WO2018225401A1 - Simulation device using auditory model - Google Patents

Simulation device using auditory model Download PDF

Info

Publication number
WO2018225401A1
WO2018225401A1 PCT/JP2018/016238 JP2018016238W WO2018225401A1 WO 2018225401 A1 WO2018225401 A1 WO 2018225401A1 JP 2018016238 W JP2018016238 W JP 2018016238W WO 2018225401 A1 WO2018225401 A1 WO 2018225401A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
excitation force
auditory
motor
sound
Prior art date
Application number
PCT/JP2018/016238
Other languages
French (fr)
Japanese (ja)
Inventor
眞徳 渡部
洋祐 田部
和人 大山
明広 蘆田
吉田 毅
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2018225401A1 publication Critical patent/WO2018225401A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for

Definitions

  • the present invention relates to a device for reducing noise of a vehicle or the like.
  • model-based development makes it possible to perform performance evaluations and functional evaluations on simulations that were previously performed on prototypes.
  • model-based development has been applied not only to behavioral simulation but also to vibration noise simulation.
  • Patent Literature 1 Patent Literature 2
  • Patent Literature 3 technologies relating to sound quality improvement and acoustic simulation for automobiles.
  • Patent Document 1 for a vehicle power supply device, a sound wave having a phase opposite to that of voltage converter noise is output from a speaker to reduce noise.
  • a floor panel acceleration signal is detected to calculate a control signal for reducing road noise and applied from an actuator to reduce vehicle interior noise.
  • Patent Document 3 the interior of the vehicle is modeled, the impulse response between the listening position and the speaker is calculated, the sound field is tuned to an ideal acoustic environment, and running noise is added to the vehicle. The sound of the room is reproduced.
  • Patent Document 1 and Patent Document 2 are techniques for reducing noise by adding anti-phase sound waves, but do not consider measures for reducing noise in advance at the design stage of automobiles and the like. Absent.
  • Patent Document 3 is a technique for simulating vehicle interior noise. Considering measures for reducing noise in advance at the design stage of an automobile or the like using the simulated vehicle interior noise. Not.
  • the present invention has been made in view of the above points, and an object of the present invention is to use model-based development simulation to improve sound quality in advance and reduce noise at the design stage of automobiles and the like. It is to realize a simulation device using an auditory model.
  • the present invention is configured as follows.
  • the sound pressure is calculated based on the excitation force model that outputs a signal indicating the excitation force and the signal indicating the excitation force that is output from the excitation force model, A sound model that outputs a signal indicating a sound pressure; and an auditory model that converts the signal indicating the sound pressure output from the sound vibration model into a parameter relating to an auditory sound and outputs the parameter.
  • the present invention it is possible to realize a simulation apparatus using an auditory model capable of reducing noise by improving sound quality in advance at the design stage of an automobile or the like by utilizing model-based development simulation.
  • FIG. 1 It is a schematic block diagram of the simulation apparatus using the simulation model of Example 1 which concerns on this invention. It is a schematic block diagram of the simulation apparatus using the simulation model of Example 2 which concerns on this invention. It is a figure which shows the example in case the multiple sound quality judgment part of Example 2 exists. It is a figure which shows the example in case a some different signal is output from the auditory model of Example 2.
  • FIG. It is a schematic block diagram of the simulation apparatus using the simulation model of Example 3 which concerns on this invention. It is a schematic block diagram of the simulation apparatus using the simulation model of Example 4 which concerns on this invention. It is a schematic block diagram of the simulation apparatus using the simulation model of Example 5 which concerns on this invention.
  • FIG. 1 is a schematic configuration diagram of a simulation apparatus 100 using a simulation model according to the first embodiment of the present invention.
  • the simulation apparatus 100 includes an excitation force model 60, a sound vibration model 7, and an auditory model 8.
  • the excitation force model 60 is a simulation model that calculates the excitation force and outputs an excitation force signal indicating the excitation force.
  • the excitation force model 60 calculates the excitation force based on the input signal inside the excitation force model 60. To do. For example, when the excitation force model is an electromagnetic excitation force of an electric motor, an electric current or the like is input from the excitation force data output model (not shown in FIG. 1) to the excitation force model 60 and electromagnetic excitation is performed. Calculate the force.
  • the excitation force model is a gear meshing excitation force
  • a torque or the like is input from the excitation force data output model (not shown in FIG. 1) to the excitation force model 60 and meshing applied. Calculate the vibration force.
  • the sound vibration model 7 is a simulation model that receives the excitation force signal that is the output of the excitation force model 60 and outputs a sound pressure signal indicating the sound pressure.
  • a housing of an electric motor or a gear case corresponds to this, and a sound pressure is output by housing or vibration of the case. It is assumed that the sound vibration model 7 returns the vibration speed to the excitation force model 60 as a parameter.
  • the auditory model 8 receives the sound pressure signal output from the sound vibration model 7 as an input and calculates and outputs an electrical signal such as a nerve firing pattern, such as a human sensibility or a sensuous amount felt by the human brain. It is a simulation model.
  • This auditory model 8 models a human ear, and can represent a cochlea, a basement membrane, or the like with an octave band filter or the like.
  • the auditory model 8 uses a sensory amount (a neural firing pattern felt by the human brain based on the input sound pressure signal as a sensory amount ( (Electric signal).
  • the auditory model 8 will be described in detail in another embodiment described later.
  • the excitation force model 60 such as an electric motor can be designed so that the human sensory quantity has an appropriate value.
  • the simulation model can predict not only the sound pressure but also the sensation such as the sensibility that the person actually hears with the ear and feels in the brain. It becomes possible to calculate. (Example 2) Next, a second embodiment of the present invention will be described.
  • FIG. 2 is a schematic configuration diagram of a simulation apparatus 200 using the simulation model of the second embodiment according to the present invention.
  • the simulation apparatus 200 includes a sound quality determination unit 9 at the output destination of the auditory model 8 in addition to the configuration of the simulation apparatus 100 of the first embodiment.
  • the sound quality judgment unit 9 functions as a human brain.
  • the sound quality determination unit 9 determines whether the sound is good or bad (OK / NG) based on the signal input from the auditory model 8 and determines whether the sound is good or bad (OK / NG).
  • NG bad
  • 0 to 1 are expressed by a function such as a curve, and good and bad between 0 and 1 (OK) / NG) can also be provided.
  • the sound quality determination unit 9 can use not only the above-mentioned good / bad (OK / NG) but also adjective pairs such as pleasant / unpleasant, quiet / noisy, favorable / unfavorable as a criterion. It is also possible to judge this step by step.
  • FIG. 3 is a diagram illustrating an example when there are a plurality of sound quality determination units 9 according to the second embodiment.
  • the sound quality determination unit 9 may be configured to include a plurality of sound quality determination units 91, 92, and 93.
  • the sound quality determination unit 91 determines “pleasant / unpleasant” based on the same signal from the auditory model 8, and the sound quality determination unit 92 determines “quiet / noisy” based on the same signal from the auditory model 8. Judgment ". Further, the sound quality determination unit 93 determines “preferable / not preferable” based on the same signal from the auditory model 8.
  • the output from the auditory model 8 is not limited to the same signal, and there may be a plurality of signals as long as they are calculated based on the sound pressure signal input to the auditory model 8.
  • FIG. 4 is a diagram illustrating an example in which a plurality of different signals are output from the auditory model 8.
  • a plurality of different signals output from the auditory model 8 are, for example, amplitude and pitch calculated based on sound pressure, and these are input to the sound quality determination unit 9.
  • the second embodiment of the present invention it is possible to calculate a silent product at the design stage based on a sensory quantity such as sensibility that a person actually hears with his / her ears and feels with a simulation model.
  • the human brain produces sounds such as judgment of 0 or 1, such as good / bad output (OK / NG), gradual evaluation such as 5 grades, judgment including ambiguity such as slightly uncomfortable and very favorable
  • judgments that are considered to be performed by pressure judgment can be made on the simulation.
  • FIG. 5 is a schematic configuration diagram of a simulation apparatus 300 using the simulation model of the third embodiment according to the present invention.
  • the third embodiment is applied to an electric vehicle.
  • a simulation apparatus 300 according to the third embodiment is a model for simulating the behavior of an electric vehicle, and includes an inverter model 1 that drives an electric motor, a motor model 2 that models an electric motor for driving an electric vehicle, A gear box model 3 that models a gear box having a gear that transmits the torque of the electric motor, a vehicle model 4, and a controller (controller model) 5 that outputs control parameters for controlling the inverter model 1 are provided.
  • the simulation apparatus 300 includes a motor excitation force model 61 for calculating the excitation force, a gear box excitation force model 62 for calculating the excitation force, a sound vibration model 7 for calculating the sound pressure, an electric signal, and the like.
  • the auditory model 8 for calculating the sensory amount and the sound quality determining unit 9 for determining the sensory amount and the like are provided.
  • the inverter model 1 outputs a voltage signal indicating voltage to the motor model 2, the motor model 2 outputs a signal indicating torque to the gear box model 3, and the gear box model 3 indicates torque to the vehicle model 4. Output a signal.
  • the inverter model 1, the motor model 2, the gear box model 3, the vehicle model 4, the controller 5, the motor excitation force model 61, and the gear box excitation force model 62 are simulation models.
  • the inverter model 1, the motor model 2, the gear box model 3, and the controller 5 constitute an excitation force data output model.
  • the motor excitation force model 61 and the gear box excitation force model 62 correspond to the sound vibration model 7 of the first embodiment.
  • the motor model 2 returns a signal indicating the current to the inverter model 1 as a parameter
  • the gear box model 3 returns a signal indicating the rotational speed to the motor model 2 as a parameter
