A than in the loop 417 on the second RF coil side. , Become the dominant current. Therefore, a current as shown in FIG.
  • the first RF coil 410A and the second RF coil 410B are magnetically coupled to the conductor loop 415, respectively, and currents flowing in opposite directions flow through the conductor loop.
  • the first RF coil 410A is magnetically coupled to the conductor loop 415 to create the conductor loop
  • the second RF coil 410B is magnetically coupled to the conductor loop 415 to create the conductor loop.
  • the integrated value of the inner product of the electric field generated in the subject by the sub-current of the current is the current flowing through the first loop coil portion 420A of the first RF coil 410A and the first loop coil portion 420A of the second RF coil 410B. Is different from the integral value of the inner product of the electric field generated in the subject by the current flowing in the object. For this reason, the absolute value of the composite value is reduced, and as a result, the noise correlation is lowered and the SNR of the composite image is improved.
  • each RF coil 410 can receive a nuclear magnetic resonance signal to be detected. Moreover, since the electric field as shown in FIG. 7D is generated by forming the current path as described above, the noise correlation is lowered.
  • the shape and size of the RF coil are, for example, a rectangular loop, and the vertical and horizontal sizes of the loops 421A and 421B of the first loop coil portion 420A and the second loop coil portion 420B are 10 cm, 20 Centimeters. Further, the distance between the coil centers of the two RF coils 410 is 10 cm. The size of the conductor loop 415 is 16 cm and 8 cm in the vertical and horizontal sizes. The subject was a cylinder having a diameter of 17 cm and a height of 28 cm as shown in FIG. As for the arrangement relationship between each RF coil 410 and the conductor loop 415, the distance in the Z direction of the center point of each coil was 11 cm.
  • first RF coil 410A and the second RF coil 410B are electromagnetically coupled to the conductor loop 415 as shown in FIG. 7, respectively, as shown in FIGS. 7B and 7C. Adjust the current to flow. Specifically, adjustment is performed so that 15% of the current flowing through the coil element of each RF coil flows through the conductor loop by the magnetic coupling.
  • the conductor loop adjustment 415 is performed.
  • the conductor loop adjusts the capacitance of the series capacitor 422C.
  • only the capacitor 452A of the magnetic coupling adjustment circuit is parallel to the series capacitor 422C inserted in series with the figure 8 element so that the conductor loop is efficiently magnetically coupled to the first RF coil or the second RF coil.
  • 422C and 452A are adjusted so that the parallel resonant circuit connected to the terminal resonates at the magnetic resonance frequency.
  • an inductor 452B is connected in parallel to the capacitor 452A which is the magnetic coupling adjustment circuit 451, and the resonance frequency of the magnetic coupling adjustment circuit 451 is adjusted to be f0.
  • the magnetic coupling adjusting circuit has a high impedance, and therefore hardly magnetically couples with other coils.
  • the capacitors 422A and 422C are adjusted so that each RF coil resonates at the same frequency as the magnetic resonance frequency.
  • the capacitor 421 is adjusted so that the input impedance of the circuit on the RF coil side viewed from the low input impedance preamplifier becomes 50 ⁇ . Further, the capacitor 421 is adjusted so that the parallel resonance circuit of the capacitor 421, the low input impedance preamplifier, and the inductor 441 has a high impedance.
  • the magnetic coupling of the first and second RF coils and the conductor loop is adjusted.
  • the RF coil is also adjusted again.
  • the first RF coil 410A and the loop 416 on the first RF coil side of the conductor loop 415 are not affected by the magnetic field created in the space between them.
  • the relationship between the directions of the currents of the two coils was determined to be 8 characters.
  • a reverse current is generated by lowering the resonance frequency fL of the magnetic coupling adjustment circuit 451.
  • the value of the inductor 415B is adjusted, and 102 MHz, which is 20% lower than the value of the resonance frequency of the magnetic coupling adjustment circuit due to f0, is used.
  • the current is generated in a symmetrical manner in the X direction, so that by performing this adjustment, the second RF coil 410B and the reverse current in the loop 416 on the first RF coil side of the conductor loop 415 are also reversed. The same adjustment is performed.
  • the capacitors 422A and 422B are adjusted again to match the frequency f0, and the capacitors 422A and 422B are simultaneously adjusted.
  • the input impedance of each coil was readjusted to 50 ⁇ .
  • the value of the sub current was 15% of the current flowing through each RF coil.
  • the adjustment of the first RF coil 410A, the second RF coil 410B, and the conductor loop may be repeated several times as necessary.
  • the array coil 400 of this embodiment resonates at the nuclear magnetic resonance frequency and receives the nuclear magnetic resonance signal.
  • the first RF coil 410A is magnetically coupled to the conductor loop 415 to create a conductor loop
  • the second RF coil 410B is magnetically coupled to the conductor loop 415 to create a conductor loop.
  • the inner product of the electric field generated in the subject by the sub current has a different sign from the current flowing in the first RF coil 410A and the inner product of the electric field generated in the subject by the current flowing in the second RF coil 410B.
  • the absolute value of the composite value becomes small, resulting in a decrease in noise correlation and an improvement in the SNR of the composite image.
  • FIG. 11 shows a simulation result of imaging a water phantom with an MRI apparatus (3 Tesla, horizontal magnetic field method) using the array coil adjusted as described above.
  • FIG. 11A shows an SNR profile in the Z direction at the center of the phantom after image synthesis.
  • the solid line is the profile of this embodiment, and the broken line is the sensitivity distribution profile when the magnetic coupling of the conventional (comparative example) RF coil is removed.
  • the array coil 400 of this embodiment improves the SNR of the composite image by magnetic coupling.
  • the resonance frequency of the magnetic coupling adjustment circuit is 20% smaller than f0.
  • the present invention is not limited to this.
  • the first RF coil 410A and the loop 416 on the first RF coil side of the conductor loop 415 do not cancel each other out of the magnetic field formed in the space of interest, and at the same time, the second RF coil 410B and the conductor loop 415
  • Other values may be used as long as the second RF coil side loop 417 does not cancel each other out of the magnetic field created in the space of interest.
  • the phase difference between the currents of each RF coil and the conductor loop can be adjusted, but basically the phase difference between the magnetic fields finally generated in the region of interest is adjusted to be equal. It is preferable to do.
  • the amount of sub-current (current ratio) is adjusted to 15%, but the amount of sub-current can change the noise correlation to an arbitrary value and improve the SNR of the target image area. What is necessary is just to adjust and according to the distance between coils etc. suitably.
  • FIG. 11B shows a graph showing the relationship between noise correlation and current. Even if the magnetic coupling increases and the current ratio increases, the noise decreases if the noise correlation decreases accordingly. Since the signal distribution also changes due to the magnetic coupling, it is preferable to set conditions that increase the SNR in the region of interest by comprehensively considering these.
  • the figure 8 loop is arranged on the XY plane, but the present invention is not limited to this. Other arrangements may be used from the viewpoint of noise reduction. However, from the viewpoint of increasing the signal, it is preferable that the direction of the magnetic field formed by the 8-shaped loop is perpendicular to the static magnetic field in the region of interest. As a result, a signal can also be acquired efficiently, so that the SNR can be improved.
  • Example 2 In the first embodiment described above, the first coil surface created by the first loop coil portion 420A of the first RF coil 410A and the second loop coil portion 420B created by the second loop coil portion 420B of the second RF coil 410B.
  • the cosine of the angle formed by the perpendicular line of the first coil surface and the perpendicular line of the second coil surface is arranged at a negative position.
  • the integral value of the inner product of the electric fields produced by these coils in the subject becomes negative, resulting in a negative noise correlation.
  • the noise correlation can be made zero by adding the conductor loop 415 and adding a positive correlation in the subject, the circuit configuration is different.
  • the conductor loop has a circular or rectangular loop shape instead of an 8-shaped shape.
  • the present embodiment is basically the same as the first embodiment described above, except for the arrangement of the first RF coil 410A and the second RF coil 410B and the shape of the conductor loop, and the other configurations are the same. Yes, the basic principle and adjustment method are the same as in the first embodiment.
  • the inner product of the electric field generated by the electric field generated when the first RF coil 410A and the second RF coil 410B induce current in the conductor loop, respectively, will be described with reference to FIGS. explain.
  • FIG. 13 is a diagram for explaining the inner product distribution of the electric field created by two conventional RF coils not using a conductor loop. As shown in FIG. 13A, the first RF coil 410A and the second RF coil forming the array coil are arranged so as to cover the subject 103 and not be magnetically coupled.
  • an inductor method is used, in which an inductor is inserted into the coil loop of each RF coil shown in FIG.
  • a first current flowing in the positive direction of the X direction flows through the first RF coil 410A through the element in the negative direction of the Z axis as shown in FIG.
  • a second current (broken line in the figure) flows in the X direction plus direction through the element in the Z axis minus direction.
  • FIG. 13B shows the concept of the distribution of the inner product of the electric field created by the two RF coils. Positive electric fields are indicated by fine dots, and negative electric fields are indicated by coarse dots.
  • the first RF coil 410A and the second RF coil 410B show a negative inner product distribution in the subject. The reason for this negative is that the first RF coil 410A and the second RF coil 410B exist in substantially opposite directions when viewed from the subject, and currents in the same direction flow in both directions. This is because the electric field generated in the subject has the opposite sign, and the inner product of each region is almost negative.
  • the noise correlation obtained by Equation (2) is a large negative value. Therefore, the noise of the composite value of the signals acquired with these configurations is larger than that with zero correlation, and the SNR is low.
  • FIG. 14 is a diagram for explaining the inner product distribution of this embodiment.
  • the first RF coil 410A and the second RF coil forming the array coil are arranged so as to cover the object 103 and not to be magnetically coupled, and further have two conductor loops. It is magnetically coupled to the RF coil and arranged to cover the subject.
  • FIG. 14B shows the operation when a first current (solid line in the figure) flows through the first RF coil 410A as shown in the figure at the time of signal reception, as in the conventional configuration of FIG.
  • a first current solid line in the figure
  • the magnetic field generated by the first RF coil 410A is the same as the basic principle described with reference to FIG. Current flowing in the right direction is induced in the other element, and the first sub-current 418A flows.
  • FIG. 14C shows the operation when a second current (broken line in the figure) flows through the second RF coil 410B as shown in the figure at the time of signal reception as in the conventional configuration of FIG.
  • a second current (broken line in the figure) flows through the second RF coil 410B as shown in the figure at the time of signal reception as in the conventional configuration of FIG.
  • the magnetic field generated by the second RF coil 410B is the same as the basic principle described in FIG. Current flowing in the right direction is induced in the other element, and the second sub-current 418A flows.
  • the direction of the current flowing through the conductor loop through the first RF coil and the second RF coil is the X direction plus direction, and the induced first sub current 418A and second sub current 418B. Both are positive in the X direction.
  • FIG. 14 (d) shows the concept of the inner product distribution of the electric field created by the two RF coils. Positive electric fields are indicated by fine dots, and negative electric fields are indicated by coarse dots.
  • the first RF coil 410A and the second RF coil 410B form a current similar to that in the conventional configuration shown in FIG. 13, and thus show the same negative inner product distribution in the subject.
  • a positive inner product distribution is shown near the conductor loop 415. The reason for being positive in this way is that the directions of currents generated by magnetic coupling are both the same as described above. Since the current direction is the same, the signs of the electric fields are also equal, and the inner product is negative.
  • the first RF coil 410A and the second RF coil 410B are respectively adjusted to be coupled to the conductor loop and resonate at the same frequency as the magnetic resonance frequency f0. Can be obtained.
  • the conductor loop is installed at a negative position in the Y-axis direction as shown in FIG. 14, but the present invention is not limited to this. It may be a positive position in the Y-axis direction. Further, the position in the X and Z directions is not limited, but it is preferable to arrange the first RF coil 410A and the second RF coil 410B and the conductor loops at the same magnetic coupling strength.
  • the overlap method is used for the magnetic coupling removal means of the first RF coil 410A and the second RF coil 410B.
  • a magnetic circuit using the inductor 451B is used as in the second embodiment. Use coupling means.
  • FIG. 15 shows a configuration of an array coil 400 according to this modification.
  • an inductor is inserted in series in the first loop coil portion 420A and the second loop coil portion 420B, and these are magnetically coupled, whereby the first RF coil 410A.
  • the magnetic coupling of the second RF coil 410B is removed.
  • the magnetic coupling of two RF coils may be removed via a common capacitor 451C.
  • a common capacitor 451C By removing in this way, adjustment can be easily performed by using a variable capacitor or the like.
  • the inductor system is used as the magnetic coupling removing means for the first RF coil 410A and the second RF coil 410B.
  • the two RF coils are magnetically removed through a common capacitor 451C. You may do it. By removing in this way, adjustment can be easily performed by using a variable capacitor or the like. In addition, even if it is difficult to adjust with an inductor, it is possible to adjust with this embodiment.
  • each circuit element is adjusted so that each RF coil can receive a nuclear magnetic resonance signal, and combined with the conductor loop 415 to form a sub-current, and the first sub-current is generated.
  • the integral value of the inner product of the electric field and the electric field generated by the second sub-current is different from the integral value of the inner product of the electric field generated in the subject by the first RF coil 410A and the second RF coil 410B. adjust.
  • the operation is basically based on the same principle as in the first and second embodiments, and the adjustment is performed in the same manner.
  • the cosine of the angle formed by the perpendicular line of the first coil surface and the perpendicular line of the second coil surface is arranged at a negative position as in the second embodiment. Therefore, generally, when two identical RF coils are arranged at such an angle, the integral value of the inner product of the electric field generated by these coils in the subject becomes negative, resulting in a negative noise correlation.
  • the noise correlation can be reduced to 0 by adding a conductor loop 415 and adding a positive correlation in the subject, so the circuit configuration is the same as that of the second embodiment.
  • FIG. 17 is a diagram for explaining the inner product distribution of the electric field formed by two RF coils without using a conventional conductor loop.
  • the first RF coil 410A and the second RF coil forming the array coil are arranged so as to cover the object 103 and not be magnetically coupled.
  • the magnetic coupling removing means 451 an inductor method shown in FIG. 12 in which an inductor is inserted into the coil loop of each RF coil to remove the magnetic coupling is used.
  • a first current flows in the first RF coil 410A through the element in the Z-axis minus direction as shown in FIG. 17A, and the second RF coil.
  • a second current flows in the X direction plus direction through the element in the Z axis minus direction.
  • FIG. 17B shows the concept of the inner product distribution of the electric field created by the two RF coils.
  • the first RF coil 410A and the second RF coil 410B show a negative inner product distribution in the subject.
  • the reason for this negative is that the first RF coil 410A and the second RF coil 410B exist in substantially opposite directions when viewed from the subject, and currents in the same direction flow in both directions. This is because the electric field generated in the subject has the opposite sign, and the inner product of each region is almost negative.
  • the negative inner product component is dominant, so that the noise correlation obtained by Expression 2 is a large negative value. Therefore, the noise of the synthesized value of the signals acquired with these configurations is larger than that with zero correlation, and the SNR is low.
  • FIG. 18 is a diagram for explaining the inner product distribution of this embodiment. Positive electric fields are indicated by fine dots, and negative electric fields are indicated by coarse dots.
  • the first RF coil 410A and the second RF coil that form the array coil are arranged so as to cover the object 103 and not to be magnetically coupled, and further have two conductor loops. It is magnetically coupled to the RF coil and arranged in the X-axis direction so as to cover the subject.
  • FIG. 18B shows the operation when a first current (solid line in the figure) flows through the first RF coil 410A as shown in the figure at the time of signal reception, as in the conventional configuration of FIG.
  • a first current solid line in the figure
  • the magnetic field generated by the first RF coil 410A is the same as the basic principle described in FIG. Current flowing in the left direction is induced in the other element, and the first sub-current 418A flows.
  • FIG. 18 (c) shows the operation when a second current (broken line in the figure) flows through the second RF coil 410B as shown in the figure at the time of signal reception, as in the conventional configuration of FIG.
  • a second current broken line in the figure
  • the magnetic field generated by the second RF coil 410B is the same as the basic principle described in FIG.
  • a second sub-current 418A flows by inducing a current flowing in the left direction in the element.
  • the direction of the current flowing through the conductor from the Z direction minus of the conductor loop of the first RF coil and the second RF coil is the minus direction of the X direction
  • the induced first sub-current 418A and the first The second sub-current 418B is also negative in the Y direction.
  • FIG. 18 (d) shows the concept of the inner product distribution of the electric field created by the two RF coils. Positive electric fields are indicated by fine dots, and negative electric fields are indicated by coarse dots.
  • the first RF coil 410A and the second RF coil 410B form a current similar to that in the conventional configuration shown in FIG. 13, and thus show the same negative inner product distribution in the subject.
  • a positive inner product distribution is shown near the conductor loop 415. The reason for being positive in this way is that the directions of currents generated by magnetic coupling are both the same as described above. Since the current direction is the same, the signs of the electric fields are also equal, and the inner product is negative.
  • the noise correlation can be obtained by volume integration of the electric field. Therefore, in this embodiment, it is possible to cancel each other by constructing negative and positive, and to bring the integral value close to zero. it can. Therefore, if the noise correlation is brought close to zero, the noise can be reduced and the SNR can be improved compared to the conventional configuration shown in FIG. Also in this example, the first RF coil 410A and the second RF coil 410B are adjusted so as to be coupled to the conductor loop and resonate at the same frequency as the magnetic resonance frequency f0, and thus acquire a magnetic resonance signal. be able to.
  • the conductor loop 415 is configured in the same manner as the horizontal magnetic field.
  • the 8-shaped coil is used. If a negative or negative coil is used, noise is reduced. Further, the signal acquisition efficiency is improved by arranging the magnetic field to be perpendicular to the direction of the static magnetic field of the magnet so that the magnetic field generated by the current flowing through the conductor loop contributes to the MRI sensitivity.
  • the loop coils 420 of the first RF coil 410A and the second RF coil 410B are arranged so as to wrap around the subject, but the present invention is not limited to this.
  • the loop coil unit 420 may be wound twice. Thereby, a sensitivity area can be expanded.
  • first and second embodiments and the modified examples two RF coils are shown, but three or more RF coils may be provided. Thereby, an array coil of three or more RF coils can be produced.
  • the example shown in FIG. 19 is a case where three RF coils are provided. Only the combination of the coils (first RF coil 410A and second RF coil 410B) whose noise correlation is to be reduced is magnetically coupled to the conductor loop, and the other coils are arranged so that the magnetic coupling to the conductor loop is broken. Thus, the noise correlation can be lowered and the SNR can be improved only where necessary.
  • the magnetic coupling between the RF coil and the conductor loop is magnetically coupled depending on the arrangement, but the magnetic coupling method is not limited to this. Magnetic coupling using an inductor may be performed.
  • the example shown in FIG. 20 includes an inductor for magnetically coupling the RF coil and the conductor loop to the coil element and the conductor loop of each RF coil. By adjusting these magnetic couplings, the magnetic coupling between the RF coil and the conductor loop can be adjusted. As a result, the adjustment range of the magnetic coupling between the RF coil and the conductor loop is widened, so that the amount of magnetic coupling can be adjusted and noise can be reduced without depending on the arrangement.
  • cross diode, 222 ... inductor 223 control signal line
  • 300 birdcage type RF coil, 301 ... straight conductor, 302 ... end conductor, 303 ... capacitor, 311 ... input port, 312 ... Input port 400 ... array coil 410 ... RF coil 415 ... conductor loop 420 ... loop coil section 421 ... loop 422 ... series capacitor 424 ... Parallel capacitor 431 ... Low input impedance preamplifier, 450 ... Magnetic coupling unit, 452 ... Magnetic coupling adjustment circuit

Abstract

The objective of the present invention is to acquire an image having an improved SNR by reducing noise. Provided is an array coil which is provided with first and second RF coils capable of receiving a magnetic resonance signal from a subject and respectively including a first loop coil portion and a second loop coil portion from which magnetic coupling has been eliminated and each of which comprises a conductor, and an electric field generating circuit which includes a loop portion in which the end portions of at least one conductor are connected to one another, and which is magnetically coupled to the first RF coil and the second RF coil. The placement of the electric field generating circuit is adjusted in such a way that an inner product volume integral value of electric fields generated respectively in the subject by a first sub-current induced in the electric field generating circuit by the first RF coil and a second sub-current induced in the electric field generating circuit by the second RF coil has a sign and a value that cancel out an inner product volume integral value of electric fields generated in the subject by a first current flowing through the first loop coil portion and a second current flowing through the RF coil of the second loop coil portion.

