WO2018221722A1 - 3d model generation device, 3d model generation method, 3d model generation program, structure, and structure manufacturing method - Google Patents

3d model generation device, 3d model generation method, 3d model generation program, structure, and structure manufacturing method Download PDF

Info

Publication number
WO2018221722A1
WO2018221722A1 PCT/JP2018/021161 JP2018021161W WO2018221722A1 WO 2018221722 A1 WO2018221722 A1 WO 2018221722A1 JP 2018021161 W JP2018021161 W JP 2018021161W WO 2018221722 A1 WO2018221722 A1 WO 2018221722A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
components
model generation
value
represented
Prior art date
Application number
PCT/JP2018/021161
Other languages
French (fr)
Japanese (ja)
Inventor
裕之 安河内
建太郎 添田
博祐 鈴木
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2018221722A1 publication Critical patent/WO2018221722A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the present invention relates to a 3D model generation device, a 3D model generation method, a 3D model generation program, a structure, and a method for manufacturing the structure.
  • the size and shape of the structure may be optimized, or the phase (topology) such as the number of holes in the structure may be optimized.
  • Patent Document 1 describes a design support device that analyzes a rigid structure by a finite element method and a phase optimization process so as to suppress thermal deformation of a resin molded product constrained at at least one restraint point. Yes.
  • 3D printers which manufacture structures by laminating molding materials such as resins, have begun to spread.
  • 3D printer it is possible to manufacture a structure having a three-dimensionally complicated structure, which has been difficult to manufacture by injection molding or machining.
  • a three-dimensionally complex structure may be designed with the aid of a computer. For example, assuming a model in which the density of a structure changes continuously, an optimal density distribution may be obtained according to a stress distribution or the like.
  • the present invention provides a 3D model generation apparatus, a 3D model generation method, and a 3D model, which generate 3D model data of a structure having a cross-sectional shape suitable for additive manufacturing and having a density distribution that continuously changes depending on the number of voids.
  • a generation program, a structure, and a method for manufacturing the structure are provided.
  • the 3D model generation device includes a determination unit that determines the value of the first parameter that changes spatially so that the value is smaller as the density of the structure is larger and as the density is smaller.
  • a generating unit that generates 3D model data for specifying whether or not to stack a modeling material on a spatial point according to an inequality including a periodic function in which a coordinate value representing the spatial point is a variable and a value is determined depending on a first parameter; .
  • the value of the first parameter is determined according to the density of the structure, and the 3D model data is generated according to the inequality including the periodic function whose value is determined depending on the first parameter.
  • 3D model data of a structure having a suitable cross-sectional shape and having a density distribution that continuously changes depending on the number of voids is generated.
  • the first parameter includes a plurality of components corresponding to a plurality of directions
  • the determining unit determines that the higher the density is, the smaller the geometric mean value of the plurality of components of the first parameter is;
  • the generating unit determines a plurality of components of the first parameter based on a first condition that relates the density and the plurality of components of the first parameter so that a geometric mean value of the plurality of components of one parameter increases.
  • the 3D model data may be generated according to an inequality including a periodic function in which the coordinate value is a variable and the value is determined depending on a plurality of components of the first parameter.
  • the geometric average value of the plurality of components of the first parameter is determined according to the density of the structure, and the 3D model is included according to the inequality including the periodic function whose value is determined depending on the plurality of components of the first parameter.
  • the coordinate value in the orthogonal coordinate system is represented as (x, y, z)
  • the plurality of components of the first parameter are represented by Tx (x, y, z), Ty (x, y, z), Tz (x , Y, z)
  • the density distribution is represented as D (x, y, z)
  • T min the minimum period that can be modeled when stacking the modeling material
  • the determining unit has a smaller geometric mean value of the plurality of components of the first parameter at a location where the Mises stress calculated from the stress distribution of the structure is large, and a plurality of components of the first parameter at a location where the Mises stress is small.
  • the plurality of components of the first parameter are determined based on the second condition that relates the Mises stress and the plurality of components of the first parameter so that the geometric mean value of
  • the coordinate value may be a variable, and may be generated according to an inequality including a periodic function whose value is determined depending on a plurality of components of the first parameter.
  • the geometric mean value of the plurality of components of the first parameter is determined according to the Mises stress applied to the structure, and the periodic function whose value is determined depending on the plurality of components of the first parameter is included.
  • the coordinate value in the orthogonal coordinate system is represented as (x, y, z)
  • the plurality of components of the first parameter are represented by Tx (x, y, z), Ty (x, y, z), Tz (x , Y, z)
  • Mises stress is represented by ⁇ vm (x, y, z)
  • the conversion coefficient is represented by R ( ⁇ vm )
  • the second condition is
  • the determination unit may determine the plurality of components of the first parameter based on the third condition relating the anisotropy of the elastic modulus distribution of the structure and the ratio of the plurality of components of the first parameter. Good.
  • the ratio of the plurality of components of the first parameter is determined based on the anisotropy of the elastic modulus distribution of the structure, and the periodic function whose value is determined depending on the plurality of components of the first parameter is included.
  • the determination unit may determine the plurality of components of the first parameter based on the fourth condition relating the anisotropy of the stress distribution of the structure and the ratio of the plurality of components of the first parameter. .
  • the ratio of the plurality of components of the first parameter is determined based on the anisotropy of the stress distribution applied to the structure, and the periodic function whose value is determined depending on the plurality of components of the first parameter
  • the determining unit determines the second parameter based on the stress distribution of the structure so that the second parameter is smaller as the stress distribution is larger and the second parameter is larger as the stress distribution is smaller.
  • the generation unit may generate the 3D model data according to an inequality in which a plurality of terms are weighted by the second parameter.
  • the second parameter is determined based on the stress distribution applied to the structure, and the 3D model data is generated according to the inequality in which the plurality of terms are weighted by the second parameter, thereby applying the applied stress.
  • 3D model data of a structure whose elastic modulus changes spatially according to the distribution is generated.
  • the second parameter includes a plurality of components corresponding to a plurality of directions
  • the determining unit determines whether the stress distribution anisotropy and the ratio of the values of the plurality of components of the second parameter are related to the fifth condition. Based on this, a plurality of components of the second parameter may be determined.
  • the ratio of the plurality of components of the second parameter is determined based on the anisotropy of the stress distribution applied to the structure, and the plurality of terms are weighted by the plurality of components of the second parameter.
  • the coordinate value in the orthogonal coordinate system is represented as (x, y, z)
  • the plurality of components of the second parameter are represented by Bx (x, y, z)
  • Bx (x, y, z) By (x, y, z), Bz (x , Y, z), and when the vertical stress distribution of the structure is represented as ⁇ xx (x, y, z), ⁇ yy (x, y, z), ⁇ zz (x, y, z)
  • the fifth condition is
  • the coordinate value in the orthogonal coordinate system is represented as (x, y, z)
  • the plurality of components of the first parameter are represented by Tx (x, y, z), Ty (x, y, z), Tz (x , Y, z), a periodic function of the period T as F, and a plurality of components of the second parameter as Bx (x, y, z),
  • Bx (x, y, z) By (x, y, z), Bz (x, y, z), and when the third parameter equal to or greater than 0 is represented as A (x, y, z), the inequality is
  • the 3D model data may include designation of a drawing width when stacking modeling materials.
  • the width of the modeling material when the modeling materials are stacked can be specified by specifying the drawing width, and the density of the structure can be adjusted from a viewpoint different from the first parameter and the like.
  • the generation unit may generate the 3D model data according to a plurality of inequalities having different values of at least the first parameter.
  • the periodic function may be a function representing a sine wave or a triangular wave.
