WO2018223996A1 - 二尖瓣瓣膜假体、三尖瓣瓣膜假体及其支架 - Google Patents

二尖瓣瓣膜假体、三尖瓣瓣膜假体及其支架 Download PDF

Info

Publication number
WO2018223996A1
WO2018223996A1 PCT/CN2018/090191 CN2018090191W WO2018223996A1 WO 2018223996 A1 WO2018223996 A1 WO 2018223996A1 CN 2018090191 W CN2018090191 W CN 2018090191W WO 2018223996 A1 WO2018223996 A1 WO 2018223996A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition region
inflow channel
mesh
stent
channel
Prior art date
Application number
PCT/CN2018/090191
Other languages
English (en)
French (fr)
Inventor
赵春霞
阳明
陈国明
刘明
Original Assignee
上海微创心通医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=64566451&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018223996(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 上海微创心通医疗科技有限公司 filed Critical 上海微创心通医疗科技有限公司
Priority to US16/619,626 priority Critical patent/US11185410B2/en
Priority to EP18812866.4A priority patent/EP3636223B1/en
Priority to KR1020197038346A priority patent/KR102342242B1/ko
Priority to JP2019567717A priority patent/JP6987890B2/ja
Publication of WO2018223996A1 publication Critical patent/WO2018223996A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2445Annuloplasty rings in direct contact with the valve annulus
    • A61F2/2448D-shaped rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2466Delivery devices therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2427Devices for manipulating or deploying heart valves during implantation
    • A61F2/2436Deployment by retracting a sheath
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0018Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in elasticity, stiffness or compressibility
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0029Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in bending or flexure capacity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0037Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in height or in length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter

Definitions

  • the present invention relates to the technical field of medical prostheses, and in particular to a mitral valve prosthesis, a tricuspid valve prosthesis and a stent thereof.
  • the mitral valve also known as the iliac crest flap, is located at the left ventricular inflow tract.
  • the main structure is the mitral valve complex, including the mitral annulus, leaflets, chordae, and papillary muscles. Some of the literature also contains ventricular wall.
  • the mitral annulus is a dense connective tissue around the left atrial ventricle.
  • the anterior annulus is composed of a partial non-crown annulus and a partial left coronary annulus and left and right fiber triangles of the aortic valve located in the left ventricular outflow tract.
  • the posterior annulus is the posterior leaf attachment.
  • the anterior leaflet of the mitral valve is the fiber extension of the aortic valve, forming a left ventricular inflow tract with the posterior valve leaflet, and forming a left ventricular outflow tract corresponding to the cardiac septum.
  • the left ventricular outflow tract After implantation of a conventional artificial mitral valve, the left ventricular outflow tract has a risk of occlusion.
  • the mitral chordae is used as a support device for connecting the mitral valve leaflets and the myocardium, and is distributed between the leaflets and the myocardium.
  • the subvalvular structure of the mitral valve plays an important role in maintaining the left heart structure and function.
  • the subvalvular height and subvalvular structure of the interventional artificial mitral valve should be controlled and designed to avoid adverse effects on the subvalvular structure of the native valve.
  • the diameter of the annulus of the mitral valve is larger, and the radial deformation of the valve is larger when the artificial valve is delivered to the left atrium.
  • WO2013028387 discloses an improved structure of a prosthetic valve comprising a stent and a valve assembly in combination with a stent, the stent can be woven from silk, or cut from a tube, or a combination of the two, the main improvement being in the valve assembly It comprises two layers of stabilizing fibers, which are respectively arranged on the inner wall of the bracket and the outer wall of the bracket. Through the setting of two layers of stabilizing fibers, the stability of the prosthetic valve can be improved and the service life of the prosthetic valve can be prolonged.
  • the patent uses a wire weaving method for the inflow channel, it partially solves the problem of paravalvular leakage caused by axial agitation and positioning of the stent.
  • the cause of the formation of the valve leakage is complicated, and further improvement of the above technical solution is required.
  • the present invention provides a mitral valve prosthesis, a tricuspid valve prosthesis, and a stent thereof.
  • a stent for supporting a mitral valve prosthesis or a tricuspid valve prosthesis having a collapsed state for delivery and an expanded state for deployment the stent including an inflow channel, a transition along the axial direction a region and an outflow channel, the two ends of the transition region being respectively connected to the inflow channel and the outflow channel; in the unfolded state, the inflow channel is located upstream of a blood flow direction of the outflow channel, the inflow The track extends in a flared direction away from the transition region in a direction away from the transition region, the inflow passage being a mesh structure woven from a wire, the transition region and the outflow passage being cut by a pipe a mesh structure, wherein the mesh structure of the inflow channel is configured to extend at least from the annulus to the atrium after covering the chamber opening or covering the chamber opening in an unfolded state after the stent is deployed Part of the atrium.
  • the mesh structure of the inflow channel includes a plurality of first meshes, a plurality of the first meshes are in a row, and the first meshes are equal in size; or
  • the plurality of first grids are in a plurality of rows, and the first grids in the same row are equal in size, and from the end adjacent to the transition region to the end far from the transition region, the first grid size of each row gradually Become bigger.
  • the mesh structure of the inflow channel includes a plurality of first meshes, at least a portion of the first mesh having an axial height that is inconsistent with the remaining first meshes.
  • the plurality of the first grids are in a row, and in the unfolded state, a portion of the first grid corresponding to a portion of the native anterior annulus has an axial height higher than a native posterior lobes The axial height of the first grid corresponding to the portion of the ring.
  • the width of the end of the inflow channel remote from the transition region ranges from 30 mm to 65 mm.
  • the minimum width of the transition region ranges from 25 mm to 50 mm in the deployed state to enable conformation of the native annulus.
  • At least a portion of the filaments in the filaments forming the mesh structure of the inflow channel are joined to the transition region by a weaving process.
  • the transition region comprises a plurality of second grids, the plurality of second grids being arranged in one or more rows, wherein:
  • the transition region defines a connection hole on at least a portion of the second mesh adjacent to an end of the inflow channel, and the wire of the inflow channel passes through at least a portion of the connection hole to form a transition region The first mesh of the neighbor; or
  • connecting rod on at least a portion of the second grid adjacent to an end of the inflow passage in the transition region, the connecting rod extending in a direction away from the inflow passage, the filament of the inflow passage being wound around The connecting rod is wound on the second mesh near the connecting rod.
  • the transition region includes a plurality of second grids, the plurality of second grids being arranged in one or more rows, wherein:
  • the transition region is provided with a connection hole near the apex of at least a portion of the second mesh near the end of the inflow channel, and the wire of the inflow channel passes through at least a portion of the connection hole and is formed with the The first mesh adjacent to the transition region; or
  • the wire of the inflow channel is wound to form the first mesh adjacent to the transition region Grid;
  • a connecting rod is disposed near an apex of at least a portion of the second mesh adjacent to an end of the inflow channel, the connecting rod extending away from the inflow channel, the inflowing wire Winding on the connecting rod or wrapped around the second grid near the connecting rod.
  • the wire at least partially forming the inflow channel network is joined to the transition region by welding, riveting or screwing.
  • the mesh structure of the inflow channel comprises a plurality of first meshes, and the mesh structure of the transition region comprises a plurality of second meshes;
  • the inflow channel is provided with at least one annular connecting portion near at least a portion of the apex of the first mesh adjacent to the transition region; the transition region is adjacent to at least a portion of the second mesh of the inflow channel A connecting hole is provided, and the rivet passes through the annular connecting portion and the corresponding connecting hole to fixedly connect the transition region and the inflow channel.
  • the mesh structure of the inflow channel comprises a plurality of first meshes, and the mesh structure of the transition region comprises a plurality of second meshes;
  • the inflow channel is provided with at least one annular connecting portion near at least a portion of the apex of the first mesh adjacent to the transition region; the transition region is adjacent to at least a portion of the second mesh of the inflow channel A threaded hole is formed in the grid, and the screw passes through the annular connecting portion and the corresponding threaded hole, and is screwed to the second mesh to fix the transition region to the inflow channel.
  • the wire at least partially forming the inflow channel network is indirectly connected to the transition region.
  • a connecting member is further included, one end of the connecting member being fixed to the inflow channel and the other end being fixed to the transition region and/or the outflow channel.
  • the mesh structure of the inflow channel comprises a plurality of first meshes, and the mesh structure of the transition region comprises a plurality of second meshes;
  • the inflow channel is provided with at least one annular connecting portion near at least a portion of the apex of the first mesh adjacent to the transition region; the transition region is adjacent to at least a portion of the second mesh of the inflow channel a connection hole is provided at the upper opening;
  • the bracket includes at least two connecting members, and two ends of each of the connecting members are respectively connected to the annular connecting portion and the connecting hole.
  • the mesh structure of the inflow channel comprises a plurality of first meshes
  • the mesh structure of the transition region comprises a plurality of second meshes
  • the connecting member is a piece composed of a polymer material The connecting member has one end fixed to the inflow channel and the other end fixed to the transition region and/or the outflow channel.
  • the mesh structure of the outflow channel includes a plurality of third meshes, and the plurality of the third meshes are arranged in one or more rows, and the plurality of the third meshes are sequentially connected or Arranged at intervals.
  • the outflow channel and the transition region are integrally formed mesh structures cut from the same tube.
  • the total axial height of the transition region and the outflow tract ranges from 1 cm to 3.5 cm.
  • the position of the outflow tract away from the end of the transition region is not lower than at least one native leaflet free edge.
  • the end of the outflow tract away from the transition region is located between the free edge of the anterior leaflet and the anterior annulus, and the outflow tract is remote from the transition
  • the end of the region is located adjacent to the free edge of the posterior leaflet in the axial direction.
  • a fixed structure is also included, the fixed structure being located outside of the transition region and/or outside of the outflow channel.
  • a mitral valve prosthesis comprising:
  • valve assembly In the stent, the valve assembly is attached to the stent.
  • the valve assembly includes a prosthetic leaflet and a skirt associated with the prosthetic leaflet; the prosthetic leaflet is secured to the transition region and the outflow tract; the skirt is secured On the inflow channel and the transition region, or the skirt is fixed on the inflow channel, the transition region and the outflow channel.
  • a tricuspid valve prosthesis comprising:
  • valve assembly In the stent, the valve assembly is attached to the stent.
  • the valve assembly includes a prosthetic leaflet and a skirt associated with the prosthetic leaflet; the prosthetic leaflet is secured to the transition region and the outflow tract; the skirt is secured On the inflow channel and the transition region, or the skirt is fixed on the inflow channel, the transition region and the outflow channel.
  • the mitral valve prosthesis, the tricuspid valve prosthesis and the stent thereof are prepared by wire weaving in the inflow channel, so the radial stiffness is small, and the shape can be adapted to the shape of the native mitral annulus, and the stent is reduced.
  • the compression and intervention of the aortic valve greatly reduces the risk of obstruction of the left ventricular outflow tract.
  • the shape of the inflow channel is easily adjusted, adapting to the change of the diameter of the stent, and the radial deformation and axial turbulence during the deployment of the buffer stent, thereby improving the release stability.
  • the portion of the inflow channel loaded by the conveying system is likely to form a certain bending angle, which is favorable for conforming to the human blood vessel environment and facilitating the movement of the conveying system in the human body.
  • FIG. 1 is a perspective view of a mitral valve prosthesis in an embodiment
  • FIG. 2 is a perspective view of a stent of a mitral valve prosthesis in yet another embodiment
  • FIG. 3 is a view showing a state of use of a mitral valve prosthesis in still another embodiment
  • FIG. 4 is a view showing a state of use of a mitral valve prosthesis in still another embodiment
  • Figure 5 is a view showing a state of use of a mitral valve prosthesis in still another embodiment
