WO2018224712A1 - Mutants of clostridium beijerinckii that are butanol hyper-producers - Google Patents

Mutants of clostridium beijerinckii that are butanol hyper-producers Download PDF

Info

Publication number
WO2018224712A1
WO2018224712A1 PCT/ES2018/070402 ES2018070402W WO2018224712A1 WO 2018224712 A1 WO2018224712 A1 WO 2018224712A1 ES 2018070402 W ES2018070402 W ES 2018070402W WO 2018224712 A1 WO2018224712 A1 WO 2018224712A1
Authority
WO
WIPO (PCT)
Prior art keywords
cbei
gene
instead
butanol
strain
Prior art date
Application number
PCT/ES2018/070402
Other languages
Spanish (es)
French (fr)
Inventor
Elena PUERTA FERNÁNDEZ
María HIDALGO GARCÍA
José David MONTOYA SOLANO
Almudena ESCOBAR NIÑO
Juan Luis RAMOS MARTÍN
Original Assignee
Abengoa Research, S.L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abengoa Research, S.L filed Critical Abengoa Research, S.L
Publication of WO2018224712A1 publication Critical patent/WO2018224712A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/24Preparation of oxygen-containing organic compounds containing a carbonyl group
    • C12P7/26Ketones
    • C12P7/28Acetone-containing products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/145Clostridium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention falls within the field of industrial processes for the production of butanol, preferably acetone, butanol and ethanol (ABE), by fermentation with strains of Clostridium.
  • the invention relates to mutant strains of Clostridium beijerinckii capable of producing more butanol than the parental strain from which they originate, using different substrates as a carbon source.
  • the invention also relates to the use of said mutant strains in methods of production of ABE by fermentation and to a method of obtaining said mutant strains.
  • Butanol is an important industrial chemical. Compared to ethanol, butanol is more miscible in gasoline and diesel, has a lower vapor pressure and is less miscible in water. It also contains about 22% oxygen, which means that when used as a biofuel it results in a more complete combustion producing a smaller amount of smoke. These qualities make it a fuel extender superior to ethanol. Butanol is also used as a chemical in the plastics industry and as a food extractant in the food and flavor industry.
  • ABE fermentation is the most widely studied among all anaerobic fermentation processes. It is known that some strains of Clostridium produce butanol from carbohydrates through the process called ABE fermentation. During this fermentation three solvents, acetone, butanol and ethanol, are produced in a 3: 6: 1 ratio.
  • the most commonly used strain of Clostridium for ABE fermentation is Clostridium acetobutylicum, which is the model bacterium of Clostroidios solventogenic. However, this strain has the genes involved in the production of butanol in a megaplasmid, and genetic instabilities of the strain can arise.
  • C. beijer ⁇ nckii Another very relevant solvent isogenic Clostridio is C. beijer ⁇ nckii, which has the butanol production genes on the chromosome, which makes it a more robust line for industrial use. In addition, this lineage is less likely to suffer the phenomenon known as "acid crash", which causes cells to stop producing butanol and begin to sporulate.
  • the advantages of using C. beijer ⁇ nckii instead of C. acetobutylicum include that the former can use a wider range of substrates and carry out fermentation in a better pH range, has the ability to produce butanol during its exponential growth phase and it has greater stability when it comes to microbial degeneration.
  • the solvent genes in C. beijer ⁇ nckii are located on the chromosome, while in C. acetobutylicum these genes are located in a plasmid, which makes C. beijer ⁇ nckii more genetically stable.
  • the cells first pass through a phase known as the "acidogenic phase", in which the acids (acetic and butyric) are produced that will be converted into the solvents (butanol, acetone and ethanol) during the solvent phase. Both phases are very connected, and the genes that are expressed during the solvent are regulated for expression after acidogenesis.
  • acids acetic and butyric
  • solvents butanol, acetone and ethanol
  • This mutant strain BA101 is described as a hyperproductive strain of butanol obtained by mutagenesis of the wild strain C. beijer ⁇ nckii NCIMB 8052 (Annous, BA, HP Blaschek. 1991. Appl. Environ. Microbiol. 57: 2544-2548; Formanek, J. , R. Mackie, HP Blaschek. 1997. Appl. Environ. Microbiol. 63: 2306-2310).
  • patent application AU2014216024 describes genetically modified Clostridium solvent strains comprising an altered gene expression or structure that results in increased butanol production efficiency.
  • the modified Clostridium species as described herein is C. beijer ⁇ nckii.
  • the present invention provides three mutants of the Clostr ⁇ dium beijer ⁇ nckii species obtained by random chemical mutagenesis of the parental strains C. beijer ⁇ nckii BA101 and NCIMB 8052, which are capable of producing more butanol or producing it more efficiently than their parental strains using different substrates as a source of carbon and under various conditions.
  • the present invention relates to three mutant strains of C. beijer ⁇ nckii that produce significantly more butanol, or that are capable of producing it more rapidly, than the parental strains from which they originate, thus increasing the productivity of the fermentation process for ABE production.
  • mutants are also capable of maintaining a higher pH, within the acidic range, during their growth. That is, these mutants have a lower acidity or acidogenesis than their parental strains, so they reduce the risk of the effect known as "acid crash" that causes cells to stop producing butanol and start sporulating.
  • causing less acidity in the culture medium means that acids may be drifting to solvents more quickly, so that they can produce a greater amount of these (butanol, preferably ABE) in less time.
  • the mutants of the invention can also use both C6 (for example, glucose) and C5 (for example, xylose and arabinose) sugars as fermentation carbon, and consume them more efficiently than their corresponding parental strains. These mutants can even, under certain conditions, consume both types of sugars, C5 and C6, simultaneously. They can also use complex substrates of industrial interest, such as urban or plant wastes, which favor the recycling and use of waste products derived from other industries or from urban activity. These three mutant strains have been referred to in the present invention as BP1 1, BP25 and BP31, where the first strain comes from the parental strain C. beijer ⁇ nckii NCIMB 8052 and the last two strains are derived from the parental strain C. beijer ⁇ nckii BA101.
  • C6 for example, glucose
  • C5 for example, xylose and arabinose
  • the inventors have developed and developed a method of induced mutagenesis in parental cells of C. beijer ⁇ nckii.
  • the optimization of this procedure involves, among other factors, identifying the appropriate starting parental cells, the appropriate mutagenic agent and defining the appropriate concentration thereof to achieve an optimal ratio of mutagenesis / cell death in C. beijer ⁇ nckii.
  • Other mutants of the C. beijer ⁇ nckii species that exhibit low acidogenesis and / or improved butanol production capacity other than those described in the present invention could also be obtained by this procedure.
  • the present invention relates to a method for obtaining or generating mutant strains of the species C. beijer ⁇ nckii with low acidogenesis and / or with improved butanol production capacity, preferably ABE, from carbohydrates by anaerobic fermentation, where said method comprises the steps of: a. induce chemical mutagenesis in a cell of C. beijer ⁇ nckii, preferably in the strain C. beijer ⁇ nckii NCIMB 8052 or C. beijer ⁇ nckii BA101, more preferably in C. beijer ⁇ nckii NCIMB 8052, and
  • stage (a) select those mutants produced after stage (a) that have low acidogenesis, where said selection is made by culturing the mutants in selective plates comprising a pH indicator, where the chemical mutagenesis of stage (a) is performed by incubating the cell, or a cell culture comprising the same, with the chemical mutagen ethyl methanesulfonate (EMS) at a concentration of, preferably 15 ⁇ of EMS per ml of culture, for preferably 1 hour, and
  • EMS chemical mutagen ethyl methanesulfonate
  • the pH indicator of step (b) is preferably Bromocresol Purple.
  • "Low or lower acidity or acidogenesis” mutants are understood as those cells of the species C. beijerinckii that lower the pH of the culture medium during its growth to a lesser extent than the parental strain from which they originate, after the same or similar period of time in culture, in the presence of a culture medium of identical or similar composition and under culture conditions (T a , pH at the beginning of the culture, anaerobiosis, agitation, volume of the medium, saturation, optical density, etc.) identical or similar.
  • the mutants that have "low or lower acidity or acidogenesis” according to the invention are those that maintain the pH of the culture medium above 5 during growth. This property of the cells can be determined, for example but not limited to, by in vitro culture of the same in selective plates with pH indicator as indicated above.
  • Mutants with "improved butanol production capacity” are understood as those mutants that produce more butanol, preferably in g / l, than the parental strain of C. beijerinckii from which they originate, after the same or similar period of time fermentation, under the same or similar fermentation conditions (T a , pH, anaerobiosis, agitation, volume of the medium, saturation, optical density, etc.) and in the presence of a culture medium comprising a source of carbon or carbohydrates thereof or similar composition.
  • T a pH, anaerobiosis, agitation, volume of the medium, saturation, optical density, etc.
  • Mutants with improved butanol production capacity therefore use the carbon source used as a substrate more efficiently.
  • the increased efficiency or improved production capacity of butanol can be determined by a variety of methods known in the state of the art such as, but not limited to, by measuring the concentration (weight / volume) of the solvent produced in the fermentation medium, or the yield (weight / weight) of the solvent per amount of substrate, or the ratio of solvent formation (weight / volume / time).
  • these product or solvent measurements can be carried out by HPLC, mass spectrometry, immunoassay, activity tests or any other method known to those skilled in the art.
  • the reasoning for assuming that the mutants are hyper- or over-producing butanol or that they have improved butanol production capacity based on the low acidity they cause in the culture medium is that the acidifying cells less the medium may be drifting acids to solvents more quickly, so that they can produce a greater amount of these (butanol, preferably ABE) in less time.
  • the "Purple Bromocresol", preferably used in step (b) of this method of mutant generation, is an organic indicator for acid-base titration whose pH transition range ranges from 5.2 to 6.8, turning from Yellow to purple in the mentioned range. Thus, it is purple at basic pH and turns yellow at acidic pH.
  • step (b) When Bromocresol Purple is used as a pH indicator for the selection of stage (b), the cells cannot be sown directly in said selective medium because their toxicity does not allow the growth of healthy colonies. Therefore, first of all the mutants obtained after step (a) must be sown in a standard culture medium for the growth of C. beijer ⁇ nckii, for example, but not limited to a medium comprising yeast extract, tryptone, acetate ammonium, magnesium acetate, iron sulfate, potassium phosphate and / or magnesium sulfate, and a carbon source, for example, glucose. Thus, colonies with sufficient biomass are obtained to then reseed the selective plates. Subsequently, the mutants thus grown are isolated and re-plated on the plates comprising Purple Bromocresol to finally isolate and select those mutants that generate a lower yellow halo in relation to their parental strain or an absence thereof.
  • a standard culture medium for the growth of C. beijer ⁇ nckii for example, but not
  • chemical mutagen refers to a chemical agent that increases the frequency of mutation above the rate of spontaneous mutation.
  • Another aspect of the invention relates to a mutant strain of the species C. beijer ⁇ nckii with low acidity or acidity and / or with improved butanol production capacity, preferably ABE, from carbohydrates by anaerobic fermentation, produced, obtainable or obtained by the mutant generation method described above in the present invention.
  • Another aspect of the invention relates to a mutant strain or cell of C. beijerinckii (preferably obtained by chemical mutagenesis of strain C. beijerinckii NCIMB 8052) characterized in that said mutant strain comprises in its genome the following mutations with respect to the genome of the parental strain C. beijerinckii NCIMB 8052:
  • mutant BP1 1 comprises all the mutations indicated in (a) to (g) above.
  • This mutant has preferably been obtained by the mutant generation method described above.
  • Another aspect of the invention relates to a strain or mutant cell of C. beijer ⁇ nckii (preferably obtained by chemical mutagenesis of strain C. beijer ⁇ nckii BA101) characterized in that said mutant strain comprises in its genome the following mutations with respect to the genome of the strain parental C. beijer ⁇ nckii BA101: a.
  • this strain will be referred to as a "mutant BP31", and comprises all the mutations indicated in (a) to (f) above.
  • This mutant has preferably been obtained by the mutant generation method described above.
  • the so-called "BP25 mutant” is preferred, since it has ABE production yields, especially butanol, higher than the other mutants in the tested substrates.
  • Fig. 3A shows that the BP25 mutant produces more butanol in the presence of glucose, not only in comparison to its parental strain, but also in comparison to the BP31 mutant that also comes from the same parental strain.
  • Fig. 7 shows that mutant BP25 produces butanol more rapidly in presence of a complex substrate, such as an urban waste hydrolyzate, than the BP31 mutant that is not able to improve butanol production with respect to its parental strain in the presence of this particular substrate.
  • Fig. 3A shows that the BP25 mutant produces more butanol in the presence of glucose, not only in comparison to its parental strain, but also in comparison to the BP31 mutant that also comes from the same parental strain.
  • Fig. 7 shows that mutant BP25 produces butanol more rapidly in presence of a complex substrate, such as an urban waste hydrolyzate, than
  • BP25 mutant is capable of producing more butanol in the presence of corn straw hydrolyzate than the BP31 mutant.
  • Fig. 12 shows that, although the BP1 1 mutant initially consumes arabinose more rapidly, from 48h it slows its consumption of arabinose and butanol production, unlike the BP25 mutant that continues to produce butanol during 72h The fermentation analysis was followed, which means that the BP25 mutant reaches a higher final production yield, consuming more arabinose in the process.
  • the BP25 mutant has an improved butanol production capacity compared to its parental strain, in various substrates.
  • Fig. 3A demonstrates a higher production of butanol by this mutant in the presence of glucose in relation to its parental C. beijerinckii BA101.
  • Fig. 4A shows that this mutant produces butanol more quickly, and therefore more efficiently, in the presence of ground corn than its parental strain, reaching high levels of butanol in a shorter time.
  • Fig. 7A and 10 show that BP25 produces higher levels of butanol in the presence of urban solid waste hydrolyzate and corn straw hydrolyzate, respectively, than its parental strain.
  • Fig. 3A demonstrates a higher production of butanol by this mutant in the presence of glucose in relation to its parental C. beijerinckii BA101.
  • Fig. 4A shows that this mutant produces butanol more quickly, and therefore more efficiently, in the presence of ground corn than its parental strain, reaching high levels of butanol in a shorter
  • FIG. 1 1 B demonstrates a higher production of butanol and a more efficient and faster consumption of arabinose and glucose by BP25 in the presence of a medium comprising these two sugars compared to their parental strain.
  • Fig. 12 demonstrates a higher production of butanol by BP25 in the presence of a medium comprising arabinose above that obtained with the other two mutants (BP1 1 and BP31) and with the parental strain C. beijerinckii BA101.
  • another aspect of the invention relates to a strain or mutant cell of C. beijerinckii (preferably obtained by chemical mutagenesis of strain C. beijerinckii BA101) characterized in that said mutant strain comprises in its genome the following mutations with respect to the genome of the parental strain C. beijerinckii NCIMB 8052: a.
  • T instead of C at position 151 of the Cbei_0769 gene (SEQ ID NO: 2), which comprises positions 935299 to 936627 of the genome of C. beijerinckii NCIMB 8052,
  • NCIMB 8052 n. T instead of C at position 160 of the Cbei_3757 gene (SEQ ID NO: 14), which comprises positions 4310570 to 4310908 of the genome of C. beijerinckii NCIMB 8052,
  • this mutant comprises all the mutations indicated in (a) to (y) above.
  • This mutant has preferably been obtained by the mutant generation method described above.
  • This mutant BP25 has also been deposited in the Spanish Type Culture Collection (CECT), Pare Cient ⁇ fic Universitat de Valencia, Professor Agust ⁇ n Escardino 9, 46980 Paterna (Valencia, Spain), under the accession number CECT 9306 dated 21.03.2017. Therefore, in a preferred embodiment of this aspect of the invention, this mutant strain of Clostridium beijerinckii is that deposited in the Spanish Type Culture Collection under the accession number CECT 9306.
  • the strain C. beijerinckii BA101 is a hyperproductive butanol mutant obtained by mutagenesis from the wild strain C. beijerinckii NCIMB 8052.
  • Said mutant strain BA101 thus comprises the genome of the wild strain NCIMB 8052 in addition to the mutations indicated above for genes Cbei_0769, Cbei_1854, Cbei_1935, Cbei_1975, Cbei_3078, Cbei_4308, Cbei_4400 and Cbei_4761. Therefore, of all the mutations indicated in (a) to (and) above, mutations in these specific genes are shared between mutant BP25 and strain C. beijerinckii BA101.
  • the term "mutants of the invention" refers to any mutant strain of the species C.
  • the parental strain C. beijerinckii NCIMB 8052 is available at, for example, but not limited to, the International Depository Authority National Collection of Industrial and Marine Bacteria (NCIMB), 23 St Machar Drive, Aberdeen, Ab2 1 RY, Scotland, England. The complete genome of this strain is described, for example, in the GenBank under accession number CP000721 .1.
  • the parental strain C. beijerinckii BA101 can be prepared as described in Annous, BA, et al., Appl. Environ. Microbiol., 1991, 57: 2544-2548.
  • the genome of this strain is the genome of C. beijerinckii NCIMB 8052 which also comprises the mutations indicated in the present invention in the genes Cbei_0769, Cbei_1854, CbeiJ 935, CbeiJ 975, Cbei_3078, Cbei_4308, Cbei_4400 and Cbei_4761.
  • Another aspect of the invention relates to the use of mutants of the invention, preferably of mutants BP1 1, BP31 and BP25, more preferably of mutant BP25, for the production of solvents.
  • solvents means any solvent known in the state of the art, including mixtures of acetone, butanol, isopropanol and / or ethanol.
  • the solvent is butanol, that is, the main component of the solvent mixture obtained is butanol.
  • the solvents are acetone, butanol and ethanol (ABE), that is, the solvents produced comprise a mixture of these three.
  • ABE acetone, butanol and ethanol
  • the production of solvents by the mutants of the invention is carried out by means of an anaerobic fermentation process in the presence of a culture medium comprising a source of carbon or carbohydrates.
  • “Culture media” suitable for use in the present invention are all those known in the state of the art as appropriate for the growth, Kirtative activity and maintenance in cultivation of C. beijerinckii strains.
  • these culture media are, for example, but not limited to, P2, TGY, PT or TYA, preferably TYA.
  • the culture medium further comprises at least one organic acid, such as acetate and / or butyrate.
  • This organic acid can come from the acidogenic phase of the microorganism used in the fermentation or it can be added externally.
  • the amount of organic acid added to the culture is between 20 mM and 80 mM.
  • the addition of one or more organic acids increases the amount of solvents recovered after fermentation. In addition, it prevents the degeneration of the strain during the fermentation process, favoring its stability and avoiding the degeneration of the crop.
  • the culture medium may further comprise salts and / or buffers.
  • the culture medium is also supplemented with a carbon source, which may comprise, for example but not limited to, C6 sugars (such as glucose), C5 sugars (such as xylose and / or arabinose), or a mixture of both types of sugars
  • a carbon source may comprise, for example but not limited to, C6 sugars (such as glucose), C5 sugars (such as xylose and / or arabinose), or a mixture of both types of sugars
  • the carbon source comprises glucose, maltodextrin, xylobious, cellobiose, xylose and / or arabinose, or any combination thereof. More preferably, the carbon source comprises glucose, cellobiose, xylose and / or arabinose.
  • the carbon source comprises xylose, glucose or arabinose or any combination thereof, even more preferably it comprises glucose and arabinose, since the mutants of the present invention, especially the mutant BP25, are particularly useful for consuming these two sugars and in the case of BP25 even when both are present together in the medium (see Figs. 1 1 B and 12), thus producing high amounts of butanol.
  • the carbon source comprises xylose and glucose.
  • Examples of carbon sources that could be used in the present invention are, but are not limited to, waste products from the timber, forestry, paper, agricultural, livestock, fisheries, sugar, aquaculture, rice processing or the like, as well as products Solid urban waste. Therefore, the source of carbohydrates can be urban waste products, preferably urban organic waste products or "waste syrup", or vegetable biomass, such as corn, sugarcane, starch, wheat, soybeans, nutshells such as nuts , almonds or fatty fruits such as the fruit of the palm tree or avocado, etc. In another preferred embodiment the carbon source is selected from the list consisting of: glucose, ground corn, urban organic waste hydrolyzate, or vegetable biomass hydrolyzate.
  • glucose when used as the carbon source in the present invention, it is found in the culture medium at a concentration between, preferably, 0.5 and 100 g / l, more preferably 60 g / l.
  • ground corn or "corn mash" When ground corn or "corn mash" is used as the carbon source in the present invention, it is in the culture medium at a concentration of preferably between 0.1 and 50% (v / v), more preferably 25% (v / v), of the total volume of the medium.
  • the ground corn is pretreated with hydrolase enzymes, preferably amylases, to increase the soluble glucose and subsequently clarified (centrifuged) before being added to the culture medium as a source of carbon for fermentation.
  • the carbon source is hydrolyzed from urban organic waste.
  • urban organic waste hydrolyzate When urban organic waste hydrolyzate is used as a carbon source in the present invention, it is found in the culture medium at a concentration of between 0.1 and 25% (v / v), preferably 5% (v / v) or less, of the total volume medium.
  • the "idolized urban organic waste” is the product resulting from the enzymatic hydrolysis of the organic part of the solid urban waste.
  • the vegetable biomass hydrolyzate is corn straw hydrolyzate.
  • corn straw hydrolyzate is used as the carbon source in the present invention, it is found in the culture medium at a concentration between 0.1 and 25% (v / v), preferably 16% (v / v) or less, of the total volume of the medium.
  • the "corn straw hydrolyzate" is the product resulting from the enzymatic hydrolysis of the corn straw subjected to a preferably acid and vapor explosion pretreatment.
  • the source of carbon comprised in the culture medium is pretreated before being added to said medium. The objective is to transform it into a more accessible way for the fermentation process.
  • Pretreatment uses various techniques that include, but are not limited to, explosion of the fiber with ammonium, chemical treatment, steam explosion at elevated temperatures to alter the structure of cellulosic biomass and make cellulose more accessible, acid hydrolysis and / or Enzymatic hydrolysis, or any combination thereof.
  • the culture medium further comprises one or more of the following elements: yeast extract, tryptone, ammonium acetate, magnesium acetate, iron sulfate, potassium phosphate and / or magnesium sulfate.
  • the volume of culture medium used for fermentation in the present invention is preferably between 10 and 90% of the reactor capacity.
  • the amount of mutant strain employed for the fermentation in the present invention is preferably between 10 3 and 10 10 cells / ml, more preferably between 10 7 and 10 8 cells / ml.
  • Another aspect of the invention relates to a method for the production of solvents, hereinafter "method of the invention for the production of solvents", which comprises the following steps: to. fermenting the mutant strain of the invention, preferably BP1 1, BP31 or BP25, more preferably BP25, in the presence of a culture medium comprising a carbon source, and
  • step (a) is an anaerobic fermentation, that is, it is carried out in the absence of oxygen.
  • the culture medium suitable for the fermentation stage, as well as the carbon source included therein, are those described previously as useful for the present invention.
  • This fermentation of step (a) can occur, for example but not limited to, in batch, continuous, discontinuous, feed-batch or a combination of at least two of these processes.
  • step (a) takes place inside a bioreactor, preferably of industrial size, which more preferably has suitable means and systems coupled for monitoring and supply of, for example, culture medium, carbohydrates, producing strain and / or water, to the reaction.
  • step (a) is carried out at a temperature between 30 and 40 e C, preferably 37 e C, for a time between 30 and 275 hours, preferably for 72 hours, more preferably while stirring.
  • This agitation is preferably low agitation, that is, about 50 rpm.
  • the pH during the fermentation stage is maintained at or above 5, even more preferably the pH is between 5.5 and 6.
  • the solvent produced is butanol.
  • the solvents produced are acetone, butanol and ethanol (ABE).
  • the carbon source comprised in the culture medium employed in this method of the invention comprises glucose, maltodextrin, xylobiose, cellobiose, xylose and / or arabinose, or any combination thereof. More preferably, the carbon source comprises glucose, cellobiose, xylose and / or arabinose. More preferably, the carbon source comprises xylose, glucose or arabinose or any combination thereof, even more preferably it comprises glucose and arabinose. In another preferred embodiment, the carbon source comprises xylose and glucose. In a particular embodiment, the arabinose is L-arabinose and the xylose is D-xylose.
  • the source of carbon comprised in the culture medium employed in this method of the invention is selected from the list consisting of: glucose, ground corn, hydrolyzate of urban organic solid waste, or hydrolyzate of vegetable biomass, such and as described above herein.
  • the carbon source is hydrolyzed from urban organic solid waste.
  • the vegetable biomass hydrolyzate is corn straw hydrolyzate.
  • the concentration of urban organic solid waste hydrolyzate in the culture medium employed in this method of the invention is 5% (v / v) or less.
  • the concentration of corn straw hydrolyzate in the culture medium employed in this method of the invention is 16% (v / v) or less.
  • the culture medium employed in this method of the invention further comprises at least one of the following elements: yeast extract, tryptone, ammonium acetate, magnesium acetate, iron sulfate, potassium phosphate and / or sulfate of magnesium
  • the bioreactor in which the method for the production of solvents of the invention is taking place preferably further comprises one or more coupled systems for the extraction of the solvents produced, preferably butanol, by way of example, but not limited to, pervaporation, perstraction. , distillation, solvent extraction, reverse osmosis, adsorption, membrane separation, liquid-liquid extraction, gas stream, sweeping gas or the like.
  • step (b) of the solvent production method of the invention refers to the collection of the solvents obtained after the fermentation of step (a). Said recovery can be carried out by any method known in the art, including mechanical and / or manual methods, preferably those described in the previous paragraph.
  • FIG. 1 Analysis of the mortality of C. beijerinckii in the presence of different concentrations of ethyl methanesulfonate (EMS).
  • EMS is the mutagenic chemical agent used for the isolation of mutants of C. beijerinckii.
  • Mortality is determined by quantifying the number of colony forming units (CFUs) per milliliter of culture.
  • the cells were grown in a bottle, under conditions of anaerobiosis
  • the medium used for the culture was TYA-glucose, previously gasified with N 2 to ensure anaerobiosis.
  • FIG. 3 Butanol production by low acid mutants.
  • FIG. 4 Production of butanol from ground corn (corn mash).
  • B) The BP1 1 mutant was tested, against its parental strain, under the conditions described in A). The mutant has higher productivity and final butanol production.
  • FIG. 5 Growth of C. beijerinckii BA101 in urban solid waste hydrolyzate (waste syrup). The growth of the cells was monitored over time in a TYA medium with different concentrations of urban solid waste hydrolyzate. As seen in the figure, C. beijerinckii can grow in a medium containing up to 5% of the complex substrate. We also observe that increasing the concentration of urban solid waste hydrolyzate up to 10% is lethal to cells, which do not form colonies after the first 12 hours of culture.
  • TYA (-) TYA medium without glucose.
  • FIG. 6 Butanol production using hydrolyzate of urban solid waste as a carbon source.
  • the butanol production of the BA101 line in a TYA medium with different concentrations of urban solid waste hydrolyzate was analyzed in bottles of 50 ml of working volume.
  • BA101 can produce butanol in this culture medium, the production in the medium being maximum with 5% urban solid waste hydrolyzate.
  • Virtually all glucose present in this medium is consumed in the first 50 hours, with high productivity in reference to the production of butanol from this glucose.
  • No production is observed in TYA medium without glucose.
  • the results shown are the average of two independent experiments, with error bars representing the standard deviation.
  • FIG. 7 Production of butanol in a medium containing hydrolyzate of urban solid waste and the salts present in the TYA. Production was tested in a new culture medium containing only the salts present in the TYA (magnesium acetate, iron sulfate, potassium phosphate and magnesium sulfate) and 5% hydrolyzate of urban solid waste as a carbon source. The three strains tested produce butanol in this medium, and the production of the BP25 mutant is better than that of the parental strain BA101 (A). However, the production of the BP31 mutant does not improve the production of the parental strain in this medium (B). The data is the average of two independent experiments.
  • FIG. 8 Production of butanol of mutant BP11 in a medium containing hydrolyzate of urban solid waste (waste syrup).
  • Butanol production of the BP1 1 mutant was analyzed in a medium containing waste syrup as a carbon source.
  • the concentration of urban solid waste hydrolyzate present is approximately 1%, with an initial glucose concentration of around 4 g / l (A).
  • the cells were cultured to saturation in TYA medium with glucose, and this culture was used to inoculate bottles of medium containing TYA and the urban solid waste hydrolyzate as a carbon source.
  • the mutant BP1 1 produces more butanol than strain BA101 under the conditions tested, and both strains consume glucose in the first 24 hours (A).
  • FIG. 9 A) Viability of C. beijerinckii BA101 in corn straw hydrolyzate. The viability of BA101 in a medium containing TYA salts and different concentrations of corn straw hydrolyzate was determined. The cells were grown to saturation in TYA medium with glucose, and this culture was used to inoculate medium containing TYA salts and different concentrations of corn straw hydrolyzate. The viability was determined as CFUs / ml, and as seen in the figure, the cells normally grow when the corn hydrolyzate is in a concentration up to 16%.
  • FIG. 10 Butanol production using corn straw hydrolyzate as a carbon source.
  • all strains can use this substrate as a carbon source, and produce butanol.
  • the BP25 mutant produces more butanol than the parental strain, and it is observed that all the glucose in the medium is consumed in the first 48 hours.
  • the data shown are the average of two independent experiments.
  • FIG. 11 Butanol production using arabinose as a carbon source.
  • Strains BA101 (wt) and BP25 were analyzed for their ability to produce butanol in a TYA medium with arabinose (A) or arabinose and glucose (B) as a carbon source.
  • Butanol production was followed over time, and, as shown in A, the two strains can use arabinose to produce butanol.
  • glucose is consumed in the first 24 hours, while only the BP25 mutant consumes arabinose after the use of glucose.
  • Butanol production is better for the BP25 mutant than for its parental strain BA101 in case both sugars are present in the medium.
  • FIG. 12 Butanol production of strains BP11, BP25 and BP31 using arabinose as a carbon source.
  • Butanol production was followed over time, and, as seen in the figure, low acid mutants produce butanol from this C5 sugar more efficiently than strain BA101.
  • the mutant BP1 1 achieves higher production titres in the first hours, using arabinose more efficiently; however, both the BP25 mutant and the BP31 mutant reach a higher final production yield, also consuming more arabinose in the process.
  • FIG. 13 Butanol production of low acid mutants using xylose as a carbon source.
  • the butanol production of BA101 (wt) and the two low acid mutants BP25 and BP31 were analyzed in a medium containing xylose (A) or xylose and glucose (B) as a carbon source.
  • Butanol production was analyzed over time, and the results show that the three strains can use xylose as a carbon source to produce butanol (A), and that when there is glucose and xylose in the middle, the two sugars are used simultaneously and, in the case of mutants, they are consumed in the first 24 hours.
  • the mutants were generated by mutagenesis with the chemical ethyl methanesulfonate (EMS).
  • EMS chemical ethyl methanesulfonate
  • the appropriate EMS concentration was first defined to achieve a good proportion of mutagenesis / cell death in Clostridium beijerinckii.
  • the concentration of EMS for Clostridium beijerinckii mutagenesis was set at 15 ⁇ for 1 ml of culture with an OD 660 of 1. This treatment causes the death of about 90% of the cells.
  • Mutagenesis was carried out by culturing the cells overnight in anaerobiosis.
  • TYA composition detailed in example 8
  • 60 g / l glucose supplemented with 60 g / l glucose, and gasified with N 2 was used as culture medium to remove all 0 2 and ensure anaerobic conditions.
  • An overnight culture was used to inoculate a bottle of TYA medium at an optical density at 660 (OD 660 ) of 0.1.
  • OD 660 optical density at 660 nm
  • one milliliter of culture is collected, centrifuged and treated with 15 ⁇ of EMS for one hour.
  • the cells are washed three times with TYA, and finally incubated in 5 ml of fresh medium for two hours (regeneration time). After regeneration, the cells are seeded in a suitable medium to proceed with the selection.
  • the cells that cause less acidity in the culture medium may be diverting the acids to solvents more quickly, so that They can produce more solvents (butanol).
  • the cells that cause a lower acidity of the culture medium selective plates are used, with a pH indicator, Bromocresol Purple, which is purple at basic pH, and which turns yellow at acidic pH. In this way, the cells that most acidify the medium form colonies with a yellow halo around them (Fig. 2). Less acidic cells (higher pH in the acidic range) do not change the color of the plates, keeping them purple.
  • BA101 is a mutant of 8052, obtained by chemical mutagenesis, and selected for its greater amylolytic capacity, which has been described to produce more butanol than the wild strain. Referring to the selection used, say that both strains produce the yellow halo around the colony in purple bromocresol plates, although the halo of strain 8052 is more pronounced.
  • mutants For selection, after mutagenesis, cells cannot be sown directly in the selective medium with Bromocresol Purple, due to the toxicity of this medium, which does not allow the growth of healthy colonies.
  • the mutants were first seeded in TYA-glucose medium, and already isolated mutants were plated with Purple Bromocresol plates to isolate those that had a lower yellow halo. More than 5000 mutants were seeded on the selective plates, and about 50 mutants were selected lacking yellow halo around the colony, for a subsequent test of their butanol-producing capacity.
  • the cultures were grown in TYA with glucose (60 g / l), at 37 e C and for 72 hours. In each case, aliquots were taken at different times (at least four points) to analyze the production of butanol.
  • the samples, of 1.5 ml, were taken using a syringe and needle, through a septum, so that the anaerobic atmosphere of the culture was not interrupted.
  • Acidic water (0.05M H 2 S0 4 ) is used as the mobile phase, and the retention times (in minutes) for the different compounds is 8.6 for glucose, 21.6 for butyrate, and 36.2 for butanol .
  • an internal standard was used that included known concentrations of the different metabolites.
  • the results obtained show that three of the low acidity mutants (mutants BP1 1, BP25 and BP31) produce more butanol than their respective parents.
  • the parental strain of the mutant BP1 1 is the C. beijerinckii 8052 strain, while the parental strain of the BP25 and BP31 mutants is the C. beijerinckii BA101 strain (Fig. 3).
  • wild strain 8052 does not produce butanol, since the pH of the crop falls below 5 during growth, giving rise to the phenomenon known as "acid crash", which leads to a decrease in the growth of cells and an inhibition of butanol production.
  • Solid urban waste hydrolyzate is the resulting product after enzymatic hydrolysis of the organic part of urban solid waste.
  • a feasibility study was first carried out with increasing concentrations (0%, 1.5%, 5% and 10%). Growth was analyzed by determining the number of colony forming units (CFU / ml) per milliliter of culture, over time. To determine the CFUs / ml, aliquots of the culture were taken at different times, and, after diluting properly, they were plated on TY A-glucose plates, so that the colonies were sufficiently isolated to proceed to count them. These tests were done with strain BA101, and the results show that C.
  • the sugar composition of this medium was analyzed by chromatography (HPLC), using an Aminex HPX-87H column (300 x 7.8 mm).
  • HPLC chromatography
  • the analysis method uses acidulated water as a mobile phase, a column temperature of 60 e C, and a detector temperature of 40 e C.
  • the analysis of sugars after Fermentation indicated that the strains used can consume the C6 and C5 sugars present in this medium.
  • mutant BP1 1 produces butanol using this complex substrate as a carbon source, and produces it with better titres than strain BA101.
  • glucose present in this medium was consumed in the first 24 hours, and that both strains consume it equally.
  • the second of the waste substrates used was the corn straw hydrolyzate. This is the result of enzymatic hydrolysis of corn straw undergoing acid treatment and steam explosion.
  • Corn straw is a type of agricultural waste that has been widely studied as a substrate (after enzymatic hydrolysis) for the production of second generation bio-ethanol.
  • this substrate as a carbon source (composition of the medium in example 8)
  • the viability of strain BA101 was analyzed.
  • Example 6 Production of butanol from C5 sugars with the generated mutants.
  • the results obtained in fermentations with complex substrates showed that C. beijer ⁇ nckii strains can consume the C5 present in these substrates.
  • both strain BA101 and mutants BP25 and BP31 were grown in TYA medium containing different C5 sugars as substrates, and butanol production was analyzed.
  • the C5 chosen for the test were L-arabinose and D-xylose.
  • liquid chromatography HPLC
  • mutants produce more butanol than strain BA101, and mutant BP1 1, although initially consumes arabinose faster, after 48 hours slows down its consumption of arabinose and butanol production, on the contrary than the BP25 and BP31 mutants that continue to produce butanol during the 72 hours that the fermentation analysis was followed.
  • the genomic DNA of the three low acid mutants was sequenced, and the genome sequence was compared with that of their corresponding parental strain. Thus, the genes that appear mutated in each strain were identified. The results showed that there are several biological processes that may be altered in the mutants, and lead to the phenotype of increased butanol production.
  • the BP1 1 mutant shows a mutation in the Cbei_1540 gene, which encodes a pppGpp synthase, and seems the most likely to explain the overproducer phenotype of this mutant, compared to its parental strain.
  • pppGpp is an intracellular signal that causes a stress response by activating the RpoS transcriptional factor.
  • the BP25 mutant shows 25 mutations. Among the mutations that could cause the phenotype studied, several have been identified that could affect the butanol production process. There are several genes involved in chemotaxis that appear mutated, which suggests that chemotaxis may be important for the butanol production process. On the other hand, maintaining an adequate intracellular redox state is essential for the production of butanol, as there are several cofactors that change their redox state during the production process. This mutant shows three genes (Cbei_0316, Cbei_1206 and Cbei_1472) that are involved in the maintenance of the cellular redox state; Mutations in these genes may be responsible for the observed phenotype.
  • the BP31 mutant shows six mutations with respect to its parental strain, however, only three of them are non-conservative, being therefore responsible for the observed phenotype.
  • the one that seems to have more relevance is the one that appears in the Cbei_2475 gene, a gene that is also mutated in the mutant BP1 1, and whose function, and relevance with respect to the butanol production phenotype has already been described.
  • the other two mutations appear in the genes Cbei_0436 and Cbei_1397.
  • the first codes for a histidine kinase, involved in signal transduction processes.
  • the butanol production process is closely linked to the sporulation process, which is highly regulated by histidine kinase-mediated phosphorylations. However, this one in particular is not described as implied in these processes
  • the second of these genes codes for a transposase, which a priori does not seem involved in the butanol production process.
  • Example 8 Composition of the different culture media used in the tests.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to mutant strains of Clostridium beijerinckii, particularly produced by chemical mutagenesis of the parent strains C. beijerinckii BA101 and NCIMB 8052. Said mutants can produce more butanol, by means of anaerobic fermentation processes, than the parent strain from which same originate, using different substrates as a carbon source. Therefore, the invention also relates to the use of said mutant strains in methods for producing acetone, butanol and ethanol (ABE) by means of fermentation, and to a method for obtaining said mutant strains.