  • a conversion unit that performs coordinate conversion may be further provided before the value of the first parameter is determined by the determination unit.
  • the conversion unit may perform coordinate conversion so as to diagonalize the stress distribution of the structure.
  • the step of determining the value of the first parameter that varies spatially is such that the smaller the density of the structure is, the larger the density is.
  • the value of the first parameter is determined according to the density of the structure, and the 3D model data is generated according to the inequality including the periodic function whose value is determined depending on the first parameter.
  • 3D model data of a structure having a suitable cross-sectional shape and having a density distribution that continuously changes depending on the number of voids is generated.
  • a 3D model generation program is such that a computer provided in a 3D model generation apparatus has a smaller first parameter value that varies spatially as the density of a structure increases, and the density decreases.
  • the value of the first parameter is determined according to the density of the structure, and the 3D model data is generated according to the inequality including the periodic function whose value is determined depending on the first parameter.
  • 3D model data of a structure having a suitable cross-sectional shape and having a density distribution that continuously changes depending on the number of voids is generated.
  • the coordinate value in the orthogonal coordinate system is represented as (x, y, z)
  • the plurality of components of the first parameter are represented by Tx (x, y, z), Ty (x, y, z), Tz (x, y, z), a periodic function of the period T as F, and a plurality of components of the second parameter as Bx (x, y, z), By (x, y, z). ), Bz (x, y, z), and when the third parameter of 0 or more is represented as A (x, y, z), the inequality
  • a structure having a cross-sectional shape suitable for additive manufacturing and having a density distribution continuously changing due to the number of voids is formed.
  • the modeling material in any cut surface, is continuously present, and in the cut surface, there is a gap between the modeling materials, and the gap is open to the outside.
  • the cut surface is continuously shifted in an arbitrary direction, the distribution of the modeling material continuously changes, and the modeling material and the gap exist in a spatially changing period.
  • a structure having a cross-sectional shape suitable for additive manufacturing and having a density distribution continuously changing due to the number of voids is formed.
  • the surface of the modeling material may be coated with a material different from the modeling material.
  • the skeleton of the structure by forming the skeleton of the structure with the modeling material and covering the surface with a material different from the modeling material, it is possible to obtain a structure having various characteristics that are difficult to realize with only the modeling material.
  • a coordinate value in an orthogonal coordinate system in which the stacking direction is z is represented as (x, y, z)
  • a plurality of components of the first parameter are represented by Tx (x , Y, z), Ty (x, y, z), Tz (x, y, z), a periodic function of the period T as F, and a plurality of components of the second parameter as Bx (x, y, z).
  • Bx (x, y, z) By (x, y, z), Bz (x, y, z), and z representing the height in the stacking direction when the third parameter of 0 or more is represented as A (x, y, z).
  • the layered modeling can be easily performed in the step of stacking the modeling material, and the structure in which the density distribution continuously changes due to the number of gaps is manufactured. Is done.
  • a 3D model generation apparatus a 3D model generation method, and a 3D model that generate 3D model data of a structure that has a cross-sectional shape suitable for additive manufacturing and whose density distribution continuously changes due to the number of voids.
  • a generation program, a structure, and a method for manufacturing the structure can be provided.
  • FIG. 1 is a network configuration diagram of a 3D model generation apparatus 10 according to an embodiment of the present invention.
  • the 3D model generation device 10 generates a 3D model for layered modeling of the structure 100 by the 3D printer 30.
  • the 3D model (three-dimensional model) is a model indicating the three-dimensional structure of the structure 100, and may be described in an arbitrary data format and may include data related to settings of the 3D printer 30.
  • the 3D model generation device 10 may be configured by a general-purpose or dedicated computer including at least one memory and at least one hardware processor, and the 3D model of the structure 100 according to the 3D model generation program stored in the memory. Is generated.
  • the 3D model generation device 10 is connected to the communication network N, generates a 3D model in response to an instruction from the user terminal device 20, and provides the 3D model to the 3D printer 30.
  • the 3D model generation device 10 may be configured integrally with the user terminal device 20 or may be configured integrally with the 3D printer 30.
  • the user terminal device 20 is a computer terminal, and may be a personal computer or a smartphone, for example.
  • the 3D printer 30 manufactures the structure 100 by laminating laminated materials.
  • the 3D printer 30 only needs to be capable of layering the structure 100, and the method of layering is arbitrary and is not limited.
  • FIG. 2 is a functional block diagram of the 3D model generation apparatus 10 according to the embodiment of the present invention.
  • the 3D model generation device 10 includes a reception unit 11, a conversion unit 12, a storage unit 13, a determination unit 14, and a generation unit 15.
  • the receiving unit 11 receives an instruction to generate a 3D model from the user terminal device 20 or receives a condition for generating a 3D model.
  • the conditions for generating the 3D model include all or part of the designation of the density distribution that the structure 100 should have, the designation of the stress distribution applied to the structure 100, and the designation of the elastic modulus distribution that the structure should have. It's okay.
  • the conversion unit 12 performs coordinate conversion before the determination unit 14 determines the value of the first parameter.
  • the conversion unit 12 may perform coordinate conversion so as to diagonalize the stress distribution of the structure 100. That is, the conversion unit 12 may perform coordinate conversion so that the coordinate axis coincides with the main stress axis of the structure 100. Further, the conversion unit 12 may perform coordinate conversion so that a specific component among the plurality of components of the elastic modulus distribution of the structure 100 is zero.
  • the determination unit 14 determines the value of the first parameter that varies spatially so that it is smaller as the density of the structure 100 is higher, and is higher as the density is lower.
  • the first parameter may include a plurality of components corresponding to a plurality of directions in the space.
  • the 3D model generation device 10 receives the characteristics that the structure 100 should have from the user terminal device 20, determines various parameters so as to realize the characteristics, and based on the determined parameters, the 3D model Is generated.
  • the first parameter is one type of such various parameters.
  • the generation unit 15 uses 3D model data for designating whether or not a modeling material is laminated at a spatial point, a coordinate function representing the spatial point as a variable, and an inequality including a periodic function whose value is determined depending on the first parameter. Generate.
  • the generation unit 15 generates 3D model data by deforming a curved surface called a gyroid.
  • the gyroid is a minimally curved surface having periodicity in three directions connected infinitely.
  • the coordinate value in the Cartesian coordinate system is expressed as (x, y, z)
  • the 3D model generation apparatus 10 generates 3D model data using an inequality obtained by modifying an implicit equation representing a gyroid. More specifically, the period of the sine function or cosine function is replaced with a first parameter that changes spatially, and the weighting of the three terms of the implicit equation representing the gyroidal is changed to a second parameter that changes spatially. Replace the equal sign of the implicit equation representing the gyroidal with an inequality sign, replace the right side of the implicit equation representing the gyroidal with a spatially changing third parameter, and replace the sine and cosine functions with a general periodic function Thus, the inequality for generating the 3D model data is obtained by transforming the implicit equation representing the gyroid.
  • the coordinate value in the orthogonal coordinate system is expressed as (x, y, z), and the plurality of components of the first parameter are expressed as Tx (x, y, z), Ty (x, y, z), Tz. (X, y, z), and a plurality of components of the second parameter are represented as Bx (x, y, z), By (x, y, z), Bz (x, y, z), and zero or more
  • the third parameter is represented as A (x, y, z) and the periodic function of the period T is represented as F
  • Equation (9) the inequality for generating 3D model data by the 3D model generation apparatus 10 according to the present embodiment is as follows: It is expressed by Equation (9).
  • the storage unit 13 is configured such that the geometric mean value of the plurality of components of the first parameter is smaller as the density of the structure 100 is higher, and the geometric average value of the components of the first parameter is larger as the density is lower.
