WO2018224056A1 - Sistema con multiples sensores fabricados en materiales especiales para aplicaciones en presencia de hidrocarburos y aguas residuales y método para el monitoreo remoto, control y seguimiento de parámetros de calidad de agua con transmisión y procesamiento de datos continuos en tiempo real - Google Patents

Sistema con multiples sensores fabricados en materiales especiales para aplicaciones en presencia de hidrocarburos y aguas residuales y método para el monitoreo remoto, control y seguimiento de parámetros de calidad de agua con transmisión y procesamiento de datos continuos en tiempo real Download PDF

Info

Publication number
WO2018224056A1
WO2018224056A1 PCT/CO2018/000012 CO2018000012W WO2018224056A1 WO 2018224056 A1 WO2018224056 A1 WO 2018224056A1 CO 2018000012 W CO2018000012 W CO 2018000012W WO 2018224056 A1 WO2018224056 A1 WO 2018224056A1
Authority
WO
WIPO (PCT)
Prior art keywords
water quality
processing
real
data
water
Prior art date
Application number
PCT/CO2018/000012
Other languages
English (en)
French (fr)
Original Assignee
Ecopetrol S.A.
Jpt Consulting An D Services S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecopetrol S.A., Jpt Consulting An D Services S.A.S. filed Critical Ecopetrol S.A.
Publication of WO2018224056A1 publication Critical patent/WO2018224056A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Definitions