Description

MUTANTES DE CLOSTRIDIUM BEIJERINCKII HIPERPRODUCTORES DE  MUTANTS OF CLOSTRIDIUM BEIJERINCKII HYPERPRODUCERS OF
BUTANOL  BUTANOL
La presente invención se encuadra dentro del campo de los procesos industriales de producción de butanol, preferiblemente de acetona, butanol y etanol (ABE), por fermentación con cepas de Clostridium. En concreto, la invención se refiere a cepas mutantes de Clostridium beijerinckii capaces de producir más butanol que la cepa parental de la que proceden, utilizando distintos sustratos como fuente de carbono. La invención también se refiere al empleo de dichas cepas mutantes en métodos de producción de ABE por fermentación y a un método de obtención de dichas cepas mutantes. The present invention falls within the field of industrial processes for the production of butanol, preferably acetone, butanol and ethanol (ABE), by fermentation with strains of Clostridium. Specifically, the invention relates to mutant strains of Clostridium beijerinckii capable of producing more butanol than the parental strain from which they originate, using different substrates as a carbon source. The invention also relates to the use of said mutant strains in methods of production of ABE by fermentation and to a method of obtaining said mutant strains.
ESTADO DE LA TÉCNICA El butanol es un importante químico industrial. Comparado con el etanol, el butanol es más miscible en gasolina y diésel, tiene una menor presión de vapor y es menos miscible en agua. Además contiene alrededor de un 22% de oxígeno, lo que hace que cuando se emplea como biocombustible resulte en una combustión más completa produciendo una menor cantidad de humo. Estas cualidades hacen que sea un extensor de combustible superior al etanol. El butanol se emplea además como sustancia química en la industria del plástico y como extractante alimentario en la industria alimentaria y del sabor. STATE OF THE TECHNIQUE Butanol is an important industrial chemical. Compared to ethanol, butanol is more miscible in gasoline and diesel, has a lower vapor pressure and is less miscible in water. It also contains about 22% oxygen, which means that when used as a biofuel it results in a more complete combustion producing a smaller amount of smoke. These qualities make it a fuel extender superior to ethanol. Butanol is also used as a chemical in the plastics industry and as a food extractant in the food and flavor industry.
Por ello, hay un creciente interés en conseguir una producción eficiente de este biocombustible líquido a partir de biomasa barata y renovable, lo que supondría una solución a varios problemas simultáneamente: asegurar el suministro mundial de biocombustibles, porque podrían ser producidos localmente en sistemas adecuados, reducir los gases de efecto invernadero, y reciclar los productos deshecho que se producen como resultado de la actividad de otras industrias o incluso de las ciudades. Therefore, there is a growing interest in achieving an efficient production of this liquid biofuel from cheap and renewable biomass, which would be a solution to several problems simultaneously: ensuring the global supply of biofuels, because they could be produced locally in suitable systems, reduce greenhouse gases, and recycle waste products that are produced as a result of the activity of other industries or even cities.
En los últimos años los procesos de fermentación para la producción de acetona/butanol/etanol (ABE) han recibido una considerable atención por ser procesos que permiten producir productos químicos básicos desde biomasa. La fermentación ABE es la más ampliamente estudiada de entre todos los procesos de fermentación anaeróbica. Se sabe que algunas cepas de Clostrídium producen butanol a partir de carbohidratos a través del proceso llamado fermentación ABE. Durante esta fermentación se producen tres disolventes, acetona, butanol y etanol, en una proporción 3:6:1 . La cepa de Clostrídium más comúnmente utilizada para fermentación ABE es Clostrídium acetobutylicum, que es la bacteria modelo de Clostridios solventogénicos. Sin embargo, esta cepa tiene los genes implicados en la producción de butanol en un megaplásmido, pudiendo originarse inestabilidades genéticas de la cepa. In recent years, fermentation processes for the production of acetone / butanol / ethanol (ABE) have received considerable attention because they are processes that allow the production of basic chemicals from biomass. ABE fermentation is the most widely studied among all anaerobic fermentation processes. It is known that some strains of Clostridium produce butanol from carbohydrates through the process called ABE fermentation. During this fermentation three solvents, acetone, butanol and ethanol, are produced in a 3: 6: 1 ratio. The most commonly used strain of Clostridium for ABE fermentation is Clostridium acetobutylicum, which is the model bacterium of Clostroidios solventogenic. However, this strain has the genes involved in the production of butanol in a megaplasmid, and genetic instabilities of the strain can arise.
Otro Clostridio solventogénico muy relevante es C. beijerínckii, el cual posee los genes de producción de butanol en el cromosoma, lo que la hace una estirpe más robusta para su uso industrial. Además, esta estirpe es menos proclive a sufrir el fenómeno conocido como "acid crash", que hace que las células dejen de producir butanol y empiecen a esporular. Las ventajas de emplear C. beijerínckii en lugar de C. acetobutylicum incluyen que la primera puede usar un rango más amplio de sustratos y llevar a cabo la fermentación en un mejor rango de pH, posee la capacidad de producir butanol durante su fase de crecimiento exponencial y tiene una mayor estabilidad en lo que se refiere a la degeneración microbiana. Además, como ya se ha indicado, los genes solventogénicos en C. beijerínckii están localizados en el cromosoma, mientras que en C. acetobutylicum estos genes se localizan en un plásmido, lo que hace a C. beijerínckii más estable genéticamente. Another very relevant solvent isogenic Clostridio is C. beijerínckii, which has the butanol production genes on the chromosome, which makes it a more robust line for industrial use. In addition, this lineage is less likely to suffer the phenomenon known as "acid crash", which causes cells to stop producing butanol and begin to sporulate. The advantages of using C. beijerínckii instead of C. acetobutylicum include that the former can use a wider range of substrates and carry out fermentation in a better pH range, has the ability to produce butanol during its exponential growth phase and it has greater stability when it comes to microbial degeneration. In addition, as already indicated, the solvent genes in C. beijerínckii are located on the chromosome, while in C. acetobutylicum these genes are located in a plasmid, which makes C. beijerínckii more genetically stable.
Durante el curso de la fermentación ABE las células pasan, en primer lugar, por una fase conocida como "fase acidogénica", en la cual se producen los ácidos (acético y butírico) que serán convertidos en los disolventes (butanol, acetona y etanol) durante la fase solventogénica. Ambas fases están muy conectadas, y los genes que se expresan durante la solventogénesis están regulados para su expresión tras la acidogénesis. During the course of ABE fermentation, the cells first pass through a phase known as the "acidogenic phase", in which the acids (acetic and butyric) are produced that will be converted into the solvents (butanol, acetone and ethanol) during the solvent phase. Both phases are very connected, and the genes that are expressed during the solvent are regulated for expression after acidogenesis.
Por lo tanto, la fermentación de carbohidratos a acetona, butanol y etanol por microorganismos solventogénicos, incluyendo microorganismos del género Clostrídium, es conocida. Así, por ejemplo, la patente US5192673 describe un proceso de fermentación mejorado para producir altos niveles de butanol usando una cepa mutante de C. acetobutylicum denominada Clostrídium acetobutylicum ATCC 55025. La patente US6358717 describe la producción de disolventes ABE mediante fermentación anaeróbica de una cepa mutante de C. beijerínckii denominada Clostrídium beijerínckii BA101 ATCC No. PTA-1550 en un medio nutritivo con carbohidratos asimilables y la posterior recuperación de butanol, acetona y etanol. Esta cepa mutante BA101 se describe como una cepa hiperproductora de butanol obtenida mediante mutagénesis de la cepa silvestre C. beijerínckii NCIMB 8052 (Annous, B. A., H. P. Blaschek. 1991 . Appl. Environ. Microbiol. 57:2544-2548; Formanek, J., R. Mackie, H. P. Blaschek. 1997. Appl. Environ. Microbiol. 63:2306- 2310). Por otro lado, la solicitud de patente AU2014216024 describe cepas solventogénicas de Clostrídium modificadas genéticamente que comprenden una expresión o estructura génica alterada que resulta en una eficiencia de producción de butanol incrementada. En algunas realizaciones la especie de Clostrídium modificada según se describe en dicho documento es C. beijerínckii. Therefore, the fermentation of carbohydrates to acetone, butanol and ethanol by solvent microorganisms, including microorganisms of the genus Clostridium, is known. Thus, for example, US5192673 describes an improved fermentation process to produce high levels of butanol using a mutant strain of C. acetobutylicum called Clostridium acetobutylicum ATCC 55025. US6358717 describes the production of ABE solvents by anaerobic fermentation of a mutant strain of C. beijerínckii called Clostrídium beijerínckii BA101 ATCC No. PTA-1550 in a nutrient medium with assimilable carbohydrates and the subsequent recovery of butanol, acetone and ethanol. This mutant strain BA101 is described as a hyperproductive strain of butanol obtained by mutagenesis of the wild strain C. beijerínckii NCIMB 8052 (Annous, BA, HP Blaschek. 1991. Appl. Environ. Microbiol. 57: 2544-2548; Formanek, J. , R. Mackie, HP Blaschek. 1997. Appl. Environ. Microbiol. 63: 2306-2310). On the other hand, patent application AU2014216024 describes genetically modified Clostridium solvent strains comprising an altered gene expression or structure that results in increased butanol production efficiency. In some embodiments, the modified Clostridium species as described herein is C. beijerínckii.
También se ha estudiado la ruta de biosíntesis de butanol en los Clostridia productores de estos disolventes y se han purificado y caracterizado algunas de las enzimas implicadas en el proceso (Boynton et al., 1996, Journal of Bacteriology 178, 3015- 3024; Durre et al., 1995, Fems Microbiol Rev 17, 251 262). The route of butanol biosynthesis in the Clostridia producing these solvents has also been studied and some of the enzymes involved in the process have been purified and characterized (Boynton et al., 1996, Journal of Bacteriology 178, 3015-3024; Durre et al., 1995, Fems Microbiol Rev 17, 251 262).
Sin embargo, sigue existiendo la necesidad de diseñar microorganismos solventogénicos mejorados que presenten una eficiencia incrementada en la producción de butanol a partir de diversos sustratos, que sean cepas estables y con un rendimiento de producción mejorado con respecto a las cepas actualmente existentes. Además, uno de los problemas asociados a la fermentación ABE por C. acetobutylicum y C. beijerínckii es la toxicidad por butanol en el cultivo. Esta toxicidad requiere la eliminación continua de los productos tóxicos durante el proceso para conseguir una máxima producción de disolventes. Así, existe la necesidad de desarrollar microorganismos solventogénicos mejorados capaces de producir disolventes, en particular ABE, más en particular butanol, con un mayor rendimiento y una mayor tolerancia al producto y preferiblemente también al sustrato. However, there is still a need to design improved solvent-forming microorganisms that have an increased efficiency in the production of butanol from various substrates, which are stable strains and with an improved production yield with respect to the currently existing strains. In addition, one of the problems associated with ABE fermentation by C. acetobutylicum and C. beijerínckii is butanol toxicity in the culture. This toxicity requires the continuous elimination of toxic products during the process to achieve maximum solvent production. Thus, there is a need to develop improved solvent-forming microorganisms capable of producing solvents, in particular ABE, more particularly butanol, with higher yield and greater tolerance to the product and preferably also to the substrate.
Por lo tanto, para que la producción de butanol a nivel industrial sea rentable, se necesita disponer de microorganismos capaces de incrementar los niveles de butanol producidos durante la fermentación, o capaces de producir butanol más rápidamente, así como de utilizar una diversidad de sustratos de partida. Therefore, for the production of butanol at the industrial level to be profitable, it is necessary to have microorganisms capable of increasing the levels of butanol produced during fermentation, or capable of producing butanol more quickly, as well as using a variety of substrates of departure.
DESCRIPCIÓN DE LA INVENCIÓN La presente invención proporciona tres mutantes de la especie Clostrídium beijerínckii obtenidos mediante mutagénesis química aleatoria de las cepas parentales C. beijerínckii BA101 y NCIMB 8052, que son capaces de producir más butanol o de producirlo más eficientemente que sus cepas parentales utilizando distintos sustratos como fuente de carbono y bajo diversas condiciones. DESCRIPTION OF THE INVENTION The present invention provides three mutants of the Clostrídium beijerínckii species obtained by random chemical mutagenesis of the parental strains C. beijerínckii BA101 and NCIMB 8052, which are capable of producing more butanol or producing it more efficiently than their parental strains using different substrates as a source of carbon and under various conditions.
Por tanto, la presente invención se refiere a tres cepas mutantes de C. beijerínckii que producen significativamente más butanol, o bien que son capaces de producirlo más rápidamente, que las cepas parentales de las que proceden, incrementando así la productividad del proceso fermentativo para la producción de ABE. Therefore, the present invention relates to three mutant strains of C. beijerínckii that produce significantly more butanol, or that are capable of producing it more rapidly, than the parental strains from which they originate, thus increasing the productivity of the fermentation process for ABE production.
Estos mutantes son capaces además de mantener un pH más alto, dentro del rango ácido, durante su crecimiento. Es decir, estos mutantes presentan una menor acidez o acidogénesis que sus cepas parentales, por lo que reducen el riesgo de que se produzca el efecto conocido como "acid crash" que hace que las células dejen de producir butanol y empiecen a esporular. Además, el que causen menos acidez en el medio de cultivo significa que pueden estar derivando los ácidos hacia disolventes más rápidamente, de modo que pueden producir una mayor cantidad de éstos (butanol, preferiblemente ABE) en menor tiempo. These mutants are also capable of maintaining a higher pH, within the acidic range, during their growth. That is, these mutants have a lower acidity or acidogenesis than their parental strains, so they reduce the risk of the effect known as "acid crash" that causes cells to stop producing butanol and start sporulating. In addition, causing less acidity in the culture medium means that acids may be drifting to solvents more quickly, so that they can produce a greater amount of these (butanol, preferably ABE) in less time.
Los mutantes de la invención pueden además utilizar como fuente de carbono para la fermentación tanto azúcares C6 (por ejemplo, glucosa) como C5 (por ejemplo, xilosa y arabinosa), y los consumen más eficientemente que sus correspondientes cepas parentales. Estos mutantes pueden incluso, bajo ciertas condiciones, consumir ambos tipos de azúcares, C5 y C6, simultáneamente. Asimismo, pueden utilizar sustratos complejos de interés industrial, como por ejemplo desechos urbanos o vegetales, con lo que favorecen el reciclado y aprovechamiento de los productos de deshecho derivados de otras industrias o de la actividad urbana. A estas tres cepas mutantes se les ha denominado en la presente invención BP1 1 , BP25 y BP31 , donde la primera cepa procede de la cepa parental C. beijerínckii NCIMB 8052 y las dos últimas cepas proceden de la cepa parental C. beijerínckii BA101 . Estos tres mutantes descritos en la invención suponen, por tanto, una solución a la necesidad de disponer de microorganismos solventogénicos mejorados que presenten una eficiencia y rendimiento incrementados en la producción de butanol por fermentación a partir de diferentes tipos de carbohidratos. Se propone, por consiguiente, en la presente invención el empleo de estos tres mutantes para la producción de disolventes mediante fermentación anaeróbica, preferiblemente para la producción de butanol, más preferiblemente para la producción de acetona, butanol y etanol (ABE). The mutants of the invention can also use both C6 (for example, glucose) and C5 (for example, xylose and arabinose) sugars as fermentation carbon, and consume them more efficiently than their corresponding parental strains. These mutants can even, under certain conditions, consume both types of sugars, C5 and C6, simultaneously. They can also use complex substrates of industrial interest, such as urban or plant wastes, which favor the recycling and use of waste products derived from other industries or from urban activity. These three mutant strains have been referred to in the present invention as BP1 1, BP25 and BP31, where the first strain comes from the parental strain C. beijerínckii NCIMB 8052 and the last two strains are derived from the parental strain C. beijerínckii BA101. These three mutants described in the invention therefore represent a solution to the need for improved solvent-forming microorganisms that have increased efficiency and yield in the production of butanol by fermentation from different types of carbohydrates. It is therefore proposed in the present invention the use of these three mutants for the production of solvents by anaerobic fermentation, preferably for the production of butanol, more preferably for the production of acetone, butanol and ethanol (ABE).
Para la generación de los tres mutantes concretos descritos en la presente invención, los inventores han desarrollado y puesto a punto un procedimiento de mutagénesis inducida en células parentales de C. beijerínckii. La optimización de este procedimiento pasa, entre otros factores, por identificar las células parentales de partida adecuadas, el agente mutagénico apropiado y por definir la concentración adecuada del mismo para lograr una proporción óptima de mutagénesis/muerte celular en C. beijerínckii. Otros mutantes de la especie C. beijerínckii que presenten baja acidogénesis y/o capacidad mejorada de producción de butanol distintos a los descritos en la presente invención podrían obtenerse también por medio de este procedimiento. For the generation of the three specific mutants described in the present invention, the inventors have developed and developed a method of induced mutagenesis in parental cells of C. beijerínckii. The optimization of this procedure involves, among other factors, identifying the appropriate starting parental cells, the appropriate mutagenic agent and defining the appropriate concentration thereof to achieve an optimal ratio of mutagenesis / cell death in C. beijerínckii. Other mutants of the C. beijerínckii species that exhibit low acidogenesis and / or improved butanol production capacity other than those described in the present invention could also be obtained by this procedure.
Por ello, en un primer aspecto la presente invención se refiere a un método para la obtención o generación de cepas mutantes de la especie C. beijerínckii con baja acidogénesis y/o con capacidad mejorada de producción de butanol, preferiblemente de ABE, a partir de carbohidratos mediante fermentación anaeróbica, donde dicho método comprende las etapas de: a. inducir mutagénesis química en una célula de C. beijerínckii, preferiblemente en la cepa C. beijerínckii NCIMB 8052 o C. beijerínckii BA101 , más preferiblemente en C. beijerínckii NCIMB 8052, y Therefore, in a first aspect the present invention relates to a method for obtaining or generating mutant strains of the species C. beijerínckii with low acidogenesis and / or with improved butanol production capacity, preferably ABE, from carbohydrates by anaerobic fermentation, where said method comprises the steps of: a. induce chemical mutagenesis in a cell of C. beijerínckii, preferably in the strain C. beijerínckii NCIMB 8052 or C. beijerínckii BA101, more preferably in C. beijerínckii NCIMB 8052, and
b. seleccionar aquellos mutantes producidos tras la etapa (a) que presentan baja acidogénesis, donde dicha selección se realiza mediante el cultivo de los mutantes en placas selectivas que comprenden un indicador de pH, donde la mutagénesis química de la etapa (a) se realiza incubando la célula, o un cultivo celular comprendiendo la misma, con el mutágeno químico etil-metano- sulfonato (EMS) a una concentración de, preferiblemente 15 μΙ de EMS por mi de cultivo, durante preferiblemente 1 hora, y  b. select those mutants produced after stage (a) that have low acidogenesis, where said selection is made by culturing the mutants in selective plates comprising a pH indicator, where the chemical mutagenesis of stage (a) is performed by incubating the cell, or a cell culture comprising the same, with the chemical mutagen ethyl methanesulfonate (EMS) at a concentration of, preferably 15 μΙ of EMS per ml of culture, for preferably 1 hour, and
donde el indicador de pH de la etapa (b) es, preferiblemente, Bromocresol Púrpura. Se entiende por mutantes "de baja o menor acidez o acidogénesis" aquellas células de la especie C. beijerinckii que bajan el pH del medio de cultivo durante su crecimiento en menor medida que la cepa parental de la que proceden, transcurrido el mismo o similar periodo de tiempo en cultivo, en presencia de un medio de cultivo de idéntica o similar composición y bajo unas condiciones de cultivo (Ta, pH al inicio del cultivo, anaerobiosis, agitación, volumen del medio, saturación, densidad óptica, etc.) idénticas o similares. Preferiblemente, los mutantes que presentan "baja o menor acidez o acidogénesis" de acuerdo con la invención son aquellos que mantienen el pH del medio de cultivo por encima de 5 durante su crecimiento. Esta propiedad de las células se puede determinar, por ejemplo pero sin limitarnos, mediante el cultivo in vitro de las mismas en placas selectivas con indicador de pH como se ha indicado más arriba. where the pH indicator of step (b) is preferably Bromocresol Purple. "Low or lower acidity or acidogenesis" mutants are understood as those cells of the species C. beijerinckii that lower the pH of the culture medium during its growth to a lesser extent than the parental strain from which they originate, after the same or similar period of time in culture, in the presence of a culture medium of identical or similar composition and under culture conditions (T a , pH at the beginning of the culture, anaerobiosis, agitation, volume of the medium, saturation, optical density, etc.) identical or similar. Preferably, the mutants that have "low or lower acidity or acidogenesis" according to the invention are those that maintain the pH of the culture medium above 5 during growth. This property of the cells can be determined, for example but not limited to, by in vitro culture of the same in selective plates with pH indicator as indicated above.