  • the vehicle model 4 It is assumed that a signal indicating the rotational speed is returned to the gear box model 3 as a parameter.
  • the motor model 2 outputs a signal indicating current to the motor excitation force model 61 as excitation force data
  • the gear box model 3 outputs a signal indicating torque to the gear excitation force model 62 as excitation force data.
  • a signal indicating a voltage is returned from the motor excitation force model 61 to the motor model 2 as a parameter
  • a signal indicating the rotation speed is transmitted from the gear excitation force model 62 to the gear box model 3 as a parameter. It is assumed that it will be returned.
  • the motor excitation force model 61 and the gear excitation force model 62 calculate an electromagnetic excitation force, a gear meshing excitation force, and the like based on an input current and torque, and input a signal indicating them to the sound vibration model 7. .
  • the vibration speed is returned as a parameter from the sound vibration model 7 to the motor excitation force model 61 and the gear excitation force model 62.
  • the sound vibration model 7 calculates the sound pressure based on the respective vibration forces from the motor vibration force model 61 and the gear vibration force model 62.
  • the auditory model 8 receives the signal indicating the sound pressure, which is the output of the sound vibration model 7, and calculates and outputs an electrical signal such as a nerve firing pattern, such as a human sensibility or a sensory amount sensed by the human brain. To do.
  • the sound quality determination unit 9 compares the signal (signal indicating the sound quality) input from the auditory model 8 with a predetermined threshold value, and determines whether it is greater than the threshold value, thereby determining whether it is good or bad (OK / NG) or the like. to decide.
  • NG that is, impossibility
  • an NG judgment signal impossibility judgment signal
  • the controller 5 controls the inverter model 1 to distribute a PWM (Pulse Width Modulation) voltage three-phase pulse interval as a control parameter from a certain state. And the simulation is executed again, and the control parameter is updated until the sound quality judgment unit 9 is OK, that is, the signal is input (the signal input from the auditory model 8 is less than a predetermined threshold value), and the motor excitation force model is updated. 61. Excitation force data output to the gear excitation force model 62 is changed. If the sound quality determination unit 9 makes an OK determination, the process ends.
  • PWM Pulse Width Modulation
  • the third embodiment of the present invention as in the first embodiment, it is possible to improve the sound quality at the design stage, and it is possible to calculate a silent product that is satisfactory in terms of feeling.
  • the gear box model 3, the gear excitation force model 62, and the vehicle model 4 may be omitted, and the configuration used only for the motor design of the electric vehicle.
  • FIG. 6 is a schematic configuration diagram of a simulation apparatus 400 using the simulation model of the fourth embodiment according to the present invention. Since the configuration up to the sound quality determination unit 9 in the fourth embodiment is the same as that in the third embodiment, a description thereof will be omitted. Here, the configuration after the sound quality determination unit 9 will be described.
  • the controller 5 when the sound quality determination unit 9 determines NG, the controller 5 performs sound quality improvement by control such as changing the PWM voltage, whereas in the fourth embodiment, the sound quality determination unit 9 determines NG.
  • the difference from the third embodiment is that the sound quality is improved by an excitation force or a structure change.
  • an impossibility determination signal is output to the motor excitation model 61 or the gear excitation force model 62, and the motor excitation model 61 or the gear excitation force model 62 The parameters relating to the vibration force calculation are updated, the excitation force is calculated again, and the parameters are tuned until the sound quality judgment unit 9 becomes OK.
  • an impossibility determination signal is output to the sound vibration model 7, and the sound vibration model 7 updates and updates parameters related to sound pressure calculation such as the structure of the sound vibration model 7. The sound pressure is calculated again using the parameters, and the parameters are tuned until the sound quality judgment unit 9 becomes OK.
  • the fourth embodiment of the present invention as in the first embodiment, it is possible to improve the sound quality at the design stage, and it is possible to calculate a silent product that can be satisfied sensibly.
  • FIG. 7 is a schematic configuration diagram of a simulation apparatus 500 using the simulation model of the fifth embodiment according to the present invention.
  • the sound quality determination unit 9 determines OK / NG, and the flow of the model up to the point where the controller 5 executes the current control of the inverter model 1 is the same as that of the third embodiment. A difference in configuration from the third embodiment will be described.
  • a specification determination unit 10 that determines whether or not the specification of the motor model 2 is satisfied.
  • the specification determination unit 10 determines the specification.
  • the unit 10 determines whether motor performance, which is one of various performances of the electric vehicle, for example, motor torque satisfies a predetermined motor specification. If the specification determination unit 10 determines NG, the specification determination unit 10 outputs a specification impossibility determination signal to the controller model 5.
  • the controller model 5 to which the specification disapproval determination signal is input performs control by changing the control parameter of the inverter model 1 again so that both the sound quality determination unit 9 and the specification determination unit 10 can be satisfied. This makes it possible to achieve both basic performance and sound quality improvement.
  • the fifth embodiment of the present invention as in the first embodiment, it is possible to improve the sound quality at the design stage, and it is possible to calculate a silent product that is satisfactory in terms of feeling.
  • FIG. 8 is a schematic configuration diagram of a simulation apparatus 600 using the simulation model of the sixth embodiment according to the present invention.
  • the sound quality determination unit 9 determines OK / NG and executes parameter adjustment related to the calculation of the excitation force and sound pressure of the motor excitation force model 61, the gear excitation force model 62, and the sound vibration model 7. Since the configuration up to this point is the same as that of the fourth embodiment, a description thereof will be omitted. Here, the difference in configuration from the fourth embodiment will be described.
  • a specification determination unit 10 that determines whether or not the specification of the motor model 2 is satisfied.
  • the sound quality determination unit 9 determines OK (sound quality is acceptable)
  • the specification determination is performed.
  • the unit 10 determines whether motor performance, which is one of various performances of the electric vehicle, for example, motor torque, satisfies a specification. If the specification determining unit 10 determines that NG (the motor torque does not satisfy the specification), a specification impossibility determination signal is output to the motor excitation force model 61, the gear excitation force model 62, and the sound vibration model 7.
  • the motor excitation force model 61, the gear excitation force model 62, and the sound vibration model 7 again execute parameter adjustments related to the calculation of the excitation force and the sound pressure, and both the sound quality determination unit 9 and the specification determination unit 10 are satisfied. Control as you can. This makes it possible to achieve both basic performance and sound quality improvement.
  • the sixth embodiment of the present invention similar to the first embodiment, it is possible to improve the sound quality at the design stage, and it is possible to calculate a silent product that can satisfy the sense. Further, since the structure change simulation can be performed on the model, there is an effect that it is not necessary to make a prototype, and there is an effect that both basic performance and sound quality improvement can be achieved.
  • FIG. 9 is a schematic configuration diagram of the auditory model 8 in the simulation apparatus according to the seventh embodiment of the present invention.
  • the configuration other than the auditory model 8 in the simulation apparatus any of the configurations of the first to sixth embodiments can be applied.
  • the auditory model 8 of the seventh embodiment has a configuration in which frequency decomposition by the cochlea is performed by the 1/4 octave filter unit 81 and nerve firing by the basement membrane is performed by the Hilbert transform unit 82.
  • a sound pressure signal input from the sound model 7 to the input unit 80 of the auditory model 8 is converted into a sound pressure divided into bands by the 1/4 octave filter 81, and the sound pressure divided into the bands is converted into a Hilbert converter 82.
  • FIG. 10 is a schematic configuration diagram of the auditory model 8 in the simulation apparatus according to the eighth embodiment of the present invention.
  • the configuration other than the auditory model 8 in the simulation apparatus any of the configurations of the first to sixth embodiments can be applied.
  • the auditory model 8 is constituted by a neural network.
  • the sound pressure input from the sound vibration model 7 to the input unit 80 of the auditory model 8 passes through the plurality of intermediate layers 831, 832, and 833, and the sound quality is determined from the output layer 834 as an electrical signal that expresses a sense amount. Is output to the unit 9.
  • the weighting of the intermediate layers 831, 832, and 833 of the neural network is performed by learning such as deep learning. Based on the sound pressure signal, it is possible to output an electrical signal representing a human sensory amount such as a nerve firing pattern.
  • FIG. 11 is a schematic configuration diagram of the auditory model 8 in the simulation apparatus according to the ninth embodiment of the present invention.
  • the configuration other than the auditory model 8 in the simulation apparatus any of the configurations of the first to sixth embodiments can be applied.
  • the auditory model 8 includes a function calculation unit 84. That is, the sound pressure signal input from the sound vibration model 7 to the input unit 80 of the auditory model 8 is input to the function calculation unit 84 and converted into a sensory amount or the like. For example, let us consider a case where a sound specialist or a customer listens to the sound pressure generated from an automobile device and gives a score. In that case, a correlation function between the sound pressure and the score is obtained by sensory evaluation or sound quality evaluation.
  • the correlation function between the sound pressure and the score can be obtained by calculating each coefficient.
  • the score obtained from the correlation function calculated by the function calculation unit 84 is input to the sound quality determination unit 9.
  • the present invention is applicable not only to the improvement of sound quality in the interior of an automobile, but also to the improvement of sound quality for equipment in a factory where workers work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

