WO2018223649A1 - 超密集网络udn中路由重建的方法及微基站 - Google Patents

超密集网络udn中路由重建的方法及微基站 Download PDF

Info

Publication number
WO2018223649A1
WO2018223649A1 PCT/CN2017/116100 CN2017116100W WO2018223649A1 WO 2018223649 A1 WO2018223649 A1 WO 2018223649A1 CN 2017116100 W CN2017116100 W CN 2017116100W WO 2018223649 A1 WO2018223649 A1 WO 2018223649A1
Authority
WO
WIPO (PCT)
Prior art keywords
routing node
base station
micro base
message
udn
Prior art date
Application number
PCT/CN2017/116100
Other languages
English (en)
French (fr)
Inventor
张传欣
刘宏举
马路娟
Original Assignee
海信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海信集团有限公司 filed Critical 海信集团有限公司
Publication of WO2018223649A1 publication Critical patent/WO2018223649A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • H04W40/14Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality based on stability

Definitions

  • the present invention relates to the field of ultra-dense network technologies, and in particular, to a method and a micro base station for route reconstruction in an ultra-dense network UDN.
  • UDN Super Dense Network
  • 5G 5-Generation, 5th Generation Mobile Communication Technology
  • UDN can greatly reduce the distance of user access by deploying wireless access points.
  • Increasing user throughput and regional throughput (bps/km2) are key technologies to meet the capacity requirements of 5G systems.
  • the wireless backhaul path detection refers to performing certain measurement and information collection processing on the link condition and transmission condition of the current wireless backhaul path, and forming a state assessment of the current wireless link.
  • Periodic measurement and reporting is a basic process. Each hop path continuously measures and evaluates the quality and effect of the transmission link, and summarizes and reports it to the centralized control node.
  • the event-triggered notification process means that once it occurs, Recovery error, such as a radio link failure on a certain link, the node on the link needs to notify the failure, for example, to the centralized control node, to facilitate the centralized control node to the wireless backhaul link. Update and reconfigure.
  • Trigger-type detection is an unrecoverable error that occurs, and then re-reported to the centralized control node for path re-selection and optimization, which will also bring about data transmission interruption and delay.
  • the present application provides a method and a micro base station for route reestablishment in an ultra-dense network UDN that overcomes the above problems or at least partially solves the above problems.
  • the embodiment of the present application provides a method for route reestablishment in an ultra-dense network UDN, which is applied to an ultra-dense network UDN, and the method includes:
  • the first routing node detects that its own power is less than a preset threshold
  • the first routing node sends a message to the second routing node downstream of the channel, so that the second routing node finds a path bypassing the first routing node to establish a new channel route.
  • the first routing node sends a message to the second routing node downstream of the channel, so that the second downstream routing node searches for a path bypassing the first routing node to establish a new channel route, including:
  • the message further carries hop count information, where the hop count information is used to limit a search range of the second routing node when searching for the new channel route.
  • the method further includes:
  • the first routing node determines a first distance between the first routing node and the macro base station in the UDN, and a second distance from the most remote base station in the UDN;
  • the first routing node notifies the macro base station to find a path bypassing the first routing node to establish a new channel route
  • the first routing node sends the message to the second routing node.
  • the method further includes:
  • the first routing node If the time when the break occurs is greater than a preset time threshold, the first routing node notifies the macro base station in the UDN to find a path bypassing the first routing node to establish a new channel route;
  • the first routing node sends the message to the downstream second routing node.
  • the embodiment of the present application further provides a micro base station, which is applied to an ultra-dense network UDN, and the micro base station includes:
  • a memory for storing instructions
  • a processor coupled to the memory, the processor executing an instruction stored in the memory to: monitor that a power of a first micro base station where it is located is less than a preset threshold;
  • the processor sends, to the second micro base station downstream of the channel, a message including address information of the third micro base station upstream of the first micro base station, so that the new channel route established by the second micro base station includes the The third micro base station.
  • the message further carries hop count information, where the hop count information is used to limit a search range of the second micro base station when searching for the new channel route.
  • processor executing the instructions stored in the memory further implements:
  • the processor executing the instruction stored in the memory further implements: acquiring a time when a link between the first micro base station and the second micro base station and/or the third micro base station is broken;
  • FIG. 1 is a flowchart of a method for reestablishing routes in a super-dense network UDN according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a node link interruption repair process according to an embodiment of the present application
  • FIG. 7 is a structural block diagram of an apparatus for route reestablishment in a dense network UDN according to an embodiment of the present application.
  • the embodiment of the present application provides a method for reestablishing a route in a super-dense network UDN, which can be applied to an ultra-dense network UDN, where the UDN includes a macro base station, a micro base station, and a terminal device that accesses the macro base station or the micro base station, such as As shown in Figure 1, the method includes the following steps:
  • the first routing node detects that its own power is less than a preset threshold.
  • the routing node involved in the embodiment of the present application refers to the micro base station in the UDN, and the first routing node determines whether the first routing node is about to fail by monitoring the way that the power of the first routing node is less than a preset threshold. Set according to the amount of power when the first routing node is about to be powered off.
  • the first routing node in the embodiment of the present application can monitor its own Power, can also monitor donor (electronic donor) capability information, its own wireless AP information, hop count information, supported bandwidth information, Backhaul (backhaul line) bandwidth information, whether it has extended capability information, detect mobility capability information, neighbor nodes
  • donor electronic donor
  • backhaul backhaul line
  • the first routing node sends a message to a second routing node downstream of the channel, so that the second routing node searches for a path bypassing the first routing node to establish a new channel route.
  • the first routing node T1 after the first routing node detects that the power of the first routing node is less than the preset threshold, the first routing node T1 approaches the second routing node downstream of the channel (for example, in the channel to which the first routing node T1 belongs).