Se entiende por mutantes con "capacidad mejorada de producción de butanol" aquellos mutantes que producen más cantidad de butanol, preferiblemente en g/l, que la cepa parental de C. beijerinckii de la que proceden, transcurrido el mismo o similar periodo de tiempo de fermentación, bajo las mismas o similares condiciones de fermentación (Ta, pH, anaerobiosis, agitación, volumen del medio, saturación, densidad óptica, etc.) y en presencia de un medio de cultivo comprendiendo una fuente de carbono o carbohidratos de la misma o similar composición. Así, los mutantes con capacidad mejorada de producción de butanol dan lugar a un mayor rendimiento del proceso de fermentación para la producción de butanol, en comparación con el rendimiento obtenido cuando se emplea la cepa parental de C. beijerinckii. Los mutantes con capacidad mejorada de producción de butanol utilizan por tanto más eficientemente la fuente de carbono empleada como sustrato. La eficiencia incrementada o capacidad mejorada de producción de butanol se puede determinar mediante una variedad de métodos conocidos en el estado de la técnica como por ejemplo, pero sin limitarnos, midiendo la concentración (peso/volumen) del disolvente producido en el medio de fermentación, o el rendimiento (peso/peso) del disolvente por cantidad de sustrato, o el ratio de formación de disolvente (peso/volumen/tiempo). A modo de ejemplo, estas medidas de productos o disolventes se pueden llevar a cabo por HPLC, espectrometría de masas, inmunoensayo, ensayos de actividad o cualquier otro método conocido por los expertos en la materia. Mutants with "improved butanol production capacity" are understood as those mutants that produce more butanol, preferably in g / l, than the parental strain of C. beijerinckii from which they originate, after the same or similar period of time fermentation, under the same or similar fermentation conditions (T a , pH, anaerobiosis, agitation, volume of the medium, saturation, optical density, etc.) and in the presence of a culture medium comprising a source of carbon or carbohydrates thereof or similar composition. Thus, mutants with improved butanol production capacity result in a higher yield of the fermentation process for the production of butanol, compared to the yield obtained when the parental strain of C. beijerinckii is used. Mutants with improved butanol production capacity therefore use the carbon source used as a substrate more efficiently. The increased efficiency or improved production capacity of butanol can be determined by a variety of methods known in the state of the art such as, but not limited to, by measuring the concentration (weight / volume) of the solvent produced in the fermentation medium, or the yield (weight / weight) of the solvent per amount of substrate, or the ratio of solvent formation (weight / volume / time). By way of example, these product or solvent measurements can be carried out by HPLC, mass spectrometry, immunoassay, activity tests or any other method known to those skilled in the art.
El razonamiento para asumir que los mutantes son hiper- o sobre-productores de butanol o que presentan capacidad mejorada de producción de butanol en base a la baja acidez que provocan en el medio de cultivo es que las células que acidifican menos el medio pueden estar derivando los ácidos hacia disolventes más rápidamente, de modo que pueden producir una mayor cantidad de éstos (butanol, preferiblemente ABE) en menor tiempo. El "Bromocresol Púrpura", preferiblemente empleado en la etapa (b) de este método de generación de mutantes, es un indicador orgánico para la valoración ácido-base cuyo intervalo de transición de pH oscila entre 5,2 y 6,8, virando de amarillo a púrpura en el rango mencionado. Así, es morado a pH básico y se vuelve amarillo a pH ácido. De este modo, las células cultivadas en presencia de este compuesto que más acidifican el medio forman colonias con un halo amarillo alrededor, mientras que las células menos ácidas (es decir, aquellas que mantienen el medio a un mayor pH, preferiblemente dentro del rango ácido) no cambian el color de las placas, manteniéndolas moradas. Por lo tanto, cuando se usa este compuesto en la etapa (b) del método descrito, se seleccionan aquellos mutantes que presentan un menor halo amarillo o que carecen de él, manteniendo el color morado de las placas de cultivo. The reasoning for assuming that the mutants are hyper- or over-producing butanol or that they have improved butanol production capacity based on the low acidity they cause in the culture medium is that the acidifying cells less the medium may be drifting acids to solvents more quickly, so that they can produce a greater amount of these (butanol, preferably ABE) in less time. The "Purple Bromocresol", preferably used in step (b) of this method of mutant generation, is an organic indicator for acid-base titration whose pH transition range ranges from 5.2 to 6.8, turning from Yellow to purple in the mentioned range. Thus, it is purple at basic pH and turns yellow at acidic pH. Thus, cells grown in the presence of this compound that most acidify the medium form colonies with a yellow halo around, while the less acidic cells (i.e., those that maintain the medium at a higher pH, preferably within the acidic range ) do not change the color of the plates, keeping them purple. Therefore, when this compound is used in step (b) of the described method, those mutants that have a smaller or less yellow halo are selected, maintaining the purple color of the culture plates.
Cuando se emplea Bromocresol Púrpura como indicador de pH para la selección de la etapa (b), las células no se pueden sembrar directamente en dicho medio selectivo debido a que su toxicidad no permite el crecimiento de colonias saludables. Por ello, en primer lugar los mutantes obtenidos tras la etapa (a) se deben sembrar en un medio de cultivo estándar para el crecimiento de C. beijerínckii, por ejemplo, pero sin limitarnos en un medio comprendiendo extracto de levadura, triptona, acetato de amonio, acetato de magnesio, sulfato de hierro, fosfato potásico y/o sulfato de magnesio, y una fuente de carbono, por ejemplo, glucosa. Así, se obtienen colonias con suficiente biomasa para resembrar a continuación las placas selectivas. Posteriormente, los mutantes así crecidos se aislan y se resiembran en las placas comprendiendo Bromocresol Púrpura para finalmente aislar y seleccionar aquellos mutantes que generen un menor halo amarillo en relación a su cepa parental o una ausencia del mismo. When Bromocresol Purple is used as a pH indicator for the selection of stage (b), the cells cannot be sown directly in said selective medium because their toxicity does not allow the growth of healthy colonies. Therefore, first of all the mutants obtained after step (a) must be sown in a standard culture medium for the growth of C. beijerínckii, for example, but not limited to a medium comprising yeast extract, tryptone, acetate ammonium, magnesium acetate, iron sulfate, potassium phosphate and / or magnesium sulfate, and a carbon source, for example, glucose. Thus, colonies with sufficient biomass are obtained to then reseed the selective plates. Subsequently, the mutants thus grown are isolated and re-plated on the plates comprising Purple Bromocresol to finally isolate and select those mutants that generate a lower yellow halo in relation to their parental strain or an absence thereof.
El término "mutágeno químico" se refiere a un agente químico que incrementa la frecuencia de mutación por encima de la tasa de mutación espontánea. The term "chemical mutagen" refers to a chemical agent that increases the frequency of mutation above the rate of spontaneous mutation.
Otro aspecto de la invención se refiere a una cepa mutante de la especie C. beijerínckii con baja acidogénesis o acidez y/o con capacidad mejorada de producción de butanol, preferiblemente de ABE, a partir de carbohidratos mediante fermentación anaeróbica, producida, obtenible u obtenida por el método de generación de mutantes descrito anteriormente en la presente invención. Another aspect of the invention relates to a mutant strain of the species C. beijerínckii with low acidity or acidity and / or with improved butanol production capacity, preferably ABE, from carbohydrates by anaerobic fermentation, produced, obtainable or obtained by the mutant generation method described above in the present invention.
Otro aspecto de la invención se refiere a una cepa o célula mutante de C. beijerinckii (preferiblemente obtenida por mutagénesis química de la cepa C. beijerinckii NCIMB 8052) caracterizada porque dicha cepa mutante comprende en su genoma las siguientes mutaciones con respecto al genoma de la cepa parental C. beijerinckii NCIMB 8052: Another aspect of the invention relates to a mutant strain or cell of C. beijerinckii (preferably obtained by chemical mutagenesis of strain C. beijerinckii NCIMB 8052) characterized in that said mutant strain comprises in its genome the following mutations with respect to the genome of the parental strain C. beijerinckii NCIMB 8052:
T en lugar de C en la posición 82 del gen Cbei_0583 (SEQ ID NO: 26), el cual comprende las posiciones 693796 a 694347 del genoma de C. beijerinckii NCIMB 8052, T instead of C at position 82 of the Cbei_0583 gene (SEQ ID NO: 26), which comprises positions 693796 to 694347 of the genome of C. beijerinckii NCIMB 8052,
A en lugar de G en la posición 1 108 del gen Cbei_1540 (SEQ ID NO: 27), el cual comprende las posiciones 1814444 a 1816660 del genoma de C. beijerinckii NCIMB 8052,  A instead of G at position 1 108 of the Cbei_1540 gene (SEQ ID NO: 27), which comprises positions 1814444 to 1816660 of the genome of C. beijerinckii NCIMB 8052,
T en lugar de G en la posición 255 del gen Cbei_2475 (SEQ ID NO: 28), el cual comprende las posiciones 2865706 a 2866320 del genoma de C. beijerinckii NCIMB 8052,  T instead of G at position 255 of the Cbei_2475 gene (SEQ ID NO: 28), which comprises positions 2865706 to 2866320 of the genome of C. beijerinckii NCIMB 8052,
T en lugar de G en la posición 740 del gen Cbei_2489 (SEQ ID NO: 29), el cual comprende las posiciones 2884426 a 2885343 del genoma de C. beijerinckii NCIMB 8052,  T instead of G at position 740 of the Cbei_2489 gene (SEQ ID NO: 29), which comprises positions 2884426 to 2885343 of the genome of C. beijerinckii NCIMB 8052,
AA en lugar de GT en las posiciones 506 y 507 del gen Cbei_R01 12 (SEQ ID NO: 30), el cual comprende las posiciones 5742945 a 5741441 del genoma de C. beijerinckii NCIMB 8052,  AA instead of GT at positions 506 and 507 of the Cbei_R01 12 gene (SEQ ID NO: 30), which comprises positions 5742945 to 5741441 of the genome of C. beijerinckii NCIMB 8052,
T en lugar de C en la posición 490 del gen Cbei_R01 12 (SEQ ID NO: 30), el cual comprende las posiciones 5742945 a 5741441 del genoma de C. beijerinckii NCIMB 8052, y  T instead of C at position 490 of the Cbei_R01 12 gene (SEQ ID NO: 30), which comprises positions 5742945 to 5741441 of the genome of C. beijerinckii NCIMB 8052, and
C en lugar de A en la posición 703 del gen Cbei_5101 (SEQ ID NO: 31 ), el cual comprende las posiciones 5998873 a 5999637 del genoma de C. beijerinckii NCIMB 8052.  C instead of A at position 703 of the Cbei_5101 gene (SEQ ID NO: 31), which comprises positions 5998873 to 5999637 of the genome of C. beijerinckii NCIMB 8052.
De ahora en adelante se hará referencia a esta cepa como "mutante BP1 1 ", y comprende todas las mutaciones indicadas en (a) a (g) arriba. Este mutante ha sido preferiblemente obtenido por el método de generación de mutantes anteriormente descrito. Otro aspecto de la invención se refiere a una cepa o célula mutante de C. beijerínckii (preferiblemente obtenida por mutagénesis química de la cepa C. beijerínckii BA101 ) caracterizada porque dicha cepa mutante comprende en su genoma las siguientes mutaciones con respecto al genoma de la cepa parental C. beijerínckii BA101 : a. A en lugar de G en la posición 567 del gen Cbei_0436 (SEQ ID NO: 32), el cual comprende las posiciones 528599 a 530101 del genoma de C. beijerínckii BA101 , From now on this strain will be referred to as "mutant BP1 1", and comprises all the mutations indicated in (a) to (g) above. This mutant has preferably been obtained by the mutant generation method described above. Another aspect of the invention relates to a strain or mutant cell of C. beijerínckii (preferably obtained by chemical mutagenesis of strain C. beijerínckii BA101) characterized in that said mutant strain comprises in its genome the following mutations with respect to the genome of the strain parental C. beijerínckii BA101: a. A instead of G at position 567 of the Cbei_0436 gene (SEQ ID NO: 32), which comprises positions 528599 to 530101 of the genome of C. beijerínckii BA101,
b. T en lugar de C en la posición 391 del gen Cbei_0529 (SEQ ID NO: 33), el cual comprende las posiciones 636881 a 637588 del genoma de C. beijerínckii BA101 ,  b. T instead of C at position 391 of the Cbei_0529 gene (SEQ ID NO: 33), which comprises positions 636881 to 637588 of the genome of C. beijerínckii BA101,
c. A en lugar de G en la posición 14 del gen Cbei_1397 (SEQ ID NO: 34), el cual comprende las posiciones 1644433 a 1644753 del genoma de C. beijerínckii BA101 ,  C. A instead of G at position 14 of the Cbei_1397 gene (SEQ ID NO: 34), which comprises positions 1644433 to 1644753 of the genome of C. beijerínckii BA101,
d. A en lugar de G en la posición 435 del gen Cbei_2084 (SEQ ID NO: 35), el cual comprende las posiciones 2427766 a 2428383 del genoma de C. beijerínckii BA101 ,  d. A instead of G at position 435 of the Cbei_2084 gene (SEQ ID NO: 35), which comprises positions 2427766 to 2428383 of the genome of C. beijerínckii BA101,
e. C en lugar de T en la posición 1 1 1 del gen Cbei_21 13 (SEQ ID NO: 36), el cual comprende las posiciones 2461021 a 2461281 del genoma de C. beijerínckii BA101 , y  and. C instead of T at position 1 1 1 of the Cbei_21 13 gene (SEQ ID NO: 36), which comprises positions 2461021 to 2461281 of the genome of C. beijerínckii BA101, and
f. T en lugar de G en la posición 28 del gen Cbei_2475 (SEQ ID NO: 37), el cual comprende las posiciones 2865706 a 2866320 del genoma de C. beijerínckii BA101 .  F. T instead of G at position 28 of the Cbei_2475 gene (SEQ ID NO: 37), which comprises positions 2865706 to 2866320 of the genome of C. beijerínckii BA101.
De ahora en adelante se hará referencia a esta cepa como "mutante BP31 ", y comprende todas las mutaciones indicadas en (a) a (f) arriba. Este mutante ha sido preferiblemente obtenido por el método de generación de mutantes anteriormente descrito. From now on, this strain will be referred to as a "mutant BP31", and comprises all the mutations indicated in (a) to (f) above. This mutant has preferably been obtained by the mutant generation method described above.
No obstante, de entre todos los mutantes descritos en la presente invención el llamado "mutante BP25" es el preferido, ya que presenta unos rendimientos de producción de ABE, especialmente de butanol, mayores que los demás mutantes en los sustratos ensayados. Por ejemplo, la Fig. 3A muestra que el mutante BP25 produce más butanol en presencia de glucosa, no solo en comparación con su cepa parental, sino también en comparación con el mutante BP31 que también procede de la misma cepa parental. La Fig. 7 muestra que el mutante BP25 produce butanol más rápidamente en presencia de un sustrato complejo, como es un hidrolizado de residuos urbanos, que el mutante BP31 que no es capaz de mejorar la producción de butanol con respecto a su cepa parental en presencia de este sustrato concreto. La Fig. 10 muestra que el mutante BP25 es capaz de producir más butanol en presencia de hidrolizado de paja de maíz que el mutante BP31 . Por último, la Fig. 12 muestra que, aunque el mutante BP1 1 inicialmente consume arabinosa más rápidamente, a partir de las 48h frena su consumo de arabinosa y la producción de butanol, al contrario que el mutante BP25 que sigue produciendo butanol durante las 72h que se siguió el análisis de la fermentación, lo que significa que el mutante BP25 alcanza un mayor rendimiento final de producción, consumiendo más arabinosa en el proceso. However, among all the mutants described in the present invention, the so-called "BP25 mutant" is preferred, since it has ABE production yields, especially butanol, higher than the other mutants in the tested substrates. For example, Fig. 3A shows that the BP25 mutant produces more butanol in the presence of glucose, not only in comparison to its parental strain, but also in comparison to the BP31 mutant that also comes from the same parental strain. Fig. 7 shows that mutant BP25 produces butanol more rapidly in presence of a complex substrate, such as an urban waste hydrolyzate, than the BP31 mutant that is not able to improve butanol production with respect to its parental strain in the presence of this particular substrate. Fig. 10 shows that the BP25 mutant is capable of producing more butanol in the presence of corn straw hydrolyzate than the BP31 mutant. Finally, Fig. 12 shows that, although the BP1 1 mutant initially consumes arabinose more rapidly, from 48h it slows its consumption of arabinose and butanol production, unlike the BP25 mutant that continues to produce butanol during 72h The fermentation analysis was followed, which means that the BP25 mutant reaches a higher final production yield, consuming more arabinose in the process.
Además, el mutante BP25 presenta una capacidad mejorada de producción de butanol en comparación con su cepa parental, en diversos sustratos. Por ejemplo, la Fig. 3A demuestra una mayor producción de butanol por parte de este mutante en presencia de glucosa en relación con su parental C. beijerinckii BA101 . La Fig. 4A muestra que este mutante produce butanol más rápidamente, y por tanto más eficientemente, en presencia de maíz molido que su cepa parental, alcanzando unos niveles elevados de butanol en un menor tiempo. Las Fig. 7A y 10 muestran que BP25 produce mayores niveles de butanol en presencia de hidrolizado de residuos sólidos urbanos y de hidrolizado de paja de maíz, respectivamente, que su cepa parental. La Fig. 1 1 B demuestra una mayor producción de butanol y un consumo más eficiente y rápido de arabinosa y glucosa por parte de BP25 en presencia de un medio comprendiendo estos dos azúcares en comparación con su cepa parental. La Fig. 12 demuestra una mayor producción de butanol por parte de BP25 en presencia de un medio comprendiendo arabinosa por encima de la obtenida con los otros dos mutantes (BP1 1 y BP31 ) y con la cepa parental C. beijerinckii BA101 . In addition, the BP25 mutant has an improved butanol production capacity compared to its parental strain, in various substrates. For example, Fig. 3A demonstrates a higher production of butanol by this mutant in the presence of glucose in relation to its parental C. beijerinckii BA101. Fig. 4A shows that this mutant produces butanol more quickly, and therefore more efficiently, in the presence of ground corn than its parental strain, reaching high levels of butanol in a shorter time. Fig. 7A and 10 show that BP25 produces higher levels of butanol in the presence of urban solid waste hydrolyzate and corn straw hydrolyzate, respectively, than its parental strain. Fig. 1 1 B demonstrates a higher production of butanol and a more efficient and faster consumption of arabinose and glucose by BP25 in the presence of a medium comprising these two sugars compared to their parental strain. Fig. 12 demonstrates a higher production of butanol by BP25 in the presence of a medium comprising arabinose above that obtained with the other two mutants (BP1 1 and BP31) and with the parental strain C. beijerinckii BA101.
Por ello, otro aspecto de la invención se refiere a una cepa o célula mutante de C. beijerinckii (preferiblemente obtenida por mutagénesis química de la cepa C. beijerinckii BA101 ) caracterizada porque dicha cepa mutante comprende en su genoma las siguientes mutaciones con respecto al genoma de la cepa parental C. beijerinckii N C I M B 8052: a. A en lugar de G en la posición 235 del gen Cbei_0083 (SEQ ID NO: 1 ), el cual comprende las posiciones 107490 a 108176 del genoma de C. beijerinckii NCIMB 8052, b. T en lugar de C en la posición 151 del gen Cbei_0769 (SEQ ID NO: 2), el cual comprende las posiciones 935299 a 936627 del genoma de C. beijerinckii NCIMB 8052, Therefore, another aspect of the invention relates to a strain or mutant cell of C. beijerinckii (preferably obtained by chemical mutagenesis of strain C. beijerinckii BA101) characterized in that said mutant strain comprises in its genome the following mutations with respect to the genome of the parental strain C. beijerinckii NCIMB 8052: a. A instead of G at position 235 of the Cbei_0083 gene (SEQ ID NO: 1), which comprises positions 107490 to 108176 of the genome of C. beijerinckii NCIMB 8052, b. T instead of C at position 151 of the Cbei_0769 gene (SEQ ID NO: 2), which comprises positions 935299 to 936627 of the genome of C. beijerinckii NCIMB 8052,
c. A en lugar de G en la posición 54 del gen Cbei_R0027 (SEQ ID NO: 3), el cual comprende las posiciones 144366 a 147274 del genoma de C. beijerinckiiC. A instead of G at position 54 of the Cbei_R0027 gene (SEQ ID NO: 3), which comprises positions 144366 to 147274 of the genome of C. beijerinckii
NCIMB 8052, NCIMB 8052,
d. A en lugar de G en la posición 186 del gen Cbei_0123 (SEQ ID NO: 4), el cual comprende las posiciones 159137 a 16161 1 del genoma de C. beijerinckii NCIMB 8052, d. A instead of G at position 186 of the Cbei_0123 gene (SEQ ID NO: 4), which comprises positions 159137 to 16161 1 of the genome of C. beijerinckii NCIMB 8052,
e. A en lugar de G en la posición 201 del gen Cbei_0196 (SEQ ID NO: 5), el cual comprende las posiciones 222653 a 224272 del genoma de C. beijerinckii NCIMB 8052, and. A instead of G at position 201 of the Cbei_0196 gene (SEQ ID NO: 5), which comprises positions 222653 to 224272 of the genome of C. beijerinckii NCIMB 8052,
f. A en lugar de G en la posición 871 del gen Cbei_0316 (SEQ ID NO: 6), el cual comprende las posiciones 381944 a 382879 del genoma de C. beijerinckii NCIMB 8052, F. A instead of G at position 871 of the Cbei_0316 gene (SEQ ID NO: 6), which comprises positions 381944 to 382879 of the genome of C. beijerinckii NCIMB 8052,
g. T en lugar de C en la posición 731 del gen Cbei_1206 (SEQ ID NO: 7), el cual comprende las posiciones 1427189 a 1428124 del genoma de C. beijerinckii NCIMB 8052, g. T instead of C at position 731 of the Cbei_1206 gene (SEQ ID NO: 7), which comprises positions 1427189 to 1428124 of the genome of C. beijerinckii NCIMB 8052,
h. T en lugar de C en la posición 437 del gen Cbei_1472 (SEQ ID NO: 8), el cual comprende las posiciones 1734309 a 1734908 del genoma de C. beijerinckiih. T instead of C at position 437 of the Cbei_1472 gene (SEQ ID NO: 8), which comprises positions 1734309 to 1734908 of the genome of C. beijerinckii
NCIMB 8052, NCIMB 8052,
i. C en lugar de T en la posición 968 del gen Cbei_1854 (SEQ ID NO: 9), el cual comprende las posiciones 2148319 a 2150055 del genoma de C. beijerinckii NCIMB 8052, i. C instead of T at position 968 of the Cbei_1854 gene (SEQ ID NO: 9), which comprises positions 2148319 to 2150055 of the genome of C. beijerinckii NCIMB 8052,
j. A en lugar de C en la posición 139 del gen Cbei_1935 (SEQ ID NO: 10), el cual comprende las posiciones 2234469 a 2235623 del genoma de C. beijerinckii NCIMB 8052, j. A instead of C at position 139 of the Cbei_1935 gene (SEQ ID NO: 10), which comprises positions 2234469 to 2235623 of the genome of C. beijerinckii NCIMB 8052,
k. T en lugar de G en la posición 31 del gen Cbei_1975 (SEQ ID NO: 1 1 ), el cual comprende las posiciones 2295746 a 2297452 del genoma de C. beijerinckii NCIMB 8052, k. T instead of G at position 31 of the Cbei_1975 gene (SEQ ID NO: 1 1), which comprises positions 2295746 to 2297452 of the genome of C. beijerinckii NCIMB 8052,