A simulation device using a noise-reducible auditory model is realized that takes advantage of a simulation of model-based development and improves sound quality beforehand in design stages of an automobile, etc. An exciting force model 60 is a simulation model for calculating an exciting force, and, if the exciting force model 60 is for the case of electromagnetic exciting force of an electric motor, a current, etc., are inputted to the exciting force model 60 and the electromagnetic exciting force is calculated. A sound-vibration model 7 accepts the output of the exciting force model 60 as input thereto and outputs a sound pressure due to the vibration of the housing or gear case, etc., of the electric motor. An auditory model 8 accepts the sound pressure of the sound-vibration model 7 as input thereto and calculates and outputs an electric signal representing the sensitiveness of humans, the sensual quantity felt by human brains, etc. It is possible to design the exciting force model 60 on the basis of the sensual quantity of humans outputted from the auditory model 8 so that the sensual quantity of humans becomes an appropriate value.

Description

聴覚モデルを用いたシミュレーション装置Simulation device using auditory model
 本発明は、車両等の騒音を低減する装置に関する。 The present invention relates to a device for reducing noise of a vehicle or the like.
 自動車や自動車機器においては、静粛性の向上が重要となっており、近年では、快適性向上という観点から、耳障りな音を下げるといった、騒音低減だけでなく、デライト設計のような音の品質向上に対するニーズが高まってきている。 In automobiles and automotive equipment, it is important to improve quietness. In recent years, from the viewpoint of improving comfort, not only reducing noise, such as reducing annoying sounds, but also improving the quality of sound such as delight design. The need for is increasing.
 特に、電気自動車はモータ駆動のため、エンジンで駆動するガソリン車に比べて静粛性が高いため、自動車機器に対する音質向上のニーズも高いと考えられる。 In particular, since electric vehicles are motor driven, they are quieter than gasoline-powered vehicles driven by engines, so it is considered that there is a high need for improved sound quality for automobile equipment.
 一方、自動車や自動車機器においては、製品開発の短縮やコスト低減を目的として、モデルベース開発を活用した車両や機器の挙動シミュレーションによる上流設計が普及している。 On the other hand, in automobiles and automobile equipment, upstream design based on behavior simulation of vehicles and equipment using model-based development has become widespread for the purpose of shortening product development and reducing costs.
 モデルベース開発により、従来、試作品で実施していた性能評価や機能評価がシミュレーション上で可能となるからである。 This is because model-based development makes it possible to perform performance evaluations and functional evaluations on simulations that were previously performed on prototypes.
 近年では、モデルベース開発を挙動シミュレーションだけでなく振動騒音のシミュレーションにまで適用が進んできていると考えられる。 In recent years, it is considered that model-based development has been applied not only to behavioral simulation but also to vibration noise simulation.
 自動車や自動車機器の静粛性の向上に関しては、これまで様々な発明がなされている。特に、自動車に関しての音質改善や音響シミュレーションに関する技術としては、特許文献1、特許文献2や特許文献3に記載された発明が開示されている。 Various inventions have been made to improve the quietness of automobiles and automobile equipment. In particular, the inventions described in Patent Literature 1, Patent Literature 2, and Patent Literature 3 are disclosed as technologies relating to sound quality improvement and acoustic simulation for automobiles.
 特許文献1においては、車両用電源装置を対象として、電圧コンバータ騒音の逆位相の音波をスピーカから出力して騒音の低減を図っている。 In Patent Document 1, for a vehicle power supply device, a sound wave having a phase opposite to that of voltage converter noise is output from a speaker to reduce noise.
 また、特許文献2においては、フロアパネルの加速度信号を検出してロードノイズを低減するための制御信号を演算し、アクチュエータから印加し、車内騒音を低減している。 In Patent Document 2, a floor panel acceleration signal is detected to calculate a control signal for reducing road noise and applied from an actuator to reduce vehicle interior noise.
 さらに、特許文献3においては、車両の車室内をモデル化し、聴取位置とスピーカ間のインパルス応答を演算して音場を理想的な音響環境にチューニングした後に、走行雑音等を付加して、車室内の音響を再現している。 Furthermore, in Patent Document 3, the interior of the vehicle is modeled, the impulse response between the listening position and the speaker is calculated, the sound field is tuned to an ideal acoustic environment, and running noise is added to the vehicle. The sound of the room is reproduced.
特開2009-153262号公報JP 2009-153262 A 特開2009-073417号公報JP 2009-073417 A 特開2005-338453号公報JP 2005-338453 A
 しかしながら、特許文献1や特許文献2に記載の技術は、逆位相の音波付加により騒音を低減する技術であるが、自動車等の設計段階で事前に騒音を低減するための対策を考慮するものではない。 However, the techniques described in Patent Document 1 and Patent Document 2 are techniques for reducing noise by adding anti-phase sound waves, but do not consider measures for reducing noise in advance at the design stage of automobiles and the like. Absent.
 また、特許文献3に記載の技術は、車室内騒音をシミュレーションする技術であるが、シミュレーションした車室内騒音を活用して、自動車等の設計段階で事前に騒音を低減するための対策を考慮するのではない。 The technique described in Patent Document 3 is a technique for simulating vehicle interior noise. Considering measures for reducing noise in advance at the design stage of an automobile or the like using the simulated vehicle interior noise. Not.
 本発明は、このような点を鑑みてなされたものであり、本発明の目的は、モデルベース開発のシミュレーションを活用し、自動車等の設計段階で事前に音質を改善し、騒音を低減可能な聴覚モデルを用いたシミュレーション装置を実現することである。 The present invention has been made in view of the above points, and an object of the present invention is to use model-based development simulation to improve sound quality in advance and reduce noise at the design stage of automobiles and the like. It is to realize a simulation device using an auditory model.
 上記目的を達成するために、本発明は次のように構成される。 In order to achieve the above object, the present invention is configured as follows.
 聴覚モデルを用いたシミュレーション装置において、加振力を示す信号を出力する加振力モデルと、上記加振力モデルから出力された上記加振力を示す信号に基づいて、音圧を算出し、音圧を示す信号を出力する音振モデルと、上記音振モデルから出力された上記音圧を示す信号を聴覚音に関するパラメータに変換し、出力する聴覚モデルと、を備える。 In the simulation apparatus using the auditory model, the sound pressure is calculated based on the excitation force model that outputs a signal indicating the excitation force and the signal indicating the excitation force that is output from the excitation force model, A sound model that outputs a signal indicating a sound pressure; and an auditory model that converts the signal indicating the sound pressure output from the sound vibration model into a parameter relating to an auditory sound and outputs the parameter.
 本発明によれば、モデルベース開発のシミュレーションを活用し、自動車等の設計段階で事前に音質を改善し、騒音を低減可能な聴覚モデルを用いたシミュレーション装置を実現することができる。 According to the present invention, it is possible to realize a simulation apparatus using an auditory model capable of reducing noise by improving sound quality in advance at the design stage of an automobile or the like by utilizing model-based development simulation.
本発明に係る実施例1のシミュレーションモデルを用いたシミュレーション装置の概略構成図である。It is a schematic block diagram of the simulation apparatus using the simulation model of Example 1 which concerns on this invention. 本発明に係る実施例2のシミュレーションモデルを用いたシミュレーション装置の概略構成図である。It is a schematic block diagram of the simulation apparatus using the simulation model of Example 2 which concerns on this invention. 実施例2の音質判断部が複数存在する場合の例を示す図である。It is a figure which shows the example in case the multiple sound quality judgment part of Example 2 exists. 実施例2の聴覚モデルから複数の異なる信号が出力される場合の例を示す図である。It is a figure which shows the example in case a some different signal is output from the auditory model of Example 2. FIG. 本発明に係る実施例3のシミュレーションモデルを用いたシミュレーション装置の概略構成図である。It is a schematic block diagram of the simulation apparatus using the simulation model of Example 3 which concerns on this invention. 本発明に係る実施例4のシミュレーションモデルを用いたシミュレーション装置の概略構成図である。It is a schematic block diagram of the simulation apparatus using the simulation model of Example 4 which concerns on this invention. 本発明に係る実施例5のシミュレーションモデルを用いたシミュレーション装置の概略構成図である。It is a schematic block diagram of the simulation apparatus using the simulation model of Example 5 which concerns on this invention. 本発明に係る実施例6のシミュレーションモデルを用いたシミュレーション装置の概略構成図である。It is a schematic block diagram of the simulation apparatus using the simulation model of Example 6 which concerns on this invention. 本発明の実施例7のシミュレーション装置における聴覚モデルの概略構成図である。It is a schematic block diagram of the auditory model in the simulation apparatus of Example 7 of this invention. 本発明の実施例8のシミュレーション装置における聴覚モデルの概略構成図である。It is a schematic block diagram of the auditory model in the simulation apparatus of Example 8 of this invention. 本発明の実施例9のシミュレーション装置における聴覚モデルの概略構成図である。It is a schematic block diagram of the auditory model in the simulation apparatus of Example 9 of this invention.
 以下、本発明の実施形態について、添付図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 (実施例1)
 図1は、本発明に係る実施例1のシミュレーションモデルを用いたシミュレーション装置100の概略構成図である。図1に示すように、シミュレーション装置100は、加振力モデル60と、音振モデル7と、聴覚モデル8とを備える。
Example 1
FIG. 1 is a schematic configuration diagram of a simulation apparatus 100 using a simulation model according to the first embodiment of the present invention. As shown in FIG. 1, the simulation apparatus 100 includes an excitation force model 60, a sound vibration model 7, and an auditory model 8.
 加振力モデル60は、加振力を計算し、加振力を示す加振力信号を出力するシミュレーションモデルであり、加振力モデル60の内部で入力の信号に基づいて加振力を計算する。例えば、加振力モデルが電動モータの電磁加振力の場合であれば、電流などを加振力データ出力モデル(図1には示さず)から加振力モデル60に入力して電磁加振力を計算する。 The excitation force model 60 is a simulation model that calculates the excitation force and outputs an excitation force signal indicating the excitation force. The excitation force model 60 calculates the excitation force based on the input signal inside the excitation force model 60. To do. For example, when the excitation force model is an electromagnetic excitation force of an electric motor, an electric current or the like is input from the excitation force data output model (not shown in FIG. 1) to the excitation force model 60 and electromagnetic excitation is performed. Calculate the force.
 また、例えば、加振力モデルがギヤの噛み合い加振力の場合であれば、トルクなどを加振力データ出力モデル(図1には示さず)から加振力モデル60に入力して噛み合い加振力を計算する。 Further, for example, if the excitation force model is a gear meshing excitation force, a torque or the like is input from the excitation force data output model (not shown in FIG. 1) to the excitation force model 60 and meshing applied. Calculate the vibration force.