  • Figure 6a is a schematic view showing the connection of the inflow channel and the transition region of the mitral valve prosthesis in still another embodiment
  • Figure 6b is a schematic view showing the connection of the inflow channel and the transition region of the mitral valve prosthesis in still another embodiment
  • Figure 6c is a schematic view showing the connection of the inflow channel and the transition region of the mitral valve prosthesis in still another embodiment
  • Figure 7a is a schematic view showing the connection of the inflow channel and the transition region of the mitral valve prosthesis in still another embodiment
  • Figure 7b is a schematic view showing the connection of the inflow channel and the transition region of the mitral valve prosthesis in still another embodiment
  • Figure 8a is a schematic view showing the connection of the inflow channel and the transition region of the mitral valve prosthesis in still another embodiment
  • Figure 8b is a schematic view showing the connection of the inflow channel and the transition region of the mitral valve prosthesis in still another embodiment
  • Figure 9 is a perspective view of a stent of a mitral valve prosthesis in yet another embodiment
  • 10a, 10b, 11a, 11b, 11c, 11d, 12a, 12b, 13, 14a, 14b, 14c and 15 are the mitral valve prosthesis of Fig. 1. Schematic diagram of the loading process.
  • the mitral valve prosthesis 10 includes a stent 100 and a valve assembly 200 that is attached to a stent 100 for supporting the valve assembly 200.
  • the stent 100 has a collapsed state for delivery and an expanded state for deployment.
  • the bracket 100 includes an inflow passage 110, a transition region 120, and an outflow passage 130 in the axial direction, and both ends of the transition region 120 are connected to the inflow passage 110 and the outflow passage 130, respectively.
  • the inflow channel 110 is located upstream of the flow direction of the outflow channel 130, and the radial stiffness of the inflow channel 110 is less than the radial stiffness of the outflow channel 130 and/or the transition region 120.
  • the inflow passage 110 extends in a flared direction away from the transition region 120 in the axial direction of the bracket 100.
  • the inflow passage 110 may have a trumpet shape as a whole, or a portion connected to the transition region 120 may have a cylindrical shape, and a portion away from the transition region 120 may have a flare shape.
  • the flared structure readily conforms to the inner wall of the atrium, making the mitral valve prosthesis 10 more stable within the heart.
  • the inflow passage 110 is a mesh structure woven from a wire, and the transition region 120 and the outflow passage 130 are a mesh structure cut from a pipe.
  • the radial stiffness of the mesh structure woven from the wire is significantly smaller than that of the mesh structure cut by the pipe. Since the radial stiffness of the inflow channel 110 is small, the shape can be adapted to the shape of the native mitral annulus. Reduce the compression and interference of the aortic valve, and greatly reduce the risk of obstruction of the left ventricular outflow tract 130.
  • the shape of the inflow channel 110 is easily adjusted to accommodate the diameter change of the stent 100, and the radial deformation and axial turbulence during the deployment of the buffer stent 100 improve the release stability.
  • the rigidity of the inflow passage 110 is lower than that of the outflow passage 130 and/or the transition region 120, the portion of the conveying system that loads the inflow passage 110 is likely to form a certain bending angle, which is favorable for conforming to the human blood vessel environment and facilitating the transportation system in the human body. The movement in.
  • the inflow channel 110 includes a plurality of first grids 112.
  • the plurality of first meshes 112 may be formed by one or more wires arranged in a zigzag shape, or the plurality of first meshes 112 may be formed by connecting one or more wires to each other, and the connection manner may be Welding, riveting or weaving.
  • the silk is made of a material having memory and biocompatibility, such as a nickel titanium alloy.
  • the cross-section of the inflow channel 110 near the transition region 120 is D-shaped or elliptical. That is, in the unfolded state, the blood inflow from the inflow channel 110 is observed at one end, and the inflow channel 110 is D-shaped or elliptical in a narrow portion.
  • the shape can accommodate the shape of the chamber opening, and in the embodiment of the D-shape, the vertical side of the D is adjacent the anterior annulus.
  • the mesh structure of the inflow channel 110 includes a plurality of first meshes 112.
  • the plurality of first meshes 112 are in a row, and the first meshes 112 may be equal in size.
  • the plurality of first grids 112 are in a plurality of rows, and the first grids 112 in the same row are equal in size, from one end adjacent to the transition region 120 to one end away from the transition region 120, each row A grid 112 gradually becomes larger in size.
  • at least a portion of the first grid 112 may have an inconsistent axial height.
  • the portion of the first mesh 112 in one or more rows of the first mesh 112 may be inconsistent in axial height, and the portion of the first mesh 112 may correspond to a specific portion.
  • the plurality of first meshes 112 are in a row, and in the unfolded state, the axial height of a portion of the first mesh 112 corresponding to the native anterior mitral valve annulus is higher than Corresponding to the axial height of a portion of the first mesh 112 at the posterior annulus of the native mitral valve.
  • the outer edge of the inflow channel 110 corresponding to the anterior mitral valve annulus is higher than the outer edge of the inflow channel 110 at the posterior annulus, and the left atrium above the anterior mitral annulus
  • the inner area is large, and the pressure of the left atrium of the mitral valve prosthesis 10 is shared, and the compression of the aortic valve is reduced, thereby reducing the risk of obstruction of the left ventricular outflow tract 130.
  • the width of the end of the inflow channel 110 remote from the transition region 120 ranges from 30 mm to 65 mm.
  • the width of the inflow channel 110 needs to be greater than the diameter of the native mitral annulus to prevent the mitral valve prosthesis 10 from falling into the ventricle when the heart is dilated.
  • a suitably sized mitral valve prosthesis 10 can be selected based on the size of the user's heart.
  • the inflow channel 110 covers the left atrium chamber opening, and the end of the inflow channel 110 away from the transition region 120 is in an unfolded state, and does not contact the aortic valve structure and the mitral valve curtain.
  • the aortic valve has no contact.
  • the inflow channel 110 covers the chamber opening and extends from the mitral annulus to the left atrium, covering the aortic valve and the mitral valve curtain structure and extending to the curtain remote.
  • the inflow channel 110 woven by the wire is a braid structure, and therefore, the structure of the inflow channel 110 is soft and highly compliant.
  • the anatomical structure of the primary aortic valve can be adapted to reduce the aortic valve.
  • the oppression Referring also to Figure 5, the inflow channel 110 structure covers the chamber opening and extends from the mitral annulus to the left atrium, covering the entire left atrium.
  • the two ends of the transition region 120 are respectively connected to one end of the inflow of the blood flowing into the channel 110 and one end of the blood flowing out of the channel 130.
  • the connection may be a direct connection or an indirect connection.
  • the transition region 120 includes a plurality of mesh structures formed by the second mesh 122, and the transition region 120 is cut from a tube having a material having memory characteristics and biocompatibility.
  • the transition region 120 can be formed by cold source laser cutting.
  • the minimum width of the transition region 120 ranges from 25 mm to 50 mm for fitting the native mitral annulus, and the minimum diameter of the transition region 120 is generally not low.
  • the diameter of the native mitral annulus in order to prevent paravalvular leakage, the minimum width of the transition region 120 ranges from 25 mm to 50 mm for fitting the native mitral annulus, and the minimum diameter of the transition region 120 is generally not low. The diameter of the native mitral annulus.
  • the transition region 120 is provided with a connection hole 126 near the apex 124 of the second mesh 122 on the end of the inflow channel 110.
  • the wire of the inflow channel 110 passes through the connection hole 126.
  • a first grid 112 is formed adjacent to the transition region 120.
  • the wire for weaving the inflow channel 110 may pass through the connection hole 126 in a zigzag shape during the manufacturing process, thereby forming the first mesh 112 of the inflow channel 110.
  • connection holes 126 may be provided near the apex 124 of the second mesh 122 on all ends near the inflow channel 110, or may be only near the apex 124 of the second mesh 122 on the end portion of the inflow channel 110.
  • a connection hole 126 is opened. The wire of the inflow passage 110 may pass through all of the connection holes 126 or may only pass through the partial connection holes 126.
  • the attachment apertures 126 may be omitted and the wires of the inflow channel 110 are directly coupled to the second mesh 122 of the transition region 120.
  • the wire of the inflow channel 110 is wound at least one turn and then formed with the transition region 120. Adjacent first grid 112. The wire of the inflow channel 110 can be wound one or more times.
  • the position where the wire of the inflow channel 110 is connected to the second mesh 122 is not limited to the vicinity of the apex 124 of the second mesh 122 connected to the end of the inflow channel 110, and the wire of the inflow channel 110 can also be connected to The remaining positions of the second grid 122, such as near the remaining vertices, more specifically, near the apex of the adjacent second grid 122.
  • the wire winding of the inflow channel 110 may be wound around all of the apexes 124 of the second grid 122 near the end of the inflow channel 110, or may be wound only around the second grid 122 partially adjacent the end of the inflow channel 110. Near vertex 124.
  • a positioning structure such as the connecting rod 128, may be provided adjacent the apex 124 of the second grid 122.
  • the transition region 120 is provided with a connecting rod 128 near the apex 124 of the second grid 122 on the end adjacent the inflow channel 110.
  • a plurality of links may be provided.
  • the connecting rod 128 extends away from the inflow passage 110, and the wire of the inflow passage 110 is wound around the connecting rod 128 or wound around the second mesh 122 near the connecting rod 128.
  • the location of the locating structure is not limited to the vicinity of the apex 124 as long as the transition region 120 is anywhere near the second grid 122 on the end of the inflow tract 110.
  • the connecting rod 128 may be disposed on the second mesh 122 on the end of all the transition regions 120 near the inflow channel 110, or the connecting rod 128 may be disposed only in the vicinity of the second mesh 122 on the end portion of the inflow channel 110. .
  • the inflow channel 110 can be coupled to the transition region 120 by welding, riveting, threading, or the like.
  • the inflow channel 110 is provided with at least one annular connecting portion 114 near the apex of the first mesh 112 adjacent to the transition region 120.
  • the transition region 120 is provided with a connection aperture 126 in at least a portion of the second grid 122 adjacent the inflow channel 110.
  • the attachment aperture 126 can be disposed adjacent the apex 124 of the second grid 122.
  • the rivet 142 is fixedly coupled to the corresponding connecting hole 126 through the annular connecting portion 114 to securely connect the transition region 120 with the inflow passage 110. Referring to FIG.
  • the transition region 120 defines a connecting hole 126 having an internal thread, that is, a threaded hole, on at least a portion of the second mesh 122 adjacent to the inflow channel 110.
  • the threaded hole may be Located near the apex 124 of the second grid 122.
  • the screw 144 passes through the annular connecting portion 114 and the corresponding threaded hole, and is screwed to the second mesh 122 to fix the bracket 100 transition region 120 to the inflow channel 110.
  • the position of the connection hole 126 is not limited to the vicinity of the vertex 124.