Description

アレイコイル及び磁気共鳴撮像装置Array coil and magnetic resonance imaging apparatus
 本発明は、磁気共鳴撮像(MRI:Magnetic Resonance Imaging)装置に関り、特に高周波磁場(RF磁場)を照射して核磁気共鳴信号を検出するRFコイルに関する。 The present invention relates to a magnetic resonance imaging (MRI) apparatus, and more particularly to an RF coil that detects a nuclear magnetic resonance signal by irradiating a high frequency magnetic field (RF magnetic field).
 MRI装置は、核磁気共鳴現象を用いて被写体を横切る任意の断面を画像化する装置である。具体的には、MRI装置は、空間的に均一な磁場(静磁場)中に置かれた被写体に対しRF磁場を照射して核磁気共鳴を起こし、発生する核磁気共鳴信号を検出し、検出した信号に画像処理を施すことで断面画像を取得する。 The MRI apparatus is an apparatus that images an arbitrary cross section across a subject using a nuclear magnetic resonance phenomenon. Specifically, the MRI apparatus irradiates a subject placed in a spatially uniform magnetic field (static magnetic field) with an RF magnetic field to cause nuclear magnetic resonance, and detects and detects the generated nuclear magnetic resonance signal. A cross-sectional image is acquired by performing image processing on the processed signal.
 被写体にRF磁場を照射したり、被写体から発生する核磁気共鳴信号を検出したりする装置をRFコイル(以下、RF(Radio Frequency)コイルという)と呼ぶ。RFコイルは、RF磁場の照射及び検出を行うループ部(コイルループ)を有する。このコイルループを小さくすればするほど感度領域は狭くなるが、感度が高くなる。一方、コイルループを大きくすれば感度領域を広げることができる。このように、RFコイルでは、感度の高さと、感度領域の広さとは、トレードオフの関係にある。
 また、核磁気共鳴信号は、磁石が作る静磁場と垂直な方向に生じる回転磁場の信号であるため、RFコイルは静磁場と垂直な方向の磁場を照射、検出できる向きに配置することが好ましい。
A device that irradiates a subject with an RF magnetic field and detects a nuclear magnetic resonance signal generated from the subject is called an RF coil (hereinafter referred to as an RF (Radio Frequency) coil). The RF coil has a loop unit (coil loop) that performs irradiation and detection of an RF magnetic field. The smaller the coil loop, the narrower the sensitivity region, but the higher the sensitivity. On the other hand, if the coil loop is enlarged, the sensitivity region can be expanded. As described above, in the RF coil, there is a trade-off relationship between the high sensitivity and the wide sensitivity area.
Further, since the nuclear magnetic resonance signal is a signal of a rotating magnetic field generated in a direction perpendicular to the static magnetic field generated by the magnet, the RF coil is preferably arranged in a direction in which a magnetic field perpendicular to the static magnetic field can be irradiated and detected. .
 前述の通り、RFコイルは、小さいほど感度は高くなるが、感度領域が狭くなる。これを解決するものとして、感度の高い小径RFコイルをアレイ状に複数配置した多チャンネルアレイコイルがある(例えば、非特許文献1参照)。多チャンネルアレイコイルは高感度と広い感度領域を有するため、高いSNR(Signal to Noise Ratio:信号対ノイズ比)の画像を取得でき、現在の受信RFコイルの主流となっている。 As described above, the smaller the RF coil, the higher the sensitivity but the narrower the sensitivity region. As a solution to this problem, there is a multi-channel array coil in which a plurality of highly sensitive small-diameter RF coils are arranged in an array (see, for example, Non-Patent Document 1). Since the multi-channel array coil has high sensitivity and a wide sensitivity region, it can acquire a high SNR (Signal to Noise Ratio) image, which is the mainstream of the current receiving RF coil.
 通常同じ共振特性を持ったRFコイルが互いに近くに配置されると、それらは磁気結合により干渉する。磁気結合による干渉はRFコイルの性能を劣化させるため、多チャンネルアレイコイルでは、RFコイル間の磁気結合の除去は必須である。そこで、非特許文献1では、隣り合ったRFコイルのコイルループの一部が重なり合うように配置することで、磁気結合を最大限低下させている。さらに低入力のプリアンプとインダクタとキャパシタとを用いて、コイルループの一部を高インピーダンスにすることによって、当該RFコイル以外からの干渉を低減させている。 通常 When RF coils with the same resonance characteristics are usually arranged close to each other, they interfere with each other by magnetic coupling. Since interference due to magnetic coupling degrades the performance of the RF coil, it is essential to remove the magnetic coupling between the RF coils in a multi-channel array coil. Therefore, in Non-Patent Document 1, the magnetic coupling is reduced to the maximum by arranging the coil loops of adjacent RF coils so that a part of the coil loops overlap each other. Further, by using a low-input preamplifier, an inductor, and a capacitor, a part of the coil loop is made to have a high impedance, thereby reducing interference from other than the RF coil.
 また特許文献1や特許文献2には、多チャンネルコイルについて、デカップリング手段を設けることで、多チャンネルコイルを構成するRFコイル間の磁気結合を低減する技術が開示されている。また特許文献3では磁気結合を有効に用いることで高い感度が実現できる技術が開示されている。
 このように、近年RFコイルでは、多チャンネル化を図り、磁気結合による干渉を低減させることによってその感度を向上させている。
Patent Documents 1 and 2 disclose techniques for reducing magnetic coupling between RF coils constituting a multichannel coil by providing decoupling means for the multichannel coil. Patent Document 3 discloses a technology that can realize high sensitivity by effectively using magnetic coupling.
Thus, in recent years, RF coils have been increased in sensitivity by increasing the number of channels and reducing interference due to magnetic coupling.
特許第3197262号公報Japanese Patent No. 3197262 特開2002-119495号公報JP 2002-119495 A 特開2016-054785号公報JP 2016-054785 A
 しかしながら、RFコイルでは、被写体から生じている熱雑音もコイルが作る電場を介してノイズとして検出される。このため、RFコイルの感度を向上させるには、磁気結合による干渉を低減させるだけでは足りず、被写体から生じる熱雑音によるノイズも考慮する必要がある。 However, in the RF coil, thermal noise generated from the subject is also detected as noise through the electric field created by the coil. For this reason, in order to improve the sensitivity of the RF coil, it is not sufficient to reduce interference due to magnetic coupling, and it is necessary to consider noise due to thermal noise generated from the subject.
 ここで、一般的に、熱雑音によるノイズはGauss型のノイズである。よって理想的にノイズが独立している場合の合成信号のノイズはチャンネル数の1/2乗で増加することとなる。しかしながらアレイコイルでは、互いに隣接するチャンネルにおいて、一方のRFコイルで作る電場が被写体を介して他方のRFコイルへ電流を誘起するため、検出されたノイズは被写体を介して共有され、相関を持ったノイズが両方のチャンネルで検出される。このためノイズが共有されている場合は、合成信号のノイズはチャンネル数の1/2乗よりも速いペースで増加する。 Here, generally, noise due to thermal noise is Gaussian noise. Therefore, when the noise is ideally independent, the noise of the combined signal increases by the 1/2 power of the number of channels. However, in the array coil, in the channels adjacent to each other, the electric field generated by one RF coil induces a current to the other RF coil through the subject, so the detected noise is shared through the subject and has a correlation. Noise is detected on both channels. For this reason, when noise is shared, the noise of the composite signal increases at a faster rate than the 1/2 power of the number of channels.
 よってノイズに相関が強く生じるような多チャンネルアレイコイル(特に32ch以上のアレイコイル)では、さらにチャンネル数を増やしてもノイズばかりが大きくなり期待通りのSNRが上昇しないということが起こり得る。つまり、更なる多チャンネル化を図ったとしても、チャンネル数の増加に見合った効果を得ることができない。 Therefore, in a multi-channel array coil (particularly an array coil of 32ch or more) in which the noise is strongly correlated, even if the number of channels is further increased, only the noise increases and the expected SNR does not increase. That is, even if the number of channels is further increased, an effect commensurate with the increase in the number of channels cannot be obtained.
 ところで、非特許文献1ではノイズ相関マトリックスを用いてノイズを最小化しSNRを最大化する画像再構成方法が提案されているが、ノイズ相関マトリックスが正しく求まらない場合やSNRが低い場合は、この手法は逆にSNRを低下させることがある。
 また特許文献3ではコイル同士を磁気結合させることで高い感度を得る方法が提案されているが、磁気結合するコイルが互いに信号を検出するRFコイルであるため、コイルの調整が困難なことがある。したがって、何れの手法もノイズ低減が十分でない場合があり、SNRを向上させることが困難であった。
By the way, Non-Patent Document 1 proposes an image reconstruction method that uses a noise correlation matrix to minimize noise and maximize SNR. However, when the noise correlation matrix cannot be obtained correctly or when the SNR is low, Conversely, this approach may reduce the SNR.
Patent Document 3 proposes a method of obtaining high sensitivity by magnetically coupling coils, but the coils that are magnetically coupled are RF coils that detect signals from each other, so that adjustment of the coils may be difficult. . Therefore, in any of the methods, noise reduction may not be sufficient, and it is difficult to improve the SNR.
 本発明は、上記実情に鑑みて成されたもので、アレイコイルにおけるノイズを低減させ、SNRを向上させた画像を取得することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to obtain an image in which noise in an array coil is reduced and SNR is improved.
 上記課題を解決するために、本発明は以下の手段を提供する。
 本発明の一態様は、導体からなる第一のループコイル部を有し、被写体からの磁気共鳴信号の受信が可能な第一のRFコイルと、導体からなる第二のループコイル部を有し、被写体からの磁気共鳴信号の受信が可能であり、前記第一のRFコイルと磁気結合が除去された第二のRFコイルと、少なくとも一つの導体の端部が互いに接続されたループ部を有し、前記第一のRFコイル及び前記第二のRFコイルと磁気結合された電界生成回路と、を備え、該電界生成回路は、前記第一のRFコイルにより前記電界生成回路に誘起される第一のサブ電流と、前記第二のRFコイルにより前記電界生成回路に誘起される第二のサブ電流とによって、被写体内にそれぞれ生成する電場の内積の体積積分値が、前記第一のループコイル部に流れる第一の電流と、前記第二のループコイル部のRFコイルに流れる第二の電流とによって被写体内に生成する電場の内積の体積積分値を相殺するような符号及び値となるように、配置調整されるアレイコイルを提供する。
In order to solve the above problems, the present invention provides the following means.
One embodiment of the present invention includes a first loop coil portion made of a conductor, a first RF coil capable of receiving a magnetic resonance signal from a subject, and a second loop coil portion made of a conductor. The magnetic resonance signal can be received from the subject, the second RF coil from which the magnetic coupling is removed from the first RF coil, and a loop portion in which at least one conductor end is connected to each other. And an electric field generation circuit magnetically coupled to the first RF coil and the second RF coil, wherein the electric field generation circuit is induced in the electric field generation circuit by the first RF coil. The volume integral value of the inner product of the electric fields generated in the subject by the one sub current and the second sub current induced in the electric field generation circuit by the second RF coil is the first loop coil. The first flowing in the department The arrangement is adjusted such that the volume integral value of the inner product of the electric field generated in the subject is canceled by the current and the second current flowing in the RF coil of the second loop coil section. An array coil is provided.
 また、本発明の他の態様は、静磁場を形成する静磁場形成部と、傾斜磁場を形成する傾斜磁場形成部と、前記静磁場に配置された検査対象にRF磁場を照射する送信RFコイルと、前記検査対象からの核磁気共鳴信号を検出する受信RFコイルと、前記受信RFコイルが検出した核磁気共鳴信号を処理する信号処理部と、を備え、前記受信RFコイルが、上述したアレイコイルである磁気共鳴撮像装置を提供する。 In another aspect of the present invention, a static magnetic field forming unit that forms a static magnetic field, a gradient magnetic field forming unit that forms a gradient magnetic field, and a transmission RF coil that irradiates an inspection target placed in the static magnetic field with an RF magnetic field A reception RF coil for detecting a nuclear magnetic resonance signal from the inspection object, and a signal processing unit for processing the nuclear magnetic resonance signal detected by the reception RF coil, wherein the reception RF coil is the array described above. A magnetic resonance imaging apparatus that is a coil is provided.
 本発明によれば、アレイコイルにおけるノイズを低減させ、SNRを向上させた画像を取得することができる。 According to the present invention, it is possible to obtain an image with reduced noise in the array coil and improved SNR.
本発明の実施形態に係るMRI装置の外観図であり、それぞれ(a)は水平磁場方式のMRI装置、(b)は、オープン型の垂直磁場方式のMRI装置の外観図である。BRIEF DESCRIPTION OF THE DRAWINGS It is an external view of the MRI apparatus which concerns on embodiment of this invention, (a) is an MRI apparatus of a horizontal magnetic field system, respectively, (b) is an external view of an open type perpendicular magnetic field type MRI apparatus. MRI装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of an MRI apparatus. 本発明の実施形態に係るMRI装置における送信RFコイルと受信RFコイルの接続を説明するための説明図である。It is explanatory drawing for demonstrating the connection of the transmission RF coil and the reception RF coil in the MRI apparatus which concerns on embodiment of this invention. (a)は、送信RFコイルとして用いる鳥かご型RFコイルの構成を示す図であり、(b)は、送信RFコイルの送受間磁気結合防止回路の一例を示す図である。(A) is a figure which shows the structure of the birdcage type | mold RF coil used as a transmission RF coil, (b) is a figure which shows an example of the magnetic coupling prevention circuit between transmission / reception of a transmission RF coil. (a)は、受信RFコイルとして用いるアレイコイルの一実施形態を示す図であり、(b)および(c)は、受信RFコイルの送受間磁気結合防止回路の例を示す図である。(A) is a figure which shows one Embodiment of the array coil used as a receiving RF coil, (b) And (c) is a figure which shows the example of the magnetic coupling prevention circuit between transmission / reception of a receiving RF coil. (a)~(b)は、従来アレイコイルの動作と作用を説明するための説明図である。(A)-(b) is explanatory drawing for demonstrating operation | movement and an effect | action of a conventional array coil. (a)~(d)は、実施例1のアレイコイルの動作と作用を説明するための説明図である。(A)-(d) is explanatory drawing for demonstrating operation | movement and an effect | action of the array coil of Example 1. FIG. (a)~(c)は、それぞれ、本実施形態の変形例を示す図である。(A)-(c) is a figure which shows the modification of this embodiment, respectively. (a)は実施例1の調整例を説明する図あり、(b)はその配置を説明する図である。(A) is a figure explaining the adjustment example of Example 1, (b) is a figure explaining the arrangement | positioning. (a)~(c)は、RFコイルと導体ループが磁気結合して電流を誘起する原理を説明する図である。(A)-(c) is a figure explaining the principle which an RF coil and a conductor loop magnetically couple and induce an electric current. (a)は、実施例および比較例の感度プロファイルのグラフであり、(b)はサブ電流の電流比とノイズ相関との関係を示すグラフである。(A) is a graph of the sensitivity profile of an Example and a comparative example, (b) is a graph which shows the relationship between the electric current ratio of a subcurrent, and a noise correlation. 実施例2に係るアレイコイルの動作を説明するための回路を示す図である。FIG. 10 is a diagram illustrating a circuit for explaining an operation of the array coil according to the second embodiment. (a)および(b)は、導体ループを使用していない従来の二つのRFコイルが作る電場の内積分布を説明する説明図である。(A) And (b) is explanatory drawing explaining the inner product distribution of the electric field which two conventional RF coils which do not use a conductor loop make. 実施例2に係るアレイコイルの内積分布を説明する図であるであり、(a)は、被写体とアレイコイルの配置例を示し、(b)は信号受信時に第一のRFコイルに第一の電流が流れた場合の動作を示し、(c)は信号受信時に第二のRFコイルに第二の電流が流れた場合の動作を示し、(d)は二つのRFコイルが作る電場の内積の分布の概念を示す。It is a figure explaining the inner product distribution of the array coil which concerns on Example 2, (a) shows the example of arrangement | positioning of a to-be-photographed object and an array coil, (b) is 1st RF coil at the time of signal reception to 1st RF coil (C) shows the operation when the second current flows through the second RF coil during signal reception, and (d) shows the inner product of the electric field created by the two RF coils. The concept of distribution is shown. 変形例に係るアレイコイル400の構成を示す説明図である。It is explanatory drawing which shows the structure of the array coil 400 which concerns on a modification. 二つのRFコイルを共通のキャパシタ451Cを介して磁気結合を除去した例に係る参考図である。It is a reference figure concerning the example which removed the magnetic coupling of two RF coils via common capacitor 451C. 導体ループを使用していない、従来の二つのRFコイルが作る電場の内積分布を説明する図であり、(a)は被写体とアレイコイルの配置例を示し、(b)は二つのRFコイルが作る電場の内積の分布の概念を示す。It is a figure explaining the inner product distribution of the electric field which the conventional two RF coils which do not use a conductor loop, (a) shows an example of arrangement of a subject and an array coil, and (b) shows two RF coils. The concept of the inner product distribution of the electric field is shown. 本実施例の内積分布を説明する図であり、(a)は被写体とアレイコイルの配置例を示し、(b)は信号受信時に第一のRFコイル第一の電流(図中実線)が流れた場合の動作を示し、(c)は信号受信時に第二のRFコイルに第二の電流が流れた場合の動作を示し、(d)は二つのRFコイルが作る電場の内積の分布の概念を示す。It is a figure explaining the inner product distribution of a present Example, (a) shows the example of arrangement | positioning of a to-be-photographed object and an array coil, (b) is the 1st RF coil 1st electric current (solid line in a figure) flows at the time of signal reception. (C) shows the operation when a second current flows through the second RF coil during signal reception, and (d) shows the concept of the distribution of the inner product of the electric fields produced by the two RF coils. Indicates. RFコイルを3つ備えた場合のアレイコイルの構成を示す図である。It is a figure which shows the structure of the array coil at the time of providing three RF coils. RFコイルのコイルエレメントと導体ループに、RFコイルと導体ループのとの磁気結合を行うためのインダクタを備えた場合の構成を示す図である。It is a figure which shows the structure at the time of providing the inductor for performing the magnetic coupling of RF coil and a conductor loop in the coil element and conductor loop of RF coil.
 以下、本発明の一実施形態に係るMRI装置について図面を参照して説明する。以下、各実施形態乃至実施例に係る図面おいて、同一の構成には同一の符号を付し、その繰り返しの説明は省略する。 Hereinafter, an MRI apparatus according to an embodiment of the present invention will be described with reference to the drawings. Hereinafter, in the drawings according to each embodiment or example, the same components are denoted by the same reference numerals, and the repeated description thereof is omitted.
<MRI装置の全体構成>
 まず、本実施形態を適用可能なMRI装置について説明する。
 図1は、本実施形態を適用可能なMRI装置の一例に係る外観を示している。特に、図1(a)は、ソレノイドコイルによって静磁場を生成するトンネル型磁石110を用いた水平磁場方式のMRI装置100である。図1(b)は、開放感を高めるために磁石111を上下に分離したオープン型の垂直磁場方式のMRI装置101である。これらのMRI装置100、101は、検査対象(被写体)103を載置するテーブル102を備える。被写体103はテーブルに載置された状態で、磁石110、111によって均一な磁場(静磁場)が発生している検査空間に配置される。なお磁石110、111は、静磁場を形成する静磁場形成部を構成する。
<Overall configuration of MRI apparatus>
First, an MRI apparatus to which this embodiment can be applied will be described.
FIG. 1 shows the appearance of an example of an MRI apparatus to which the present embodiment can be applied. In particular, FIG. 1A shows a horizontal magnetic field type MRI apparatus 100 using a tunnel magnet 110 that generates a static magnetic field by a solenoid coil. FIG. 1B shows an open-type vertical magnetic field type MRI apparatus 101 in which a magnet 111 is separated into upper and lower parts to enhance the feeling of opening. These MRI apparatuses 100 and 101 include a table 102 on which an inspection target (subject) 103 is placed. The subject 103 is placed on a table and placed in an examination space where a uniform magnetic field (static magnetic field) is generated by the magnets 110 and 111. Magnets 110 and 111 constitute a static magnetic field forming unit that forms a static magnetic field.
 本実施形態に係るMRI装置は、受信RFコイルとして、複数のRFコイル及び導体プールを有する所謂多チャンネルRFコイルを適用するものであり、上記した水平磁場方式のMRI装置100、垂直磁場方式のMRI装置101のいずれも適用可能である。
 また図1に示すMRI装置の形態は一例であり、本発明は装置の形態やタイプを問わず、公知の各種のMRI装置を用いることができる。以下の説明において、水平磁場方式及び垂直磁場方式に共通する座標系として、静磁場方向をz方向、それに垂直な2方向を、それぞれx方向及びy方向とする座標系090を用いる。
The MRI apparatus according to the present embodiment applies a so-called multi-channel RF coil having a plurality of RF coils and a conductor pool as a reception RF coil. The above-described horizontal magnetic field type MRI apparatus 100 and vertical magnetic field type MRI apparatus are used. Any of the devices 101 can be applied.
The form of the MRI apparatus shown in FIG. 1 is an example, and various known MRI apparatuses can be used in the present invention regardless of the form and type of the apparatus. In the following description, as a coordinate system common to the horizontal magnetic field method and the vertical magnetic field method, a coordinate system 090 in which the static magnetic field direction is the z direction and the two directions perpendicular thereto are the x direction and the y direction, respectively.
 以下、本実施形態では水平磁場方式のMRI装置を適用した場合を例に、MRI装置100の概略構成を説明する。
 図2に示すように、MRI装置100は、水平磁場方式のマグネット(静磁場磁石)110、傾斜磁場コイル131、送信RFコイル151、受信RFコイル161、傾斜磁場電源132、シムコイル121、シム電源122、RF磁場発生器152、受信器162、磁気結合防止回路駆動装置180、計算機(PC)170、シーケンサ140、及び表示装置171を備える。なお、102は、検査対象(被写体)103を載置するテーブルである。
Hereinafter, in the present embodiment, a schematic configuration of the MRI apparatus 100 will be described by taking as an example a case where a horizontal magnetic field type MRI apparatus is applied.
As shown in FIG. 2, the MRI apparatus 100 includes a horizontal magnetic field type magnet (static magnetic field magnet) 110, a gradient magnetic field coil 131, a transmission RF coil 151, a reception RF coil 161, a gradient magnetic field power supply 132, a shim coil 121, and a shim power supply 122. , An RF magnetic field generator 152, a receiver 162, a magnetic coupling prevention circuit driving device 180, a computer (PC) 170, a sequencer 140, and a display device 171. Reference numeral 102 denotes a table on which the inspection object (subject) 103 is placed.
 傾斜磁場コイル131は、傾斜磁場電源132に接続され、傾斜磁場を発生させる。傾斜磁場コイル131及び傾斜磁場電源132は、傾斜磁場を形成する傾斜磁場形成部を構成する。シムコイル121は、シム電源122に接続され、磁場の均一度を調整する。送信RFコイル151は、RF磁場発生器152に接続され、被写体103にRF磁場を照射(送信)する。 The gradient magnetic field coil 131 is connected to the gradient magnetic field power supply 132 and generates a gradient magnetic field. The gradient magnetic field coil 131 and the gradient magnetic field power source 132 constitute a gradient magnetic field forming unit that forms a gradient magnetic field. The shim coil 121 is connected to the shim power source 122 and adjusts the uniformity of the magnetic field. The transmission RF coil 151 is connected to the RF magnetic field generator 152 and irradiates (transmits) the subject 103 with the RF magnetic field.
 受信RFコイル161は、受信器162に接続され、被写体103からの核磁気共鳴信号を受信する。ここで、本実施形態に係る受信RFコイル161として、複数のRFコイル及び導体ループからなる多チャンネルRFコイル(以下、アレイコイルという)を適用している。以下の説明において、アレイコイルを構成するRFコイルの数とチャンネル数は一致するとして取り扱う。受信RFコイル161としてのアレイコイルの詳細は、後述する。 The reception RF coil 161 is connected to the receiver 162 and receives a nuclear magnetic resonance signal from the subject 103. Here, as the reception RF coil 161 according to the present embodiment, a multi-channel RF coil (hereinafter referred to as an array coil) including a plurality of RF coils and a conductor loop is applied. In the following description, the number of RF coils constituting the array coil and the number of channels are assumed to be the same. Details of the array coil as the reception RF coil 161 will be described later.
 磁気結合防止回路駆動装置180は、磁気結合防止回路(後述)に接続される。なお、磁気結合防止回路は、送信RFコイル151及び受信RFコイル161にそれぞれ接続される、送信RFコイル151と受信RFコイル161との間の磁気結合を防止する回路である。 The magnetic coupling prevention circuit driving device 180 is connected to a magnetic coupling prevention circuit (described later). The magnetic coupling prevention circuit is a circuit that prevents magnetic coupling between the transmission RF coil 151 and the reception RF coil 161 connected to the transmission RF coil 151 and the reception RF coil 161, respectively.
 シーケンサ140は、傾斜磁場電源132、RF磁場発生器152、磁気結合防止回路駆動装置180に命令を送り、それぞれ動作させる。命令は、計算機(PC)170からの指示に従って送出する。また、計算機(PC)170からの指示に従って、受信器162で検波の基準とする磁気共鳴周波数をセットする。例えば、シーケンサ140からの命令に従って、RF磁場が、送信RFコイル151を通じて被写体103に照射される。RF磁場を照射することにより被写体103から発生する核磁気共鳴信号は、受信RFコイル161によって検出され、受信器162で検波が行われる。 The sequencer 140 sends commands to the gradient magnetic field power supply 132, the RF magnetic field generator 152, and the magnetic coupling prevention circuit driving device 180 to operate them. The command is sent in accordance with an instruction from the computer (PC) 170. Further, in accordance with an instruction from the computer (PC) 170, the receiver 162 sets a magnetic resonance frequency as a reference for detection. For example, the subject 103 is irradiated with the RF magnetic field through the transmission RF coil 151 in accordance with a command from the sequencer 140. The nuclear magnetic resonance signal generated from the subject 103 by irradiating the RF magnetic field is detected by the reception RF coil 161 and detected by the receiver 162.
 計算機(PC)170は、MRI装置100全体の動作の制御、各種の信号処理を行う。例えば、受信器162で検波された信号をA/D変換回路を介して受信し、画像再構成などの信号処理(画像再構成部の機能)を行う。その結果は、表示装置171に表示される。検波された信号や測定条件は、必要に応じて、記憶媒体に保存される。また、予めプログラムされたタイミング、強度で各装置が動作するようシーケンサ140に命令を送出させる。さらに、静磁場均一度を調整する必要があるときは、シーケンサ140により、シム電源122に命令を送り、シムコイル121に磁場均一度を調整させる。 The computer (PC) 170 controls the operation of the entire MRI apparatus 100 and performs various signal processing. For example, a signal detected by the receiver 162 is received via an A / D conversion circuit, and signal processing such as image reconstruction (function of the image reconstruction unit) is performed. The result is displayed on the display device 171. The detected signal and measurement conditions are stored in a storage medium as necessary. In addition, the sequencer 140 is made to send an instruction so that each device operates at a preprogrammed timing and intensity. Further, when it is necessary to adjust the static magnetic field uniformity, the sequencer 140 sends a command to the shim power supply 122 to cause the shim coil 121 to adjust the magnetic field uniformity.
 <送信RFコイル及び受信RFコイルの概要>
 上述したように本実施形態のMRI装置は、送信RFコイル151と受信RFコイル161の2種類のRFコイルが用いられる。送信RFコイル151と受信RFコイル161は、一つのRFコイルが両方を兼ねることもできるし、それぞれ別個のRFコイルを用いることもできる。
<Outline of transmit RF coil and receive RF coil>
As described above, the MRI apparatus according to the present embodiment uses two types of RF coils, that is, the transmission RF coil 151 and the reception RF coil 161. As the transmission RF coil 151 and the reception RF coil 161, one RF coil can serve both, or separate RF coils can be used.
 以下、送信RFコイル151と受信RFコイル161とが別個のRFコイルであり、送信RFコイル151が鳥かご型形状を有するRFコイル(鳥かご型RFコイル)、受信RFコイル161が複数のRFコイルからなるマルチチャネルアレイコイルである場合を例に、RFコイルの詳細を説明する。 Hereinafter, the transmission RF coil 151 and the reception RF coil 161 are separate RF coils, the transmission RF coil 151 is an RF coil having a birdcage shape (birdcage type RF coil), and the reception RF coil 161 is composed of a plurality of RF coils. The details of the RF coil will be described using a multi-channel array coil as an example.
 まず、送信RFコイル151として用いる鳥かご型RFコイル300及び受信RFコイル161として用いるアレイコイル400の配置と、鳥かご型RFコイル300、アレイコイル400、RF磁場発生器152、受信器162、及び、磁気結合防止回路駆動装置180の接続態様とを、図3を用いて説明する。 First, the arrangement of the birdcage type RF coil 300 used as the transmission RF coil 151 and the array coil 400 used as the reception RF coil 161, the birdcage type RF coil 300, the array coil 400, the RF magnetic field generator 152, the receiver 162, and the magnetism. A connection mode of the coupling prevention circuit driving device 180 will be described with reference to FIG.
 図3に示すように、鳥かご型RFコイル300は、外観が略円柱状(楕円柱や多角形柱を含む)の形状を有し、略円柱の軸が、磁石110の中心軸(Z方向の軸)と同軸となるよう配置される。被写体103は、鳥かご型RFコイル300の内側に配置される。そして、アレイコイル400は、鳥かご型RFコイル300内に、被写体103に近接して配置される。また、上述のように、鳥かご型RFコイル300は、RF磁場発生器152に接続される。アレイコイル400は、受信器162に接続される。 As shown in FIG. 3, the birdcage type RF coil 300 has a substantially cylindrical shape (including an elliptical column and a polygonal column) in appearance, and the axis of the substantially cylindrical axis is the central axis of the magnet 110 (in the Z direction). Arranged so as to be coaxial with the shaft. The subject 103 is disposed inside the birdcage type RF coil 300. The array coil 400 is disposed in the birdcage type RF coil 300 in the vicinity of the subject 103. Further, as described above, the birdcage type RF coil 300 is connected to the RF magnetic field generator 152. Array coil 400 is connected to receiver 162.