  • the next routing node T2 of T1 then sends a message to cause the downstream second routing node T2 to look for a path bypassing the first routing node T1 to establish a new channel route. That is, the downstream second routing node T2 searches for a channel route that does not include the first routing node T1 and can reach the third routing node T3 immediately upstream of T1, thereby realizing re-creation of a second routing node downstream from the first routing node T1.
  • the new path of the third routing node (the last routing node of the channel route where the first routing node T1 is located) T3 to the upstream third routing node (the next routing node where the first routing node T1 is located).
  • the message when the first routing node sends a message to the second routing node downstream of the channel, the message carries the address information of the upstream routing node-third routing node T3 of the first routing node T1.
  • the new channel route established by the downstream second routing node T2 of the first routing node T1 includes the third routing node T3.
  • the specific process of establishing a new channel route may include: when the first routing node T1 sends a message to the corresponding downstream second routing node T2 in the path in which it is located, the message carries the first routing node.
  • the address information of the upstream third routing node T3 is used to notify the downstream second routing node T2 to find another path that can reach the upstream third routing node; then the first routing node T1 is in the corresponding upstream direction of the path in which it is located.
  • the three routing node T3 sends a message for notifying the upstream third routing node T3 that it is ready to receive the lookup request of the downstream second routing node T2.
  • the downstream second routing node T2 broadcasts the received message to its surrounding nodes, so that the surrounding nodes receiving the broadcast message continue to search for the upstream routing node, when the upstream third routing node T3 receives the route lookup message of the surrounding node, Switching the upstream third routing node T3 to the upstream third routing node T3 through the connection path of the first routing node T1 and the downstream second routing node T2
  • the surrounding node connects the connection path of the downstream second routing node T2, thereby implementing the path of the downstream second routing node T2 seeking to bypass the first routing node T1.
  • the process of establishing the above channel route is only an example of the present application.
  • the first routing node in order to avoid flooding between nodes, may be restricted to the upstream route.
  • the search range of the node is to limit the search range of the downstream second routing node when searching for a new channel route by means of carrying the hop count information in the message.
  • the first routing node T1 when the first routing node detects that its own power is less than a preset threshold, the first routing node T1 sends a message to the second routing node downstream of the channel, so that the downstream second routing node searches for The path of the first routing node T1 is bypassed to establish a new channel route. That is, the downstream second routing node sends broadcast information to the surrounding nodes, and asks whether the surrounding nodes have a route that can reach the upstream third routing node. When the surrounding node receives the broadcast information, it needs to check whether the routing table exists in its own routing table. A valid route to the upstream third routing node is reached, thereby establishing a new channel route.
  • the first routing node may further acquire a link between itself and a downstream second routing node and/or an upstream third routing node after detecting that its own power is less than a preset threshold.
  • the first routing node notifies the macro base station in the UDN to find a path bypassing the first routing node to establish a new channel route. Specifically, the macro base station searches for a path bypassing the first routing node. The manner in which the new channel route is established and the downstream second routing node finds a path to bypass the first routing node to establish a new channel route is consistent, and details are not described herein again.
  • the first routing node sends the message to the downstream second routing node.
  • the first routing node detects that its own power is less than a preset threshold by using the method of route reestablishment in the UDN provided by the foregoing solution; the first routing node sends a message to the second routing node downstream of the channel, so that the second The routing node looks for a path bypassing the first routing node to establish a new channel route.
  • the embodiment of the present application determines whether the routing node occurs by monitoring that the power of the battery is less than a preset threshold. It is not necessary to continuously measure and evaluate the quality and effect of the transmission link in each hop path, thereby solving the problem of data transmission interruption and delay on the basis of reducing overhead.
  • the link between each routing node is represented by a solid line, and the link between the routing node and the upstream routing node and the downstream routing node that meet the preset condition away from the spatial distance is about to be
  • the link to be interrupted is indicated by a dotted line, and each routing node sends a message indicated by a dotted line with an arrow.
  • the situation that the routing node detects that its own power is less than a preset threshold may be because the routing node A is shut down at this time, or the routing node A is exhausted at this time, causing routing. Node A can no longer serve routing node B, nor can it connect to macro base station S.
  • the first embodiment firstly uses the above description in conjunction with the actual situation in the network architecture of FIG. 2 to “the routing node monitors that its own power is less than a preset threshold, and the routing node sends a message to the downstream routing node of the channel to enable the The process of the downstream routing node looking for the path bypassing the routing node to establish a new channel route is described:
  • the routing node A sends a message to the corresponding downstream routing node B in the path, where the message carries the routing node A.
  • the address information of the upstream routing node M is used to notify the downstream routing node B to find another path that can reach the upstream routing node M.
  • the routing node A sends a message to the corresponding upstream routing node M in the path where it is located, and the message is used for notification.
  • the upstream routing node M is ready to receive a lookup request from the downstream routing node B.
  • the downstream routing node B broadcasts the received message to its surrounding nodes, so that the surrounding nodes receiving the broadcast message continue to search for the upstream routing node M; when the upstream routing node M receives the route lookup message of the surrounding node, The upstream routing node M switches to the connection path of the routing node A and the downstream routing node B to connect the upstream routing node M to the connection path of the downstream routing node B through the surrounding node.
  • the re-repaired path includes at least one surrounding node, that is, after the surrounding node receives the broadcast message sent by the downstream routing node B, it continues to send to the surrounding node where it is located.
  • Sending a broadcast message if the surrounding node receiving the broadcast message includes the routing node M, the repair succeeds; if the surrounding node receiving the broadcast message does not include the routing node M, the surrounding node receiving the broadcast message continues to send to the surrounding node where the broadcast message is located The message is broadcast until the routing node M is found, and the path is successfully repaired.