 音振モデル7は、加振力モデル60の出力である加振力信号を入力として、音圧を示す音圧信号を出力するシミュレーションモデルである。例えば、電動モータのハウジングやギヤのケースなどがこれに相当し、ハンウジングやケースの振動により音圧を出力する。なお、音振モデル7は、振動速度を加振力モデル60にパラメータとして返すことも想定している。 The sound vibration model 7 is a simulation model that receives the excitation force signal that is the output of the excitation force model 60 and outputs a sound pressure signal indicating the sound pressure. For example, a housing of an electric motor or a gear case corresponds to this, and a sound pressure is output by housing or vibration of the case. It is assumed that the sound vibration model 7 returns the vibration speed to the excitation force model 60 as a parameter.
 聴覚モデル8は、音振モデル7の出力である音圧信号を入力として、人間の感性や人間の脳が感じる感覚的な量など、例えば、神経発火パターンなどの電気信号を計算して出力するシミュレーションモデルである。 The auditory model 8 receives the sound pressure signal output from the sound vibration model 7 as an input and calculates and outputs an electrical signal such as a nerve firing pattern, such as a human sensibility or a sensuous amount felt by the human brain. It is a simulation model.
 この聴覚モデル8は、人間の耳をモデル化したものであり、蝸牛や基底膜などをオクターブバンドフィルタなどで表現することが可能である。例えば、音振モデル7からモータハウジングからの音圧が聴覚モデル8へ入力された場合、聴覚モデル8では、入力された音圧信号に基づいて、人間の脳が感じる神経発火パターンを感覚量(電気信号)で出力する。なお、本聴覚モデル8に関しては後述の他の実施例にて詳細に説明する。 This auditory model 8 models a human ear, and can represent a cochlea, a basement membrane, or the like with an octave band filter or the like. For example, when the sound pressure from the motor housing is input from the sound vibration model 7 to the auditory model 8, the auditory model 8 uses a sensory amount (a neural firing pattern felt by the human brain based on the input sound pressure signal as a sensory amount ( (Electric signal). The auditory model 8 will be described in detail in another embodiment described later.
 聴覚モデル8から出力された、人間の感覚量(電気信号)に基づいて、この人間の感覚量が適切な値となるように、電動モータ等の加振力モデル60を設計することができる。 Based on the human sensory quantity (electric signal) output from the auditory model 8, the excitation force model 60 such as an electric motor can be designed so that the human sensory quantity has an appropriate value.
 本発明の実施例1によれば、シミュレーションモデルにより、音圧だけでなく人が実際に耳で聞き、脳で感じている感性などの感覚量予測することができるため、設計段階で静音製品を計算することが可能となる。
 (実施例2)
 次に、本発明の実施例2について説明する。
According to the first embodiment of the present invention, the simulation model can predict not only the sound pressure but also the sensation such as the sensibility that the person actually hears with the ear and feels in the brain. It becomes possible to calculate.
(Example 2)
Next, a second embodiment of the present invention will be described.
 図2は、本発明に係る実施例2のシミュレーションモデルを用いたシミュレーション装置200の概略構成図である。図2に示すように、シミュレーション装置200は、実施例1のシミュレーション装置100の構成に加えて、聴覚モデル8の出力先に音質判断部9を備えている。 FIG. 2 is a schematic configuration diagram of a simulation apparatus 200 using the simulation model of the second embodiment according to the present invention. As shown in FIG. 2, the simulation apparatus 200 includes a sound quality determination unit 9 at the output destination of the auditory model 8 in addition to the configuration of the simulation apparatus 100 of the first embodiment.
 音質判断部9は、いうなれば、人間の脳の役割をする。そして、音質判断部9は、聴覚モデル8から入力された信号に基づいて、良い悪い(OK/NG)などの0か1かの判断や良い悪い(OK/NG)の5段階評価や10段階評価などの数段階評価、もしくは、良い(OK)を0、悪い(NG)を1とした場合に、0から1までを曲線などの関数で表現し、0から1の間に良い悪い(OK/NG)の判断ラインを設けることも出来る。 The sound quality judgment unit 9 functions as a human brain. The sound quality determination unit 9 then determines whether the sound is good or bad (OK / NG) based on the signal input from the auditory model 8 and determines whether the sound is good or bad (OK / NG). When several stages of evaluation such as evaluation, or when good (OK) is 0 and bad (NG) is 1, 0 to 1 are expressed by a function such as a curve, and good and bad between 0 and 1 (OK) / NG) can also be provided.
 また、音質判断部9は、判断基準に、前記の良い悪い(OK/NG)だけでなく、快い/不快な、静か/騒々しい、好ましい/好ましくない、などの形容詞対を用いることも可能であり、これを段階的に判断することも可能である。 In addition, the sound quality determination unit 9 can use not only the above-mentioned good / bad (OK / NG) but also adjective pairs such as pleasant / unpleasant, quiet / noisy, favorable / unfavorable as a criterion. It is also possible to judge this step by step.
 図3は、実施例2の音質判断部9が複数存在する場合の例を示す図である。図3に示すように、音質判断部9が複数の音質判断部91、92および93を備えるように構成することも可能である。 FIG. 3 is a diagram illustrating an example when there are a plurality of sound quality determination units 9 according to the second embodiment. As shown in FIG. 3, the sound quality determination unit 9 may be configured to include a plurality of sound quality determination units 91, 92, and 93.
 例えば、音質判断部91は、聴覚モデル8からの同じ信号に基づいて、「快い/不快な」を判断し、音質判断部92は、聴覚モデル8からの同じ信号に基づいて、「静か/騒々しい」を判断する。また、音質判断部93は、聴覚モデル8からの同じ信号に基づいて、「好ましい/好ましくない」を判断する。 For example, the sound quality determination unit 91 determines “pleasant / unpleasant” based on the same signal from the auditory model 8, and the sound quality determination unit 92 determines “quiet / noisy” based on the same signal from the auditory model 8. Judgment ". Further, the sound quality determination unit 93 determines “preferable / not preferable” based on the same signal from the auditory model 8.
 さらに、聴覚モデル8からの出力は、同じ信号とは限らず、聴覚モデル8への入力の音圧信号に基づいて算出される信号であれば複数存在してもかまわない。 Furthermore, the output from the auditory model 8 is not limited to the same signal, and there may be a plurality of signals as long as they are calculated based on the sound pressure signal input to the auditory model 8.
 図4は、聴覚モデル8から複数の異なる信号が出力される場合の例を示す図である。図4において、聴覚モデル8から出力される複数の異なる信号は、例えば、音圧に基づいて計算される振幅、ピッチなどであり、これらが音質判断部9に入力される。 FIG. 4 is a diagram illustrating an example in which a plurality of different signals are output from the auditory model 8. In FIG. 4, a plurality of different signals output from the auditory model 8 are, for example, amplitude and pitch calculated based on sound pressure, and these are input to the sound quality determination unit 9.
 なお、上述した様々な音質判断部9、91、92、93などは、それらを複数組み合わせて新たな音質判断部を生成することも可能である。 It should be noted that the various sound quality judgment units 9, 91, 92, 93, etc. described above can also combine them to generate a new sound quality judgment unit.
 本発明の実施例2によって、シミュレーションモデルにより人が実際に耳で聞き、脳で感じている感性などの感覚量に基づいて、設計段階で静音製品を計算することが可能であり、聴覚モデル8からの出力の良い悪い(OK/NG)のような0か1かの判断や5段階などの段階的評価、少し不快、とても好ましい、などのあいまい性を含んだ判断など、人間の脳が音圧の判断で実施していると思われる様々な判断がシミュレーション上で可能となる。 According to the second embodiment of the present invention, it is possible to calculate a silent product at the design stage based on a sensory quantity such as sensibility that a person actually hears with his / her ears and feels with a simulation model. The human brain produces sounds such as judgment of 0 or 1, such as good / bad output (OK / NG), gradual evaluation such as 5 grades, judgment including ambiguity such as slightly uncomfortable and very favorable Various judgments that are considered to be performed by pressure judgment can be made on the simulation.
 (実施例3)
 次に、本発明の実施例3について説明する。
(Example 3)
Next, Embodiment 3 of the present invention will be described.
 図5は、本発明に係る実施例3のシミュレーションモデルを用いたシミュレーション装置300の概略構成図である。図5に示すように、本実施例3は電気自動車に適用したものである。実施例3のシミュレーション装置300は、電気自動車の挙動をシミュレーションするためのモデルであり、電動モータを駆動するインバータモデル1と、電気自動車を駆動するための電動モータをモデル化したモータモデル2と、電動モータのトルクを伝達するギヤを有するギヤボックスをモデル化したギヤボックスモデル3と、車両モデル4と、インバータモデル1を制御する制御パラメータを出力するコントローラ(コントローラモデル)5とを備える。 FIG. 5 is a schematic configuration diagram of a simulation apparatus 300 using the simulation model of the third embodiment according to the present invention. As shown in FIG. 5, the third embodiment is applied to an electric vehicle. A simulation apparatus 300 according to the third embodiment is a model for simulating the behavior of an electric vehicle, and includes an inverter model 1 that drives an electric motor, a motor model 2 that models an electric motor for driving an electric vehicle, A gear box model 3 that models a gear box having a gear that transmits the torque of the electric motor, a vehicle model 4, and a controller (controller model) 5 that outputs control parameters for controlling the inverter model 1 are provided.
 さらに、シミュレーション装置300は、加振力を計算するモータ加振力モデル61と、加振力を計算するギヤボックス加振力モデル62と、音圧を計算する音振モデル7と、電気信号等の感覚量を計算する聴覚モデル8と、感覚量等を判断する音質判断部9とを備える。 Further, the simulation apparatus 300 includes a motor excitation force model 61 for calculating the excitation force, a gear box excitation force model 62 for calculating the excitation force, a sound vibration model 7 for calculating the sound pressure, an electric signal, and the like. The auditory model 8 for calculating the sensory amount and the sound quality determining unit 9 for determining the sensory amount and the like are provided.
 図5において、インバータモデル1は電圧を示す電圧信号をモータモデル2に出力し、モータモデル2はトルクを示す信号をギヤボックスモデル3に出力し、ギヤボックスモデル3は車両モデル4にトルクを示す信号を出力する。インバータモデル1、モータモデル2、ギヤボックスモデル3、車両モデル4、コントローラ5、モータ加振力モデル61、及びギヤボックス加振力モデル62はシミュレーションモデルである。 In FIG. 5, the inverter model 1 outputs a voltage signal indicating voltage to the motor model 2, the motor model 2 outputs a signal indicating torque to the gear box model 3, and the gear box model 3 indicates torque to the vehicle model 4. Output a signal. The inverter model 1, the motor model 2, the gear box model 3, the vehicle model 4, the controller 5, the motor excitation force model 61, and the gear box excitation force model 62 are simulation models.
 なお、インバータモデル1、モータモデル2、ギヤボックスモデル3、及びコントローラ5により加振力データ出力モデルが構成される。 The inverter model 1, the motor model 2, the gear box model 3, and the controller 5 constitute an excitation force data output model.
 また、モータ加振力モデル61及びギヤボックス加振力モデル62が、実施例1の音振モデル7に対応する。 The motor excitation force model 61 and the gear box excitation force model 62 correspond to the sound vibration model 7 of the first embodiment.
 なお、本発明の実施例3は、モータモデル2は電流を示す信号をインバータモデル1にパラメータとして返し、ギヤボックスモデル3は回転速度を示す信号をモータモデル2にパラメータとして返し、車両モデル4は回転速度を示す信号をギヤボックスモデル3にパラメータとして返す場合も想定している。 In the third embodiment of the present invention, the motor model 2 returns a signal indicating the current to the inverter model 1 as a parameter, the gear box model 3 returns a signal indicating the rotational speed to the motor model 2 as a parameter, and the vehicle model 4 It is assumed that a signal indicating the rotational speed is returned to the gear box model 3 as a parameter.