 さらに、鳥かご型RFコイル300には、アレイコイル400との磁気結合を防止する磁気結合防止回路210が備えられ、アレイコイル400には、鳥かご型RFコイル300との磁気結合を防止する磁気結合防止回路220が備えられる。これらを送受間磁気結合防止回路と呼ぶ。送受間磁気結合防止回路により、上述するような配置において、互いに磁気結合することなく、RF磁場の送信と核磁気共鳴信号の受信とが可能となる。 Further, the birdcage type RF coil 300 is provided with a magnetic coupling prevention circuit 210 that prevents magnetic coupling with the array coil 400, and the array coil 400 includes magnetic coupling prevention that prevents magnetic coupling with the birdcage type RF coil 300. A circuit 220 is provided. These are called a magnetic coupling prevention circuit between transmission and reception. The inter-transmission / reception magnetic coupling prevention circuit enables transmission of an RF magnetic field and reception of a nuclear magnetic resonance signal without magnetic coupling to each other in the arrangement as described above.
[送信RFコイル]
 次に、本実施形態の送信RFコイル151として用いる鳥かご型RFコイル300について図4を用いて説明する。
 本実施形態の鳥かご型RFコイル300は、励起対象元素の共鳴周波数(磁気共鳴周波数)が共振周波数となるよう調整され、当該磁気共鳴周波数のRF磁場を照射する。本実施形態では、水素原子核の励起が可能な、水素原子核の磁気共鳴周波数f0に調整される。以後、照射するRF磁場の磁気共鳴周波数をf0とする。
[Transmission RF coil]
Next, a birdcage type RF coil 300 used as the transmission RF coil 151 of this embodiment will be described with reference to FIG.
The birdcage type RF coil 300 of this embodiment is adjusted so that the resonance frequency (magnetic resonance frequency) of the element to be excited becomes the resonance frequency, and irradiates the RF magnetic field of the magnetic resonance frequency. In this embodiment, it is adjusted to the magnetic resonance frequency f0 of the hydrogen nucleus that can excite the hydrogen nucleus. Hereinafter, the magnetic resonance frequency of the irradiated RF magnetic field is set to f0.
 図4(a)は、本実施形態の鳥かご型RFコイル300の構成を説明するためのブロック図である。本図に示すように、本実施形態の鳥かご型RFコイル300は、複数の直線導体301と、各直線導体301の端部を接続する端部導体302と、端部導体302に挿入されるキャパシタ303と、を備える。 FIG. 4A is a block diagram for explaining the configuration of the birdcage type RF coil 300 of the present embodiment. As shown in the figure, the birdcage type RF coil 300 of this embodiment includes a plurality of straight conductors 301, end conductors 302 connecting the ends of the respective straight conductors 301, and a capacitor inserted into the end conductors 302. 303.
 また、鳥かご型RFコイル300は、二つの入力ポート311、312を備える。第一の入力ポート311と第二の入力ポート312とには、位相が90度異なった送信信号が入力され、効率よく被写体103にRF磁場が加えられるよう構成される。
 さらに、本実施形態の鳥かご型RFコイル300では、受信RFコイル161(アレイコイル400)との間の磁気結合を防止する送受間磁気結合防止回路210が、鳥かご型RFコイル300の直線導体301に直列に挿入される。
The birdcage type RF coil 300 includes two input ports 311 and 312. The first input port 311 and the second input port 312 are configured so that transmission signals having phases different from each other by 90 degrees are input and an RF magnetic field is efficiently applied to the subject 103.
Further, in the birdcage type RF coil 300 of the present embodiment, a transmission / reception magnetic coupling prevention circuit 210 for preventing magnetic coupling with the reception RF coil 161 (array coil 400) is provided on the linear conductor 301 of the birdcage type RF coil 300. Inserted in series.
 送受間磁気結合防止回路210は、例えば、図4(b)に示すように、直線導体301に直列に挿入されたPINダイオード211で構成することができ、その両端に、制御用信号線212が接続される。制御用信号線212は磁気結合防止回路駆動装置180に接続される。制御用信号線212には、高周波の混入を避けるためチョークコイル(不図示)が挿入されることが望ましい。 For example, as shown in FIG. 4B, the inter-transmission / reception magnetic coupling prevention circuit 210 can be constituted by a PIN diode 211 inserted in series with a straight conductor 301, and control signal lines 212 are provided at both ends thereof. Connected. The control signal line 212 is connected to the magnetic coupling prevention circuit driving device 180. It is desirable to insert a choke coil (not shown) into the control signal line 212 in order to avoid high frequency mixing.
 PINダイオード211は、通常は高抵抗(オフ)を示し、PINダイオード211の順方向に流れる直流電流の値が一定値以上となると概ね導通状態(オン)となる特性を持つ。本実施形態ではこの特性を利用し、磁気結合防止回路駆動装置180から出力される直流電流によりPINダイオード211のオン/オフを制御する。すなわち、高周波信号送信時には、制御用信号線212を介して、PINダイオード211を導通状態とする制御電流を流し、鳥かご型RFコイル300を送信RFコイル151として機能させる。また、核磁気共鳴信号受信時には、制御電流を停止し、鳥かご型RFコイル300を高インピーダンス化し、開放状態とする。 The PIN diode 211 normally has a high resistance (off), and has a characteristic of being generally in a conductive state (on) when the value of the direct current flowing in the forward direction of the PIN diode 211 exceeds a certain value. In this embodiment, this characteristic is used, and on / off of the PIN diode 211 is controlled by a direct current output from the magnetic coupling prevention circuit driving device 180. That is, at the time of high-frequency signal transmission, a control current for turning on the PIN diode 211 is passed through the control signal line 212 to cause the birdcage RF coil 300 to function as the transmission RF coil 151. Further, when receiving a nuclear magnetic resonance signal, the control current is stopped, and the birdcage type RF coil 300 is made to have a high impedance and opened.
 このように、本実施形態では、磁気結合防止回路駆動装置180からの直流電流(制御電流)を制御することにより、高周波信号送信時には鳥かご型RFコイル300を送信RFコイル151として機能させ、核磁気共鳴信号受信時には、開放状態として受信RFコイル161であるアレイコイル400との磁気結合を除去する。 As described above, in the present embodiment, by controlling the direct current (control current) from the magnetic coupling prevention circuit driving device 180, the birdcage type RF coil 300 is made to function as the transmission RF coil 151 at the time of high-frequency signal transmission, and the nuclear magnetism. When receiving the resonance signal, the magnetic coupling with the array coil 400 which is the reception RF coil 161 is removed as an open state.
[受信RFコイル]
 次に、本実施形態の受信RFコイル161として用いるアレイコイル400について、図5を用いて説明する。ここでは、説明の簡単にするために、一例としてループ形状のコイルループ部を有する二つのRFコイル(表面コイル)と、一つの導体の端部が互いに接続されたループ部を有する電界生成回路を並べたアレイコイルを用いて説明する。以下、説明の便宜上、電界生成回路のループ部を、単に「導体ループ」という。なお、本実施形態の受信RFコイルは、少なくとも二つ以上のRFコイルと一つ以上の導体ループ(電界生成回路)を並べたアレイコイルであればよく、これに限定されない。
[Receiving RF coil]
Next, the array coil 400 used as the reception RF coil 161 of this embodiment will be described with reference to FIG. Here, for simplicity of explanation, an electric field generation circuit having two RF coils (surface coils) having a loop-shaped coil loop portion and a loop portion in which ends of one conductor are connected to each other as an example. A description will be given using arrayed coils. Hereinafter, for convenience of explanation, the loop portion of the electric field generation circuit is simply referred to as “conductor loop”. Note that the receiving RF coil of the present embodiment is not limited to this, as long as it is an array coil in which at least two or more RF coils and one or more conductor loops (electric field generating circuits) are arranged.
 本実施形態のアレイコイル400は、図5(a)に示すように、2つのRFコイル410と導体ループ415を備える。アレイコイル400を構成する2つのRFコイル410を、それぞれ、第一のRFコイル410A及び第二のRFコイル410Bと呼ぶ。ただし、アレイコイル400を構成する各RFコイル410の構成要素について、特にRFコイル410毎に区別する必要がない場合は、符号の最後の英文字を省略する(以下、同様とする)。 The array coil 400 of the present embodiment includes two RF coils 410 and a conductor loop 415 as shown in FIG. The two RF coils 410 constituting the array coil 400 are referred to as a first RF coil 410A and a second RF coil 410B, respectively. However, the components of each RF coil 410 constituting the array coil 400 are not particularly distinguished from each RF coil 410, and the last letter of the symbol is omitted (hereinafter the same).
 第一のRFコイル410A、第二のRFコイル410B及び導体ループ415は、それぞれ、略平面上に被写体を被うように配置、構成されたループを有する表面コイルであり、両RFコイル410の間の磁気的な結合は、磁気結合防止手段の一つである、コイルループの導体の一部を重ね合わせるオーバラップ451Aで防止されている。また導体ループは、二つのRFコイルが並んでいる方向、すなわちX方向を縦方向として8の字となるように配置される。さらに各RFコイル410と導体ループ415はそれぞれ意図的に磁気結合450するよう配置、構成されている。それぞれの磁気結合の機能及び詳細は後述する。 The first RF coil 410 </ b> A, the second RF coil 410 </ b> B, and the conductor loop 415 are surface coils each having a loop arranged and configured to cover a subject on a substantially plane. This magnetic coupling is prevented by an overlap 451A that overlaps a part of the conductors of the coil loop, which is one of magnetic coupling preventing means. In addition, the conductor loop is arranged so as to have a figure of 8 when the direction in which the two RF coils are arranged, that is, the X direction is the vertical direction. Further, each RF coil 410 and the conductor loop 415 are arranged and configured so as to be intentionally magnetically coupled 450. The function and details of each magnetic coupling will be described later.
 2つのRFコイル410は、それぞれが、導体ループと磁気結合した状態で、鳥かご型RFコイル300が励起可能な元素の核磁気共鳴信号の受信が可能となるよう調整され、それぞれが1つのチャンネルとして機能する。第一のRFコイル410A及び第二のRFコイル410Bが受信した信号は、それぞれ、受信器162に送られる。 Each of the two RF coils 410 is adjusted so that the birdcage RF coil 300 can receive a nuclear magnetic resonance signal of an excitable element in a state where each of the two RF coils 410 is magnetically coupled to the conductor loop. Function. The signals received by the first RF coil 410A and the second RF coil 410B are sent to the receiver 162, respectively.
 2つのRFコイル410の構成は同様であるので、以下、代表して第一のRFコイル410Aの構成について説明する。第一のRFコイル410Aは、核磁気共鳴信号(RF磁場)を検出するループコイル部420(第一のループコイル部420A)と、低入力インピーダンスプリアンプ430(第一の低入力インピーダンスプリアンプ430A)と、ループコイル部420と低入力インピーダンスプリアンプ430とを接続するインダクタ441(第一のインダクタ441A)とを備え、低入力インピーダンスプリアンプ430を介して受信器162に接続される。 Since the configuration of the two RF coils 410 is the same, the configuration of the first RF coil 410A will be described below as a representative. The first RF coil 410A includes a loop coil unit 420 (first loop coil unit 420A) that detects a nuclear magnetic resonance signal (RF magnetic field), a low input impedance preamplifier 430 (first low input impedance preamplifier 430A), and the like. The inductor 441 (first inductor 441A) that connects the loop coil unit 420 and the low input impedance preamplifier 430 is connected to the receiver 162 via the low input impedance preamplifier 430.
 なお、インダクタ441は、キャパシタに代用されることもある。コイルループから低入力インピーダンスプリアンプ側を見て、キャパシタ421と低入力インピーダンスプリアンプとインダクタ441若しくは代用されるキャパシタとこれらをつなぐ導体から成る並列共振回路のインピーダンスがf0で他の周波数のインピーダンスより高くなるように構成される。 Note that the inductor 441 may be substituted for a capacitor. Looking at the low input impedance preamplifier side from the coil loop, the impedance of the parallel resonant circuit composed of the capacitor 421, the low input impedance preamplifier, the inductor 441 or the capacitor to be substituted, and the conductor connecting them is f0 and becomes higher than the impedance of other frequencies. Configured as follows.
 第一のループコイル部420Aのループ部分は、導体21Aで形成される。そして、第一のループコイル部420Aは、第一のループコイル部420Aのインダクタ成分に対して直列に挿入されるキャパシタ424を備える。このインダクタ成分とキャパシタ424とは、並列共振回路を構成する。このキャパシタ424を、他のキャパシタと区別するため、並列キャパシタ424と呼ぶ。 The loop portion of the first loop coil portion 420A is formed by the conductor 21A. The first loop coil section 420A includes a capacitor 424 that is inserted in series with the inductor component of the first loop coil section 420A. The inductor component and the capacitor 424 constitute a parallel resonance circuit. This capacitor 424 is referred to as a parallel capacitor 424 in order to distinguish it from other capacitors.
 また、第一のループコイル部420Aには、共振周波数を調整するキャパシタ422Aと、送受間磁気結合防止回路220とが直列に挿入される。キャパシタ422Aを、他のキャパシタと区別するため、直列キャパシタと呼ぶ。なお、ここでは、第一の直列キャパシタを2つ(422A)備える場合を例示するが、第一の直列キャパシタの数は1以上であればよい。 Also, a capacitor 422A for adjusting the resonance frequency and a magnetic coupling prevention circuit 220 between transmission and reception are inserted in series in the first loop coil section 420A. The capacitor 422A is called a series capacitor in order to distinguish it from other capacitors. Here, a case where two first series capacitors (422A) are provided is illustrated, but the number of first series capacitors may be one or more.
 このように、第一のRFコイル410Aは、調整用の回路素子として、第一のインダクタ441Aと、第一のループコイル部421Aのインダクタ成分に対して直列に挿入される第一の直列キャパシタ422Aと、前記インダクタ成分に対して直列に挿入され、第一のループコイル部420Aを並列共振回路とする第一の並列キャパシタ424と、を備える。同様に、第二のRFコイル410Bは、調整用の回路素子として、第二のインダクタ441Bと、第二のループコイル部421Bのインダクタ成分に対して直列に挿入される第二の直列キャパシタ422Bと、インダクタ成分に対して直列に挿入され、第二のループコイル部420Bを並列共振回路とする第二の並列キャパシタ424Bと、を備える。 Thus, the first RF coil 410A is a circuit element for adjustment, the first inductor 441A and the first series capacitor 422A inserted in series with the inductor component of the first loop coil section 421A. And a first parallel capacitor 424 that is inserted in series with the inductor component and uses the first loop coil portion 420A as a parallel resonant circuit. Similarly, the second RF coil 410B includes, as adjustment circuit elements, a second inductor 441B and a second series capacitor 422B inserted in series with respect to the inductor component of the second loop coil portion 421B. And a second parallel capacitor 424B inserted in series with the inductor component and having the second loop coil portion 420B as a parallel resonant circuit.
 低入力インピーダンスプリアンプ430のループコイル部420側の一方の端子は、インダクタ441を介してループコイル部420の並列キャパシタ424の一方の端に接続される。低入力インピーダンスプリアンプ430のループコイル部420側のもう一方の端子は、直接ループコイル部420の並列キャパシタ424の他方の端に接続される。 One terminal on the loop coil unit 420 side of the low input impedance preamplifier 430 is connected to one end of the parallel capacitor 424 of the loop coil unit 420 via the inductor 441. The other terminal on the loop coil unit 420 side of the low input impedance preamplifier 430 is directly connected to the other end of the parallel capacitor 424 of the loop coil unit 420.
送受間磁気結合防止回路220は、送信RFコイル151である鳥かご型RFコイル300との間の磁気結合を除去する。送受間磁気結合防止回路220は、例えば、図5(b)に示すように、ループ421を構成する導体21に直列に挿入されたキャパシタ423と、キャパシタ423に並列に接続されたPINダイオード221と、インダクタ222とから構成することができる。 The transmission / reception magnetic coupling prevention circuit 220 removes magnetic coupling with the birdcage type RF coil 300 which is the transmission RF coil 151. For example, as shown in FIG. 5B, the inter-transmission / reception magnetic coupling prevention circuit 220 includes a capacitor 423 inserted in series with the conductor 21 constituting the loop 421, and a PIN diode 221 connected in parallel with the capacitor 423. , And inductor 222.
 PINダイオード221の両端には制御用信号線223が接続される。そして、制御用信号線223は磁気結合防止回路駆動装置180に接続される。制御用信号線223には高周波の混入を避けるためチョークコイル(不図示)が挿入されていることが好ましい。インダクタ222とキャパシタ423とは、受信する核磁気共鳴信号の周波数で並列共振するように調整される。 A control signal line 223 is connected to both ends of the PIN diode 221. The control signal line 223 is connected to the magnetic coupling prevention circuit driving device 180. It is preferable that a choke coil (not shown) is inserted in the control signal line 223 in order to avoid high frequency mixing. Inductor 222 and capacitor 423 are adjusted to resonate in parallel at the frequency of the received nuclear magnetic resonance signal.
 一般に、並列共振回路は共振周波数で他の周波数より高インピーダンス(高抵抗)となる特性を持つ。よって、PINダイオード221に電流が流れると、PINダイオード221はオンになり、ループ421のキャパシタ423は、受信する核磁気共鳴信号の周波数でインダクタ222と共に並列共振して高インピーダンス状態となる。従って、受信する核磁気共鳴信号の周波数で、ループコイル部420は、その一部が高インピーダンスとなり、開放状態となり、そのループコイル部420を有するRFコイル410も開放状態となる。 Generally, a parallel resonant circuit has a characteristic that a resonance frequency has a higher impedance (high resistance) than other frequencies. Therefore, when a current flows through the PIN diode 221, the PIN diode 221 is turned on, and the capacitor 423 of the loop 421 enters into a high impedance state in parallel with the inductor 222 at the frequency of the received nuclear magnetic resonance signal. Therefore, a part of the loop coil unit 420 becomes high impedance and opens at the frequency of the received nuclear magnetic resonance signal, and the RF coil 410 having the loop coil unit 420 is also opened.
 このように、PINダイオード221に電流が流れてオンとなることによって、各RFコイル410A及び410Bと鳥かご型RFコイル300との磁気結合は除去される。従って、各RFコイル410をコイル素子とするアレイコイル400と鳥かご型RFコイル300との磁気結合も除去される。 Thus, when the current flows through the PIN diode 221 and is turned on, the magnetic coupling between the RF coils 410A and 410B and the birdcage type RF coil 300 is removed. Therefore, the magnetic coupling between the array coil 400 having each RF coil 410 as a coil element and the birdcage type RF coil 300 is also removed.
 なお、図5(a)では、一つの送受間磁気結合防止回路220がRFコイル410に挿入される例を示しているが、RFコイル410に挿入される送受間磁気結合防止回路220の数は一つに限定されない。各ループ421に、二つ以上挿入されても良い。複数挿入することで送信RFコイル151と受信RFコイル161との磁気結合を十分に低下させることができる。 5A shows an example in which one transmission / reception magnetic coupling prevention circuit 220 is inserted into the RF coil 410, but the number of transmission / reception magnetic coupling prevention circuits 220 inserted into the RF coil 410 is as follows. It is not limited to one. Two or more may be inserted into each loop 421. By inserting a plurality, the magnetic coupling between the transmission RF coil 151 and the reception RF coil 161 can be sufficiently lowered.
 また、送受間磁気結合防止回路220の構成は、上記構成に限定されない。例えば、図5(c)に示す送受信間磁気結合防止回路220mの変形例のように、PINダイオード221の代わりに、クロスダイオード221mを用いてもよい。これにより、ループ421を構成する導体に大きな信号が流れた場合、クロスダイオード221mはオンになり、ループ421のキャパシタ423は、受信する核磁気共鳴信号の周波数でインダクタ222と共に並列共振して高インピーダンス状態となる。この場合、磁気結合防止回路駆動装置180は備えなくてもよい。 Further, the configuration of the transmission / reception magnetic coupling prevention circuit 220 is not limited to the above configuration. For example, a cross diode 221m may be used instead of the PIN diode 221 as in a modification of the transmission / reception magnetic coupling prevention circuit 220m shown in FIG. As a result, when a large signal flows through the conductors constituting the loop 421, the cross diode 221m is turned on, and the capacitor 423 of the loop 421 resonates in parallel with the inductor 222 at the frequency of the received nuclear magnetic resonance signal to generate high impedance. It becomes a state. In this case, the magnetic coupling prevention circuit driving device 180 may not be provided.
 本実施形態のアレイコイル400では、各RFコイル410A、410Bに含まれる調整用の回路素子のインダクタンスやキャパシタンス及び電磁気結合部450によってもたらされるインダクタンスやキャパシタンスの値を調整することによって、各RFコイル410A、410Bが、それぞれ、核磁気共鳴信号を受信可能であり、且つ、各RFコイルと導体ループはそれぞれ磁気結合して、RFコイルに流れる電流の一部が導体ループにサブ電流として流れる様に配置、調整される。 In the array coil 400 of the present embodiment, each RF coil 410A is adjusted by adjusting the inductance and capacitance of the circuit elements for adjustment included in the RF coils 410A and 410B and the value of the inductance and capacitance provided by the electromagnetic coupling unit 450. , 410B can receive nuclear magnetic resonance signals, and each RF coil and conductor loop are magnetically coupled so that part of the current flowing in the RF coil flows as a sub-current in the conductor loop. Adjusted.
 具体的には、第一のRFコイル410Aには、信号受信時に、当該第一のRFコイル410Aが作る磁場が、導体ループの図上左側のループである第一のRFコイル側のループ416に、導体ループの図上右側のループである第二のRFコイル側のループ417より強い電流を誘起するように配置し、意図的に第一のRFコイル側のループ416に誘起される電流が支配的となる電流を導体ループに流れる様にする。 Specifically, in the first RF coil 410A, the magnetic field generated by the first RF coil 410A during signal reception is applied to the loop 416 on the first RF coil side, which is the left loop in the figure of the conductor loop. The conductor loop is arranged so as to induce a stronger current than the loop 417 on the second RF coil side which is the loop on the right side of the conductor loop, and the current induced in the loop 416 on the first RF coil side is intentionally controlled. The target current is made to flow through the conductor loop.
 同時に、当該第二のRFコイル410Bが作る磁場が、導体ループの図上右側のループである第二のRFコイル側のループ417に、導体ループの図上左側のループである第一のRFコイル側のループ416より強い電流を誘起するように配置し、意図的に第二のRFコイル側のループ417に誘起される電流が支配的となる電流を導体ループに流れる様にする。 At the same time, the magnetic field generated by the second RF coil 410B is transferred to the second RF coil side loop 417, which is the right-hand side loop of the conductor loop, and the first RF coil, which is the left-hand side loop of the conductor loop. It arrange | positions so that the electric current stronger than the loop 416 of a side may be induced | guided | derived, and the electric current which the electric current induced in the loop 417 of the 2nd RF coil side intentionally flows flows through a conductor loop intentionally.
 具体的な調整方法及び電磁気結合手段の具体例については、後述するRFコイルの実施形態において説明する。ここでは先ず、上述の通り、各RFコイルが導体ループに電流を流すように磁気結合することによってノイズが低減されることを説明する。 Specific examples of the adjustment method and the electromagnetic coupling means will be described in an embodiment of the RF coil described later. Here, first, as described above, it will be described that noise is reduced by magnetically coupling each RF coil so that a current flows through the conductor loop.
 MRI装置の受信RFコイル各チャンネルのノイズは、主に被写体から生じる熱雑音であり、コイルと被写体との電場結合によって検出されるGauss型のノイズである。このようなノイズは、各コイルの入力インピーダンスが50Ωに調整されていれば、いずれも同じ強度のガウス分布に従うランダムノイズである。 The noise of each channel of the reception RF coil of the MRI apparatus is mainly thermal noise generated from the subject, and is Gaussian noise detected by electric field coupling between the coil and the subject. Such noise is random noise that follows a Gaussian distribution with the same intensity as long as the input impedance of each coil is adjusted to 50Ω.
 よって、画像再構成において、各チャンネルの二乗和平方根合成を行った場合、一般的には合成チャンネル数に応じてノイズは1/2乗で増加する。しかしアレイコイルでは、複数のRFコイルが被写体を覆って隣接して配置されることで、RFコイルが被写体を介して電場結合するため、一部ノイズ信号が共有される。そのため検出されるノイズは独立したガウス分布とはならずノイズ信号に相関が生じる。この相関(ノイズ相関)は-1から+1の値を取り、0であれば独立したノイズであり、+1であれば同様のノイズ、-1であれば異符号の同様のノイズということになる。 Therefore, in the image reconstruction, when the square sum square root synthesis of each channel is performed, the noise generally increases by a power of 1/2 according to the number of synthesis channels. However, in the array coil, a plurality of RF coils are arranged adjacent to each other so as to cover the subject, so that the RF coil is electrically coupled via the subject, so that some noise signals are shared. Therefore, the detected noise does not have an independent Gaussian distribution, but a correlation occurs in the noise signal. This correlation (noise correlation) takes a value from −1 to +1. If it is 0, it is an independent noise, if it is +1, it is the same noise, and if it is −1, it is the same noise with a different sign.
 すなわち、ノイズ相関が1である場合、ノイズは合成チャンネル数に応じてノイズは比例して増加するため、ノイズ相関が0の場合より速いペースで増加する。よって一般的にはノイズ相関は低い(絶対値が0に近い)方が好ましい。
 一般的に、RFコイルどうしのノイズ相関Ψは、以下の式(1)、(2)で求められる。
That is, when the noise correlation is 1, the noise increases in proportion to the number of combined channels, and therefore increases at a faster pace than when the noise correlation is 0. Therefore, generally, it is preferable that the noise correlation is low (the absolute value is close to 0).
Generally, the noise correlation Ψ between the RF coils is obtained by the following equations (1) and (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここでσは被写体の導電率、Vは被写体の体積、Eiはi番目のRFコイルが作る電場(複素数)、Ejはj番目のRFコイルが作る電場(複素数)である。EはEの複素共役を示す。すなわちノイズ相関の大きさは各コイルが被写体内に作る電場の内積の体積積分Rijによって決定される。Rijを小さくすることでノイズ相関を低く抑えることができ、ノイズ相関増加に伴うSNRの低下を防止できる。 Where σ is the conductivity of the subject, V is the volume of the subject, Ei is the electric field (complex number) created by the i-th RF coil, and Ej is the electric field (complex number) created by the j-th RF coil. E * represents the complex conjugate of E. That is, the magnitude of the noise correlation is determined by the volume integral Rij of the inner product of the electric fields created by each coil in the subject. By reducing Rij, the noise correlation can be kept low, and the SNR can be prevented from decreasing due to an increase in noise correlation.
 本実施形態のアレイコイル400において、第一のRFコイル410A及び第二のRFコイル410Bが導体ループ415にそれぞれ磁気結合して電流を誘起した場合に生成する電場が作る電場の内積ついて、図6及び図7を用いてノイズが低減されることを説明する。 In the array coil 400 of this embodiment, the inner product of the electric field generated by the electric field generated when the first RF coil 410A and the second RF coil 410B are magnetically coupled to the conductor loop 415 to induce a current is shown in FIG. The reduction of noise will be described with reference to FIG.
 図6は導体ループ415を使用していない、従来の二つのRFコイル410Aと410Bが作る電場の内積分布を説明する図である。図6(a)に示すようにアレイコイルを形成する第一のRFコイル410A及び第二のRFコイルは、被写体103を被い、且つ、磁気結合しないように配置されている。 FIG. 6 is a diagram for explaining the inner product distribution of the electric field created by the two conventional RF coils 410A and 410B, in which the conductor loop 415 is not used. As shown in FIG. 6A, the first RF coil 410A and the second RF coil forming the array coil are arranged so as to cover the object 103 and not be magnetically coupled.
 信号受信時、第一のRFコイル410Aには図に示すとおり右回りの第一の電流(図中実線)が流れ、第二のRFコイル410Bには図に示すとおり右回りの第二の電流(図中破線)が流れる。なお本実施形態では二つのRFコイル410が隣接して配置され、遠方から見た場合ほぼ同じ感度領域を持ち同様の信号を検出するため、RFコイルに誘起される電流は同じ向きとして取り扱う。 At the time of signal reception, a clockwise first current (solid line in the figure) flows through the first RF coil 410A as shown in the figure, and a clockwise second current flows through the second RF coil 410B as shown in the figure. (Broken line in the figure) flows. In the present embodiment, the two RF coils 410 are arranged adjacent to each other, have substantially the same sensitivity region when viewed from a distance, and detect similar signals, so that the currents induced in the RF coils are handled in the same direction.
 図6(b)は図6(a)をZ軸方向から見た図であり、二つのRFコイルが作る電場の内積の分布の概念を示す。電場の内積が正の領域を細かいドットで、負の領域を粗いドットで、それぞれ示している。図6に示す通り第一のRFコイル410A及び第二のRFコイル410Bは被写体内に正の内積分布を示す。このように正になるのは、被写体から見ると第一のRFコイル410A及び第二のRFコイル410Bはほぼ同じ方向に存在し、共に同じ向きの電流が流れているため、第一のRFコイル410A及び第二のRFコイル410Bが被写体内に作る電場は類似しているためである。 FIG. 6B is a view of FIG. 6A viewed from the Z-axis direction, and shows the concept of the inner product distribution of the electric field created by the two RF coils. The area where the inner product of the electric field is positive is indicated by fine dots, and the negative area is indicated by coarse dots. As shown in FIG. 6, the first RF coil 410A and the second RF coil 410B exhibit a positive inner product distribution in the subject. The first RF coil 410A and the second RF coil 410B are present in substantially the same direction when viewed from the subject, and currents flowing in the same direction flow in the first RF coil. This is because the electric fields generated by 410A and the second RF coil 410B in the subject are similar.
 このように、従来のコイル構成では正の内積成分が支配的となるため、その積分値は正となり、式(2)で求まるノイズ相関は正の大きな値となる。そのためこれら構成で取得された信号の合成値のノイズは、相関がないものより大きくなる。すなわちSNRは低くなる。 As described above, since the positive inner product component is dominant in the conventional coil configuration, the integral value is positive, and the noise correlation obtained by Expression (2) is a large positive value. Therefore, the noise of the synthesized value of the signals acquired with these configurations is larger than that without correlation. That is, the SNR is lowered.
 図7は本実施形態の内積分布を説明する図である。図7(a)に示すようにアレイコイルを形成する第一のRFコイル410A及び第二のRFコイル410Bは、被写体103を被い、且つ、磁気結合しないように配置され、さらに導体ループ415が第一のRFコイル410A及び第二のRFコイル410Bとそれぞれ磁気結合すると共に被写体を被うよう配置されている。 FIG. 7 is a diagram for explaining the inner product distribution of the present embodiment. As shown in FIG. 7A, the first RF coil 410A and the second RF coil 410B forming the array coil are arranged so as to cover the object 103 and not to be magnetically coupled, and further, the conductor loop 415 is provided. The first RF coil 410A and the second RF coil 410B are magnetically coupled to each other and are arranged to cover the subject.