  • This invention is related to the technology for the measurement of water quality through multiple parameters that are required to identify that aqueous solutions from hydrocarbon discharges, treatment plants and wastewater among others, meet the requirements required for prevent pollution and maintain strict control in other processes where these water sources are used.
  • the parameters are measured on site through sensors specially manufactured and conditioned for these environments, but the information is processed and transmitted in real time for local and remote storage and management through the internet, allowing control of these processes online.
  • the sensors and the respective electronics are installed in an encapsulation made with special material of very low friction type R 2 C (OR ') 2 that prevents the adhesion of hydrocarbons and other substances that can affect the reading and allows the sensors and electronics to be submerged up to at least 10 meters deep guaranteeing adequate measurement of water quality in multiple conditions.
  • R 2 C very low friction type
  • the application of this comprehensive system that includes multiple innovative technologies for information acquisition, transmission, management and storage allows the optimization of treatment and disposal costs of all production waters in the production fields and residual plants.
  • the system monitors online, Temperature (° C), Oil in water (mg-L), Total Suspended Solids (mg-L), Turbidity (NTU), Conductivity (uS-cm), ORP Oxidation Index and pH mainly.
  • the Advanced Sensors Ltda Company offers an in-line probe oil concentration analyzer (EX100P model), which allows uninterrupted measurement, with zero maintenance routine based on a luminescence principle.
  • EX100P model in-line probe oil concentration analyzer
  • the data may be available in real time, which allows operators to take the measures and improve the efficiency of the processes and therefore the reduction in costs associated with the process but the associated costs and the need to measure additional parameters makes require multiple devices to verify water quality.
  • the company KAM controls offers a device based on a technology similar to the previous one known as' KAM OOD Optical OH Detector LIT-121 T that allows the monitoring of production water and wastewater of the hydrocarbon industry providing real-time registration of data in the range between 0-5000 ppm.
  • the fiber optic sensor responds to the absorption, fluorescence and refraction properties of the fluid to detect the presence of hydrocarbons in the water. Similar to the previous one, normally the high costs associated with this technology and the need to use additional equipment to measure all the required parameters makes it very difficult to expand the use of the technology in a sustainable way.
  • Patent No. CN204376940 (U) titled: "FLOW MEASUREMENT AND CONTROL INSTRUMENT REMOTE REAL-TIME MONITORING SYSTEM BASED ON ZIGBEE AND GPRS", which consists of an instrument for flow measurement and a real-time remote monitoring system based on type radio communication technology Zigbee and GPRS, mainly used in the field of petrochemical engineering.
  • the flow measurement instrument and the real-time remote monitoring system is especially suitable for a case of flow measurement and control of instruments that are dispersed or remotely installed, and is composed of a flow measurement instrument and control instruments , a Zigbee terminal and Zegbee routers, GPRS modules, a server and computers.
  • the transmission mechanism of the water quality device uses a reactive paper that is soaked in the water to obtain color.
  • the color identification device includes a color sensor module, a signal processor, a database and an alarm module.
  • the color sensor module detects the color of the reagent paper to produce a test signal.
  • the signal processor receives and deals with the test signal, then searches for the identified color data, in the database, according to the test signal.
  • the signal processor has an output signal control to activate the alarm module, when it is determined that the data identification is abnormal, as well as the output or displayed water quality information.
  • This invention generally refers to an intelligent system for monitoring and evaluation of water quality, it remains a manual method and limited to only one measure related to the color of the water sample for a specific parameter with a wide margin of error.
  • this application is suitable for measuring and verifying parameters of oil production waters that are deposited in a stabilization pool and / or dumping pit, which does outline the present patent application.
  • the elements that make up the system of this invention differ from the configuration and arrangement proposed in the present patent application. Additionally, there is no method of monitoring and measuring parameters such as the one described in this patent application.
  • the "online” monitoring system (100) for producing pure and ultra pure water includes a pure water production module, a water storage tank, an ultra pure water production module, pumps and valves, a module for control and a central server (200).
  • the pure water production module converts raw water into purified water, using one or more filters.
  • the ultrapure water production module receives the pure water from the storage tank and a second purification is generated with one or more filters to produce ultrapure water.
  • the pump and valves control the flow of raw water, pure water and ultra pure water.
  • the method includes receiving the meter data representing the parameters that are measured by the meters, such as the flow, pressure, chlorine level, pH and turbidity of the water that will be distributed through the pipes.
  • the method also includes receiving secondary data from sources external to the meters and representing the conditions that affect water consumption in a region that is served through the water supply network, such as weather and holidays.
  • Meter data and secondary data are analyzed by using statistical techniques to identify water network events, which include leakage events and other events with respect to quantity and quality. of the water flowing through the pipes and with respect to the operation of the water network. Events are reported to users through a user interface.
  • This invention reveals a system and method for assessing the quality of a source of water supply to populations. However, no applications are evidenced for production, discharge or industrial process water, considering all the parameters that are defined in the present patent application.
  • the components and configuration of this system differ from the present patent application, as well as the stages presented in the monitoring method. In particular, the characteristics for the reception, transmission and visualization of data in real time are not discriminated.
  • Figure 1 It presents the Integral System for Monitoring the Quality of Water for Production and Discharge including the different main modules that make up the system from the acquisition of information in the field through the acquisition module (1) and the power panel and communication (2) which communicate remotely (3) with the HUB processing and storage module (4).
  • This module communicates via remote internet (5) with specialized software in the cloud (6) which allows remote viewing and management of information (7).
  • FIG. 2 It has a Specialized Sensors Module or SWQ and the flotation or encapsulation chamber (1) which is manufactured with special materials of very low friction and adhesion being sealed to submerge.
  • This chamber includes acquisition electronics and measurement sensors for OIW - oil suspended in water (2), broad spectrum infrared turbidity (3), dissolved oxygen DO (4), conductivity (5), ORP oxidation index (6 ), pH (7) and temperature (8).
  • Figure 3 It presents the photograph of the installation of the sensor module and power panel and remote communication during the field test presented as an example 1. Inside the building of the bottom is the HUB Processing Module.
  • Figure 4 Presents the measurements made during the field test of the parameters of oil suspended in OIW water, DO dissolved oxygen and Conductivity.
  • Figure 5 Presents the pH, Temperature and Infrared Turbidity measurements acquired during the field test performed as part of example 1
  • Figure 6 Presents the comparison of measurements in the field and laboratory during the test performed as part of example 1
  • Figure 7 Presents the results of multiple laboratory measurements before field measurements during the test performed as part of example 1 GENERAL DESCRIPTION OF THE INVENTION
  • the technology disclosed in the present patent application is formed at the field level mainly by a field acquisition module that includes sensors, processing electronics, flotation chamber or special encapsulation (1); connected to a power module and information transmission (2) that allows to acquire physical chemical parameters of water quality of production, dumping and treatment plants, in real time, such as: Temperature, pH, dissolved oxygen DO, SST or solids suspended from the measurement of turbidity, electrical conductivity and OIW or oil suspended in water from the capacitance.
  • the acquisition (1) and power and transmission (2) modules are adapted to hostile conditions of the oil production field, such as the presence of hydrocarbons, pressure up to 50 psi (344.7 KPa), and temperature up to 85 ° C (358.15 K) and independent because it includes a power source that can be configured through solar panels and / or long-lasting rechargeable batteries.
  • the transmission of information is done through low power radio meeting intrinsic safety requirements (3) or through wired communication protocols.
  • the module of processing, communications, storage and control or HUB (4) receives information and communicates (5) with the storage system, visualizes and remote management via internet which operates on servers in the cloud (6) and allows the remote display and control on computers and mobile devices (7).
  • the processing module can also communicate with local control centers via standard communication protocols such as RS232, RS485, Modbus, 4-20 analog and others.
  • This disclosed invention provides both the oil industry and other industries (food production, agribusiness, chemicals among others) and environmental and water treatment systems practical guidelines to implement an innovative and effective water quality monitoring system, reducing risks that entails the discharge of waters with characteristics that can generate harmful and harmful effects for ecosystems, also complying with the existing regulations for the protection of the environment in areas where oil production activities and other industries with great impact on water quality are developed.
  • This patent application consists of a monitoring system that includes the following elements: an acquisition module that is located directly on the site, a local processing, communication, control and storage module, monitoring and management software for online web platform and a monitoring method that allows the application in different environments and system applications in addition to calculating a relative index of water quality from the measurement of parameters in real time.
  • SWQ Specialized sensor module known as SWQ that includes a flotation chamber or special encapsulation with low friction material R2C (OR ') 2 and sealed to be submerged up to 10 meters with sensors for recording water quality parameters (1) .
  • R2C low friction material
  • HUB for processing, communication, storage and transmission of information known as HUB located remotely and that works with conventional or solar energy and communicate with the local control and visualization system in a conventional way or with the cloud through GSM, WiFi, satellite, private networks through safewireless software, which is a communication software system, wireless, secure and reliable.
  • a hub module or HUB Process the information from the sensors placed in line in the production water treatment system, discharges or industrial or wastewater processing systems.
  • the system of the present invention was designed and moved to a water storage tank in a production field. It should be noted that the system can be installed in swimming pools, tanks, rivers or any body of water. In this field all the production water is reinjected into the wells. A work plan was carried out with the field staff with excellent support, this plan was modified on site by observing the critical measurement of water in the injection process as it easily oxidizes under static conditions.
  • the residence time of the water before the measurement was around 30 minutes.
  • the sensors of dissolved oxygen, fats and oils, suspended solids, conductivity and turbidity were left in digital accounts, that is to say without transfer function.
  • the pH and temperature sensors (° C) were left in engineering units with their respective units of measurement, these measurements were compared with a standard instrument that was in the laboratory at the time of the test.
  • the sensor module for direct measurement of water quality is positioned inside the tank by the top screw cap and is completely submerged in the bottom of the tank to take measurements of the recirculated water (except when the tank is empty).
  • the sensor module is powered by solar panel independently placed on the top of the tank and communicates via low power wireless radio that complies with intrinsic safety standards.
  • the signal concentrator or HUB was located 200 meters from the bulk drum inside the control offices of the station. It should be noted that despite having several obstacles in the middle and 3 walls inside the control building, the low power radio could communicate without any inconvenience.
  • the HUB is powered by electrical power from the plant since it was located inside the control room and there is a guarantee of electrical power, the HUB has batteries for 3 days in case of loss of power.
  • test is started by simultaneously taking laboratory measurements at the same time as the sensor test, in order to make the adjustment according to the laboratory measurements, which they are considered adjusted and real within the continuous and real-time relative measurements for quality control that are taken with the device.
  • FIG. 1 Tank and Sensor module with power panel and communication during the field test. Inside the red building in the background is the Module
  • the measurements taken by the Eco Smart Water Quality - Injection or SWQ-I device are compared with laboratory measurements showing good results.
  • the acquired data allow to develop the respective transfer functions for the OIW parameters - oil suspended in water (OIW), solids suspended from infrared turbidity of broad spectrum (SST) and dissolved oxygen (DO).
  • OIW oil suspended in water
  • SST solids suspended from infrared turbidity of broad spectrum
  • DO dissolved oxygen

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Sewage (AREA)

Abstract

La tecnología revelada en la presente solicitud de patente, está conformada por un módulo de adquisición de campo que incluye sensores, electrónica de procesamiento, cámara de flotación o encapsulado especial (1 ); conectado a un módulo de potencia y transmisión de información (2) que permite adquirir parámetros físico químicos de calidad de agua de plantas de producción, vertimiento y tratamiento, en tiempo real, tales como: Temperatura, pH, oxígeno disuelto DO, SST o solidos suspendidos a partir de la medición de turbidez, conductividad eléctrica y OIW o aceite suspendido en agua a partir de la capacitancia. Los módulos de adquisición (1) y de potencia y transmisión (2) son adaptados a condiciones hostiles del campo e independientes porque incluye una fuente de energía que puede ser configurada a través de paneles solares y/o baterías recargables de larga duración. La transmisión de a información se hace a través de radio de baja potencia cumpliendo requisitos de seguridad intrínseca (3) o a través de protocolos de comunicación cableada. El módulo de procesamiento, comunicaciones, almacenamiento y control o HUB (4) recibe a información y se comunica (5) con el sistema de almacenamiento, visualizan y gerenciamiento remoto vía internet el cual opera en servidores en la nube (6) y permite la visualización y control remoto en computadores y dispositivos móviles (7). El módulo de procesamiento puede comunicarse igualmente con centros de control locales vía protocolos estándar de comunicación tales como rs232, rs485, modbus, 4-20 análogo y otros. Adicionalmente se revela una metodología para la captura, procesamiento y transmisión de los datos recolectados (parámetros) de aguas residuales de producción, vertimiento y plantas de tratamiento que permita la consulta de datos en línea y en tiempo real, un software de monitoreo y gestión de parámetros de calidad de agua de producción y un diseño de una plataforma web para la lectura de los datos en tiempo real, personalizada a través de la creación de un usuario y contraseña, con la opción del diseño de una aplicación compatible con dispositivos móviles.