I. T en lugar de G en la posición 21 13 del gen Cbei_3078 (SEQ ID NO: 12), el cual comprende las posiciones 3591316 a 3593580 del genoma de C. beijerinckii NCIMB 8052,  I. T instead of G at position 21 13 of the Cbei_3078 gene (SEQ ID NO: 12), which comprises positions 3591316 to 3593580 of the genome of C. beijerinckii NCIMB 8052,
m. G en lugar de A en la posición 88 del gen Cbei_3625 (SEQ ID NO: 13), el cual comprende las posiciones 4172987 a 4174981 del genoma de C. beijerinckiim. G instead of A at position 88 of the Cbei_3625 gene (SEQ ID NO: 13), which comprises positions 4172987 to 4174981 of the genome of C. beijerinckii
NCIMB 8052, n. T en lugar de C en la posición 160 del gen Cbei_3757 (SEQ ID NO: 14), el cual comprende las posiciones 4310570 a 4310908 del genoma de C. beijerinckii NCIMB 8052, NCIMB 8052, n. T instead of C at position 160 of the Cbei_3757 gene (SEQ ID NO: 14), which comprises positions 4310570 to 4310908 of the genome of C. beijerinckii NCIMB 8052,
o. A en lugar de G en la posición 325 del gen Cbei_4026 (SEQ ID NO: 15), el cual comprende las posiciones 4626006 a 4627097 del genoma de C. beijerinckiior. A instead of G at position 325 of the Cbei_4026 gene (SEQ ID NO: 15), which comprises positions 4626006 to 4627097 of the genome of C. beijerinckii
NCIMB 8052, NCIMB 8052,
p. A en lugar de G en la posición 1079 del gen Cbei_4207 (SEQ ID NO: 16), el cual comprende las posiciones 4851 1 18 a 4852431 del genoma de C. beijerinckii NCIMB 8052, p. A instead of G at position 1079 of the Cbei_4207 gene (SEQ ID NO: 16), which comprises positions 4851 1 18 to 4852431 of the genome of C. beijerinckii NCIMB 8052,
q. T en lugar de G en la posición 628 del gen Cbei_4256 (SEQ ID NO: 17), el cual comprende las posiciones 4915930 a 4916709 del genoma de C. beijerinckii NCIMB 8052, q. T instead of G at position 628 of the Cbei_4256 gene (SEQ ID NO: 17), which comprises positions 4915930 to 4916709 of the genome of C. beijerinckii NCIMB 8052,
r. deleción de G en la posición 672 del gen Cbei_4308 (SEQ ID NO: 18), el cual comprende las posiciones 4961979 a 4962692 del genoma de C. beijerinckii NCIMB 8052, r. G deletion at position 672 of the Cbei_4308 gene (SEQ ID NO: 18), which comprises positions 4961979 to 4962692 of the genome of C. beijerinckii NCIMB 8052,
s. T en lugar de G en la posición 1766 del gen Cbei_4400 (SEQ ID NO: 19), el cual comprende las posiciones 5075330 a 5077168 del genoma de C. beijerinckii NCIMB 8052, s. T instead of G at position 1766 of the Cbei_4400 gene (SEQ ID NO: 19), which comprises positions 5075330 to 5077168 of the genome of C. beijerinckii NCIMB 8052,
t. A en lugar de G en la posición 1732 del gen Cbei_4548 (SEQ ID NO: 20), el cual comprende las posiciones 5265930 a 5267861 del genoma de C. beijerinckii NCIMB 8052, t. A instead of G at position 1732 of the Cbei_4548 gene (SEQ ID NO: 20), which comprises positions 5265930 to 5267861 of the genome of C. beijerinckii NCIMB 8052,
u. A en lugar de G en la posición 1465 del gen Cbei_4691 (SEQ ID NO: 21 ), el cual comprende las posiciones 5449160 a 5450662 del genoma de C. beijerinckii NCIMB 8052, or. A instead of G at position 1465 of the Cbei_4691 gene (SEQ ID NO: 21), which comprises positions 5449160 to 5450662 of the genome of C. beijerinckii NCIMB 8052,
v. A en lugar de G en la posición 997 del gen Cbei_4699 (SEQ ID NO: 22), el cual comprende las posiciones 5462404 a 5464674 del genoma de C. beijerinckiiv. A instead of G at position 997 of the Cbei_4699 gene (SEQ ID NO: 22), which comprises positions 5462404 to 5464674 of the genome of C. beijerinckii
NCIMB 8052, NCIMB 8052,
w. C en lugar de T en la posición 101 del gen Cbei_4761 (SEQ ID NO: 23), el cual comprende las posiciones 5555079 a 5556296 del genoma de C. beijerinckii NCIMB 8052, w. C instead of T at position 101 of the Cbei_4761 gene (SEQ ID NO: 23), which comprises positions 5555079 to 5556296 of the genome of C. beijerinckii NCIMB 8052,
x. A en lugar de G en la posición 27 del gen Cbei_4865 (SEQ ID NO: 24), el cual comprende las posiciones 5699972 a 5701330 del genoma de C. beijerinckii NCIMB 8052, y x. A instead of G at position 27 of the Cbei_4865 gene (SEQ ID NO: 24), which comprises positions 5699972 to 5701330 of the genome of C. beijerinckii NCIMB 8052, and
y. A en lugar de G en la posición 708 del gen Cbei_4918 (SEQ ID NO: 25), el cual comprende las posiciones 5785244 a 5787250 del genoma de C. beijerinckiiY. A instead of G at position 708 of the Cbei_4918 gene (SEQ ID NO: 25), which comprises positions 5785244 to 5787250 of the genome of C. beijerinckii
NCIMB 8052. De ahora en adelante se hará referencia a esta cepa como "mutante BP25", y comprende todas las mutaciones indicadas en (a) a (y) arriba. Este mutante ha sido preferiblemente obtenido por el método de generación de mutantes anteriormente descrito. Este mutante BP25 además ha sido depositado en la Colección Española de Cultivos Tipo (CECT), Pare Científic Universitat de Valencia, Catedrático Agustín Escardino 9, 46980 Paterna (Valencia, España), bajo el número de acceso CECT 9306 en fecha 21 .03.2017. Por ello, en una realización preferida de este aspecto de la invención, esta cepa mutante de Clostridium beijerinckii es la depositada en la Colección Española de Cultivos Tipo bajo el número de acceso CECT 9306. NCIMB 8052. From now on this strain will be referred to as a "BP25 mutant", and comprises all the mutations indicated in (a) to (y) above. This mutant has preferably been obtained by the mutant generation method described above. This mutant BP25 has also been deposited in the Spanish Type Culture Collection (CECT), Pare Científic Universitat de Valencia, Professor Agustín Escardino 9, 46980 Paterna (Valencia, Spain), under the accession number CECT 9306 dated 21.03.2017. Therefore, in a preferred embodiment of this aspect of the invention, this mutant strain of Clostridium beijerinckii is that deposited in the Spanish Type Culture Collection under the accession number CECT 9306.
La cepa C. beijerinckii BA101 es un mutante hiperproductor de butanol obtenido mediante mutagénesis a partir de la cepa silvestre C. beijerinckii NCIMB 8052. Dicha cepa mutante BA101 comprende por tanto el genoma de la cepa silvestre NCIMB 8052 además de las mutaciones indicadas arriba para los genes Cbei_0769, Cbei_1854, Cbei_1935, Cbei_1975, Cbei_3078, Cbei_4308, Cbei_4400 y Cbei_4761 . Por ello, de todas las mutaciones indicadas en (a) a (y) arriba, las mutaciones en estos genes concretos son compartidas entre el mutante BP25 y la cepa C. beijerinckii BA101 . El término "mutantes de la invención", tal y como se emplea en esta memoria, se refiere a cualquier cepa mutante de la especie C. beijerinckii producida, obtenible u obtenida por el método de generación de mutantes descrito anteriormente en la presente invención, preferiblemente a los mutantes BP1 1 , BP31 y BP25. La cepa parental C. beijerinckii NCIMB 8052 está disponible en, por ejemplo aunque sin limitarnos, la autoridad de depósito internacional National Collection of Industrial and Marine Bacteria (NCIMB), 23 St Machar Drive, Aberdeen, Ab2 1 RY, Escocia, Inglaterra. El genoma completo de esta cepa está descrito, por ejemplo, en el GenBank bajo el número de acceso CP000721 .1 . The strain C. beijerinckii BA101 is a hyperproductive butanol mutant obtained by mutagenesis from the wild strain C. beijerinckii NCIMB 8052. Said mutant strain BA101 thus comprises the genome of the wild strain NCIMB 8052 in addition to the mutations indicated above for genes Cbei_0769, Cbei_1854, Cbei_1935, Cbei_1975, Cbei_3078, Cbei_4308, Cbei_4400 and Cbei_4761. Therefore, of all the mutations indicated in (a) to (and) above, mutations in these specific genes are shared between mutant BP25 and strain C. beijerinckii BA101. The term "mutants of the invention", as used herein, refers to any mutant strain of the species C. beijerinckii produced, obtainable or obtained by the method of mutant generation described above in the present invention, preferably to mutants BP1 1, BP31 and BP25. The parental strain C. beijerinckii NCIMB 8052 is available at, for example, but not limited to, the International Depository Authority National Collection of Industrial and Marine Bacteria (NCIMB), 23 St Machar Drive, Aberdeen, Ab2 1 RY, Scotland, England. The complete genome of this strain is described, for example, in the GenBank under accession number CP000721 .1.
La cepa parental C. beijerinckii BA101 se puede preparar como se describe en Annous, B. A., et al., Appl. Environ. Microbiol., 1991 , 57: 2544-2548. El genoma de esta cepa es el genoma de C. beijerinckii NCIMB 8052 que además comprende las mutaciones indicadas en la presente invención en los genes Cbei_0769, Cbei_1854, CbeiJ 935, CbeiJ 975, Cbei_3078, Cbei_4308, Cbei_4400 y Cbei_4761 . Otro aspecto de la invención se refiere al uso de los mutantes de la invención, preferiblemente de los mutantes BP1 1 , BP31 y BP25, más preferiblemente del mutante BP25, para la producción de disolventes. Se entiende por "disolventes" cualquier disolvente conocido en el estado del arte, incluyendo mezclas de acetona, butanol, isopropanol y/o etanol. En una realización preferida, el disolvente es butanol, es decir, el principal componente de la mezcla de disolventes obtenida es el butanol. En una realización más preferida, los disolventes son acetona, butanol y etanol (ABE), es decir, los disolventes producidos comprenden una mezcla de estos tres. Se incluye dentro del alcance de la presente invención la producción de cualquier combinación o proporción de acetona, butanol y/o etanol mediante el empleo de los mutantes de la invención. The parental strain C. beijerinckii BA101 can be prepared as described in Annous, BA, et al., Appl. Environ. Microbiol., 1991, 57: 2544-2548. The genome of this strain is the genome of C. beijerinckii NCIMB 8052 which also comprises the mutations indicated in the present invention in the genes Cbei_0769, Cbei_1854, CbeiJ 935, CbeiJ 975, Cbei_3078, Cbei_4308, Cbei_4400 and Cbei_4761. Another aspect of the invention relates to the use of mutants of the invention, preferably of mutants BP1 1, BP31 and BP25, more preferably of mutant BP25, for the production of solvents. "Solvents" means any solvent known in the state of the art, including mixtures of acetone, butanol, isopropanol and / or ethanol. In a preferred embodiment, the solvent is butanol, that is, the main component of the solvent mixture obtained is butanol. In a more preferred embodiment, the solvents are acetone, butanol and ethanol (ABE), that is, the solvents produced comprise a mixture of these three. The production of any combination or proportion of acetone, butanol and / or ethanol by using the mutants of the invention is included within the scope of the present invention.
En otra realización preferida, la producción de disolventes por parte de los mutantes de la invención se lleva a cabo por medio de un proceso de fermentación anaerobica en presencia de un medio de cultivo que comprende una fuente de carbono o carbohidratos. In another preferred embodiment, the production of solvents by the mutants of the invention is carried out by means of an anaerobic fermentation process in the presence of a culture medium comprising a source of carbon or carbohydrates.
"Medios de cultivo" adecuados para ser empleados en la presente invención son todos aquellos conocidos en el estado de la técnica como apropiados para el crecimiento, actividad termentadora y mantenimiento en cultivo de cepas de C. beijerinckii. Ejemplos de estos medios de cultivo son, por ejemplo, aunque sin limitarnos, P2, TGY, PT ó TYA, preferiblemente TYA. Preferiblemente, el medio de cultivo además comprende al menos un ácido orgánico, como por ejemplo acetato y/o butirato. Este ácido orgánico puede proceder de la fase acidogénica del microorganismo empleado en la fermentación o bien puede ser añadido externamente. Preferiblemente, la cantidad de ácido orgánico añadida al cultivo está entre 20 mM y 80 mM. La adición de uno o más ácidos orgánicos incrementa la cantidad de disolventes recuperados tras la fermentación. Además, previene la degeneración de la cepa durante el proceso fermentativo, favoreciendo su estabilidad y evitando la degeneración del cultivo. El medio de cultivo puede comprender además sales y/o tampones. "Culture media" suitable for use in the present invention are all those known in the state of the art as appropriate for the growth, termentative activity and maintenance in cultivation of C. beijerinckii strains. Examples of these culture media are, for example, but not limited to, P2, TGY, PT or TYA, preferably TYA. Preferably, the culture medium further comprises at least one organic acid, such as acetate and / or butyrate. This organic acid can come from the acidogenic phase of the microorganism used in the fermentation or it can be added externally. Preferably, the amount of organic acid added to the culture is between 20 mM and 80 mM. The addition of one or more organic acids increases the amount of solvents recovered after fermentation. In addition, it prevents the degeneration of the strain during the fermentation process, favoring its stability and avoiding the degeneration of the crop. The culture medium may further comprise salts and / or buffers.
El medio de cultivo está, además, suplementado con una fuente de carbono, la cual puede comprender, por ejemplo pero sin limitarnos, azúcares C6 (como glucosa), azúcares C5 (como xilosa y/o arabinosa), o una mezcla de ambos tipos de azúcares. En una realización preferida, la fuente de carbono comprende glucosa, maltodextrina, xilobiosa, celobiosa, xilosa y/o arabinosa, o cualquiera de sus combinaciones. Más preferiblemente, la fuente de carbono comprende glucosa, celobiosa, xilosa y/o arabinosa. Más preferiblemente, la fuente de carbono comprende xilosa, glucosa o arabinosa o cualquiera de sus combinaciones, aún más preferiblemente comprende glucosa y arabinosa, ya que los mutantes de la presente invención, especialmente el mutante BP25, son particularmente útiles para consumir estos dos azúcares y en el caso de BP25 incluso cuando ambos están presentes conjuntamente en el medio (ver Figs. 1 1 B y 12), produciendo así altas cantidades de butanol. En otra realización preferida, la fuente de carbono comprende xilosa y glucosa. The culture medium is also supplemented with a carbon source, which may comprise, for example but not limited to, C6 sugars (such as glucose), C5 sugars (such as xylose and / or arabinose), or a mixture of both types of sugars In a preferred embodiment, the carbon source comprises glucose, maltodextrin, xylobious, cellobiose, xylose and / or arabinose, or any combination thereof. More preferably, the carbon source comprises glucose, cellobiose, xylose and / or arabinose. More preferably, the carbon source comprises xylose, glucose or arabinose or any combination thereof, even more preferably it comprises glucose and arabinose, since the mutants of the present invention, especially the mutant BP25, are particularly useful for consuming these two sugars and in the case of BP25 even when both are present together in the medium (see Figs. 1 1 B and 12), thus producing high amounts of butanol. In another preferred embodiment, the carbon source comprises xylose and glucose.
Ejemplos de fuentes de carbono que podrían emplearse en la presente invención son, aunque sin limitarnos, productos de desecho de la industria maderera, forestal, del papel, agrícola, ganadera, pesquera, azucarera, acuícola, procesado de arroz o similares, así como productos de desecho sólidos urbanos. Por tanto, la fuente de carbohidratos pueden ser productos de desecho urbanos, preferiblemente productos de desecho orgánicos urbanos o "waste syrup", o biomasa vegetal, como por ejemplo maíz, caña de azúcar, almidón, trigo, soja, cáscaras de frutos como nueces, almendras o frutos grasos como el fruto del árbol de palma o el aguacate, etc. En otra realización preferida la fuente de carbono se selecciona de la lista que consiste en: glucosa, maíz molido, hidrolizado de residuos orgánicos urbanos, o hidrolizado de biomasa vegetal. Examples of carbon sources that could be used in the present invention are, but are not limited to, waste products from the timber, forestry, paper, agricultural, livestock, fisheries, sugar, aquaculture, rice processing or the like, as well as products Solid urban waste. Therefore, the source of carbohydrates can be urban waste products, preferably urban organic waste products or "waste syrup", or vegetable biomass, such as corn, sugarcane, starch, wheat, soybeans, nutshells such as nuts , almonds or fatty fruits such as the fruit of the palm tree or avocado, etc. In another preferred embodiment the carbon source is selected from the list consisting of: glucose, ground corn, urban organic waste hydrolyzate, or vegetable biomass hydrolyzate.
Cuando se emplea glucosa como fuente de carbono en la presente invención, ésta se encuentra en el medio de cultivo en una concentración de entre, preferiblemente, 0,5 y 100 g/l, más preferiblemente 60 g/l. When glucose is used as the carbon source in the present invention, it is found in the culture medium at a concentration between, preferably, 0.5 and 100 g / l, more preferably 60 g / l.
Cuando se emplea maíz molido o "corn mash" como fuente de carbono en la presente invención, éste se encuentra en el medio de cultivo en una concentración de, preferiblemente, entre el 0,1 y 50 % (v/v), más preferiblemente el 25% (v/v), del volumen total del medio. Preferiblemente, el maíz molido es tratado previamente con enzimas hidrolasas, preferiblemente amilasas, para incrementar la glucosa soluble y posteriormente se clarifica (centrifuga) antes de ser añadido al medio de cultivo como fuente de carbono para la fermentación. En una realización más preferida, la fuente de carbono es hidrolizado de residuos orgánicos urbanos. Cuando se emplea hidrolizado de residuos orgánicos urbanos como fuente de carbono en la presente invención, éste se encuentra en el medio de cultivo en una concentración de entre el 0,1 y 25 % (v/v), preferiblemente el 5% (v/v) o inferior, del volumen total del medio. Preferiblemente, el " idrolizado de residuos orgánicos urbanos" es el producto resultante de la hidrólisis enzimática de la parte orgánica de los residuos urbanos sólidos. When ground corn or "corn mash" is used as the carbon source in the present invention, it is in the culture medium at a concentration of preferably between 0.1 and 50% (v / v), more preferably 25% (v / v), of the total volume of the medium. Preferably, the ground corn is pretreated with hydrolase enzymes, preferably amylases, to increase the soluble glucose and subsequently clarified (centrifuged) before being added to the culture medium as a source of carbon for fermentation. In a more preferred embodiment, the carbon source is hydrolyzed from urban organic waste. When urban organic waste hydrolyzate is used As a carbon source in the present invention, it is found in the culture medium at a concentration of between 0.1 and 25% (v / v), preferably 5% (v / v) or less, of the total volume medium. Preferably, the "idolized urban organic waste" is the product resulting from the enzymatic hydrolysis of the organic part of the solid urban waste.
En otra realización preferida, el hidrolizado de biomasa vegetal es hidrolizado de paja de maíz o "corn stover". Cuando se emplea hidrolizado de paja de maíz como fuente de carbono en la presente invención, éste se encuentra en el medio de cultivo en una concentración de entre el 0,1 y 25 % (v/v), preferiblemente el 16% (v/v) o inferior, del volumen total del medio. Preferiblemente, el "hidrolizado de paja de maíz" es el producto resultante de la hidrólisis enzimática de la paja de maíz sometida a un pre- tratamiento preferiblemente ácido y de explosión de vapor. Preferiblemente, en la presente invención, la fuente de carbono comprendida en el medio de cultivo es pretratada antes de ser añadida a dicho medio. El objetivo es transformarla en una forma más accesible para el proceso fermentativo. El pretratamiento utiliza diversas técnicas que incluyen, pero no se limitan a, explosión de la fibra con amonio, tratamiento químico, explosión con vapor a elevadas temperaturas para alterar la estructura de la biomasa celulósica y volver la celulosa más accesible, hidrólisis ácida y/o hidrólisis enzimática, o cualquiera de sus combinaciones. In another preferred embodiment, the vegetable biomass hydrolyzate is corn straw hydrolyzate. When corn straw hydrolyzate is used as the carbon source in the present invention, it is found in the culture medium at a concentration between 0.1 and 25% (v / v), preferably 16% (v / v) or less, of the total volume of the medium. Preferably, the "corn straw hydrolyzate" is the product resulting from the enzymatic hydrolysis of the corn straw subjected to a preferably acid and vapor explosion pretreatment. Preferably, in the present invention, the source of carbon comprised in the culture medium is pretreated before being added to said medium. The objective is to transform it into a more accessible way for the fermentation process. Pretreatment uses various techniques that include, but are not limited to, explosion of the fiber with ammonium, chemical treatment, steam explosion at elevated temperatures to alter the structure of cellulosic biomass and make cellulose more accessible, acid hydrolysis and / or Enzymatic hydrolysis, or any combination thereof.
En otra realización preferida, el medio de cultivo además comprende uno o varios de los siguientes elementos: extracto de levadura, triptona, acetato de amonio, acetato de magnesio, sulfato de hierro, fosfato potásico y/o sulfato de magnesio. In another preferred embodiment, the culture medium further comprises one or more of the following elements: yeast extract, tryptone, ammonium acetate, magnesium acetate, iron sulfate, potassium phosphate and / or magnesium sulfate.
El volumen de medio de cultivo empleado para la fermentación en la presente invención está, preferiblemente, entre el 10 y 90 % de la capacidad del reactor. The volume of culture medium used for fermentation in the present invention is preferably between 10 and 90% of the reactor capacity.
La cantidad de cepa mutante empleada para la fermentación en la presente invención está, preferiblemente, entre 103 y 1010 células / mi, más preferiblemente entre 107 y 108 células / mi. The amount of mutant strain employed for the fermentation in the present invention is preferably between 10 3 and 10 10 cells / ml, more preferably between 10 7 and 10 8 cells / ml.
Otro aspecto de la invención se refiere a un método para la producción de disolventes, de ahora en adelante "método de la invención para la producción de disolventes", que comprende las siguientes etapas: a. fermentar la cepa mutante de la invención, preferiblemente BP1 1 , BP31 o BP25, más preferiblemente BP25, en presencia de un medio de cultivo que comprende una fuente de carbono, y Another aspect of the invention relates to a method for the production of solvents, hereinafter "method of the invention for the production of solvents", which comprises the following steps: to. fermenting the mutant strain of the invention, preferably BP1 1, BP31 or BP25, more preferably BP25, in the presence of a culture medium comprising a carbon source, and
b. recuperar del medio de cultivo los disolventes producidos por la cepa.  b. recover the solvents produced by the strain from the culture medium.
La fermentación de la etapa (a) es una fermentación anaeróbica, es decir, se lleva a cabo en ausencia de oxígeno. Para asegurar la anaerobiosis se puede, por ejemplo pero sin limitar a este método, gasificar el medio de cultivo con N2. El medio de cultivo adecuado para la etapa de fermentación, así como la fuente de carbono comprendida en el mismo, son aquellos descritos anteriormente como útiles para la presente invención. The fermentation of step (a) is an anaerobic fermentation, that is, it is carried out in the absence of oxygen. To ensure anaerobiosis, it is possible, for example, but not limited to this method, to gasify the culture medium with N 2. The culture medium suitable for the fermentation stage, as well as the carbon source included therein, are those described previously as useful for the present invention.