  • a first condition 13a relating the density and a plurality of components of the first parameter is stored. More specifically, the coordinate value in the orthogonal coordinate system is expressed as (x, y, z), and the plurality of components of the first parameter are expressed as Tx (x, y, z), Ty (x, y, z), Tz.
  • the condition 13a is expressed by the following mathematical formula (10).
  • T min the minimum period possible shaping when stacking the modeling material is a value defined by the performance of the 3D printer 30, it is also possible for the user to specify.
  • the determination unit 14 may determine a plurality of components of the first parameter based on the first condition 13a.
  • the generation unit 15 may generate the 3D model data according to an inequality including a periodic function in which the coordinate value (x, y, z) is a variable and the value is determined depending on a plurality of components of the first parameter.
  • a geometric mean value of a plurality of components of the first parameter is determined according to the density of the structure 100, and 3D model data is generated according to an inequality including a periodic function whose value depends on the plurality of components of the first parameter.
  • 3D model data of a structure having a larger number of voids in a portion where the density is desired to be reduced and a smaller number of voids in a portion where the density is desired to be increased is generated.
  • the storage unit 13 has a smaller geometric mean value of a plurality of components of the first parameter at a location where the Mises stress calculated from the stress distribution of the structure 100 is larger, and a synergy of the components of the first parameter at a location where the Mises stress is smaller.
  • a second condition 13b that associates the Mises stress with a plurality of components of the first parameter is stored so that the average value becomes large. More specifically, the coordinate value in the orthogonal coordinate system is expressed as (x, y, z), and the plurality of components of the first parameter are expressed as Tx (x, y, z), Ty (x, y, z), Tz.
  • Mises stress is expressed as ⁇ vm (x, y, z)
  • conversion coefficient is expressed as R ( ⁇ vm )
  • the second condition 13b is expressed by the following formula (11). expressed.
  • the conversion coefficient R ( ⁇ vm ) may be a function of the Mises stress ⁇ vm .
  • an upper limit value and a lower limit value may be provided on the right side of Equation (11) according to the resolution of the 3D printer 30.
  • the determination unit 14 may determine a plurality of components of the first parameter based on the second condition 13b.
  • the generation unit 15 may generate the 3D model data according to an inequality including a periodic function in which the coordinate value (x, y, z) is a variable and the value is determined depending on a plurality of components of the first parameter.
  • the geometric mean value of the plurality of components of the first parameter is determined according to the Mises stress applied to the structure 100, and the 3D model data according to an inequality including a periodic function whose value is determined depending on the plurality of components of the first parameter
  • the storage unit 13 stores a third condition 13c that relates the anisotropy of the elastic modulus distribution of the structure 100 and the ratio of the plurality of components of the first parameter. More specifically, when the plurality of vertical components of the elastic modulus distribution are expressed as Kx (x, y, z), Ky (x, y, z), Kz (x, y, z), the third condition 13c Is represented by the following formula (12).
  • an upper limit value and a lower limit value may be set for each of the plurality of components of the first parameter.
  • the upper limit value and the lower limit value may be determined by the resolution of the 3D printer 30.
  • the determination unit 14 may determine a plurality of components of the first parameter based on the third condition.
  • the generation unit 15 may generate the 3D model data according to an inequality including a periodic function in which the coordinate value (x, y, z) is a variable and the value is determined depending on a plurality of components of the first parameter.
  • the ratio of the plurality of components of the first parameter is determined based on the anisotropy of the elastic modulus distribution of the structure 100, and the 3D model data according to an inequality including a periodic function whose value depends on the plurality of components of the first parameter Is generated, 3D model data of the structure 100 having a desired anisotropic elastic modulus is generated.
  • the storage unit 13 stores a fourth condition 13d that relates the anisotropy of the stress distribution of the structure 100 and the ratio of the plurality of components of the first parameter. More specifically, when the shear stress distribution of the structure 100 is expressed as ⁇ xy (x, y, z), ⁇ yz (x, y, z), ⁇ zx (x, y, z), the fourth condition 13d is: It is represented by the following formula (13).
  • the determination unit 14 may determine a plurality of components of the first parameter based on the fourth condition 13d.
  • the generation unit 15 may generate the 3D model data according to an inequality including a periodic function in which the coordinate value (x, y, z) is a variable and the value is determined depending on a plurality of components of the first parameter.
  • the ratio of the plurality of components of the first parameter is determined based on the anisotropy of the stress distribution applied to the structure 100, and 3D according to an inequality that includes a periodic function whose value depends on the plurality of components of the first parameter.
  • the determination unit 14 may determine the second parameter based on the stress distribution of the structure 100 such that the second parameter is smaller as the stress distribution is larger and the second parameter is larger as the stress distribution is smaller.
  • the generation unit 15 may generate the 3D model data according to an inequality in which a plurality of terms are weighted by the second parameter.
  • the second parameter is determined based on the stress distribution applied to the structure 100, and the 3D model data is generated according to the inequality in which a plurality of terms are weighted by the second parameter, so that the elasticity is obtained according to the applied stress distribution.
  • 3D model data of the structure 100 whose rate varies spatially is generated.
  • the storage unit 13 stores a fifth condition 13e relating the anisotropy of the stress distribution and the ratio of the values of the plurality of components of the second parameter. More specifically, the coordinate value in the orthogonal coordinate system is represented as (x, y, z), and the plurality of components of the second parameter are represented as Bx (x, y, z), By (x, y, z), Bz. (X, y, z), and when the vertical stress distribution of the structure 100 is expressed as ⁇ xx (x, y, z), ⁇ yy (x, y, z), ⁇ zz (x, y, z), the fifth The condition 13e is expressed by the following mathematical formula (14).
  • the determination unit 14 determines the ratio of the plurality of components of the second parameter according to the fifth condition 13e, and further Bx (x, y, z) ⁇ By (x, y, z) ⁇ Bz (x, y, z).
  • the generation unit 15 may generate 3D model data according to an inequality in which a plurality of terms are weighted by the second parameter.
  • a ratio of a plurality of components of the second parameter is determined based on anisotropy of a stress distribution applied to the structure, and the 3D model data is obtained according to an inequality in which a plurality of terms are weighted by the plurality of components of the second parameter.
  • Equation (9) The inequality used by the generation unit 15 to generate the 3D model will be described in more detail.
  • Equation (9) The inequality is expressed by Equation (9) above.
  • the layered modeling can be easily performed in the step of stacking the modeling materials, and the structure 100 in which the density distribution continuously changes due to the number of gaps is manufactured. .
  • the 3D model data generated by the 3D model generation apparatus 10 may include designation of a drawing width when stacking modeling materials.
  • the designation of the drawing width may change for each space coordinate value.
  • the designation of the drawing width designates the drawing width by the 3D printer 30 when the structure 100 is layered, and designates the cross-sectional width of the mesh structure of the structure 100.
  • the third parameter A (x, y, z) appearing on the right side of the inequality is a parameter that specifies the thickness of the network structure of the structure 100.
  • the generation unit 15 may generate the 3D model data according to a plurality of inequalities having different values of at least the first parameter.
  • the 3D printer 30 substitutes the value of z representing the height in the stacking direction into a plurality of inequalities having different parameter values, and stacks the modeling material at a location (x, y) that satisfies at least one of the inequalities. Will be.
  • 3D model data according to a plurality of inequalities 3D model data of the structure 100 in which a plurality of characteristics are superimposed can be generated.
  • FIG. 3 is a flowchart of processing for determining the first parameter executed by the 3D model generation device 10 according to the embodiment of the present invention.