  • the schematic diagram of the above process is shown in FIG. 3 to FIG. 6. Since the routing node A is to be turned off immediately, the path between the routing node A and the downstream routing node B, between the routing node A and the upstream routing node M The path will break. Therefore, the routing node A should notify the downstream routing node B to find the upstream routing node M (the node M remains connected to the macro base station at this time), and send a notification message to the upstream routing node M for notifying the upstream routing node M. Preparing to receive the lookup request of the downstream routing node B.
  • the upstream routing node M Upon receiving the lookup request of the downstream routing node B, the upstream routing node M switches to the new path and cuts off the connection between the two; and sends a message to the downstream routing node B. It is used to notify the downstream routing node B to look up the upstream routing node M. Once the upstream routing node M responds to the lookup request, the path of the downstream routing node B and the routing node A is cut off.
  • the downstream routing node B sends a broadcast message to the routing node E.
  • the subsequent process is as shown in FIG. 4, and the routing node E sends a broadcast message to the routing node C.
  • the routing node C sends a broadcast message to the routing node M.
  • the downstream routing node implements the network structure after the channel routing is established according to the above procedure. As shown in FIG. 6, the new path of the routing node M to the routing node B is established, and the path is switched from the MAB to MCEB.
  • the routing node E continues to search for the broadcast of the routing node A.
  • the outgoing node is limited by the routing node B to the search range of the routing node A, and is limited to two hops, so that the routing node C does not need to broadcast the route to find the A message. To prevent the existence of such a path as E-C-S-M-A.
  • the routing node B is smoothly connected to the routing node S (macro base station) by means of local repair, so that the entire data transmission process is not Interrupt, guarantee delay requirements.
  • the present application also proposes a technical solution for judging when to use local repair and when to notify the macro base station to perform centralized repair. details as follows:
  • the routing node A also needs to have a function of judging. For example, the routing node A needs to predict the break time of its link, for example, with a time threshold T, when it is judged that it is greater than T. If the link breaks, the centralized repair is started, that is, the macro base station is notified to perform centralized repair; if it is less than T, the local repair is started.
  • the routing node A can also determine the distance from the macro base station S and the far-end base station D. If the routing node A is closer to the macro base station, the centralized repair mode is adopted. Otherwise, the local repair method is adopted.
  • this embodiment is notified by the routing node A that the macro base station S re-selects a path for the routing node D or selects a path for the downstream routing node B of the routing node A. After the macro base station receives the route repair request notification sent by the node A, it re-plans a path that does not include the routing node A.
  • the embodiment of the present application provides a device for route reestablishment in an ultra-dense network UDN, which is applied to an ultra-dense network UDN.
  • the device includes:
  • the monitoring unit 21 is configured to monitor that the amount of power of the device is less than a preset threshold
  • the sending unit 22 is configured to send a message to the second routing node downstream of the channel, so that the second routing node searches for a path bypassing the first routing node to establish a new channel route.
  • the sending unit 22 is configured to send a message including the address information of the third routing node upstream of the first routing node to the second routing node downstream of the channel, so that the new channel route established by the second routing node includes The third routing node.
  • the message further carries hop count information, where the hop count information is used to limit a search range of the second routing node when searching for the new channel route.
  • a determining unit is further included for:
  • the method further includes:
  • Obtaining a unit acquiring a time when the link between the first routing node and the second routing node and/or the third routing node is broken;
  • the notification unit is used to:
  • the first routing node detects that its own power is less than a preset threshold; the first routing node sends a message to a second routing node downstream of the channel, so that the The second routing node looks for a path bypassing the first routing node to establish a new channel route.
  • the embodiment of the present application determines whether the routing node is interrupted by monitoring that its own power is less than a preset threshold, and does not need to continuously The quality and effect of the transmission link are measured and evaluated to solve the problem of data transmission interruption and delay on the basis of reduced overhead.
  • the embodiment of the present application provides a micro base station, which can be applied to an ultra-dense network UDN.
  • the micro base station includes:
  • a memory for storing instructions
  • a processor coupled to the memory, the processor executing an instruction stored in the memory to: monitor that a power of a first micro base station where it is located is less than a preset threshold;
  • the processor sends, by using the communication interface, a message including address information of a third micro base station upstream of the first micro base station to a second micro base station downstream of the channel, so that the second micro base station establishes a new The channel route includes the third micro base station.
  • the processor sends the second micro base station downstream of the channel to include the first micro base station And a message of the address information of the third micro base station that is traversed, so that the new channel route established by the second micro base station includes the third micro base station.
  • the message further carries hop count information, where the hop count information is used to limit a search range of the second micro base station when searching for the new channel route.
  • processor executing the instructions stored in the memory further implements:
  • the processor executing the instruction stored in the memory further implements: acquiring a time when a link between the first micro base station and the second micro base station and/or the third micro base station is broken;
  • micro base station provided in this embodiment are similar to those in the embodiment of FIG. 1, and are not described herein again.
  • the present invention can be implemented by hardware or by means of software plus a necessary general hardware platform.
  • the technical solution of the present invention may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.), including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform the methods described in various implementation scenarios of the present invention.
  • modules in the apparatus in the implementation scenario may be distributed in the apparatus for implementing the scenario according to the implementation scenario description, or may be correspondingly changed to be different from the implementation.
  • the modules of the above implementation scenarios may be combined into one module, or may be further split into multiple sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种超密集网络UDN中路由重建的方法,涉及超密集网络技术领域,解决了周期性检测带来的开销,以及事件触发型检测带来的数据传输中断和时延的问题。本申请主要的技术方案为:第一路由节点监测到自身的电量小于预设阈值;所述第一路由节点向信道下游的第二路由节点发送消息,以使所述第二路由节点寻找绕开所述第一路由节点的路径以建立新的信道路由本申请同时还公开了一种UDN中的微基站。

