WO2018224613A1 - Embout de connexion d'une ligne flexible, ligne flexible et procédé associés - Google Patents

Embout de connexion d'une ligne flexible, ligne flexible et procédé associés Download PDF

Info

Publication number
WO2018224613A1
WO2018224613A1 PCT/EP2018/065076 EP2018065076W WO2018224613A1 WO 2018224613 A1 WO2018224613 A1 WO 2018224613A1 EP 2018065076 W EP2018065076 W EP 2018065076W WO 2018224613 A1 WO2018224613 A1 WO 2018224613A1
Authority
WO
WIPO (PCT)
Prior art keywords
closure member
bidirectional
flexible line
passage
tip
Prior art date
Application number
PCT/EP2018/065076
Other languages
English (en)
Inventor
Jean-Paul FERRAZ
Henri Morand
Original Assignee
Technip France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technip France filed Critical Technip France
Publication of WO2018224613A1 publication Critical patent/WO2018224613A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • F16L11/081Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire
    • F16L11/083Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire three or more layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L33/00Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses
    • F16L33/01Arrangements for connecting hoses to rigid members; Rigid hose connectors, i.e. single members engaging both hoses adapted for hoses having a multi-layer wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/07Arrangement or mounting of devices, e.g. valves, for venting or aerating or draining
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/28Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds
    • G01M3/2807Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes
    • G01M3/283Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for pipes, cables or tubes; for pipe joints or seals; for valves ; for welds for pipes for double-walled pipes