  • the 3D model generation device 10 determines whether or not to directly specify the density distribution of the structure 100 (S10). The determination as to whether or not to directly specify the density distribution of the structure 100 may be made based on an instruction from the user terminal device 20.
  • the 3D model generation device 10 When directly specifying the density distribution of the structure 100 (S10: Yes), the 3D model generation device 10 receives the specification of the density distribution from the user terminal device 20 (S11). Thereafter, based on the first condition 13a, a geometric mean value of a plurality of components of the first parameter is determined (S12). Note that the 3D model generation apparatus 10 may perform coordinate conversion by the conversion unit 12 before determining the geometric mean value of the plurality of components of the first parameter.
  • the 3D model generation device 10 determines whether or not to specify the elastic modulus distribution of the structure 100 (S13). The determination as to whether or not to specify the elastic modulus distribution of the structure 100 may be made based on an instruction from the user terminal device 20.
  • the 3D model generation device 10 When designating the elastic modulus distribution of the structure 100 (S13: Yes), the 3D model generation device 10 receives designation of the elastic modulus distribution from the user terminal device 20 (S14). Thereafter, the ratio of the plurality of components of the first parameter is determined based on the third condition 13c (S15).
  • the 3D model generation device 10 receives the specification of the stress distribution from the user terminal device 20 (S16). Thereafter, the ratio of the plurality of components of the first parameter is determined based on the fourth condition 13d (S17).
  • the 3D model generation device 10 receives the designation of the stress distribution from the user terminal device 20 (S18). In this case, the 3D model generation device 10 calculates Mises stress based on the received stress distribution, and determines the geometric mean value of the plurality of components of the first parameter based on the second condition 13b (S19). Furthermore, the 3D model generation device 10 determines the ratio of the plurality of components of the first parameter based on the fourth condition 13d (S17). Note that the 3D model generation apparatus 10 may perform coordinate conversion by the conversion unit 12 before determining the geometric mean value of the plurality of components of the first parameter. Thus, the process for determining the first parameter ends.
  • FIG. 4 is a flowchart of a process for generating a 3D model executed by the 3D model generation apparatus 10 according to the embodiment of the present invention.
  • the process of generating the 3D model is a process performed after the process of determining the first parameter, and includes a process of determining the second parameter and a process of determining the third parameter.
  • the 3D model generation device 10 determines whether to specify a stress distribution (S20). The determination as to whether or not to specify the stress distribution may be made based on an instruction from the user terminal device 20.
  • the 3D model generation device 10 receives the stress distribution from the user terminal device 20 (S21). Thereafter, the 3D model generation device 10 determines a plurality of components of the second parameter based on the fifth condition 13e (S22).
  • the 3D model generation device 10 accepts designation of a plurality of components of the second parameter (S23). For example, it is possible to accept the designation that all the plurality of components of the second parameter are 1.
  • the 3D model generation device 10 receives the designation of the third parameter (S24). Also, designation of the drawing width when stacking the modeling materials is accepted (S25). The 3D model generation apparatus 10 generates 3D model data based on, for example, the inequality represented by Expression (15) using the parameters determined by the above processing (S26).
  • FIG. 5 is a perspective view of the 3D model M generated by the 3D model generation apparatus 10 according to the embodiment of the present invention. In the lower left of FIG. 5, the x axis, the y axis, and the z axis are shown.
  • FIG. 6 is a top view of the 3D model M generated by the 3D model generation apparatus 10 according to the embodiment of the present invention.
  • FIG. 6 illustrates the 3D model M from the z-axis direction, and the x-axis and the y-axis are illustrated in the upper left of FIG.
  • the 3D model M generates a structure 100 that is easily deformed in the x-axis direction but difficult to deform in the y-axis direction and the z-axis direction.
  • the structure 100 manufactured based on the 3D model M has the modeling material continuously present at an arbitrary cut surface. That is, there is no isolated point on any cut surface, and layered modeling is easy.
  • the structure 100 a gap exists between the modeling materials at any cut surface, and the gap communicates with the outside.
  • the structure 100 is constituted by a single continuous film-like structural material, and forms a three-dimensional network structure.
  • the distribution of the modeling material continuously changes.
  • the distribution of the modeling material may change discontinuously when the cut surface is continuously shifted in an arbitrary direction. Since the structure 100 does not discontinuously change the distribution of the modeling material when the cut surface is continuously shifted in an arbitrary direction, it is easy to ensure the strength when performing layered modeling.
  • the modeling material and the gap exist with a spatially changing period.
  • the spatially changing period of the modeling material and the gap is defined by the first parameter, and realizes the density distribution specified directly or indirectly.
  • FIG. 7 is a flowchart showing a method for manufacturing the structure 100 according to the embodiment of the present invention.
  • the manufacture of the structure 100 is executed by the 3D printer 30 based on the 3D model data generated by the 3D model generation apparatus 10.
  • the 3D printer 30 determines whether there is a coordinate (x, y) that satisfies the inequality given by the 3D model data (S32).
  • the inequality may be given by, for example, Expression (15).
  • the modeling material is stacked at the coordinate (x, y) with the drawing width specified by the 3D model data (S33). After the modeling material is laminated at the coordinates (x, y) and when there is no coordinate (x, y) that satisfies the inequality (S32: No), it is determined whether or not there is an update of the height z in the lamination direction ( S34).
  • the stacking direction height z is updated by a predetermined update width (S35).
  • the update width of the height z in the stacking direction may be set based on the rules of the 3D printer 30.
  • the 3D printer 30 repeats the above process, and if it is determined that the height z in the stacking direction has not been updated (S34: No), the process ends.
  • FIG. 8 is a diagram showing the structure 100 according to the embodiment of the present invention.
  • the modeling material of the structure 100 is a resin.
  • the structure 100 can be reduced in weight.
  • the structure 100 shown in FIG. 8 has a columnar shape, and is formed such that the period of the network structure is shorter as it approaches the end surface, and the period of the network structure is longer as it is closer to the center.
  • the gap in the center can be relatively increased, and the structure 100 having both strength and lightness can do.
  • it can be set as the structure suitable for rotational motion by making a network structure into circular symmetry.
  • the structure 100 may be one in which the surface of the modeling material is coated with a material different from the modeling material.
  • the modeling material is a resin
  • the structure 100 may have a metal, ceramic, or glass coating on the surface of the resin.
  • the structure 100 shown in FIG. 8 may be immersed in a plating agent and metal plating may be performed on the surface of the modeling material. In that way, it is difficult to realize the structure 100 alone by forming the skeleton of the structure 100 with a modeling material such as resin and covering the surface with a material different from the modeling material such as metal, ceramics, or glass.
  • a structure 100 having various characteristics can be obtained.
  • the structure 100 having high rigidity and light weight can be obtained by forming the skeleton of the structure 100 with a resin and covering the surface with a metal.
  • a coordinate value in the orthogonal coordinate system is represented as (x, y, z)
  • a plurality of components of the first parameter are represented by Tx (x, y, z), Ty (x, y, z), Tz (x, y).
  • Z a plurality of components of the second parameter are represented as Bx (x, y, z), By (x, y, z), Bz (x, y, z), and a third parameter of 0 or more is represented.
  • a (x, y, z) is represented, a periodic function of the period T is represented by F, a center coordinate of a predetermined voxel [i, j, k] is represented by (x i , y j , z k ),
  • W ijk the fourth parameter corresponding to the voxel [i, j, k]
  • the inequality for generating the 3D model data by the 3D model generation device 10 is: It may be expressed by the following mathematical formula (16).
  • the sum ⁇ i, j, k is performed over a predetermined voxel.
  • the structure The 3D model data can be generated so that the material and the void continuously exist at an appropriate period.