Description

超密集网络UDN中路由重建的方法及微基站
相关申请交叉引用
本申请要求于2017年6月7日提交中国专利局、申请号为201710423838.5、发明名称为“超密集网络UDN中路由重建的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及超密集网络技术领域,尤其涉及一种超密集网络UDN中路由重建的方法及微基站。
背景技术
UDN(Super dense network,超密集网络)是5G(5-Generation,第五代移动通信技术)的核心技术之一,UDN通过无线接入点的规模部署,可以大大降低用户接入的距离,从而提高用户的吞吐量以及区域的吞吐量(bps/km2),是满足5G系统容量需求的关键技术。
无线回传路径检测是指对当前的无线回传路径的链路情况和传输情况进行一定的测量和信息收集处理,形成对当前无线链路的状态评估,当发现无线回传链路无法满足传输需要或者不能再提供服务时,应尽快的予以上报和反馈,以进行后续无线回传路径的更新。
目前,在UDN中关于无线回传路径检测的方案有两种:一种是周期性测量和上报,另一种是事件触发型通知过程。周期性测量和上报是一种基本的过程,每一跳路径不断的对传输链路质量和效果进行测量和评测,并汇总并上报给集中控制节点;事件触发型通知过程是指一旦发生了不可恢复的错误,例如某段链路发生了无线链路失败,该链路上的节点则需要将发生失败的情况通知出去,例如通知给集中控制节点,以利于集中控制节点对无线回传链路进行更新和重配置。
但是,采用周期性的方式来进行检测将带来极大的开销;而采用事件 触发型检测的是发生的不可恢复的错误,再重新汇报给集中控制节点进行路径的重新选择和优化,这也将带来数据传输中断和时延的问题。
发明内容
本申请提供一种克服上述问题或者至少部分地解决上述问题的超密集网络UDN中路由重建的方法及微基站。
一方面,本申请实施例提供了一种超密集网络UDN中路由重建的方法,应用于超密集网络UDN,该方法包括:
第一路由节点监测到自身的电量小于预设阈值;
所述第一路由节点向信道下游的第二路由节点发送消息,以使所述第二路由节点寻找绕开所述第一路由节点的路径以建立新的信道路由。
进一步地,所述第一路由节点向信道下游的第二路由节点发送消息,以使所述第二下游路由节点寻找绕开所述第一路由节点的路径以建立新的信道路由,包括:
所述第一路由节点向信道下游的第二路由节点发送包括第一路由节点上游的第三路由节点的地址信息的消息,以使所述第二路由节点建立的新的信道路由包括所述第三路由节点。
进一步地,所述消息还携带跳数信息,所述跳数信息用于限制所述第二路由节点在寻找所述新的信道路由时的查找范围。
进一步地,所述在第一路由节点监测到自身的电量小于预设阈值之后,还包括:
所述第一路由节点确定其与所述UDN中的宏基站之间的第一距离,以及与所述UDN中的最远端基站之间的第二距离;
若所述第一距离小于所述第二距离,所述第一路由节点通知所述宏基站寻找绕开所述第一路由节点的路径以建立新的信道路由;
若所述第一距离大于所述第二距离,所述第一路由节点向所述第二路由节点发送所述消息。
进一步地,在第一路由节点监测到自身的电量小于预设阈值之后,还包括:
所述第一路由节点获取自身与所述下游第二路由节点和/或上游第三路由节点之间的链路发生断裂的时间;
若所述发生断裂的时间大于预设时间阈值,所述第一路由节点通知所述UDN中的宏基站寻找绕开所述第一路由节点的路径以建立新的信道路由;
若所述发生断裂的时间小于所述预设时间阈值,所述第一路由节点向所述下游第二路由节点发送所述消息。
另一方面,本申请实施例还提供一种微基站,应用于超密集网络UDN,该微基站包括:
存储器,用于存储指令;
处理器,与所述存储器耦合,该处理器执行存储在所述存储器中的指令实现:监测到其所在的第一微基站的电量小于预设阈值;
向信道下游的第二微基站发送消息,以使所述第二微基站寻找绕开所述第一微基站的路径以建立新的信道路由。
进一步地,所述处理器向信道下游的第二微基站发送包括第一微基站上游的第三微基站的地址信息的消息,以使所述第二微基站建立的新的信道路由包括所述第三微基站。
进一步地,所述消息还携带跳数信息,所述跳数信息用于限制所述第二微基站在寻找所述新的信道路由时的查找范围。
进一步地,所述处理器执行存储在所述存储器中的指令还实现:
确定所述第一微基站与UDN中的宏基站之间的第一距离,以及与所述UDN中的最远端基站之间的第二距离;
若所述第一距离小于所述第二距离,通知所述宏基站寻找绕开所述第一微基站的路径以建立新的信道路由;
若所述第一距离大于所述第二距离,向所述第二微基站发送所述消息。
进一步地,所述处理器执行存储在所述存储器中的指令还实现:获取所述第一微基站与所述第二微基站和/或第三微基站之间的链路发生断裂的时间;
当所述时间大于预设时间阈值,通知UDN中的宏基站寻找绕开所述第一微基站的路径以建立新的信道路由;
当所述时间小于所述预设时间阈值,向所述第二微基站发送所述消息。
附图说明
通过阅读下文实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本申请实施例提供的一种超密集网络UDN中路由重建的方法流程图;
图2-图6为本申请实施例提供的节点链路中断修复过程图;
图7为本申请实施例提供的一种密集网络UDN中路由重建的装置的组成框图。
具体实施方式
下面将参照附图更详细地描述本申请的示例性实施例。虽然附图中显示了本申请的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本申请,并且能够将本申请的范围完整的传达给本领域的技术人员。
为使本申请技术方案的优点更加清楚,下面结合附图和实施例对本申请作详细说明。
本申请实施例提供了一种超密集网络UDN中路由重建的方法,可以应用于超密集网络UDN,其中,UDN中包括宏基站、微基站,以及接入宏基站或微基站的终端设备,如图1所示,所述方法包括以下步骤:
S101、第一路由节点监测到自身的电量小于预设阈值。
在本申请实施例中涉及的路由节点均是指UDN中的微基站,第一路由节点通过监测到自身的电量小于预设阈值的方式,确定第一路由节点是否将要发生故障,该预设阈值根据第一路由节点将要断电时的电量进行设置的。
需要说明的是,本申请实施例中的第一路由节点除了能够监测到自身的 电量,还能监测donor(电子施主)能力信息,自身无线AP信息,跳数信息,支持的带宽信息,Backhaul(回程线路)带宽信息,是否具备扩展能力信息,检测移动性能力信息,相邻节点链路状况信息等,本申请实施例不做具体限定。
S102、所述第一路由节点向信道下游的第二路由节点发送消息,以使所述第二路由节点寻找绕开所述第一路由节点的路径以建立新的信道路由。