Description

SISTEMA CON MULTIPLES SENSORES FABRICADOS EN MATERIALES ESPECIALES PARA APLICACIONES EN PRESENCIA DE HIDROCARBUROS Y AGUAS RESIDUALES Y MÉTODO PARA EL MONITOREO REMOTO, CONTROL Y SEGUIMIENTO DE PARÁMETROS DE CALIDAD DE AGUA CON TRANSMISIÓN Y PROCESAMIENTO DE DATOS
CONTINUOS EN TIEMPO REAL
CAMPO DE LA INVENCIÓN
Esta invención está relacionada con la tecnología para la medición de la calidad de agua a través de múltiples parámetros que son requeridos para identificar que las soluciones acuosas provenientes de vertimientos de hidrocarburos, plantas de tratamiento y aguas residuales entre otros, cumplen con los requisitos requeridos para prevenir contaminación y mantener un control estricto en otros procesos donde se utilizan estas fuentes hídricas. Para tal efecto no solo se miden los parámetros en sitio a través de sensores especialmente fabricados y acondicionados para estos ambientes sino que se procesa la información y se transmite en tiempo real para el almacenamiento y gerenciamiento local y remoto a través de internet, permitiendo el control de estos procesos en línea. Igualmente los sensores y la electrónica respectiva se instalan en un encapsulado fabricado con material especial de muy baja fricción tipo R2C(OR')2que evita la adherencia de hidrocarburos y otras substancias que pueden afectar la lectura y permite sumergir los sensores y la electrónica hasta al menos 10 metros de profundidad garantizando la medición adecuada de la calidad del agua en múltiples condiciones.
ESTADO DE LA TÉCNICA
Actualmente, la medición y control de parámetros de calidad de agua producto de fuentes hídricas, procesos de tratamiento de aguas residuales, plantas de tratamiento, separación de agua y petróleo en campos de producción de petróleo se realiza generalmente con una baja frecuencia, normalmente, de manera trimestral (monitoreo de ley). En casos donde el monitoreo se realiza frecuentemente para control del proceso, estos monitoreos corresponden a parámetros limitados y requieren una gran cantidad de personal aparte que el tiempo de entrega de resultados no permite control en tiempo real que es crítico en algunas situaciones y es cada vez más importante para prevenir daño ecológico y ambiental. El proceso tradicionalmente incluye la toma de 2018/000012
2 muestras in situ, que posteriormente se procesan en laboratorio. Con la consecuente consolidación de los resultados para dar cumplimiento a los parámetros definidos en la normatividad ambiental vigente. En el mercado existen equipos para adelantar monitoreo sobre el comportamiento del aceite suspendido en el agua para disposición (OH in Wafer),pero estos equipos son principalmente para uso en laboratorios y los elevados costos de éstos dispositivos y las limitantes que presentan para efectos de calibración y mantenimiento, generan alta incertidumbre en la medición y demoras; sesgando la confiabilidad de los datos recolectados y ocasionando pérdida de tiempo para atender situaciones operacionales por calidad de agua fuera de especificaciones. Por lo anterior, se desarrolló un sistema de monitoreo, control y seguimiento de calidad de agua en diferentes condiciones y plantas de tratamiento de aguas residuales y de producción de hidrocarburos midiendo múltiples parámetros tanto convencionales como pH, temperatura, oxígeno disuelto DO, conductividad, como especiales incluyendo aceite suspendido en agua, sólidos suspendidos en agua a partir de mediciones de turbidez infrarroja de amplio espectro, en un equipo especializado y diseñado con materiales especiales, tales como acero inoxidables, polímero orgánico y polímeros de baja adherencia para estos ambientes hostiles tales como presencia de hidrocarburos, presión hasta 50 psi (344,7 KPa), y temperatura hasta 85 °C (358,15 K), que permite la recolección de datos en forma continua y permanente, la transmisión de datos e información instantánea, la lectura y análisis de datos en tiempo real a través de consulta web. La aplicación de este sistema integral que incluye múltiples tecnologías innovadoras para adquisición de información, transmisión, gerenciamiento y almacenamiento permite la optimización de costos de tratamiento y disposición de todas las aguas de producción en los campos de producción y plantas residuales. El sistema monitorea en línea, Temperatura (°C), Oil in water (mg-L), Sólidos suspendidos totales (mg-L), Turbidez (NTU), Conductividad (uS-cm), índice de Oxidación ORP y pH principalmente.
Con el propósito de identificar el estado de madurez de la tecnología y las compañías que en el mundo participan en la generación de investigación, desarrollos tecnológicos y/o innovaciones para procesos asociados al monitoreo, control y seguimiento de los parámetros de calidad de agua de producción, se adelantó la siguiente búsqueda en el estado de la técnica.
En el mercado existen sistemas que proporcionan servicios o elementos similares a la presente solicitud de patente, como hemos mencionado, de las cuales cabe resaltar: La empresa Advanced Sensors Ltda, ofrece un analizador de concentración de aceite en agua en línea tipo sonda (modelo EX100P), que permite medición ininterrumpida, con cero rutina de mantenimiento con base en un principio de luminiscencia. Los datos pueden estar disponibles en tiempo real, lo que permite a los operadores tomar las medidas y mejorar la eficiencia de los procesos y por lo tanto la reducción de costos asociada al proceso pero los costos asociados y la necesidad de medir parámetros adicionales hace que se requieran múltiples dispositivos para verificar la calidad del agua.
La empresa KAM controls, ofrece un dispositivo con base en una tecnología similar al anterior conocido como 'KAM OOD Optical OH Detector LIT-121 T que permite el monitoreo de agua de producción y aguas residuales de la industria de hidrocarburos proveyendo registro en tiempo real de datos en el rango entre 0-5000 ppm. El sensor de fibra óptica responde a las propiedades de absorción, fluorescencia y refracción del fluido para detectar la presencia de hidrocarburos en el agua. De manera similar al anterior normalmente los altos costos asociados a esta tecnología y la necesidad de utilizar equipos adicionales para medir todos los parámetros requeridos hace muy difícil poder expandir el uso de la tecnología de manera sustentable.
Patente núm. CN204376940 (U) titulada: "FLOW MEASUREMENT AND CONTROL INSTRUMENT REMOTE REAL-TIME MONITORING SYSTEM BASED ON ZIGBEE AND GPRS", que consiste en un instrumento para medición de flujo y un sistema de monitoreo remoto en tiempo real basado en tecnología de radio comunicación tipo Zigbee y GPRS, utilizado principalmente en el campo de la ingeniería petroquímica. El instrumento de medición de flujo y el sistema de monitoreo remoto en tiempo real es especialmente adecuado para un caso de medición de flujo y control de instrumentos que son instalados dispersamente o remotamente y, está compuesto por un instrumento de medición de flujo e instrumentos de control, una terminal Zigbee y "routers" Zegbee, módulos GPRS, un servidor y computadores. Es fácil para un departamento de medición, una planta de tratamiento de crudo y una sala de despacho, controlar de forma remota los instrumentos de medición y control de flujo y, gestionar la información industrial de los campos y los estados de producción con la medida del flujo y el sistema de monitoreo remoto en tiempo real. Las principales diferencias y desventajas de esta tecnología con respecto a la presente solicitud de patente es que aunque la invención describe un sistema de monitoreo remoto en tiempo real aplicable a aguas de producción de hidrocarburos, los componentes del sistema, su interacción y configuración difieren de la presente solicitud de patente en que no presentan sensores, un dispositivo de flotación que soporte los sensores, un software de monitoreo y una plataforma destinada para la recepción y visualización de los datos medidos, que si esboza la presente solicitud de patente. Adicionalmente, la presente solicitud de patente adelanta la medición de la calidad de agua una vez ésta se encuentra depositada en una piscina de estabilización y/o foso de vertimiento.