  • T 2 ⁇
  • an inequality for generating 3D model data by the 3D model generation apparatus 10 may be expressed by the following Expression (17).
  • D base is an average of D (x, y, z)
  • W base (x, y, z) 1 ⁇ i, j, k W ijk (x, y, z).
  • a three-dimensional rotation matrix R i, j, k is defined according to the direction in which the stress is applied, and is used in the inequality shown in Equation (16) or Equation (17).
  • the coordinate value may be replaced from (x, y, z) to R i, j, k (x, y, z) t .

Landscapes

  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

Provided is a 3D model generation device that generates 3D model data of a structure which has a cross-section shape that is suited to layered shaping and which has a density distribution that continuously changes according to the amount of voids. The 3D model generation device comprises: a determination unit that determines the value of a first parameter which varies spatially so that the value decreases as the density of a structure 100 increases and the value increases as the density decreases; and a generation unit that generates, in accordance with an inequality containing a periodic function in which the value is determined depending on the first parameter using a coordinate value that indicates a point in space as a variable, 3D model data which designates whether to layer a shaping material at the point in space.

Description

3Dモデル生成装置、3Dモデル生成方法、3Dモデル生成プログラム、構造物及び構造物を製造する方法3D model generation device, 3D model generation method, 3D model generation program, structure and method of manufacturing structure
 本発明は、3Dモデル生成装置、3Dモデル生成方法、3Dモデル生成プログラム、構造物及び構造物を製造する方法
に関する。
The present invention relates to a 3D model generation device, a 3D model generation method, a 3D model generation program, a structure, and a method for manufacturing the structure.
 従来、構造物の構造を応力分布等に応じて最適化するために、構造物の寸法や形状を最適化したり、構造物の穴の数等の位相(トポロジー)を最適化したりすることがある。 Conventionally, in order to optimize the structure of a structure according to the stress distribution etc., the size and shape of the structure may be optimized, or the phase (topology) such as the number of holes in the structure may be optimized. .
 下記特許文献1には、少なくとも1つの拘束点で拘束される樹脂成形品について熱変形を抑制するように、有限要素法と位相最適化処理とにより剛性構造を解析する設計支援装置が記載されている。 The following Patent Document 1 describes a design support device that analyzes a rigid structure by a finite element method and a phase optimization process so as to suppress thermal deformation of a resin molded product constrained at at least one restraint point. Yes.
特開2012-226630号公報JP 2012-226630 A
 近年、樹脂等の造形材を積層していくことで構造物を製造する、いわゆる3Dプリンタが普及し始めている。3Dプリンタを用いることで、射出成型や削り出し等では製造することが難しかった、3次元的に複雑な構造を持った構造物を製造することができる。 In recent years, so-called 3D printers, which manufacture structures by laminating molding materials such as resins, have begun to spread. By using a 3D printer, it is possible to manufacture a structure having a three-dimensionally complicated structure, which has been difficult to manufacture by injection molding or machining.
 3次元的に複雑な構造は、コンピュータを援用して設計されることがある。例えば、構造物の密度が連続的に変化するモデルを仮定して、応力分布等に応じて最適な密度分布を求めることがある。 ∙ A three-dimensionally complex structure may be designed with the aid of a computer. For example, assuming a model in which the density of a structure changes continuously, an optimal density distribution may be obtained according to a stress distribution or the like.
 しかしながら、最適な密度分布が求まった場合であっても、連続的に変化する密度分布を有するような構造物を現実に製造することは困難であった。また、最適な密度分布を近似的に再現するように肉抜きを行うことがあったが、そのような構造では期待した性能が得られない場合があった。また、近似的に肉抜きを行った構造は、断面に孤立点を有する場合があり、3Dプリンタによる製造に必ずしも適していないことがあった。 However, even when an optimum density distribution is obtained, it is difficult to actually manufacture a structure having a density distribution that continuously changes. In addition, the meat is often thinned so as to approximately reproduce the optimum density distribution. However, with such a structure, the expected performance may not be obtained. In addition, a structure that has been roughly cut out may have isolated points in the cross section, and may not always be suitable for manufacturing by a 3D printer.
 そこで、本発明は、積層造形に適した断面形状を有し、空隙の多寡により密度分布が連続的に変化する構造物の3Dモデルデータを生成する3Dモデル生成装置、3Dモデル生成方法、3Dモデル生成プログラム、構造物及び構造物を製造する方法を提供する。 Therefore, the present invention provides a 3D model generation apparatus, a 3D model generation method, and a 3D model, which generate 3D model data of a structure having a cross-sectional shape suitable for additive manufacturing and having a density distribution that continuously changes depending on the number of voids. A generation program, a structure, and a method for manufacturing the structure are provided.
 本発明の一態様に係る3Dモデル生成装置は、空間的に変化する第1パラメータの値を、構造物の密度が大きい箇所ほど小さく、密度が小さい箇所ほど大きくなるように決定する決定部と、空間点に造形材を積層するか否かを指定する3Dモデルデータを、空間点を表す座標値を変数とし、第1パラメータに依存して値が決まる周期関数を含む不等式に従って生成する生成部と、を備える。 The 3D model generation device according to one aspect of the present invention includes a determination unit that determines the value of the first parameter that changes spatially so that the value is smaller as the density of the structure is larger and as the density is smaller. A generating unit that generates 3D model data for specifying whether or not to stack a modeling material on a spatial point according to an inequality including a periodic function in which a coordinate value representing the spatial point is a variable and a value is determined depending on a first parameter; .
 この態様によれば、第1パラメータの値を構造物の密度に応じて決定し、第1パラメータに依存して値が決まる周期関数を含む不等式に従って3Dモデルデータを生成することで、積層造形に適した断面形状を有し、空隙の多寡により密度分布が連続的に変化する構造物の3Dモデルデータが生成される。 According to this aspect, the value of the first parameter is determined according to the density of the structure, and the 3D model data is generated according to the inequality including the periodic function whose value is determined depending on the first parameter. 3D model data of a structure having a suitable cross-sectional shape and having a density distribution that continuously changes depending on the number of voids is generated.
 上記態様において、第1パラメータは、複数の方向に対応する複数の成分を含み、決定部は、密度が大きい箇所ほど第1パラメータの複数の成分の相乗平均値が小さく、密度が小さい箇所ほど第1パラメータの複数の成分の相乗平均値が大きくなるように、密度と第1パラメータの複数の成分を関係付ける第1条件に基づいて、第1パラメータの複数の成分を決定し、生成部は、3Dモデルデータを、座標値を変数とし、第1パラメータの複数の成分に依存して値が決まる周期関数を含む不等式に従って生成してよい。 In the above aspect, the first parameter includes a plurality of components corresponding to a plurality of directions, and the determining unit determines that the higher the density is, the smaller the geometric mean value of the plurality of components of the first parameter is; The generating unit determines a plurality of components of the first parameter based on a first condition that relates the density and the plurality of components of the first parameter so that a geometric mean value of the plurality of components of one parameter increases. The 3D model data may be generated according to an inequality including a periodic function in which the coordinate value is a variable and the value is determined depending on a plurality of components of the first parameter.
 この態様によれば、第1パラメータの複数の成分の相乗平均値を構造物の密度に応じて決定し、第1パラメータの複数の成分に依存して値が決まる周期関数を含む不等式に従って3Dモデルデータを生成することで、密度を小さくしたい箇所ほど空隙が多く、密度を大きくしたい箇所ほど空隙が少ない構造物の3Dモデルデータが生成される。 According to this aspect, the geometric average value of the plurality of components of the first parameter is determined according to the density of the structure, and the 3D model is included according to the inequality including the periodic function whose value is determined depending on the plurality of components of the first parameter. By generating data, 3D model data of a structure having a larger number of voids at a portion where the density is desired to be reduced and a smaller number of voids at a portion where the density is desired to be increased is generated.