  • the inflow channel 110 can also be indirectly coupled to the transition region 120, which can be connected by other connecting members.
  • the connecting member 146 is a sheet composed of a biocompatible polymer material, for example, the sheet is a skirt, and one end of the connecting member 146 is fixed on the inflow channel 110, and One end is fixed to the transition region 120 and/or the outflow channel 130, and the fixing manner may be suturing or bonding.
  • the inflow channel 110 is provided with at least one annular connecting portion 114 near the apex of at least a portion of the first mesh 112 of the transition region 120.
  • the transition region 120 defines a connection aperture 126 in at least a portion of the second grid 122 adjacent the inflow channel 110.
  • the attachment aperture 126 can be disposed adjacent the apex 124 of the second grid 122.
  • the position of the connection hole 126 is not limited to the vicinity of the vertex 124.
  • the bracket has at least two connecting members 148, and two ends of each connecting member 148 are respectively connected to the annular connecting portion 114 and the connecting hole 126.
  • the valve assembly 200 includes a prosthetic leaflet 210 and a skirt 220 coupled to the prosthetic leaflet 210.
  • the prosthetic leaflets 210 are secured to the transition region 120 and the outflow channel 130.
  • the skirt 220 is fixed on the inflow channel 110 and the transition region 120, or the skirt 220 is fixed on the inflow channel 110, the transition region 120 and the outflow channel 130, and the fixing manner may be sewing or bonding.
  • the prosthetic leaflets 210 in the valve assembly 200 are prepared from homologous or heterologous biomaterials, such as pig pericardium, bovine pericardium, etc.; the skirt 220 can be made of a biocompatible material, such as a treated animal pericardium or organism.
  • Compatible polymer materials such as PET (Polyethylene terephthalate, polyethylene terephthalate), PE (Polyethylene, polyethylene), PTFE (Polytetrafluoroethylene, polytetrafluoroethylene).
  • the end of the outflow tract 130 is connected to the end of the transition region 120 where the blood flows out.
  • the outflow channel 130 may have a spherical shape, an oval shape, a cylindrical shape, and a tapered curved shape.
  • the mesh structure of the outflow channel 130 includes a plurality of third meshes 132 that include a mesh structure that is cut from tubing having materials of memory characteristics and biocompatibility.
  • the outflow channel 130 can be formed by cold source laser cutting.
  • the outflow channel 130 and the transition region 120 may be an integrally formed mesh structure cut from the same tube, which is convenient for processing, and the two are firmly connected.
  • the plurality of third grids 132 are arranged in one or more rows, and the plurality of third grids 132 are sequentially connected or spaced apart.
  • a plurality of third grids 132 are arranged in a row, and a plurality of third grids 132 are sequentially connected and uniformly distributed in the circumferential direction.
  • a plurality of third grids 132 are arranged in a row, and the third grids 132 are not connected to each other and are circumferentially spaced apart.
  • the transition region 120 and the outflow tract 130 serve as the subvalvular structure of the mitral valve prosthesis 10, and in the deployed state, the total axial height of the transition region 120 and the outflow channel 130 ranges from 1 cm to 3.5 cm. .
  • the position of the outflow channel 130 distal from the transition region 120 is no less than at least one native mitral leaflet free edge.
  • the end of the outflow tract 130 remote from the transition region 120 is located between the free anterior valvular leaflet and the anterior mitral valve annulus, and the end of the outflow tract 130 distal from the transition region 120 is near.
  • the free edge of the posterior leaflet is positioned in the axial direction.
  • the mitral valve chordae is pulled from the myocardial wall and the papillary muscle to the free edge of the valve leaflet, it plays an important role in maintaining the left ventricular morphology.
  • the chordae tendine rupture may cause left ventricular remodeling, which may also lead to lack of constraint on the leaflet. Free movement induces hemodynamic abnormalities. Therefore, the subvalvular structure of the mitral valve prosthesis 10 should not be too long to interfere with the chordae function, and the mitral valve prosthesis 10 of the above embodiment can greatly reduce the risk of obstruction of the left ventricular outflow tract 130.
  • the transition region 120 and the outflow channel 130 are fixed regions of the artificial leaflets 210, and the structural size thereof is required to meet the requirements of the artificial leaflets 210, that is, the inner diameter of the stent region 100 of the transition region 120 is less than or equal to the diameter of the artificial valve leaflets 210, and the transition region 120 and the outflow
  • the total height of the track 130 is greater than or equal to the stitching height of the artificial leaflet 210.
  • the transition zone 120 and the outflow channel 130 are relatively stiffer than the inflow channel 110.
  • the ventricle contracts, the artificial leaflet 210 is closed, and the radial stiffness of the transition region 120 and the outflow channel 130 is strong, and the tensile force of the artificial leaflet 210 can be withstood without significant deformation, and the artificial valve leaflet 210 cannot be reduced due to the deformation of the stent 100.
  • Coincidence produces a paravalvular leak.
  • the mitral valve acts as a one-way valve from the left atrium to the left ventricle, and its structure includes a mitral annulus connected to the annulus of the aortic valve and the myocardial wall, two asymmetric leaflets, and a leaflet that pulls the leaflet Cable, and papillary muscle attached to the wall of the myocardium.
  • the mitral valve structure is complex, and the catheter-implanted mitral valve prosthesis 10 generally requires an additional fixation structure that is located outside of the transition region 120 and/or outside of the outflow tract 130 to reinforce the mitral valve prosthesis 10 Fixed connection with the native mitral valve.
  • the shape and position of the fixed structure of the present invention are not particularly limited, and any technique existing or future in the art may be employed.
  • one or more anchors are provided at a portion where the transition region 120 is combined with the outflow channel 130, or one or more anchors or the like are disposed between the third mesh 132 of the outflow channel 130.
  • the loading procedure of the mitral valve prosthesis 10 in the above embodiment is as follows:
  • the mitral valve prosthesis 10 is in an unfolded state prior to loading into the delivery system 20 with a large circumferential diameter and a low axial height.
  • the stent 100 is in a contracted state, compressed in the circumferential direction, reduced in diameter, and increased in axial length.
  • the process of loading the mitral valve prosthesis 10 into the delivery system 20 can cause the stent 100 to change from a deployed state to a contracted state in a particular environment by means of an external tool, such as placing the mitral valve prosthesis 10 in a week.
  • the circumferential dimension of the mitral valve prosthesis 10 is compressed by the auxiliary device until the mitral valve prosthesis 10 can be loaded into the delivery system 20.
  • the position of the attachment of the stent 100 to the delivery system 20 can be adjusted as appropriate.
  • the stent 100 can be adapted for delivery through the left atrial approach delivery system 20, through the apical access delivery system 20, through the interatrial septal delivery system 20, through the aortic approach. System 20.
  • connection point of the stent 100 and the delivery system 20 is set to the end of the inflow channel 110 away from the transition region 120, and the transapical approach and the transaortic approach
  • the delivery system 20, the point of attachment of the stent 100 to the delivery system 20, is disposed as one end of the outflow channel 130 remote from the transition region 120.
  • the stiffness of the inflow channel 110 after the stent 100 is compressed is low.
  • the stent 100 is loaded into the delivery system 20, and the portion of the delivery system 20 that carries the inflow channel 110 forms a certain angle of bend relative to the portion of the loading outflow channel 130 and the transition region 120, making the delivery system 20 better during implantation. Comply with the blood vessels and heart structure of the human body.
  • the structure of the delivery system 20 corresponding to the outflow channel 130 and the transition region 120 of the stent 100 passes through the interatrial septum, and the tube segment of the corresponding inflow channel 110 of the delivery system 20 is compared with The tube segments corresponding to the outflow channel 130 and the transition region 120 form a certain bending angle, and then the delivery system 20 performs other access operations.
  • this operation can avoid as long as the tube section of the delivery system 20 loading the stent 100 is long, and the left atrium is relatively small, resulting in damage to the left atrial wall or movement of the delivery system 20.
  • the stent 100 is rapidly expanded, and the inflow channel 110 is a mesh structure woven from silk, and can be used as a cushioning member for rapid expansion of the stent 100.
  • the total height of the subvalvular structure of the mitral valve prosthesis 10 is lower to avoid structural damage to the mitral subvalvular structure of the stent 100.
  • the mitral valve prosthesis 10 has a large diameter, and the radial deformation is large during the release of the stent 100.
  • the release of the mitral valve prosthesis 10 is prone to large axial turbulence relative to the native valve at the end of the release, and the second aspect of the present invention
  • the woven mesh structure is adjusted by its own shape, adapting to the diameter change of the stent 100, and the radial deformation and axial turbulence during the expansion of the cushioning stent 100 to enhance the release stability.
  • FIG. 14a the process of release of the mitral valve prosthesis 10 through the left atrial implant or through the atrial septal implant is shown in Figure 14a.
  • the passage 130 portion, the transition region 120 is first released, and the stent 100 is continuously released, the portion of the inflow passage 110 begins to deform, the outflow passage 130 and the transition region 120 continue to expand, and the portion of the inflow passage 110 continues to accommodate the radial dimensional change of the subvalvular structure.
  • Figure 14b continuing to release the inflow channel 110, the outflow channel 130 and the transition region 120 can advance into a fully expanded state, and the prosthetic leaflets 210 begin to operate.
  • the inflow channel 110 is continuously released until the prosthetic valve is fully released.
  • the inflow channel 110 of the stent 100 abuts the port of the chamber at the junction of the atrium and the ventricle, covering the native mitral annulus.
  • the inflow channel 110 is released from the delivery system 20 and expands radially along the mitral valve to cover the opening of the chamber.
  • the skirt 220 shields the left ventricular inflow channel 110 to prevent blood from flowing back in the circumferential direction of the stent 100 when the heart contracts.
  • the anterior leaflet of the mitral valve is the fiber extension of the aortic valve, forming a left ventricular inflow tract with the posterior valve leaflet, and forming a left ventricular outflow tract corresponding to the cardiac septum.
  • the left ventricular outflow tract typically has a risk of occlusion.
  • the mitral valve prosthesis 10 of the present invention has a small radial stiffness of the inflow channel 110.
  • the whole body is soft and can well adapt to the saddle structure of the mitral annulus, and the pair is reduced.
  • the compression and intervention of the aortic valve greatly reduces the risk of obstruction of the left ventricular outflow tract, while ensuring that the inflow tract 110 is working properly.
  • the tricuspid valve acts as the atrioventricular valve of the right heart. Its structure is similar to that of the mitral valve. It also includes the leaflets, annulus, chordae, papillary muscles and myocardium.
  • the mitral valve prosthesis 10 used to replace the native mitral valve can also be used in place of the native tricuspid valve. Specifically, in an embodiment, a tricuspid valve prosthesis is provided, the structure of which is the same as that of the mitral valve prosthesis 10 described above.