Definitions

  • the present invention relates to a connecting end of a flexible line, the flexible line comprising at least one tubular sheath and at least one elongate element disposed around the tubular sheath, the endpiece comprising:
  • the nozzle defining at least one exhaust passage of a gas present in the flexible line towards the outside of the flexible line, the nozzle comprising a selective closure element disposed in the evacuation passage, the element selective shutter being adapted to allow the evacuation of gas through the discharge passage in the direction from the inside to the outside of the flexible line and to prevent the flow of fluid through the evacuation passage beyond the selective shutter element from the outside to the inside.
  • the flexible line is in particular a flexible pipe as described for example in the normative documents API 17J (Specification for Unbounded Flexible Pipe), API RP 17B (Recommended Practice for Flexible Pipe) and API 16C (Choke and Kill Equipment) established by the American Petroleum Institute.
  • the flexible pipe is advantageously of unbound type ("unbonded" in English).
  • the pipe is generally formed of a set of concentric and superimposed layers. It is considered as "unbound" in the sense of the present invention since at least one of the layers of the pipe is able to move longitudinally relative to the adjacent layers during bending of the pipe.
  • an unbonded pipe is a pipe devoid of binding materials connecting layers forming the pipe
  • the flexible pipe is an integrated composite bundle, comprising at least one fluid transport tube and a set of electrical or optical cables capable of transporting electrical or hydraulic power or information between the bottom and the surface of the body of water.
  • the flexible line is an umbilical, as described in the normative document published by the American Petroleum Institute (API), API17E "Specification for Subsea Umbilicals”.
  • the flexible pipes generally comprise an outer protective sheath defining an interior volume and at least one impermeable sheath disposed inside the interior volume.
  • This impermeable sheath is for example a pressure sheath delimiting a fluid circulation passage or an intermediate sheath disposed between the pressure sheath and the outer sheath.
  • Traction armor layers formed by generally metallic wire layers are disposed in the annular space between the impervious sheath and the outer sheath to provide good tensile strength.
  • gases that are contained in the fluids transported by the pipe such as hydrocarbons, carbon dioxide, and hydrogen sulfide are likely to pass into the annular space by diffusion through the sheath or ducts.
  • EP0341 144 to connect the annular space to the outside of the pipe by a gas evacuation passage extending through the nozzle.
  • the passage is provided with a clean valve to open in case of overpressure inside the pipe with respect to the external pressure.
  • the water located outside the pipe is likely to enter the annular space through the valve itself, and / or through the sealing means disposed around the valve.
  • An object of the invention is therefore to provide a tip for a flexible line that prevents the bursting of the outer sheath during a recovery of the pipe, while ensuring that the flexible line will not be flooded during use normal.
  • the invention relates to a tip of the aforementioned type, characterized by: at least one bi-directional closing member of the evacuation passage disposed in the evacuation passage and / or at its exit, the bidirectional closing member being able to pass from a closed configuration of closing of the evacuation passage an open configuration for evacuating a gas overpressure in the exhaust passage.
  • the tip according to the invention may comprise one or more of the following characteristics, taken separately or in any technically possible combination:
  • At least one bidirectional closure member is formed by a rupture disk capable of passing from its closed configuration to its open configuration by bursting;
  • the rupture disc is formed of a polymeric material or a metallic material
  • the rupture disc has at least one hollow part defining at least one preferential rupture zone, of thickness less than the thickness of a peripheral zone of the rupture disc, the hollow part having a circular or cross-shaped contour ;
  • the tip comprises a transverse bearing surface of the bidirectional closure member disposed transversely relative to the discharge passage, the transverse bearing surface defining a through opening, the tip comprising a veneer member of the bidirectional closure member on the transverse bearing surface, the bidirectional closure member being held fixed between the transverse bearing surface and the veneer member, facing the through opening;
  • the tip comprises an additional support interposed between the transverse bearing surface and the bidirectional closure member opposite the through opening, the additional support being mounted free with respect to the transverse bearing surface;
  • At least one bidirectional closure member is located downstream of the selective sealing element, in the direction going from the inside towards the outside of the flexible line;
  • At least one bidirectional closure member is located in the selective sealing element
  • the selective sealing member comprises a movable valve, and a piercing member of the bidirectional closure member, movably mounted together with the movable valve;
  • At least one bidirectional closure member is situated upstream of the selective closing element, in the direction going from the inside towards the outside of the flexible line; the bidirectional closure member is mounted coaxially with the selective sealing element;
  • At least one bidirectional closure member is formed by a valve operable from outside the flexible line;
  • the nozzle defines at least one auxiliary passage for evacuating a gas present in the flexible line towards the outside of the flexible line, distinct from the evacuation passage, the auxiliary evacuation passage being devoid of any element of selective closure disposed in the auxiliary evacuation passage, the endpiece comprising an auxiliary bi-directional closure member of the auxiliary evacuation passage disposed in the auxiliary evacuation passage and / or at its exit, the bidirectional auxiliary locking member being able to pass from a closed configuration of closure of the auxiliary discharge passage to an open configuration of evacuation of a gas overpressure in the auxiliary discharge passage.
  • the subject of the invention is also a flexible line comprising:
  • At least one elongate element arranged around the tubular sheath
  • the invention further relates to a method comprising the following steps:
  • the method according to the invention may comprise one or more of the following characteristics, taken separately or in any technically possible combination:
  • the bidirectional closure member comprises a rupture member, the bidirectional closure member passing from its closed configuration to its open configuration by bursting the rupture member under the effect of an overpressure;
  • the bidirectional closure member comprises a valve, the bidirectional closure member passing from its closed configuration to its open configuration by actuating the valve from outside the pipe;
  • gas accumulation occurs when the flexible line is disposed deep into the body of water, the discharge passage of the bidirectional closure member from its closed configuration to its open configuration occurring before a rise of the flexible line towards the surface, or during the ascent of the flexible line towards the surface.
  • FIG. 1 is an exploded perspective view of the central section of a flexible line according to the invention.
  • FIG. 2 is a partial view, taken along a median axial plane, of a detail of a tip of the flexible line according to the invention, provided with a bidirectional closure member disposed downstream of an element of FIG. selective sealing;
  • FIG. 3 is a view from above of the detail of FIG. 2;
  • FIG. 4 is a detailed view of the bidirectional closure member
  • FIG. 5 is a view similar to Figure 2 during the opening of the bidirectional closure member
  • Figure 6 is a view similar to Figure 5 for another nozzle according to the invention.
  • Figures 7 and 8 are views similar respectively to Figures 3 and 4 for another nozzle according to the invention.
  • Figures 9 and 10 are views similar respectively to Figures 3 and 4 for another nozzle according to the invention.
  • Figures 1 1, 12 and 13 are similar views respectively to Figures 2, 4 and 5 for another nozzle according to the invention, wherein the bidirectional closure member is disposed upstream of the selective sealing member ;
  • FIGS. 14 and 15 are sectional views of a selective closure member provided with a bidirectional closure member, respectively in its closed configuration and in its open configuration;
  • FIG. 16 is a view similar to FIG. 14, for a variant of selective closure element
  • FIG. 17 is a sectional view along a median axial plane of another endpiece according to the invention.
  • upstream and downstream refer to the normal direction of circulation of a fluid. In particular, they are generally understood here from within the flexible line to the outside of the flexible line.
  • a first flexible line according to the invention, formed by a flexible pipe 10, is partially illustrated by FIGS. 1 to 5.
  • the flexible pipe 10 comprises a central section 12 illustrated in part in FIG. It comprises, at each of the axial ends of the central section 12, an end cap 14, partially visible in FIG.
  • the pipe 10 delimits, in its internal volume 15, a central passage 16 for the circulation of a fluid, advantageously a petroleum fluid.
  • the central passage 16 extends along an axis A-A ', which it contains, between the upstream end and the downstream end of the pipe 10. It opens through the endpieces 14.
  • the diameter of the central passage 16 is advantageously between 50 mm (2 ") and 500 mm (20").
  • the fluid conveyed by line 10 is for example a gas or a liquid extracted from the marine subsoil.
  • the flexible pipe 10 is intended to be disposed through a body of water (not shown) in a fluid operating installation, in particular hydrocarbons.
  • the body of water is, for example, a sea, a lake or an ocean.
  • the depth of the body of water to the right of the fluid operating installation is for example between 50 m and 4000 m.
  • the fluid operating installation comprises a generally floating surface assembly and a bottom assembly (not shown) which are generally interconnected by the flexible pipe 10.
  • the flexible pipe 10 is an "unbonded” pipe (referred to as "unbonded”).
  • At least two adjacent layers of the flexible pipe 10 are free to move longitudinally with respect to each other during bending of the pipe.
  • all the adjacent layers of the flexible pipe are free to move relative to each other.
  • API American Petroleum Institute
  • API 17J May 2014, 4th edition
  • RP17B API May 2014, 5th edition
  • API 16C March 2015 2nd edition
  • the pipe 10 delimits a plurality of concentric layers around the axis A-A ', which extend continuously along the central section 12 to the ends 14 (not visible in FIG. 1). located at the ends of the pipe.
  • the pipe 10 here comprises at least a first tubular sheath 20 made of polymer material constituting a pressure sheath.
  • the pipe 10 comprises a second outer tubular sheath 22 intended to protect the pipe 10.
  • the inner sheath 20 defines with the outer sheath 22 at least one annular space
  • the pipe 10 comprises, in the annular space 26, a pressure vault 30, and optionally an internal band 32 wound around the pressure vault 30.
  • the pipe 10 further comprises a plurality of layers of tensile armor 34, 36 arranged externally with respect to the pressure vault 30 and with respect to the band 32.
  • the pipe 10 further comprises an internal carcass 42 disposed inside the inner sheath 20.
  • the carcass 42 when present, is formed for example of a profiled metal strip, wound in a spiral.
  • the turns of the strip are advantageously stapled to each other, which takes the radial forces of crushing.
  • the helical winding of the profiled metal strip forming the carcass 42 is short pitch, that is to say it has a helix angle of absolute value close to 90 °, typically between 75 ° and 90 °.
  • the carcass 42 is disposed inside the inner sheath 20.
  • the pipe 10 is then designated by the term "rough bore" because of the geometry of the carcass 42.
  • the pipe 10 is devoid of internal carcass
  • the inner sheath 20 is intended to seal the fluid transported in the passage 16. It is formed of a polymer material, for example based on a polyolefin such as polyethylene or polypropylene, based on a polyamide such as PA1 1 or PA12, or based on a fluorinated polymer such as polyvinylidene fluoride (PVDF) or perfluoro alkoxy (PFA).
  • a polyolefin such as polyethylene or polypropylene
  • a polyamide such as PA1 1 or PA12
  • a fluorinated polymer such as polyvinylidene fluoride (PVDF) or perfluoro alkoxy (PFA).
  • the thickness of the inner sheath 20 is for example between 5 mm and 20 mm.
  • the pressure vault 30 is intended to take up the forces related to the pressure prevailing inside the inner sheath 20. It is for example formed of a metallic profiled wire surrounded in a helix around the sheath 20.
  • the profiled wire preferably has a geometry, in particular Z-shaped. The geometry Z improves the general mechanical strength of the pipe 10 and also reduces its mass.
  • the profiled wire has a geometry in the form of T, U, K, X or I.
  • the pressure vault 30 is helically wound in a short pitch around the inner sheath 20, that is to say with a helix angle of absolute value close to 90 °, typically between 75 ° and 90 °.
  • the band 32 when present, is constituted by a spiral winding of at least one wire advantageously of rectangular cross section around the pressure vault 30.
  • the superposition of several wires wound around the pressure vault 30 can advantageously replace a total thickness of the band 32 given. This increases the resistance to bursting of the pipe 10.
  • the winding of the at least one wire is short pitch, that is to say with a helix angle of absolute value close to 90 °, typically between 75 ° and 90 °.
  • the pressure vault 30 and the hoop 32 are replaced by a pressure vault of greater thickness formed from a profiled metal wire having a T-shaped geometry, U, K, X or I, and / or from at least one aramid band with high mechanical strength (Technora® or Kevlar®), and / or from at least one composite strip comprising a thermoplastic matrix in which are embedded carbon fibers or glass fibers.
  • a pressure vault of greater thickness formed from a profiled metal wire having a T-shaped geometry, U, K, X or I, and / or from at least one aramid band with high mechanical strength (Technora® or Kevlar®), and / or from at least one composite strip comprising a thermoplastic matrix in which are embedded carbon fibers or glass fibers.
  • the pipe 10 does not include a pressure vault.
  • a flexible pipe structure is said to be "balanced” (not shown).
  • the pipe 10 comprises at least one pair of cross-armor layers of tensile strength 34, 36 disposed above the band 32.
  • the flexible pipe 10 comprises at least one pair of armor layers 34, 36.
  • the flexible pipe 10 has several pairs of armor layers 34, 36 superimposed on each other, for example two pairs of inner armor layers 34, 36.
  • Each pair has a first armor layer 34 applied to the ferrule 32, to the vault 30, to the sheath 20 or to another pair of armor layers, and a second layer of armor 36, arranged around the first layer of armor 34.
  • Each armor layer 34, 36 comprises at least one longitudinal armor element 44 wound with a long pitch about the axis A-A 'of the pipe 10.
  • the absolute value of the helix angle is less than 60 °, and is typically between 20 ° and 60 °.
  • the absolute value of the helix angle of each layer of internal armor 34, 36 is greater than 45 °, and is in particular between 50 ° and 60 °, and is approximately equal to 55 °.
  • the armor elements 44 of a first layer 34 are generally wound at an opposite angle relative to the armor elements 44 of a second layer 36.
  • the winding angle of the armor elements 44 of the first layer 34 is equal to + a, a being between 20 ° and 60 °
  • the winding angle of the armor elements 44 of the second layer 36 disposed in contact with the first layer 34 is for example de - a, with a between 20 ° and 60 °.
  • the armor elements 44 are for example formed by wire or composite material, or by high strength tapes.
  • each layer of armor 34, 36 rests on at least one anti-wear strip (not shown).
  • the anti-wear strip is for example made of plastic, especially based on a polyamide or a polyvinylidene fluoride (PVDF). It has a thickness less than the thickness of each sheath 20, 22.
  • a holding tape such as a high-strength aramid band (Technora® or Kevlar®) is wound around the second outermost armor layer 36 with respect to the axis A-A ', to ensure a mechanical maintenance of the armor layers 34, 36.
  • the aramid fibers are replaced by glass fibers.
  • the outer sheath 22 is intended to protect the annular space 26 by preventing the uncontrolled penetration of fluid from outside the flexible pipe 10 inwards. It is advantageously made of a polymer material, in particular based on a polyolefin such as polyethylene or polypropylene, based on a polyamide such as PA1 1 or PA12, or based on a fluorinated polymer such as polyfluoride. vinylidene (PVDF) or perfluoroalkoxy (PFA).
  • PVDF vinylidene
  • PFA perfluoroalkoxy
  • the thickness of the outer sheath 22 is for example between 5 mm and 20 mm.
  • the outer sheath 22 is sealed. It prevents the penetration of liquid from the outside of the pipe 10 towards the annular space 26.
  • the pipe 10 is connected to the surface assembly by the endpiece 14.
  • Each endpiece 14 has an end vault 50, and a cap 51 delimiting with the vault 50 a chamber 52 for receiving the end sections of the armor elements 44, and end portions of the layers forming the pipe 10, in particular the end portions of the sheaths 20, 22, the roof 30 and the hoop 32 when present.
  • the tip 14 has crimping elements (not shown) of the end of each sheath 20, 22.
  • the crimping elements are respectively intended to seal between the outside of the pipe 10 and the annular space 26 , and between the annular space 26 and the central passage 16, around the inner sheath 20.