図7(b)に、信号受信時、図6の従来構成時と同様に第一のRFコイル410Aに図に示すとおり右回りの第一の電流(図中実線)が流れた場合の動作を示す。本実施形態では、第一のRFコイル410Aは導体ループと磁気結合しているため、第一のRFコイル410Aが作る磁場が、導体ループの図上左側のループである第一のRFコイル側のループ416に左周りの電流を誘起し、8の字ループとしては図に示すような第一のサブ電流418Aが流れる。 FIG. 7B shows the operation when a first clockwise current (solid line in the figure) flows through the first RF coil 410A as shown in the figure at the time of signal reception, as in the conventional configuration of FIG. Show. In the present embodiment, since the first RF coil 410A is magnetically coupled to the conductor loop, the magnetic field generated by the first RF coil 410A is on the first RF coil side, which is the left loop in the figure of the conductor loop. A left-handed current is induced in the loop 416, and a first sub-current 418A as shown in FIG.
 図7(c)に、信号受信時、図6の従来構成時と同様に第二のRFコイル410Bに図に示すとおり右回りの第二の電流(図中破線)が流れた場合の動作を示す。本実施形態では、第二のRFコイル410Bは導体ループと磁気結合しているため、第二のRFコイル410Bが作る磁場が、導体ループの図上右側のループである第二のRFコイル側のループ417に左周りの電流を誘起し、8の字ループとしては図に示すような第二のサブ電流418Bが流れる。 FIG. 7C shows the operation when a second clockwise current (broken line in the figure) flows through the second RF coil 410B as shown in the figure at the time of signal reception, as in the conventional configuration of FIG. Show. In this embodiment, since the second RF coil 410B is magnetically coupled to the conductor loop, the magnetic field generated by the second RF coil 410B is on the second RF coil side, which is the loop on the right side of the conductor loop in the figure. A left-handed current is induced in the loop 417, and a second sub-current 418B as shown in FIG.
 すなわち、本実施形態では、第一のRFコイル及び第二のRFコイルが導体ループに流れる電流の向きは共に右回りで同じ向きであっても、誘導された第一のサブ電流418Aと第二のサブ電流418Bは、導体ループ415上では電流の向きが逆となる。 That is, in the present embodiment, the induced first sub-current 418A and the second sub-current 418A and the second RF coil, even if the directions of the currents flowing through the conductor loop are both clockwise and the same direction. The sub-current 418B has a reverse current direction on the conductor loop 415.
 図7(d)は図7(a)をZ軸方向から見た図であり、二つのRFコイルが作る電場の内積の分布の概念を示す。正の電界を細かいドットで、負の電界を粗いドットで、それぞれ示している。本図に示す通り第一のRFコイル410A及び第二のRFコイル410Bは図6に示した従来構成と同様の電流を形成するため、被写体内に同様の正の内積分布を示す。一方で導体ループ415付近では負の内積分布を示す。このように負になるのは、前述の通り、磁気結合して生じた電流の向きが逆になるためである。電流の符号が異なるため電場の符号も異なり、内積は負となる。 FIG. 7D is a view of FIG. 7A viewed from the Z-axis direction, and shows the concept of the inner product distribution of the electric field created by the two RF coils. Positive electric fields are indicated by fine dots, and negative electric fields are indicated by coarse dots. As shown in this figure, the first RF coil 410A and the second RF coil 410B form a current similar to that in the conventional configuration shown in FIG. 6, and thus show the same positive inner product distribution in the subject. On the other hand, a negative inner product distribution is shown near the conductor loop 415. As described above, the negative polarity is because the direction of the current generated by the magnetic coupling is reversed. Since the sign of the current is different, the sign of the electric field is also different, and the inner product is negative.
 このように本実施形態では、従来構成のように内積が正領域だけで無く、負の領域が生成される。よって、上述した式(1)及び式(2)に示す通り、ノイズ相関は電場の体積積分で求まるため、本実施形態では正と負を構成することにより、積分値をゼロに近づけることができる。よってゼロに近づければ、図6で示した従来構成よりノイズを低下させ、SNRを向上させることができる。 As described above, in the present embodiment, not only the positive area but also the negative area is generated as in the conventional configuration. Therefore, as shown in the above formulas (1) and (2), since the noise correlation is obtained by volume integration of the electric field, the integral value can be brought close to zero by configuring positive and negative in this embodiment. . Therefore, if it is close to zero, the noise can be reduced and the SNR can be improved compared to the conventional configuration shown in FIG.
 なお、本実施形態では、各RFコイルに流れる電流の向きと、導体ループの近傍のループ(416もしくは417)に流れる電流の向きは逆(電流の位相差が180度)になる場合を示したが、これに限定されない。第一のサブ電流418Aと第二のサブ電流418Bが被写体内に作る電場の内積の積分値が、第一のRFコイル410Aのループコイル部420Aと第二のRFコイル410Bのループコイル部420Bが被写体内に作る電場の内積の積分値の符号が異なるように構成できればよい。これにより設計の自由度が向上し、関心領域でのSNRが向上できる。 In the present embodiment, the direction of the current flowing through each RF coil and the direction of the current flowing through the loop (416 or 417) in the vicinity of the conductor loop are reversed (the phase difference of the current is 180 degrees). However, it is not limited to this. The integral value of the inner product of the electric field generated in the subject by the first sub-current 418A and the second sub-current 418B is determined by the loop coil portion 420A of the first RF coil 410A and the loop coil portion 420B of the second RF coil 410B. What is necessary is just to be comprised so that the sign of the integral value of the inner product of the electric field produced in a to-be-photographed object may differ. As a result, the degree of freedom in design is improved, and the SNR in the region of interest can be improved.
 また8の字を構成する二つのループの対称性はこれに限定されない。図8(a)に示す通り非対称であっても良い。非対称であっても構成されるサブ電流の内積の積分値を負となるように電流が構成できればよい。これにより設計の自由度が向上し、関心領域でのSNRが向上できる。 Also, the symmetry of the two loops constituting the figure 8 is not limited to this. It may be asymmetric as shown in FIG. It is sufficient that the current can be configured so that the integral value of the inner product of the sub-currents to be configured is negative even if it is asymmetric. As a result, the degree of freedom in design is improved, and the SNR in the region of interest can be improved.
 また本実施形態では、第一のRFコイル410A及び、第二のRFコイル410Bに共に右回りの電流が流れると定義して説明したが、逆向きで定義しても効果は同様である。第一のRFコイル410A及び、第二のRFコイル410Bが被写体内に作る電場の内積の積分値の符号と、第一のRFコイル410A及び、第二のRFコイル410Bが磁気結合して導体ループに作るサブ電流が作る内積の積分値の符号が異符号となれば、その積分値はゼロに近づきノイズは低下してSNRは向上する。 In the present embodiment, it has been described that a clockwise current flows through both the first RF coil 410A and the second RF coil 410B, but the effect is the same even if the current is defined in the reverse direction. The sign of the integral value of the inner product of the electric field created in the subject by the first RF coil 410A and the second RF coil 410B is magnetically coupled to the conductor loop by the first RF coil 410A and the second RF coil 410B. If the sign of the integral value of the inner product produced by the sub-current produced in (5) becomes an opposite sign, the integral value approaches zero, the noise is reduced, and the SNR is improved.
 このように構成されたMRI装置を用いた撮像方法は、従来のMRI装置の動作と同様であり、静磁場磁石110が生成する静磁場空間に配置された被写体103に対し、例えば、撮像方法によって選択されるパルスシーケンスに従って、送信RFコイル151(例えば鳥かご型RFコイル300)からRF磁場パルスを印加するとともに傾斜磁場コイル131により傾斜磁場パルスを印加する。 The imaging method using the MRI apparatus configured as described above is the same as the operation of the conventional MRI apparatus, and the subject 103 arranged in the static magnetic field space generated by the static magnetic field magnet 110 is subjected to, for example, the imaging method. In accordance with the selected pulse sequence, an RF magnetic field pulse is applied from the transmission RF coil 151 (for example, the birdcage type RF coil 300) and a gradient magnetic field pulse is applied by the gradient magnetic field coil 131.
 送信RFコイル151の動作時には、受信RFコイル161は送受磁気結合防止回路220が開となり、受信RFコイル161との磁気結合を除去する。RF磁場パルス印加から所定時間経過後に、被写体103の生体組織を構成する元素の原子核から生じる核磁気共鳴信号を被写体103に近接して配置された受信RFコイル161(マルチチャンネルコイル:アレイコイル400)で受信する。受信動作時には、送受磁気結合防止回路210が開となり、送信RFコイル151と受信RFコイル161との磁気結合を除去する。 When the transmission RF coil 151 is in operation, the transmission / reception magnetic coupling prevention circuit 220 of the reception RF coil 161 is opened, and the magnetic coupling with the reception RF coil 161 is removed. A reception RF coil 161 (multi-channel coil: array coil 400) arranged close to the subject 103 after a predetermined time has elapsed from the application of the RF magnetic field pulse, and a nuclear magnetic resonance signal generated from an atomic nucleus of an element constituting the living tissue of the subject 103 Receive at. During the reception operation, the transmission / reception magnetic coupling prevention circuit 210 is opened, and the magnetic coupling between the transmission RF coil 151 and the reception RF coil 161 is removed.
 計算機(信号処理部)170は、受信RFコイル161のRFコイルでそれぞれ受信したMR信号を処理し、例えば、撮像方法がパラレルイメージングを採用する高速撮像方法であれば、パラレルイメージングのアルゴリズムに従った画像再構成方法で被検体の画像を作成する。或いは各チャンネルの信号で得た画像をMAC合成し画像を作成する。この際、適宜、各RFコイルの感度分布情報を利用する。 The computer (signal processing unit) 170 processes each MR signal received by the RF coil of the reception RF coil 161. For example, if the imaging method is a high-speed imaging method employing parallel imaging, it follows a parallel imaging algorithm. An image of the subject is created by the image reconstruction method. Alternatively, the image obtained by the signal of each channel is MAC synthesized to create an image. At this time, sensitivity distribution information of each RF coil is used as appropriate.
 本実施形態のMRI装置によれば、受信RFコイルとして、特定の調整がなされた多チャンネルコイルを用いることにより、各RFコイル間のノイズ相関が低減され、高画質の画像を得ることができる。 According to the MRI apparatus of the present embodiment, by using a multi-channel coil with specific adjustment as a reception RF coil, noise correlation between each RF coil is reduced, and a high-quality image can be obtained.
 すなわち本実施形態のMRI装置は、静磁場を形成する静磁場形成部と、傾斜磁場を形成する傾斜磁場形成部と、前記静磁場に配置された検査対象にRF磁場を照射する送信RFコイルと、前記検査対象からの核磁気共鳴信号を検出する受信RFコイルと、前記受信RFコイルが検出した核磁気共鳴信号を処理する信号処理部と、を備える。 That is, the MRI apparatus according to the present embodiment includes a static magnetic field forming unit that forms a static magnetic field, a gradient magnetic field forming unit that forms a gradient magnetic field, and a transmission RF coil that irradiates an RF magnetic field to an inspection object arranged in the static magnetic field, A reception RF coil for detecting a nuclear magnetic resonance signal from the inspection object, and a signal processing unit for processing the nuclear magnetic resonance signal detected by the reception RF coil.
 受信RFコイルは、少なくとも二つのRFコイルと電界生成回路としての導体ループを備え、第一のRFコイルと第二のRFコイルに流れる電流が被写体の中に作る電界の内積の積分値は、第一のRFコイルが磁気結合することで導体ループに誘起された電流と第二のRFコイルが磁気結合することで導体ループに誘起された電流が被写体の中に作る電界の内積の積分値と符号が異なるように配置、調整されたMRI装置用のRFコイル(アレイコイル)である。 The reception RF coil includes at least two RF coils and a conductor loop as an electric field generation circuit, and the integral value of the inner product of the electric fields generated in the subject by the current flowing through the first RF coil and the second RF coil is The integral value and sign of the inner product of the electric field generated in the subject by the current induced in the conductor loop by the magnetic coupling of one RF coil and the current induced in the conductor loop by the magnetic coupling of the second RF coil These are RF coils (array coils) for the MRI apparatus that are arranged and adjusted so as to be different from each other.
 具体的には、第一のRFコイルと、第二のRFコイルと、導体ループ(電界生成回路)からなるアレイコイルであって、第一のRFコイルと第二のRFコイルのコイルループは互いに磁気結合しないように配置、構成されている。 Specifically, an array coil including a first RF coil, a second RF coil, and a conductor loop (electric field generation circuit), and the coil loops of the first RF coil and the second RF coil are mutually connected. Arranged and configured so as not to be magnetically coupled.
 そして、第一のRFコイルのコイルループ面に略垂直な第一の軸と、第二のRFコイルのコイルループ面に略垂直な第二の軸とのなす角度の余弦値が0より小さい場合は、略円形状の前記導体ループが被写体を被うようにさらに配置されている。一方、第一のRFコイルのコイルループ面に垂直な第一の軸と、第二のRFコイルのコイルループ面に垂直な第二の軸とのなす角度の余弦値が0より大きいの場合は、8の字形状の導体ループが被写体を被うようにさらに配置されている。
 すなわち、第一のRFコイルと導体ループ及び第二のRFコイルと記導体ループはそれぞれ磁気結合するよう調整される。
When the cosine value of the angle formed by the first axis substantially perpendicular to the coil loop surface of the first RF coil and the second axis substantially perpendicular to the coil loop surface of the second RF coil is smaller than 0 Are further arranged so that the substantially circular conductor loop covers the subject. On the other hand, when the cosine value of the angle formed by the first axis perpendicular to the coil loop surface of the first RF coil and the second axis perpendicular to the coil loop surface of the second RF coil is greater than zero , 8 is further arranged so as to cover the subject.
That is, the first RF coil and the conductor loop, and the second RF coil and the conductor loop are adjusted so as to be magnetically coupled.
 上述のように配置され、調整された本実施形態のアレイコイル400は、磁気共鳴周波数f0に同調する。また、信号受信時に、第一のRFコイル410A及び第二のRFコイル410Bが被写体内に作る電場の内積の積分値は、第一のRFコイル410A及び第二のRFコイル410Bが磁気結合している導体ループに流す電流がそれぞれ作る電場の内積の積分値の符号とは異符号となるように構成され、これら内積の積分値の和はゼロに近づく。 The array coil 400 of this embodiment arranged and adjusted as described above is tuned to the magnetic resonance frequency f0. In addition, when the signal is received, the integral value of the inner product of the electric field generated in the subject by the first RF coil 410A and the second RF coil 410B is obtained by magnetically coupling the first RF coil 410A and the second RF coil 410B. Each of the currents flowing through the conductor loops is configured to have a sign different from the sign of the integral value of the inner product of the electric field, and the sum of the integral values of these inner products approaches zero.
 これにより第一のRFコイル410Aと第二のRFコイル410Bのノイズ相関が低下し、合成画像のSNRが上昇する。 As a result, the noise correlation between the first RF coil 410A and the second RF coil 410B decreases, and the SNR of the composite image increases.
 このように、本実施形態のアレイコイル400によれば、多チャンネルと低ノイズを両立できる。また、この多チャンネルと、低ノイズを、配置と回路素子の値の調整とにより実現する。従って、構成が複雑化することもない。そして、このアレイコイル400を受信RFコイル161として用いることにより、本実施形態のMRI装置は、広い領域で高画質な画像を得ることができる。 Thus, according to the array coil 400 of this embodiment, both multi-channel and low noise can be achieved. In addition, this multi-channel and low noise is realized by arrangement and adjustment of circuit element values. Therefore, the configuration is not complicated. By using this array coil 400 as the reception RF coil 161, the MRI apparatus of this embodiment can obtain a high-quality image in a wide area.
 なお本実施形態に係るMRI装置は、特定の調整がなされた受信RFコイルを用いることが特徴であり、それ以外の構成については種々の変更が可能である。例えば、図2に示す各要素のうち一部を省略することや、図2に示されていない要素を追加することも本実施形態に含まれる。また上記実施形態では、水平磁場方式のMRI装置について説明したが、垂直磁場方式のMRI装置であっても同様に適用することができる。 Note that the MRI apparatus according to the present embodiment is characterized by using a reception RF coil that has been subjected to specific adjustment, and various changes can be made to the other configurations. For example, omitting some of the elements shown in FIG. 2 and adding elements not shown in FIG. 2 are also included in the present embodiment. In the above-described embodiment, the horizontal magnetic field type MRI apparatus has been described. However, the present invention can be similarly applied to a vertical magnetic field type MRI apparatus.
<RFコイルの実施例>
 次に、受信RFコイルとしてのアレイコイルについてより詳細に説明する。アレイコイルは、MRI装置の受信RFコイルとして用いられる多チャンネルRFコイルであり、複数のRFコイルを備える。複数のRFコイルは、それぞれがMRI装置で発生する核磁気共鳴信号を受信可能であり、且つ、各RFコイルに流れる電流によって被写体内に生成する電場が隣接するRFコイル間で強められるように調整されている。このような調整を実現するための具体的なコイルの構成と調整方法の詳細を以下に説明する。
<Example of RF coil>
Next, the array coil as the reception RF coil will be described in more detail. The array coil is a multi-channel RF coil used as a reception RF coil of the MRI apparatus, and includes a plurality of RF coils. Each of the plurality of RF coils can receive a nuclear magnetic resonance signal generated by an MRI apparatus, and is adjusted so that an electric field generated in a subject is strengthened between adjacent RF coils by a current flowing through each RF coil. Has been. Details of a specific coil configuration and adjustment method for realizing such adjustment will be described below.
(実施例1)
 以下、本実施例に係る受信RFコイルとしてのアレイコイルについて説明する。
 本実施例に係る受信RFコイルは、図9に示すように、二つのRFコイル、第一のRFコイル410A、第二のRFコイル410B及び導体ループ415を有する。また、第一のRFコイル410Aのコイルエレメントが作る第一のコイル面と、第二のRFコイル410Bのコイルエレメントが作る第二のコイル面は被写体を被うように配置され、且つ、第一のコイル面の垂線と、第二のコイル面の垂線が交わる点でのなす角の余弦は正となる位置に配置される。
Example 1
Hereinafter, an array coil as a reception RF coil according to the present embodiment will be described.
As shown in FIG. 9, the reception RF coil according to the present embodiment includes two RF coils, a first RF coil 410A, a second RF coil 410B, and a conductor loop 415. The first coil surface created by the coil element of the first RF coil 410A and the second coil surface created by the coil element of the second RF coil 410B are arranged so as to cover the subject, and The cosine of the angle formed by the perpendicular line of the coil surface and the perpendicular line of the second coil surface is arranged at a positive position.
 図9に示す座標系090は、紙面縦方向をX軸方向、横方向をY軸方向、紙面に垂直方向をZ軸方向とする。図9の例では、各RFコイルはほぼXZ面に配置されるため、これらのコイルエレメントの垂線は無限遠で交わり、そのなす角度はほぼ0度となる。すなわち余弦は+1となる。 In the coordinate system 090 shown in FIG. 9, the vertical direction on the paper is the X-axis direction, the horizontal direction is the Y-axis direction, and the direction perpendicular to the paper surface is the Z-axis direction. In the example of FIG. 9, the RF coils are arranged substantially in the XZ plane, so the perpendiculars of these coil elements intersect at infinity, and the angle formed by the coils is almost 0 degrees. That is, the cosine is +1.
 なお、上述した実施形態を始め各実施例におけるコイル面は、コイルループの中だけでは無く、外側に延長した面もコイル面として扱う。また第一のコイル面の垂線と、第二のコイル面の垂線はコイルループの内側に限定されない。これら垂線が交わる点を持つように無限平面を考え、垂線を引く。 In addition, the coil surface in each Example including the above-mentioned embodiment handles not only the inside of a coil loop but the surface extended outside as a coil surface. Moreover, the perpendicular of the first coil surface and the perpendicular of the second coil surface are not limited to the inside of the coil loop. Think of an infinite plane so that these perpendiculars intersect, draw a perpendicular.
 一般的にこのような配置に二つの同一のRFコイルを配置すると、これらコイルが被写体の中に作る電場の内積の積分値は正となり、結果正のノイズ相関が生じる。
 各RFコイル410A、410Bは、磁気結合が除去されるように互いに一部が重なり合った磁気結合除去部451を有しつつ配置されており、これにより各RFコイル間の磁気結合は除去される。各RFコイル410A、410Bと導体ループの間には、磁気結合部450を備える。
In general, when two identical RF coils are arranged in such an arrangement, the integral value of the inner product of the electric field produced by these coils in the subject becomes positive, and as a result, a positive noise correlation occurs.
Each RF coil 410A, 410B is arranged with a magnetic coupling removing portion 451 partially overlapping each other so that the magnetic coupling is removed, thereby removing the magnetic coupling between the RF coils. A magnetic coupling portion 450 is provided between each of the RF coils 410A and 410B and the conductor loop.
 本実施例では各RFコイルと導体ループの配置によって磁気結合がなされている。第一のRFコイル410A及び第二のRFコイル410Bは、導体ループと結合した状態で磁気共鳴信号が受信できるように夫々磁気共鳴周波数foと同じ周波数に調整されている。導体ループ415は、キャパシタ422Cと磁気結合調整回路を備える。 In this embodiment, magnetic coupling is achieved by the arrangement of each RF coil and the conductor loop. The first RF coil 410A and the second RF coil 410B are each adjusted to the same frequency as the magnetic resonance frequency fo so that a magnetic resonance signal can be received in a state of being coupled to the conductor loop. The conductor loop 415 includes a capacitor 422C and a magnetic coupling adjustment circuit.
 導体ループ415には、第一のRFコイル410Aの信号受信時に、第一のRFコイル410Aで検出された電流の一部(サブ電流:第一のサブ電流)が流れると共に、第二のRFコイル410Bの信号受信時に、第二のRFコイル410Bで検出された電流の一部(サブ電流:第二のサブ電流)が流れるように調整されている。具体的には、導体ループの共振周波数が、気共鳴周波数fより低い周波数fに調整されている。 A part of the current (sub-current: first sub-current) detected by the first RF coil 410A flows through the conductor loop 415 when the signal of the first RF coil 410A is received, and the second RF coil When the 410B signal is received, a part of the current detected by the second RF coil 410B (sub-current: second sub-current) is adjusted to flow. Specifically, the resonance frequency of the conductor loop is adjusted to a lower frequency f L from the gas resonance frequency f 0.
 サブ電流の強度は、配置もしくは、導体ループ若しくはRFコイル、若しくはその両方に挿入される磁気結合調整回路452によって調整することができ、第一のRFコイルは若しくは第二のRFコイルに流れる電流の5%~30%が好ましい。これにより各コイルが生じる電場の内積の積分値がゼロに近づき、効果的にノイズ相関を低減することができる。 The intensity of the sub-current can be adjusted by the arrangement or the magnetic coupling adjustment circuit 452 inserted in the conductor loop and / or the RF coil, and the first RF coil or the current flowing through the second RF coil can be adjusted. 5% to 30% is preferable. As a result, the integral value of the inner product of the electric fields generated by the coils approaches zero, and the noise correlation can be effectively reduced.
 第一のRFコイル410Aと第二のRFコイル410Bとは、被写体を被うように略同一平面上に配置される。ここで略同一平面とは、隣接するコイルエレメントの面がほぼ被写体面に沿って配置されていることを示し、その他の領域(他の端部)は曲がっていても良い関係とする。なお、第一のRFコイル410Aと第二のRFコイル410Bとはコイルエレメントは、磁気結合が十分に除去されていれば重なって配置されていなくても良い。 The first RF coil 410A and the second RF coil 410B are arranged on substantially the same plane so as to cover the subject. Here, “substantially the same plane” means that the surfaces of adjacent coil elements are arranged substantially along the subject surface, and other regions (other end portions) may be bent. Note that the coil elements of the first RF coil 410A and the second RF coil 410B do not have to be overlapped as long as the magnetic coupling is sufficiently removed.
 以下、受信RFコイルについてより詳細に説明する。
 図9(b)に示すように、本実施例では、第一のRFコイル410A及び第二のRFコイル410Bは、それぞれのループコイル部420のループ421が形成する面が、磁石の静磁場方向(Z軸方向)にほぼ平行な面となるよう配置されている。以下、導体ループの面は、磁石の静磁場方向にほぼ垂直な面となる場合を例にあげて説明する。なお、ループコイル部420のループ421の形状は、図示するような矩形の他、多角形や円形(楕円形を含む)でもよく任意である。
Hereinafter, the reception RF coil will be described in more detail.
As shown in FIG. 9B, in the present embodiment, the first RF coil 410A and the second RF coil 410B have surfaces formed by the loops 421 of the respective loop coil portions 420 in the direction of the static magnetic field of the magnet. They are arranged so as to be substantially parallel to the (Z-axis direction). Hereinafter, the case where the surface of the conductor loop is a surface substantially perpendicular to the static magnetic field direction of the magnet will be described as an example. In addition, the shape of the loop 421 of the loop coil unit 420 may be a polygon or a circle (including an ellipse) in addition to a rectangle as illustrated, and is arbitrary.
 本実施例では、2つのRFコイル410A、410Bはコイルエレメントの一部が重なり合うことで磁気結合が除去できるオーバラップ方式によって磁気結合が除去されている。2つのRFコイル410A、410Bと導体ループの磁気結合を調整するために二つの手法が用いられている。すなわち、磁気結合を調整するために、一つはループコイル部420と導体ループ415の距離を調整し、もう一つは回路上に磁気結合調整回路452を設けている。 In the present embodiment, the two RF coils 410A and 410B have magnetic couplings removed by an overlapping method in which magnetic couplings can be removed by overlapping part of the coil elements. Two techniques are used to adjust the magnetic coupling between the two RF coils 410A, 410B and the conductor loop. That is, in order to adjust the magnetic coupling, one adjusts the distance between the loop coil section 420 and the conductor loop 415, and the other is provided with a magnetic coupling adjusting circuit 452 on the circuit.
 また本実施例のアレイコイルの各RFコイルは、低入力インピーダンスプリアンプ431を備える。低入力インピーダンスプリアンプ431を用いることにより、ループコイル部420が検出した信号をすぐに増幅することができるため、外乱によるノイズの少ないデータをすることができる。また、低入力インピーダンスプリアンプ431とインダクタ441とキャパシタ421が構成する並列共振回路によって、キャパシタ421の両端が高インピーダンスとなるため、当該RFコイルは他のRFコイルから見ると磁気結合し難くなる。 Further, each RF coil of the array coil of this embodiment includes a low input impedance preamplifier 431. By using the low input impedance preamplifier 431, the signal detected by the loop coil unit 420 can be immediately amplified, so that data with less noise due to disturbance can be obtained. In addition, since both ends of the capacitor 421 have high impedance due to the parallel resonance circuit formed by the low input impedance preamplifier 431, the inductor 441, and the capacitor 421, the RF coil is difficult to be magnetically coupled when viewed from other RF coils.
 低入力インピーダンスプリアンプ431の入力インピーダンスの大きさは、限定されるものではないが、例えば2Ω程度以下である。なお、低入力インピーダンスプリアンプ430は、低入力インピーダンスの信号増幅器431に限定されない。
 各ループコイル部420に挿入される直列キャパシタ422、送受間磁気結合防止回路220(キャパシタ423を含む)及び並列キャパシタ424は、図5のアレイコイルで説明した構成と同様である。本実施形態でも、キャパシタ(422、424)は、ループコイル部420のループ421中に3つ挿入しているが、これに限定されるわけではない。無くても良い。
The magnitude of the input impedance of the low input impedance preamplifier 431 is not limited, but is, for example, about 2Ω or less. The low input impedance preamplifier 430 is not limited to the signal amplifier 431 having a low input impedance.
The series capacitor 422, the transmission / reception magnetic coupling prevention circuit 220 (including the capacitor 423), and the parallel capacitor 424 inserted in each loop coil unit 420 have the same configuration as described in the array coil of FIG. Also in this embodiment, three capacitors (422, 424) are inserted into the loop 421 of the loop coil unit 420, but the present invention is not limited to this. It is not necessary.
 図9の例では、コイルエレメント420と入力インピーダンスプリアンプ431との間はインダクタを用いて接続しているが、インダクタ441はインダクタを用いる場合に限定されない。通常、並列キャパシタ424とインダクタ441とは、導体で接続される。当該導体もインダクタ成分を有するため、更にインダクタを追加しなくても、並列キャパシタ423と、インダクタ441と、それらを接続する導体のインダクタ成分とで並列共振回路が形成される。この並列共振回路の共振周波数を何らかの方法で調整できれば、インダクタ441はキャパシタであってもよい。 In the example of FIG. 9, the coil element 420 and the input impedance preamplifier 431 are connected using an inductor, but the inductor 441 is not limited to using an inductor. Usually, the parallel capacitor 424 and the inductor 441 are connected by a conductor. Since the conductor also has an inductor component, a parallel resonant circuit is formed by the parallel capacitor 423, the inductor 441, and the inductor component of the conductor connecting them without adding an additional inductor. The inductor 441 may be a capacitor as long as the resonance frequency of the parallel resonance circuit can be adjusted by some method.
 キャパシタとインダクタの並列回路でもよい。なお、以下の説明では、説明簡略化のため、並列キャパシタ424とインダクタ441とを接続する導体のインダクタ成分は無いものとする。
 導体ループは磁気結合調整回路451を備える。磁気結合調整回路451を備えることで、サブ電流の量や、サブ電流の位相を調整できる。磁気結合調整回路451は、キャパシタ451Aとインダクタ451Bの並列共振回路で構成される。本実施形態では、キャパシタ451Aとインダクタ451Bから構成される並列共振回路共振周波数は、気共鳴周波数fより低い周波数fに調整されている。
A parallel circuit of a capacitor and an inductor may be used. In the following description, for simplicity of explanation, it is assumed that there is no inductor component of the conductor connecting the parallel capacitor 424 and the inductor 441.
The conductor loop includes a magnetic coupling adjustment circuit 451. By providing the magnetic coupling adjustment circuit 451, the amount of sub-current and the phase of the sub-current can be adjusted. The magnetic coupling adjustment circuit 451 is configured by a parallel resonance circuit of a capacitor 451A and an inductor 451B. In the present embodiment, the parallel resonant circuit resonant frequency comprised capacitor 451A and inductor 451B is adjusted to a lower frequency f L from the gas resonance frequency f 0.
 次に、本実施例のアレイコイル400の各回路素子の動作、調整について説明する。ここでは、送信RFコイル151は常に開放状態であるものとし、送信RFコイル151と受信RFコイル161との磁気結合の除去についての説明は省略する。