Abstract

一种二尖瓣瓣膜假体(10)、三尖瓣瓣膜假体及其支架(100),支架(100)用于支撑二尖瓣瓣膜假体(10)的心脏瓣膜,支架(100)具有用于输送的收缩状态和用于部署的展开状态,支架(100)沿轴向包括流入道(110)、过渡区域(120)和流出道(130),过渡区域(120)的两端分别连接流入道(110)和流出道(130);在展开状态下,流入道(110)位于流出道(130)的血流方向的上游,流入道(110)的径向刚度小于流出道(130)和/或过渡区域(120)的径向刚度。由于流入道(110)的径向刚度较小,其形态可以较好的适应原生二尖瓣环形态,降低对主动脉瓣的压迫和干涉,大幅度降低左室流出道阻塞风险。同时,在释放过程中,流入道(110)的形态容易调整,适应支架(100)直径变化,缓冲支架(100)展开过程中的径向变形和轴向窜动,提高了释放稳定性。

Description

二尖瓣瓣膜假体、三尖瓣瓣膜假体及其支架 技术领域
本发明涉及医学假体的技术领域,特别是涉及一种二尖瓣瓣膜假体、三尖瓣瓣膜假体及其支架。
背景技术
二尖瓣又称僧帽瓣,其位于左心室流入道处,主要结构为二尖瓣复合体,包括二尖瓣瓣环、瓣叶、腱索和乳头肌,部分文献中也包含心室壁。二尖瓣瓣环是左心房室口周围的致密结缔组织,其前瓣环是由位于左室流出道的主动脉瓣的部分无冠瓣环和部分左冠瓣环与左、右纤维三角组成,后瓣环是后叶附着部。二尖瓣前瓣叶是主动脉瓣的纤维延伸,与后瓣叶形成左室流入道,而与心间隔对应形成左室流出道。植入传统的人工二尖瓣瓣膜后,左室流出道具有阻塞风险。
二尖瓣的腱索作为连接二尖瓣瓣叶与心肌的支撑装置,分布在瓣叶与心肌之间。二尖瓣的瓣下结构对维持左心结构及功能起着重要作用。介入式人工二尖瓣瓣膜的瓣下高度及瓣下结构需予以控制和设计,避免对原生瓣膜的瓣下结构形成不良影响。同时,相较于主动脉瓣,二尖瓣的瓣环直径较大,输送人工瓣膜至左心房室口释放时,瓣膜的径向变形较大。由于介入式人工二尖瓣瓣膜的瓣下高度较小,且释放时瓣膜的径向变形较大,因此支架轴向窜动较大,难于定位,容易引起释放不当造成瓣周漏。
WO2013028387公开了人工瓣膜的改进结构,包括支架和与支架结合的瓣膜组合体,支架可由丝编织而成,或通过管材切割而成,或采用上述两种的组合,其主要改进点在于瓣膜组合体包括两层稳定纤维,分别设置在支架内壁和支架外壁上。通过两层稳定纤维的设置,可以提高人工瓣膜的稳定性,延长人工瓣膜的使用寿命。然而,该专利虽然流入道采用了丝编织的方法,部分解决了由于支架轴向窜动、定位导致的瓣周漏问题。但是瓣周漏形成原因复杂,还需要对上述的技术方案做进一步的改进。
发明内容
基于以上的问题中的一个或多个,本发明提供一种二尖瓣瓣膜假体、三尖瓣瓣膜假体及其支架。
一种支架,用于支撑二尖瓣瓣膜假体或三尖瓣瓣膜假体,所述支架具有用于输送的收缩状态和用于部署的展开状态,所述支架沿轴向包括流入道、过渡区域和流出道,所述过渡区域的两端分别连接所述流入道和所述流出道;在所述展开状态下,所述流入道位于所述流出道的血流方向的上游,所述流入道沿所述支架的轴向,向远离所述过渡区域的方向延伸成喇叭状,所述流入道为由丝编织而成的网状结构,所述过渡区域和所述流出道为由管材切割而成的网状结构,其中,所述流入道的网状结构配置为,在所述支架被部署后的展开状态下,覆盖房室口或覆盖房室口后自瓣环向心房延伸覆盖至少部分心房。
在其中一个实施例中,所述流入道的网状结构包括多个第一网格,多个所述第一网格呈一排,且所述第一网格大小相等;或者,
多个所述第一网格呈多排,同一排中的第一网格大小相等,从与所述过渡区域邻接的一端至与所述过渡区域远离的一端,各排第一网格大小逐渐变大。
在其中一个实施例中,所述流入道的网状结构包括多个第一网格,至少部分第一网格的轴向高度与其余第一网格不一致。
在其中一个实施例中,多个所述第一网格呈一排,在所述展开状态下,与原生前瓣环处对应的部分所述第一网格的轴向高度高于原生后瓣环处对应的部分所述第一网格的轴向高度。
在其中一个实施例中,在所述展开状态下,所述流入道的远离所述过渡区域的端部的宽度为的范围30mm-65mm。
在其中一个实施例中,在所述展开状态下,所述过渡区域的最小宽度的范围为25mm至50mm,以能够贴合原生瓣环。
在其中一个实施例中,形成所述流入道的网状结构的丝中的至少部分丝与所述过渡区域通过编织工艺连接。
在其中一个实施例中,所述过渡区域包括多个第二网格,所述多个第二网 格以一排或多排布置,其中:
所述过渡区域在靠近所述流入道的端部的至少部分所述第二网格上开设连接孔,所述流入道的丝穿过至少部分所述连接孔后再形成与所述过渡区域相邻的所述第一网格;或者
所述流入道的丝缠绕所述过渡区域的靠近所述流入道的端部的至少部分所述第二网格后,再形成与所述过渡区域相邻的所述第一网格;或者
在所述过渡区域在靠近所述流入道的端部的至少部分所述第二网格上设置连接杆,所述连接杆向远离所述流入道的方向延伸,所述流入道的丝缠绕在所述连接杆上或缠绕在所述连接杆附近的所述第二网格上。
在其中一个实施例中,所述过渡区域包括多个第二网格,所述多个第二网格以一排或多排布置,其中:
所述过渡区域在靠近所述流入道的端部的至少部分所述第二网格的顶点附近开设有连接孔,所述流入道的丝穿过至少部分所述连接孔后再形成与所述过渡区域相邻的所述第一网格;或者
在所述过渡区域的靠近所述流入道的端部的至少部分所述第二网格的顶点附近,所述流入道的丝缠绕后再形成与所述过渡区域相邻的所述第一网格;或者
在所述过渡区域的靠近所述流入道的端部的至少部分所述第二网格的顶点附近设置连接杆,所述连接杆向远离所述流入道的方向延伸,所述流入道的丝缠绕在所述连接杆上或缠绕在所述连接杆附近的所述第二网格上。
在其中一个实施例中,至少部分形成流入道网状结构的丝与所述过渡区域通过焊接、铆接或螺纹连接方式连接。
在其中一个实施例中,所述流入道的网状结构包括多个第一网格,所述过渡区域的网状结构包括多个第二网格;
所述流入道在靠近所述过渡区域的至少部分所述第一网格的顶点附近,设置至少一环状连接部;所述过渡区域在靠近所述流入道的至少部分所述第二网格上设有连接孔,铆钉穿过所述环状连接部与对应的所述连接孔,以固定连接所述过渡区域与所述流入道。
在其中一个实施例中,所述流入道的网状结构包括多个第一网格,所述过渡区域的网状结构包括多个第二网格;
所述流入道在靠近所述过渡区域的至少部分所述第一网格的顶点附近,设有至少一环状连接部;所述过渡区域在靠近所述流入道的至少部分所述第二网格上开设有螺纹孔,螺钉穿过所述环状连接部与对应的所述螺纹孔,与所述第二网格螺纹连接,使所述过渡区域与所述流入道固定连接。
在其中一个实施例中,至少部分形成流入道网状结构的丝与所述过渡区域间接连接。
在其中一个实施例中,还包括连接构件,所述连接构件的一端固定在所述流入道上,另一端固定在所述过渡区域和/或所述流出道上。
在其中一个实施例中,所述流入道的网状结构包括多个第一网格,所述过渡区域的网状结构包括多个第二网格;
所述流入道在靠近所述过渡区域的至少部分所述第一网格的顶点附近,设置至少一环状连接部;所述过渡区域在靠近所述流入道的至少部分所述第二网格上开设有连接孔;
所述支架包括至少两个连接构件,每个所述连接构件的两端分别连接在所述环状连接部上和所述连接孔处。
在其中一个实施例中,所述流入道的网状结构包括多个第一网格,所述过渡区域的网状结构包括多个第二网格;所述连接构件为高分子材料组成的片状物,所述连接构件的一端固定在流入道上,另一端固定在过渡区域和/或流出道上。
在其中一个实施例中,所述流出道的网状结构包括多个第三网格,多个所述第三网格排成一排或多排,多个所述第三网格依次相连或间隔排布。
在其中一个实施例中,所述流出道和所述过渡区域为同一管材切割而成的一体成型的网状结构。
在其中一个实施例中,在所述展开状态下,所述过渡区域和所述流出道的轴向总高度为的范围1cm至3.5cm。
在其中一个实施例中,在所述展开状态下,所述流出道的远离所述过渡区 域的端部的位置不低于至少一个原生瓣叶游离缘。
在其中一个实施例中,在所述展开状态下,所述流出道的远离所述过渡区域的端部位于前瓣叶游离缘与前瓣环之间,且所述流出道的远离所述过渡区域的端部的位置靠近后瓣叶游离缘在轴向上位置。
在其中一个实施例中,还包括固定结构,所述固定结构位于所述过渡区域的外侧和/或所述流出道的外侧。
一种二尖瓣瓣膜假体,包括:
瓣膜组合体;以及
所述的支架,所述瓣膜组合体附着于所述支架上。
在其中一个实施例中,所述瓣膜组合体包括人工瓣叶和与所述人工瓣叶相连的裙边;所述人工瓣叶固定在所述过渡区域和所述流出道上;所述裙边固定在所述流入道和所述过渡区域上,或者所述裙边固定在所述流入道、所述过渡区域和所述流出道上。
一种三尖瓣瓣膜假体,包括:
瓣膜组合体;以及
所述的支架,所述瓣膜组合体附着于所述支架上。
在其中一个实施例中,所述瓣膜组合体包括人工瓣叶和与所述人工瓣叶相连的裙边;所述人工瓣叶固定在所述过渡区域和所述流出道上;所述裙边固定在所述流入道和所述过渡区域上,或者所述裙边固定在所述流入道、所述过渡区域和所述流出道上。
上述二尖瓣瓣膜假体、三尖瓣瓣膜假体及其支架,由于流入道采用丝编织方式制备,因此其径向刚度较小,其形态可以较好的适应原生二尖瓣环形态,降低对主动脉瓣的压迫和干涉,大幅度降低左室流出道阻塞风险。同时,在释放过程中,流入道的形态容易调整,适应支架直径变化,缓冲支架展开过程中的径向变形和轴向窜动,提高了释放稳定性。另外,由于流入道相较于流出道和/或过渡区域的刚度低,输送系统装载流入道的部分容易形成一定的折弯角度,有利于顺应人体血管环境,方便输送系统在人体中的运动。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为一实施例中二尖瓣瓣膜假体的立体图;
图2为又一实施例中二尖瓣瓣膜假体的支架的立体图;
图3为又一实施例中二尖瓣瓣膜假体的使用状态图;
图4为又一实施例中二尖瓣瓣膜假体的使用状态图;
图5为又一实施例中二尖瓣瓣膜假体的使用状态图;
图6a为又一实施例中二尖瓣瓣膜假体的流入道和过渡区域的连接示意图;
图6b为又一实施例中二尖瓣瓣膜假体的流入道和过渡区域的连接示意图;
图6c为又一实施例中二尖瓣瓣膜假体的流入道和过渡区域的连接示意图;
图7a为又一实施例中二尖瓣瓣膜假体的流入道和过渡区域的连接示意图;
图7b为又一实施例中二尖瓣瓣膜假体的流入道和过渡区域的连接示意图;
图8a为又一实施例中二尖瓣瓣膜假体的流入道和过渡区域的连接示意图;
图8b为又一实施例中二尖瓣瓣膜假体的流入道和过渡区域的连接示意图;
图9为又一实施例中二尖瓣瓣膜假体的支架的立体图;
图10a、图10b、图11a、图11b、图11c、图11d、图12a、图12b、图13、图14a、图14b、图14c和图15为图1所示二尖瓣瓣膜假体的装载过程示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的首选实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术 语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示,一实施方式的二尖瓣瓣膜假体10用于代替原生二尖瓣。二尖瓣瓣膜假体10包括支架100和瓣膜组合体200,瓣膜组合体200附着于支架100上,支架100用于支撑瓣膜组合体200。支架100具有用于输送的收缩状态和用于部署的展开状态。支架100沿轴向包括流入道110、过渡区域120和流出道130,过渡区域120的两端分别连接流入道110和流出道130。在展开状态下,流入道110位于流出道130的血流方向的上游,流入道110的径向刚度小于流出道130和/或过渡区域120的径向刚度。
在展开状态下,流入道110沿支架100的轴向,向远离过渡区域120的方向延伸成喇叭状。流入道110可以整体呈喇叭状,也可以是与过渡区域120连接的部分呈筒状,远离过渡区域120的部分呈喇叭状。喇叭状的结构容易与心房的内壁紧密贴合,使得二尖瓣瓣膜假体10在心脏内更加稳定。
流入道110为由丝编织而成的网状结构,过渡区域120和流出道130为由管材切割而成的网状结构。由丝编织而成的网状结构的径向刚度明显小于由管材切割而成的网状结构,由于流入道110的径向刚度较小,其形态可以较好的适应原生二尖瓣环形态,降低对主动脉瓣的压迫和干涉,大幅度降低左室流出道130阻塞风险。同时,在释放过程中,流入道110的形态容易调整,适应支架100直径变化,缓冲支架100展开过程中的径向变形和轴向窜动,提高了释放稳定性。另外,由于流入道110相较于流出道130和/或过渡区域120的刚度低,输送系统装载流入道110的部分容易形成一定的折弯角度,有利于顺应人体血管环境,方便输送系统在人体中的运动。
流入道110包括多个第一网格112。具体而言,多个第一网格112可以由一根或多根丝以Z字形排列形成,又或者多个第一网格112可以由一根或多根丝相互连接形成,连接方式可以是焊接、铆接或者编织等。上述丝为具有记忆性和生物相容性的材料制成,例如镍钛合金。
在一实施例中,流入道110在靠近过渡区域120处的横截面呈D字形或椭圆形。即在展开状态下,从流入道110的血液流入一端观测,流入道110窄处 呈现D字形或椭圆形。该形状可以适应房室口的形状,在呈D字形的实施例中,D字的竖直边靠近前瓣环。
在一实施例中,流入道110的网状结构包括多个第一网格112,在一实施例中,多个第一网格112呈一排,且第一网格112的大小可以相等。在又一实施例中,多个第一网格112呈多排,同一排中的第一网格112大小相等,从与过渡区域120邻接的一端至与过渡区域120远离的一端,各排第一网格112大小逐渐变大。在另一实施例中,至少部分第一网格112的轴向高度可以不一致。可以是某一排或多排第一网格112中的部分第一网格112轴向高度不一致,该部分第一网格112可以对应特定部位。参见图2,在一实施例中,多个第一网格112呈一排,在展开状态下,与原生二尖瓣前瓣环处相对应的部分第一网格112的轴向高度高于对应于原生二尖瓣后瓣环处的部分第一网格112的轴向高度。二尖瓣瓣膜假体10释放后,对应于原生二尖瓣前瓣环处流入道110的外边缘高于后瓣环处流入道110的外边缘,在二尖瓣前瓣环上方的左心房内面积较大,分担二尖瓣瓣膜假体10对左心房的压力,降低对主动脉瓣的压迫,从而降低左室流出道130阻塞风险。