  • the end vault 50 is intended to connect the pipe 10 to another endpiece 14 or bottom and / or surface end devices, advantageously via an end flange.
  • the end vault 50 has a central bore intended to receive the end of the pressure sheath 20 and to allow the flow of the fluid flowing through the central passage 16 towards the outside of the pipe 10.
  • the endpiece 14 further defines an evacuation passage 60 of the gases collected in the annular space 26 for conveying them outside the flexible pipe 10.
  • the endpiece 14 furthermore comprises a selective closing element 62 of the passage 60, disposed in the discharge passage 60 and advantageously, a sealing assembly 64 mounted upstream of the selective sealing member 62.
  • the nozzle 14 further comprises a bidirectional closure member 66 interposed in the evacuation passage 60, and a set 68 for mounting the bidirectional closure member 66.
  • the evacuation passage 60 connects the annular space 26 to an outlet orifice 70 opening radially outwardly of the endpiece 14. It extends successively through the chamber 52, and through the vault 50.
  • the outlet orifice opens out of the nozzle in a longitudinal direction or substantially oblique with respect to the axis A-A '.
  • the evacuation passage 60 is delimited upstream by a duct 72 passing through the chamber 52 to the roof 50. It comprises downstream a longitudinal section 74 and a radial section 76 formed in the vault 50.
  • the longitudinal section 74 here advantageously extends inclined with respect to the axis A-A 'of the central passage 16.
  • the radial section 76 comprises, radially away from the axis A-A ', an upstream region 78, an intermediate region 80 of greater transverse extent than the upstream region 78, and a downstream region 82 of greater transverse extent than that of the intermediate region 80.
  • the intermediate region 80 and the upstream region 78 delimit between them an internal shoulder 84 on which rests the sealing assembly 64. It has on its peripheral surface an internal thread.
  • the downstream region 82 and the intermediate region 80 define between them an external shoulder 86 at the level of the selective closure element 62.
  • the downstream region 82 has an outer edge 88 on which the assembly assembly 68 of the bidirectional closure member 66 rests.
  • the selective sealing member 62 is able to permanently prevent the passage of fluid through the orifice 70 in the direction from the outside towards the inside of the pipe 10.
  • the selective sealing member 62 is able to prevent the passage of fluid, when the pressure difference between the upstream of the selective sealing member 62 and the downstream of the selective sealing member 62 is less than at the given threshold value.
  • the selective sealing member 62 is formed by a non-return valve.
  • FIG 14 it comprises a hollow base body 90, mounted in the passage 60, preferably between the intermediate region 80 and the downstream region 82, and an insert 92 partially closing the hollow base body 90, defining with the base body 90, a through passage 95 of fluid circulation.
  • the selective sealing element 62 further comprises a shut-off valve 94 mounted movably in the circulation passage 95 between a closed position of the passage 95, visible in FIG. 14, and an open position of the passage 95. It comprises a calibrated spring 96 able to permanently urge the valve 94 towards its closed position.
  • the selective sealing member 62 defines a seat 98 projecting into the passage 95 for sealing the valve 94 in the closed position.
  • the seat 98 prevents the displacement of the valve 94 towards the inside of the pipe 10.
  • the valve 94 is hollow. It has an inner cavity 100 and through openings 102 for gas passage opening into the inner cavity 100.
  • valve 94 In the closed position, the valve 94 rests on an inner surface of the seat 98 and seals the passageway 95.
  • the valve 94 is held against the seat 98 by the spring 96 as long as the pressure difference between the upstream of the selective shutter element 62 and the downstream of the selective shutter element 62 is less than the given threshold value.
  • the valve deviates from the seat 98, allowing the passage of gas from the inside to the outside, especially from the annular space 26 through the exhaust passage 60.
  • the threshold value depends on the stiffness of the spring 96. This threshold value is for example greater than 1 barg and is in particular between 0.5 barg and 5 barg.
  • the sealing assembly 64 is here formed by a ring 104 disposed in abutment between the internal shoulder 84 and the selective sealing element 62.
  • FIG. 14 which illustrates a variant, has been used here to describe the main elements of the selective sealing element 62.
  • the closure member bidimensional 66 is advantageously not worn by the selective sealing element 62.
  • the two-dimensional closure member 66 is disposed downstream of the selective sealing element 62.
  • the two-dimensional closure member 66 is intended to prevent water from the body of water from entering the annular space 26, while allowing the gases to be discharged from the annular space 26 to outside when the selective sealing element 62 is opened, for example during the raising of the pipe 10.
  • the bidirectional closure member 66 is here formed by a rupture disc
  • the rupture disc 1 10 is advantageously formed of a polymer material, in particular based on a polyolefin such as polyethylene or polypropylene, based on a polyamide such as PA1 1 or PA12, based on a fluoropolymer such as polyvinylidene fluoride (PVDF) or perfluoroalkoxy (PFA), or based on a polyurethane.
  • the disc 1 10 may also be formed from a metallic material such as, for example, carbon steel, stainless steel, aluminum, titanium, platinum or from a metal alloy such as a nickel alloy (Hastelloy or Monel) or super-nickel alloy (Inconel).
  • the assembly assembly 68 comprises a plate 1 12 mounted on the outer edge
  • the assembly assembly 68 advantageously comprises a closure plate 1 16.
  • the plate 1 12 comprises a peripheral sleeve 120 defining a central hole 122 and a perforated transverse wall 124 interposed in the central hole for receiving in abutment the rupture disc 1 10.
  • the peripheral sleeve 120 is fixed on the roof 50 for example by screwing.
  • a seal 126 is interposed between the sleeve 120 and the outer edge 88.
  • the central hole 122 here defines the outlet of the passage 60.
  • the perforated transverse wall 124 defines a transverse bearing surface 128 of the rupture disc 1 10. It has at least one through opening 130 opening into the transverse surface 128.
  • the locking ring 1 14 is inserted into the peripheral sleeve 120 to press the periphery of the rupture disk 1 10 against the transverse bearing surface 128.
  • the ring 1 14 is fixedly held by means of the closing plate 1 16 disposed externally and exerting a contact pressure thereon.
  • the locking ring 1 14 is fixed in the peripheral sleeve 120 for example by screwing.
  • the ratio between the transverse extent D1 of the through opening 130 and the thickness E of the rupture disc 1 10 is defined as a function of the maximum external pressure that the rupture disc 1 10 must withstand. in use. The higher the pressure, the smaller the transverse extent D1 and the greater the thickness E is increased.
  • the thickness of the disc 1 10 is between 1 mm and 10 mm, in particular between 3 mm and 5 mm.
  • the maximum transverse extent D1 of the through opening 130 is for example between 0.5 mm and 5 mm, in particular between 1 mm and 3 mm.
  • the maximum transverse extent D2 of the central lumen 132 and the thickness E of the disc 1 10 are furthermore chosen as a function of the maximum differential pressure. allowed between the inside and outside of the pipe 10. The higher the differential pressure, the smaller the transverse extent D2, and the greater the thickness E is increased.
  • the maximum transverse extent D2 of the central lumen 132 is between 10 mm and 30 mm, in particular between 15 mm and 25 mm.
  • the maximum permissible differential pressure is lower than the burst pressure of the outer sheath 22.
  • the bi-directional closure member 66 occupies a closed sealed closure configuration of the exhaust passage 60. It prevents the gas present inside the flow passage. 60, upstream of the bidirectional closure member 66 out of the pipe 10, even if the selective closure member 62 passes it. It also prevents the liquid present outside the pipe 10 from entering the exhaust passage 60 beyond the bidirectional closure member 66.
  • the bidirectional closure member 66 spontaneously passes into an open configuration for evacuating a gas overpressure in the exhaust passage 60.
  • bidirectional closure member 66 is a rupture disc 1 10, it is able to break in the region facing the through opening 130 and the central lumen 132 to let the gas pass as illustrated in Figure 5.
  • the maximum allowable differential pressure of the bidirectional closure member 66 is less than the threshold value at which the selective sealing member 62 passes the gases.
  • the bidirectional closure member 66 spontaneously passes into its open evacuation configuration.
  • the burst differential pressure of the rupture disc 1 10 is less than the given threshold value of displacement of the valve 94 to the outside.
  • the closure plate 1 16 is fixed on the sleeve 120 to cover the central lumen 132 and to compress the locking ring 1 14 on the rupture disc 1 10. It defines the orifice 70 through which the gas escapes out of the pipe 10.
  • the selective sealing element 62 is put in place in the passage 60. Its smooth operation is tested at the factory. This being done, the rupture disk 1 10 is placed on the transverse bearing surface 128.
  • the dimensions of the rupture disk 1 10 have been chosen as a function of the maximum differential pressure tolerated between the annular space 26 and the outside the line 10, and the maximum external pressure that must support the rupture disc 1 10, as explained above.
  • the locking ring 1 14 is inserted into the central hole 122 to grip a peripheral region of the rupture disc 1 10 between the locking ring 1 14 and the transverse bearing surface 128.
  • the plate 1 12 and the closing plate 1 16 are mounted on the roof 50, at the outer edge 88.
  • the assembly can be carried out on land, or at sea directly on the laying ship.
  • the bidirectional closure member 66 formed by the rupture disc 1 10 thus closes completely the exhaust passage 60 preventing the penetration of water beyond the closure member 66.
  • the laying of the pipe is simplified and the size of the necessary equipment (eg buoys) for the pipe to adopt an adequate configuration in the body of water is reduced.
  • necessary equipment eg buoys
  • the pipe 10 has a better lateral buckling resistance of the armor elements 44, and does not require cathodic protection of the armor elements 44.
  • the simple mounting of the rupture disk 1 10 makes it possible to modify the conditions of use of the pipe, with minimal impact on the pipe 10 itself.
  • This assembly can be performed directly on a laying ship.
  • the pipe 10 can therefore be immersed simply, and safely in the body of water.
  • the perforated transverse wall 124 defines, in the transverse bearing surface 128, a cup 150 extending around the through opening 130.
  • the tip 14 further comprises an additional support 152, mounted free relative to the rupture disc 1 10 and with respect to the perforated transverse wall 124, being received in the bowl 150.
  • the additional support 152 covers the through opening 130 and is applied against the rupture disc 1 10. It is made of metal.
  • the additional support 152 prevents creep of the rupture disc 1 10 through the through opening 130 under the effect of the external pressure. However, it fully resumes the internal pressure applying through the through opening 130, and transmits freely to the rupture disc 1 10.
  • the rupture disk 1 has at least one hollow portion 160 defining a preferential zone of rupture, of thickness less than the thickness of a peripheral zone of the rupture disc 1. .
  • the preferred zone of rupture formed by the hollow portion 160 here has a circular contour.
  • the perforated transverse wall 124 comprises a plurality of off-center through-openings 130, distributed around the central axis of the rupture disc 1 10.
  • the hollow portion 160 has a cross shape.
  • the through openings 130 eccentric are arranged between the branches of the cross.
  • the disc 1 10 has a plurality of hollow portions 160 defining a grid.
  • the tip 14 illustrated in Figures 1 1 and 12 differs from that shown in Figures 2 to 5 in that the bidirectional closure member 66 is disposed upstream of the selective sealing member 62.
  • the bidirectional closure member 66 is placed in the upstream region 78 of the segment 76, on an upstream shoulder 164.
  • the upstream shoulder 164 defines the bearing surface 128 which has a through opening 130 at its center.
  • the locking ring 1 14 is screwed into the upstream region 78 to press the periphery of the rupture disk 1 10 against the bearing surface 128.
  • the selective sealing element 62 is mounted downstream of the locking ring 1 14.
  • the operation of the tip 14 is also similar to that described above.
  • the bi-directional closure member 66 passes into its open configuration, advantageously by bursting of the disk 1 10, to release the pressurized gases inside the pipe 10, as shown in FIG. 13.
  • the disc 1 10 bursts in the central lumen 132 defined in the ring 1 14.
  • the rupture disc 1 10 being disposed upstream of the selective shutter member 62, it is not subject to exceptions with the water of the expanse of water and thus remains reliable over time.
  • the rupture disk 1 10 prevents flooding of the annular space.
  • the bidirectional closure member 66 is disposed directly in the selective sealing element 62, here downstream of the valve 94.
  • the bidirectional closure member 66 is disposed in a bowl 170 formed in the upper part of the insert 92.
  • a perforated transverse wall 124 is disposed in the bowl 170, under the rupture disc 1 10 to define a bearing surface 122 which supports the rupture disc 1 10.
  • the bi-directional closure member 66 When a differential pressure on either side of the bidirectional closure member 66 increases beyond the maximum allowable differential pressure, the bi-directional closure member 66 passes into its open configuration, preferably by twisting and / or bursting of the disc 1 10 to release the pressurized gases inside the pipe 10, as illustrated in FIG. 15.
  • the presence of the bidirectional closure member 66 mounted at the downstream end of the selective sealing member 62 ensures that the valve 94 and the spring 96 remain safe from contamination by both water and water. solid materials or organisms likely to enter the mouthpiece 14.
  • the selective closing element 62 further comprises a piercing member 172 movably mounted on the valve 94 to move together with the valve 94 between the closed position of the passage 95 and the position opening of passage 95.
  • the piercing member 172 pierces the transverse wall 124 and the rupture disk 1 10 to release the pressurized gases present inside the pipe.
  • the bidirectional closure member 66 is formed by an actuatable valve 180 from outside the pipe 10.
  • the valve 180 is for example disposed in a conduit 182 projecting along the vault 50.
  • the tip 14 further comprises a device 184 for controlling the valve 180 between the closed configuration and the open configuration.
  • Device 184 is adapted to be maneuvered from outside the pipe by a plunger or by a remotely operated vehicle (“ROV").
  • ROV remotely operated vehicle
  • the operation of the closing member 66 shown in FIG. 17 differs from that shown in the preceding figures in that the valve 180 is actuated before the installation of the flexible line to go into a closed configuration, before the immersion of the pipe 10 in the body of water.
  • a factory test is performed on the tip 14 to verify the proper operation of the closure member 66 before the pipe 10 is installed.
  • a plunger or remote-controlled submarine vehicle approaches the nozzle 14 to reach the control device 184.
  • the device 184 is then actuated to move the valve 180 from the closed configuration to the open configuration.
  • Line 10 is then raised to the surface.
  • the pressurized gas possibly present inside the pipe 10 is free to evacuate through the selective sealing element 62, for example a non-return valve and the valve 180 in the open configuration.
  • the nozzle 14 further defines at least one auxiliary passage for evacuating a gas present in the flexible pipe 10 towards the outside of the flexible pipe 10, distinct from the evacuation passage 60 .
  • the auxiliary evacuation passage is devoid of selective closure element 62 disposed in the auxiliary evacuation passage.
  • the tip 14 comprises an auxiliary bidirectional closure member of the auxiliary discharge passage disposed in the auxiliary discharge passage and / or at its outlet.
  • the bidirectional auxiliary closure member is able to pass from a closed configuration of closure of the auxiliary discharge passage to an open configuration of evacuation of a gas overpressure in the auxiliary discharge passage.
  • the bidirectional auxiliary closure member is identical to one of the bidirectional closure members 66 described above, in particular with reference to the figures above. It comprises for example a rupture disc 1 10
  • the bidirectional auxiliary closure member not being connected in series with a selective closing element 62, it is able to pass into an open configuration to prevent the bursting of the sealed sheath defining the annular space 26 towards the in the event of a failure of the selective closure element 62 or the rise of the flexible line which is too fast (at a speed greater than that permitted by the drainage system including the selective closure element 62 and the bidirectional closure 66 in perfect working order).
  • the bidirectional closure member 66 prevents at rest, without any other external action, the fluid passage from the inside to the outside of the pipe and from the outside to the outside. inside the pipe.
  • the bidirectional closure member 66 allows the rest, without any external action, in particular without the application of a pressure on the bidirectional closure member 66, the passage of the fluid from the outside towards the inside or from inside to outside.
  • the bidirectional closure member 66 is therefore able to remain stable in the open configuration. This is different in particular from a valve, which opens only when pressure is applied to the valve.