 モータモデル2は、モータ加振力モデル61に電流を示す信号を加振力データとして出力し、ギヤボックスモデル3はギヤ加振力モデル62にトルクを示す信号を加振力データとして出力している。なお、本発明の実施例3は、モータ加振力モデル61からモータモデル2に電圧を示す信号をパラメータとして返し、ギヤ加振力モデル62からギヤボックスモデル3に回転速度を示す信号をパラメータとして返す場合も想定している。 The motor model 2 outputs a signal indicating current to the motor excitation force model 61 as excitation force data, and the gear box model 3 outputs a signal indicating torque to the gear excitation force model 62 as excitation force data. Yes. In the third embodiment of the present invention, a signal indicating a voltage is returned from the motor excitation force model 61 to the motor model 2 as a parameter, and a signal indicating the rotation speed is transmitted from the gear excitation force model 62 to the gear box model 3 as a parameter. It is assumed that it will be returned.
 モータ加振力モデル61およびギヤ加振力モデル62は、入力の電流やトルクに基づいて電磁加振力やギヤ噛み合い加振力などを計算し、それぞれを示す信号を音振モデル7に入力する。 The motor excitation force model 61 and the gear excitation force model 62 calculate an electromagnetic excitation force, a gear meshing excitation force, and the like based on an input current and torque, and input a signal indicating them to the sound vibration model 7. .
 なお、本発明の実施例3は、音振モデル7からモータ加振力モデル61およびギヤ加振力モデル62に振動速度をパラメータとして返す場合も想定している。 In the third embodiment of the present invention, it is assumed that the vibration speed is returned as a parameter from the sound vibration model 7 to the motor excitation force model 61 and the gear excitation force model 62.
 音振モデル7は、モータ加振力モデル61およびギヤ加振力モデル62からのそれぞれの加振力に基づいて音圧を計算する。 The sound vibration model 7 calculates the sound pressure based on the respective vibration forces from the motor vibration force model 61 and the gear vibration force model 62.
 聴覚モデル8は音振モデル7の出力である音圧を示す信号を入力として、人間の感性や人間の脳が感じる感覚的な量など、例えば、神経発火パターンなどの電気信号を計算して出力する。 The auditory model 8 receives the signal indicating the sound pressure, which is the output of the sound vibration model 7, and calculates and outputs an electrical signal such as a nerve firing pattern, such as a human sensibility or a sensory amount sensed by the human brain. To do.
 音質判断部9は、聴覚モデル8から入力された信号(音質を示す信号)を予め定めた閾値と比較し、閾値より大か否かを判断することにより、良い悪い(OK/NG)などを判断する。ここで、音質判断部9でNG、つまり、不可(聴覚モデル8から入力された信号が予め定めた閾値より大)という判断がなされた場合は、コントローラ5にNG判断信号(不可判断信号)を出力し、コントローラ5からインバータモデル1に対して、制御指令値の変更がなされる。例えば、音質判断部9からNG判断がなされた場合は、コントローラ5からインバータモデル1に対して、PWM(Pulse Width Modulation)電圧の3相のパルス間隔を制御パラメータとして一定の状態から分散させる制御を実行し、再度、シミュレーションを実行し、音質判断部9でOK、つまり、可(聴覚モデル8から入力された信号が予め定めた閾値未満)が出るまで制御パラメータを更新させ、モータ加振力モデル61、ギヤ加振力モデル62に出力する加振力データを変更する。音質判断部9がOK判断を行えば処理は終了となる。 The sound quality determination unit 9 compares the signal (signal indicating the sound quality) input from the auditory model 8 with a predetermined threshold value, and determines whether it is greater than the threshold value, thereby determining whether it is good or bad (OK / NG) or the like. to decide. Here, when the sound quality judgment unit 9 judges that NG, that is, impossibility (the signal input from the auditory model 8 is larger than a predetermined threshold value), an NG judgment signal (impossibility judgment signal) is sent to the controller 5. The control command value is changed from the controller 5 to the inverter model 1. For example, when the sound quality determination unit 9 makes an NG determination, the controller 5 controls the inverter model 1 to distribute a PWM (Pulse Width Modulation) voltage three-phase pulse interval as a control parameter from a certain state. And the simulation is executed again, and the control parameter is updated until the sound quality judgment unit 9 is OK, that is, the signal is input (the signal input from the auditory model 8 is less than a predetermined threshold value), and the motor excitation force model is updated. 61. Excitation force data output to the gear excitation force model 62 is changed. If the sound quality determination unit 9 makes an OK determination, the process ends.
 本発明の実施例3によれば、実施例1と同様に、設計段階で音質改善が可能となり、感覚的にも満足できる静音製品を計算することが可能となる。 According to the third embodiment of the present invention, as in the first embodiment, it is possible to improve the sound quality at the design stage, and it is possible to calculate a silent product that is satisfactory in terms of feeling.
 さらに、電気自動車などの自動車機器であれば、モータ出力のような基本性能と音質改善の両立が可能となる。 Furthermore, in the case of an automobile device such as an electric vehicle, it is possible to achieve both basic performance such as motor output and sound quality improvement.
 さらに、モデル上で構造変更シミュレーションができるので試作する必要がないという効果がある。 Furthermore, there is an effect that it is not necessary to make a prototype because structure change simulation can be performed on the model.
 なお、実施例3において、ギヤボックスモデル3、ギヤ加振力モデル62および車両モデル4を省略し、電気自動車のモータの設計のみに用いる構成とすることも可能である。 In the third embodiment, the gear box model 3, the gear excitation force model 62, and the vehicle model 4 may be omitted, and the configuration used only for the motor design of the electric vehicle.
 (実施例4)
 次に、本発明の実施例4について説明する。
Example 4
Next, a fourth embodiment of the present invention will be described.
 図6は、本発明に係る実施例4のシミュレーションモデルを用いたシミュレーション装置400の概略構成図である。本実施例4における音質判断部9までの構成は実施例3と同様なので説明を割愛し、ここでは、音質判断部9以降の構成について説明する。 FIG. 6 is a schematic configuration diagram of a simulation apparatus 400 using the simulation model of the fourth embodiment according to the present invention. Since the configuration up to the sound quality determination unit 9 in the fourth embodiment is the same as that in the third embodiment, a description thereof will be omitted. Here, the configuration after the sound quality determination unit 9 will be described.
 実施例3では、音質判断部9でNGと判断した場合は、コントローラ5によってPWM電圧の変更といった制御による音質改善を実行したのに対して、本実施例4では、音質判断部9でNGと判断した場合は、加振力や構造変更等による音質改善を実行している点が実施例3との相違点である。 In the third embodiment, when the sound quality determination unit 9 determines NG, the controller 5 performs sound quality improvement by control such as changing the PWM voltage, whereas in the fourth embodiment, the sound quality determination unit 9 determines NG. When the determination is made, the difference from the third embodiment is that the sound quality is improved by an excitation force or a structure change.
 つまり、音質判断部9でNGと判断した場合は、不可判断信号を、モータ加振モデル61もしくはギヤ加振力モデル62に出力し、モータ加振モデル61もしくはギヤ加振力モデル62は、加振力計算に関するパラメータを更新し、加振力を再度計算し、音質判断部9でOKとなるまで、パラメータをチューニングする。もしくは、音質判断部9でNGと判断した場合は、不可判断信号を、音振モデル7に出力し、音振モデル7は音振モデル7の構造など音圧計算に関するパラメータを更新し、更新したパラメータを用いて音圧を再度計算し、音質判断部9でOKとなるまで、パラメータをチューニングする。 That is, if the sound quality determination unit 9 determines NG, an impossibility determination signal is output to the motor excitation model 61 or the gear excitation force model 62, and the motor excitation model 61 or the gear excitation force model 62 The parameters relating to the vibration force calculation are updated, the excitation force is calculated again, and the parameters are tuned until the sound quality judgment unit 9 becomes OK. Alternatively, if the sound quality determination unit 9 determines NG, an impossibility determination signal is output to the sound vibration model 7, and the sound vibration model 7 updates and updates parameters related to sound pressure calculation such as the structure of the sound vibration model 7. The sound pressure is calculated again using the parameters, and the parameters are tuned until the sound quality judgment unit 9 becomes OK.
 本発明の実施例4によれば、実施例1と同様に、設計段階で音質改善が可能となり、感覚的にも満足できる静音製品を計算することが可能である。 According to the fourth embodiment of the present invention, as in the first embodiment, it is possible to improve the sound quality at the design stage, and it is possible to calculate a silent product that can be satisfied sensibly.
 さらに、実施例3と同様な効果を得ることができる。 Furthermore, the same effect as in the third embodiment can be obtained.
 (実施例5)
 次に、本発明の実施例5について説明する。
(Example 5)
Next, a fifth embodiment of the present invention will be described.
 図7は、本発明に係る実施例5のシミュレーションモデルを用いたシミュレーション装置500の概略構成図である。本実施例5は音質判断部9でOK/NGを判断し、コントローラ5でインバータモデル1の電流制御を実行するところまでのモデルのフローは実施例3と同様なので説明を割愛し、ここでは、実施例3との構成の相違について説明する。 FIG. 7 is a schematic configuration diagram of a simulation apparatus 500 using the simulation model of the fifth embodiment according to the present invention. In the fifth embodiment, the sound quality determination unit 9 determines OK / NG, and the flow of the model up to the point where the controller 5 executes the current control of the inverter model 1 is the same as that of the third embodiment. A difference in configuration from the third embodiment will be described.
 本実施例5では、モータモデル2の仕様を満足するか否かを判断する仕様判断部10が備えられており、仕様判断部10は、音質判断部9でOKと判断した場合に、仕様判断部10において、電気自動車の諸性能の一つであるモータ性能、例えば、モータトルクが予め定めたモータの仕様を満足しているかを判断する。仕様判断部10が、もし、NGと判断した場合は、コントローラモデル5に仕様不可判断信号を出力する。仕様不可判断信号が入力されたコントローラモデル5は、再度、インバータモデル1の制御パラメータを変更して制御を行い、音質判断部9と仕様判断部10の両方が満足できるように制御する。これにより、基本性能と音質改善の両立が可能となる。 In the fifth embodiment, a specification determination unit 10 that determines whether or not the specification of the motor model 2 is satisfied is provided. When the sound quality determination unit 9 determines that the specification is OK, the specification determination unit 10 determines the specification. The unit 10 determines whether motor performance, which is one of various performances of the electric vehicle, for example, motor torque satisfies a predetermined motor specification. If the specification determination unit 10 determines NG, the specification determination unit 10 outputs a specification impossibility determination signal to the controller model 5. The controller model 5 to which the specification disapproval determination signal is input performs control by changing the control parameter of the inverter model 1 again so that both the sound quality determination unit 9 and the specification determination unit 10 can be satisfied. This makes it possible to achieve both basic performance and sound quality improvement.
 本発明の実施例5によれば、実施例1と同様に、設計段階で音質改善が可能となり、感覚的にも満足できる静音製品を計算することが可能である。 According to the fifth embodiment of the present invention, as in the first embodiment, it is possible to improve the sound quality at the design stage, and it is possible to calculate a silent product that is satisfactory in terms of feeling.
 さらに、実施例3、4と同等の効果が得られる他、モデル上でモータの仕様を満足させることができるという効果がある。 Furthermore, in addition to the same effects as those of the third and fourth embodiments, there is an effect that the motor specifications can be satisfied on the model.
 (実施例6)
 次に、本発明の実施例6について説明する。
(Example 6)
Next, a sixth embodiment of the present invention will be described.