Patente núm. TW201428293 titulada: "SMART WATER QUALITY MONITORING SYSTEM AND METHOD USING THE SAME", que consiste en un sistema de monitoreo de calidad de agua inteligente y un método para utilizarlo, que incluye proveer un dispositivo de calidad de agua y un dispositivo de identificación de color. El mecanismo de transmisión del dispositivo de calidad de agua, utiliza un papel reactivo que se empapa en el agua para obtener color. El dispositivo de identificación de color incluye un módulo sensor de color, un procesador de señal, una base de datos y un módulo de alarma. El módulo sensor de color detecta el color del papel reactivo para producir una señal de prueba. El procesador de señales recibe y se ocupa de la señal de prueba, luego busca los datos de color identificado, en la base de datos, de acuerdo con la señal de prueba. El procesador de señal tiene un control de señal de salida para activar el módulo de alarma, cuando se determine que la identificación de datos es anormal, así como la información de salida o mostrada de calidad de agua. Las principales diferencias y desventajas de esta tecnología con respecto a la presente solicitud de patente es que aunque esta invención se refiere en términos generales a un sistema inteligente para el monitoreo y evaluación de la calidad de agua continua siendo un método manual y limitado a una sola medida relacionada con el color de la muestra de agua para un parámetro especifico con un amplio margen de error. Sin embargo, no se describe que ésta aplicación sea apta para medir y verificar parámetros de aguas de producción de petróleo que se encuentren depositadas en una piscina de estabilización y/o foso de vertimiento, que si esboza la presente solicitud de patente. Los elementos que componen el sistema de esta invención, difieren de la configuración y disposición propuesta en la presente solicitud de patente. Adicionalmente, no se plantea un método de monitoreo y medición de parámetros como el reseñado en la presente solicitud de patente.
Patente núm. KR20090066878 titulada: "ONLINE MONITORING SYSTEM AND METHOD FOR MANUFACTURING PURE WATER AND ULTRA-PURE WATER," que 18 000012
5 consiste en un sistema de monitoreo "online" y un método de monitoreo "online" de un aparato que produce agua y agua ultra pura, se proporciona para evitar la caída de la calidad del agua o que resulten daños debidos a la caída de la calidad de agua, al reconocer con precisión el tiempo de sustitución de componentes consumibles y para mejorar la comodidad de los usuarios y la fiabilidad de los equipos al hacer frente con prontitud cuando el equipo funciona con anormalidad. El sistema de monitoreo "online" (100) para producir agua pura y ultra pura, incluye un módulo de producción de agua pura, un tanque de almacenamiento de agua, un módulo de producción de agua ultra pura, bombas y válvulas, un módulo de control y un servidor central (200). El módulo de producción de agua pura, convierte el agua cruda en agua purificada, utilizando uno o más filtros. El módulo de producción de agua ultra pura, recibe el agua pura del tanque de almacenamiento y se genera una segunda purificación con uno o más filtros para producir agua ultra pura. La bomba y las válvulas controlan el flujo de agua cruda, agua pura y agua ultra pura. Las principales diferencias y ventajas de esta tecnología con respecto a la presente solicitud de patente es que aunque esta invención considera la evaluación y el monitoreo de la calidad de agua a través de un sistema que incluye entre otros, un módulo de control y un servidor central. Sin embargo, esta invención, no refleja aplicaciones para aguas generadas durante la producción de hidrocarburos, como si lo esboza la presente solicitud de patente. El sistema de monitoreo de esta invención, difiere de los componentes y configuración esbozada en la presente solicitud de patente, adicionalmente, los parámetros definidos son diferentes.
Patente núm. US8770288B2 titulada: "SISTEMA Y MÉTODO PARA MONITOREAR RECURSOS EN UNA RED DE ABASTECIMIENTO DE AGUA", que consiste en un método computarizado para monitorear una red de abastecimiento de agua, la red de abastecimiento de agua comprende una red de tuberías para proporcionar el agua a los consumidores y una pluralidad de medidores que se colocan dentro de las tuberías a través de la red de distribución de agua. El método incluye recibir los datos de medidor que representan los parámetros que se miden mediante los medidores, tal como el flujo, presión, nivel de cloro, pH y turbiedad del agua que se distribuirá a través de las tuberías. El método también incluye recibir los datos secundarios de fuentes externas a los medidores y que representan las condiciones que afectan el consumo de agua en una región que se atiende mediante la red de abastecimiento de agua, tal como el clima y días feriados. Los datos de medidor y los datos secundarios se analizan al utilizar las técnicas estadísticas para identificar los acontecimientos de la red de agua, que incluyen los acontecimientos de fuga y otros acontecimientos con respecto a la cantidad y calidad del agua que fluye a través de las tuberías y con respecto a la operación de la red de agua. Los acontecimientos se reportan a los usuarios a través de una interfaz de usuario. Las principales diferencias y ventajas de esta tecnología con respecto a la presente solicitud de patente es que aunque esta invención revela un sistema y un método para evaluar la calidad de una fuente de agua de abastecimiento a poblaciones. Sin embargo, no se evidencian aplicaciones para aguas de producción, vertimiento o producto de procesos industriales, considerando la totalidad de los parámetros que si son definidos en la presente solicitud de patente. Los componentes y configuración de este sistema difieren de la presente la presente solicitud de patente, así como las etapas presentadas en el método de monitoreo. Particularmente, no se discriminan las características para la recepción, transmisión y visualización de datos en tiempo real.
En conclusión, las anterioridades no presentan los mismos componentes del sistema presentado en la presente solicitud de patente, que sugiera la misma interacción y configuración. Adicionalmente no describen las etapas de un método para la medición de parámetros de calidad de agua de producción, no existe equivalencia en los parámetros definidos para evaluar la calidad de agua de producción y no se describen las características de una plataforma personalizada (usuario y clave) para la recepción y visualización de datos en tiempo real, como si definen en la presente solicitud de patente.
En el mercado solo existen sistemas y dispositivos que proporcionan única o parejamente y de manera diferente servicios o elementos similares a la presente solicitud de patente.
DESCRIPCIÓN DETALLADA DE LOS DIBUJOS
Se presenta la descripción detallada de las figuras y fotografías a continuación.
Figura 1.: Presenta el Sistema Integral de Monitoreo de la Calidad del Agua para Producción y Vertimiento incluyendo los diferentes módulos principales que componen el sistema desde la adquisición de a información en campo a través del módulo de adquisición (1 ) y el panel de potencia y comunicación (2) los cuales se comunican remotamente (3) con el módulo de procesamiento y almacenamiento HUB (4). Este módulo se comunica a través de internet remoto (5) con el software especializado en la nube (6) el cual permite visualización y gerenciamiento remoto de la información (7).