 本実施例のアレイコイル400の第一のRFコイル410A及び第二のRFコイル410Bは、導体ループの配置、構成及び、磁気結合調整回路452のキャパシタ451Aもしくはインダクタ451Bの値を調整することにより、上記機能を実現する。
Next, the operation and adjustment of each circuit element of the array coil 400 of this embodiment will be described. Here, it is assumed that the transmission RF coil 151 is always in an open state, and a description of removing the magnetic coupling between the transmission RF coil 151 and the reception RF coil 161 is omitted.
The first RF coil 410A and the second RF coil 410B of the array coil 400 of the present embodiment adjust the value of the capacitor 451A or the inductor 451B of the conductor coupling adjustment circuit 452 and the arrangement and configuration of the conductor loop. Realize the above functions.
 本実施例のアレイコイルの動作の説明に先立って、図10(a)に示す一つのRFコイル410が、導体ループ415と磁気結合して導体ループに電流を誘導する基本原理を、等価回路を用いて説明する。 Prior to the description of the operation of the array coil of the present embodiment, the basic principle that one RF coil 410 shown in FIG. 10A is magnetically coupled to the conductor loop 415 to induce a current in the conductor loop is described with an equivalent circuit. It explains using.
 図10(b)は、図10(a)に示すRFコイル410と導体ループ415の等価回路である。L11及びL21は、RFコイルと導体ループの合成リアクタンスを示す。L12はインダクタ441のインダクタンスを示す。L22は、磁気結合調整回路のインダクタ452Aのインダクタンスを示す。C22は,磁気結合調整回路のキャパシタ452Bのキャパシタンスを示す。Z11は、低入力インピーダンスプリアンプの入力抵抗を示し、2Ω以下であるため以後の等価回路では短絡回路として取り扱う。ここでは相反定理より、RFコイルの感度は、コイルに単位電力のRF信号を印加した場合に発生する磁場強度と等価であることを用い、図10(b)及び図10(c)ではRF信号を印加した場合の動作で本コイルの動作原理を示す。 FIG. 10B is an equivalent circuit of the RF coil 410 and the conductor loop 415 shown in FIG. L 11 and L 21 indicate the combined reactance of the RF coil and the conductor loop. L 12 represents the inductance of the inductor 441. L 22 represents the inductance of the inductor 452A of the magnetic coupling adjustment circuit. C 22 indicates the capacitance of the capacitor 452B of the magnetic-coupling adjusting circuit. Z 11 represents an input resistance of a low input impedance preamplifier, in subsequent equivalent circuit for at 2Ω or less treated as a short circuit. Here, from the reciprocity theorem, the sensitivity of the RF coil is equivalent to the magnetic field strength generated when an RF signal of unit power is applied to the coil, and in FIG. 10B and FIG. The operation principle of this coil is shown in the operation when is applied.
 図10(b)はRFコイル410に磁気共鳴周波数fと同じ周波数のRF電力を印加した場合の等価回路である。RFコイル410にRF電力が印加されると、コイルエレメントに以下の式(3)に示すIが流れる。 FIG. 10B is an equivalent circuit when RF power having the same frequency as the magnetic resonance frequency f 0 is applied to the RF coil 410. When RF power is applied to the RF coil 410, I 1 shown in the following formula (3) flows through the coil element.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 但し、iは電流の大きさ、ω(=2πf)は印加する高周波信号の角周波数,θは位相差の定数を示す。RFコイル410のコイルエレメントにIが流れると,導体ループ415に変動する磁場が生成される。そのため、以下の式(4)に示すように、導体ループのエレメント(L21)には起電力Veが生じる。 Here, i is the magnitude of the current, ω (= 2πf 0 ) is the angular frequency of the applied high frequency signal, and θ is a phase difference constant. When I 1 flows through the coil element of the RF coil 410, a magnetic field that fluctuates in the conductor loop 415 is generated. Therefore, as shown in the following formula (4), an electromotive force Ve 2 is generated in the element (L 21 ) of the conductor loop.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上述の通り、磁気結合調整回路452を構成するL22とC22からなる並列共振回路は、磁気共鳴周波数fより低い周波数fに設定されている。一般的に並列共振回路は、その共振周波数より高い周波数が印加された場合キャパシタとして動作する。すなわち、L22とCmからなる並列共振回路に磁気共鳴周波数の信号が印加されると、本並列共振回路はキャパシタ(C)として動作する。そのときの等価回路を図10(c)に示す。よって、Veが印加されればキャパシタの電荷qは、以下に示す式(5)から求められる。 As described above, the parallel resonance circuit composed of L 22 and C 22 constituting the magnetic coupling adjustment circuit 452 is set to a frequency f L lower than the magnetic resonance frequency f 0 . In general, a parallel resonant circuit operates as a capacitor when a frequency higher than the resonant frequency is applied. That is, when a magnetic resonance frequency signal is applied to the parallel resonance circuit composed of L 22 and Cm 2 , the parallel resonance circuit operates as a capacitor (C). An equivalent circuit at that time is shown in FIG. Therefore, if Ve 2 is applied, the charge q of the capacitor can be obtained from the following equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 また、キャパシタに流れる電流、導体ループ415に流れる電流Iは、以下の式(6)から求められる。 Further, the current flowing through the capacitor and the current I 2 flowing through the conductor loop 415 are obtained from the following equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(6)から分かるように、図10(a)に示す回路は上記調整によりIはIと逆向きの電流となる。 As can be seen from equation (6), in the circuit shown in FIG. 10A, I 2 becomes a current opposite to I 1 by the adjustment.
 以上より、図10(a)に示す一つのRFコイル410は、導体ループ415と磁気結合して、導体ループに電流を構成する。なお、上記は互いに逆向きになる電流分布が実現でき動作原理ついて説明したが、上記と同じ構成で、L22とC22からなる直列共振回路の共振周波数を磁気共鳴周波数より高い周波数fとすれば、第一のRFコイル410と導体ループ415で同じ方向に流れる電流分布も形成することが可能である。 As described above, one RF coil 410 shown in FIG. 10A is magnetically coupled to the conductor loop 415 and forms a current in the conductor loop. In the above, the current distributions that are opposite to each other can be realized and the operation principle has been described. However, with the same configuration as described above, the resonance frequency of the series resonance circuit composed of L 22 and C 22 is set to a frequency f H higher than the magnetic resonance frequency. Then, it is possible to form a current distribution that flows in the same direction in the first RF coil 410 and the conductor loop 415.
 本実施例のアレイコイルの動作は上記原理で説明することができる。
 先ず、第一のRFコイル410Aと導体ループ415のみが存在する場合の動作について説明する。
 本実施例は、図10で説明した基本原理の回路とは導体ループ415の形状が異なる。本実施例の導体ループ415は、第一のRFコイル側のループ416と第二のRFコイル側のループ417とで構成され、互いに逆向きの電流が流れ、8の字形状の電流が流れるよう構成されている。また第一のRF410Aコイルと第一のRFコイル側のループ416の距離と、第一のRF410Aコイルと第二のRFコイル側のループ417の距離が異なって配置されている。そのため、第一のRFコイル側のループ416と第二のRFコイル側のループ417で生じている第一のRF410Aが作る磁場の強さは異なり、それぞれのループで誘起される電流が異なる。
The operation of the array coil of this embodiment can be explained by the above principle.
First, the operation when only the first RF coil 410A and the conductor loop 415 are present will be described.
In this embodiment, the shape of the conductor loop 415 is different from the circuit of the basic principle described in FIG. The conductor loop 415 of this embodiment is composed of a loop 416 on the first RF coil side and a loop 417 on the second RF coil side so that currents in opposite directions flow, and an 8-shaped current flows. It is configured. The distance between the first RF 410A coil and the first RF coil side loop 416 is different from the distance between the first RF 410A coil and the second RF coil side loop 417. Therefore, the strength of the magnetic field generated by the first RF 410A generated in the loop 416 on the first RF coil side and the loop 417 on the second RF coil side is different, and the current induced in each loop is different.
 一般的に誘起される電流の量は距離に比例して減衰する。またこれら電流は8の字形状で接続されるため異なった符号で合成された結果が、第一のRF410Aコイルと導体ループ415が磁気結合して導体ループに作るサブ電流となる。すなわち、本実施例では、距離の関係から、第一のRFコイル410Aに近い第一のRFコイル側のループ416の方が、第二のRFコイル側のループ417より強い電流が誘起されるため、支配的電流となる。よって図7(b)に示すような電流が構成される。 Generally, the amount of current induced is attenuated in proportion to the distance. In addition, since these currents are connected in a figure eight shape, the result of combining them with different signs is a sub-current that is formed in the conductor loop by magnetically coupling the first RF 410A coil and the conductor loop 415. That is, in this embodiment, because of the distance relationship, a stronger current is induced in the loop 416 on the first RF coil side closer to the first RF coil 410A than in the loop 417 on the second RF coil side. , Become the dominant current. Therefore, a current as shown in FIG.
 同様に第二のRFコイル410Bと導体ループ415のみが存在する場合も同じ原理で説明でき、図7(c)に示すような電流が構成される。 Similarly, the case where only the second RF coil 410B and the conductor loop 415 are present can be explained by the same principle, and a current as shown in FIG.
 以上より、本実施形態のアレイコイルは、第一のRFコイル410Aと第二のRFコイル410Bがそれぞれ導体ループ415と磁気結合して導体ループにそれぞれ逆向きの電流が流れる。 As described above, in the array coil of this embodiment, the first RF coil 410A and the second RF coil 410B are magnetically coupled to the conductor loop 415, respectively, and currents flowing in opposite directions flow through the conductor loop.
 これにより、第一のRFコイル410Aが導体ループ415に磁気結合して導体ループに作る第一のサブ電流と、第二のRFコイル410Bが導体ループ415に磁気結合して導体ループに作る第二のサブ電流とが被写体内に作る電場の内積の積分値は、第一のRFコイル410Aの第一のループコイル部420Aに流れる電流と、第二のRFコイル410Bの第一のループコイル部420Aに流れる電流とが被写体内に作る電場の内積の積分値とは異なる符号となる。このため、合成値の絶対値は小さくなり、結果としてノイズ相関は下がり、合成画像のSNRが向上することとなる。 As a result, the first RF coil 410A is magnetically coupled to the conductor loop 415 to create the conductor loop, and the second RF coil 410B is magnetically coupled to the conductor loop 415 to create the conductor loop. The integrated value of the inner product of the electric field generated in the subject by the sub-current of the current is the current flowing through the first loop coil portion 420A of the first RF coil 410A and the first loop coil portion 420A of the second RF coil 410B. Is different from the integral value of the inner product of the electric field generated in the subject by the current flowing in the object. For this reason, the absolute value of the composite value is reduced, and as a result, the noise correlation is lowered and the SNR of the composite image is improved.
 また、本実施例では導体ループである8の字エレメントをファントムのXY面に配置していることから、第一のRFコイル若しくは第二のRFコイルが作る感度に寄与しないZ方向の磁場を、8の字の導体ループが検出し、誘導電流を形成することでファントムの深部にてX方向の磁場を生成するため、感度も向上する。
 以上のように調整することにより、各RFコイル410は、検出対象の核磁気共鳴信号を、それぞれ受信できる。また、以上のような電流経路を形成することで図7(d)の様な電場が発生するためノイズ相関が低下する。
Further, in the present embodiment, since the figure 8 element that is a conductor loop is arranged on the XY plane of the phantom, a magnetic field in the Z direction that does not contribute to the sensitivity produced by the first RF coil or the second RF coil is obtained. Since the 8-shaped conductor loop detects and forms an induced current, a magnetic field in the X direction is generated in the deep part of the phantom, so that the sensitivity is also improved.
By adjusting as described above, each RF coil 410 can receive a nuclear magnetic resonance signal to be detected. Moreover, since the electric field as shown in FIG. 7D is generated by forming the current path as described above, the noise correlation is lowered.
 [調整例1]
 以下、本実施例の各回路素子の調整手順を、具体的に説明する。
 ここでは、アレイコイル400が、静磁場強度3T(テスラ)における水素の原子核の磁気共鳴周波数128MHz(f0=128MHz)で共振するよう調整した実施例を例にあげて説明する。
[Adjustment Example 1]
Hereinafter, the adjustment procedure of each circuit element of the present embodiment will be specifically described.
Here, an example in which the array coil 400 is adjusted to resonate at a magnetic resonance frequency of 128 MHz (f0 = 128 MHz) of a hydrogen nucleus at a static magnetic field strength of 3 T (Tesla) will be described as an example.
 RFコイルの形状及びサイズは、一例として、ループが矩形であって、第一のループコイル部420A及び第二のループコイル部420Bそれぞれのループ421A、421Bの縦と横のサイズを10センチ、20センチとする。また、2つのRFコイル410のコイル中心間距離は10センチとする。導体ループ415の大きさは縦と横のサイズを16センチ、8センチとする。被写体は図9(b)に示すような直径17cmの高さ28cmの円柱とした。各RFコイル410と導体ループ415の配置関係は各コイルの中心点のZ方向の距離を11センチとした。 The shape and size of the RF coil are, for example, a rectangular loop, and the vertical and horizontal sizes of the loops 421A and 421B of the first loop coil portion 420A and the second loop coil portion 420B are 10 cm, 20 Centimeters. Further, the distance between the coil centers of the two RF coils 410 is 10 cm. The size of the conductor loop 415 is 16 cm and 8 cm in the vertical and horizontal sizes. The subject was a cylinder having a diameter of 17 cm and a height of 28 cm as shown in FIG. As for the arrangement relationship between each RF coil 410 and the conductor loop 415, the distance in the Z direction of the center point of each coil was 11 cm.
 ここでは、第一のRFコイル410A及び第二のRFコイル410Bが導体ループ415とそれぞれ図7に示すように、電磁気的に結合したとき、図7(b)及び図7(c)の様に電流が流れる様に調整する。具体的には、それぞれ磁気結合によって導体ループに各RFコイルのコイルエレメントに流れる15%の電流が流れるように調整する。 Here, when the first RF coil 410A and the second RF coil 410B are electromagnetically coupled to the conductor loop 415 as shown in FIG. 7, respectively, as shown in FIGS. 7B and 7C. Adjust the current to flow. Specifically, adjustment is performed so that 15% of the current flowing through the coil element of each RF coil flows through the conductor loop by the magnetic coupling.
 まず、導体ループの調整415を行う。導体ループは直列キャパシタ422Cの容量を調整する。ここでは、導体ループが第一のRFコイル若しくは第二のRFコイルと効率よく磁気結合するように、8の字エレメントに直列に挿入された直列キャパシタ422Cに磁気結合調整回路のキャパシタ452Aのみが並列に接続された並列共振回路が磁気共鳴周波数で共振するように、422C及び452Aを調整する。その後、同時に回路全体の調整を容易とするため、磁気結合調整回路451であるキャパシタ452Aにインダクタ452Bを並列に接続し、磁気結合調整回路451の共振周波数がf0となるように調整する。これにより磁気結合調整回路は高インピーダンスとなるため、ほとんど他のコイルと磁気結合しない。 First, the conductor loop adjustment 415 is performed. The conductor loop adjusts the capacitance of the series capacitor 422C. Here, only the capacitor 452A of the magnetic coupling adjustment circuit is parallel to the series capacitor 422C inserted in series with the figure 8 element so that the conductor loop is efficiently magnetically coupled to the first RF coil or the second RF coil. 422C and 452A are adjusted so that the parallel resonant circuit connected to the terminal resonates at the magnetic resonance frequency. Thereafter, in order to facilitate the adjustment of the entire circuit at the same time, an inductor 452B is connected in parallel to the capacitor 452A which is the magnetic coupling adjustment circuit 451, and the resonance frequency of the magnetic coupling adjustment circuit 451 is adjusted to be f0. As a result, the magnetic coupling adjusting circuit has a high impedance, and therefore hardly magnetically couples with other coils.
 また、各RFコイルは磁気共鳴周波数と同じ周波数で共振するようにキャパシタ422A及び422Cが調整される。同時にキャパシタ421は低入力インピーダンスプリアンプから見たRFコイル側の回路の入力インピーダンスが50Ωとなるように調整される。また、キャパシタ421から見た、キャパシタ421と低入力インピーダンスプリアンプとインダクタ441の並列共振回路が高インピーダンスとなるように調整する。 The capacitors 422A and 422C are adjusted so that each RF coil resonates at the same frequency as the magnetic resonance frequency. At the same time, the capacitor 421 is adjusted so that the input impedance of the circuit on the RF coil side viewed from the low input impedance preamplifier becomes 50Ω. Further, the capacitor 421 is adjusted so that the parallel resonance circuit of the capacitor 421, the low input impedance preamplifier, and the inductor 441 has a high impedance.
 このとき第一のRFコイル410Aと第二のRFコイル410Bの磁気結合が除去されるよう、これらRFコイル410のコイルエレメントの10%程度をオーバラップさせる。
 次に第一のRFコイル及び第二のRFコイルと導体ループの磁気結合の調整を行う。ここでは磁気結合後も第一のRFコイル及び第二のRFコイルが磁気共鳴周波数f0と同じ周波数で共振するよう、磁気結合を調整した後、再度RFコイルの調整も行う。
At this time, about 10% of the coil elements of the RF coil 410 are overlapped so that the magnetic coupling between the first RF coil 410A and the second RF coil 410B is removed.
Next, the magnetic coupling of the first and second RF coils and the conductor loop is adjusted. Here, after the magnetic coupling is adjusted so that the first RF coil and the second RF coil resonate at the same frequency as the magnetic resonance frequency f0 even after the magnetic coupling, the RF coil is also adjusted again.
 磁気結合量を調整するときには、先ず電流の向きを決定する。本実施例のアレイコイルでは第一のRFコイル410Aと、導体ループ415の第一のRFコイル側のループ416がそれぞれ関心領域であるその間の空間に作る磁場に打ち消し合いが生じないように、これら二つのコイルの電流の向きの関係が8の字になるよう決定した。 When adjusting the amount of magnetic coupling, first determine the direction of the current. In the array coil of the present embodiment, the first RF coil 410A and the loop 416 on the first RF coil side of the conductor loop 415 are not affected by the magnetic field created in the space between them. The relationship between the directions of the currents of the two coils was determined to be 8 characters.
 すなわち、図7(b)に示すように逆向きに決定した。よって、上述の通り、磁気結合調整回路451の共振周波数fLを下げることによって、逆向きの電流を生成した。本実施例ではインダクタ415Bの値を調整して、磁気結合調整回路の共振周波数の値がf0由り20%低い102MHzを用いた。 That is, it was determined in the reverse direction as shown in FIG. Therefore, as described above, a reverse current is generated by lowering the resonance frequency fL of the magnetic coupling adjustment circuit 451. In this embodiment, the value of the inductor 415B is adjusted, and 102 MHz, which is 20% lower than the value of the resonance frequency of the magnetic coupling adjustment circuit due to f0, is used.
 なお、本実施形態ではX方向に対称で作成してあるため本調整を行うことで、第二のRFコイル410Bと、導体ループ415の第一のRFコイル側のループ416にも逆向きの電流が流れ、同様な調整が行われる。 In this embodiment, the current is generated in a symmetrical manner in the X direction, so that by performing this adjustment, the second RF coil 410B and the reverse current in the loop 416 on the first RF coil side of the conductor loop 415 are also reversed. The same adjustment is performed.
 次に、上記調整で第一のRFコイル410A及び第二のRFコイル410Bの周波数が若干f0からずれているので、再度キャパシタ422A及び422Bを調整してそれぞれ周波数f0を合わせ、同時にキャパシタ422A及び422Bを調整してそれぞれ各コイルの入力インピーダンスを50Ωに再調整した。またこの結果、サブ電流の値は各RFコイルに流れる電流の15%となった。
 なお、これら第一のRFコイル410A、第二のRFコイル410B、導体ループの調整は、必要に応じて数回繰り返しても良い。
Next, since the frequency of the first RF coil 410A and the second RF coil 410B is slightly deviated from f0 by the above adjustment, the capacitors 422A and 422B are adjusted again to match the frequency f0, and the capacitors 422A and 422B are simultaneously adjusted. The input impedance of each coil was readjusted to 50Ω. As a result, the value of the sub current was 15% of the current flowing through each RF coil.
The adjustment of the first RF coil 410A, the second RF coil 410B, and the conductor loop may be repeated several times as necessary.
 このように調整することで、本実施例のアレイコイル400は、核磁気共鳴周波数で共振し、核磁気共鳴信号を受信する。また、第一のRFコイル410Aが導体ループ415に磁気結合して導体ループに作る第一のサブ電流と、第二のRFコイル410Bが導体ループ415に磁気結合して導体ループに作る第二のサブ電流が被写体内に作る電場の内積は、第一のRFコイル410Aに流れる電流と、第二のRFコイル410Bに流れる電流が被写体内に作る電場の内積の値とは異なる符号となるため、合成値の絶対値は小さくなり、結果としてノイズ相関は下がり、合成画像のSNRが向上する。 By adjusting in this way, the array coil 400 of this embodiment resonates at the nuclear magnetic resonance frequency and receives the nuclear magnetic resonance signal. In addition, the first RF coil 410A is magnetically coupled to the conductor loop 415 to create a conductor loop, and the second RF coil 410B is magnetically coupled to the conductor loop 415 to create a conductor loop. The inner product of the electric field generated in the subject by the sub current has a different sign from the current flowing in the first RF coil 410A and the inner product of the electric field generated in the subject by the current flowing in the second RF coil 410B. The absolute value of the composite value becomes small, resulting in a decrease in noise correlation and an improvement in the SNR of the composite image.
 また本実施例では導体ループである8の字エレメントをファントムのXY面に配置していることから、第一のRFコイル若しくは第二のRFコイルが作る感度に寄与しないZ方向の磁場を、8の字の導体ループが検出し、誘導電流を形成することでファントムの深部にてX方向の磁場を生成するため、感度も向上する。 Further, in this embodiment, since the figure 8 element which is a conductor loop is arranged on the XY plane of the phantom, a magnetic field in the Z direction which does not contribute to the sensitivity produced by the first RF coil or the second RF coil is represented by 8 Since the U-shaped conductor loop detects and forms an induced current, a magnetic field in the X direction is generated in the deep part of the phantom, so that the sensitivity is also improved.
[調整例1の結果]
 上述のように調整したアレイコイルを用いて、MRI装置(3テスラ、水平磁場方式)で水ファントムを撮像したシミュレーション結果を図11に示す。図11(a)は画像合成後、ファントム中心のZ方向のSNRプロファイルである。図11(a)中、実線は本実施例のプロファイル、破線は従来(比較例)のRFコイルの磁気結合を除去した場合の感度分布プロファイルである。
[Results of Adjustment Example 1]
FIG. 11 shows a simulation result of imaging a water phantom with an MRI apparatus (3 Tesla, horizontal magnetic field method) using the array coil adjusted as described above. FIG. 11A shows an SNR profile in the Z direction at the center of the phantom after image synthesis. In FIG. 11A, the solid line is the profile of this embodiment, and the broken line is the sensitivity distribution profile when the magnetic coupling of the conventional (comparative example) RF coil is removed.
 これらの結果から分かるように、本実施例のアレイコイル400は、磁気的結合によって合成画像のSNRが向上する。
 なお、本実施例では、磁気結合調整回路の共振周波数はf0より20%小さい値としたが、これに限定されない。第一のRFコイル410Aと、導体ループ415の第一のRFコイル側のループ416がそれぞれ関心領域である空間に作る磁場に打ち消し合いが生じず、同時に第二のRFコイル410Bと、導体ループ415の第二のRFコイル側のループ417がそれぞれ関心領域である空間に作る磁場に打ち消し合いが生じなければ他の値でも良い。
As can be seen from these results, the array coil 400 of this embodiment improves the SNR of the composite image by magnetic coupling.
In this embodiment, the resonance frequency of the magnetic coupling adjustment circuit is 20% smaller than f0. However, the present invention is not limited to this. The first RF coil 410A and the loop 416 on the first RF coil side of the conductor loop 415 do not cancel each other out of the magnetic field formed in the space of interest, and at the same time, the second RF coil 410B and the conductor loop 415 Other values may be used as long as the second RF coil side loop 417 does not cancel each other out of the magnetic field created in the space of interest.
 例えば、各RFコイルと導体ループが重なるように配置された場合は、導体ループに誘導される電圧の向きと電流の向きが逆となるため、導体ループ415の第一のRFコイル側のループ416がそれぞれ関心領域である空間に作る磁場に打ち消し合いが生じないようにするには、磁気結合調整回路の共振周波数はf0より高い値を選択する必要がある。コイルモデルの構成や配置状況に応じて調整値を設定することで調整の自由度が向上し、結果最終的なSNRを向上させることができる。 For example, when each RF coil and the conductor loop are arranged so as to overlap each other, the direction of the voltage induced in the conductor loop and the direction of the current are reversed, so that the loop 416 on the first RF coil side of the conductor loop 415 is reversed. In order not to cancel each other out in the magnetic field generated in the space which is the region of interest, it is necessary to select a value higher than f0 for the resonance frequency of the magnetic coupling adjustment circuit. By setting the adjustment value according to the configuration and arrangement state of the coil model, the degree of freedom of adjustment is improved, and as a result, the final SNR can be improved.
 また、磁気結合調整回路を用いることで、各RFコイルと導体ループの電流の位相差が調整できるが、基本的には関心領域で最終的に生成される磁場の位相差が等しくなるように調整することが好ましい。 In addition, by using the magnetic coupling adjustment circuit, the phase difference between the currents of each RF coil and the conductor loop can be adjusted, but basically the phase difference between the magnetic fields finally generated in the region of interest is adjusted to be equal. It is preferable to do.
 さらに、本実施例ではサブ電流の量(電流比)を15%に調整したが、サブ電流の量は、ノイズ相関を任意の値へ変化させ、対象とする画像領域のSNRを向上させることができればよく、コイル間距離等に応じて適宜調整される。図11(b)にノイズ相関と電流の関係を示したグラフを示す。磁気結合が増え電流比が大きくなっても、それに伴いノイズ相関が低下すればノイズは低下する。磁気結合によって信号の分布も変わるため、これらを総合的に考え関心領域でSNRが上がるような条件を設定することが好ましい。 Furthermore, in this embodiment, the amount of sub-current (current ratio) is adjusted to 15%, but the amount of sub-current can change the noise correlation to an arbitrary value and improve the SNR of the target image area. What is necessary is just to adjust and according to the distance between coils etc. suitably. FIG. 11B shows a graph showing the relationship between noise correlation and current. Even if the magnetic coupling increases and the current ratio increases, the noise decreases if the noise correlation decreases accordingly. Since the signal distribution also changes due to the magnetic coupling, it is preferable to set conditions that increase the SNR in the region of interest by comprehensively considering these.
 なお、本実施例では8の字ループをXY面上に配置したが、これに限定されない。ノイズ低下という観点では他の配置でも構わない。しかし信号増加の観点から8の字ループが作る磁場の向きが関心領域にて、静磁場に対して垂直となるように構成することが好ましい。これにより効率よく信号も取得できるためSNRを向上させることができる。 In this embodiment, the figure 8 loop is arranged on the XY plane, but the present invention is not limited to this. Other arrangements may be used from the viewpoint of noise reduction. However, from the viewpoint of increasing the signal, it is preferable that the direction of the magnetic field formed by the 8-shaped loop is perpendicular to the static magnetic field in the region of interest. As a result, a signal can also be acquired efficiently, so that the SNR can be improved.
(実施例2)
 上述した実施例1では、第一のRFコイル410Aの第一のループコイル部420Aが作る第一のコイル面と、また第二のRFコイル410Bの第2のループコイル部420Bが作る第二のコイル面は被写体を被うように配置され、且つ第一のコイル面の垂線と、第二のコイル面の垂線が交わる点でのなす角の余弦は正となる位置に配置される場合を説明した。
(Example 2)
In the first embodiment described above, the first coil surface created by the first loop coil portion 420A of the first RF coil 410A and the second loop coil portion 420B created by the second loop coil portion 420B of the second RF coil 410B. The case where the coil surface is arranged to cover the subject and the cosine of the angle formed by the intersection of the perpendicular of the first coil surface and the perpendicular of the second coil surface is arranged at a positive position. did.
 本実施例では、第一のコイル面の垂線と、第二のコイル面の垂線が交わる点でのなす角の余弦は負となる位置に配置される場合について説明する。
 一般的に、このような角度に二つの同一のRFコイルを配置すると、これらコイルが被写体の中に作る電場の内積の積分値は負となり、結果負のノイズ相関が生じる。この場合、導体ループ415を加え、被写体内に正の相関を加えることでノイズ相関を0とできるため、回路構成が異なる。具体的には、図12に示すように、導体ループが8の字形状では無く円形若しくは矩形のループ形状となる。
In the present embodiment, a case will be described in which the cosine of the angle formed by the perpendicular line of the first coil surface and the perpendicular line of the second coil surface is arranged at a negative position.
In general, when two identical RF coils are arranged at such an angle, the integral value of the inner product of the electric fields produced by these coils in the subject becomes negative, resulting in a negative noise correlation. In this case, since the noise correlation can be made zero by adding the conductor loop 415 and adding a positive correlation in the subject, the circuit configuration is different. Specifically, as shown in FIG. 12, the conductor loop has a circular or rectangular loop shape instead of an 8-shaped shape.
 以下、図12に示すアレイコイル400を用いて本実施例の動作を説明する。
 なお、本実施例は上述した実施例1と、基本的には第一のRFコイル410A及び第二のRFコイル410Bの配置と、導体ループの形状が異なるに過ぎず、その他の構成は同一であり、基本原理や調整方法も実施例1と同様である。
Hereinafter, the operation of this embodiment will be described using the array coil 400 shown in FIG.
The present embodiment is basically the same as the first embodiment described above, except for the arrangement of the first RF coil 410A and the second RF coil 410B and the shape of the conductor loop, and the other configurations are the same. Yes, the basic principle and adjustment method are the same as in the first embodiment.
 本実施例のアレイコイル400において、第一のRFコイル410A及び第二のRFコイル410Bが導体ループにそれぞれ電流を誘起した場合に生じる電場が作る電場の内積ついて、図13及び図14を用いて説明する。 In the array coil 400 of the present embodiment, the inner product of the electric field generated by the electric field generated when the first RF coil 410A and the second RF coil 410B induce current in the conductor loop, respectively, will be described with reference to FIGS. explain.