在本申请实施例中,在第一路由节点监测到自身的电量小于预设阈值之后,第一路由节点T1向信道下游的第二路由节点(例如,在第一路由节点T1所属的信道中紧接着T1的下一个路由节点T2)发送消息,以使该下游第二路由节点T2寻找绕开第一路由节点T1的路径以建立新的信道路由。即下游第二路由节点T2查找一条不包含第一路由节点T1的能够到紧接着T1上游的第三路由节点T3的信道路由,从而实现重新创建一条从第一路由节点T1的下游第二路由节点(第一路由节点T1所在信道路由的下一个路由节点)T2到上游的第三路由节点(第一路由节点T1所在信道路由的上一个路由节点)T3的新路径。
在本申请实施例中,所述第一路由节点向信道下游的第二路由节点发送消息时,所述消息中携带所述第一路由节点T1的上游路由节点-第三路由节点T3的地址信息,以使所述第一路由节点T1的下游第二路由节点T2建立的新的信道路由包括第三路由节点T3。
在本申请的一些实施例中,建立新的信道路由的具体过程可包括:第一路由节点T1向其所在路径中对应的下游第二路由节点T2发送消息时,该消息中携带第一路由节点的上游第三路由节点T3的地址信息,用于通知所述下游第二路由节点T2查找能到上游第三路由节点的另外一条路径;然后第一路由节点T1向其所在路径中对应的上游第三路由节点T3发送消息,该消息用于通知所述上游第三路由节点T3准备接收所述下游第二路由节点T2的查找请求。下游第二路由节点T2将接收到的消息向其周围节点广播出去,以使得接收到广播消息的周围节点继续查找上游路由节点,当上游第三路由节点T3接收到周围节点的路由查找消息时,将上游第三路由节点T3通过第一路由节点T1与下游第二路由节点T2的连接路径切换为上游第三路由节点T3通过周 围节点连接所述下游第二路由节点T2的连接路径,从而实现了下游第二路由节点T2寻找绕开所述第一路由节点T1的路径。
需要说明的是,以上信道路由的建立过程仅为本申请所提出的一个示例,此外,在本申请实施例中为避免广播在节点之间的洪泛,可以由第一路由节点限制到上游路由节点的查找范围,即通过在所述消息携带跳数信息的方式限制下游第二路由节点在寻找新的信道路由时的查找范围。
在本申请提供的实施例中,当第一路由节点监测到自身的电量小于预设阈值时,第一路由节点T1向其信道下游的第二路由节点发送消息,以使下游第二路由节点寻找绕开第一路由节点T1的路径以建立新的信道路由。即下游第二路由节点向其周围的节点发送广播信息,询问周围节点是否有可以到达上游第三路由节点的路由,当周围节点接收到该广播信息后,需要检查自身的路由表中是否存在可以到达上游第三路由节点的有效路由,进而以此建立新的信道路由。
此外,在本申请的一些实施例中,第一路由节点还可以在监测到自身的电量小于预设阈值之后,获取自身与下游第二路由节点和/或上游第三路由节点之间的链路发生断裂的时间,并基于该时间确定是由第二路由节点进行路由重建还是由宏基站进行路由重建,具体判断方式如下:
(1)若所述时间大于预设时间阈值
所述第一路由节点通知所述UDN中的宏基站寻找绕开所述第一路由节点的路径以建立新的信道路由,具体地,由宏基站寻找绕开所述第一路由节点的路径以建立新的信道路由与下游第二路由节点寻找绕开所述第一路由节点的路径以建立新的信道路由的执行方式一致,在此不再赘述。
(2)若所述时间小于所述预设时间阈值
所述第一路由节点向所述下游的第二路由节点发送所述消息。
通过以上方案所提供的UDN中路由重建的方法,第一路由节点监测到自身的电量小于预设阈值;所述第一路由节点向信道下游的第二路由节点发送消息,以使所述第二路由节点寻找绕开所述第一路由节点的路径以建立新的信道路由。与目前通过周期性检测以及事件触发型检测无线回传路径相比,本申请实施例通过监测到自身的电量小于预设阈值确定路由节点是否发生中 断,而无需在每一跳路径中不断的对传输链路质量和效果进行测量和评测,从而在减少开销的基础上解决了数据传输中断和时延的问题。
为了更好的对本申请实施例提供的超密集网络UDN中重新确定路由的方法进行说明,以下实施例将针对上述各步骤进行细化和扩展。在该实施例所对应的附图中,各个路由节点之间的链路以实线表示,路由节点与空间距离远离情况满足预设条件的上游路由节点以及下游路由节点之间的链路(即将要发生中断的链路)以虚线表示,各路由节点发送消息以带有箭头的虚线表示。
如图2所示,在该实施例中,造成路由节点监测到自身的电量小于预设阈值的情况有可能是因为路由节点A此时关闭了,或者路由节点A此时电量耗尽,造成路由节点A不能再为路由节点B服务,同时也连接不到宏基站S中去了。
为了解决上述技术问题,本实施例首先基于以上描述结合图2网络架构中的实际情况对“路由节点监测到自身的电量小于预设阈值,路由节点向信道的下游路由节点发送消息,以使所述下游路由节点寻找绕开所述路由节点的路径以建立新的信道路由”的过程进行描述:
如图2,本申请实施例中的路由节点A在监测到自身的电量小于预设阈值之后,路由节点A向其在路径中对应的下游路由节点B发送消息,该消息中携带路由节点A的上游路由节点M的地址信息,用于通知下游路由节点B查找能到上游路由节点M的另外一条路径;然后路由节点A向其所在路径中对应的上游路由节点M发送消息,该消息用于通知上游路由节点M准备接收下游路由节点B的查找请求。下游路由节点B将接收到的消息向其周围节点广播出去,以使得接收到广播消息的周围节点继续查找上游路由节点M;当上游路由节点M接收到所述周围节点的路由查找消息时,将上游路由节点M通过路由节点A与下游路由节点B的连接路径切换为上游路由节点M通过所述周围节点连接下游路由节点B的连接路径。
需要说明的是,重新修复的路径中至少包含一个周围节点,即在周围节点接收到下游路由节点B发送的广播消息之后,继续向其所在的周围节点发 送广播消息,若接收广播消息的周围节点中包含路由节点M,则修复成功;若接收广播消息的周围节点中不包含路由节点M,则接收广播消息的周围节点继续向其所在的周围节点发送广播消息,直至查找到路由节点M,路径修复成功。
上述流程的示意图如图3至图6所示,由于路由节点A马上要关闭(turn off),因此路由节点A和下游路由节点B之间的路径,路由节点A与上游路由节点M之间的路径都会断裂。因此,路由节点A此时应通知下游路由节点B去找上游路由节点M(节点M此时还是与宏基站保持连接的),并向上游路由节点M发出通知消息,用于通知上游路由节点M准备接收下游路由节点B的查找请求,一旦收到下游路由节点B的查找请求,上游路由节点M就切换到新的路径中,并切断二者之间的连接;并向下游路由节点B发出消息,用于通知下游路由节点B查找上游路由节点M,一旦上游路由节点M回应查找请求,则切断下游路由节点B与路由节点A的路径。