在一实施例中,在展开状态下,流入道110的远离过渡区域120的端部的宽度的范围为30mm-65mm。流入道110的宽度需要大于原生二尖瓣环的直径,防止心脏舒张时二尖瓣瓣膜假体10掉入心室。在一实施例中,可以根据使用者的心脏大小选择合适尺寸的二尖瓣瓣膜假体10。
参见图3,在其中一个实施例中,流入道110覆盖左心房室口,流入道110远离过渡区域120的端部在展开状态下,不接触主动脉瓣结构与二尖瓣的帘幕,对主动脉瓣无接触。
参见图4在其中一个实施例中,作为可选项,流入道110覆盖房室口,且自二尖瓣环向左心房延伸,覆盖主动脉瓣与二尖瓣的帘幕结构并延伸至帘幕远端。由丝编织而成的流入道110为编织体结构,因此,流入道110的结构柔软,顺应性高,覆盖在主动脉瓣上时,可以适应原生主动脉瓣的解剖结构,降低对主动脉瓣的压迫。同时参见图5,流入道110结构覆盖房室口,且自二尖瓣环向左心房延伸,覆盖整个左心房。
再参见图1,过渡区域120的两端分别连接在流入道110的血液流出的一端和流出道130的血液流入的一端,连接方式可以是直接连接,也可以是间接连接。过渡区域120包括多个第二网格122形成的网状结构,且过渡区域120为由具有记忆特性和生物相容性的材质的管材切割而成。例如,过渡区域120可以由冷源激光切割形成。
在一实施例中,在展开状态下,为了防止瓣周漏,过渡区域120的最小宽度的范围为25mm至50mm,用于贴合原生二尖瓣瓣环,过渡区域120的最小直径一般不低于原生二尖瓣瓣环的直径。
在一实施例中,形成流入道110的网状结构的丝中的至少部分丝与过渡区域120通过编织工艺连接。参见图6a,在一实施例中,过渡区域120在靠近流入道110的端部上的第二网格122的顶点124附近开设有连接孔126,流入道110的丝穿过连接孔126后再形成与过渡区域120相邻的第一网格112。具体的,可以在制造过程中,用于编织流入道110的丝以Z字形穿过连接孔126,从而形成流入道110的第一网格112。本领域人员应理解,连接孔126的位置不限于顶点124附近,只要在过渡区域120在靠近流入道110的端部上的第二网格122任一处即可。可以在所有靠近流入道110的端部上的第二网格122的顶点124附近开设有连接孔126,也可以仅在部分靠近流入道110的端部上的第二网格122的顶点124附近开设有连接孔126。流入道110的丝可以穿过全部连接孔126,也可以仅穿过部分连接孔126。
在一实施例中,可以省略连接孔126,流入道110的丝直接与过渡区域120的第二网格122连接。参见图6b,在一实施例中,在过渡区域120的靠近流入道110的端部上的第二网格122的顶点124附近,流入道110的丝缠绕至少一圈后再形成与过渡区域120相邻的第一网格112。流入道110的丝可以缠绕一圈或多圈。本领域人员应理解,流入道110的丝与第二网格122连接的位置不限于连接流入道110的端部上的第二网格122的顶点124附近,流入道110的丝也可以连接于第二网格122其余位置,例如其余的顶点附近,更具体,与相邻的第二网格122连接的顶点附近。流入道110的丝缠绕可以缠绕在所有靠近流入道110的端部上的第二网格122的顶点124附近,也可以仅仅缠绕在部分靠 近流入道110的端部上的第二网格122的顶点124附近。
为了防止丝在与第二网格122的顶点124附近的连接部位发生串动,在一实施例中,可以在第二网格122的顶点124附近设有定位结构,例如连接杆128。参见图6c,过渡区域120在靠近流入道110的端部上的第二网格122的顶点124附近设置一根连接杆128,在其他实施例中,也可以设置多根。连接杆128向远离流入道110的方向延伸,流入道110的丝缠绕在连接杆128上或缠绕在连接杆128附近的第二网格122上。本领域人员应理解,定位结构的位置不限于顶点124附近,只要在过渡区域120在靠近流入道110的端部上的第二网格122任一处即可。可以在所有过渡区域120的靠近流入道110的端部上的第二网格122设置连接杆128,也可以仅仅在部分靠近流入道110的端部上的第二网格122附近设置连接杆128。
在其他实施例中,流入道110可以通过焊接、铆接、螺纹连接等方式连接到过渡区域120上。参见图7a,在一实施例中,流入道110在靠近过渡区域120的第一网格112的顶点附近,设有至少一环状连接部114。过渡区域120在靠近流入道110的至少部分第二网格122上设有连接孔126,在一实施例中,连接孔126可以设置在靠近第二网格122的顶点124附近。铆钉142穿过环状连接部114与对应的连接孔126固定连接,以固定连接过渡区域120与流入道110。参见图7b,在一实施例中,过渡区域120在靠近流入道110的至少部分第二网格122上开设有具有内螺纹的连接孔126,即螺纹孔,在一实施例中,螺纹孔可以设置在靠近第二网格122的顶点124附近。螺钉144穿过环状连接部114与对应的螺纹孔,与第二网格122螺纹连接,使支架100过渡区域120与流入道110固定连接。同样,连接孔126的位置不限于顶点124附近。
流入道110也可以与过渡区域120间接连接,两者可以由其他连接构件连接。参见图8a,在一实施例中,连接构件146为由生物相容性的高分子材料组成的片状物,例如片状物为裙边,连接构件146的一端固定在流入道110上,另一端固定在过渡区域120和/或流出道130上,固定方式可以是缝合,也可以是粘接。参见图8b,在一实施例中,流入道110在靠近过渡区域120的至少部分第一网格112的顶点附近,设有至少一环状连接部114。过渡区域120在靠近 流入道110的至少部分第二网格122上开设有连接孔126,在一实施例中,连接孔126可以设置在靠近第二网格122的顶点124附近。同样,连接孔126的位置不限于顶点124附近。所述支架至少有两个连接构件148,每个连接构件148的两端分别连接在环状连接部114上和连接孔126处。
再参见图1,在其中一个实施例中,瓣膜组合体200包括人工瓣叶210和与人工瓣叶210相连的裙边220。人工瓣叶210固定在过渡区域120和流出道130上。裙边220固定在流入道110和过渡区域120上,或者裙边220固定在流入道110、过渡区域120和流出道130上,固定方式可以是缝合,也可以是胶接。瓣膜组合体200中人工瓣叶210为同源性或异源性生物材料制备,例如猪心包、牛心包等;裙边220可以由生物相容的材料制成,例如经过处理的动物心包或生物相容的高分子材料,如PET(Polyethylene terephthalate,聚对苯二甲酸乙二醇酯)、PE(Polyethylene,聚乙烯)、PTFE(Polytetrafluoroethylene,聚四氟乙烯)等。
流出道130的端部与过渡区域120的血液流出的端部连接。流出道130可以呈球形、卵形、柱形、锥形的曲面状。流出道130的网状结构包括多个第三网格132,流出道130包括为由具有记忆特性和生物相容性的材质的管材切割而成的网状结构。在一实施例中,流出道130可以由冷源激光切割形成。在一实施例中,流出道130和过渡区域120可以为同一管材切割而成的一体成型的网状结构,方便加工,且二者连接牢靠。
在一实施例中,多个第三网格132排成一排或多排,多个第三网格132依次相连或间隔排布。再参见图1,在一实施例中,多个第三网格132排成一排,且多个第三网格132依次相连,沿周向均匀分布。参见图9,在一实施例中,多个第三网格132排成一排,第三网格132彼此不相连,呈周向间隔分布状。
在一实施例中,过渡区域120与流出道130作为二尖瓣瓣膜假体10的瓣下结构,在展开状态下,过渡区域120和流出道130的轴向总高度的范围为1cm至3.5cm。在一实施例中,流出道130的远离过渡区域120的端部的位置不低于至少一个原生二尖瓣瓣叶游离缘。再参见图3,流出道130的远离过渡区域120的端部位于二尖瓣前瓣叶游离缘与二尖瓣前瓣环之间,且流出道130的远离过 渡区域120的端部的位置靠近后瓣叶游离缘在轴向上位置。由于二尖瓣腱索由心肌壁与乳头肌发出至瓣叶游离缘牵拉瓣叶,其对维持左室形态有着重要功能,腱索断裂可能引起左室重构,也可能导致瓣叶缺乏约束而自由运动,诱发血液动力学异常。因此,二尖瓣瓣膜假体10的瓣下结构不宜过长而干涉腱索功能,上述实施例的二尖瓣瓣膜假体10可以大幅度降低左心室流出道130阻塞风险。
过渡区域120与流出道130为人工瓣叶210固定区域,其结构尺寸要求满足人工瓣叶210需求,即过渡区域120支架100内径小于或等于人工瓣叶210对合后直径,过渡区域120与流出道130总高度大于或等于人工瓣叶210缝合高度。
过渡区域120和流出道130相较于流入道110的径向刚度较强。心室收缩时,人工瓣叶210关闭,过渡区域120与流出道130的径向刚度强,可承受人工瓣叶210的牵拉力而不发生明显变形,降低由于支架100变形引起人工瓣叶210无法对合而产生瓣周漏。
二尖瓣作为左心房到左心室的单向阀,其结构包括与主动脉瓣的瓣环延伸组织及心肌壁相连的二尖瓣瓣环,两个不对称瓣叶,牵拉瓣叶的腱索,和附着于心肌壁上的乳头肌。二尖瓣结构复杂,经导管植入的二尖瓣瓣膜假体10一般需要增加固定结构,固定结构位于过渡区域120的外侧和/或者流出道130的外侧,从而加强二尖瓣瓣膜假体10与原生二尖瓣瓣膜的固定连接关系。本发明对固定结构的形状、位置没有特别的限制,可以采用本领域任一现有或者将来会出现的技术。例如在过渡区域120与流出道130结合的部位设置一个或多个锚,又或者在流出道130的第三网格132之间设置一个或多个锚等。
在一实施例中,上述实施例中的二尖瓣瓣膜假体10的装载过程如下:
参见图10a和图10b,二尖瓣瓣膜假体10在装入输送系统20前,支架100处于展开状态,周向直径大而轴向高度低。二尖瓣瓣膜假体10装入输送系统20后,支架100处于收缩状态,沿周向压缩,直径降低,轴向长度增大。装载二尖瓣瓣膜假体10进入输送系统20的过程,可以借助外界工具,在特定的环境中使支架100由展开状态变为收缩状态,例如将二尖瓣瓣膜假体10置于一种周 向尺寸渐缩的圆锥面的辅助装置中,通过该辅助装置压缩二尖瓣瓣膜假体10的周向尺寸,直至二尖瓣瓣膜假体10可装入输送系统20中。
根据输送系统20的入路方式不同,支架100与输送系统20的连接位置可根据具体情况调整。在一实施例中,参见图11a至图11d,支架100可匹配经左心房入路输送系统20、经心尖入路输送系统20、经房间隔入路输送系统20、经主动脉入路的输送系统20。对于经左心房入路与经房间隔入路的植入方式,支架100与输送系统20的连接点设置为流入道110的远离过渡区域120的一端,而经心尖入路与经主动脉入路的输送系统20,支架100与输送系统20的连接点设置为流出道130的远离过渡区域120的一端。
如图12a、图12b所示,由于流入道110为编织方式制备,支架100压缩后流入道110的刚度较低。支架100装载到输送系统20中,输送系统20装载流入道110的部分相较于装载流出道130和过渡区域120的部分可形成一定的折弯角度,使输送系统20在植入过程中更好顺应人体的血管及心脏结构。
如图13所示,采用经房间隔入路,输送系统20对应于支架100的流出道130和过渡区域120的结构穿过房间隔后,控制输送系统20的对应流入道110的管段相较于对应流出道130和过渡区域120的管段形成一定折弯角度,随后输送系统20进行其他的入路操作。输送系统20穿房间隔过程中,该操作可以尽量避免由于输送系统20装载支架100的管段较长,左心房相对较小而导致左心房壁损伤或输送系统20运动卡滞。
在释放过程中,支架100急速膨胀,流入道110为由丝编织而成的网状结构,可作为支架100急速膨胀的缓冲件。二尖瓣瓣膜假体10的瓣下结构总高度较低以避免支架100结构损伤二尖瓣瓣下结构。二尖瓣瓣膜假体10直径较大,支架100释放过程中径向变形大,释放末期容易出现二尖瓣瓣膜假体10相对于原生瓣膜的轴向窜动大的问题,而本发明的二尖瓣瓣膜假体10在释放后期,丝编织而成的网状结构通过自身形态调整,适应支架100直径变化,缓冲支架100膨胀过程中的径向变形和轴向窜动,增强释放稳定性。
具体而言,参见图14a至图14c,图14a至图14c示出了二尖瓣瓣膜假体10经左心房植入瓣膜或经房间隔植入瓣膜释放的过程,图14a中所示为流出道130 部分、过渡区域120先释放,继续释放支架100,则流入道110部分开始变形,流出道130和过渡区域120持续膨胀,流入道110部分持续适应瓣下结构径向尺寸变化。如图14b所示,继续释放流入道110则流出道130和过渡区域120可提前进入完全膨胀状态,人工瓣叶210开始工作。参见图14c,人工瓣叶210开启工作后,持续释放流入道110至人工瓣膜完全放出。
如图15所示,二尖瓣瓣膜假体10植入后,支架100的流入道110紧贴在心房与心室的连接处的房室口,覆盖原生二尖瓣瓣环。流入道110从输送系统20中放出后沿着二尖瓣瓣膜的径向扩张,覆盖在房室口处,裙边220遮蔽左室流入道110,防止心脏收缩时血液沿支架100周向反流入左心房内。二尖瓣前瓣叶是主动脉瓣的纤维延伸,与后瓣叶形成左室流入道,而与心间隔对应形成左室流出道。因此,植入二尖瓣瓣膜假体10后,通常左心室流出道具有阻塞风险。本发明的二尖瓣瓣膜假体10流入道110径向刚度较小,例如在流入道110由丝编织而成的实施例中,整体柔软,能够良好适应二尖瓣环的马鞍结构,降低对主动脉瓣的压迫和干涉,大幅度降低左心室流出道阻塞风险,同时保证流入道110工作正常。
三尖瓣作为右心脏的房室瓣,其结构与二尖瓣类似,也包含瓣叶、瓣环、腱索、乳头肌及心肌。用于代替原生二尖瓣的二尖瓣瓣膜假体10也可以应用于代替原生三尖瓣。具体的,在一实施例中,还提供一种三尖瓣瓣膜假体,其结构与上述二尖瓣瓣膜假体10的结构相同。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (26)