 図8は、本発明に係る実施例6のシミュレーションモデルを用いたシミュレーション装置600の概略構成図である。本実施例6は音質判断部9でOK/NGを判断し、モータ加振力モデル61、ギヤ加振力モデル62および音振モデル7の加振力や音圧の計算に関するパラメータ調整を実行するところまでの構成は実施例4と同様なので説明を割愛し、ここでは、実施例4との構成の相違について説明する。 FIG. 8 is a schematic configuration diagram of a simulation apparatus 600 using the simulation model of the sixth embodiment according to the present invention. In the sixth embodiment, the sound quality determination unit 9 determines OK / NG and executes parameter adjustment related to the calculation of the excitation force and sound pressure of the motor excitation force model 61, the gear excitation force model 62, and the sound vibration model 7. Since the configuration up to this point is the same as that of the fourth embodiment, a description thereof will be omitted. Here, the difference in configuration from the fourth embodiment will be described.
 本実施例6では、モータモデル2の仕様を満足するか否かを判断する仕様判断部10が備えられており、音質判断部9でOK(音質が可)と判断された場合に、仕様判断部10において、電気自動車の諸性能の一つであるモータ性能、例えば、モータトルクが仕様を満足しているかを判断する。もし、仕様判断部10がNG(モータトルクが仕様を満足していない)と判断すると、モータ加振力モデル61、ギヤ加振力モデル62および音振モデル7に仕様不可判断信号を出力する。モータ加振力モデル61、ギヤ加振力モデル62および音振モデル7は、再度、加振力や音圧の計算に関するパラメータ調整を実行し、音質判断部9と仕様判断部10の両方が満足できるように制御する。これにより、基本性能と音質改善の両立が可能となる。 In the sixth embodiment, a specification determination unit 10 that determines whether or not the specification of the motor model 2 is satisfied is provided. When the sound quality determination unit 9 determines OK (sound quality is acceptable), the specification determination is performed. The unit 10 determines whether motor performance, which is one of various performances of the electric vehicle, for example, motor torque, satisfies a specification. If the specification determining unit 10 determines that NG (the motor torque does not satisfy the specification), a specification impossibility determination signal is output to the motor excitation force model 61, the gear excitation force model 62, and the sound vibration model 7. The motor excitation force model 61, the gear excitation force model 62, and the sound vibration model 7 again execute parameter adjustments related to the calculation of the excitation force and the sound pressure, and both the sound quality determination unit 9 and the specification determination unit 10 are satisfied. Control as you can. This makes it possible to achieve both basic performance and sound quality improvement.
 本発明の実施例6によれば、実施例1と同様に、設計段階で音質改善が可能となり、感覚的にも満足できる静音製品を計算することが可能である。さらに、モデル上で構造変更シミュレーションができるので試作する必要がないという効果並びに基本性能と音質改善の両立が可能となる効果がある。 According to the sixth embodiment of the present invention, similar to the first embodiment, it is possible to improve the sound quality at the design stage, and it is possible to calculate a silent product that can satisfy the sense. Further, since the structure change simulation can be performed on the model, there is an effect that it is not necessary to make a prototype, and there is an effect that both basic performance and sound quality improvement can be achieved.
 (実施例7)
 次に、本発明の実施例7について説明する。
(Example 7)
Next, a seventh embodiment of the present invention will be described.
 図9は、本発明の実施例7のシミュレーション装置における聴覚モデル8の概略構成図である。シミュレーション装置における聴覚モデル8以外の構成は、実施例1~6のいずれの構成も適用可能である。 FIG. 9 is a schematic configuration diagram of the auditory model 8 in the simulation apparatus according to the seventh embodiment of the present invention. As the configuration other than the auditory model 8 in the simulation apparatus, any of the configurations of the first to sixth embodiments can be applied.
 図9において、本実施例7の聴覚モデル8は、蝸牛による周波数分解を、1/4オクターブフィルタ部81と、基底膜による神経発火をヒルベルト変換部82とで実行する構成となっている。音振モデル7から、聴覚モデル8の入力部80に入力された音圧信号は、1/4オクターブフィルタ81で帯域分割された音圧に変換され、帯域分割された音圧はヒルベルト変換部82で実行されるヒルベルト変換により神経発火パターンに変換されて、聴覚音に関するパラメータとして音質判断部9に出力される。 9, the auditory model 8 of the seventh embodiment has a configuration in which frequency decomposition by the cochlea is performed by the 1/4 octave filter unit 81 and nerve firing by the basement membrane is performed by the Hilbert transform unit 82. A sound pressure signal input from the sound model 7 to the input unit 80 of the auditory model 8 is converted into a sound pressure divided into bands by the 1/4 octave filter 81, and the sound pressure divided into the bands is converted into a Hilbert converter 82. Is converted into a nerve firing pattern by the Hilbert transform executed in step S1, and is output to the sound quality determination unit 9 as a parameter relating to the auditory sound.
 これにより、音圧信号に基づいて神経発火パターンなどの人間の感覚量を表現する電気信号を出力可能となる。 This makes it possible to output an electrical signal representing a human sensory quantity such as a nerve firing pattern based on the sound pressure signal.
 本発明の実施例7によれば、実施例1~6と同様な効果を得ることができる。 According to the seventh embodiment of the present invention, the same effects as in the first to sixth embodiments can be obtained.
 (実施例8)
 次に、本発明の実施例8について説明する。
(Example 8)
Next, an eighth embodiment of the present invention will be described.
 図10は、本発明の実施例8のシミュレーション装置における聴覚モデル8の概略構成図である。シミュレーション装置における聴覚モデル8以外の構成は、実施例1~6のいずれの構成も適用可能である。 FIG. 10 is a schematic configuration diagram of the auditory model 8 in the simulation apparatus according to the eighth embodiment of the present invention. As the configuration other than the auditory model 8 in the simulation apparatus, any of the configurations of the first to sixth embodiments can be applied.
 図10に示すように、本実施例8は、聴覚モデル8をニューラルネットワークで構成している。音振モデル7から、聴覚モデル8の入力部80に入力された音圧は、複数個の中間層831、832および833を通過して、出力層834から感覚量を表現する電気信号として音質判断部9に出力される。 As shown in FIG. 10, in the eighth embodiment, the auditory model 8 is constituted by a neural network. The sound pressure input from the sound vibration model 7 to the input unit 80 of the auditory model 8 passes through the plurality of intermediate layers 831, 832, and 833, and the sound quality is determined from the output layer 834 as an electrical signal that expresses a sense amount. Is output to the unit 9.
 ニューラルネットワークの中間層831、832および833の重み付けなどは、ディープラーニング等の学習によりなされる。音圧信号に基づいて神経発火パターンなどの人間の感覚量を表現する電気信号を出力可能となる。 The weighting of the intermediate layers 831, 832, and 833 of the neural network is performed by learning such as deep learning. Based on the sound pressure signal, it is possible to output an electrical signal representing a human sensory amount such as a nerve firing pattern.
 本発明の実施例8によれば、実施例1~6と同様な効果を得ることができる。 According to the eighth embodiment of the present invention, the same effects as in the first to sixth embodiments can be obtained.
 (実施例9)
 次に、本発明の実施例9について説明する。
Example 9
Next, a ninth embodiment of the present invention will be described.
 図11は、本発明の実施例9のシミュレーション装置における聴覚モデル8の概略構成図である。シミュレーション装置における聴覚モデル8以外の構成は、実施例1~6のいずれの構成も適用可能である。 FIG. 11 is a schematic configuration diagram of the auditory model 8 in the simulation apparatus according to the ninth embodiment of the present invention. As the configuration other than the auditory model 8 in the simulation apparatus, any of the configurations of the first to sixth embodiments can be applied.
 図11に示すように、本実施例9は、聴覚モデル8を関数演算部84で構成している。つまり、音振モデル7から、聴覚モデル8の入力部80に入力された音圧信号は、関数演算部84に入力され、感覚量などに変換される。例えば、自動車機器などから発生する音圧を音の専門家や顧客が聞いて評点という点数をつけた場合を考える。その場合は、官能評価や音質評価などにより、音圧と評点の相関関数を求める。 As shown in FIG. 11, in the ninth embodiment, the auditory model 8 includes a function calculation unit 84. That is, the sound pressure signal input from the sound vibration model 7 to the input unit 80 of the auditory model 8 is input to the function calculation unit 84 and converted into a sensory amount or the like. For example, let us consider a case where a sound specialist or a customer listens to the sound pressure generated from an automobile device and gives a score. In that case, a correlation function between the sound pressure and the score is obtained by sensory evaluation or sound quality evaluation.
 例えば、評点を、音質評価尺度である、ラウドネス、シャープネス、ラフネスおよび変動強度の関数で表現できると仮定し、それぞれの係数を算出することで音圧と評点の相関関数を求めることができる。 For example, assuming that the score can be expressed by a function of the sound quality evaluation scales of loudness, sharpness, roughness, and fluctuation intensity, the correlation function between the sound pressure and the score can be obtained by calculating each coefficient.
 音圧pと評点の相関関数f(p)の一例を次式(1)で示す。 An example of the correlation function f (p) between the sound pressure p and the score is shown by the following equation (1).
 f(p)=aL+bS+cR+dT+C   ・・・(1)
 ただし、上記式(1)において、音圧、Lはラウドネス、Sはシャープネス、Rはラフネス、Tは変動強度、a、b、c、dは係数、Cは定数である。
f (p) = aL + bS + cR + dT + C (1)
In the above equation (1), sound pressure, L is loudness, S is sharpness, R is roughness, T is fluctuation intensity, a, b, c and d are coefficients, and C is a constant.
 関数演算部84で演算された相関関数でより求められた評点が音質判断部9に入力される。 The score obtained from the correlation function calculated by the function calculation unit 84 is input to the sound quality determination unit 9.
 本発明の実施例9によれば、実施例1~6と同様な効果を得ることができる。 According to the ninth embodiment of the present invention, the same effects as in the first to sixth embodiments can be obtained.
 なお、本発明は、自動車の車室内の音質改善のみならず、作業員が作業を行う工場内の機器に対しての音質改善等にも適用可能である。 It should be noted that the present invention is applicable not only to the improvement of sound quality in the interior of an automobile, but also to the improvement of sound quality for equipment in a factory where workers work.
 1・・・インバータモデル、2・・・モータモデル、3・・・ギヤボックスモデル、4・・・車両モデル、5・・・コントローラ、7・・・音振モデル、8・・・聴覚モデル、9、91、92、93・・・音質判断部、10・・・仕様判断部、60・・・加振力モデル、61・・・モータ加振力モデル、62・・・ギヤ加振力モデル、80・・・入力部、81・・・1/4オクターブフィルタ部、82・・・ヒルベルト変換部、84・・・関数演算部、100、200、300、400、500、600・・・シミュレーション装置、831、832、833・・・ニューラルネットの中間層、834・・・出力層 DESCRIPTION OF SYMBOLS 1 ... Inverter model, 2 ... Motor model, 3 ... Gear box model, 4 ... Vehicle model, 5 ... Controller, 7 ... Sound vibration model, 8 ... Auditory model, 9, 91, 92, 93 ... sound quality judgment unit, 10 ... specification judgment unit, 60 ... excitation force model, 61 ... motor excitation force model, 62 ... gear excitation force model , 80 ... input unit, 81 ... 1/4 octave filter unit, 82 ... Hilbert transform unit, 84 ... function calculation unit, 100, 200, 300, 400, 500, 600 ... simulation Device, 831, 832, 833 ... Intermediate layer of neural network, 834 ... Output layer