在图3所示的示意图中,下游路由节点B发送广播消息到路由节点E,随后的过程如图4所示,路由节点E发送广播消息到路由节点C,在图5所示的示意图中,路由节点C发送广播消息到路由节点M,最后下游路由节点根据上述过程实现信道路由建立后的网络结构示意图如图6所示,路由节点M到路由节点B的新路径建立,路径由M-A-B切换为M-C-E-B。
此外,为避免广播在节点之间的洪范,在图4所示的实施例中,路由节点E在接收到下游路由节点B发送的广播消息之后,路由节点E继续将查找路由节点A的广播发送出去,由路由节点B限制到路由节点A的查找范围,如限制在两跳以内,这样路由节点C就不需要再广播查路由找A的消息了。以防止E-C-S-M-A这样的路径存在。
通过以上情况的分析,在路由节点A与下游路由节点B的链路断裂之前,就使得路由节点B通过本地修复的方式,顺利连接到路由节点S(宏基站),从而使得整个数据传输过程不中断,保证时延要求。
除了以上实施例的技术方案,本申请还提出了一种判断何时使用本地修复以及何时通知宏基站进行集中修复的技术方案。具体如下:
在本具体实施例的一种实施方案中,路由节点A还需要具有判断的功能,如路由节点A需要对其链路的断裂时间进行预测,比如以时间阈值T,当其判断当大于T后,链路才会发生断裂,则启动集中修复,即通知宏基站进行集中修复;若小于T后,则启动本地修复。
在本实施例的另一种实施方案中,路由节点A也可以根据与宏基站S和最远端基站D的距离进行判断,如路由节点A距离宏基站近一些,则采用集中修复的方式,反之则采用本地修复的方式。
当采用集中修复的方式后,该实施例由路由节点A通知宏基站S重新为路由节点D选择一条路径或者为路由节点A的下游路由节点B选择一条路径。当宏基站收到节点A发来的路由修复请求通知后,则重新规划一条不包含路由节点A的路径。
进一步地,本申请实施例提供一种超密集网络UDN中路由重建的装置,应用于超密集网络UDN,如图7所示,所述装置包括:
监测单元21,用于监测到自身的电量小于预设阈值;
发送单元22,用于向信道下游的第二路由节点发送消息,以使所述第二路由节点寻找绕开第一路由节点的路径以建立新的信道路由。
所述发送单元22,具体用于向信道下游的第二路由节点发送包括第一路由节点上游的第三路由节点的地址信息的消息,以使所述第二路由节点建立的新的信道路由包括所述第三路由节点。
在本申请实施例中,所述消息还携带跳数信息,所述跳数信息用于限制所述第二路由节点在寻找所述新的信道路由时的查找范围。
在本申请实施例中,还包括确定单元,用于:
确定第一路由节点与所述UDN中的宏基站之间的第一距离,以及与所述UDN中的最远端基站之间的第二距离;
若所述第一距离小于所述第二距离,通知所述宏基站寻找绕开所述第一路由节点的路径以建立新的信道路由;
若所述第一距离大于所述第二距离,向所述第二路由节点发送所述消息。
在本申请实施例中,还包括:
获取单元,获取第一路由节点与所述第二路由节点和/或第三路由节点之间的链路发生断裂的时间;
通知单元用于:
若所述时间大于预设时间阈值,通知所述UDN中的宏基站寻找绕开所述第一路由节点的路径以建立新的信道路由;
若所述时间小于所述预设时间阈值,向所述第二路由节点发送所述消息。
需要说明的是,本申请实施例提供的一种超密集网络UDN中路由重建的装置所涉及各功能单元的其他相应描述,可以参考图1所示方法的对应描述,在此不再赘述,但应当明确,本实施例中的装置能够对应实现前述方法实施例中的全部内容。
本申请提供的一种超密集网络UDN中路由重建的装置,第一路由节点监测到自身的电量小于预设阈值;所述第一路由节点向信道下游的第二路由节点发送消息,以使所述第二路由节点寻找绕开所述第一路由节点的路径以建立新的信道路由。与目前通过周期性检测以及事件触发型检测无线回传路径相比,本申请实施例通过监测到自身的电量小于预设阈值确定路由节点是否发生中断,而无需在每一跳路径中不断的对传输链路质量和效果进行测量和评测,从而在减少开销的基础上解决了数据传输中断和时延的问题。
本申请实施例提供一种微基站,该微基站能够应用于超密集网络UDN中。该微基站包括:
存储器,用于存储指令;
处理器,与所述存储器耦合,该处理器执行存储在所述存储器中的指令实现:监测到其所在的第一微基站的电量小于预设阈值;
向信道下游的第二微基站发送消息,以使所述第二微基站寻找绕开所述第一微基站的路径以建立新的信道路由。
进一步地,所述处理器通过所述通信接口向信道下游的第二微基站发送包括第一微基站上游的第三微基站的地址信息的消息,以使所述第二微基站建立的新的信道路由包括所述第三微基站。
进一步地,所述处理器向信道下游的第二微基站发送包括第一微基站上 游的第三微基站的地址信息的消息,以使所述第二微基站建立的新的信道路由包括所述第三微基站。
进一步地,所述消息还携带跳数信息,所述跳数信息用于限制所述第二微基站在寻找所述新的信道路由时的查找范围。
进一步地,所述处理器执行存储在所述存储器中的指令还实现:
确定所述第一微基站与UDN中的宏基站之间的第一距离,以及与所述UDN中的最远端基站之间的第二距离;
若所述第一距离小于所述第二距离,通知所述宏基站寻找绕开所述第一微基站的路径以建立新的信道路由;
若所述第一距离大于所述第二距离,向所述第二微基站发送所述消息。
进一步地,所述处理器执行存储在所述存储器中的指令还实现:获取所述第一微基站与所述第二微基站和/或第三微基站之间的链路发生断裂的时间;
当所述时间大于预设时间阈值,通知UDN中的宏基站寻找绕开所述第一微基站的路径以建立新的信道路由;
当所述时间小于所述预设时间阈值,向所述第二微基站发送所述消息。
本实施例提供的微基站,其执行方式和有益效果与图1实施例类似,在这里不再赘述。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明可以通过硬件实现,也可以借助软件加必要的通用硬件平台的方式来实现。基于这样的理解,本发明的技术方案可以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性存储介质(可以是CD-ROM,U盘,移动硬盘等)中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施场景所述的方法。
本领域技术人员可以理解附图只是一个实施场景的示意图,附图中的模块或流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施场景中的装置中的模块可以按照实施场景描述进行分布于实施场景的装置中,也可以进行相应变化位于不同于本实施 场景的一个或多个装置中。上述实施场景的模块可以合并为一个模块,也可以进一步拆分成多个子模块。
上述本发明序号仅仅为了描述,不代表实施场景的优劣。
以上公开的仅为本发明的几个具体实施场景,但是,本发明并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims (10)