 上記態様において、直交座標系における座標値を(x,y,z)と表し、第1パラメータの複数の成分をTx(x,y,z)、Ty(x,y,z)、Tz(x,y,z)と表し、密度の分布をD(x,y,z)と表し、造形材を積層する際に造形可能な最小周期をTminと表すとき、第1条件は、 In the above aspect, the coordinate value in the orthogonal coordinate system is represented as (x, y, z), and the plurality of components of the first parameter are represented by Tx (x, y, z), Ty (x, y, z), Tz (x , Y, z), the density distribution is represented as D (x, y, z), and the minimum period that can be modeled when stacking the modeling material is expressed as T min .
Figure JPOXMLDOC01-appb-M000009
と表されてよい。
Figure JPOXMLDOC01-appb-M000009
It may be expressed as
 上記態様において、決定部は、構造物の応力分布から算出されるミーゼス応力が大きい箇所ほど第1パラメータの複数の成分の相乗平均値が小さく、ミーゼス応力が小さい箇所ほど第1パラメータの複数の成分の相乗平均値が大きくなるように、ミーゼス応力と第1パラメータの複数の成分を関係付ける第2条件に基づいて、第1パラメータの複数の成分を決定し、生成部は、3Dモデルデータを、座標値を変数とし、第1パラメータの複数の成分に依存して値が決まる周期関数を含む不等式に従って生成してもよい。 In the above aspect, the determining unit has a smaller geometric mean value of the plurality of components of the first parameter at a location where the Mises stress calculated from the stress distribution of the structure is large, and a plurality of components of the first parameter at a location where the Mises stress is small. The plurality of components of the first parameter are determined based on the second condition that relates the Mises stress and the plurality of components of the first parameter so that the geometric mean value of The coordinate value may be a variable, and may be generated according to an inequality including a periodic function whose value is determined depending on a plurality of components of the first parameter.
 この態様によれば、第1パラメータの複数の成分の相乗平均値を、構造物に加えられるミーゼス応力に応じて決定し、第1パラメータの複数の成分に依存して値が決まる周期関数を含む不等式に従って3Dモデルデータを生成することで、ミーゼス応力が小さい箇所ほど空隙が多く、ミーゼス応力が大きい箇所ほど空隙が少ない構造物の3Dモデルデータが生成される。 According to this aspect, the geometric mean value of the plurality of components of the first parameter is determined according to the Mises stress applied to the structure, and the periodic function whose value is determined depending on the plurality of components of the first parameter is included. By generating the 3D model data according to the inequality, 3D model data of a structure having a smaller gap at a portion where the Mises stress is smaller and a smaller void at a portion where the Mises stress is larger is generated.
 上記態様において、直交座標系における座標値を(x,y,z)と表し、第1パラメータの複数の成分をTx(x,y,z)、Ty(x,y,z)、Tz(x,y,z)と表し、ミーゼス応力をσvm(x,y,z)と表し、変換係数をR(σvm)と表すとき、第2条件は、 In the above aspect, the coordinate value in the orthogonal coordinate system is represented as (x, y, z), and the plurality of components of the first parameter are represented by Tx (x, y, z), Ty (x, y, z), Tz (x , Y, z), Mises stress is represented by σ vm (x, y, z), and the conversion coefficient is represented by R (σ vm ), the second condition is
Figure JPOXMLDOC01-appb-M000010
と表されてもよい。
Figure JPOXMLDOC01-appb-M000010
May be expressed.
 上記態様において、決定部は、構造物の弾性率分布の異方性及び第1パラメータの複数の成分の比を関係付ける第3条件に基づいて、第1パラメータの複数の成分を決定してもよい。 In the above aspect, the determination unit may determine the plurality of components of the first parameter based on the third condition relating the anisotropy of the elastic modulus distribution of the structure and the ratio of the plurality of components of the first parameter. Good.
 この態様によれば、第1パラメータの複数の成分の比を構造物の弾性率分布の異方性に基づいて決定し、第1パラメータの複数の成分に依存して値が決まる周期関数を含む不等式に従って3Dモデルデータを生成することで、所望の異方的な弾性率を有する構造物の3Dモデルデータが生成される。 According to this aspect, the ratio of the plurality of components of the first parameter is determined based on the anisotropy of the elastic modulus distribution of the structure, and the periodic function whose value is determined depending on the plurality of components of the first parameter is included. By generating 3D model data according to the inequality, 3D model data of a structure having a desired anisotropic elastic modulus is generated.
 上記態様において、弾性率分布の複数の垂直方向成分をKx(x,y,z)、Ky(x,y,z)、Kz(x,y,z)と表すとき、第3条件は、 In the above aspect, when the plurality of vertical components of the elastic modulus distribution are expressed as Kx (x, y, z), Ky (x, y, z), Kz (x, y, z), the third condition is
Figure JPOXMLDOC01-appb-M000011
と表されてもよい。
Figure JPOXMLDOC01-appb-M000011
May be expressed.
 上記態様において、決定部は、構造物の応力分布の異方性及び第1パラメータの複数の成分の比を関係付ける第4条件に基づいて、第1パラメータの複数の成分を決定してもよい。 In the above aspect, the determination unit may determine the plurality of components of the first parameter based on the fourth condition relating the anisotropy of the stress distribution of the structure and the ratio of the plurality of components of the first parameter. .
 この態様によれば、第1パラメータの複数の成分の比を、構造物に加えられる応力分布の異方性に基づいて決定し、第1パラメータの複数の成分に依存して値が決まる周期関数を含む不等式に従って3Dモデルデータを生成することで、加えられる応力が大きい方向ほど小さい弾性率を有する構造物の3Dモデルデータが生成される。 According to this aspect, the ratio of the plurality of components of the first parameter is determined based on the anisotropy of the stress distribution applied to the structure, and the periodic function whose value is determined depending on the plurality of components of the first parameter By generating 3D model data according to an inequality including, 3D model data of a structure having a smaller elastic modulus in a direction in which applied stress is larger is generated.
 上記態様において、構造物のせん断応力分布をσxy(x,y,z)、σyz(x,y,z)、σzx(x,y,z)と表すとき、第4条件は、 In the above aspect, when the shear stress distribution of the structure is expressed as σxy (x, y, z), σyz (x, y, z), σzx (x, y, z), the fourth condition is
Figure JPOXMLDOC01-appb-M000012
と表されてもよい。
Figure JPOXMLDOC01-appb-M000012
May be expressed.
 上記態様において、決定部は、構造物の応力分布に基づいて、応力分布が大きい箇所ほど第2パラメータが小さく、応力分布が小さい箇所ほど第2パラメータが大きくなるように、第2パラメータを決定し、生成部は、3Dモデルデータを、第2パラメータによって複数の項の重み付けがされた不等式に従って生成してもよい。 In the above aspect, the determining unit determines the second parameter based on the stress distribution of the structure so that the second parameter is smaller as the stress distribution is larger and the second parameter is larger as the stress distribution is smaller. The generation unit may generate the 3D model data according to an inequality in which a plurality of terms are weighted by the second parameter.
 この態様によれば、第2パラメータを、構造物に加えられる応力分布に基づいて決定し、第2パラメータによって複数の項の重み付けがされた不等式に従って3Dモデルデータを生成することで、加えられる応力分布に応じて弾性率が空間的に変化する構造物の3Dモデルデータが生成される。 According to this aspect, the second parameter is determined based on the stress distribution applied to the structure, and the 3D model data is generated according to the inequality in which the plurality of terms are weighted by the second parameter, thereby applying the applied stress. 3D model data of a structure whose elastic modulus changes spatially according to the distribution is generated.