Abstract

L'embout (14) définit au moins un passage d'évacuation (60) d'un gaz. Il comprend un élément d'obturation sélective (62) disposé dans le passage d'évacuation (60), propre à permettre l'évacuation de gaz à travers le passage d'évacuation (60) dans le sens allant de l'intérieur vers l'extérieur de la ligne flexible et à empêcher la circulation de fluide à travers le passage d'évacuation (60) au-delà de l'élément d'obturation sélective (62) depuis l'extérieur vers l'intérieur. Au moins un organe de fermeture bidirectionnelle (66) du passage d'évacuation (60) est disposé dans le passage d'évacuation (60) et/ou à sa sortie. L'organe de fermeture bidirectionnelle (66) est propre à passer d'une configuration fermée d'obturation du passage d'évacuation (60) à une configuration ouverte d'évacuation d'une surpression de gaz dans le passage d'évacuation (60).

Description

Embout de connexion d'une ligne flexible, ligne flexible et procédé associés
La présente invention concerne un embout de connexion d'une ligne flexible, la ligne flexible comportant au moins une gaine tubulaire et au moins un élément longiligne disposé autour de la gaine tubulaire, l'embout comprenant :
- une partie d'extrémité de la gaine tubulaire ;
- un tronçon d'extrémité de chaque élément longiligne ;
- une voûte d'extrémité et un capot délimitant une chambre de réception de chaque tronçon d'extrémité ;
l'embout définissant au moins un passage d'évacuation d'un gaz présent dans la ligne flexible vers l'extérieur de la ligne flexible, l'embout comprenant un élément d'obturation sélective disposé dans le passage d'évacuation, l'élément d'obturation sélective étant propre à permettre l'évacuation de gaz à travers le passage d'évacuation dans le sens allant de l'intérieur vers l'extérieur de la ligne flexible et à empêcher la circulation de fluide à travers le passage d'évacuation au-delà de l'élément d'obturation sélective depuis l'extérieur vers l'intérieur.
La ligne flexible est notamment une conduite flexible telle que décrite par exemple dans les documents normatifs API 17J (Spécification for Unbonded Flexible Pipe), API RP 17B (Recommended Practice for Flexible Pipe) et API 16C (Choke and Kill Equipment) établis par l'American Petroleum Institute. La conduite flexible est avantageusement de type non liée (« unbonded » en anglais).
La conduite est généralement formée d'un ensemble de couches concentriques et superposées. Elle est considérée comme « non liée » au sens de la présente invention dès lors qu'au moins une des couches de la conduite est apte à se déplacer longitudinalement par rapport aux couches adjacentes lors d'une flexion de la conduite. En particulier, une conduite non liée est une conduite dépourvue de matériaux liants raccordant des couches formant la conduite
En variante, la conduite flexible est un faisceau composite de type « integrated production bundle », comprenant au moins un tube de transport de fluide et un ensemble de câbles électriques ou optiques propres à transporter une puissance électrique ou hydraulique ou une information entre le fond et la surface de l'étendue d'eau.
Plus généralement, la ligne flexible est un ombilical, tel que décrit dans le document normatif publié par l'American Petroleum Institute (API), API17E « Spécification for Subsea Umbilicals ».
Les conduites flexibles comportent généralement une gaine externe de protection définissant un volume intérieur et au moins une gaine imperméable disposée à l'intérieur du volume intérieur. Cette gaine imperméable est par exemple une gaine de pression délimitant un passage de circulation de fluide ou une gaine intermédiaire disposée entre la gaine de pression et la gaine externe.
Des couches d'armures de traction formées par des nappes de fils généralement métalliques sont disposées dans l'espace annulaire entre la gaine imperméable et la gaine externe, pour assurer une bonne résistance à la traction.
Les gaz qui sont contenus dans les fluides transportés par la conduite, tels que des hydrocarbures, du dioxyde de carbone, et du sulfure d'hydrogène sont susceptibles de passer dans l'espace annulaire par diffusion à travers la ou les gaines.
Ces gaz, et l'eau qui peut éventuellement diffuser dans l'annulaire sont susceptibles de corroder les éléments d'armure. En outre, ces gaz s'accumulent dans l'annulaire lorsque la conduite est située au fond de l'étendue d'eau. Lorsque la conduite est remontée en surface, il est nécessaire d'évacuer les gaz, faute de quoi la gaine externe est susceptible d'éclater, puisque la pression hydrostatique s'appliquant sur la conduite diminue significativement.
Pour éviter ce phénomène, il est connu par exemple de EP0341 144 de raccorder l'espace annulaire à l'extérieur de la conduite par un passage d'évacuation des gaz s'étendant à travers l'embout.
Le passage est muni d'une soupape propre à s'ouvrir en cas de surpression à l'intérieur de la conduite par rapport à la pression extérieure.
Un tel dispositif est efficace, mais peut encore être amélioré. En effet, bien que la soupape décrite dans EP0341 144 soit testée en usine en la soumettant à une pression externe, elle peut rencontrer un dysfonctionnement mécanique. Parfois, des organismes et/ou du sable sont susceptibles d'obstruer la soupape et de l'empêcher de se refermer convenablement.
Dans ce cas, l'eau située à l'extérieur de la conduite est susceptible de pénétrer dans l'espace annulaire à travers la soupape elle-même, et/ou à travers les moyens d'étanchéité disposés autour de la soupape.
Ceci n'est pas satisfaisant, notamment dans les applications pour lesquelles le fournisseur de la conduite doit garantir que l'espace annulaire de la conduite ne sera jamais inondé pendant la durée d'utilisation.
Un but de l'invention est donc de fournir un embout destiné à une ligne flexible qui empêche l'éclatement de la gaine externe lors d'une remontée de la conduite, tout en garantissant que la ligne flexible ne sera pas inondée lors de son utilisation normale.
A cet effet, l'invention a pour objet un embout du type précité, caractérisé par : - au moins un organe de fermeture bidirectionnelle du passage d'évacuation disposé dans le passage d'évacuation et/ou à sa sortie, l'organe de fermeture bidirectionnelle étant propre à passer d'une configuration fermée d'obturation du passage d'évacuation à une configuration ouverte d'évacuation d'une surpression de gaz dans le passage d'évacuation.
L'embout selon l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toute combinaison techniquement possible :
- au moins un organe de fermeture bidirectionnelle est formé par un disque de rupture propre à passer de sa configuration fermée à sa configuration ouverte par éclatement ;
- le disque de rupture est formé en matériau polymère ou en matériau métallique ;
- le disque de rupture présente au moins une partie creuse définissant au moins une zone préférentielle de rupture, d'épaisseur inférieure à l'épaisseur d'une zone périphérique du disque de rupture, la partie creuse présentant un contour circulaire ou en forme de croix ;
- l'embout comporte une surface d'appui transversal de l'organe de fermeture bidirectionnelle, disposée transversalement par rapport au passage d'évacuation, la surface d'appui transversal délimitant une ouverture traversante, l'embout comportant un organe de placage de l'organe de fermeture bidirectionnelle sur la surface d'appui transversal, l'organe de fermeture bidirectionnelle étant maintenu fixe entre la surface d'appui transversal et l'organe de placage, en regard de l'ouverture traversante ;
- l'embout comporte un support additionnel interposé entre la surface d'appui transversal et l'organe de fermeture bidirectionnelle en regard de l'ouverture traversante, le support additionnel étant monté libre par rapport à la surface d'appui transversal ;
- au moins un organe de fermeture bidirectionnelle est situé en aval de l'élément d'obturation sélective, dans le sens allant depuis l'intérieur vers l'extérieur de la ligne flexible ;
- au moins un organe de fermeture bidirectionnelle est situé dans l'élément d'obturation sélective ;
- l'élément d'obturation sélective comporte une soupape mobile, et un organe de perçage de l'organe de fermeture bidirectionnelle, monté mobile conjointement avec la soupape mobile ;
- au moins un organe de fermeture bidirectionnelle est situé en amont de l'élément d'obturation sélective, dans le sens allant depuis l'intérieur vers l'extérieur de la ligne flexible ; - l'organe de fermeture bidirectionnelle est monté coaxialement avec l'élément d'obturation sélective ;
- au moins un organe de fermeture bidirectionnelle est formé par une vanne actionnable depuis l'extérieur de la ligne flexible ;
- l'embout définit au moins un passage auxiliaire d'évacuation d'un gaz présent dans la ligne flexible vers l'extérieur de la ligne flexible, distinct du passage d'évacuation, le passage auxiliaire d'évacuation étant dépourvu d'élément d'obturation sélective disposé dans le passage auxiliaire d'évacuation, l'embout comportant un organe auxiliaire de fermeture bidirectionnelle du passage auxiliaire d'évacuation disposé dans le passage auxiliaire d'évacuation et/ou à sa sortie, l'organe auxiliaire de fermeture bidirectionnelle étant propre à passer d'une configuration fermée d'obturation du passage auxiliaire d'évacuation à une configuration ouverte d'évacuation d'une surpression de gaz dans le passage auxiliaire d'évacuation.
L'invention a également pour objet une ligne flexible, comportant :
- au moins une gaine tubulaire
- au moins un élément longiligne disposé autour de la gaine tubulaire,
- un embout tel que défini plus haut.
L'invention a en outre pour objet un procédé comprenant les étapes suivantes :
- accumulation de gaz dans une ligne flexible telle que définie plus haut, l'organe de fermeture bidirectionnelle occupant sa configuration fermée ;
- passage de l'organe de fermeture bidirectionnelle de sa configuration fermée à sa configuration ouverte ;
- évacuation du gaz hors de la ligne flexible par circulation à travers le passage d'évacuation, l'élément d'obturation sélective et l'organe de fermeture bidirectionnelle.
Le procédé selon l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes, prise(s) isolément ou suivant toute combinaison techniquement possible :
- l'organe de fermeture bidirectionnelle comporte un organe de rupture, l'organe de fermeture bidirectionnelle passant de sa configuration fermée à sa configuration ouverte par éclatement de l'organe de rupture sous l'effet d'une surpression ;
- l'organe de fermeture bidirectionnelle comporte une vanne, l'organe de fermeture bidirectionnelle passant de sa configuration fermée à sa configuration ouverte par actionnement de la vanne depuis l'extérieur de la conduite ;
- l'accumulation de gaz se produit lorsque la ligne flexible est disposée en profondeur dans l'étendue d'eau, le passage d'évacuation de l'organe de fermeture bidirectionnelle de sa configuration fermée à sa configuration ouverte se produisant avant une remontée de la ligne flexible vers la surface, ou lors de la remontée de la ligne flexible vers la surface.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant aux dessins annexés, sur lesquels :
- la figure 1 est une vue en perspective éclatée du tronçon central d'une ligne flexible selon l'invention ;
- la figure 2 est une vue partielle, prise suivant un plan axial médian, d'un détail d'un embout de la ligne flexible selon l'invention, munie d'un organe de fermeture bidirectionnelle disposé en aval d'un élément d'obturation sélective ;
- la figure 3 est une vue de dessus du détail de la figure 2 ;
- la figure 4 est une vue de détail de l'organe de fermeture bidirectionnelle ;
- la figure 5 est une vue analogue à la figure 2 lors de l'ouverture de l'organe de fermeture bidirectionnelle ;
- la figure 6 est une vue analogue à la figure 5 pour un autre embout selon l'invention ;
- les figures 7 et 8 sont des vues analogues respectivement aux figures 3 et 4 pour un autre embout selon l'invention ;