Figura 2.: Presenta Módulo de Sensores Especializados o SWQ y la cámara de flotación o encapsulado (1 ) el cual se fabrica con materiales especiales de muy baja fricción y adherencia siendo sellado para poder sumergirse. Esta cámara incluye la electrónica de adquisición y los sensores de medición para OIW - aceite suspendido en agua (2), turbidez infrarroja de amplio espectro (3), oxígeno disuelto DO (4), conductividad (5), índice de oxidación ORP (6), pH (7) y temperatura (8).
Figura 3.: Presenta la fotografía de la instalación del módulo de sensores y panel de potencia y comunicación remota durante la prueba en campo presentada como ejemplo 1. Dentro del edificio del fondo se encuentra el Modulo de Procesamiento HUB.
Figura 4.: Presenta las mediciones realizadas durante la prueba de campo de los parámetros de aceite suspendido en agua OIW, oxígeno disuelto DO y Conductividad.
Figura 5.: Presenta las mediciones de pH, Temperatura y Turbidez Infrarroja adquiridas durante la prueba de campo realizada como parte del ejemplo 1
Figura 6.: Presenta la comparación de las mediciones en campo y laboratorio durante la prueba realizada como parte del ejemplo 1
Figura 7.: Presenta los resultados de las múltiples mediciones en laboratorio antes de las mediciones en campo durante la prueba realizada como parte del ejemplo 1 DESCRIPCIÓN GENERAL DE LA INVENCIÓN
La tecnología revelada en la presente solicitud de patente, está conformada a nivel de campo principalmente por un módulo de adquisición de campo que incluye sensores, electrónica de procesamiento, cámara de flotación o encapsulado especial (1 ); conectado a un módulo de potencia y transmisión de información (2) que permite adquirir parámetros físico químicos de calidad de agua de plantas de producción, vertimiento y tratamiento, en tiempo real, tales como: Temperatura, pH, oxígeno disuelto DO, SST o solidos suspendidos a partir de la medición de turbidez, conductividad eléctrica y OIW o aceite suspendido en agua a partir de la capacitancia. Los módulos de adquisición (1) y de potencia y transmisión (2) son adaptados a condiciones hostiles del campo de producción de crudo, tales como presencia de hidrocarburos, presión hasta 50 psi (344,7 KPa), y temperatura hasta 85 °C (358,15 K)e independientes porque incluye una fuente de energía que puede ser configurada a través de paneles solares y/o baterías recargables de larga duración. La transmisión de a información se hace a través de radio de baja potencia cumpliendo requisitos de seguridad intrínseca (3) o a través de protocolos de comunicación cableada. El módulo de procesamiento, comunicaciones, almacenamiento y control o HUB (4) recibe a información y se comunica (5) con el sistema de almacenamiento, visualizan y gerenciamiento remoto vía internet el cual opera en servidores en la nube (6) y permite la visualización y control remoto en computadores y dispositivos móviles (7). El módulo de procesamiento puede comunicarse igualmente con centros de control locales vía protocolos estándar de comunicación tales como rs232, rs485, modbus, 4-20 análogo y otros.
Adicionalmente se revela una metodología para la captura, procesamiento y transmisión de los datos recolectados (parámetros) de aguas residuales de producción, vertimiento y plantas de tratamiento que permita la consulta de datos en línea y en tiempo real, un software de monitoreo y gestión de parámetros de calidad de agua de producción y un diseño de una plataforma web para la lectura de los datos en tiempo real, personalizada a través de la creación de un usuario y contraseña, con la opción del diseño de una aplicación compatible con dispositivos móviles. Figura 1.
Esta invención revelada proporciona tanto a la industria petrolera como otras industrias (producción de alimentos, agroindustria, químicos entre otros) y sistemas ambientales y de tratamiento de agua lineamientos prácticos para implementar un sistema innovador y eficaz de monitoreo de calidad del agua, disminuyendo los riesgos que conlleva la descarga de aguas con características que puedan generar efectos dañinos y nocivos para los ecosistemas, cumpliendo además, con la normatividad existente para la protección del medio ambiente en áreas en donde se desarrollan actividades de producción de petróleo y de otras industrias con gran impacto en la calidad del agua.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La presente solicitud de patente, consta de un sistema de monitoreo del que hacen parte los siguientes elementos: un módulo de adquisición que se ubica directo en el sitio, un módulo de procesamiento, comunicación, control y almacenamiento local, un software de monitoreo y gestión para plataforma web en línea y un método de monitoreo que permite la aplicación en diferentes ambientes y aplicaciones del sistema además de calcular un índice relativo de calidad de agua a partir de la medición de parámetros en tiempo real.
1 Sistema integral de monitoreo de parámetros de calidad de agua de para plantas de producción de hidrocarburos, sistemas de tratamiento de aguas y vertimiento, que incluya en términos generales los siguientes componentes para medición y procesamiento:
a Módulo de sensores especializados conocido como SWQ que incluye una cámara de flotación o encapsulado especial con material de baja fricción R2C(OR')2y sellado para ser sumergido hasta 10 metros con sensores para el registro de parámetros de calidad de agua (1 ). Figura 2
b Sensores múltiples incluyendo sensores estándar y especiales, fabricados en materiales especiales como acero inoxidable, polímero orgánico y polímero de baja densidad para condiciones hostiles (2,3,4,5,6,7,8)
c Electrónica de procesamiento con microprocesadores y lógica embebida ubicada dentro de la cámara o encapsulado (1), con cables y conexión especial al panel de potencia solar, baterías y comunicación por radio de baja potencia que cumple principios intrínsecamente seguros
d Módulo de procesamiento, comunicación, almacenamiento y transmisión de la información conocido como HUB ubicado remotamente y que trabaja con energía convencional o solar y comunicarse con el sistema de control y visualización local de manera convencional o con la nube a través de GSM, WiFi, satélite, redes privadas a través del software safewireless, que es un sistema software de comunicación, inalámbrico, seguro y confiable. Software de monitoreo, gestión, manejo de datos e información y visualización remota a través de plataforma web personalizada:
Software de monitoreo, procesamiento, gestión y transmisión de parámetros de calidad de agua dedicado el cual se ejecuta corriendo en el módulo de procesamiento bajo plataforma abierta con un protocolo propio diseñado para condiciones de campo con tramas especiales que se comunica a través de radios privados de baja potencia y de muy alta eficiencia, para aplicaciones remotas, seguras y en zonas con limitaciones de energía.
Plataforma de micro-servicios de adquisición de datos de alta eficiencia del 99% diseñada para conexiones de datos de baja calidad la cual está permanentemente "escuchando" los módulos de procesamiento y control instalados en el campo con comunicación al internet remoto. La plataforma permite alta disponibilidad y al menos 99.5% de recepción de datos remotos de acuerdo a pruebas realizadas. Plataforma web personalizada para la visualización de datos y generación de reportes conocida como safewireless, que es un sistema software inalámbrico, seguro y confiable.
Método de monitoreo de parámetros de calidad de agua para diferentes ambientes y condiciones que permite calcular un índice relativo de calidad de agua de producción, que incluya en términos generales las siguientes etapas:
Capturar información proveniente de sensores sumergidos y puestos en línea de un sistema de tratamiento de agua de producción para el establecimiento de la calidad de agua, localizado en piscinas de estabilización y/o fosos de vertimiento. Capturar información proveniente de sensores sumergidos y puestos en línea de vertimientos y sistemas de procesamiento de aguas industriales y residuales para el establecimiento de la calidad de agua..
Transmitir los datos vía inalámbrica hacia un módulo concentrador o HUB. Procesar la información proveniente de los sensores puestos en línea en el sistema de tratamiento de agua de producción, vertimientos o sistemas de procesamiento de aguas industriales o residuales.
Evaluar las diferentes mediciones aplicando calibraciones y correcciones para asegurar la precisión y resolución de las mediciones. Enviar información desde un módulo concentrador o HUB hacia una base de datos con ingreso restringido, desarrollada en una plataforma web, con posibilidad de consulta en tiempo real.
Calcular parámetros adicionales procesados a partir de las mediciones como sólidos en suspensión a partir de la turbidez infrarroja, índice relativo de calidad de agua, que permitan una rápida evaluación, generación de alertas y rápidas y efectivas decisiones gerenciales.
Procesar la información proveniente de los sensores puestos en línea en el sistema de tratamiento de agua de producción.
Visualizar la información en un entorno web para el ajuste del sistema a partir de datos de campo.
EJEMPLOS
Ejemplo 1 :
El sistema de la presente invención, se diseñó y trasladó a una tanque de almacenamiento de agua en un campo de producción. Cabe resaltar que el sistema puede ser instalado en piscinas, tanques, ríos o cualquier cuerpo de agua. En este campo toda el agua de producción es reinyectada a los pozos. Se realizó un plan de trabajo con el personal de campo contando con excelente apoyo, este plan fue modificado en sitio al observar lo crítico de la medición del agua en el proceso de inyección ya que se oxida fácilmente en condiciones estáticas.
Desarrollo de las Pruebas
El día 7 de diciembre del año 2016, se realizaron las pruebas de operación del sistema de medición de calidad de agua en condiciones de campo. En primera instancia se hicieron pruebas estáticas. Para ello se utilizaron 3 fluidos de análisis: agua de producción, agua doméstica, y aire. El agua de producción fue tomada directamente sobre él toma muestras en la estación, lugar donde se realiza la medición en línea.
El tiempo de residencia del agua antes de la medición fue de alrededor de 30 minutos. Los sensores de oxígeno disuelto, grasas y aceites, solidos suspendidos, conductividad y turbidez se dejaron en cuentas digitales, es decir sin función de transferencia. Los sensores de pH y temperatura (°C) se dejaron en unidades de ingeniería con sus respectivas unidades de medición, estas medidas se lograron comparar con un instrumento patrón que se encontraba en el laboratorio en el momento de la prueba.
A continuación se presentan los resultados:
Figure imgf000015_0001
Cabe resaltar que se observó la rápida oxidación y alta salinidad del agua de producción correlaciona con una alta conductividad eléctrica (mayor a los 1500 pS/cm). Físicamente se evidencia en el cambio de color del agua de color translúcido a café oscuro. Se observó igualmente que el oxígeno disuelto se incrementó paulatinamente hasta llegar a un valor similar al del agua doméstica. Además, se observó que el sensor de grasas y aceites sufrió una saturación debido a este mismo proceso, que de acuerdo el criterio técnico de profesionales de campo, se debe a la rápida oxidación y reacciones químicas que presenta el agua especial para inyección cuando se expone a condiciones ambientales fuera del tanque de almacenamiento.
Proceso de Instalación del Dispositivo en Campo y Mediciones
Se hizo una primera visita al tanque de almacenamiento de agua donde se pretendía instalar el dispositivo, sin embargo se decidió cambiar la posición del sensor del tope del tanque principal por un tanque en paralelo, esto permite garantizar monitorear el prototipo permanentemente en superficie sin requerir los permisos de alturas más aun considerando que este prototipo fue diseñado para 4 metros máximo de profundidad y el tanque tiene 10 metros. Se decidió utilizar un tanque tipo bulk drum de 330 galones para las pruebas, el cual se conecta a la salida del punto de toma de muestras y se llena con el agua de producción. Una vez lleno se abre la válvula inferior con una manguera de retorno hacia el colector para poder simular la recirculación del agua, manteniendo un nivel constante y evitar el proceso de oxidación del agua.
El módulo de sensores para medición directa de la calidad de agua se posiciona dentro del taque por la tapa roscada superior y se sumerge en su totalidad en el fondo del tanque para tomar mediciones del agua recirculada (excepto cuando el tanque se vacíe). El módulo de sensores se alimenta por panel solar de manera independiente colocado en el tope del tanque y se comunica vía radio inalámbrico de baja potencia que cumple con normas de seguridad intrínseca.
El concentrador de señales o HUB se ubicó a 200 metros del bulk drum dentro de las oficinas de control de la estación. Cabe resaltar que a pesar de tener varios obstáculos en el medio y 3 paredes dentro del edificio de control, el radio de baja potencia pudo comunicarse sin ningún inconveniente. El HUB se alimenta por energía eléctrica de la planta ya que se ubicó dentro del cuarto de control y hay garantía de alimentación eléctrica, el HUB cuenta con baterías para 3 días en caso de pérdida de alimentación. A continuación se presentan fotografías del sistema instalado en campo:
Resultados de las pruebas de campo Después de las pruebas iniciales del sistema, se inicia la prueba tomando de manera simultánea mediciones de laboratorio en el mismo tiempo de la prueba del sensor, para poder hacer el ajuste de acuerdo a las mediciones de laboratorio, las cuales son consideradas ajustadas y reales dentro de las mediciones relativas continuas y en tiempo real para control de calidad que se toman con el dispositivo.
Figure imgf000016_0001
Figura 4. Tanque y Módulo de sensores con panel de potencia y comunicación durante la prueba de campo. Dentro del edificio rojo del fondo se encuentra el Modulo de
Procesamiento HUB A continuación se presentan los resultados de la medición. Para los parámetros OIW, DO, TSS y turbidez los datos se presentan en formato digital, es decir como data cruda, para PH, temperatura y conductividad se presenta en unidades de ingeniería.
Figure imgf000017_0001
Figura 5. Mediciones de OIW, DO y Conductividad
Figure imgf000017_0002
Figura 6. Mediciones de pH, Temperatura y Turbidez Infrarroja Como se puede apreciar en las mediciones de campo, todos los sensores discriminan las condiciones extremas de aire y agua de inyección en el sistema, cada sensor responde de diferente manera al cambio lo cual debe reflejarse en mayor precisión en la calibración final dentro de los parámetros definidos como estándares de campo dentro del rango de medición, el cual se define para poder tener las alertas y mediciones en tiempo real.
Comparación de los datos adquiridos con las mediciones de laboratorio
Las mediciones tomadas por el dispositivo Eco Smart Water Quality - Injection o SWQ- I son comparadas con las mediciones de laboratorio mostrando buenos resultados. Los datos adquiridos permiten desarrollar las funciones de transferencia respectivas para los parámetros OIW - aceite suspendido en agua (OIW), sólidos suspendidos a partir de turbidez infrarroja de amplio espectro (SST) y oxígeno disuelto (DO).
Figure imgf000018_0001
Figura 7. Comparación de mediciones en campo y laboratorio