 上記態様において、第2パラメータは、複数の方向に対応する複数の成分を含み、決定部は、応力分布の異方性及び第2パラメータの複数の成分の値の比を関係付ける第5条件に基づいて、第2パラメータの複数の成分を決定してもよい。 In the above aspect, the second parameter includes a plurality of components corresponding to a plurality of directions, and the determining unit determines whether the stress distribution anisotropy and the ratio of the values of the plurality of components of the second parameter are related to the fifth condition. Based on this, a plurality of components of the second parameter may be determined.
 この態様によれば、第2パラメータの複数の成分の比を、構造物に加えられる応力分布の異方性に基づいて決定し、第2パラメータの複数の成分によって複数の項の重み付けがされた不等式に従って3Dモデルデータを生成することで、加えられる応力分布の異方性に応じて弾性率が異方的に変化する構造物の3Dモデルデータが生成される。 According to this aspect, the ratio of the plurality of components of the second parameter is determined based on the anisotropy of the stress distribution applied to the structure, and the plurality of terms are weighted by the plurality of components of the second parameter. By generating the 3D model data according to the inequality, the 3D model data of the structure whose elastic modulus changes anisotropically according to the anisotropy of the applied stress distribution is generated.
 上記態様において、直交座標系における座標値を(x,y,z)と表し、第2パラメータの複数の成分をBx(x,y,z)、By(x,y,z)、Bz(x,y,z)と表し、構造物の垂直応力分布をσxx(x,y,z)、σyy(x,y,z)、σzz(x,y,z)と表すとき、第5条件は、 In the above aspect, the coordinate value in the orthogonal coordinate system is represented as (x, y, z), and the plurality of components of the second parameter are represented by Bx (x, y, z), By (x, y, z), Bz (x , Y, z), and when the vertical stress distribution of the structure is represented as σxx (x, y, z), σyy (x, y, z), σzz (x, y, z), the fifth condition is
Figure JPOXMLDOC01-appb-M000013
と表されてもよい。
Figure JPOXMLDOC01-appb-M000013
May be expressed.
 上記態様において、直交座標系における座標値を(x,y,z)と表し、第1パラメータの複数の成分をTx(x,y,z)、Ty(x,y,z)、Tz(x,y,z)と表し、周期Tの周期関数をFと表し、第2パラメータの複数の成分をBx(x,y,z)、By(x,y,z)、Bz(x,y,z)と表し、0以上の第3パラメータをA(x,y,z)と表すとき、不等式は、 In the above aspect, the coordinate value in the orthogonal coordinate system is represented as (x, y, z), and the plurality of components of the first parameter are represented by Tx (x, y, z), Ty (x, y, z), Tz (x , Y, z), a periodic function of the period T as F, and a plurality of components of the second parameter as Bx (x, y, z), By (x, y, z), Bz (x, y, z), and when the third parameter equal to or greater than 0 is represented as A (x, y, z), the inequality is
Figure JPOXMLDOC01-appb-M000014
と表されてもよい。
Figure JPOXMLDOC01-appb-M000014
May be expressed.
 上記態様において、3Dモデルデータは、造形材を積層する際の描画幅の指定を含んでよい。 In the above aspect, the 3D model data may include designation of a drawing width when stacking modeling materials.
 この態様によれば、描画幅の指定によって、造形材を積層する際の造形材の幅を指定することができ、第1パラメータ等とは異なる観点で構造物の密度を調整することができる。 According to this aspect, the width of the modeling material when the modeling materials are stacked can be specified by specifying the drawing width, and the density of the structure can be adjusted from a viewpoint different from the first parameter and the like.
 上記態様において、生成部は、3Dモデルデータを、少なくとも第1パラメータの値が異なる複数の不等式に従って生成してもよい。 In the above aspect, the generation unit may generate the 3D model data according to a plurality of inequalities having different values of at least the first parameter.
 この態様によれば、複数の不等式に従って3Dモデルデータを生成することで、複数の特性が重ね合わされた構造物の3Dモデルデータを生成することができる。 According to this aspect, by generating 3D model data according to a plurality of inequalities, it is possible to generate 3D model data of a structure in which a plurality of characteristics are superimposed.
 上記態様において、周期関数は、正弦波又は三角波を表す関数であってよい。 In the above aspect, the periodic function may be a function representing a sine wave or a triangular wave.
 上記態様において、決定部により第1パラメータの値を決定する前に、座標変換を行う変換部をさらに備えてもよい。 In the above aspect, a conversion unit that performs coordinate conversion may be further provided before the value of the first parameter is determined by the determination unit.
 上記態様において、変換部は、構造物の応力分布を対角化するように座標変換を行ってもよい。 In the above aspect, the conversion unit may perform coordinate conversion so as to diagonalize the stress distribution of the structure.
 本発明の他の態様に係る3Dモデル生成方法は、空間的に変化する第1パラメータの値を、構造物の密度が大きい箇所ほど小さく、密度が小さい箇所ほど大きくなるように決定するステップと、空間点に造形材を積層するか否かを指定する3Dモデルデータを、空間点を表す座標値を変数とし、第1パラメータに依存して値が決まる周期関数を含む不等式に従って生成するステップと、を含む。 In the 3D model generation method according to another aspect of the present invention, the step of determining the value of the first parameter that varies spatially is such that the smaller the density of the structure is, the larger the density is. Generating 3D model data for designating whether or not to stack a modeling material on a spatial point according to an inequality including a periodic function whose value depends on a first parameter, with coordinate values representing the spatial point as variables. including.
 この態様によれば、第1パラメータの値を構造物の密度に応じて決定し、第1パラメータに依存して値が決まる周期関数を含む不等式に従って3Dモデルデータを生成することで、積層造形に適した断面形状を有し、空隙の多寡により密度分布が連続的に変化する構造物の3Dモデルデータが生成される。 According to this aspect, the value of the first parameter is determined according to the density of the structure, and the 3D model data is generated according to the inequality including the periodic function whose value is determined depending on the first parameter. 3D model data of a structure having a suitable cross-sectional shape and having a density distribution that continuously changes depending on the number of voids is generated.
 本発明の他の態様に係る3Dモデル生成プログラムは、3Dモデル生成装置に備えられたコンピュータを、空間的に変化する第1パラメータの値を、構造物の密度が大きい箇所ほど小さく、密度が小さい箇所ほど大きくなるように決定する決定部、及び空間点に造形材を積層するか否かを指定する3Dモデルデータを、空間点を表す座標値を変数とし、第1パラメータに依存して値が決まる周期関数を含む不等式に従って生成する生成部、として機能させる。 A 3D model generation program according to another aspect of the present invention is such that a computer provided in a 3D model generation apparatus has a smaller first parameter value that varies spatially as the density of a structure increases, and the density decreases. A decision unit that decides to be larger as a location, and 3D model data that specifies whether or not to stack a modeling material on a spatial point, a coordinate value representing the spatial point as a variable, and a value depending on the first parameter It functions as a generation unit that generates according to an inequality including a determined periodic function.
 この態様によれば、第1パラメータの値を構造物の密度に応じて決定し、第1パラメータに依存して値が決まる周期関数を含む不等式に従って3Dモデルデータを生成することで、積層造形に適した断面形状を有し、空隙の多寡により密度分布が連続的に変化する構造物の3Dモデルデータが生成される。 According to this aspect, the value of the first parameter is determined according to the density of the structure, and the 3D model data is generated according to the inequality including the periodic function whose value is determined depending on the first parameter. 3D model data of a structure having a suitable cross-sectional shape and having a density distribution that continuously changes depending on the number of voids is generated.