  1. 一种超密集网络UDN中路由重建的方法,其特征在于,包括:
    第一路由节点监测到自身的电量小于预设阈值;
    所述第一路由节点向信道下游的第二路由节点发送消息,以使所述第二路由节点寻找绕开所述第一路由节点的路径以建立新的信道路由。
  2. 如权利要求1所述的方法,其特征在于,所述第一路由节点向信道下游的第二路由节点发送消息,以使所述第二下游路由节点寻找绕开所述第一路由节点的路径以建立新的信道路由,包括:
    所述第一路由节点向信道下游的第二路由节点发送包括第一路由节点上游的第三路由节点的地址信息的消息,以使所述第二路由节点建立的新的信道路由包括所述第三路由节点。
  3. 如权利要求2所述的方法,其特征在于,所述消息还携带跳数信息,所述跳数信息用于限制所述第二路由节点在寻找所述新的信道路由时的查找范围。
  4. 根据权利要求1所述的方法,其特征在于,所述在第一路由节点监测到自身的电量小于预设阈值之后,还包括:
    所述第一路由节点确定其与所述UDN中的宏基站之间的第一距离,以及与所述UDN中的最远端基站之间的第二距离;
    若所述第一距离小于所述第二距离,所述第一路由节点通知所述宏基站寻找绕开所述第一路由节点的路径以建立新的信道路由;
    若所述第一距离大于所述第二距离,所述第一路由节点向所述第二路由节点发送所述消息。
  5. 如权利要求1所述的方法,其特征在于,在第一路由节点监测到自身的电量小于预设阈值之后,还包括:
    所述第一路由节点获取自身与所述第二路由节点和/或第三路由节点之间的链路发生断裂的时间;
    若所述时间大于预设时间阈值,所述第一路由节点通知所述UDN中的宏基站寻找绕开所述第一路由节点的路径以建立新的信道路由;
    若所述时间小于所述预设时间阈值,所述第一路由节点向所述第二路由 节点发送所述消息。
  6. 一种微基站,其特征在于,包括:
    存储器,用于存储指令;
    处理器,与所述存储器耦合,该处理器执行存储在所述存储器中的指令实现:
    监测到其所在的第一微基站的电量小于预设阈值;
    向信道下游的第二微基站发送消息,以使所述第二微基站寻找绕开所述第一微基站的路径以建立新的信道路由。
  7. 根据权利要求6所述的微基站,其特征在于,所述处理器向信道下游的第二微基站发送包括第一微基站上游的第三微基站的地址信息的消息,以使所述第二微基站建立的新的信道路由包括所述第三微基站。
  8. 根据权利要求7所述的微基站,其特征在于,所述消息还携带跳数信息,所述跳数信息用于限制所述第二微基站在寻找所述新的信道路由时的查找范围。
  9. 根据权利要求6所述的微基站,其特征在于,所述处理器执行存储在所述存储器中的指令还实现:
    确定所述第一微基站与UDN中的宏基站之间的第一距离,以及与所述UDN中的最远端微基站之间的第二距离;
    若所述第一距离小于所述第二距离,通知所述宏基站寻找绕开所述第一微基站的路径以建立新的信道路由;
    若所述第一距离大于所述第二距离,向所述第二微基站发送所述消息。
  10. 根据权利要求6所述的微基站,其特征在于,所述处理器执行存储在所述存储器中的指令还实现:
    获取所述第一微基站与所述第二微基站和/或第三微基站之间的链路发生断裂的时间;
    当所述时间大于预设时间阈值,通知UDN中的宏基站寻找绕开所述第一微基站的路径以建立新的信道路由;
    当所述时间小于所述预设时间阈值,向所述第二微基站发送所述消息。
PCT/CN2017/116100 2017-06-07 2017-12-14 超密集网络udn中路由重建的方法及微基站 WO2018223649A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710423838.5 2017-06-07
CN201710423838.5A CN107360608A (zh) 2017-06-07 2017-06-07 超密集网络udn中路由重建的方法及装置