Claims

REIVINDICACIONES
Un sistema de monitoreo de parámetros de calidad de agua con trasmisión y procesamiento de datos continuos en tiempo real caracterizado por que comprende un módulo de adquisición, un software de monitoreo y gestión para plataforma web en línea y un método de monitoreo que permite la aplicación en diferentes ambientes y aplicaciones del sistema además de calcular un índice relativo de calidad de agua a partir de la medición de parámetros en tiempo real.
Un sistema de monitoreo de parámetros de calidad de agua con trasmisión y procesamiento de datos continuos en tiempo real de acuerdo con la reivindicación 1 caracterizado por que el módulo de adquisición comprende un módulo de sensores, un módulo de procesamiento, comunicaciones, almacenamiento, un módulo de software de monitoreo, gestión, manejo de datos e información y visualización remota, y una plataforma de adquisición de datos, manejo de información remota y visualización en la web.
3. Un sistema de monitoreo de parámetros de calidad de agua con transmisión y procesamiento de datos continuos en tiempo real de acuerdo con la reivindicación 2 caracterizado por que el módulo de sensores incluye una cámara de flotación y encapsulado con material de baja fricción tipo R2C(OR y adherencia el cual permite fabricar la cámara sellada y puede sumergirse en piscinas y tanques con sensores para el registro de parámetros de calidad de agua.
4. Un sistema de monitoreo de parámetros de calidad de agua con transmisión y procesamiento de datos continuos en tiempo real de acuerdo con la reivindicación 3 caracterizado por que los múltiples sensores de materiales especiales como acero inoxidable, polímero orgánico y polímero de baja densidad.y adaptados a condiciones hostiles, tales como presencia de hidrocarburos, presión hasta 50 psi (344,7 KPa), y temperatura hasta 85 °C (358,15 K) miden parámetros físicos relacionados a propiedades del agua como conductividad, aceite suspendido en agua (OIW), temperatura, turbidez infrarroja de amplio espectro, pH, solidos suspendidos a partir de la turbidez, oxígeno disuelto (DO), índice de oxidación ORP. Un sistema de monitoreo de parámetros de calidad de agua con transmisión y procesamiento de datos continuos en tiempo real de acuerdo con la reivindicación 2 caracterizado por que el panel de transmisión (HUB), comunicación y potencia opera de manera remota e independiente con energía solar y comunicarse vía radio de baja potencia con protocolos propios y de manera intrínsecamente segura.
Un sistema de monitoreo de parámetros de calidad de agua con transmisión y procesamiento de datos continuos en tiempo real de acuerdo con la reivindicación 2 caracterizado por que el módulo de procesamiento, comunicaciones, almacenamiento y transmisión de la información que trabaja con energía convencional o solar y comunicarse con el sistema de control y visualización local de manera convencional o con la nube a través de GSM, WiFi, satélite, redes privadas a través del sistema software de comunicación, inalámbrico y seguro.
Un sistema de monitoreo de parámetros de calidad de agua con transmisión y procesamiento de datos continuos en tiempo real de acuerdo con la reivindicación 1 caracterizado por que el módulo de software permite la recepción, procesamiento y almacenamiento de la información adquirida por el módulo de sensores y se comunica con centros de control locales a través de protocolos estándar tales como rs232, rs485, modbus, 4-20 análogo y otros, para datos y con internet a través de múltiples opciones para manejo de información en la nube.
Un sistema de monitoreo de parámetros de calidad de agua con transmisión y procesamiento de datos continuos en tiempo real de acuerdo con la reivindicación 7 caracterizado por que la plataforma de micro-servicios de adquisición de datos de alta eficiencia del 99% diseñada para conexiones de datos de baja calidad la cual está en comunicación constante con los módulos de procesamiento y control instalados en el campo con comunicación al internet remoto a través de los servidores de la nube.
Un sistema de monitoreo de parámetros de calidad de agua con transmisión y procesamiento de datos continuos en tiempo real de acuerdo con la reivindicación 7 caracterizado por que la plataforma web personalizada es para la visualización de datos y generación de reportes conocida como safewireless, que es un sistema software de comunicación, inalámbrico, seguro y confiable.
10. Una metodología de monitoreo de parámetros de calidad de agua con
transmisión y procesamiento de datos continuos en tiempo real caracterizado para diferentes ambientes y condiciones que permite calcular un índice relativo de calidad de agua de producción, que incluya en términos generales las siguientes etapas:
Captura información proveniente de sensores sumergidos y puestos en línea de un sistema de tratamiento de agua de producción para el establecimiento de la calidad de agua, localizado en tanques de almacenamiento de agua para inyección, piscinas de estabilización y/o fosos de vertimiento.
Captura información proveniente de sensores sumergidos y puestos en línea de vertimientos y sistemas de procesamiento de aguas industriales y residuales para el establecimiento de la calidad de agua.
Transmite los datos vía inalámbrica hacia un módulo concentrador o HUB.
Procesa la información proveniente de los sensores puestos en línea en el sistema de tratamiento de agua de producción, vertimientos o sistemas de procesamiento de aguas industriales o residuales.
Evalúa las diferentes mediciones aplicando calibraciones y correcciones para asegurar la precisión y resolución de las mediciones.
Envía información desde un módulo concentrador o HUB hacia una base de datos con ingreso restringido, desarrollada en una plataforma web, con posibilidad de consulta en tiempo real.
Calcula parámetros adicionales procesados a partir de las mediciones como sólidos en suspensión a partir de la turbidez infrarroja, índice relativo de calidad de agua, que permitan una rápida evaluación, generación de alertas y rápidas y efectivas decisiones gerenciales. Procesa la información proveniente de los sensores puestos en línea en el sistema de tratamiento de agua de producción.
Visualiza la información en un entorno web para el ajuste del sistema a partir de datos de campo.
PCT/CO2018/000012 2017-06-09 2018-06-08 Sistema con multiples sensores fabricados en materiales especiales para aplicaciones en presencia de hidrocarburos y aguas residuales y método para el monitoreo remoto, control y seguimiento de parámetros de calidad de agua con transmisión y procesamiento de datos continuos en tiempo real WO2018224056A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CONC2017/0005730 2017-06-09
CONC2017/0005730A CO2017005730A1 (es) 2017-06-09 2017-06-09 Sistema con multiples sensores fabricados en materiales especiales para aplicaciones en presencia de hidrocarburos y aguas residuales y método para el monitoreo remoto, control y seguimiento de parámetros de calidad de agua con transmisión y procesamiento de datos continuos en tiempo real