Esta fermentación de la etapa (a) puede darse, por ejemplo pero sin limitarnos, en batch, continuo, discontinuo, feed-batch o una combinación de al menos dos de estos procesos. This fermentation of step (a) can occur, for example but not limited to, in batch, continuous, discontinuous, feed-batch or a combination of at least two of these processes.
Durante la fermentación se pueden monitorizar y controlar las condiciones del proceso, como por ejemplo volumen, 02 disuelto, J-, pH, concentración de la cepa productora y/o concentración de carbohidratos presentes en el medio, y se pueden ir adicionando o eliminando cantidades de cepa productora, de agentes que controlen el pH, de medio de cultivo y/o de carbohidratos, para mantener el pH y las concentraciones deseadas de cada uno de estos elementos durante el proceso fermentativo. Así, preferiblemente, la fermentación de la etapa (a) tiene lugar en el interior de un bioreactor, preferiblemente de tamaño industrial, el cual más preferiblemente lleva acoplados medios y sistemas adecuados para la monitorización y suministro de, por ejemplo, medio de cultivo, carbohidratos, cepa productora y/o agua, a la reacción. Estos medios adecuados son, por ejemplo, válvulas y tuberías o cañerías conectadas desde el bioreactor, donde está teniendo lugar la reacción de fermentación, a uno o varios tanques de almacenamiento o, en el caso del suministro de la cepa productora, a uno o varios tanques de cultivo donde se mantiene una biomasa adecuada de la cepa productora en crecimiento. El bioreactor donde se está produciendo la fermentación puede, además, llevar acoplados sistemas o dispositivos para el control del volumen de reacción, 02, pH y/o J- del medio de fermentación. En una realización preferida del método para la producción de disolventes de la invención, la fermentación de la etapa (a) se lleva a cabo a una temperatura de entre 30 y 40 eC, preferiblemente de 37 eC, durante un tiempo de entre 30 y 275 horas, preferiblemente durante 72h, más preferiblemente en agitación. Esta agitación es, preferiblemente, baja agitación, es decir, alrededor de 50 rpm. Más preferiblemente, el pH durante la etapa de fermentación se mantiene en o por encima de 5, aún más preferiblemente el pH es de entre 5,5 y 6. During fermentation can be monitored and controlled process conditions, such as volume, 0 2 dissolved, J-, pH, concentration of the producing strain and / or carbohydrate concentration in the environment, and can be adding or deleting quantities of producing strain, of agents that control the pH, of culture medium and / or of carbohydrates, to maintain the pH and the desired concentrations of each of these elements during the fermentation process. Thus, preferably, the fermentation of step (a) takes place inside a bioreactor, preferably of industrial size, which more preferably has suitable means and systems coupled for monitoring and supply of, for example, culture medium, carbohydrates, producing strain and / or water, to the reaction. These suitable means are, for example, valves and pipes or pipes connected from the bioreactor, where the fermentation reaction is taking place, to one or several storage tanks or, in the case of the supply of the producing strain, to one or more culture tanks where adequate biomass of the growing production strain is maintained. The bioreactor where the fermentation is taking place can also have coupled systems or devices for controlling the reaction volume, 0 2 , pH and / or J- of the fermentation medium. In a preferred embodiment of the method for the production of solvents of the invention, the fermentation of step (a) is carried out at a temperature between 30 and 40 e C, preferably 37 e C, for a time between 30 and 275 hours, preferably for 72 hours, more preferably while stirring. This agitation is preferably low agitation, that is, about 50 rpm. More preferably, the pH during the fermentation stage is maintained at or above 5, even more preferably the pH is between 5.5 and 6.
En otra realización preferida de este método, el disolvente producido es butanol. En una realización más preferida, los disolventes producidos son acetona, butanol y etanol (ABE). In another preferred embodiment of this method, the solvent produced is butanol. In a more preferred embodiment, the solvents produced are acetone, butanol and ethanol (ABE).
En otra realización preferida, la fuente de carbono comprendida en el medio de cultivo empleado en este método de la invención comprende glucosa, maltodextrina, xilobiosa, celobiosa, xilosa y/o arabinosa, o cualquiera de sus combinaciones. Más preferiblemente, la fuente de carbono comprende glucosa, celobiosa, xilosa y/o arabinosa. Más preferiblemente, la fuente de carbono comprende xilosa, glucosa o arabinosa o cualquiera de sus combinaciones, aún más preferiblemente comprende glucosa y arabinosa. En otra realización preferida, la fuente de carbono comprende xilosa y glucosa. En una realización particular, la arabinosa es L-arabinosa y la xilosa es D-xilosa. In another preferred embodiment, the carbon source comprised in the culture medium employed in this method of the invention comprises glucose, maltodextrin, xylobiose, cellobiose, xylose and / or arabinose, or any combination thereof. More preferably, the carbon source comprises glucose, cellobiose, xylose and / or arabinose. More preferably, the carbon source comprises xylose, glucose or arabinose or any combination thereof, even more preferably it comprises glucose and arabinose. In another preferred embodiment, the carbon source comprises xylose and glucose. In a particular embodiment, the arabinose is L-arabinose and the xylose is D-xylose.
En otra realización preferida, la fuente de carbono comprendida en el medio de cultivo empleado en este método de la invención se selecciona de la lista que consiste en: glucosa, maíz molido, hidrolizado de residuos sólidos orgánicos urbanos, o hidrolizado de biomasa vegetal, tal y como se han descrito anteriormente en esta memoria.In another preferred embodiment, the source of carbon comprised in the culture medium employed in this method of the invention is selected from the list consisting of: glucose, ground corn, hydrolyzate of urban organic solid waste, or hydrolyzate of vegetable biomass, such and as described above herein.
Preferiblemente, la fuente de carbono es hidrolizado de residuos sólidos orgánicos urbanos. En una realización más preferida, el hidrolizado de biomasa vegetal es hidrolizado de paja de maíz. Preferably, the carbon source is hydrolyzed from urban organic solid waste. In a more preferred embodiment, the vegetable biomass hydrolyzate is corn straw hydrolyzate.
En otra realización preferida, la concentración de hidrolizado de residuos sólidos orgánicos urbanos en el medio de cultivo empleado en este método de la invención es del 5% (v/v) o inferior. In another preferred embodiment, the concentration of urban organic solid waste hydrolyzate in the culture medium employed in this method of the invention is 5% (v / v) or less.
En otra realización preferida, la concentración de hidrolizado de paja de maíz en el medio de cultivo empleado en este método de la invención es del 16% (v/v) o inferior. En otra realización preferida, el medio de cultivo empleado en este método de la invención además comprende al menos uno de los siguientes elementos: extracto de levadura, triptona, acetato de amonio, acetato de magnesio, sulfato de hierro, fosfato potásico y/o sulfato de magnesio. In another preferred embodiment, the concentration of corn straw hydrolyzate in the culture medium employed in this method of the invention is 16% (v / v) or less. In another preferred embodiment, the culture medium employed in this method of the invention further comprises at least one of the following elements: yeast extract, tryptone, ammonium acetate, magnesium acetate, iron sulfate, potassium phosphate and / or sulfate of magnesium
Uno de los problemas asociados a la fermentación ABE por C. beijerinckii es la toxicidad por butanol en el cultivo. Esta toxicidad requiere la eliminación continua de los productos tóxicos durante el proceso de fermentación para conseguir una máxima producción de disolventes. Así, el bioreactor en el que está teniendo lugar el método para la producción de disolventes de la invención preferiblemente comprende además uno o varios sistemas acoplados para la extracción de los disolventes producidos, preferiblemente butanol, mediante por ejemplo, pero sin limitarnos, pervaporación, perstracción, destilación, extracción de solventes, osmosis reversa, adsorción, separación por membranas, extracción líquido-líquido, corriente de gas, gas de barrido o similares. One of the problems associated with ABE fermentation by C. beijerinckii is butanol toxicity in the culture. This toxicity requires the continuous elimination of toxic products during the fermentation process to achieve maximum solvent production. Thus, the bioreactor in which the method for the production of solvents of the invention is taking place preferably further comprises one or more coupled systems for the extraction of the solvents produced, preferably butanol, by way of example, but not limited to, pervaporation, perstraction. , distillation, solvent extraction, reverse osmosis, adsorption, membrane separation, liquid-liquid extraction, gas stream, sweeping gas or the like.
El término "recuperación", tal y como se emplea en la etapa (b) del método para la producción de disolventes de la invención, se refiere a la recogida de los disolventes obtenidos después de la fermentación de la etapa (a). Dicha recuperación se puede llevar a cabo por cualquier procedimiento conocido en la técnica, incluyendo métodos mecánicos y/o manuales, preferiblemente los descritos en el párrafo anterior. The term "recovery", as used in step (b) of the solvent production method of the invention, refers to the collection of the solvents obtained after the fermentation of step (a). Said recovery can be carried out by any method known in the art, including mechanical and / or manual methods, preferably those described in the previous paragraph.
A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. DESCRIPCIÓN DE LAS FIGURAS Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and figures are provided by way of illustration, and are not intended to be limiting of the present invention. DESCRIPTION OF THE FIGURES
FIG. 1. Análisis de la mortalidad de C. beijerinckii en presencia de diferentes concentraciones de etil-metanosulfonato (EMS). EMS es el agente químico mutagénico utilizado para el aislamiento de mutantes de C. beijerinckii. La mortalidad se determina mediante cuantificacion del número de unidades formadoras de colonia (CFUs) por mililitro de cultivo. Las células se cultivaron en botella, en condiciones de anaerobiosis. El medio utilizado para el cultivo fue TYA-glucosa, gasificado previamente con N2 para asegurar la anaerobiosis. Un cultivo saturado se utilizó para inocular una botella a una OD660= 0,1 , y el cultivo se incubó durante unas 5-6 horas hasta que se alcanzó una OD660=1 . En este momento, 1 mi de cultivo se recogió y se centrifugó, decantándose el sobrenadante. Las células recogidas se trataron con diferentes concentraciones de EMS durante 1 hora. Tras el tratamiento, las células se lavaron dos veces con medio TYA, para finalmente crecerse en medio fresco (TYA- glucosa) durante dos horas, y permitir la recuperación de las células. Tras este tiempo las células se sembraron (tras diluir el cultivo adecuadamente) para determinar el número de CFUs en el cultivo. Este dato (CFUs/ml) se representó en función de la cantidad de EMS utilizada, dando lugar a la gráfica que se presenta en esta figura. Como se observa, 15 μΙ de EMS causa una mortalidad del 90%, y fue ésta la cantidad de EMS que se utilizó en los distintos ensayos de mutagénesis. FIG. 2. Selección de mutantes en placas de Bromocresol púrpura. Un cultivo de C. beijerínckii fue tratado con el mutágeno EMS y, tras la recuperación del cultivo, las células se diluyeron convenientemente y se sembraron en placas de TYA-glucosa. Las células se cultivaron durante dos días, para asegurar colonias con suficiente biomasa para re-sembrar en placas de Bromocresol púrpura. Los mutantes que acidifican menos el medio durante el crecimiento forman colonias carentes del característico halo amarillo que muestra una colonia de C. beijerínckii (tanto de la cepa 8052 como de BA101 ). La figura muestra un ejemplo de una de las placas de Bromocresol Púrpura empleada en la selección, y se señala, marcado con asterisco, un mutante que muestra un fenotipo de baja acidez. FIG. 1. Analysis of the mortality of C. beijerinckii in the presence of different concentrations of ethyl methanesulfonate (EMS). EMS is the mutagenic chemical agent used for the isolation of mutants of C. beijerinckii. Mortality is determined by quantifying the number of colony forming units (CFUs) per milliliter of culture. The cells were grown in a bottle, under conditions of anaerobiosis The medium used for the culture was TYA-glucose, previously gasified with N 2 to ensure anaerobiosis. A saturated culture was used to inoculate a bottle at an OD 660 = 0.1, and the culture was incubated for about 5-6 hours until an OD 660 = 1 was reached. At this time, 1 ml of culture was collected and centrifuged, the supernatant being decanted. The collected cells were treated with different concentrations of EMS for 1 hour. After treatment, the cells were washed twice with TYA medium, to finally grow in fresh medium (TYA-glucose) for two hours, and allow the recovery of the cells. After this time the cells were seeded (after diluting the culture properly) to determine the number of CFUs in the culture. This data (CFUs / ml) was represented according to the amount of EMS used, giving rise to the graph presented in this figure. As can be seen, 15 μΙ of EMS causes a mortality of 90%, and this was the amount of EMS that was used in the different mutagenesis tests. FIG. 2. Selection of mutants in purple Bromocresol plates. A culture of C. beijerínckii was treated with the EMS mutagen and, after recovery of the culture, the cells were conveniently diluted and seeded on TYA-glucose plates. The cells were grown for two days, to ensure colonies with enough biomass to re-sow in purple Bromocresol plates. Mutants that less acidify the medium during growth form colonies lacking the characteristic yellow halo showing a colony of C. beijerínckii (both strain 8052 and BA101). The figure shows an example of one of the Purple Bromocresol plates used in the selection, and it is indicated, marked with an asterisk, a mutant that shows a low acidity phenotype.
FIG. 3. Producción de butanol por mutantes de baja acidez. A) Perfil de producción de dos mutantes de baja acidez (BP25 y BP31 ) y su cepa parental correspondiente (BA101 , wt) en medio TYA-glucosa. El cultivo se realizó en anaerobiosis, en botella, sin control de pH. Los metabolitos (glucosa, butanol y butirato) analizados en el medio de cultivo se representan en función del tiempo para las tres estirpes estudiadas. Como se observa en la figura, los dos mutantes, BP25 y BP31 , producen más butanol y consumen más glucosa que su cepa parental. B) Perfil de producción de la cepa NCIMB 8052 y el mutante de baja acidez aislado desde ésta, BP1 1 . Las fermentaciones se realizan en medio TYA-glucosa, anaerobiosis y en botella sin control de pH. En estas condiciones, la cepa parental no produce butanol, mientras que el mutante aislado sí es capaz de producirlo. FIG. 4. Producción de butanol desde maíz molido (corn mash). A) El mutante BP25 y su cepa parental BA101 producen butanol desde maíz molido y clarificado. Las fermentaciones se llevaron a cabo en reactores de 1 I de volumen, con 500 mi de medio TYA con un 25% de maíz molido clarificado como fuente de azúcares. El pH se mantuvo por encima de 5,5 durante la fermentación con NH4 + diluido. La producción de butanol del mutante es mayor en las primeras 24 horas, incrementándose la productividad. La producción al final de la fermentación es similar para ambas cepas. B) El mutante BP1 1 se ensayó, frente a su cepa parental, en las condiciones descritas en A). El mutante presenta mayor productividad y producción final de butanol. FIG. 3. Butanol production by low acid mutants. A) Production profile of two low acid mutants (BP25 and BP31) and their corresponding parental strain (BA101, wt) in TYA-glucose medium. The culture was performed in anaerobiosis, in the bottle, without pH control. The metabolites (glucose, butanol and butyrate) analyzed in the culture medium are plotted as a function of time for the three strains studied. As can be seen in the figure, the two mutants, BP25 and BP31, produce more butanol and consume more glucose than their parental strain. B) Production profile of strain NCIMB 8052 and the low acid mutant isolated from it, BP1 1. The fermentations are carried out in TYA-glucose medium, anaerobiosis and in the bottle without pH control. Under these conditions, the parental strain does not produce butanol, while the isolated mutant is capable of producing it. FIG. 4. Production of butanol from ground corn (corn mash). A) The mutant BP25 and its parental strain BA101 produce butanol from ground and clarified corn. The fermentations were carried out in 1 I volume reactors, with 500 ml of TYA medium with 25% clarified ground corn as a source of sugars. The pH was maintained above 5.5 during fermentation with diluted NH 4 + . The production of mutant butanol is higher in the first 24 hours, increasing productivity. Production at the end of fermentation is similar for both strains. B) The BP1 1 mutant was tested, against its parental strain, under the conditions described in A). The mutant has higher productivity and final butanol production.
FIG. 5. Crecimiento de C. beijerinckii BA101 en hidrolizado de residuos sólidos urbanos (waste syrup). Se monitorizó el crecimiento de las células a lo largo del tiempo en un medio TYA con distintas concentraciones de hidrolizado de residuos sólidos urbanos. Como se observa en la figura, C. beijerinckii puede crecer en un medio conteniendo hasta un 5% del sustrato complejo. Observamos también que incrementar la concentración de hidrolizado de residuo sólido urbano hasta un 10% es letal para las células, que no forman colonias tras las primeras 12 horas de cultivo. TYA(-): medio TYA sin glucosa. FIG. 5. Growth of C. beijerinckii BA101 in urban solid waste hydrolyzate (waste syrup). The growth of the cells was monitored over time in a TYA medium with different concentrations of urban solid waste hydrolyzate. As seen in the figure, C. beijerinckii can grow in a medium containing up to 5% of the complex substrate. We also observe that increasing the concentration of urban solid waste hydrolyzate up to 10% is lethal to cells, which do not form colonies after the first 12 hours of culture. TYA (-): TYA medium without glucose.
FIG. 6. Producción de butanol utilizando hidrolizado de residuos sólidos urbanos como fuente de carbono. La producción de butanol de la estirpe BA101 en un medio TYA con distintas concentraciones de hidrolizado de residuo sólido urbano se analizó en botellas de 50 mi de volumen de trabajo. Como se observa en la figura, BA101 puede producir butanol en este medio de cultivo, siendo máxima la producción en el medio con el 5% de hidrolizado de residuo sólido urbano. Prácticamente toda la glucosa presente en este medio se consume en las primeras 50 horas, con una alta productividad en referencia a la producción de butanol desde esta glucosa. No se observa producción en medio TYA sin glucosa. Los resultados mostrados son la media de dos experimentos independientes, con barras de error representando la desviación estándar. FIG. 6. Butanol production using hydrolyzate of urban solid waste as a carbon source. The butanol production of the BA101 line in a TYA medium with different concentrations of urban solid waste hydrolyzate was analyzed in bottles of 50 ml of working volume. As can be seen in the figure, BA101 can produce butanol in this culture medium, the production in the medium being maximum with 5% urban solid waste hydrolyzate. Virtually all glucose present in this medium is consumed in the first 50 hours, with high productivity in reference to the production of butanol from this glucose. No production is observed in TYA medium without glucose. The results shown are the average of two independent experiments, with error bars representing the standard deviation.
FIG. 7. Producción de butanol en un medio conteniendo hidrolizado de residuos sólidos urbanos y las sales presentes en el TYA. Se ensayó la producción en un nuevo medio de cultivo que contiene únicamente las sales presentes en el TYA (acetato de magnesio, sulfato de hierro, fosfato potásico y sulfato de magnesio) y 5% de hidrolizado de residuo sólido urbano como fuente de carbono. Las tres cepas ensayadas producen butanol en este medio, y la producción del mutante BP25 es mejor que la de la cepa parental BA101 (A). Sin embargo, la producción del mutante BP31 no mejora la producción de la cepa parental en este medio (B). Los datos son la media de dos experimentos independientes. FIG. 7. Production of butanol in a medium containing hydrolyzate of urban solid waste and the salts present in the TYA. Production was tested in a new culture medium containing only the salts present in the TYA (magnesium acetate, iron sulfate, potassium phosphate and magnesium sulfate) and 5% hydrolyzate of urban solid waste as a carbon source. The three strains tested produce butanol in this medium, and the production of the BP25 mutant is better than that of the parental strain BA101 (A). However, the production of the BP31 mutant does not improve the production of the parental strain in this medium (B). The data is the average of two independent experiments.