Claims (12)

  1.  加振力を示す信号を出力する加振力モデルと、
     上記加振力モデルから出力された上記加振力を示す信号に基づいて、音圧を算出し、音圧を示す信号を出力する音振モデルと、
     上記音振モデルから出力された上記音圧を示す信号を聴覚音に関するパラメータに変換し、出力する聴覚モデルと、
     を備えることを特徴とする聴覚モデルを用いたシミュレーション装置。
    An excitation force model that outputs a signal indicating the excitation force;
    Based on a signal indicating the excitation force output from the excitation force model, a sound pressure model that calculates a sound pressure and outputs a signal indicating the sound pressure;
    An auditory model that converts a signal indicating the sound pressure output from the sound vibration model into a parameter relating to an auditory sound, and outputs the parameter,
    A simulation apparatus using an auditory model characterized by comprising:
  2.  請求項1に記載の聴覚モデルを用いたシミュレーション装置において、
     上記聴覚モデルが出力した上記パラメータに基づいて音質を判断する音質判断部を、さらに備えることを特徴とする聴覚モデルを用いたシミュレーション装置。
    In the simulation apparatus using the auditory model according to claim 1,
    A simulation apparatus using an auditory model, further comprising: a sound quality determination unit that determines sound quality based on the parameter output by the auditory model.
  3.  請求項2に記載の聴覚モデルを用いたシミュレーション装置において、
     上記加振力モデルに加振力データを出力する加振力データ出力モデルをさらに備え、上記音質判断部は、判断した音質が可であるか不可であるかを判断し、音質が不可であると判断したときは、上記加振力データ出力モデルに不可判断信号を出力し、上記加振力データ出力モデルは、上記加振力モデルに出力する加振力データを変更することを特徴とする聴覚モデルを用いたシミュレーション装置。
    In the simulation apparatus using the auditory model according to claim 2,
    The excitation force data output model for outputting the excitation force data to the excitation force model is further provided, and the sound quality determination unit determines whether the determined sound quality is acceptable or not, and the sound quality is not possible. When the determination is made, an impossibility determination signal is output to the excitation force data output model, and the excitation force data output model changes the excitation force data output to the excitation force model. Simulation device using an auditory model.
  4.  請求項3に記載の聴覚モデルを用いたシミュレーション装置において、
     上記加振力データ出力モデルは、車両を駆動するためのモータをモデル化したモータモデルと、上記モータを駆動するインバータモデルと、このインバータモデルを制御する制御パラメータを上記インバータモデルに出力するコントローラモデルとを有し、
     上記加振力モデルは、上記モータモデルから加振力データである電流を示す信号が入力され、電磁加振力を出力するモータ加振力モデルを有し、
     上記コントローラモデルは、上記音質判断部からの不可判断信号に従って、上記制御パラメータを更新することを特徴とする聴覚モデルを用いたシミュレーション装置。
    In the simulation apparatus using the auditory model according to claim 3,
    The excitation force data output model includes a motor model that models a motor for driving a vehicle, an inverter model that drives the motor, and a controller model that outputs control parameters for controlling the inverter model to the inverter model. And
    The excitation force model includes a motor excitation force model that receives a signal indicating an excitation current data from the motor model and outputs an electromagnetic excitation force.
    The simulation apparatus using an auditory model, wherein the controller model updates the control parameter in accordance with an impossibility determination signal from the sound quality determination unit.
  5.  請求項4に記載の聴覚モデルを用いたシミュレーション装置において、
     上記加振力データ出力モデルは、上記モータのトルクを伝達するギヤを有するギヤボックスをモデル化したギヤボックスモデルをさらに有し、
     上記加振力モデルは、上記ギヤボックスモデルから加振力データであるトルクを示す信号が入力され、ギヤ噛み合い加振力を出力するギヤ加振力モデルを有することを特徴とする聴覚モデルを用いたシミュレーション装置。
    In the simulation apparatus using the auditory model according to claim 4,
    The excitation force data output model further includes a gear box model obtained by modeling a gear box having a gear for transmitting the torque of the motor.
    As the excitation force model, an auditory model having a gear excitation force model that receives a signal indicating torque as excitation force data from the gear box model and outputs a gear meshing excitation force is used. Was a simulation device.
  6.  請求項2に記載の聴覚モデルを用いたシミュレーション装置において、
     上記加振力モデルに加振力データを出力する加振力データ出力モデルをさらに備え、上記音質判断部は、判断した音質が可であるか不可であるかを判断し、不可であるときは、上記加振力モデルに不可判断信号を出力し、上記加振力モデルは、上記音振モデルに出力する加振力を示す信号を変更することを特徴とする聴覚モデルを用いたシミュレーション装置。
    In the simulation apparatus using the auditory model according to claim 2,
    The excitation force data output model for outputting the excitation force data to the excitation force model is further provided, and the sound quality determination unit determines whether the determined sound quality is acceptable or not, and when it is not possible A simulation apparatus using an auditory model, wherein an impossibility determination signal is output to the excitation force model, and the excitation force model changes a signal indicating the excitation force output to the sound vibration model.
  7.  請求項6に記載の聴覚モデルを用いたシミュレーション装置において、
     上記加振力データ出力モデルは、車両を駆動するためのモータをモデル化したモータモデルと、上記モータを駆動するインバータモデルと、このインバータモデルを制御する制御パラメータを出力するコントローラモデルと、上記モータのトルクを伝達するギヤを有するギヤボックスをモデル化したギヤボックスモデルとを有し、
     上記加振力モデルは、上記モータモデルから加振力データである電流を示す信号が入力され、電磁加振力を出力するモータ加振力モデルと、上記ギヤボックスモデルから加振力データであるトルクを示す信号が入力され、ギヤ噛み合い加振力を出力するギヤ加振力モデルとを有し、
     上記音質判断部は、判断した音質が可であるか不可であるかを判断し、不可であるときは、上記モータ加振力モデル又はモータ加振力モデルに不可判断信号を出力することを特徴とする聴覚モデルを用いたシミュレーション装置。
    The simulation apparatus using the auditory model according to claim 6,
    The excitation force data output model includes a motor model that models a motor for driving a vehicle, an inverter model that drives the motor, a controller model that outputs control parameters for controlling the inverter model, and the motor A gear box model that models a gear box having a gear that transmits the torque of
    The excitation force model is a motor excitation force model that outputs an electromagnetic excitation force when a signal indicating current as excitation force data is input from the motor model, and an excitation force data from the gear box model. A gear excitation force model that receives a signal indicating torque and outputs a gear meshing excitation force;
    The sound quality determination unit determines whether the determined sound quality is acceptable or not, and outputs a failure determination signal to the motor excitation force model or the motor excitation force model when the determination is impossible. A simulation device using an auditory model.
  8.  請求項4に記載の聴覚モデルを用いたシミュレーション装置において、
     上記音質判断部が上記音質は可であると判断したとき、上記モータモデルが予め定めたモータの仕様を満足しているかを判断する仕様判断部をさらに備え、この仕様判断部が、上記モータモデルが上記モータの仕様を満足していないと判断したとき、仕様不可判断信号を上記コントローラモデルに出力し、
     上記コントローラモデルは、上記仕様判断部からの仕様不可判断信号に従って、上記制御パラメータを更新することを特徴とする聴覚モデルを用いたシミュレーション装置。
    In the simulation apparatus using the auditory model according to claim 4,
    When the sound quality determination unit determines that the sound quality is acceptable, the sound quality determination unit further includes a specification determination unit that determines whether the motor model satisfies a predetermined motor specification, and the specification determination unit includes the motor model. Output a non-specification determination signal to the controller model when it is determined that the motor specification is not satisfied.
    The simulation apparatus using an auditory model, wherein the controller model updates the control parameter in accordance with a specification impossibility determination signal from the specification determination unit.
  9.  請求項7に記載の聴覚モデルを用いたシミュレーション装置において、
     上記音質判断部が上記音質は可であると判断したとき、上記モータモデルが予め定めたモータの仕様を満足しているかを判断する仕様判断部をさらに備え、この仕様判断部が、上記モータモデルが上記モータの仕様を満足していないと判断したとき、仕様不可判断信号を上記モータ加振力モデル、上記ギヤ加振力モデル又は上記音振モデルに不可判断信号を出力し、上記モータ加振力モデル、上記ギヤ加振力モデル、又は音振モデルは、モータ加振力、ギヤ加振力又は音圧に関するパラメータを更新することを特徴とする聴覚モデルを用いたシミュレーション装置。
    The simulation apparatus using the auditory model according to claim 7,
    When the sound quality determination unit determines that the sound quality is acceptable, the sound quality determination unit further includes a specification determination unit that determines whether the motor model satisfies a predetermined motor specification, and the specification determination unit includes the motor model. When the motor does not satisfy the specifications of the motor, it outputs an impossibility determination signal to the motor excitation force model, the gear excitation force model, or the sound vibration model as a specification impossibility determination signal. A simulation apparatus using an auditory model, wherein the force model, the gear excitation force model, or the sound vibration model updates parameters relating to a motor excitation force, a gear excitation force, or a sound pressure.
  10.  請求項1乃至9のうちのいずれか一項に記載の聴覚モデルを用いたシミュレーション装置において、
     上記聴覚モデルは、上記音振モデルから出力された音圧信号を帯域分割する1/4オクターブフィルタと、この1/4オクターブフィルタにより帯域分割された上記音圧信号をヒルベルト変換し、聴覚音に関するパラメータとして出力するヒルベルト変換部とを有することを特徴とする聴覚モデルを用いたシミュレーション装置。
    In the simulation apparatus using the auditory model according to any one of claims 1 to 9,
    The auditory model includes a 1/4 octave filter that divides a sound pressure signal output from the sound vibration model, and a Hilbert transform of the sound pressure signal that is band-divided by the 1/4 octave filter. A simulation apparatus using an auditory model, comprising: a Hilbert transform unit that outputs a parameter.
  11.  請求項1乃至9のうちのいずれか一項に記載の聴覚モデルを用いたシミュレーション装置において、
     上記聴覚モデルは、上記音振モデルから出力された音圧信号を、ニューラルネットワークを用いて聴覚音に関するパラメータとすることを特徴とする聴覚モデルを用いたシミュレーション装置。
    In the simulation apparatus using the auditory model according to any one of claims 1 to 9,
    A simulation apparatus using an auditory model, wherein the auditory model uses a sound pressure signal output from the sound vibration model as a parameter relating to an auditory sound using a neural network.
  12.  請求項1乃至9のうちのいずれか一項に記載の聴覚モデルを用いたシミュレーション装置において、
     上記聴覚モデルは、上記音振モデルから出力された音圧信号を聴覚音に関するパラメータに演算する関数演算部を有することを特徴とする聴覚モデルを用いたシミュレーション装置。
    In the simulation apparatus using the auditory model according to any one of claims 1 to 9,
    A simulation apparatus using an auditory model, wherein the auditory model includes a function calculation unit that calculates a sound pressure signal output from the sound vibration model to a parameter relating to an auditory sound.
PCT/JP2018/016238 2017-06-07 2018-04-20 Simulation device using auditory model WO2018225401A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017112804A JP6872981B2 (en) 2017-06-07 2017-06-07 Simulation device using an auditory model
JP2017-112804 2017-06-07