Publications (1)

Publication Number Publication Date
WO2018224056A1 true WO2018224056A1 (es) 2018-12-13

Family

ID=64567349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CO2018/000012 WO2018224056A1 (es) 2017-06-09 2018-06-08 Sistema con multiples sensores fabricados en materiales especiales para aplicaciones en presencia de hidrocarburos y aguas residuales y método para el monitoreo remoto, control y seguimiento de parámetros de calidad de agua con transmisión y procesamiento de datos continuos en tiempo real

Country Status (2)

Country Link
CO (1) CO2017005730A1 (es)
WO (1) WO2018224056A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112857471A (zh) * 2021-04-13 2021-05-28 湖北明亿节能环保科技有限公司 基于工业物联网的化工废水处理排放在线监测预警管理云平台
CN113834528A (zh) * 2021-09-24 2021-12-24 西华师范大学 一种水环境监控系统及方法
US11565946B2 (en) 2019-12-03 2023-01-31 Ramboll USA, Inc. Systems and methods for treating wastewater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098805B (zh) * 2009-12-11 2014-02-26 中国计量学院 多参数模块化分布式养殖水环境无线监测系统及方法
US20150068900A1 (en) * 2003-03-19 2015-03-12 Hach Company Carbon nantube sensor
US20160202228A1 (en) * 2015-01-08 2016-07-14 International Business Machines Corporation Water quality monitoring and early event detection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150068900A1 (en) * 2003-03-19 2015-03-12 Hach Company Carbon nantube sensor
CN102098805B (zh) * 2009-12-11 2014-02-26 中国计量学院 多参数模块化分布式养殖水环境无线监测系统及方法
US20160202228A1 (en) * 2015-01-08 2016-07-14 International Business Machines Corporation Water quality monitoring and early event detection

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11565946B2 (en) 2019-12-03 2023-01-31 Ramboll USA, Inc. Systems and methods for treating wastewater
US11807551B2 (en) 2019-12-03 2023-11-07 Ramboll USA, Inc. Systems and methods for treating wastewater
CN112857471A (zh) * 2021-04-13 2021-05-28 湖北明亿节能环保科技有限公司 基于工业物联网的化工废水处理排放在线监测预警管理云平台
CN112857471B (zh) * 2021-04-13 2023-04-28 安徽中科大国祯信息科技有限责任公司 工业物联网的化工废水处理排放在线监测预警管理云平台
CN113834528A (zh) * 2021-09-24 2021-12-24 西华师范大学 一种水环境监控系统及方法

Also Published As

Publication number Publication date
CO2017005730A1 (es) 2017-08-31

Similar Documents

Publication Publication Date Title
US10119952B2 (en) Inline water contaminant detector and filter
WO2018224056A1 (es) Sistema con multiples sensores fabricados en materiales especiales para aplicaciones en presencia de hidrocarburos y aguas residuales y método para el monitoreo remoto, control y seguimiento de parámetros de calidad de agua con transmisión y procesamiento de datos continuos en tiempo real
US8886482B2 (en) Predictive and internet-based sampler control
KR102460023B1 (ko) 스마트 워터 시티 구축을 위한 다항목 수질 측정을 사용한 통합정보 제공 시스템
EP2349932A1 (en) Sensor arrangement and method for water quality monitoring
KR20130017992A (ko) Usn 기반 실시간 수질 모니터링을 위한 다항목 수질측정기
CN208588728U (zh) 一种水利用水质监测及远程监督设备
CN103698487A (zh) 一种智能楼宇水质多参数监测系统
CN109187900A (zh) 一种水质安全监测与管理系统
Okpara et al. On-line water quality inspection system: the role of the wireless sensory network
Murugan et al. Monitoring and controlling the desalination plant using IoT
Sai et al. IoT based Water Quality Monitoring System
Sung et al. IoT-based Water Quality Monitoring.
Dansharif et al. Benefits of water quality monitoring
Bwire et al. Simulation of pressure variations within Kimilili water supply system using EPANET
Gavhane et al. Smart turbidity monitoring and data acquisition using labview
Staff Online monitoring for drinking water utilities
CN212989338U (zh) 一种自来水管网多参数智能控制装置
CN109188492B (zh) 开环式测量水中镭浓度的方法
Kumar et al. Integrated IoT Reference Architecture for Smart Metering and Monitoring of City Water Distribution Using Next Generation Sensors
CN204214771U (zh) 自来水管网的水质检测装置及设备
CN208818690U (zh) 一种水质检测系统
KR20230168860A (ko) 수질정보 수집장치 및 이를 포함하는 관제 시스템
Atta Smart water management system for residential buildings in Saudi Arabia
Raman et al. Real-time Monitoring System for Safe Drinking Water Safety Using IoT and Cloud Computing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18812757

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18812757

Country of ref document: EP

Kind code of ref document: A1