  1. 一种支架,用于支撑二尖瓣瓣膜假体或三尖瓣瓣膜假体,所述支架具有用于输送的收缩状态和用于部署的展开状态,其特征在于,所述支架沿轴向包括流入道、过渡区域和流出道,所述过渡区域的两端分别连接所述流入道和所述流出道;在所述展开状态下,所述流入道位于所述流出道的血流方向的上游,所述流入道沿所述支架的轴向,向远离所述过渡区域的方向延伸成喇叭状,所述流入道为由丝编织而成的网状结构,所述过渡区域和所述流出道为由管材切割而成的网状结构,其中,所述流入道的网状结构配置为,在所述支架被部署后的展开状态下,覆盖房室口或覆盖房室口后自瓣环向心房延伸覆盖至少部分心房。
  2. 根据权利要求1所述的支架,其特征在于,所述流入道的网状结构包括多个第一网格,多个所述第一网格呈一排,且所述第一网格大小相等;或者,
    多个所述第一网格呈多排,同一排中的第一网格大小相等,从与所述过渡区域邻接的一端至与所述过渡区域远离的一端,各排第一网格大小逐渐变大。
  3. 根据权利要求1所述的支架,其特征在于,所述流入道的网状结构包括多个第一网格,至少部分第一网格的轴向高度与其余第一网格不一致。
  4. 根据权利要求3所述的支架,其特征在于,多个所述第一网格呈一排,在所述展开状态下,与原生前瓣环处对应的部分所述第一网格的轴向高度高于与原生后瓣环处对应的部分所述第一网格的轴向高度。
  5. 根据权利要求1所述的支架,其特征在于,在所述展开状态下,所述流入道的远离所述过渡区域的端部的宽度的范围为30mm-65mm。
  6. 根据权利要求1所述的支架,其特征在于,在所述展开状态下,所述过渡区域的最小宽度的范围为25mm至50mm,以能够贴合原生瓣环。
  7. 根据权利要求1所述的支架,其特征在于,形成所述流入道的网状结构的丝中的至少部分丝与所述过渡区域通过编织工艺连接。
  8. 根据权利要求7所述的支架,其特征在于,
    所述过渡区域包括多个第二网格,所述多个第二网格以一排或多排布置, 其中:
    所述过渡区域在靠近所述流入道的端部的至少部分所述第二网格上开设连接孔,所述流入道的丝穿过至少部分所述连接孔后再形成与所述过渡区域相邻的所述第一网格;或者
    所述流入道的丝缠绕所述过渡区域的靠近所述流入道的端部的至少部分所述第二网格后,再形成与所述过渡区域相邻的所述第一网格;或者
    在所述过渡区域在靠近所述流入道的端部的至少部分所述第二网格上设置连接杆,所述连接杆向远离所述流入道的方向延伸,所述流入道的丝缠绕在所述连接杆上或缠绕在所述连接杆附近的所述第二网格上。
  9. 根据权利要求7所述的支架,其特征在于,所述过渡区域包括多个第二网格,所述多个第二网格以一排或多排布置,其中:
    所述过渡区域在靠近所述流入道的端部的至少部分所述第二网格的顶点附近开设有连接孔,所述流入道的丝穿过至少部分所述连接孔后再形成与所述过渡区域相邻的所述第一网格;或者
    在所述过渡区域的靠近所述流入道的端部的至少部分所述第二网格的顶点附近,所述流入道的丝缠绕至少一圈后再形成与所述过渡区域相邻的所述第一网格;或者
    在所述过渡区域的靠近所述流入道的端部的至少部分所述第二网格的顶点附近设置连接杆,所述连接杆向远离所述流入道的方向延伸,所述流入道的丝缠绕在所述连接杆上或缠绕在所述连接杆附近的所述第二网格上。
  10. 根据权利要求1所述的支架,其特征在于,至少部分形成流入道网状结构的丝与所述过渡区域通过焊接、铆接或螺纹连接方式连接。
  11. 根据权利要求10所述的支架,其特征在于,所述流入道的网状结构包括多个第一网格,所述过渡区域的网状结构包括多个第二网格;
    所述流入道在靠近所述过渡区域的至少部分所述第一网格的顶点附近,设有至少一环状连接部;所述过渡区域在靠近所述流入道的至少部分所述第二网格上设有连接孔,铆钉穿过所述环状连接部与对应的所述连接孔,以固定连接所述过渡区域与所述流入道。
  12. 根据权利要求10所述的支架,其特征在于,所述流入道的网状结构包括多个第一网格,所述过渡区域的网状结构包括多个第二网格;
    所述流入道在靠近所述过渡区域的至少部分所述第一网格的顶点附近,设有至少一环状连接部;所述过渡区域在靠近所述流入道的至少部分所述第二网格上开设有螺纹孔,螺钉穿过所述环状连接部与对应的所述螺纹孔,与所述第二网格螺纹连接,使所述过渡区域与所述流入道固定连接。
  13. 根据权利要求1所述的支架,其特征在于,至少部分形成流入道网状结构的丝与所述过渡区域间接连接。
  14. 根据权利要求13所述的支架,其特征在于,还包括连接构件,所述连接构件的一端固定在所述流入道上,另一端固定在所述过渡区域和/或所述流出道上。
  15. 根据权利要求14所述的支架,其特征在于,所述流入道的网状结构包括多个第一网格,所述过渡区域的网状结构包括多个第二网格;
    所述流入道在靠近所述过渡区域的至少部分所述第一网格的顶点附近,设有至少一环状连接部;所述过渡区域在靠近所述流入道的至少部分所述第二网格上开设有连接孔;
    所述支架包括至少两个连接构件,每个所述连接构件的两端分别连接在所述环状连接部上和所述连接孔处。
  16. 根据权利要求14所述的支架,其特征在于,所述流入道的网状结构包括多个第一网格,所述过渡区域的网状结构包括多个第二网格;所述连接构件为高分子材料组成的片状物,所述连接构件的一端固定在流入道上,另一端固定在过渡区域和/或流出道上。
  17. 根据权利要求1所述的支架,其特征在于,所述流出道的网状结构包括多个第三网格,多个所述第三网格排成一排或多排,多个所述第三网格依次相连或间隔排布。
  18. 根据权利要求1所述的支架,其特征在于,所述流出道和所述过渡区域为同一管材切割而成的一体成型的网状结构。
  19. 根据权利要求1所述的支架,其特征在于,在所述展开状态下,所述 过渡区域和所述流出道的轴向总高度的范围为1cm至3.5cm。
  20. 根据权利要求1所述的支架,其特征在于,在所述支架被部署后的展开状态下,所述流出道的远离所述过渡区域的端部的位置不低于至少一个原生瓣叶游离缘。
  21. 根据权利要求20所述的支架,其特征在于,在所述支架被部署后的展开状态下,所述流出道的远离所述过渡区域的端部位于前瓣叶游离缘与前瓣环之间,且所述流出道的远离所述过渡区域的端部的位置靠近后瓣叶游离缘在轴向上位置。
  22. 根据权利要求1所述的支架,其特征在于,还包括固定结构,所述固定结构位于所述过渡区域的外侧和/或所述流出道的外侧。
  23. 一种二尖瓣瓣膜假体,其特征在于,包括:
    瓣膜组合体;以及
    如权利要求1~22中任一项所述的支架,所述瓣膜组合体附着于所述支架上。
  24. 根据权利要求23所述的二尖瓣瓣膜假体,其特征在于,所述瓣膜组合体包括人工瓣叶和与所述人工瓣叶相连的裙边;所述人工瓣叶固定在所述过渡区域和所述流出道上;所述裙边固定在所述流入道和所述过渡区域上,或者所述裙边固定在所述流入道、所述过渡区域和所述流出道上。
  25. 一种三尖瓣瓣膜假体,其特征在于,包括:
    瓣膜组合体;以及
    如权利要求1~22中任一项所述的支架,所述瓣膜组合体附着于所述支架上。
  26. 根据权利要求25所述的三尖瓣瓣膜假体,其特征在于,所述瓣膜组合体包括人工瓣叶和与所述人工瓣叶相连的裙边;所述人工瓣叶固定在所述过渡区域和所述流出道上;所述裙边固定在所述流入道和所述过渡区域上,或者所述裙边固定在所述流入道、所述过渡区域和所述流出道上。
PCT/CN2018/090191 2017-06-09 2018-06-07 二尖瓣瓣膜假体、三尖瓣瓣膜假体及其支架 WO2018223996A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/619,626 US11185410B2 (en) 2017-06-09 2018-06-07 Bicuspid valve prosthesis, tricuspid valve prosthesis, and stent therefor
EP18812866.4A EP3636223B1 (en) 2017-06-09 2018-06-07 Bicuspid valve prosthesis, tricuspid valve prosthesis, and stent therefor
KR1020197038346A KR102342242B1 (ko) 2017-06-09 2018-06-07 인공 이첨판막, 인공 삼첨판막 및 그것의 스텐트
JP2019567717A JP6987890B2 (ja) 2017-06-09 2018-06-07 人工二尖弁、人工三尖弁及びそれらのステント