- les figures 9 et 10 sont des vues analogues respectivement aux figures 3 et 4 pour un autre embout selon l'invention ;
- les figures 1 1 , 12 et 13 sont des vues analogues respectivement aux figures 2, 4 et 5 pour un autre embout selon l'invention, dans lequel l'organe de fermeture bidirectionnelle est disposé en amont de l'élément d'obturation sélective ;
- les figures 14 et 15 sont des vues en coupe d'un élément d'obturation sélective muni d'un organe de fermeture bidirectionnelle, respectivement dans sa configuration fermée et dans sa configuration ouverte ;
- la figure 16 est une vue analogue à la figure 14, pour une variante d'élément d'obturation sélective ;
- la figure 17 est une vue en coupe suivant un plan axial médian d'un autre embout selon l'invention.
Dans tout ce qui suit, les termes « amont » et « aval » s'entendent par rapport au sens normal de circulation d'un fluide. En particulier, ils s'entendent ici généralement depuis l'intérieur de la ligne flexible vers l'extérieur de la ligne flexible.
Une première ligne flexible selon l'invention, formée par une conduite flexible 10, est illustrée partiellement par les figures 1 à 5. La conduite flexible 10 comporte un tronçon central 12 illustré en partie sur la figure 1 . Elle comporte, à chacune des extrémités axiales du tronçon central 12, un embout d'extrémité 14, visible partiellement sur la figure 2.
En référence à la figure 1 , la conduite 10 délimite, dans son volume intérieur 15, un passage central 16 de circulation d'un fluide, avantageusement d'un fluide pétrolier. Le passage central 16 s'étend suivant un axe A-A', qu'il contient, entre l'extrémité amont et l'extrémité aval de la conduite 10. Il débouche à travers les embouts 14.
Le diamètre du passage central 16 est avantageusement compris entre 50 mm (2") et 500 mm (20").
Le fluide convoyé par la conduite 10 est par exemple un gaz ou un liquide extrait du sous-sol marin.
La conduite flexible 10 est destinée à être disposée à travers une étendue d'eau (non représentée) dans une installation d'exploitation de fluide, notamment d'hydrocarbures.
L'étendue d'eau est par exemple, une mer, un lac ou un océan. La profondeur de l'étendue d'eau au droit de l'installation d'exploitation de fluide est par exemple comprise entre 50 m et 4000 m.
L'installation d'exploitation de fluide comporte un ensemble de surface, généralement flottant, et un ensemble de fond (non représenté) qui sont généralement raccordés entre eux par la conduite flexible 10.
La conduite flexible 10 est dans cet exemple une conduite « non liée » (désignée par le terme anglais « unbonded »).
Au moins deux couches adjacentes de la conduite flexible 10 sont libres de se déplacer longitudinalement l'une par rapport à l'autre lors d'une flexion de la conduite.
Avantageusement, toutes les couches adjacentes de la conduite flexible sont libres de se déplacer l'une par rapport à l'autre. Une telle conduite est par exemple décrite dans les documents normatifs publiés par l'American Petroleum Institute (API), API 17J (Mai 2014, 4ème édition), API RP17B (Mai 2014, 5ème édition) et API 16C (Mars 2015, 2ème édition).
Comme illustré par la figure 1 , la conduite 10 délimite une pluralité de couches concentriques autour de l'axe A-A', qui s'étendent continûment le long du tronçon central 12 jusqu'aux embouts 14 (non visibles sur la figure 1 ) situés aux extrémités de la conduite.
La conduite 10 comporte ici au moins une première gaine tubulaire 20 à base de matériau polymère constituant une gaine de pression. La conduite 10 comprend une deuxième gaine tubulaire externe 22, destinée à la protection de la conduite 10. La gaine interne 20 définit avec la gaine externe 22 au moins un espace annulaire
26.
Dans cet exemple, la conduite 10 comporte, dans l'espace annulaire 26, une voûte de pression 30, et optionnellement, une frette interne 32 enroulée autour de la voûte de pression 30.
La conduite 10 comporte en outre une pluralité de couches d'armures de traction 34, 36 disposées extérieurement par rapport à la voûte de pression 30 et par rapport à la frette 32.
Avantageusement, la conduite 10 comporte en outre une carcasse interne 42 disposée à l'intérieur de la gaine interne 20.
La carcasse 42, lorsqu'elle est présente, est formée par exemple d'un feuillard métallique profilé, enroulé en spirale. Les spires du feuillard sont avantageusement agrafées les unes aux autres, ce qui reprend les efforts radiaux d'écrasement.
L'enroulement hélicoïdal du feuillard métallique profilé formant la carcasse 42 est à pas court, c'est-à-dire qu'il présente un angle d'hélice de valeur absolue proche de 90°, typiquement compris entre 75° et 90°.
Dans cet exemple, la carcasse 42 est disposée à l'intérieur de la gaine interne 20. La conduite 10 est alors désignée par le terme anglais « rough bore » en raison de la géométrie de la carcasse 42.
En variante (non représentée), la conduite 10 est dépourvue de carcasse interne
42, elle est alors désignée par le terme anglais « smooth bore ».
De manière connue, la gaine interne 20 est destinée à confiner de manière étanche le fluide transporté dans le passage 16. Elle est formée en matériau polymère, par exemple à base d'une polyoléfine tel que du polyéthylène ou du polypropylène, à base d'un polyamide tel que du PA1 1 ou du PA12, ou à base d'un polymère fluoré tel que du polyfluorure de vinylidène (PVDF) ou du perfluoro alkoxy (PFA).
L'épaisseur de la gaine interne 20 est par exemple comprise entre 5 mm et 20 mm.
Dans cet exemple, la voûte de pression 30 est destinée à reprendre les efforts liés à la pression régnant à l'intérieur de la gaine interne 20. Elle est par exemple formée d'un fil profilé métallique entouré en hélice autour de la gaine 20. Le fil profilé présente de préférence une géométrie, notamment en forme de Z. La géométrie en Z permet d'améliorer la résistance mécanique générale de la conduite 10 et permet aussi de réduire sa masse.
En variante, le fil profilé présente une géométrie en forme de T, de U, de K, de X ou de I. La voûte de pression 30 est enroulée en hélice à pas court autour de la gaine interne 20, c'est-à-dire avec un angle d'hélice de valeur absolue proche de 90°, typiquement compris entre 75° et 90°.
La frette 32, lorsqu'elle est présente, est constituée par un enroulement en spirale d'au moins un fil avantageusement de section transversale rectangulaire autour de la voûte de pression 30.
La superposition de plusieurs fils enroulés autour de la voûte de pression 30 peut avantageusement remplacer une épaisseur totale de frette 32 donnée. Ceci augmente la résistance à l'éclatement de la conduite 10. L'enroulement du au moins un fil est à pas court, c'est-à-dire avec un angle d'hélice de valeur absolue proche de 90°, typiquement compris entre 75° et 90°.
Dans une variante de réalisation de l'invention, la voûte de pression 30 et la frette 32 sont remplacées par une voûte de pression d'épaisseur plus importante formée à partir d'un fil profilé en métal présentant une géométrie en forme de T, de U, de K, de X ou de I, et/ou à partir d'au moins une bande en aramide à résistance mécanique élevée (Technora® ou Kevlar®), et/ou à partir d'au moins une bande composite comprenant une matrice thermoplastique dans laquelle sont noyées des fibres de carbone ou des fibres de verre.
Dans une autre variante de réalisation de l'invention, la conduite 10 ne comporte pas de voûte de pression. Une telle structure de conduite flexible est dite « équilibrée » (non représentée).
La conduite 10 comprend au moins une paire de couches d'armures croisées de résistance à la traction 34, 36 disposées au-dessus de la frette 32.
Dans l'exemple représenté sur la figure 1 , la conduite flexible 10 comporte au moins une paire de couches d'armures 34, 36.
En variante, la conduite flexible 10 comporte plusieurs paires de couches d'armures 34, 36 superposées les unes sur les autres, par exemple deux paires de couches d'armures internes 34, 36.
Chaque paire comporte une première couche d'armures 34 appliquée sur la frette 32, sur la voûte 30, sur la gaine 20 ou sur une autre paire de couches d'armures, et une deuxième couche d'armures 36, disposée autour de la première couche d'armures 34.
Chaque couche d'armures 34, 36 comporte au moins un élément d'armure 44 longitudinal enroulé à pas long autour de l'axe A-A' de la conduite 10.
Par « enroulé à pas long », on entend que la valeur absolue de l'angle d'hélice est inférieure à 60°, et est typiquement comprise entre 20° et 60°. Dans l'exemple représenté sur la figure 1 , la valeur absolue de l'angle d'hélice de chaque couche d'armures internes 34, 36 est supérieure à 45°, et est notamment comprise entre 50° et 60°, et est environ égale à 55°.
Les éléments d'armure 44 d'une première couche 34 sont enroulés généralement suivant un angle opposé par rapport aux éléments d'armure 44 d'une deuxième couche 36. Ainsi, si l'angle d'enroulement des éléments d'armure 44 de la première couche 34 est égal à + a, a étant compris entre 20° et 60°, l'angle d'enroulement des éléments d'armure 44 de la deuxième couche 36 disposée au contact de la première couche 34 est par exemple de - a, avec a compris entre 20° et 60°.
Les éléments d'armure 44 sont par exemple formés par des fils métalliques ou en matériau composite, ou par des rubans à résistance mécanique élevée.
Dans cet exemple, chaque couche d'armures 34, 36 repose sur au moins une bande anti-usure (non représentée). La bande anti-usure est par exemple réalisée en plastique, notamment à base d'un polyamide ou d'un polyfluorure de vinylidène (PVDF). Elle présente une épaisseur inférieure à l'épaisseur de chaque gaine 20, 22.
Avantageusement, un ruban de maintien tel qu'une bande en aramide à résistance mécanique élevée (Technora® ou Kevlar®) est enroulé autour de la deuxième couche d'armures 36 la plus à l'extérieur par rapport à l'axe A-A', pour assurer un maintien mécanique des couches d'armures 34, 36. Alternativement, les fibres d'aramide sont remplacées par des fibres de verre.
La gaine externe 22 est destinée à protéger l'espace annulaire 26 en empêchant la pénétration non contrôlée de fluide depuis l'extérieur de la conduite flexible 10 vers l'intérieur. Elle est avantageusement réalisée en matériau polymère, notamment à base d'une polyoléfine tel que du polyéthylène ou du polypropylène, à base d'un polyamide tel que du PA1 1 ou du PA12, ou à base d'un polymère fluoré tel que du polyfluorure de vinylidène (PVDF) ou du perfluoro alkoxy (PFA).
L'épaisseur de la gaine externe 22 est par exemple comprise entre 5 mm et 20 mm.
La gaine externe 22 est étanche. Elle empêche la pénétration de liquide depuis l'extérieur de la conduite 10 vers l'espace annulaire 26.
D'une manière connue, en référence à la figure 2, la conduite 10 est raccordée à l'ensemble de surface par l'embout 14.
Chaque embout 14 comporte une voûte d'extrémité 50, et un capot 51 délimitant avec la voûte 50 une chambre 52 de réception des tronçons d'extrémités des éléments d'armure 44, et des parties d'extrémité des couches formant la conduite 10, en particulier les parties d'extrémité des gaines 20, 22, de la voûte 30 et de la frette 32 lorsqu'elles sont présentes.
L'embout 14 comporte des éléments de sertissage (non représentés) de l'extrémité de chaque gaine 20, 22. Les éléments de sertissage sont destinés respectivement à assurer l'étanchéité entre l'extérieur de la conduite 10 et l'espace annulaire 26, et entre l'espace annulaire 26 et le passage central 16, autour de la gaine interne 20.
Dans cet exemple, la voûte d'extrémité 50 est destinée à raccorder la conduite 10 à un autre embout 14 ou à des équipements terminaux de fond et/ou de surface, avantageusement par l'intermédiaire d'une bride d'extrémité.
La voûte d'extrémité 50 présente un alésage central destiné à recevoir l'extrémité de la gaine de pression 20 et à permettre l'écoulement du fluide circulant à travers le passage central 16 vers l'extérieur de la conduite 10.