 図13は、導体ループを使用していない従来の二つのRFコイルが作る電場の内積分布を説明する図である。図13(a)に示すようにアレイコイルを形成する第一のRFコイル410A及び第二のRFコイルは、被写体103を被い、且つ、磁気結合しないように配置されている。 FIG. 13 is a diagram for explaining the inner product distribution of the electric field created by two conventional RF coils not using a conductor loop. As shown in FIG. 13A, the first RF coil 410A and the second RF coil forming the array coil are arranged so as to cover the subject 103 and not be magnetically coupled.
 本実施例では磁気結合除去手段451として、図12に図示した、それぞれのRFコイルのコイルループにインダクタを挿入して、磁気結合を除去するインダクタ方式を用いた。信号受信時、第一のRFコイル410Aには図13(a)に示すとおりZ軸マイナス方向のエレメントにはX方向プラス向きの第一の電流(図中実線)が流れ、第二のRFコイル410Bには図に示すとおりZ軸マイナス方向のエレメントにはX方向プラス向きの第二の電流(図中破線)が流れる。 In this embodiment, as the magnetic coupling removing means 451, an inductor method is used, in which an inductor is inserted into the coil loop of each RF coil shown in FIG. When a signal is received, a first current (solid line in the figure) flowing in the positive direction of the X direction flows through the first RF coil 410A through the element in the negative direction of the Z axis as shown in FIG. In 410B, as shown in the figure, a second current (broken line in the figure) flows in the X direction plus direction through the element in the Z axis minus direction.
 図13(b)は、二つのRFコイルが作る電場の内積の分布の概念を示す。正の電界を細かいドットで、負の電界を粗いドットで、それぞれ示している。本図に示す通り第一のRFコイル410A及び第二のRFコイル410Bは被写体内に負の内積分布を示す。このように負になるのは、被写体から見ると第一のRFコイル410A及び第二のRFコイル410Bはほぼ逆の方向に存在し、共に同じ向きの電流が流れているため、それぞれのRFコイルが被写体内に作る電場は符号が逆であるため、各領域の内積はほとんどが負となるためである。 FIG. 13B shows the concept of the distribution of the inner product of the electric field created by the two RF coils. Positive electric fields are indicated by fine dots, and negative electric fields are indicated by coarse dots. As shown in the figure, the first RF coil 410A and the second RF coil 410B show a negative inner product distribution in the subject. The reason for this negative is that the first RF coil 410A and the second RF coil 410B exist in substantially opposite directions when viewed from the subject, and currents in the same direction flow in both directions. This is because the electric field generated in the subject has the opposite sign, and the inner product of each region is almost negative.
 このように、従来のコイル構成では負の内積成分が支配的となるため、式(2)で求まるノイズ相関は負の大きな値となる。そのため、これら構成で取得された信号の合成値のノイズは、相関がゼロのものより大きくなりSNRは低くなる。 Thus, since the negative inner product component is dominant in the conventional coil configuration, the noise correlation obtained by Equation (2) is a large negative value. Therefore, the noise of the composite value of the signals acquired with these configurations is larger than that with zero correlation, and the SNR is low.
 図14は、本実施例の内積分布を説明する図である。図14(a)に示すようにアレイコイルを形成する第一のRFコイル410A及び第二のRFコイルは、被写体103を被い、且つ、磁気結合しないように配置され、さらに導体ループが二つのRFコイルと磁気結合すると共に被写体を被うよう配置されている。 FIG. 14 is a diagram for explaining the inner product distribution of this embodiment. As shown in FIG. 14A, the first RF coil 410A and the second RF coil forming the array coil are arranged so as to cover the object 103 and not to be magnetically coupled, and further have two conductor loops. It is magnetically coupled to the RF coil and arranged to cover the subject.
 図14(b)に、信号受信時、図13の従来構成時と同様に第一のRFコイル410Aに図に示すとおり第一の電流(図中実線)が流れた場合の動作を示す。
 本実施例では、第一のRFコイル410Aは導体ループと磁気結合しているため、第一のRFコイル410Aが作る磁場が、図10で説明した基本原理と同じ原理で導体ループのZ軸マイナスよりのエレメントに右方向に流れる電流を誘起し第一のサブ電流418Aが流れる。
FIG. 14B shows the operation when a first current (solid line in the figure) flows through the first RF coil 410A as shown in the figure at the time of signal reception, as in the conventional configuration of FIG.
In this embodiment, since the first RF coil 410A is magnetically coupled to the conductor loop, the magnetic field generated by the first RF coil 410A is the same as the basic principle described with reference to FIG. Current flowing in the right direction is induced in the other element, and the first sub-current 418A flows.
 図14(c)に、信号受信時、図13の従来構成時と同様に第二のRFコイル410Bに図に示すとおり第二の電流(図中破線)が流れた場合の動作を示す。
 本実施例では、第二のRFコイル410Bは導体ループと磁気結合しているため、第二のRFコイル410Bが作る磁場が、図10で説明した基本原理と同じ原理で導体ループのZ軸マイナスよりのエレメントに右方向に流れる電流を誘起し第二のサブ電流418Aが流れる。
FIG. 14C shows the operation when a second current (broken line in the figure) flows through the second RF coil 410B as shown in the figure at the time of signal reception as in the conventional configuration of FIG.
In this embodiment, since the second RF coil 410B is magnetically coupled to the conductor loop, the magnetic field generated by the second RF coil 410B is the same as the basic principle described in FIG. Current flowing in the right direction is induced in the other element, and the second sub-current 418A flows.
 すなわち、本実施形態では、第一のRFコイル及び第二のRFコイルが導体ループに流れる電流の向きはX方向プラス向きであり、誘導された第一のサブ電流418Aと第二のサブ電流418Bも共にX方向プラス向きとなる。 That is, in this embodiment, the direction of the current flowing through the conductor loop through the first RF coil and the second RF coil is the X direction plus direction, and the induced first sub current 418A and second sub current 418B. Both are positive in the X direction.
 図14(d)は二つのRFコイルが作る電場の内積の分布の概念を示す。正の電界を細かいドットで、負の電界を粗いドットで、それぞれ示している。本図に示す通り第一のRFコイル410A及び第二のRFコイル410Bは図13に示した従来構成と同様の電流を形成するため、被写体内に同様の負の内積分布を示す。一方で導体ループ415付近では正の内積分布を示す。このように正になるのは、前述の通り、磁気結合して生じた電流の向きが共に同じ向きになるためである。電流の向きが同じであるため電場の符号も等しくなり、内積は負となる。 FIG. 14 (d) shows the concept of the inner product distribution of the electric field created by the two RF coils. Positive electric fields are indicated by fine dots, and negative electric fields are indicated by coarse dots. As shown in this figure, the first RF coil 410A and the second RF coil 410B form a current similar to that in the conventional configuration shown in FIG. 13, and thus show the same negative inner product distribution in the subject. On the other hand, a positive inner product distribution is shown near the conductor loop 415. The reason for being positive in this way is that the directions of currents generated by magnetic coupling are both the same as described above. Since the current direction is the same, the signs of the electric fields are also equal, and the inner product is negative.
 このように本実施例では、従来構成のように内積が負領域だけで無く、正の領域が生成される。よって式(1)及び式(2)に示す通り、ノイズ相関は電場の体積積分で求まるため、本実施形態では負と正を構成することにより、積分値をゼロに近づけることができる。 Thus, in this embodiment, not only the negative area but also the positive area is generated as in the conventional configuration. Therefore, as shown in Expression (1) and Expression (2), since the noise correlation is obtained by volume integration of the electric field, in this embodiment, the integration value can be brought close to zero by configuring negative and positive.
 よって、ノイズ相関をゼロに近づければ、図13で示した従来構成よりノイズを低下させ、SNRを向上させることができる。また、本実施例においても、第一のRFコイル410Aと第二のRFコイル410Bはそれぞれ導体ループと結合して磁気共鳴周波数f0と同じ周波数で共振するように調整されているため、磁気共鳴信号を取得することができる。 Therefore, if the noise correlation is brought close to zero, the noise can be reduced and the SNR can be improved compared to the conventional configuration shown in FIG. Also in the present embodiment, the first RF coil 410A and the second RF coil 410B are respectively adjusted to be coupled to the conductor loop and resonate at the same frequency as the magnetic resonance frequency f0. Can be obtained.
 なお、本実施形態では導体ループを図14に示すようにY軸方向マイナスの位置に設置したがこれに限定されない。Y軸方向のプラスの位置であってもよい。またXやZ方向の位置も限定されないが、第一のRFコイル410A及び第二のRFコイル410Bと導体ループの磁気結合の強さは同等と成る位置に配置することが好ましい。 In this embodiment, the conductor loop is installed at a negative position in the Y-axis direction as shown in FIG. 14, but the present invention is not limited to this. It may be a positive position in the Y-axis direction. Further, the position in the X and Z directions is not limited, but it is preferable to arrange the first RF coil 410A and the second RF coil 410B and the conductor loops at the same magnetic coupling strength.
 以上、本実施形態及び各実施例に係るMRI装置乃至受信RFコイルの実施例について説明したが、各実施形態のRFコイルは図面や上記説明に限定されることなく適宜変更が可能である。以下、代表的な変形例について説明する。 The examples of the MRI apparatus and the receiving RF coil according to the present embodiment and each example have been described above, but the RF coil of each embodiment can be appropriately changed without being limited to the drawings and the above description. Hereinafter, typical modifications will be described.
(電磁気結合手段の変形例)
 上述した実施例1では、第一のRFコイル410Aと第二のRFコイル410Bの磁気結合除去手段にオーバラップ方式を用いたが、本変形例では実施例2と同様にインダクタ451Bを用いた磁気結合手段を用いる。
(Modification of electromagnetic coupling means)
In the first embodiment described above, the overlap method is used for the magnetic coupling removal means of the first RF coil 410A and the second RF coil 410B. However, in this modification, a magnetic circuit using the inductor 451B is used as in the second embodiment. Use coupling means.
 図15に、本変形例に係るアレイコイル400の構成を示す。図15に示すように、このアレイコイル400は、第一のループコイル部420Aと第二のループコイル部420Bにインダクタが直列に挿入され、これらが磁気結合することで、第一のRFコイル410Aと第二のRFコイル410Bの磁気結合が除去される。
 このように磁気結合を除去することで、二つのアレイコイルの配置が制限を受けにくくなるため設計の自由度が上がる。
FIG. 15 shows a configuration of an array coil 400 according to this modification. As shown in FIG. 15, in this array coil 400, an inductor is inserted in series in the first loop coil portion 420A and the second loop coil portion 420B, and these are magnetically coupled, whereby the first RF coil 410A. And the magnetic coupling of the second RF coil 410B is removed.
By removing the magnetic coupling in this manner, the arrangement of the two array coils is less likely to be restricted, and the degree of freedom in design is increased.
 また、例えば、図16に示すように、二つのRFコイルを共通のキャパシタ451Cを介して磁気結合を除去しても良い。
 このように除去することにより、可変キャパシタ等を用いることで容易に調整がすることができる。またインダクタでは調整が困難な場合でも本形態により調整することが可能になる。
Further, for example, as shown in FIG. 16, the magnetic coupling of two RF coils may be removed via a common capacitor 451C.
By removing in this way, adjustment can be easily performed by using a variable capacitor or the like. In addition, even if it is difficult to adjust with an inductor, it is possible to adjust with this embodiment.
 また、実施例2においては、第一のRFコイル410Aと第二のRFコイル410Bの磁気結合除去手段にインダクタ方式を用いたが、二つのRFコイルを共通のキャパシタ451Cを介して磁気結合を除去しても良い。
 このように除去することにより、可変キャパシタ等を用いることで容易に調整がすることができる。またインダクタでは調整が困難な場合でも本形態により調整することが可能になる。
In the second embodiment, the inductor system is used as the magnetic coupling removing means for the first RF coil 410A and the second RF coil 410B. However, the two RF coils are magnetically removed through a common capacitor 451C. You may do it.
By removing in this way, adjustment can be easily performed by using a variable capacitor or the like. In addition, even if it is difficult to adjust with an inductor, it is possible to adjust with this embodiment.
 なお、変形例においても、各回路素子を、各RFコイルが核磁気共鳴信号を受信できるように調整すること、且つ導体ループ415と結合してサブ電流を形成し、第一のサブ電流が作る電場と、第二のサブ電流が作る電場の内積の積分値は、第一のRFコイル410Aと第二のRFコイル410Bが被写体内に生成する電場の内積の積分値と異符号となるように調整する。 Also in the modification, each circuit element is adjusted so that each RF coil can receive a nuclear magnetic resonance signal, and combined with the conductor loop 415 to form a sub-current, and the first sub-current is generated. The integral value of the inner product of the electric field and the electric field generated by the second sub-current is different from the integral value of the inner product of the electric field generated in the subject by the first RF coil 410A and the second RF coil 410B. adjust.
 一方のRFコイルが検出した電流の一部がサブ電流として他方のRFコイルに流れ且つサブ電流の方向が一方のRFコイルと逆方向となるように調整することは上述した各実施例と同様である。 It is the same as in the above-described embodiments that adjustment is performed so that a part of the current detected by one RF coil flows as a sub-current to the other RF coil and the direction of the sub-current is opposite to that of the one RF coil. is there.
(垂直磁場の適用例)
 上述した実施例1及び実施例2では、水平磁場に適用した例を示したが、垂直磁場に適用しても良い。垂直磁場に適用することで、垂直磁場のアレイコイルでもノイズ相関を低減することができSNRが向上する。
(Application example of vertical magnetic field)
In the first embodiment and the second embodiment described above, the example applied to the horizontal magnetic field is shown, but the present invention may be applied to the vertical magnetic field. By applying to the vertical magnetic field, the noise correlation can be reduced even in the array coil of the vertical magnetic field, and the SNR is improved.
 以下、図17に示す二つのループコイルの面が被写体が貫く例について説明する。
 なお、本例においても、基本的に実施例1及び実施例2と同様の原理で動作し、同様の方法で調整されている。本例においては、第一のコイル面の垂線と、第二のコイル面の垂線が交わる点でのなす角の余弦は、実施例2と同様に負となる位置に配置される。よって、一般的にこのような角度に二つの同一のRFコイルを配置すると、これらコイルが被写体の中に作る電場の内積の積分値は負となり、結果負のノイズ相関が生じる。この場合、導体ループ415を加え、被写体内に正の相関を加えることでノイズ相関を0とできるため、回路構成は実施例2と同一となる。
Hereinafter, an example in which the subject penetrates the surfaces of the two loop coils shown in FIG. 17 will be described.
In this example as well, the operation is basically based on the same principle as in the first and second embodiments, and the adjustment is performed in the same manner. In this example, the cosine of the angle formed by the perpendicular line of the first coil surface and the perpendicular line of the second coil surface is arranged at a negative position as in the second embodiment. Therefore, generally, when two identical RF coils are arranged at such an angle, the integral value of the inner product of the electric field generated by these coils in the subject becomes negative, resulting in a negative noise correlation. In this case, the noise correlation can be reduced to 0 by adding a conductor loop 415 and adding a positive correlation in the subject, so the circuit configuration is the same as that of the second embodiment.
 以下、本変形例のアレイコイル400において、第一のRFコイル410A及び第二のRFコイル410Bが導体ループにそれぞれ電流を誘起した場合に生成する電場が作る電場の内積ついて、図17及び図18を用いてノイズが低減されることを説明する。 Hereinafter, in the array coil 400 of this modification, the inner product of the electric field generated by the electric field generated when the first RF coil 410A and the second RF coil 410B induce currents in the conductor loops will be described with reference to FIGS. Will be used to explain that noise is reduced.
 図17は従来の導体ループを使用していない、二つのRFコイルが作る電場の内積分布を説明する図である。
 図17(a)に示すようにアレイコイルを形成する第一のRFコイル410A及び第二のRFコイルは、被写体103を被い、且つ、磁気結合しないように配置されている。本例では磁気結合除去手段451として、図12に図示した、それぞれのRFコイルのコイルループにインダクタを挿入して、磁気結合を除去するインダクタ方式を用いた。
FIG. 17 is a diagram for explaining the inner product distribution of the electric field formed by two RF coils without using a conventional conductor loop.
As shown in FIG. 17A, the first RF coil 410A and the second RF coil forming the array coil are arranged so as to cover the object 103 and not be magnetically coupled. In this example, as the magnetic coupling removing means 451, an inductor method shown in FIG. 12 in which an inductor is inserted into the coil loop of each RF coil to remove the magnetic coupling is used.
 信号受信時、第一のRFコイル410Aには図17(a)に示すとおりZ軸マイナス方向のエレメントにはX方向プラス向きの第一の電流(図中実線)が流れ、第二のRFコイル410Bには図に示すとおりZ軸マイナス方向のエレメントにはX方向プラス向きの第二の電流(図中破線)が流れる。図17(b)は、二つのRFコイルが作る電場の内積の分布の概念を示す。 When a signal is received, a first current (solid line in the figure) flows in the first RF coil 410A through the element in the Z-axis minus direction as shown in FIG. 17A, and the second RF coil. In 410B, as shown in the figure, a second current (broken line in the figure) flows in the X direction plus direction through the element in the Z axis minus direction. FIG. 17B shows the concept of the inner product distribution of the electric field created by the two RF coils.
 本図に示す通り第一のRFコイル410A及び第二のRFコイル410Bは被写体内に負の内積分布を示す。このように負になるのは、被写体から見ると第一のRFコイル410A及び第二のRFコイル410Bはほぼ逆の方向に存在し、共に同じ向きの電流が流れているため、それぞれのRFコイルが被写体内に作る電場は符号が逆であるため、各領域の内積はほとんどが負となるためである。このように従来のコイル構成では負の内積成分が支配的となるため式2で求まるノイズ相関は負の大きな値となる。そのためこれら構成で取得された信号の合成値のノイズは、相関がゼロのものより大きくなりSNRは低くなる。 As shown in the figure, the first RF coil 410A and the second RF coil 410B show a negative inner product distribution in the subject. The reason for this negative is that the first RF coil 410A and the second RF coil 410B exist in substantially opposite directions when viewed from the subject, and currents in the same direction flow in both directions. This is because the electric field generated in the subject has the opposite sign, and the inner product of each region is almost negative. As described above, in the conventional coil configuration, the negative inner product component is dominant, so that the noise correlation obtained by Expression 2 is a large negative value. Therefore, the noise of the synthesized value of the signals acquired with these configurations is larger than that with zero correlation, and the SNR is low.
 図18は本実施例の内積分布を説明する図である。正の電界を細かいドットで、負の電界を粗いドットで、それぞれ示している。図18(a)に示すようにアレイコイルを形成する第一のRFコイル410A及び第二のRFコイルは、被写体103を被い、且つ、磁気結合しないように配置され、さらに導体ループが二つのRFコイルと磁気結合すると共に被写体を被うようX軸方向に配置されている。 FIG. 18 is a diagram for explaining the inner product distribution of this embodiment. Positive electric fields are indicated by fine dots, and negative electric fields are indicated by coarse dots. As shown in FIG. 18A, the first RF coil 410A and the second RF coil that form the array coil are arranged so as to cover the object 103 and not to be magnetically coupled, and further have two conductor loops. It is magnetically coupled to the RF coil and arranged in the X-axis direction so as to cover the subject.
 図18(b)に、信号受信時、図13の従来構成時と同様に第一のRFコイル410Aに図に示すとおり第一の電流(図中実線)が流れた場合の動作を示す。本実施形態では、第一のRFコイル410Aは導体ループと磁気結合しているため、第一のRFコイル410Aが作る磁場が、図10で説明した基本原理と同じ原理で導体ループのZ軸マイナスよりのエレメントに左方向に流れる電流を誘起し第一のサブ電流418Aが流れる。 FIG. 18B shows the operation when a first current (solid line in the figure) flows through the first RF coil 410A as shown in the figure at the time of signal reception, as in the conventional configuration of FIG. In the present embodiment, since the first RF coil 410A is magnetically coupled to the conductor loop, the magnetic field generated by the first RF coil 410A is the same as the basic principle described in FIG. Current flowing in the left direction is induced in the other element, and the first sub-current 418A flows.
 図18(c)に、信号受信時、図13の従来構成時と同様に第二のRFコイル410Bに図に示すとおり第二の電流(図中破線)が流れた場合の動作を示す。本例では、第二のRFコイル410Bは導体ループと磁気結合しているため、第二のRFコイル410Bが作る磁場が、図10で説明した基本原理と同じ原理で導体ループのZ軸マイナスよりのエレメントに左方向に流れる電流を誘起し第二のサブ電流418Aが流れる。 FIG. 18 (c) shows the operation when a second current (broken line in the figure) flows through the second RF coil 410B as shown in the figure at the time of signal reception, as in the conventional configuration of FIG. In this example, since the second RF coil 410B is magnetically coupled to the conductor loop, the magnetic field generated by the second RF coil 410B is the same as the basic principle described in FIG. A second sub-current 418A flows by inducing a current flowing in the left direction in the element.
 すなわち本例では、第一のRFコイル及び第二のRFコイルが導体ループのZ方向マイナスよりの導体に流れる電流の向きはX方向マイナス向きであり、誘導された第一のサブ電流418Aと第二のサブ電流418Bも共にY方向マイナス向きとなる。 That is, in this example, the direction of the current flowing through the conductor from the Z direction minus of the conductor loop of the first RF coil and the second RF coil is the minus direction of the X direction, and the induced first sub-current 418A and the first The second sub-current 418B is also negative in the Y direction.
 図18(d)は二つのRFコイルが作る電場の内積の分布の概念を示す。正の電界を細かいドットで、負の電界を粗いドットで、それぞれ示している。本図に示す通り、第一のRFコイル410A及び第二のRFコイル410Bは図13に示した従来構成と同様の電流を形成するため、被写体内に同様の負の内積分布を示す。一方で導体ループ415付近では正の内積分布を示す。このように正になるのは、前述の通り、磁気結合して生じた電流の向きが共に同じ向きになるためである。電流の向きが同じであるため電場の符号も等しくなり、内積は負となる。 FIG. 18 (d) shows the concept of the inner product distribution of the electric field created by the two RF coils. Positive electric fields are indicated by fine dots, and negative electric fields are indicated by coarse dots. As shown in this figure, the first RF coil 410A and the second RF coil 410B form a current similar to that in the conventional configuration shown in FIG. 13, and thus show the same negative inner product distribution in the subject. On the other hand, a positive inner product distribution is shown near the conductor loop 415. The reason for being positive in this way is that the directions of currents generated by magnetic coupling are both the same as described above. Since the current direction is the same, the signs of the electric fields are also equal, and the inner product is negative.
 このように本例では、従来構成のように内積が負領域だけで無く、正の領域が生成される。よって式(1)及び式(2)に示す通り、ノイズ相関は電場の体積積分で求められるので、本実施例では負と正を構成することにより互いに相殺し、積分値をゼロに近づけることができる。よってノイズ相関をゼロに近づければ、図13で示した従来構成よりノイズを低下させ、SNRを向上させることができる。
 また本例でも第一のRFコイル410Aと第二のRFコイル410Bは、それぞれ導体ループと結合して磁気共鳴周波数f0と同じ周波数で共振するように調整されているため、磁気共鳴信号を取得することができる。
Thus, in this example, not only the negative area but the positive area is generated as in the conventional configuration. Therefore, as shown in the equations (1) and (2), the noise correlation can be obtained by volume integration of the electric field. Therefore, in this embodiment, it is possible to cancel each other by constructing negative and positive, and to bring the integral value close to zero. it can. Therefore, if the noise correlation is brought close to zero, the noise can be reduced and the SNR can be improved compared to the conventional configuration shown in FIG.
Also in this example, the first RF coil 410A and the second RF coil 410B are adjusted so as to be coupled to the conductor loop and resonate at the same frequency as the magnetic resonance frequency f0, and thus acquire a magnetic resonance signal. be able to.
 以上示したように、垂直磁場であっても水平磁場と同じように動作する。また、導体ループ415の構成方法も水平磁場と同じように、第一のコイル面の垂線と、第二のコイル面の垂線が交わる点でのなす角の余弦が正の場合は8の字コイルを使用し、負の場合は円形若しくは矩形のコイルを使用すればノイズが低下する。また、導体ループに流れる電流が作る磁場がMRIの感度に寄与するよう、磁石の静磁場の向きと垂直になるように配置することによって信号取得効率が上がる。 As described above, even a vertical magnetic field operates in the same manner as a horizontal magnetic field. Also, the conductor loop 415 is configured in the same manner as the horizontal magnetic field. When the cosine of the angle formed by the perpendicular of the first coil surface and the perpendicular of the second coil surface is positive, the 8-shaped coil is used. If a negative or negative coil is used, noise is reduced. Further, the signal acquisition efficiency is improved by arranging the magnetic field to be perpendicular to the direction of the static magnetic field of the magnet so that the magnetic field generated by the current flowing through the conductor loop contributes to the MRI sensitivity.
 また本例では、第一のRFコイル410A及び第二のRFコイル410Bのループコイル部420が被写体を一周巻くように配置したが、これに限定されない。ループコイル部420を二周巻いても良い。これにより感度領域を広げることができる。 In this example, the loop coils 420 of the first RF coil 410A and the second RF coil 410B are arranged so as to wrap around the subject, but the present invention is not limited to this. The loop coil unit 420 may be wound twice. Thereby, a sensitivity area can be expanded.
 また、実施例1及び実施例2とこれらの変形例においては、導体ループ415が一つの場合を示したが、二つ以上備えていても良い。複数用いることでノイズ相関の調整幅が広がりSNRを向上させることができる。 Further, in the first and second embodiments and their modifications, the case where there is one conductor loop 415 is shown, but two or more conductor loops may be provided. By using a plurality, it is possible to increase the adjustment range of the noise correlation and improve the SNR.
 また実施例1及び実施例2とこれらの変形例では、RFコイルが二つの場合を示したが、三つ以上備えていても良い。これにより3つ以上のRFコイルのアレイコイルを作製することができる。図19に示す例は、3つRFコイル備える場合である。ノイズ相関を低下させたいコイルの組み合わせ(第一のRFコイル410A及び第二のRFコイル410B)のみ導体ループと磁気結合し、それ以外のコイルは導体ループとの磁気結合が切れるように配置することによって、必要なところだけノイズ相関を低下させSNRを向上させることができる。 Further, in the first and second embodiments and the modified examples, two RF coils are shown, but three or more RF coils may be provided. Thereby, an array coil of three or more RF coils can be produced. The example shown in FIG. 19 is a case where three RF coils are provided. Only the combination of the coils (first RF coil 410A and second RF coil 410B) whose noise correlation is to be reduced is magnetically coupled to the conductor loop, and the other coils are arranged so that the magnetic coupling to the conductor loop is broken. Thus, the noise correlation can be lowered and the SNR can be improved only where necessary.
 また、実施例1及び実施例2とこれらの変形例では、RFコイルがと導体ループの磁気結合は配置により磁気結合していたが、磁気結合方法はこれに限らない。インダクタを用いた磁気結合を行っても良い。図20に示す例は各RFコイルのコイルエレメントと導体ループに、RFコイルと導体ループのとの磁気結合を行うためのインダクタを備える。これらの磁気結合を調整することにより、RFコイルと導体ループのとの磁気結合を調整できる。これによりRFコイルと導体ループの磁気結合の調整幅が広がるため、配置に依存せず磁気結合量を調整しノイズを低下させることができる。 In the first and second embodiments and these modifications, the magnetic coupling between the RF coil and the conductor loop is magnetically coupled depending on the arrangement, but the magnetic coupling method is not limited to this. Magnetic coupling using an inductor may be performed. The example shown in FIG. 20 includes an inductor for magnetically coupling the RF coil and the conductor loop to the coil element and the conductor loop of each RF coil. By adjusting these magnetic couplings, the magnetic coupling between the RF coil and the conductor loop can be adjusted. As a result, the adjustment range of the magnetic coupling between the RF coil and the conductor loop is widened, so that the amount of magnetic coupling can be adjusted and noise can be reduced without depending on the arrangement.
 090・・・座標系、100・・・MRI装置、101・・・MRI装置、102・・・テーブル、103・・・検査対象、110・・・磁石、111・・・磁石、121・・・シムコイル、122・・・シム電源、131・・・傾斜磁場コイル、132・・・傾斜磁場電源、140・・・シーケンサ、151・・・送信RFコイル、152・・・RF磁場発生器、161・・・受信RFコイル、162・・・受信器、170・・・計算機、171・・・表示装置、180・・・磁気結合防止回路駆動装置、210・・・送受間磁気結合防止回路、211・・・PINダイオード、212・・・制御用信号線、220・・・送受間磁気結合防止回路、221・・・PINダイオード、221・・・クロスダイオード、222・・・インダクタ、223・・・制御用信号線、300・・・鳥かご型RFコイル、301・・・直線導体、302・・・端部導体、303・・・キャパシタ、311・・・入力ポート、312・・・入力ポート、400・・・アレイコイル、410・・・RFコイル、415・・・導体ループ、420・・・ループコイル部、421・・・ループ、422・・・直列キャパシタ、424・・・並列キャパシタ431・・・低入力インピーダンスプリアンプ、450・・・磁気結合部、452・・・磁気結合調整回路 090 ... coordinate system, 100 ... MRI apparatus, 101 ... MRI apparatus, 102 ... table, 103 ... inspection object, 110 ... magnet, 111 ... magnet, 121 ... Shim coil 122 ... Shim power source 131 ... Gradient magnetic field coil 132 ... Gradient magnetic field power source 140 ... Sequencer 151 ... Transmission RF coil 152 ... RF magnetic field generator 161 ..Receiving RF coil, 162... Receiver, 170... Computer, 171... Display device, 180... Magnetic coupling prevention circuit driving device, 210. ..PIN diode, 212 ... control signal line, 220 ... transmission / reception magnetic coupling prevention circuit, 221 ... PIN diode, 221 ... cross diode, 222 ... inductor 223: control signal line, 300: birdcage type RF coil, 301 ... straight conductor, 302 ... end conductor, 303 ... capacitor, 311 ... input port, 312 ... Input port 400 ... array coil 410 ... RF coil 415 ... conductor loop 420 ... loop coil section 421 ... loop 422 ... series capacitor 424 ... Parallel capacitor 431 ... Low input impedance preamplifier, 450 ... Magnetic coupling unit, 452 ... Magnetic coupling adjustment circuit