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710434531.5 2017-06-09
CN201710434531.5A CN109009568B (zh) 2017-06-09 2017-06-09 二尖瓣瓣膜假体、三尖瓣瓣膜假体及其支架

Publications (1)

Publication Number Publication Date
WO2018223996A1 true WO2018223996A1 (zh) 2018-12-13

Family

ID=64566451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090191 WO2018223996A1 (zh) 2017-06-09 2018-06-07 二尖瓣瓣膜假体、三尖瓣瓣膜假体及其支架

Country Status (6)

Country Link
US (1) US11185410B2 (zh)
EP (1) EP3636223B1 (zh)
JP (1) JP6987890B2 (zh)
KR (1) KR102342242B1 (zh)
CN (1) CN109009568B (zh)
WO (1) WO2018223996A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3636223B1 (en) 2017-06-09 2023-02-22 Shanghai MicroPort CardioFlow Medtech Co., Ltd. Bicuspid valve prosthesis, tricuspid valve prosthesis, and stent therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111195166A (zh) * 2020-01-14 2020-05-26 启晨(上海)医疗器械有限公司 一种可编织的心脏瓣膜装置及其制作方法、使用方法
CN112402058A (zh) * 2020-10-12 2021-02-26 金仕生物科技(常熟)有限公司 介入二尖瓣瓣膜支架

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817126A (en) * 1997-03-17 1998-10-06 Surface Genesis, Inc. Compound stent
WO2001035864A1 (en) * 1999-11-16 2001-05-25 Boston Scientific Limited Multi-section filamentary endoluminal stent
US20100049291A1 (en) * 2003-08-20 2010-02-25 Boston Scientific Scimed, Inc. Stent with improved resistance to migration
WO2013028387A2 (en) 2011-08-11 2013-02-28 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
US20130172978A1 (en) * 2011-12-16 2013-07-04 Tendyne Holdings Inc. Tethers for Prosthetic Mitral Valve
CN103228232A (zh) * 2010-09-27 2013-07-31 爱德华兹生命科学公司 具有柔性连合的人工心瓣框架
CN105581858A (zh) * 2015-12-15 2016-05-18 先健科技(深圳)有限公司 人工心脏瓣膜支架及人工心脏瓣膜
CN205612592U (zh) * 2016-03-18 2016-10-05 唯强医疗科技(上海)有限公司 一种主动脉裸支架及主动脉夹层支架
CN106456325A (zh) * 2014-02-28 2017-02-22 高品质生活简化股份公司 经导管瓣膜假体

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3300695B1 (en) 2009-12-08 2023-05-24 Avalon Medical Ltd. Device and system for transcatheter mitral valve replacement
EP2563289B1 (en) * 2010-04-30 2017-08-09 Boston Scientific Scimed, Inc. Duodenal metabolic stent
WO2013021374A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
WO2013021375A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Percutaneous mitral valve replacement and sealing
EA201400478A1 (ru) 2011-10-19 2014-10-30 Твелв, Инк. Устройства, системы и способы протезирования сердечного клапана
WO2013103612A1 (en) * 2012-01-04 2013-07-11 Tendyne Holdings, Inc. Improved multi-component cuff designs for transcatheter mitral valve replacement, subvalvular sealing apparatus for transcatheter mitral valves and wire framed leaflet assembly
WO2013175468A2 (en) * 2012-05-20 2013-11-28 Tel Hashomer Medical Research Infrastructure And Services Ltd. Prosthetic mitral valve
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US9629735B2 (en) * 2012-11-16 2017-04-25 W. L. Gore & Associates, Inc. Flexible endoluminal device
US9439763B2 (en) 2013-02-04 2016-09-13 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
CN104000672B (zh) * 2013-02-25 2016-06-15 上海微创心通医疗科技有限公司 心脏瓣膜假体
KR20220104302A (ko) * 2013-03-15 2022-07-26 네비게이트 카디악 스트럭쳐스, 인크. 카테터 안내된 치환 판막 장치 및 방법
CN104173121B (zh) 2013-05-27 2016-05-25 上海微创心通医疗科技有限公司 用于输送植入体的电动手柄及输送系统
CA2914856C (en) 2013-06-25 2021-03-09 Chad Perrin Thrombus management and structural compliance features for prosthetic heart valves
US20150005874A1 (en) * 2013-06-27 2015-01-01 Tendyne Holdings, Inc. Atrial Thrombogenic Sealing Pockets for Prosthetic Mitral Valves
US10098734B2 (en) * 2013-12-05 2018-10-16 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US10500042B2 (en) * 2014-05-22 2019-12-10 St. Jude Medical, Cardiology Division, Inc. Stents with anchoring sections
FR3021208B1 (fr) * 2014-05-23 2021-03-12 Thomas Modine Prothese de valve cardiaque mitrale ou tricuspide
WO2016083551A1 (en) 2014-11-26 2016-06-02 Konstantinos Spargias Transcatheter prosthetic heart valve and delivery system
US10869755B2 (en) * 2014-12-09 2020-12-22 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
CA2972966C (en) 2015-01-07 2023-01-10 Tendyne Holdings, Inc. Prosthetic mitral valves and apparatus and methods for delivery of same
EP3273911A1 (en) 2015-03-24 2018-01-31 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
US10092400B2 (en) 2015-06-23 2018-10-09 Edwards Lifesciences Cardiaq Llc Systems and methods for anchoring and sealing a prosthetic heart valve
CN105520792B (zh) * 2016-02-02 2019-01-04 上海纽脉医疗科技有限公司 一种d形介入式人工心脏瓣膜
EP3454787A1 (en) 2016-05-12 2019-03-20 St. Jude Medical, Cardiology Division, Inc. Mitral heart valve replacement
CN109009568B (zh) 2017-06-09 2023-10-31 上海微创心通医疗科技有限公司 二尖瓣瓣膜假体、三尖瓣瓣膜假体及其支架

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817126A (en) * 1997-03-17 1998-10-06 Surface Genesis, Inc. Compound stent
WO2001035864A1 (en) * 1999-11-16 2001-05-25 Boston Scientific Limited Multi-section filamentary endoluminal stent
US20100049291A1 (en) * 2003-08-20 2010-02-25 Boston Scientific Scimed, Inc. Stent with improved resistance to migration
CN103228232A (zh) * 2010-09-27 2013-07-31 爱德华兹生命科学公司 具有柔性连合的人工心瓣框架
WO2013028387A2 (en) 2011-08-11 2013-02-28 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
US20130172978A1 (en) * 2011-12-16 2013-07-04 Tendyne Holdings Inc. Tethers for Prosthetic Mitral Valve
CN106456325A (zh) * 2014-02-28 2017-02-22 高品质生活简化股份公司 经导管瓣膜假体
CN105581858A (zh) * 2015-12-15 2016-05-18 先健科技(深圳)有限公司 人工心脏瓣膜支架及人工心脏瓣膜
CN205612592U (zh) * 2016-03-18 2016-10-05 唯强医疗科技(上海)有限公司 一种主动脉裸支架及主动脉夹层支架

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3636223B1 (en) 2017-06-09 2023-02-22 Shanghai MicroPort CardioFlow Medtech Co., Ltd. Bicuspid valve prosthesis, tricuspid valve prosthesis, and stent therefor

Also Published As

Publication number Publication date
EP3636223A4 (en) 2020-05-06
CN109009568B (zh) 2023-10-31
US11185410B2 (en) 2021-11-30
KR102342242B1 (ko) 2021-12-23
EP3636223B1 (en) 2023-02-22
EP3636223A1 (en) 2020-04-15
KR20200015592A (ko) 2020-02-12
JP6987890B2 (ja) 2022-01-05
US20200138572A1 (en) 2020-05-07
CN109009568A (zh) 2018-12-18
JP2020522358A (ja) 2020-07-30

Similar Documents

Publication Publication Date Title
US11364117B2 (en) Braid connections for prosthetic heart valves
US10813748B2 (en) Transcatheter valve replacement
US11759318B2 (en) Multi-component designs for heart valve retrieval device, sealing structures and stent assembly
US10779935B2 (en) Cardiac stent-valve and delivery device for such a valve
WO2018077144A1 (zh) 一种通过室间隔固定的心脏瓣膜假体及其输送和释放方法
WO2019052305A1 (zh) 一种瓣膜支架和瓣膜假体
WO2018223996A1 (zh) 二尖瓣瓣膜假体、三尖瓣瓣膜假体及其支架
CN111714250A (zh) 一种心脏瓣膜支架及其假体
WO2019128583A1 (zh) 心脏瓣膜假体及其支架
CN207804429U (zh) 二尖瓣瓣膜假体、三尖瓣瓣膜假体及其支架
CN112022439A (zh) 一种人工心脏瓣膜
CN111110403A (zh) 一种带锚定环的心脏瓣膜装置及其使用方法
CN212382790U (zh) 一种带锚定环的心脏瓣膜装置
CN215688788U (zh) 瓣膜假体和瓣膜假体系统
CN212788787U (zh) 一种人工心脏瓣膜
US20230404750A1 (en) Fabric Suture Valve Suspension System
US20220110746A1 (en) Stent of aortic valve
CN113616384A (zh) 一种带有连接部件的瓣膜假体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18812866

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567717

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197038346

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018812866

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018812866

Country of ref document: EP

Effective date: 20200109