L'embout 14 définit en outre un passage d'évacuation 60 des gaz collectés dans l'espace annulaire 26 pour les convoyer à l'extérieur de la conduite flexible 10. L'embout 14 comporte en outre un élément d'obturation sélective 62 du passage 60, disposé dans le passage d'évacuation 60 et avantageusement, un ensemble d'étanchéité 64 monté en amont de l'élément d'obturation sélective 62.
Selon l'invention, l'embout 14 comporte en outre un organe de fermeture bidirectionnelle 66 interposé dans le passage d'évacuation 60, et un ensemble 68 de montage de l'organe de fermeture bidirectionnelle 66.
Le passage d'évacuation 60 raccorde l'espace annulaire 26 à un orifice de sortie 70 débouchant radialement à l'extérieur de l'embout 14. Il s'étend successivement à travers la chambre 52, et à travers la voûte 50.
Selon une variante de réalisation de l'embout (non représentée), l'orifice de sortie
70 débouche à l'extérieur de l'embout 14 selon une direction qui n'est pas radiale à l'axe A-A'. Par exemple, l'orifice de sortie débouche à l'extérieur de l'embout selon une direction longitudinale ou sensiblement oblique par rapport à l'axe A-A'.
Dans l'exemple représenté sur la figure 2, le passage d'évacuation 60 est délimité en amont par un conduit 72 traversant la chambre 52 jusqu'à la voûte 50. Il comporte en aval un tronçon 74 longitudinal et un tronçon 76 radial ménagés dans la voûte 50.
Le tronçon longitudinal 74 s'étend ici avantageusement de manière inclinée par rapport à l'axe A-A' du passage central 16.
Le tronçon radial 76 comporte, en s'écartant radialement de l'axe A-A', une région amont 78, une région intermédiaire 80 d'étendue transversale supérieure à celle de la région amont 78, et une région aval 82 d'étendue transversale supérieure à celle de la région intermédiaire 80.
La région intermédiaire 80 et la région amont 78 délimitent entre elles un épaulement interne 84 sur lequel s'appuie l'ensemble d'étanchéité 64. Elle présente sur sa surface périphérique un filetage interne.
La région aval 82 et la région intermédiaire 80 définissent entre elles un épaulement externe 86 au niveau de l'élément d'obturation sélective 62.
La région aval 82 présente un bord extérieur 88 sur lequel s'appuie l'ensemble de montage 68 de l'organe de fermeture bidirectionnelle 66.
L'élément d'obturation sélective 62 est propre à empêcher en permanence le passage de fluide à travers l'orifice 70 dans le sens allant depuis l'extérieur vers l'intérieur de la conduite 10.
Il est en outre apte à permettre l'évacuation de gaz à travers le passage d'évacuation 60 dans le sens depuis l'intérieur de la conduite 10 vers l'extérieur, lorsque la différence de pression entre l'amont de l'élément d'obturation sélective 62 et l'aval de l'élément d'obturation sélective 62 est supérieure à une valeur seuil donnée.
L'élément d'obturation sélective 62 est propre à empêcher le passage de fluide, lorsque la différence de pression entre l'amont de l'élément d'obturation sélective 62 et l'aval de l'élément d'obturation sélective 62 est inférieure à la valeur seuil donnée.
Dans cet exemple, l'élément d'obturation sélective 62 est formé par une valve antiretour.
En référence à la figure 14, il comporte un corps de base 90 creux, monté dans le passage 60, avantageusement entre la région intermédiaire 80 et la région aval 82, et un insert 92 fermant partiellement le corps de base creux 90, définissant avec le corps de base 90, un passage traversant 95 de circulation de fluide.
L'élément d'obturation sélective 62 comporte en outre une soupape d'obturation 94, montée mobile dans le passage de circulation 95 entre une position de fermeture du passage 95, visible sur la figure 14, et une position d'ouverture du passage 95. Il comporte un ressort taré 96 propre à solliciter en permanence la soupape 94 vers sa position de fermeture.
L'élément d'obturation sélective 62 définit un siège 98 faisant saillie dans le passage 95 pour l'appui étanche de la soupape 94 dans la position de fermeture.
Le siège 98 empêche le déplacement de la soupape 94 vers l'intérieur de la conduite 10. Dans cet exemple, la soupape 94 est creuse. Elle présente une cavité intérieure 100 et des ouvertures traversantes 102 de passage de gaz débouchant dans la cavité intérieure 100.
Dans la position de fermeture, la soupape 94 s'appuie sur une surface intérieure du siège 98 et obture de manière étanche le passage 95. La soupape 94 est maintenue contre le siège 98 par le ressort 96 tant que la différence de pression entre l'amont de l'élément d'obturation sélective 62 et l'aval de l'élément d'obturation sélective 62 est inférieure à la valeur seuil donnée.
Lorsque la différence de pression entre l'amont de l'élément d'obturation sélective 62 et l'aval de l'élément d'obturation sélective 62 augmente au-dessus de la valeur seuil, la soupape 94 se déplace vers l'extérieur à rencontre de la force engendrée par le ressort 96.
La soupape s'écarte du siège 98, autorisant le passage de gaz depuis l'intérieur vers l'extérieur, notamment depuis l'espace annulaire 26 à travers le passage d'évacuation 60.
La valeur seuil dépend de la raideur du ressort 96. Cette valeur seuil est par exemple supérieure à 1 barg et est notamment comprise entre 0,5 barg et 5 barg.
L'ensemble d'étanchéité 64 est ici formé par une bague 104 disposée en appui entre l'épaulement interne 84 et l'élément d'obturation sélective 62.
La figure 14, qui illustre une variante, a été utilisée ici pour décrire les éléments principaux de l'élément d'obturation sélective 62. Contrairement à la figure 14, dans le mode de réalisation des figures 1 à 5, l'organe de fermeture bidimensionnelle 66 n'est avantageusement pas porté par l'élément d'obturation sélective 62.
Dans l'exemple représenté sur les figures 1 à 5, l'organe de fermeture bidimensionnelle 66 est disposé en aval de l'élément d'obturation sélective 62.
L'organe de fermeture bidimensionnelle 66 est destiné à empêcher l'eau de l'étendue d'eau de pénétrer à l'intérieur de l'espace annulaire 26, tout en autorisant les gaz d'être évacués de l'espace annulaire 26 vers l'extérieur lors de l'ouverture de l'élément d'obturation sélective 62, par exemple lors de la remontée de la conduite 10.
L'organe de fermeture bidirectionnelle 66 est ici formé par un disque de rupture
1 10 monté transversalement dans le passage 60 ou à la sortie de celui-ci.
Le disque de rupture 1 10 est avantageusement formé en matériau polymère, notamment à base d'une polyoléfine tel que du polyéthylène ou du polypropylène, à base d'un polyamide tel que du PA1 1 ou du PA12, à base d'un polymère fluoré tel que du polyfluorure de vinylidène (PVDF) ou du perfluoro alkoxy (PFA), ou à base d'un polyuréthane. Le disque 1 10 peut également être formé à partir d'un matériau métallique tel que par exemple, un acier au carbone, un acier inoxydable, en aluminium, en titane, en platine ou encore, à partir d'un alliage métallique tel qu'un alliage de nickel (Hastelloy ou Monel) ou super-alliage de nickel (Inconel).
L'ensemble de montage 68 comporte une platine 1 12 montée sur le bord extérieur
88 pour recevoir le disque de rupture 1 10, et un organe 1 14 de placage du disque de rupture 1 10. L'ensemble de montage 68 comporte avantageusement une plaque de fermeture 1 16.
La platine 1 12 comprend un manchon périphérique 120 définissant un trou central 122 et une paroi transversale ajourée 124 interposée dans le trou central pour recevoir en appui le disque de rupture 1 10.
Le manchon périphérique 120 est fixé sur la voûte 50 par exemple par vissage. Un joint d'étanchéité 126 est interposé entre le manchon 120 et le bord extérieur 88.
Le trou central 122 définit ici la sortie du passage 60.
La paroi transversale ajourée 124 définit une surface transversale 128 d'appui du disque de rupture 1 10. Elle présente au moins une ouverture traversante 130 débouchant dans la surface transversale 128.
La bague de blocage 1 14 est insérée dans le manchon périphérique 120 pour plaquer la périphérie du disque de rupture 1 10 contre la surface transversale d'appui 128. La bague 1 14 est maintenue fixement par l'intermédiaire de la plaque de fermeture 1 16 disposée extérieurement et exerçant une pression de contact sur celle-ci.
Alternativement, la bague de blocage 1 14 est fixée dans le manchon périphérique 120 par exemple par vissage.
Elle présente une lumière centrale 132, qui débouche en regard du disque de rupture 1 10.
En référence à la figure 4, le rapport entre l'étendue transversale D1 de l'ouverture traversante 130 et l'épaisseur E du disque de rupture 1 10 est défini en fonction de la pression maximale extérieure que le disque de rupture 1 10 doit supporter en service. Plus la pression est élevée, plus l'étendue transversale D1 est réduite et plus l'épaisseur E est augmentée.
Généralement, l'épaisseur du disque 1 10 est comprise entre 1 mm et 10 mm, notamment entre 3 mm et 5 mm. L'étendue transversale maximale D1 de l'ouverture traversante 130 est par exemple comprise entre 0,5 mm et 5 mm, notamment entre 1 mm et 3 mm.
L'étendue transversale maximale D2 de la lumière centrale 132 et l'épaisseur E du disque 1 10 sont par ailleurs choisies en fonction de la pression différentielle maximum permise entre l'intérieur et extérieur de la conduite 10. Plus cette pression différentielle est élevée, plus l'étendue transversale D2 est réduite, et plus l'épaisseur E est augmentée.
Généralement, l'étendue transversale maximale D2 de la lumière centrale 132 est comprise entre 10 mm et 30 mm, notamment entre 15 mm et 25 mm.
La pression différentielle maximum permise est inférieure à la pression d'éclatement de la gaine externe 22.
Lorsqu'une pression différentielle inférieure à la pression différentielle maximum permise s'applique, l'organe de fermeture bidirectionnelle 66 occupe une configuration fermée d'obturation étanche du passage d'évacuation 60. Il empêche le gaz présent à l'intérieur du passage d'évacuation 60, en amont de l'organe de fermeture bidirectionnelle 66 de sortir de la conduite 10, même si l'élément d'obturation sélective 62 le laisse passer. Il empêche par ailleurs le liquide présent à l'extérieur de la conduite 10 d'entrer dans le passage d'évacuation 60 au-delà de l'organe de fermeture bidirectionnelle 66.
Lorsqu'une pression différentielle supérieure à la pression différentielle maximum permise s'applique, l'organe de fermeture bidirectionnelle 66 passe spontanément dans une configuration ouverte d'évacuation d'une surpression de gaz dans le passage d'évacuation 60.
Dans le cas où l'organe de fermeture bidirectionnelle 66 est un disque de rupture 1 10, celui-ci est propre à se rompre dans la région en regard de l'ouverture traversante 130 et de la lumière centrale 132 pour laisser passer le gaz comme illustré sur la figure 5.
De préférence, la pression différentielle maximum permise de l'organe de fermeture bidirectionnelle 66 est inférieure à la valeur seuil à partir de laquelle l'élément d'obturation sélective 62 laisse passer les gaz. Ainsi, dès que l'élément d'obturation sélective 62 s'ouvre pour laisser passer les gaz de l'espace annulaire 26, l'organe de fermeture bidirectionnelle 66 passe spontanément dans sa configuration ouverte d'évacuation.
En particulier, la pression différentielle d'éclatement du disque de rupture 1 10 est inférieure à la valeur seuil donnée de déplacement de la soupape 94 vers l'extérieur.
La plaque de fermeture 1 16 est fixée sur le manchon 120 pour recouvrir la lumière centrale 132 et pour comprimer la bague de blocage 1 14 sur le disque de rupture 1 10. Elle définit l'orifice 70 à travers lequel le gaz s'échappe hors de la conduite 10.
Le fonctionnement de l'embout 14 selon l'invention va maintenant être décrit.
Initialement, après la fabrication de la conduite et l'assemblage de l'embout 14, l'élément d'obturation sélective 62 est mis en place dans le passage 60. Son bon fonctionnement est testé en usine. Ceci étant fait, le disque de rupture 1 10 est mis en place sur la surface transversale d'appui 128. Les dimensions du disque de rupture 1 10 ont été choisies en fonction de la pression différentielle maximale tolérée entre l'espace annulaire 26 et l'extérieur de la conduite 10, et de la pression maximale extérieure que doit supporter le disque de rupture 1 10, comme expliqué plus haut.