FIG. 8. Producción de butanol del mutante BP11 en un medio conteniendo hidrolizado de residuo sólido urbano (waste syrup). La producción de butanol del mutante BP1 1 se analizó en un medio que contenía waste syrup como fuente de carbono. La concentración de hidrolizado de residuo sólido urbano presente es de aproximadamente el 1 %, con una concentración de glucosa inicial rondando los 4 g/l (A). Las células se cultivaron a saturación en medio TYA con glucosa, y este cultivo se utilizó para inocular botellas de medio conteniendo TYA y el hidrolizado de residuo sólido urbano como fuente de carbono. Como se observa en la figura, el mutante BP1 1 produce más butanol que la cepa BA101 en las condiciones ensayadas, y ambas cepas consumen la glucosa en las primeras 24 horas (A). Un análisis de otros azúcares presentes en la muestra (B) indica que la xilosa es consumida por ambas cepas de un modo similar, mientras que se aprecian diferencias en el consumo de celobiosa y arabinosa. FIG. 9. A) Viabilidad de C. beijerinckii BA101 en hidrolizado de paja de maíz. Se determinó la viabilidad de BA101 en un medio que contiene las sales del TYA y distintas concentraciones de hidrolizado de paja de maíz. Las células se cultivaron a saturación en medio TYA con glucosa, y este cultivo se utilizó para inocular medio conteniendo sales de TYA y distintas concentraciones de hidrolizado de paja de maíz. La viabilidad se determinó como CFUs/ml, y como se observa en la figura las células crecen normalmente cuando el hidrolizado de maíz se encuentra en una concentración hasta el 16%. Cuando el hidrolizado llega a una concentración del 25% es letal para las células. B) Análisis de los azúcares presentes en el hidrolizado de paja de maíz. Se muestran las concentraciones de azúcares representativos presentes en el medio TYA con 16% de hidrolizado de paja de maíz, tanto al inicio de la fermentación (tO), como a las 72 horas (t72). Se muestran duplicados de una fermentación de C. beijerinckii BA101 (wt). FIG. 8. Production of butanol of mutant BP11 in a medium containing hydrolyzate of urban solid waste (waste syrup). Butanol production of the BP1 1 mutant was analyzed in a medium containing waste syrup as a carbon source. The concentration of urban solid waste hydrolyzate present is approximately 1%, with an initial glucose concentration of around 4 g / l (A). The cells were cultured to saturation in TYA medium with glucose, and this culture was used to inoculate bottles of medium containing TYA and the urban solid waste hydrolyzate as a carbon source. As shown in the figure, the mutant BP1 1 produces more butanol than strain BA101 under the conditions tested, and both strains consume glucose in the first 24 hours (A). An analysis of other sugars present in the sample (B) indicates that xylose is consumed by both strains in a similar way, while differences in the consumption of cellobiose and arabinose are observed. FIG. 9. A) Viability of C. beijerinckii BA101 in corn straw hydrolyzate. The viability of BA101 in a medium containing TYA salts and different concentrations of corn straw hydrolyzate was determined. The cells were grown to saturation in TYA medium with glucose, and this culture was used to inoculate medium containing TYA salts and different concentrations of corn straw hydrolyzate. The viability was determined as CFUs / ml, and as seen in the figure, the cells normally grow when the corn hydrolyzate is in a concentration up to 16%. When the hydrolyzate reaches a concentration of 25% it is lethal to the cells. B) Analysis of the sugars present in the corn straw hydrolyzate. The representative sugar concentrations present in the TYA medium with 16% corn straw hydrolyzate are shown, both at the beginning of fermentation (tO), and at 72 hours (t72). Duplicates of a fermentation of C. beijerinckii BA101 (wt) are shown.
FIG. 10. Producción de butanol usando hidrolizado de paja de maíz como fuente de carbono. Se ensayó la producción de butanol de la cepa BA101 (wt), y de los dos mutantes de baja acidez BP25 y BP31 , en un medio que contenía las sales presentes en TYA y un 16% de hidrolizado de paja de maíz. En la figura se aprecia que todas las cepas pueden utilizar este sustrato como fuente de carbono, y producir butanol. El mutante BP25 produce más butanol que la cepa parental, y se observa que toda la glucosa del medio se consume en las primeras 48 horas. Los datos mostrados son la media de dos experimentos independientes. FIG. 10. Butanol production using corn straw hydrolyzate as a carbon source. The butanol production of strain BA101 (wt), and of the two low acid mutants BP25 and BP31, was tested in a medium containing the salts present in TYA and 16% corn straw hydrolyzate. In the figure it is appreciated that all strains can use this substrate as a carbon source, and produce butanol. The BP25 mutant produces more butanol than the parental strain, and it is observed that all the glucose in the medium is consumed in the first 48 hours. The data shown are the average of two independent experiments.
FIG. 11. Producción de butanol usando arabinosa como fuente de carbono. Las cepas BA101 (wt) y BP25 se analizaron por su capacidad de producir butanol en un medio TYA con arabinosa (A) o arabinosa y glucosa (B) como fuente de carbono. Un cultivo saturado se utilizó para inocular los medios a ensayar a una OD660= 0,1 . La producción de butanol se siguió en el tiempo, y, como se muestra en A, las dos cepas pueden utilizar la arabinosa para producir butanol. Sin embargo, cuando tenemos glucosa y arabinosa en el medio de cultivo, la glucosa se consume en las primeras 24 horas, mientras que únicamente el mutante BP25 consume arabinosa tras el uso de glucosa. La producción de butanol es mejor para el mutante BP25 que para su cepa parental BA101 en el caso de que ambos azúcares estén presentes en el medio. FIG. 11. Butanol production using arabinose as a carbon source. Strains BA101 (wt) and BP25 were analyzed for their ability to produce butanol in a TYA medium with arabinose (A) or arabinose and glucose (B) as a carbon source. A saturated culture was used to inoculate the media to be tested at an OD 660 = 0.1. Butanol production was followed over time, and, as shown in A, the two strains can use arabinose to produce butanol. However, when we have glucose and arabinose in the culture medium, glucose is consumed in the first 24 hours, while only the BP25 mutant consumes arabinose after the use of glucose. Butanol production is better for the BP25 mutant than for its parental strain BA101 in case both sugars are present in the medium.
FIG. 12. Producción de butanol de las cepas BP11 , BP25 y BP31 usando arabinosa como fuente de carbono. Las cepas BA101 , BP1 1 , BP25 y BP31 se analizaron por su capacidad de producir butanol en un medio TYA con arabinosa como fuente de carbono. Un cultivo saturado se utilizó para inocular los medios a ensayar a una OD660= 0,1 . La producción de butanol se siguió en el tiempo, y, como se observa en la figura los mutantes de baja acidez producen butanol desde este azúcar C5 más eficientemente que la cepa BA101 . El mutante BP1 1 logra mayores títulos de producción en las primeras horas, utilizando la arabinosa más eficientemente; sin embargo, tanto el mutante BP25 como el mutante BP31 alcanzan un mayor rendimiento final de producción, consumiendo también más arabinosa en el proceso. FIG. 12. Butanol production of strains BP11, BP25 and BP31 using arabinose as a carbon source. Strains BA101, BP1 1, BP25 and BP31 were analyzed for their ability to produce butanol in a TYA medium with arabinose as a carbon source. A saturated culture was used to inoculate the media to be tested at an OD 660 = 0.1. Butanol production was followed over time, and, as seen in the figure, low acid mutants produce butanol from this C5 sugar more efficiently than strain BA101. The mutant BP1 1 achieves higher production titres in the first hours, using arabinose more efficiently; however, both the BP25 mutant and the BP31 mutant reach a higher final production yield, also consuming more arabinose in the process.
FIG. 13. Producción de butanol de mutantes de baja acidez usando xilosa como fuente de carbono. La producción de butanol de BA101 (wt) y los dos mutantes de baja acidez BP25 y BP31 se analizó en un medio que contiene xilosa (A) o xilosa y glucosa (B) como fuente de carbono. Un cultivo en TY A-glucosa saturado se usó para inocular el medio deseado a una OD660= 0,1 . La producción de butanol se analizó a lo largo del tiempo, y los resultados muestran que las tres estirpes pueden utilizar xilosa como fuente de carbono para producir butanol (A), y que cuando hay glucosa y xilosa en el medio, los dos azúcares se usan simultáneamente y, en el caso de los mutantes, son consumidos en las primeras 24 horas. FIG. 13. Butanol production of low acid mutants using xylose as a carbon source. The butanol production of BA101 (wt) and the two low acid mutants BP25 and BP31 were analyzed in a medium containing xylose (A) or xylose and glucose (B) as a carbon source. A culture in saturated TY A-glucose was used to inoculate the desired medium at an OD 660 = 0.1. Butanol production was analyzed over time, and the results show that the three strains can use xylose as a carbon source to produce butanol (A), and that when there is glucose and xylose in the middle, the two sugars are used simultaneously and, in the case of mutants, they are consumed in the first 24 hours.
EJEMPLOS EXAMPLES
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que ponen de manifiesto los altos rendimientos de los mutantes desarrollados en la presente invención en la producción de ABE a partir de diferentes fuentes de carbono. The invention will now be illustrated by tests carried out by the inventors, which show the high yields of the mutants developed in the present invention in the production of ABE from different carbon sources.
Ejemplo 1. Generación y selección de los mutantes de C. beijerinckii. Example 1. Generation and selection of C. beijerinckii mutants.
Los mutantes se generaron mediante mutagénesis con el químico etil-metano- sulfonato (EMS). Para llevar a cabo la mutagénesis, en primer lugar se definió la concentración de EMS adecuada para lograr una buena proporción de mutagénesis/muerte celular en Clostrídium beijerinckii. Como se observa en la Fig. 1 , la concentración de EMS para la mutagénesis de Clostrídium beijerinckii se estableció en 15 μΙ para 1 mi de cultivo con una OD660 de 1 . Este tratamiento causa la muerte de alrededor del 90% de las células. La mutagénesis se llevó a cabo cultivando las células toda la noche en anaerobiosis. Como medio de cultivo se utilizó TYA (composición detallada en el ejemplo 8), suplementado con 60 g/l de glucosa, y gasificado con N2 para eliminar todo el 02 y asegurar condiciones de anaerobiosis. Un cultivo de toda la noche se utilizó para inocular una botella de medio TYA a una densidad óptica a 660 (OD660) de 0,1 . Tras crecimiento en anaerobiosis durante 5 ó 6 horas, cuando el cultivo ha alcanzado una densidad óptica a 660 nm (OD660) de 1 , se recoge un mililitro de cultivo, se centrifuga y se trata con 15 μΙ de EMS durante una hora. Tras el tratamiento las células se lavan tres veces con TYA, y finalmente se incuban en 5 mi de medio fresco durante dos horas (tiempo de regeneración). Tras la regeneración, las células se siembran en un medio adecuado para proceder a la selección. The mutants were generated by mutagenesis with the chemical ethyl methanesulfonate (EMS). In order to carry out the mutagenesis, the appropriate EMS concentration was first defined to achieve a good proportion of mutagenesis / cell death in Clostridium beijerinckii. As observed in Fig. 1, the concentration of EMS for Clostridium beijerinckii mutagenesis was set at 15 μΙ for 1 ml of culture with an OD 660 of 1. This treatment causes the death of about 90% of the cells. Mutagenesis was carried out by culturing the cells overnight in anaerobiosis. TYA (composition detailed in example 8), supplemented with 60 g / l glucose, and gasified with N 2 was used as culture medium to remove all 0 2 and ensure anaerobic conditions. An overnight culture was used to inoculate a bottle of TYA medium at an optical density at 660 (OD 660 ) of 0.1. After growth in anaerobiosis for 5 or 6 hours, when the culture has reached an optical density at 660 nm (OD 660 ) of 1, one milliliter of culture is collected, centrifuged and treated with 15 μΙ of EMS for one hour. After treatment the cells are washed three times with TYA, and finally incubated in 5 ml of fresh medium for two hours (regeneration time). After regeneration, the cells are seeded in a suitable medium to proceed with the selection.
Para el aislamiento de mutantes se utilizó un método de selección que permite identificar células que reducen menos el pH que la parental. El razonamiento para la obtención de mutantes sobre-productores de butanol basado en la baja acidez del cultivo es el siguiente: las células que causan menos acidez en el medio de cultivo pueden estar derivando los ácidos hacia disolventes más rápidamente, de modo que pueden producir más disolventes (butanol). Para el aislamiento de las células que causan una menor acidez del medio de cultivo se utilizan placas selectivas, con un indicador de pH, Bromocresol Púrpura, que es morado a pH básico, y que se vuelve amarillo a pH ácido. De este modo, las células que más acidifican el medio, forman colonias con un halo amarillo alrededor (Fig. 2). Las células menos ácidas (mayor pH en el rango ácido) no cambian el color de las placas, manteniéndolas moradas. For the isolation of mutants, a selection method was used to identify cells that reduce the pH less than the parental. The reasoning for obtaining butanol over-producing mutants based on the low acidity of the culture is as follows: the cells that cause less acidity in the culture medium may be diverting the acids to solvents more quickly, so that They can produce more solvents (butanol). For the isolation of the cells that cause a lower acidity of the culture medium, selective plates are used, with a pH indicator, Bromocresol Purple, which is purple at basic pH, and which turns yellow at acidic pH. In this way, the cells that most acidify the medium form colonies with a yellow halo around them (Fig. 2). Less acidic cells (higher pH in the acidic range) do not change the color of the plates, keeping them purple.
Como cepas parentales en esta selección se utilizaron dos cepas de Clostrídium beijerínckii, C. beijerínckii NCIBM 8052 (8052; cepa de colección), y C. beikjerínckii BA101 (BA101 ). BA101 es un mutante de 8052, obtenido por mutagénesis química, y seleccionado por su mayor capacidad amilolítica, que se ha descrito que produce más butanol que la cepa silvestre. En referencia a la selección empleada, decir que ambas cepas producen el halo amarillo alrededor de la colonia en placas de bromocresol púrpura, aunque el halo de la cepa 8052 es más pronunciado. Para la selección, tras las mutagénesis, las células no se pueden sembrar directamente en el medio selectivo con Bromocresol Púrpura, debido a la toxicidad de este medio, que no permite el crecimiento de colonias saludables. Los mutantes se sembraron en primer lugar en medio TYA-glucosa, y mutantes ya aislados se resembraron en placas con Bromocresol Púrpura para aislar aquellos que presentaran un menor halo amarillo. Más de 5000 mutantes fueron sembrados en las placas selectivas, y unos 50 mutantes fueron seleccionados carentes de halo amarillo alrededor de la colonia, para un posterior ensayo de su capacidad productora de butanol. Two strains of Clostrídium beijerínckii, C. beijerínckii NCIBM 8052 (8052; collection strain), and C. beikjerínckii BA101 (BA101) were used as parental strains in this selection. BA101 is a mutant of 8052, obtained by chemical mutagenesis, and selected for its greater amylolytic capacity, which has been described to produce more butanol than the wild strain. Referring to the selection used, say that both strains produce the yellow halo around the colony in purple bromocresol plates, although the halo of strain 8052 is more pronounced. For selection, after mutagenesis, cells cannot be sown directly in the selective medium with Bromocresol Purple, due to the toxicity of this medium, which does not allow the growth of healthy colonies. The mutants were first seeded in TYA-glucose medium, and already isolated mutants were plated with Purple Bromocresol plates to isolate those that had a lower yellow halo. More than 5000 mutants were seeded on the selective plates, and about 50 mutants were selected lacking yellow halo around the colony, for a subsequent test of their butanol-producing capacity.
Ejemplo 2. Producción de butanol a partir de glucosa con los mutantes generados. Example 2. Production of butanol from glucose with the generated mutants.
Para analizar la capacidad de producir butanol de los distintos mutantes, los cultivos se iniciaban en botella de 50 mi, en anaerobiosis, desde un cultivo saturado, a una OD660= 0,1 . Los cultivos se crecían en TYA con glucosa (60 g/l), a 37eC y durante 72 horas. En cada caso se tomaron alícuotas a distintos tiempos (como mínimo cuatro puntos) para analizar la producción de butanol. Las muestras, de 1 ,5 mi, se tomaban utilizando una jeringa y aguja, a través de un septo, de modo que no se interrumpía la atmosfera anaerobia del cultivo. Una vez recogidas las muestras, se procedía a la centrifugación de las mismas para separar las células (13000 rpms, 10 minutos), y el sobrenadante se tomaba para determinar glucosa, butirato y butanol mediante cromatografía líquida de alta presión (HPLC; GE Healthcare). El método de cromatografía usa una columna de tipo Aminex HPX-87H (Biorad), de un tamaño de 300 X 7,8 mm, con una temperatura de columna de 40eC y un flujo de 0,6 ml/min. El volumen de inyección es de 20 μΙ, y el tiempo de cromatografía de 40 minutos. Como fase móvil se utiliza agua acidulada (0,05M H2S04), y los tiempos de retención (en minutos) para los distintos compuestos es de 8,6 para glucosa, 21 ,6 para butirato, y 36,2 para butanol. Para la cuantificación se utilizó un estándar interno que incluía concentraciones conocidas de los distintos metabolitos. To analyze the capacity to produce butanol of the different mutants, the cultures were started in a 50 ml bottle, in anaerobiosis, from a saturated culture, to an OD 660 = 0.1. The cultures were grown in TYA with glucose (60 g / l), at 37 e C and for 72 hours. In each case, aliquots were taken at different times (at least four points) to analyze the production of butanol. The samples, of 1.5 ml, were taken using a syringe and needle, through a septum, so that the anaerobic atmosphere of the culture was not interrupted. Once the samples were collected, they were centrifuged to separate the cells (13000 rpms, 10 minutes), and the supernatant was taken to determine glucose, butyrate and butanol by high pressure liquid chromatography (HPLC; GE Healthcare) . The method of Chromatography uses a column of type Aminex HPX-87H (Biorad), of a size of 300 X 7.8 mm, with a column temperature of 40 e C and a flow of 0.6 ml / min. The injection volume is 20 μΙ, and the chromatography time is 40 minutes. Acidic water (0.05M H 2 S0 4 ) is used as the mobile phase, and the retention times (in minutes) for the different compounds is 8.6 for glucose, 21.6 for butyrate, and 36.2 for butanol . For quantification an internal standard was used that included known concentrations of the different metabolites.
Los resultados obtenidos muestran que tres de los mutantes de baja acidez (mutantes BP1 1 , BP25 y BP31 ) producen más butanol que sus respectivos parentales. La cepa parental del mutante BP1 1 es la estirpe C. beijerinckii 8052, mientras que el parental de los mutantes BP25 y BP31 es la estirpe C. beijerinckii BA101 (Fig. 3). En las condiciones usadas en este ensayo, la cepa silvestre 8052 no produce butanol, ya que el pH del cultivo baja por debajo de 5 durante el crecimiento, dando lugar al fenómeno conocido como "acid crash", que conduce a una disminución del crecimiento de las células y una inhibición de la producción de butanol. The results obtained show that three of the low acidity mutants (mutants BP1 1, BP25 and BP31) produce more butanol than their respective parents. The parental strain of the mutant BP1 1 is the C. beijerinckii 8052 strain, while the parental strain of the BP25 and BP31 mutants is the C. beijerinckii BA101 strain (Fig. 3). Under the conditions used in this test, wild strain 8052 does not produce butanol, since the pH of the crop falls below 5 during growth, giving rise to the phenomenon known as "acid crash", which leads to a decrease in the growth of cells and an inhibition of butanol production.
Ejemplo 3. Producción de butanol a partir de maíz molido con los mutantes generados. Example 3. Production of butanol from ground corn with the generated mutants.
Además de la producción en TYA-glucosa, se analizó la producción de butanol en un medio que contenía maíz molido (corn mash) como fuente de carbono. El medio contenía las sales presentes en TYA junto con un 25% de maíz molido, tratado con amilasa para incrementar la glucosa soluble, y clarificado (centrifugado). En este caso el cultivo de las distintas cepas se hizo en termentadores de 1 litro, con 500 mi de volumen de trabajo, y en condiciones en las cuales se controlaba el pH por encima de 5,5. La agitación se estableció a 50 rpm, y la temperatura a 37eC. El cultivo se iniciaba utilizando 25 mi de un cultivo saturado (crecido durante unas 16 horas). Como se observa en la figura 4, todas las cepas pueden utilizar el maíz molido y clarificado como fuente de carbono, y los mutantes producen significativamente más butanol en las primeras 24 horas que sus correspondientes cepas parentales, incrementando, por tanto, la productividad del proceso. Además, y como se observa en la figura 4, la producción del mutante BP1 1 a las 72 horas es significativamente mayor que la producción de su cepa parental. Ejemplo 4. Producción de butanol a partir de hidrolizado de residuos urbanos con los mutantes generados. In addition to the production in TYA-glucose, the production of butanol in a medium containing ground corn (corn mash) as a carbon source was analyzed. The medium contained the salts present in TYA together with 25% ground corn, treated with amylase to increase soluble glucose, and clarified (centrifuged). In this case, the cultivation of the different strains was done in 1 liter thermostats, with 500 ml of work volume, and under conditions in which the pH was controlled above 5.5. Stirring was set at 50 rpm, and the temperature at 37 e C. The culture was started using 25 ml of a saturated culture (grown for about 16 hours). As seen in Figure 4, all strains can use ground and clarified corn as a carbon source, and the mutants produce significantly more butanol in the first 24 hours than their corresponding parental strains, thereby increasing the productivity of the process. . In addition, and as seen in Figure 4, the production of the BP1 1 mutant at 72 hours is significantly higher than the production of its parental strain. Example 4. Production of butanol from hydrolyzate of urban waste with the generated mutants.
También se analizó la capacidad de producir butanol cuando se utilizan como fuente de carbono distintos productos de desecho. Como productos de desecho se utilizaron un hidrolizado de residuos sólidos urbanos (waste syrup) y un hidrolizado de biomasa vegetal (paja de maíz o corn stover). The ability to produce butanol was also analyzed when different waste products are used as a carbon source. As waste products, an urban solid waste hydrolyzate (waste syrup) and a vegetable biomass hydrolyzate (corn straw or corn stover) were used.
El hidrolizado de residuos urbanos sólidos es el producto resultante tras la hidrólisis enzimática de la parte orgánica de los residuos sólidos urbanos. Utilizando este sirope se realizó en primer lugar un estudio de viabilidad con concentraciones crecientes del mismo (0%, 1 ,5%, 5% y 10%). El crecimiento se analizó determinando el número de unidades formadoras de colonia (CFU/ml) por mililitro de cultivo, a lo largo del tiempo. Para determinar las CFUs/ml se tomaron alícuotas del cultivo a distintos tiempos, y, tras diluir adecuadamente, se sembraron en placas de TY A-glucosa, de modo que las colonias quedaran lo suficientemente aisladas para proceder al conteo de las mismas. Estos ensayos se hicieron con la cepa BA101 , y los resultados muestran que C. beijerínckii BA101 no puede crecer en un medio que contenga un 10% de waste syrup, mientras que concentraciones de hasta el 5% de waste syrup permiten el crecimiento de BA101 (Figura 5). En estas condiciones se analizó la producción de butanol de la cepa BA101 , observándose que con el 5% de sirope de residuos sólidos urbanos ésta puede producir butanol con una productividad muy alta en relación al consumo de glucosa (la cual se consume casi totalmente en las primeras 50 horas de fermentación; Figura 6). Solid urban waste hydrolyzate is the resulting product after enzymatic hydrolysis of the organic part of urban solid waste. Using this syrup, a feasibility study was first carried out with increasing concentrations (0%, 1.5%, 5% and 10%). Growth was analyzed by determining the number of colony forming units (CFU / ml) per milliliter of culture, over time. To determine the CFUs / ml, aliquots of the culture were taken at different times, and, after diluting properly, they were plated on TY A-glucose plates, so that the colonies were sufficiently isolated to proceed to count them. These tests were done with strain BA101, and the results show that C. beijerínckii BA101 cannot grow in a medium containing 10% waste syrup, while concentrations of up to 5% waste syrup allow the growth of BA101 ( Figure 5). Under these conditions, the butanol production of strain BA101 was analyzed, observing that with 5% of municipal solid waste syrup it can produce butanol with a very high productivity in relation to glucose consumption (which is consumed almost entirely in first 50 hours of fermentation; Figure 6).