Claims (15)

  1.  導体からなる第一のループコイル部を有し、被写体からの磁気共鳴信号の受信が可能な第一のRFコイルと、
     導体からなる第二のループコイル部を有し、被写体からの磁気共鳴信号の受信が可能であり、前記第一のRFコイルと磁気結合が除去された第二のRFコイルと、
     少なくとも一つの導体の端部が互いに接続されたループ部を有し、前記第一のRFコイル及び前記第二のRFコイルと磁気結合された電界生成回路と、を備え、
     該電界生成回路は、
     前記第一のRFコイルにより前記電界生成回路に誘起される第一のサブ電流と、前記第二のRFコイルにより前記電界生成回路に誘起される第二のサブ電流とによって、被写体内にそれぞれ生成する電場の内積の体積積分値が、前記第一のループコイル部に流れる第一の電流と、前記第二のループコイル部のRFコイルに流れる第二の電流とによって被写体内に生成する電場の内積の体積積分値を相殺するような符号及び値となるように配置調整されるアレイコイル。
    A first RF coil having a first loop coil portion made of a conductor and capable of receiving a magnetic resonance signal from a subject;
    A second loop coil portion made of a conductor, capable of receiving a magnetic resonance signal from a subject, and a second RF coil from which magnetic coupling is removed from the first RF coil;
    An electric field generating circuit having a loop portion in which ends of at least one conductor are connected to each other and magnetically coupled to the first RF coil and the second RF coil;
    The electric field generation circuit includes:
    Generated in the subject by a first sub-current induced in the electric field generation circuit by the first RF coil and a second sub-current induced in the electric field generation circuit by the second RF coil, respectively. The volume integral value of the inner product of the electric field to be generated is the electric field generated in the subject by the first current flowing through the first loop coil section and the second current flowing through the RF coil of the second loop coil section. An array coil that is arranged and adjusted so as to have a sign and value that cancel the volume integral value of the inner product.
  2.  前記第一のループコイル部と前記第二のループコイル部は、互いに磁気結合防止手段によって磁気結合しないように配置及び構成されると共に、前記電界生成回路のループ部が被写体を被うように配置され、
     前記第一のループコイル面に略垂直な第一の軸と、前記第二のループコイル面に略垂直な第二の軸とのなす角度の余弦値が負となる場合に、前記電界生成回路が略円形状のループ部を有する請求項1記載のアレイコイル。
    The first loop coil unit and the second loop coil unit are arranged and configured so as not to be magnetically coupled to each other by magnetic coupling preventing means, and the loop unit of the electric field generating circuit is arranged to cover the subject. And
    The electric field generating circuit when a cosine value of an angle formed between a first axis substantially perpendicular to the first loop coil surface and a second axis substantially perpendicular to the second loop coil surface is negative. The array coil according to claim 1, having a substantially circular loop portion.
  3.  前記第一のループコイル部と前記第二のループコイル部は、互いに磁気結合防止手段によって磁気結合しないように配置及び構成されると共に、前記電界生成回路のループ部が被写体を被うように配置され、
     前記第一のループコイル面に略垂直な第一の軸と、前記第二のループコイル面に略垂直な第二の軸とのなす角度の余弦値が正となる場合に、前記電界生成回路が8の字形状のループ部を有する請求項1記載のアレイコイル。
    The first loop coil unit and the second loop coil unit are arranged and configured so as not to be magnetically coupled to each other by magnetic coupling preventing means, and the loop unit of the electric field generating circuit is arranged to cover the subject. And
    The electric field generating circuit when a cosine value of an angle formed by a first axis substantially perpendicular to the first loop coil surface and a second axis substantially perpendicular to the second loop coil surface is positive. The array coil according to claim 1, wherein the array coil has an eight-shaped loop portion.
  4.  前記電界生成回路が、ループ部に直列に挿入されたキャパシタを有する直列共振回路である請求項1記載のアレイコイル。 The array coil according to claim 1, wherein the electric field generating circuit is a series resonant circuit having a capacitor inserted in series in a loop portion.
  5.  前記ループ部が、少なくとも一つ以上の磁気結合調整回路を備えている請求項1記載のアレイコイル。 The array coil according to claim 1, wherein the loop section includes at least one magnetic coupling adjustment circuit.
  6.  前記磁気結合調整回路は、キャパシタ及びインダクタが並列に接続された並列共振回路であり、前記ループ部に直列に挿入される請求項5記載のアレイコイル。 The array coil according to claim 5, wherein the magnetic coupling adjustment circuit is a parallel resonance circuit in which a capacitor and an inductor are connected in parallel, and is inserted in series in the loop portion.
  7.  前記第一のループコイル部に挿入される第一のインダクタを有し、
     前記磁気結合調整回路が、前記ループ部に直列に挿入された第二のインダクタであり、
    前記第一のインダクタと第二のインダクタとを磁気結合させることにより、磁気結合を調整する請求項5記載のアレイコイル。
    Having a first inductor inserted into the first loop coil section;
    The magnetic coupling adjustment circuit is a second inductor inserted in series in the loop portion;
    The array coil according to claim 5, wherein the magnetic coupling is adjusted by magnetically coupling the first inductor and the second inductor.
  8.  前記第一のループコイル部の面と、前記第二のループコイル部の面は被写体を被うように配置されている請求項1記載のアレイコイル。 The array coil according to claim 1, wherein the surface of the first loop coil portion and the surface of the second loop coil portion are arranged to cover the subject.
  9.  前記第一のループコイル部の面及び前記第二のループコイル部の面は被写体によって貫かれたように配置されている請求項1記載のアレイコイル。 The array coil according to claim 1, wherein the surface of the first loop coil portion and the surface of the second loop coil portion are arranged so as to be penetrated by a subject.
  10.  前記第一のコイルループ部の一部と前記第二のコイルループ部との一部とを互いに重ねて配置することにより、前記第一のRFコイルと前記第二のRFコイルとの磁気結合を除去するオーバーラップ方式を適用した請求項1記載のアレイコイル。 By arranging a part of the first coil loop part and a part of the second coil loop part so as to overlap each other, magnetic coupling between the first RF coil and the second RF coil is achieved. The array coil according to claim 1, wherein an overlapping method for removing is applied.
  11.  前記第一のRFコイルが第三のインダクタを有し、
     前記第二のRFコイルが第四のインダクタを有し、
     前記第三のインダクタと前記第四のインダクタとを磁気結合させることにより、前記第一のRFコイルと前記第二のRFコイルの磁気結合を除去するインダクタ方式を適用した請求項1記載のアレイコイル。
    The first RF coil has a third inductor;
    The second RF coil has a fourth inductor;
    2. The array coil according to claim 1, wherein an inductor system is applied in which magnetic coupling between the first RF coil and the second RF coil is eliminated by magnetically coupling the third inductor and the fourth inductor. .
  12.  前記第一のRFコイル及び第二のRFコイルが、共に同一のキャパシタに直列に接続されることにより、前記第一のRFコイルと前記第二のRFコイルの磁気結合を除去するキャパシタ方式を適用した請求項1記載のアレイコイル。 Capacitor system that removes the magnetic coupling between the first RF coil and the second RF coil by connecting the first RF coil and the second RF coil in series to the same capacitor. The array coil according to claim 1.
  13.  前記第一のRFコイル又は前記第二のRFコイルが前記電界生成回路と結合することにより前記ループ部に流れる電流が被写体の関心領域に作るRF磁場の位相と、前記第一のRFコイル又は前記第二のRFコイルが前記関心領域に作るRF磁場の位相との差が-30度から+30度である請求項1記載のアレイコイル。 When the first RF coil or the second RF coil is coupled to the electric field generating circuit, the phase of the RF magnetic field generated in the region of interest of the subject by the current flowing through the loop portion, and the first RF coil or the The array coil according to claim 1, wherein the difference between the phase of the RF magnetic field generated by the second RF coil in the region of interest is from -30 degrees to +30 degrees.
  14.  前記電界生成回路と磁気結合しない第三のRFコイルをさらに備える請求項1記載のアレイコイル。 The array coil according to claim 1, further comprising a third RF coil that is not magnetically coupled to the electric field generating circuit.
  15.  静磁場を形成する静磁場形成部と、
     傾斜磁場を形成する傾斜磁場形成部と、
     前記静磁場に配置された検査対象にRF磁場を照射する送信RFコイルと、
     前記検査対象からの核磁気共鳴信号を検出する受信RFコイルと、
     前記受信RFコイルが検出した核磁気共鳴信号を処理する信号処理部と、を備え、
     前記受信RFコイルが、請求項1乃至請求項14の何れか1項記載のアレイコイルである磁気共鳴撮像装置。
    A static magnetic field forming unit for forming a static magnetic field;
    A gradient magnetic field forming section for forming a gradient magnetic field;
    A transmission RF coil for irradiating an RF magnetic field to the inspection object arranged in the static magnetic field;
    A receiving RF coil for detecting a nuclear magnetic resonance signal from the inspection object;
    A signal processing unit for processing a nuclear magnetic resonance signal detected by the reception RF coil,
    The magnetic resonance imaging apparatus according to claim 1, wherein the reception RF coil is an array coil according to claim 1.
PCT/JP2018/019388 2017-06-09 2018-05-18 Array coil and magnetic resonance imaging device WO2018225484A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017114618A JP6745244B2 (en) 2017-06-09 2017-06-09 Array coil and magnetic resonance imaging apparatus
JP2017-114618 2017-06-09