Publications (1)

Publication Number Publication Date
WO2018223649A1 true WO2018223649A1 (zh) 2018-12-13

Family

ID=60272315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/116100 WO2018223649A1 (zh) 2017-06-07 2017-12-14 超密集网络udn中路由重建的方法及微基站

Country Status (2)

Country Link
CN (1) CN107360608A (zh)
WO (1) WO2018223649A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107360608A (zh) * 2017-06-07 2017-11-17 海信集团有限公司 超密集网络udn中路由重建的方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101466160A (zh) * 2008-12-25 2009-06-24 中国科学院计算技术研究所 一种无线网状网中节点节能的方法及系统
US20110211833A1 (en) * 2010-02-26 2011-09-01 Connection Technology Systems Inc. Network device with uninterruptible power supply function
CN103813408A (zh) * 2014-02-25 2014-05-21 宁波中科集成电路设计中心有限公司 一种无线传感器网络的路由方法
CN106034322A (zh) * 2015-03-07 2016-10-19 北京信威通信技术股份有限公司 一种移动自组网中基于链路质量的路由切换方法
CN107360608A (zh) * 2017-06-07 2017-11-17 海信集团有限公司 超密集网络udn中路由重建的方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101217500B (zh) * 2008-01-21 2012-02-01 重庆邮电大学 一种基于maodv协议的无线自组织网组播路由能量改进方法
CN101436997B (zh) * 2008-12-05 2011-06-01 西安交通大学 一种基于aodv以及链路故障类型的路由修复方法
US8165143B2 (en) * 2010-03-16 2012-04-24 Novell, Inc. Routing protocol apparatus, systems, and methods
CN101835202A (zh) * 2010-04-01 2010-09-15 武汉鸿象信息技术有限公司 一种异构无线网络中基于多跳中继的协作负载均衡方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101466160A (zh) * 2008-12-25 2009-06-24 中国科学院计算技术研究所 一种无线网状网中节点节能的方法及系统
US20110211833A1 (en) * 2010-02-26 2011-09-01 Connection Technology Systems Inc. Network device with uninterruptible power supply function
CN103813408A (zh) * 2014-02-25 2014-05-21 宁波中科集成电路设计中心有限公司 一种无线传感器网络的路由方法
CN106034322A (zh) * 2015-03-07 2016-10-19 北京信威通信技术股份有限公司 一种移动自组网中基于链路质量的路由切换方法
CN107360608A (zh) * 2017-06-07 2017-11-17 海信集团有限公司 超密集网络udn中路由重建的方法及装置

Also Published As

Publication number Publication date
CN107360608A (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
US11943676B2 (en) Switching between network based and relay based operation for mission critical voice call
US10327184B2 (en) Handoffs between access points in a Wi-Fi environment
EP3972327A1 (en) Network performance reporting method and apparatus
WO2018058618A1 (zh) 一种故障处理方法及设备
US20140120921A1 (en) Methods, apparatuses and computer program products for providing an optimized handover preparation and execution operation
US20120094656A1 (en) Mobile communication method, device, and system for ensuring service continuity
EP4354832A2 (en) Communication method and communications apparatus
WO2013113202A1 (zh) 用于ue网络切换的信息处理方法和基站
JP2010063022A (ja) アクセスゲートウェイ装置の制御方法及び通信システム
WO2011157145A2 (zh) 通信设备间的主备倒换方法、通信设备和系统及服务请求设备
WO2012163152A1 (zh) 一种基于优先级的测量上报方法和设备
WO2014161450A1 (zh) 一种基站配置变更时的用户设备切换方法、装置及系统
WO2011157146A2 (zh) 通信设备间的主备倒换方法、通信设备和系统及服务请求设备
WO2023151063A1 (zh) 测量放松方法、装置、设备及存储介质
WO2015096720A1 (zh) 一种进行切换判决的方法、系统和设备
CN104969513B (zh) 无线控制器升级方法和设备
WO2018223649A1 (zh) 超密集网络udn中路由重建的方法及微基站
WO2016091136A1 (zh) 语音切换的方法和装置
WO2012109998A1 (zh) 在切换时保持选择性ip流量分流连接的方法及装置
KR20230155610A (ko) 스케줄링 단말의 확정 방법, 단말 및 네트워크측 기기
US11395363B2 (en) Method of processing UE idle state with separated mm function entity and SM function entity, mobility management function entity, and session management function entity
WO2018223650A1 (zh) 超密集网络udn中路由重建的方法及微基站
WO2014135019A1 (zh) 一种m2m网络中的m2m终端主动切换方法及装置
WO2022155853A1 (zh) 无线通信方法、通信装置及通信系统
CN114554615A (zh) 一种业务切换方法、装置及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17913027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17913027

Country of ref document: EP

Kind code of ref document: A1