Para el análisis de los mutantes de baja acidez se utilizó un medio de cultivo que contenía únicamente las sales presentes en el TYA y 5% de sirope de residuos sólidos urbanos (composición del medio en el ejemplo 8). Los datos (Figura 7A) muestran que el mutante BP25 produce butanol más rápidamente cuando utiliza este sustrato como fuente de carbono, mientras que el mutante BP31 produce el mismo butanol que la cepa parental (Figura 7B). For the analysis of the low acidity mutants, a culture medium was used that contained only the salts present in the TYA and 5% urban solid waste syrup (composition of the medium in example 8). The data (Figure 7A) shows that the BP25 mutant produces butanol more quickly when using this substrate as a carbon source, while the BP31 mutant produces the same butanol as the parental strain (Figure 7B).
La composición de azúcares de este medio se analizó mediante cromatografía (HPLC), utilizando una columna Aminex HPX-87H (300 x 7,8 mm). El método de análisis utiliza agua acidulada como fase móvil, una temperatura de columna de 60eC, y una temperatura del detector de 40eC. El análisis de los azúcares después de la fermentación indicó que las cepas empleadas pueden consumir los azúcares C6 y C5 presentes en este medio. The sugar composition of this medium was analyzed by chromatography (HPLC), using an Aminex HPX-87H column (300 x 7.8 mm). The analysis method uses acidulated water as a mobile phase, a column temperature of 60 e C, and a detector temperature of 40 e C. The analysis of sugars after Fermentation indicated that the strains used can consume the C6 and C5 sugars present in this medium.
La capacidad de fermentar sirope de residuos sólidos urbanos del mutante BP1 1 también se analizó en un medio que contenía TYA y una menor concentración de sirope de residuos sólidos urbanos. Los experimentos se realizaron en botella, sin control de pH. En estas condiciones la cepa parental del mutante BP1 1 (la cepa 8052) no produce butanol, como ya hemos descrito. Es por ello que la capacidad de producir butanol de este mutante se comparó con la de la estirpe BA101 . Como se observa en la figura 8A el mutante BP1 1 produce butanol utilizando este sustrato complejo como fuente de carbono, y lo produce con mejores títulos que la cepa BA101 . En esta figura se aprecia que la glucosa presente en este medio se consumió en las primeras 24 horas, y que ambas cepas la consumen por igual. Al mismo tiempo se analizaron otros azúcares presentes en la muestra, y, como se observa en la figura 8B, la xilosa es consumida completamente en las primeras 24 horas por ambas estirpes. Sin embargo, existen diferencias en el consumo de celobiosa y arabinosa, que el mutante BP1 1 parece consumir más eficientemente (Figura 8B). The ability to ferment syrup of solid urban waste from the mutant BP1 1 was also analyzed in a medium containing TYA and a lower concentration of syrup of urban solid waste. The experiments were performed in the bottle, without pH control. Under these conditions the parental strain of mutant BP1 1 (strain 8052) does not produce butanol, as we have already described. That is why the capacity to produce butanol of this mutant was compared with that of the BA101 line. As seen in Figure 8A, mutant BP1 1 produces butanol using this complex substrate as a carbon source, and produces it with better titres than strain BA101. In this figure it can be seen that the glucose present in this medium was consumed in the first 24 hours, and that both strains consume it equally. At the same time other sugars present in the sample were analyzed, and, as seen in Figure 8B, the xylose is consumed completely in the first 24 hours by both strains. However, there are differences in the consumption of cellobiose and arabinose, which the mutant BP1 1 seems to consume more efficiently (Figure 8B).
Ejemplo 5. Producción de butanol a partir de hidrolizado de paja de maíz con los mutantes generados. Example 5. Production of butanol from corn straw hydrolyzate with the generated mutants.
El segundo de los sustratos de desecho empleado fue el hidrolizado de paja de maíz (corn stover). Éste es el resultado de la hidrólisis enzimática de paja de maíz sometida a tratamiento ácido y de explosión de vapor. La paja de maíz es un tipo de residuo agrícola que ha sido ampliamente estudiado como sustrato (tras la hidrólisis enzimática) para la producción de bio-etanol de segunda generación. Utilizando este sustrato como fuente de carbono (composición del medio en el ejemplo 8), se analizó la viabilidad de la cepa BA101 . Un cultivo saturado de BA101 (cultivado durante 16 horas) se utilizó para inocular (OD660=0,1 ) 50ml de TYA con distintas concentraciones de hidrolizado de paja de maíz (0%, 16% y 25%). La viabilidad se analizó determinando CFUs/ml, como ya se ha descrito. Los resultados muestran que BA101 no puede crecer cuando el medio contiene un 25% de hidrolizado de paja de maíz. Sin embargo, el crecimiento es adecuado cuando la concentración de sustrato se disminuye hasta el 16% (Figura 9A). Los azúcares presentes en este medio tras la fermentación se analizaron, y se observa nuevamente que BA101 consume azúcares C6 y C5 durante el crecimiento (Figura 9B). Finalmente, se analizó la producción de butanol de los distintos mutantes en un medio con 16% de hidrolizado de paja de maíz. Los resultados (Figura 10) muestran que todas las cepas ensayadas producen butanol utilizando esta fuente de carbono, y que el mutante BP25 produce más butanol que la cepa parental. The second of the waste substrates used was the corn straw hydrolyzate. This is the result of enzymatic hydrolysis of corn straw undergoing acid treatment and steam explosion. Corn straw is a type of agricultural waste that has been widely studied as a substrate (after enzymatic hydrolysis) for the production of second generation bio-ethanol. Using this substrate as a carbon source (composition of the medium in example 8), the viability of strain BA101 was analyzed. A saturated culture of BA101 (cultivated for 16 hours) was used to inoculate (OD 660 = 0.1) 50ml of TYA with different concentrations of corn straw hydrolyzate (0%, 16% and 25%). Viability was analyzed by determining CFUs / ml, as already described. The results show that BA101 cannot grow when the medium contains 25% corn straw hydrolyzate. However, growth is adequate when the substrate concentration is decreased to 16% (Figure 9A). The sugars present in this medium after fermentation were analyzed, and it is again observed that BA101 consumes C6 and C5 sugars during growth (Figure 9B). Finally, the butanol production of the different mutants was analyzed in a medium with 16% corn straw hydrolyzate. The results (Figure 10) show that all strains tested produce butanol using this carbon source, and that the BP25 mutant produces more butanol than the parental strain.
Ejemplo 6. Producción de butanol a partir de azúcares C5 con los mutantes generados. Los resultados obtenidos en fermentaciones con sustratos complejos mostraron que las cepas de C. beijerínckii pueden consumir los C5 presentes en estos sustratos. Para analizar la capacidad de las distintas cepas de consumir azúcares C5, tanto la cepa BA101 como los mutantes BP25 y BP31 se crecieron en medio TYA conteniendo distintos azúcares C5 como sustratos, y se analizó la producción de butanol. Los C5 elegidos para el ensayo fueron L-arabinosa y D-xilosa. Para determinar la producción de butanol y el consumo de azúcares C5 tras la fermentación se empleó cromatografía líquida (HPLC), con el método anteriormente descrito para determinación de butanol. El tiempo de retención de la arabinosa en este método es de 10,1 minutos, mientras que la xilosa se identifica a los 9,2 minutos de cromatografía. Example 6. Production of butanol from C5 sugars with the generated mutants. The results obtained in fermentations with complex substrates showed that C. beijerínckii strains can consume the C5 present in these substrates. To analyze the ability of different strains to consume C5 sugars, both strain BA101 and mutants BP25 and BP31 were grown in TYA medium containing different C5 sugars as substrates, and butanol production was analyzed. The C5 chosen for the test were L-arabinose and D-xylose. To determine the production of butanol and the consumption of C5 sugars after fermentation, liquid chromatography (HPLC) was used, with the method described above for the determination of butanol. The retention time of arabinose in this method is 10.1 minutes, while xylose is identified at 9.2 minutes of chromatography.
Consumo de arabinosa Arabinose intake
Los resultados muestran que, cuando la fermentación se produce en un medio que contiene únicamente arabinosa (TYA + arabinosa), tanto BA101 como BP25 pueden utilizar arabinosa como fuente de carbono, y producir butanol desde ella (Figura 1 1 A). The results show that, when fermentation occurs in a medium containing only arabinose (TYA + arabinose), both BA101 and BP25 can use arabinose as a carbon source, and produce butanol from it (Figure 1 1 A).
Analizando el comportamiento en un medio que contiene tanto glucosa como arabinosa (y ambas en concentraciones limitantes para analizar el patrón de consumo de azúcares, y determinar si C6 y C5 se consumen simultáneamente o consecutivamente), se observó que el consumo de arabinosa no ocurre hasta que la glucosa ha sido completamente consumida (Figura 1 1 B), y el uso de la misma no es muy eficiente (únicamente el mutante BP25 la consume, y no completamente), mostrándose una inhibición por glucosa en el consumo de arabinosa. La utilización de arabinosa por el mutante BP1 1 era más eficiente que la de la cepa BA101 en el sustrato complejo de sirope de residuos sólidos urbanos (Figura 8), por lo que también se analizó la producción de butanol desde este azúcar de este mutante. Los ensayos se realizaron en botellas de 50 mi, sin control de pH. En estas condiciones, la cepa parental del mutante BP1 1 , no produce butanol, con lo que se incluyeron como controles para valorar la producción del mutante BP1 1 , las cepas BA101 , BP25 y BP31 . Como se observa en la figura 12, los mutantes producen más butanol que la cepa BA101 , y el mutante BP1 1 , aunque inicialmente consume arabinosa más rápido, a partir de las 48 horas frena su consumo de arabinosa y la producción de butanol, al contrario que los mutantes BP25 y BP31 que siguen produciendo butanol durante las 72 horas que se siguió el análisis de la fermentación. Analyzing the behavior in a medium that contains both glucose and arabinose (and both in limiting concentrations to analyze the pattern of sugar consumption, and determine if C6 and C5 are consumed simultaneously or consecutively), it was observed that arabinose consumption does not occur until that glucose has been completely consumed (Figure 1 1 B), and its use is not very efficient (only the mutant BP25 consumes it, and not completely), showing a glucose inhibition in the consumption of arabinose. The use of arabinose by the mutant BP1 1 was more efficient than that of strain BA101 in the complex substrate of urban solid waste syrup (Figure 8), so that the production of butanol from this sugar of this mutant was also analyzed. The tests were carried out in 50 ml bottles, without pH control. Under these conditions, the parental strain of the mutant BP1 1 does not produce butanol, which were included as controls to assess the production of the mutant BP1 1, strains BA101, BP25 and BP31. As seen in Figure 12, mutants produce more butanol than strain BA101, and mutant BP1 1, although initially consumes arabinose faster, after 48 hours slows down its consumption of arabinose and butanol production, on the contrary than the BP25 and BP31 mutants that continue to produce butanol during the 72 hours that the fermentation analysis was followed.
Consumo de xilosa Xylose Consumption
En el caso del azúcar C5 xilosa, cuando está presente como única fuente de carbono en el medio, los resultados muestran que las estirpes ensayadas (BA101 , BP25 y BP31 ) consumen xilosa y producen butanol desde este azúcar (Figura 13A). Resulta interesante que cuando la xilosa se encuentra en el medio junto con glucosa (ambos en concentraciones limitantes), las células pueden consumir ambos azúcares simultáneamente, y completamente en las primeras 30 horas de fermentación (Figura 13B). En estas condiciones se observa que la producción de butanol en las primeras 24 horas es mejor para los mutantes de baja acidez que para la cepa parental, mientras que la producción al final de la fermentación es muy similar en las tres estirpes. In the case of C5 xylose sugar, when present as the only source of carbon in the medium, the results show that the tested lines (BA101, BP25 and BP31) consume xylose and produce butanol from this sugar (Figure 13A). It is interesting that when xylose is in the medium together with glucose (both in limiting concentrations), the cells can consume both sugars simultaneously, and completely in the first 30 hours of fermentation (Figure 13B). Under these conditions, it is observed that the production of butanol in the first 24 hours is better for low acid mutants than for the parental strain, while the production at the end of fermentation is very similar in the three strains.
Ejemplo 7. Análisis del ADN genómico de los tres mutantes generados. Example 7. Analysis of the genomic DNA of the three mutants generated.
El ADN genómico de los tres mutantes de baja acidez fue secuenciado, y la secuencia del genoma se comparó con la de su correspondiente cepa parental. Así, se identificaron los genes que aparecen mutados en cada cepa. Los resultados mostraron que hay varios procesos biológicos que pueden estar alterados en los mutantes, y conducir al fenotipo de mayor producción de butanol. El mutante BP1 1 muestra una mutación en el gen Cbei_1540, el cual codifica una pppGpp sintasa, y parece el más probable para explicar el fenotipo sobreproductor de este mutante, comparado con su cepa parental. pppGpp es una señal intracelular que causa una respuesta a estrés por activación del factor transcripcional RpoS. Se ha descrito previamente que la disminución intracelular de esta molécula resulta en una menor respuesta a estrés, y una mayor tolerancia a butanol de las células. Un incremento en la tolerancia a butanol podría conducir hacia una mayor producción, o a una desregulación de los procesos que resulte en una producción de butanol más rápida. Otra mutación interesante es la que aparece en el gen Cbei_2475. Este gen codifica un regulador transcripcional de tipo tetR, y está situado en 5' de un gen codificante de una bomba de extrusión. Esta mutación podría conducir hacia una mayor tolerancia a butanol, y, por tanto, a una mayor producción. The genomic DNA of the three low acid mutants was sequenced, and the genome sequence was compared with that of their corresponding parental strain. Thus, the genes that appear mutated in each strain were identified. The results showed that there are several biological processes that may be altered in the mutants, and lead to the phenotype of increased butanol production. The BP1 1 mutant shows a mutation in the Cbei_1540 gene, which encodes a pppGpp synthase, and seems the most likely to explain the overproducer phenotype of this mutant, compared to its parental strain. pppGpp is an intracellular signal that causes a stress response by activating the RpoS transcriptional factor. It has been previously described that the intracellular decrease of this molecule results in a less response to stress, and greater tolerance to butanol of the cells. An increase in butanol tolerance could lead to increased production, or to deregulation of processes that result in faster butanol production. Another interesting mutation is the one that appears in the Cbei_2475 gene. This gene encodes a transcriptional regulator of the tetR type, and is located at 5 'of a gene coding for an extrusion pump. This mutation could lead to a greater tolerance to butanol, and, therefore, to greater production.
El mutante BP25 muestra 25 mutaciones. Entre las mutaciones que podrían causar el fenotipo estudiado, se han identificado varias que podrían afectar al proceso de producción de butanol. Hay varios genes implicados en quimiotaxis que aparecen mutados, lo cual sugiere que la quimiotaxis puede ser importante para el proceso de producción de butanol. Por otro lado, el mantenimiento de un estado redox intracelular adecuado es fundamental para la producción de butanol, ya que hay varios cofactores que cambian su estado redox durante el proceso de producción. Este mutante muestra tres genes (Cbei_0316, Cbei_1206 y Cbei_1472) que están implicados en el mantenimiento del estado redox celular; las mutaciones en estos genes pueden ser responsables del fenotipo observado. Además, se encontraron dos genes mutados (Cbei_4691 y Cbei_4699) cuya función es la del mantenimiento de la pared celular y la síntesis de peptidoglicano. Las mutaciones en estos genes pueden conducir a un incremento de la tolerancia a butanol, lo cual puede resultar en una mayor producción. Por último varios genes implicados en el metabolismo de purinas aparecen mutados en esta estirpe. La concentración de ATP intracelular es importante para la producción de butanol, y se ha descrito que un aumento del ATP intracelular conduce a una mayor producción de butanol. The BP25 mutant shows 25 mutations. Among the mutations that could cause the phenotype studied, several have been identified that could affect the butanol production process. There are several genes involved in chemotaxis that appear mutated, which suggests that chemotaxis may be important for the butanol production process. On the other hand, maintaining an adequate intracellular redox state is essential for the production of butanol, as there are several cofactors that change their redox state during the production process. This mutant shows three genes (Cbei_0316, Cbei_1206 and Cbei_1472) that are involved in the maintenance of the cellular redox state; Mutations in these genes may be responsible for the observed phenotype. In addition, two mutated genes (Cbei_4691 and Cbei_4699) were found whose function is the maintenance of the cell wall and the synthesis of peptidoglycan. Mutations in these genes can lead to an increase in butanol tolerance, which can result in increased production. Finally, several genes involved in purine metabolism appear mutated in this lineage. The concentration of intracellular ATP is important for the production of butanol, and it has been reported that an increase in intracellular ATP leads to increased butanol production.
El mutante BP31 muestra seis mutaciones con respecto a su cepa parental, sin embargo únicamente tres de ellas son no conservativas, siendo, por tanto, las posibles responsables del fenotipo observado. La que parece tener más relevancia es la que aparece en el gen Cbei_2475, gen que también está mutado en el mutante BP1 1 , y cuya función, y relevancia con respecto al fenotipo de producción de butanol ya se ha descrito. Las otras dos mutaciones aparecen en los genes Cbei_0436 y Cbei_1397. El primero codifica para una histidina quinasa, implicada en procesos de transducción de señales. El proceso de producción de butanol está estrechamente ligado al proceso de esporulacion, el cual está altamente regulado mediante fosforilaciones mediadas por histidin-quinasas. Sin embargo, ésta en particular no está descrita como implicada en estos procesos. El segundo de estos genes codifica para una transposasa, que a priori no parece implicada en el proceso de producción de butanol. The BP31 mutant shows six mutations with respect to its parental strain, however, only three of them are non-conservative, being therefore responsible for the observed phenotype. The one that seems to have more relevance is the one that appears in the Cbei_2475 gene, a gene that is also mutated in the mutant BP1 1, and whose function, and relevance with respect to the butanol production phenotype has already been described. The other two mutations appear in the genes Cbei_0436 and Cbei_1397. The first codes for a histidine kinase, involved in signal transduction processes. The butanol production process is closely linked to the sporulation process, which is highly regulated by histidine kinase-mediated phosphorylations. However, this one in particular is not described as implied in these processes The second of these genes codes for a transposase, which a priori does not seem involved in the butanol production process.
Ejemplo 8. Composición de los distintos medios de cultivo empleados en los ensayos. Example 8. Composition of the different culture media used in the tests.
TYA: TYA:
Glucosa: 60 g/l  Glucose: 60 g / l
Extracto de levadura: 2 g/l  Yeast Extract: 2 g / l
Bacto triptona: 6 g/l Tryptone Bacto: 6 g / l
Acetato de amonio: 3 g/l  Ammonium Acetate: 3 g / l
KH2P04: 0,5 g/l KH 2 P0 4 : 0.5 g / l
FeS04.7H20: 0,01 g/l FeS0 4 .7H 2 0: 0.01 g / l
Ajuste de pH a 6,5 y autoclave a 1 10eC PH adjustment to 6.5 and autoclave at 1 10 e C
MgS04 (1 M): 1 ,22 mi por litro MgS0 4 (1 M): 1.22 ml per liter
TYA-placas: TYA-plates:
Glucosa: 60 g/l  Glucose: 60 g / l
Extracto de levadura: 2 g/l  Yeast Extract: 2 g / l
Bacto triptona: 6 g/l Tryptone Bacto: 6 g / l
Acetato de amonio: 3 g/l  Ammonium Acetate: 3 g / l
KH2P04: 0,5 g/l KH 2 P0 4 : 0.5 g / l
FeS04.7H20: 0,01 g/l FeS04.7H 2 0: 0.01 g / l
Bacto agar: 15 g/l  Bacto agar: 15 g / l
Ajuste de pH a 6.5 y autoclave a 1 10eC PH adjustment to 6.5 and autoclave at 1 10 e C
MgS04 (1 M): 1 ,22 mi por litro MgS0 4 (1 M): 1.22 ml per liter
Placas Bromocresol Púrpura: Bromocresol Purple Plates:
Glucosa: 60 g/l  Glucose: 60 g / l
Extracto de levadura: 2 g/l Yeast Extract: 2 g / l
Bacto triptona: 6 g/l  Tryptone Bacto: 6 g / l
Acetato de amonio: 3 g/l  Ammonium Acetate: 3 g / l
KH2P04: 0,5 g/l KH 2 P0 4 : 0.5 g / l
FeS04.7H20: 0,01 g/l FeS04.7H 2 0: 0.01 g / l
Bromocresol Púrpura: 0,4 g/l Bromocresol Purple: 0.4 g / l
Bacto agar: 15 g/l Ajuste de pH a 6.5 y autoclave a 1 10eC Bacto agar: 15 g / l PH adjustment to 6.5 and autoclave at 1 10 e C
MgS04 (1 M): 1 ,22 mi por litro MgS0 4 (1 M): 1.22 ml per liter
TYA (-): TYA (-):
Extracto de levadura: 2 g/l Yeast Extract: 2 g / l
Bacto triptona: 6 g/l Tryptone Bacto: 6 g / l
Acetato de amonio: 3 g/l Ammonium Acetate: 3 g / l
KH2P04: 0,5 g/l KH 2 P0 4 0.5 g / l
FeS04.7H20: 0,01 g/l FeS04.7H 2 0: 0.01 g / l
NaCI: 35 g/l NaCI: 35 g / l
Bacto-agar: 15 g/l  Bacto-agar: 15 g / l
Ajuste de pH a 6.5 y autoclave a 1 10eC PH adjustment to 6.5 and autoclave at 1 10 e C
MgS04 (1 M): 1 ,22 mi por litro TYA sales + 5% hidrolizado de residuos urbanos:MgS0 4 (1 M): 1.22 ml per liter TYA salts + 5% hydrolyzed urban waste:
Acetato de amonio: 3 g/l Ammonium Acetate: 3 g / l
KH2P04: 0,5 g/l KH 2 P0 4 : 0.5 g / l
FeS04.7H20: 0,01 g/l FeS04.7H 2 0: 0.01 g / l
NaCI: 35 g/l  NaCI: 35 g / l
Bacto-agar: 15 g/l Bacto-agar: 15 g / l
Hidrolizado de residuos urbanos: 50 ml/l  Urban waste hydrolyzate: 50 ml / l
Ajuste de pH a 6,5 y autoclave a 1 10eC PH adjustment to 6.5 and autoclave at 1 10 e C
MgS04 (1 M): 1 ,22 mi por litro TYA sales + 16% hidrolizado de paja de maíz:MgS0 4 (1 M): 1, 22 mi per liter TYA salts + 16% hydrolysed maize straw:
Acetato de amonio: 3 g/l Ammonium Acetate: 3 g / l
KH2P04: 0,5 g/l KH 2 P0 4 : 0.5 g / l
FeS04.7H20: 0,01 g/l FeS04.7H 2 0: 0.01 g / l
NaCI: 35 g/l  NaCI: 35 g / l
Bacto-agar: 15 g/l Bacto-agar: 15 g / l
Hidrolizado de paja de maíz: 160 ml/l  Corn straw hydrolyzate: 160 ml / l
Ajuste de pH a 6,5 y autoclave a 1 10eC PH adjustment to 6.5 and autoclave at 1 10 e C
MgS04 (1 M): 1 ,22 mi por litro MgS0 4 (1 M): 1.22 ml per liter