Publications (1)

Publication Number Publication Date
WO2018225484A1 true WO2018225484A1 (en) 2018-12-13

Family

ID=64566799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019388 WO2018225484A1 (en) 2017-06-09 2018-05-18 Array coil and magnetic resonance imaging device

Country Status (2)

Country Link
JP (1) JP6745244B2 (en)
WO (1) WO2018225484A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6844075B1 (en) * 2020-04-16 2021-03-17 三菱電機株式会社 Magnetic particle imaging device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154126A (en) * 1991-12-09 1993-06-22 Toshiba Corp High frequency coil for magnetic resonance video device
JP2009022483A (en) * 2007-07-19 2009-02-05 Hitachi Ltd High-frequency coil and magnetic resonance imaging device
WO2010021222A1 (en) * 2008-08-18 2010-02-25 株式会社 日立メディコ High-frequency coil and magnetic resonance imaging device
JP2017221507A (en) * 2016-06-16 2017-12-21 株式会社日立製作所 High frequency array coil and magnetic resonance imaging apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05154126A (en) * 1991-12-09 1993-06-22 Toshiba Corp High frequency coil for magnetic resonance video device
JP2009022483A (en) * 2007-07-19 2009-02-05 Hitachi Ltd High-frequency coil and magnetic resonance imaging device
WO2010021222A1 (en) * 2008-08-18 2010-02-25 株式会社 日立メディコ High-frequency coil and magnetic resonance imaging device
JP2017221507A (en) * 2016-06-16 2017-12-21 株式会社日立製作所 High frequency array coil and magnetic resonance imaging apparatus

Also Published As

Publication number Publication date
JP6745244B2 (en) 2020-08-26
JP2018202105A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP5675921B2 (en) High frequency coil and magnetic resonance imaging apparatus using the same
JP6590736B2 (en) High frequency coil and magnetic resonance imaging apparatus using the same
JP5207662B2 (en) Magnetic field coil and magnetic resonance imaging apparatus
JP5112017B2 (en) RF coil and magnetic resonance imaging apparatus
US9274189B2 (en) High-frequency coil unit and magnetic resonance imaging device
TW202011687A (en) Radio-frequency coil signal chain for a low-field MRI system
WO2012141106A1 (en) High frequency coil unit and magnetic resonance imaging apparatus
JP2007325826A (en) Double-tuned rf coil
US10942232B2 (en) RF coil array and MRI transmit array
US10520564B2 (en) High frequency coil and magnetic resonance imaging device
US10641845B2 (en) High frequency coil and magnetic resonance image pickup device
EP2030036A2 (en) Three-dimensional asymmetric transverse gradient coils
WO2018225484A1 (en) Array coil and magnetic resonance imaging device
US11199596B2 (en) Array coil and magnetic resonance imaging apparatus
JP6600601B2 (en) High frequency array coil and magnetic resonance imaging apparatus
US11946991B2 (en) Method and device for magnetic resonance imaging by implementing inductive tuning circuit for adjusting operating frequency and using top- hat dipole antenna having length freely adjustable depending on region of interest
US20230400540A1 (en) Multichannel radio frequency array for tracking a medical instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813294

Country of ref document: EP

Kind code of ref document: A1