Puis, la bague de blocage 1 14 est insérée dans le trou central 122 pour enserrer une région périphérique du disque de rupture 1 10 entre la bague de blocage 1 14 et la surface transversale d'appui 128.
La platine 1 12 et la plaque de fermeture 1 16 sont montées sur la voûte 50, au niveau du bord extérieur 88. Le montage peut être réalisé à terre, ou bien en mer directement sur le navire de pose.
L'organe de fermeture bidirectionnelle 66 formé par le disque de rupture 1 10 ferme donc de manière totalement étanche le passage d'évacuation 60 empêchant la pénétration d'eau au-delà de l'organe de fermeture 66.
Ceci est le cas, même si un dysfonctionnement se produit sur l'élément d'obturation sélective 62, ou sur l'ensemble d'étanchéité 64, notamment dès le début de l'utilisation de la conduite 10.
Une telle fermeture étanche garantit que l'espace annulaire 26 ne soit pas inondé par de l'eau lors de l'immersion de la conduite 10. Ceci permet donc, dans les cas où la pression différentielle (différence entre la pression dans l'espace annulaire 26 et la pression externe à la conduite 10) se maintient inférieure à la pression différentielle maximale permise et où il n'y a pas de condensation d'eau dans l'espace annulaire 26 après diffusion d'eau à travers la gaine de pression 20, en s'affranchissant des phénomènes de corrosion usuels par exemple, d'optimiser la sélection des matériaux des couches 30, 32, 34 et 36 notamment et partant, de réduire l'épaisseur des éléments mécaniques de la conduite. Ceci concerne notamment les fils constituant la voûte de pression 30, la frette interne 32 et les couches d'armures de traction 34, 36.
La pose de la conduite est simplifiée et la taille des équipements nécessaires (par exemple les bouées de flottaison) pour que la conduite adopte une configuration adéquate dans l'étendue d'eau est diminuée.
En outre, la conduite 10 présente une meilleure résistance au flambage latéral des éléments d'armure 44, et ne requiert pas de protection cathodique des éléments d'armure 44.
Le montage simple du disque de rupture 1 10 permet de modifier les conditions d'utilisation de la conduite, avec un impact minimal sur la conduite 10 elle-même. Ce montage peut être effectué directement sur un navire de pose. La conduite 10 peut donc être immergée simplement, et de manière sûre dans l'étendue d'eau.
Lors de la remontée de la conduite 10, si la pression différentielle s'appliquant de part et d'autre de l'organe de fermeture bidirectionnelle 66 augmente au-delà de la pression différentielle maximale permise, l'organe de fermeture bidirectionnelle passe dans sa configuration ouverte, avantageusement par éclatement du disque 1 10, pour libérer le gaz sous pression présent à l'intérieur de la conduite 10, comme illustré sur la figure 5.
Ceci empêche l'éclatement de la gaine externe 22.
Dans la variante illustrée par la figure 6, la paroi transversale ajourée 124 délimite, dans la surface transversale d'appui 128, une cuvette 150 s'étendant autour de l'ouverture traversante 130.
L'embout 14 comprend en outre un support additionnel 152, monté libre par rapport au disque de rupture 1 10 et par rapport à la paroi transversale ajourée 124, en étant reçu dans la cuvette 150.
Le support additionnel 152 couvre l'ouverture traversante 130 et s'applique contre le disque de rupture 1 10. Il est réalisé en métal.
Le support additionnel 152 empêche le fluage du disque du rupture 1 10 à travers l'ouverture traversante 130 sous l'effet de la pression externe. Toutefois, il reprend totalement la pression interne s'appliquant à travers l'ouverture traversante 130, et la transmet librement au disque de rupture 1 10.
Le fonctionnement de l'embout 14 illustré sur ces figures reste analogue à celui décrit précédemment.
Dans la variante illustrée par les figures 7 et 8, le disque de rupture 1 10 présente au moins une partie creuse 160 définissant une zone préférentielle de rupture, d'épaisseur inférieure à l'épaisseur d'une zone périphérique du disque de rupture 1 10.
La zone préférentielle de rupture formée par la partie creuse 160 présente ici un contour circulaire.
Par ailleurs, la paroi transversale ajourée 124 comporte une pluralité d'ouvertures traversantes 130 décentrées, réparties autour de l'axe central du disque de rupture 1 10.
Dans la variante illustrée par les figures 9 et 10, la partie creuse 160 présente une forme de croix. Les ouvertures traversantes 130 décentrées sont disposées entre les branches de la croix.
En variante (non représentée), le disque 1 10 présente plusieurs parties creuses 160 définissant une grille. L'embout 14 illustré sur les figures 1 1 et 12 diffère de celui représenté sur les figures 2 à 5 en ce que l'organe de fermeture bidirectionnelle 66 est disposé en amont de l'élément d'obturation sélective 62.
Dans cet exemple, l'organe de fermeture bidirectionnelle 66 est placé dans la région amont 78 du tronçon 76, sur un épaulement amont 164.
En référence à la figure 12, l'épaulement amont 164 définit la surface d'appui 128 qui présente en son centre une ouverture traversante 130.
La bague de blocage 1 14 est vissée dans la région amont 78 pour plaquer la périphérie du disque de rupture 1 10 contre la surface d'appui 128.
L'élément d'obturation sélective 62 est monté en aval de la bague de blocage 1 14.
Le fonctionnement de l'embout 14 est par ailleurs analogue à celui décrit précédemment.
Lorsqu'une pression différentielle s'appliquant de part et d'autre de l'organe de fermeture bidirectionnelle 66 augmente au-delà de la pression différentielle maximale permise, l'organe de fermeture bidirectionnelle 66 passe dans sa configuration ouverte, avantageusement par éclatement du disque 1 10, pour libérer les gaz sous pression à l'intérieur de la conduite 10, comme illustré par la figure 13.
Le disque 1 10 éclate dans la lumière centrale 132 définie dans la bague 1 14. Le disque de rupture 1 10 étant disposé en amont de l'élément d'obturation sélective 62, il n'est pas soumis sauf exceptions à l'eau de l'étendue d'eau et reste donc fiable au cours du temps.
En outre, en cas de défaillance de l'élément d'obturation sélective 62, le disque de rupture 1 10 empêche l'inondation de l'espace annulaire.
Dans la variante représentée sur les figures 14 et 15, l'organe de fermeture bidirectionnelle 66 est disposé directement dans l'élément d'obturation sélective 62, ici en aval de la soupape 94.
Dans cet exemple, l'organe de fermeture bidirectionnelle 66 est disposé dans une cuvette 170 ménagée dans la partie supérieure de l'insert 92.
Une paroi transversale ajourée 124 est disposée dans la cuvette 170, sous le disque de rupture 1 10 pour définir une surface d'appui 122 qui supporte le disque de rupture 1 10.
Lorsqu'une pression différentielle s'appliquant de part et d'autre de l'organe de fermeture bidirectionnelle 66 augmente au-delà de la pression différentielle maximale permise, l'organe de fermeture bidirectionnelle 66 passe dans sa configuration ouverte, avantageusement par torsion et/ou éclatement du disque 1 10 pour libérer les gaz sous pression à l'intérieur de la conduite 10, comme illustré par la figure 15. La présence de l'organe de fermeture bidirectionnelle 66 monté à l'extrémité aval de l'élément d'obturation sélective 62 garantit que la soupape 94 et le ressort 96 restent à l'abri de toute contamination, tant par l'eau que par les matériaux solides ou les organismes susceptibles d'entrer dans l'embout 14.
Dans la variante illustrée par la figure 16, l'élément d'obturation sélective 62 comporte en outre un organe de perçage 172 monté mobile sur la soupape 94 pour se déplacer conjointement avec la soupape 94 entre la position de fermeture du passage 95 et la position d'ouverture du passage 95.
Dans la position d'ouverture du passage 95, l'organe de perçage 172 perce la paroi transversale 124 et le disque de rupture 1 10 pour libérer les gaz sous pression présents à l'intérieur de la conduite.
Dans la variante illustrée par la figure 17, l'organe de fermeture bidirectionnelle 66 est formé par une vanne actionnable 180 depuis l'extérieur de la conduite 10. La vanne 180 est par exemple disposée dans un conduit 182 faisant saillie le long de la voûte 50.
L'embout 14 comporte en outre un dispositif 184 de pilotage de la vanne 180 entre la configuration fermée et la configuration ouverte. Le dispositif 184 est propre à être manœuvré depuis l'extérieur de la conduite par un plongeur ou par un véhicule sous- marin télécommandé (« remotely operated vehicle » ou « ROV »).
Le fonctionnement de l'organe de fermeture 66 représenté sur la figure 17 diffère de celui représenté sur les figures précédentes en ce que la vanne 180 est actionnée avant l'installation de la ligne flexible pour passer en configuration de fermeture, avant l'immersion de la conduite 10 dans l'étendue d'eau. De préférence, un test usine est réalisé sur l'embout 14 pour vérifier le bon fonctionnement de l'organe de fermeture 66 avant que la conduite 10 ne soit installée.
Avant la remontée de la conduite 10, ou lors de la remontée de la conduite 10, un plongeur ou un véhicule sous-marin télécommandé s'approche de l'embout 14 pour atteindre le dispositif 184 de pilotage.
Le dispositif 184 est alors actionné pour passer la vanne 180 de la configuration fermée à la configuration ouverte. La conduite 10 est alors remontée jusqu'à la surface. Le gaz sous pression éventuellement présent à l'intérieur de la conduite 10 est libre de s'évacuer à travers l'élément d'obturation sélective 62, par exemple une valve anti-retour et la vanne 180 dans la configuration ouverte.
Dans une variante (non représentée), l'embout 14 définit en outre au moins un passage auxiliaire d'évacuation d'un gaz présent dans la conduite flexible 10 vers l'extérieur de la conduite flexible 10, distinct du passage d'évacuation 60. Le passage auxiliaire d'évacuation est dépourvu d'élément d'obturation sélective 62 disposé dans le passage auxiliaire d'évacuation.
L'embout 14 comporte un organe auxiliaire de fermeture bidirectionnelle du passage auxiliaire d'évacuation disposé dans le passage auxiliaire d'évacuation et/ou à sa sortie. L'organe auxiliaire de fermeture bidirectionnelle est propre à passer d'une configuration fermée d'obturation du passage auxiliaire d'évacuation à une configuration ouverte d'évacuation d'une surpression de gaz dans le passage auxiliaire d'évacuation.
L'organe auxiliaire de fermeture bidirectionnelle est identique à l'un des organes de fermeture bidirectionnelle 66 décrits plus haut, notamment en regard des figures ci- dessus. Il comporte par exemple un disque de rupture 1 10
L'organe auxiliaire de fermeture bidirectionnelle n'étant pas monté en série avec un élément d'obturation sélective 62, il est propre à passer dans une configuration ouverte pour empêcher l'éclatement de la gaine étanche définissant l'espace annulaire 26 vers l'extérieur en cas de défaillance de l'élément d'obturation sélective 62 ou de remontée de la ligne flexible trop rapide (à une vitesse supérieure à celle permise par le système de drainage incluant l'élément d'obturation sélective 62 et l'organe de fermeture bidirectionnelle 66 en parfait état de fonctionnement).
Dans tous les cas décrits précédemment, dans la configuration fermée, l'organe de fermeture bidirectionnelle 66 empêche au repos, sans autre action extérieure, le passage de fluide depuis l'intérieur vers l'extérieur de la conduite et depuis l'extérieur vers l'intérieur de la conduite.
Dans la configuration ouverte, l'organe de fermeture bidirectionnelle 66 permet au repos, sans aucune action extérieure, notamment sans l'application d'une pression sur l'organe de fermeture bidirectionnelle 66, le passage du fluide depuis l'extérieur vers l'intérieur ou depuis l'intérieur vers l'extérieur.
L'organe de fermeture bidirectionnelle 66 est donc propre à rester stable en configuration ouverte. Ceci est différent notamment d'une soupape, qui ne s'ouvre que lorsqu'une pression s'applique sur la soupape.