Claims

REIVINDICACIONES
1 . Una cepa mutante de Clostridium beijerinckii caracterizada porque comprende en su genoma las siguientes mutaciones con respecto al genoma de la cepa parental Clostridium beijerinckii NCIMB 8052: a. A en lugar de G en la posición 235 del gen Cbei_0083, one . A mutant strain of Clostridium beijerinckii characterized in that it comprises in its genome the following mutations with respect to the genome of the parental strain Clostridium beijerinckii NCIMB 8052: a. A instead of G at position 235 of the Cbei_0083 gene,
b. T en lugar de C en la posición 151 del gen Cbei_0769,  b. T instead of C at position 151 of the Cbei_0769 gene,
c. A en lugar de G en la posición 54 del gen Cbei_R0027,  C. A instead of G at position 54 of the Cbei_R0027 gene,
d. A en lugar de G en la posición 186 del gen Cbei_0123,  d. A instead of G at position 186 of the Cbei_0123 gene,
e. A en lugar de G en la posición 201 del gen Cbei_0196,  and. A instead of G at position 201 of the Cbei_0196 gene,
f. A en lugar de G en la posición 871 del gen Cbei_0316,  F. A instead of G at position 871 of the Cbei_0316 gene,
g- T en lugar de C en la posición 731 del gen Cbei_1206,  g- T instead of C at position 731 of the Cbei_1206 gene,
h. T en lugar de C en la posición 437 del gen Cbei_1472,  h. T instead of C at position 437 of the Cbei_1472 gene,
i. C en lugar de T en la posición 968 del gen CbeM 854,  i. C instead of T at position 968 of the CbeM 854 gene,
j- A en lugar de C en la posición 139 del gen Cbei_1935,  j- A instead of C at position 139 of the Cbei_1935 gene,
k. T en lugar de G en la posición 31 del gen Cbei_1975,  k. T instead of G at position 31 of the Cbei_1975 gene,
I. T en lugar de G en la posición 21 13 del gen Cbei_3078,  I. T instead of G at position 21 13 of the Cbei_3078 gene,
m. G en lugar de A en la posición 88 del gen Cbei_3625,  m. G instead of A at position 88 of the Cbei_3625 gene,
n. T en lugar de C en la posición 160 del gen Cbei_3757,  n. T instead of C at position 160 of the Cbei_3757 gene,
o. A en lugar de G en la posición 325 del gen Cbei_4026,  or. A instead of G at position 325 of the Cbei_4026 gene,
P- A en lugar de G en la posición 1079 del gen Cbei_4207,  P- A instead of G at position 1079 of the Cbei_4207 gene,
q- T en lugar de G en la posición 628 del gen Cbei_4256,  q- T instead of G at position 628 of the Cbei_4256 gene,
r. deleción de G en la posición 672 del gen Cbei_4308,  r. G deletion at position 672 of the Cbei_4308 gene,
s. T en lugar de G en la posición 1766 del gen Cbei_4400,  s. T instead of G at position 1766 of the Cbei_4400 gene,
t. A en lugar de G en la posición 1732 del gen Cbei_4548,  t. A instead of G at position 1732 of the Cbei_4548 gene,
u. A en lugar de G en la posición 1465 del gen Cbei_4691 ,  or. A instead of G at position 1465 of the Cbei_4691 gene,
v. A en lugar de G en la posición 997 del gen Cbei_4699,  v. A instead of G at position 997 of the Cbei_4699 gene,
w. C en lugar de T en la posición 101 del gen Cbei_4761 ,  w. C instead of T at position 101 of the Cbei_4761 gene,
x. A en lugar de G en la posición 27 del gen Cbei_4865, y  x. A instead of G at position 27 of the Cbei_4865 gene, and
y. A en lugar de G en la posición 708 del gen Cbei_4918.  Y. A instead of G at position 708 of the Cbei_4918 gene.
2. Cepa según la reivindicación 1 , que es la cepa mutante de Clostridium beijerinckii depositada en la Colección Española de Cultivos Tipo bajo el número de acceso CECT 9306. 2. A strain according to claim 1, which is the mutant strain of Clostridium beijerinckii deposited in the Spanish Type Culture Collection under the accession number CECT 9306.
3. Uso de la cepa según cualquiera de las reivindicaciones 1 ó 2 para la producción de disolventes. 3. Use of the strain according to any of claims 1 or 2 for the production of solvents.
4. Uso de la cepa según la reivindicación 3, donde el disolvente es butanol. 4. Use of the strain according to claim 3, wherein the solvent is butanol.
5. Uso de la cepa según cualquiera de las reivindicaciones 3 ó 4, donde los disolventes son acetona, butanol y etanol (ABE). 5. Use of the strain according to any of claims 3 or 4, wherein the solvents are acetone, butanol and ethanol (ABE).
6. Uso de la cepa según cualquiera de las reivindicaciones 3 a 5, donde la producción de disolventes se lleva a cabo por medio de un proceso de fermentación anaerobica en presencia de un medio de cultivo que comprende una fuente de carbono. 6. Use of the strain according to any of claims 3 to 5, wherein the production of solvents is carried out by means of an anaerobic fermentation process in the presence of a culture medium comprising a carbon source.
7. Uso de la cepa según la reivindicación 6, donde la fuente de carbono comprende glucosa, celobiosa, xilosa y/o arabinosa. 7. Use of the strain according to claim 6, wherein the carbon source comprises glucose, cellobiose, xylose and / or arabinose.
8. Uso de la cepa según la reivindicación 7, donde la fuente de carbono comprende glucosa y arabinosa. 8. Use of the strain according to claim 7, wherein the carbon source comprises glucose and arabinose.
9. Uso de la cepa según cualquiera de las reivindicaciones 6 a 8, donde la fuente de carbono se selecciona de la lista que consiste en: glucosa, maíz molido, hidrolizado de residuos orgánicos urbanos, o hidrolizado de biomasa vegetal. 9. Use of the strain according to any of claims 6 to 8, wherein the carbon source is selected from the list consisting of: glucose, ground corn, urban organic waste hydrolyzate, or vegetable biomass hydrolyzate.
10. Uso de la cepa según la reivindicación 9, donde el hidrolizado de biomasa vegetal es hidrolizado de paja de maíz. 10. Use of the strain according to claim 9, wherein the vegetable biomass hydrolyzate is corn straw hydrolyzate.
1 1 . Uso de la cepa según cualquiera de las reivindicaciones 6 a 10, donde el medio de cultivo además comprende extracto de levadura, triptona, acetato de amonio, acetato de magnesio, sulfato de hierro, fosfato potásico y/o sulfato de magnesio. eleven . Use of the strain according to any one of claims 6 to 10, wherein the culture medium further comprises yeast extract, tryptone, ammonium acetate, magnesium acetate, iron sulfate, potassium phosphate and / or magnesium sulfate.
12. Método para la producción de disolventes que comprende las siguientes etapas: a. fermentar la cepa según cualquiera de las reivindicaciones 1 ó 2 en presencia de un medio de cultivo que comprende una fuente de carbono, y 12. Method for the production of solvents comprising the following steps: a. fermenting the strain according to any one of claims 1 or 2 in the presence of a culture medium comprising a carbon source, and
b. recuperar del medio de cultivo los disolventes producidos por la cepa. b. recover the solvents produced by the strain from the culture medium.
13. Método según la reivindicación 12, donde el disolvente es butanol. 13. Method according to claim 12, wherein the solvent is butanol.
14. Método según cualquiera de las reivindicaciones 12 ó 13, donde los disolventes son acetona, butanol y etanol (ABE). 14. Method according to any of claims 12 or 13, wherein the solvents are acetone, butanol and ethanol (ABE).
15. Método según cualquiera de las reivindicaciones 12 a 14, donde la fuente de carbono comprende glucosa, celobiosa, xilosa y/o arabinosa. 15. Method according to any of claims 12 to 14, wherein the carbon source comprises glucose, cellobiose, xylose and / or arabinose.
16. Método según la reivindicación 15, donde la fuente de carbono comprende glucosa y arabinosa. 16. Method according to claim 15, wherein the carbon source comprises glucose and arabinose.
17. Método según cualquiera de las reivindicaciones 12 a 16, donde la fuente de carbono se selecciona de la lista que consiste en: glucosa, maíz molido, hidrolizado de residuos sólidos orgánicos urbanos, o hidrolizado de biomasa vegetal. 17. Method according to any of claims 12 to 16, wherein the carbon source is selected from the list consisting of: glucose, ground corn, urban organic solid waste hydrolyzate, or vegetable biomass hydrolyzate.
18. Método según la reivindicación 17, donde el hidrolizado de biomasa vegetal es hidrolizado de paja de maíz. 18. Method according to claim 17, wherein the vegetable biomass hydrolyzate is corn straw hydrolyzate.
19. Método según cualquiera de las reivindicaciones 17 ó 18, donde la concentración de hidrolizado de residuos sólidos orgánicos urbanos en el medio de cultivo es del 5% (v/v) o inferior. 19. Method according to any of claims 17 or 18, wherein the concentration of hydrolyzate of urban organic solid wastes in the culture medium is 5% (v / v) or less.
20. Método según la reivindicación 18, donde la concentración de hidrolizado de paja de maíz en el medio de cultivo es del 16% (v/v) o inferior. 20. Method according to claim 18, wherein the concentration of corn straw hydrolyzate in the culture medium is 16% (v / v) or less.
21 . Método según cualquiera de las reivindicaciones 12 a 20, donde el medio de cultivo además comprende extracto de levadura, triptona, acetato de amonio, acetato de magnesio, sulfato de hierro, fosfato potásico y/o sulfato de magnesio. twenty-one . Method according to any of claims 12 to 20, wherein the culture medium further comprises yeast extract, tryptone, ammonium acetate, magnesium acetate, iron sulfate, potassium phosphate and / or magnesium sulfate.
22. Método según cualquiera de las reivindicaciones 12 a 21 , donde la fermentación de la etapa (a) se lleva a cabo a una temperatura de entre 30 y 40 eC, durante un tiempo de entre 30 y 275 horas, preferiblemente en agitación. 22. Method according to any of claims 12 to 21, wherein the fermentation step (a) is carried out at a temperature of between 30 and 40 and C, for a time of between 30 and 275 hours, preferably under stirring.
PCT/ES2018/070402 2017-06-07 2018-06-01 Mutants of clostridium beijerinckii that are butanol hyper-producers WO2018224712A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201730779 2017-06-07
ES201730779A ES2693392A1 (en) 2017-06-07 2017-06-07 MUTANTS OF CLOSTRIDIUM BEIJERINCKII HIPERPRODUCTORES DE BUTANOL (Machine-translation by Google Translate, not legally binding)

Publications (1)

Publication Number Publication Date
WO2018224712A1 true WO2018224712A1 (en) 2018-12-13

Family

ID=64559778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070402 WO2018224712A1 (en) 2017-06-07 2018-06-01 Mutants of clostridium beijerinckii that are butanol hyper-producers

Country Status (2)

Country Link
ES (1) ES2693392A1 (en)
WO (1) WO2018224712A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2016038A6 (en) * 1988-07-13 1990-10-01 Inst Francais Du Petrole Process for the preparation of butanol and acetone by fermentation starting from sugar cane molasses
WO1998051813A1 (en) * 1997-05-14 1998-11-19 The Board Of Trustees Of The University Of Illinois A METHOD OF PRODUCING BUTANOL USING A MUTANT STRAIN OF $i(CLOSTRIDIUM BEIJERINCKII)
WO2012035420A1 (en) * 2010-09-16 2012-03-22 Eni S.P.A. Clostridium beijerinckii dsm 23638 and its use in the production of butanol
WO2016192871A1 (en) * 2015-06-04 2016-12-08 IFP Energies Nouvelles Mutant strains of the genus clostridium beijerinckii

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2016038A6 (en) * 1988-07-13 1990-10-01 Inst Francais Du Petrole Process for the preparation of butanol and acetone by fermentation starting from sugar cane molasses
WO1998051813A1 (en) * 1997-05-14 1998-11-19 The Board Of Trustees Of The University Of Illinois A METHOD OF PRODUCING BUTANOL USING A MUTANT STRAIN OF $i(CLOSTRIDIUM BEIJERINCKII)
WO2012035420A1 (en) * 2010-09-16 2012-03-22 Eni S.P.A. Clostridium beijerinckii dsm 23638 and its use in the production of butanol
WO2016192871A1 (en) * 2015-06-04 2016-12-08 IFP Energies Nouvelles Mutant strains of the genus clostridium beijerinckii

Also Published As

Publication number Publication date
ES2693392A1 (en) 2018-12-11

Similar Documents

Publication Publication Date Title
US20080090283A1 (en) Ethanol resistant and furfural resistant strains of E. coli FBR5 for production of ethanol from cellulosic biomass
US9181564B2 (en) Use of bacteria for the production of bioenergy
Awang et al. The acetone-butanol-ethanol fermentation
US8569458B2 (en) Xylose utilizing Zymomonas mobilis with improved ethanol production in biomass hydrolysate medium
JP2010504757A (en) Improved ethanol production in fermentation of mixed sugars containing xylose in the presence of sugar alcohol
CN103154234A (en) Pentose and glucose fermenting yeast cell
Abd-Alla et al. Acetone–butanol–ethanol production from substandard and surplus dates by Egyptian native Clostridium strains
US20080085536A1 (en) Production of Cellulose in Halophilic Photosynthetic Prokaryotes (Cyanobacteria)
CN105821084A (en) Aerobic method of producing alcohols
US7803601B2 (en) Production and secretion of glucose in photosynthetic prokaryotes (cyanobacteria)
Talukder et al. Fuel ethanol production using xylose assimilating and high ethanol producing thermosensitive Saccharomyces cerevisiae isolated from date palm juice in Bangladesh
US9260731B2 (en) Butanol fermentation using acid pretreated biomass
Wijayasekera et al. Assessment of the Potential of CO 2 Sequestration from Cement Flue Gas Using Locally Isolated Microalgae
WO2018224712A1 (en) Mutants of clostridium beijerinckii that are butanol hyper-producers
RU2751490C1 (en) Method for producing glucose fermentation products from cellulose-containing raw materials and cellulose-containing waste by thermophilic bacterium
US20080124767A1 (en) Production and Secretion of Sucrose in Photosynthetic Prokaryotes (Cyanobacteria)
Taneja et al. Bioenergy: biomass sources, production, and applications
Widyaningrum et al. Screening and identification indigenous yeast from neera Siwalan for bioethanol production
Mansour et al. Isolation of Different Clostridium Isolates for Acetone-Butanol-Ethanol (ABE) Production from Sargassum sp.
Tigunova et al. Domestic butanol-producing strains of the Clostridium genus
Widyaningrum et al. Diversity and potency of indigenous yeast from some palm juices for bioethanol production
Vaishnavi et al. and Aruliah Rajasekar Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Vellore, India
Tigunova et al. Acetone-butyl fermentation peculiarities of the butanol strains-producer
Edeki Optimizing n-butanol bioproduction via bioinformatic gene expression analysis, with commercial and procedural evaluation
Jafer Bioethanol Production by Candida tropicalis Isolated from Sheep Dung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813580

Country of ref document: EP

Kind code of ref document: A1