Publications (1)

Publication Number Publication Date
WO2018225401A1 true WO2018225401A1 (en) 2018-12-13

Family

ID=64565783

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016238 WO2018225401A1 (en) 2017-06-07 2018-04-20 Simulation device using auditory model

Country Status (2)

Country Link
JP (1) JP6872981B2 (en)
WO (1) WO2018225401A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112597676B (en) * 2020-12-10 2022-11-01 东风汽车集团有限公司 Automobile suspension vibration source sensitivity identification method and device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055636A (en) * 2010-09-13 2012-03-22 Yokohama Rubber Co Ltd:The System and method for designing golf club

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012055636A (en) * 2010-09-13 2012-03-22 Yokohama Rubber Co Ltd:The System and method for designing golf club

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOI, TAKESHI ET AL.: "Noise prediction and sound quality improvement of high-speed rotating components by using acoustic excitation force", THE JOURNAL OF THE ACOUSTICAL SOCIETY OF JAPAN , THE ACOUSTICAL SOCIETY OF JAPAN, vol. 56, no. 6, 1 June 2000 (2000-06-01), pages 437 - 444 *

Also Published As

Publication number Publication date
JP2018206204A (en) 2018-12-27
JP6872981B2 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
CN104715750B (en) Sound system including engine sound synthesizer
de Oliveira et al. Active sound quality control of engine induced cavity noise
JP5681691B2 (en) Active design of exhaust noise
CN103114890B (en) Overload protection for loudspeakers in exhaust systems
KR101081159B1 (en) System of Personal-Made Driving Sound
CN110072176B (en) Active sound effect generating device
WO2006120838A1 (en) Driving force controller of vehicle
JP5822862B2 (en) Active vibration and noise control device for vehicle
KR20170051555A (en) Vehicle And Control Method Thereof
KR102408323B1 (en) Virtual location noise signal estimation for engine order cancellation
KR20190044292A (en) Sound control method for hybrid vehicle
WO2021033607A1 (en) Sound production apparatus for vehicle
CN111038421A (en) Method and apparatus for mitigating noise generated by two torque machines
WO2018225401A1 (en) Simulation device using auditory model
CN113752943A (en) Method for controlling tone of electric vehicle based on motor vibration
Das et al. All-pass filtered x least mean square algorithm for narrowband active noise control
Abouel-Seoud Active control analysis of passenger vehicle interior noise produced from tyre/road interaction
JP6074693B2 (en) Active noise control device and control method thereof
CN111183477B (en) Vehicle audio control device
CN114643921A (en) Method for generating virtual effect of electric vehicle
CN113496695A (en) Motor noise masking
Zhang et al. A dual sampling-rate active noise equalization algorithm for active sound quality control of vehicle interior noise
De Oliveira Review and future perspectives on active sound quality control
JP6586983B2 (en) Vehicle acoustic control device
Rees Active sound-profiling for automobiles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18814089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18814089

Country of ref document: EP

Kind code of ref document: A1