Claims

REVENDICATIONS
1 . - Embout (14) de connexion d'une ligne flexible, la ligne flexible comportant au moins une gaine tubulaire (20) et au moins un élément longiligne (44) disposé autour de la gaine tubulaire (20), l'embout (14) comprenant :
- une partie d'extrémité de la gaine tubulaire (20) ;
- un tronçon d'extrémité de chaque élément longiligne (44) ;
- une voûte d'extrémité (50) et un capot (51 ) délimitant une chambre de réception (52) de chaque tronçon d'extrémité ;
l'embout (14) définissant au moins un passage d'évacuation (60) d'un gaz présent dans la ligne flexible vers l'extérieur de la ligne flexible, l'embout (14) comprenant un élément d'obturation sélective (62) disposé dans le passage d'évacuation (60), l'élément d'obturation sélective (62) étant propre à permettre l'évacuation de gaz à travers le passage d'évacuation (60) dans le sens allant de l'intérieur vers l'extérieur de la ligne flexible et à empêcher la circulation de fluide à travers le passage d'évacuation (60) au- delà de l'élément d'obturation sélective (62) depuis l'extérieur vers l'intérieur;
caractérisé par :
- au moins un organe de fermeture bidirectionnelle (66) du passage d'évacuation (60) disposé dans le passage d'évacuation (60) et/ou à sa sortie, l'organe de fermeture bidirectionnelle (66) étant propre à passer d'une configuration fermée d'obturation du passage d'évacuation (60) à une configuration ouverte d'évacuation d'une surpression de gaz dans le passage d'évacuation (60).
2. - Embout (14) selon la revendication 1 , dans lequel au moins un organe de fermeture bidirectionnelle (66) est formé par un disque de rupture (1 10) propre à passer de sa configuration fermée à sa configuration ouverte par éclatement.
3. - Embout (14) selon l'une des revendications 1 ou 2, dans lequel le disque de rupture (1 10) est formé en matériau polymère ou en matériau métallique.
4. - Embout (14) selon l'une des revendications 2 ou 3, dans lequel le disque de rupture (1 10) présente au moins une partie creuse (160) définissant au moins une zone préférentielle de rupture, d'épaisseur inférieure à l'épaisseur d'une zone périphérique du disque de rupture (1 10), la partie creuse (160) présentant un contour circulaire ou en forme de croix.
5. - Embout (14) selon l'une quelconque des revendications précédentes, comportant une surface d'appui transversal (128) de l'organe de fermeture bidirectionnelle (66), disposée transversalement par rapport au passage d'évacuation (60), la surface d'appui transversal (128) délimitant une ouverture traversante (130), l'embout (14) comportant un organe de placage (1 14) de l'organe de fermeture bidirectionnelle (66) sur la surface d'appui transversal (128), l'organe de fermeture bidirectionnelle (66) étant maintenu fixe entre la surface d'appui transversal (128) et l'organe de placage (1 14), en regard de l'ouverture traversante (130).
6. - Embout (14) selon la revendication 5, comportant un support additionnel (152) interposé entre la surface d'appui transversal (128) et l'organe de fermeture bidirectionnelle (66) en regard de l'ouverture traversante (130), le support additionnel (152) étant monté libre par rapport à la surface d'appui transversal (128).
7. - Embout (14) selon l'une quelconque des revendications précédentes, dans lequel au moins un organe de fermeture bidirectionnelle (66) est situé en aval de l'élément d'obturation sélective (62), dans le sens allant depuis l'intérieur vers l'extérieur de la ligne flexible.
8. - Embout (14) selon l'une quelconque des revendications précédentes, dans lequel au moins un organe de fermeture bidirectionnelle (66) est situé dans l'élément d'obturation sélective (62).
9. - Embout (14) selon la revendication 8, dans lequel l'élément d'obturation sélective (62) comporte une soupape mobile (94), et un organe de perçage (172) de l'organe de fermeture bidirectionnelle (66), monté mobile conjointement avec la soupape mobile (94).
10. - Embout (14) selon l'une quelconque des revendications précédentes, dans lequel au moins un organe de fermeture bidirectionnelle (66) est situé en amont de l'élément d'obturation sélective (62), dans le sens allant depuis l'intérieur vers l'extérieur de la ligne flexible.
1 1 . - Embout (14) selon l'une quelconque des revendications précédentes, dans lequel l'organe de fermeture bidirectionnelle (66) est monté coaxialement avec l'élément d'obturation sélective (62).
12. - Embout (14) selon l'une quelconque des revendications précédentes, dans lequel au moins un organe de fermeture bidirectionnelle (66) est formé par une vanne (180) actionnable depuis l'extérieur de la ligne flexible.
13.- Embout (14) selon l'une quelconque des revendications précédentes, l'embout (14) définissant au moins un passage auxiliaire d'évacuation d'un gaz présent dans la ligne flexible vers l'extérieur de la ligne flexible, distinct du passage d'évacuation (60), le passage auxiliaire d'évacuation étant dépourvu d'élément d'obturation sélective (62) disposé dans le passage auxiliaire d'évacuation, l'embout (14) comportant un organe auxiliaire de fermeture bidirectionnelle du passage auxiliaire d'évacuation disposé dans le passage auxiliaire d'évacuation et/ou à sa sortie, l'organe auxiliaire de fermeture bidirectionnelle étant propre à passer d'une configuration fermée d'obturation du passage auxiliaire d'évacuation à une configuration ouverte d'évacuation d'une surpression de gaz dans le passage auxiliaire d'évacuation.
14. - Ligne flexible, comportant :
- au moins une gaine tubulaire (20)
- au moins un élément longiligne (44) disposé autour de la gaine tubulaire (20),
- un embout (14) selon l'une quelconque des revendications précédentes.
15. - Procédé de purge d'un gaz contenu dans une ligne flexible disposée dans une étendue d'eau, le procédé comprenant les étapes suivantes :
- accumulation de gaz dans une ligne flexible selon la revendication 14, l'organe de fermeture bidirectionnelle (66) occupant sa configuration fermée ;
- passage de l'organe de fermeture bidirectionnelle (66) de sa configuration fermée à sa configuration ouverte ;
- évacuation du gaz hors de la ligne flexible par circulation à travers le passage d'évacuation (60), l'élément d'obturation sélective (62) et l'organe de fermeture bidirectionnelle (66).
16. - Procédé selon la revendication 15, dans lequel l'organe de fermeture bidirectionnelle (66) comporte un organe de rupture (1 10), l'organe de fermeture bidirectionnelle (66) passant de sa configuration fermée à sa configuration ouverte par éclatement de l'organe de rupture (1 10) sous l'effet d'une surpression.
17. - Procédé selon la revendication 15, dans lequel l'organe de fermeture bidirectionnelle (66) comporte une vanne (180), l'organe de fermeture bidirectionnelle (66) passant de sa configuration fermée à sa configuration ouverte par actionnement de la vanne (180) depuis l'extérieur de la conduite (10).
18. - Procédé selon l'une des revendications 15 à 17, dans lequel l'accumulation de gaz se produit lorsque la ligne flexible est disposée en profondeur dans l'étendue d'eau, le passage d'évacuation (60) de l'organe de fermeture bidirectionnelle (66) de sa configuration fermée à sa configuration ouverte se produisant avant une remontée de la ligne flexible vers la surface, ou lors de la remontée de la ligne flexible vers la surface.
PCT/EP2018/065076 2017-06-09 2018-06-07 Embout de connexion d'une ligne flexible, ligne flexible et procédé associés WO2018224613A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1755168A FR3067438B1 (fr) 2017-06-09 2017-06-09 Embout de connexion d'une ligne flexible, ligne flexible et procede associes
FR1755168 2017-06-09

Publications (1)

Publication Number Publication Date
WO2018224613A1 true WO2018224613A1 (fr) 2018-12-13

Family

ID=59859216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/065076 WO2018224613A1 (fr) 2017-06-09 2018-06-07 Embout de connexion d'une ligne flexible, ligne flexible et procédé associés

Country Status (2)

Country Link
FR (1) FR3067438B1 (fr)
WO (1) WO2018224613A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0341144A1 (fr) 1988-05-02 1989-11-08 Coflexip Conduite tubulaire flexible en particulier pour le transport d'hydrocarbures
US6039083A (en) * 1998-10-13 2000-03-21 Wellstream, Inc. Vented, layered-wall deepwater conduit and method
WO2013005000A2 (fr) * 2011-07-04 2013-01-10 Wellstream International Limited Évacuation de gaz
WO2016079253A1 (fr) * 2014-11-20 2016-05-26 Technip France Procédé de mise en place d'une ligne flexible comportant une gaine externe délimitant un volume intérieur et ligne flexible associée

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0341144A1 (fr) 1988-05-02 1989-11-08 Coflexip Conduite tubulaire flexible en particulier pour le transport d'hydrocarbures
US6039083A (en) * 1998-10-13 2000-03-21 Wellstream, Inc. Vented, layered-wall deepwater conduit and method
WO2013005000A2 (fr) * 2011-07-04 2013-01-10 Wellstream International Limited Évacuation de gaz
WO2016079253A1 (fr) * 2014-11-20 2016-05-26 Technip France Procédé de mise en place d'une ligne flexible comportant une gaine externe délimitant un volume intérieur et ligne flexible associée

Also Published As

Publication number Publication date
FR3067438A1 (fr) 2018-12-14
FR3067438B1 (fr) 2019-07-26

Similar Documents

Publication Publication Date Title
EP3014157B1 (fr) Conduite flexible et procédé associé
EP0937932B1 (fr) Conduite flexible pour colonne montante dans une exploitation pétrolière en mer
EP2676061B1 (fr) Conduite tubulaire flexible pour le transport d'un fluide pétrolier tel qu'un fluide polyphasique ou un gaz.
WO2018114418A1 (fr) Conduite flexible de transport de fluide petrolier comprenant une barriere contre la diffusion
WO2008145861A2 (fr) Conduite tubulaire flexible pour le transport d'hydrocarbures gazeux
FR2782141A1 (fr) Conduite flexible resistante a fluage limite de la gaine d'etancheite
EP3221625B1 (fr) Procédé de mise en place d'une ligne flexible comportant une gaine externe délimitant un volume intérieur
EP3004709B1 (fr) Conduite flexible de transport de fluide, utilisation et procédé associés
FR3067438B1 (fr) Embout de connexion d'une ligne flexible, ligne flexible et procede associes
CA1337637C (fr) Conduite tubulaire flexible en particulier pour le transport d'hydrocarbures
EP3408571B1 (fr) Ligne flexible à annulaire inondé
EP3123067B1 (fr) Conduite flexible de transport de fluide, méthode de fabrication et procédé de détermination associés
EP2874807B1 (fr) Conduite flexible de transport de fluide et procedé associé
EP3240967B1 (fr) Ligne destinée à être immergée dans une étendue d'eau et procédé de mise en place associé
WO2023073122A1 (fr) Embout de conduite flexible de transport de fluide, conduite flexible et procédé associé
WO2021116381A1 (fr) Embout de connexion d'une conduite flexible, conduite flexible, assemblage et procédé associé
OA17249A (fr) Conduite flexible de transport de fluide, canule et procédé associé.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18728651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18728651

Country of ref document: EP

Kind code of ref document: A1