 本発明の他の態様に係る構造物は、直交座標系における座標値を(x,y,z)と表し、第1パラメータの複数の成分をTx(x,y,z)、Ty(x,y,z)、Tz(x,y,z)と表し、周期Tの周期関数をFと表し、第2パラメータの複数の成分をBx(x,y,z)、By(x,y,z)、Bz(x,y,z)と表し、0以上の第3パラメータをA(x,y,z)と表すとき、不等式 In the structure according to another aspect of the present invention, the coordinate value in the orthogonal coordinate system is represented as (x, y, z), and the plurality of components of the first parameter are represented by Tx (x, y, z), Ty (x, y, z), Tz (x, y, z), a periodic function of the period T as F, and a plurality of components of the second parameter as Bx (x, y, z), By (x, y, z). ), Bz (x, y, z), and when the third parameter of 0 or more is represented as A (x, y, z), the inequality
Figure JPOXMLDOC01-appb-M000015
を満たす箇所に造形材が存在し、不等式を満たさない箇所に空隙がある。
Figure JPOXMLDOC01-appb-M000015
There is a modeling material in a location that satisfies the condition, and there is a void in a location that does not satisfy the inequality.
 この態様によれば、積層造形に適した断面形状を有し、空隙の多寡により密度分布が連続的に変化する構造物が形成される。 According to this aspect, a structure having a cross-sectional shape suitable for additive manufacturing and having a density distribution continuously changing due to the number of voids is formed.
 本発明の他の態様に係る構造物は、任意の切断面において、造形材が連続して存在し、切断面において、造形材の間に空隙が存在して、空隙が外部に通じており、切断面を任意の方向に連続的にずらした場合に、造形材の分布が連続的に変化し、造形材及び空隙は、空間的に変化する周期で存在している。 In the structure according to another aspect of the present invention, in any cut surface, the modeling material is continuously present, and in the cut surface, there is a gap between the modeling materials, and the gap is open to the outside. When the cut surface is continuously shifted in an arbitrary direction, the distribution of the modeling material continuously changes, and the modeling material and the gap exist in a spatially changing period.
 この態様によれば、積層造形に適した断面形状を有し、空隙の多寡により密度分布が連続的に変化する構造物が形成される。 According to this aspect, a structure having a cross-sectional shape suitable for additive manufacturing and having a density distribution continuously changing due to the number of voids is formed.
 上記態様において、造形材の表面に造形材とは異なる材料による被膜が施されていてよい。 In the above aspect, the surface of the modeling material may be coated with a material different from the modeling material.
 この態様によれば、構造物の骨格を造形材で形成し、表面を造形材とは異なる材料で覆うことで、造形材のみでは実現が困難な多様な特性を有する構造物が得られる。 According to this aspect, by forming the skeleton of the structure with the modeling material and covering the surface with a material different from the modeling material, it is possible to obtain a structure having various characteristics that are difficult to realize with only the modeling material.
 本発明の他の態様に係る構造物を製造する方法は、積層方向をzとする直交座標系における座標値を(x,y,z)と表し、第1パラメータの複数の成分をTx(x,y,z)、Ty(x,y,z)、Tz(x,y,z)と表し、周期Tの周期関数をFと表し、第2パラメータの複数の成分をBx(x,y,z)、By(x,y,z)、Bz(x,y,z)と表し、0以上の第3パラメータをA(x,y,z)と表すとき、積層方向の高さを表すzの値を不等式 In the method of manufacturing a structure according to another aspect of the present invention, a coordinate value in an orthogonal coordinate system in which the stacking direction is z is represented as (x, y, z), and a plurality of components of the first parameter are represented by Tx (x , Y, z), Ty (x, y, z), Tz (x, y, z), a periodic function of the period T as F, and a plurality of components of the second parameter as Bx (x, y, z). z), By (x, y, z), Bz (x, y, z), and z representing the height in the stacking direction when the third parameter of 0 or more is represented as A (x, y, z). The value of the inequality
Figure JPOXMLDOC01-appb-M000016
に代入し、不等式を満たす(x,y)の箇所に造形材を積層するステップを含む。
Figure JPOXMLDOC01-appb-M000016
And the step of laminating a modeling material at a location (x, y) that satisfies the inequality is included.
 この態様によれば、上記不等式に従って構造物を製造することで、造形材を積層するステップにおいて積層造形を容易に行うことができ、空隙の多寡により密度分布が連続的に変化する構造物が製造される。 According to this aspect, by manufacturing the structure according to the above inequality, the layered modeling can be easily performed in the step of stacking the modeling material, and the structure in which the density distribution continuously changes due to the number of gaps is manufactured. Is done.
 本発明によれば、積層造形に適した断面形状を有し、空隙の多寡により密度分布が連続的に変化する構造物の3Dモデルデータを生成する3Dモデル生成装置、3Dモデル生成方法、3Dモデル生成プログラム、構造物及び構造物を製造する方法を提供することができる。 According to the present invention, a 3D model generation apparatus, a 3D model generation method, and a 3D model that generate 3D model data of a structure that has a cross-sectional shape suitable for additive manufacturing and whose density distribution continuously changes due to the number of voids. A generation program, a structure, and a method for manufacturing the structure can be provided.
本発明の実施形態に係る3Dモデル生成装置のネットワーク構成図である。It is a network block diagram of the 3D model production | generation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る3Dモデル生成装置の機能ブロック図である。It is a functional block diagram of the 3D model production | generation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る3Dモデル生成装置により実行される第1パラメータを決定する処理のフローチャートである。It is a flowchart of the process which determines the 1st parameter performed by the 3D model production | generation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る3Dモデル生成装置により実行される3Dモデルを生成する処理のフローチャートである。It is a flowchart of the process which produces | generates the 3D model performed by the 3D model production | generation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る3Dモデル生成装置により生成された3Dモデルの斜視図である。It is a perspective view of the 3D model produced | generated by the 3D model production | generation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る3Dモデル生成装置により生成された3Dモデルの上面図である。It is a top view of the 3D model produced | generated by the 3D model production | generation apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る構造物の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the structure which concerns on embodiment of this invention. 本発明の実施形態に係る構造物を示す図である。It is a figure which shows the structure which concerns on embodiment of this invention.
 添付図面を参照して、本発明の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。 Embodiments of the present invention will be described with reference to the accompanying drawings. In addition, in each figure, what attached | subjected the same code | symbol has the same or similar structure.
 図1は、本発明の実施形態に係る3Dモデル生成装置10のネットワーク構成図である。3Dモデル生成装置10は、構造物100を3Dプリンタ30によって積層造形するための3Dモデルを生成する。3Dモデル(3次元モデル)は、構造物100の3次元的な構造を示すモデルであり、任意のデータ形式で記述されてよく、3Dプリンタ30の設定に関するデータを含んでもよい。3Dモデル生成装置10は、少なくとも1のメモリ及び少なくとも1のハードウェアプロセッサを備えた、汎用又は専用のコンピュータで構成されてよく、メモリに記憶された3Dモデル生成プログラムに従って、構造物100の3Dモデルを生成する。 FIG. 1 is a network configuration diagram of a 3D model generation apparatus 10 according to an embodiment of the present invention. The 3D model generation device 10 generates a 3D model for layered modeling of the structure 100 by the 3D printer 30. The 3D model (three-dimensional model) is a model indicating the three-dimensional structure of the structure 100, and may be described in an arbitrary data format and may include data related to settings of the 3D printer 30. The 3D model generation device 10 may be configured by a general-purpose or dedicated computer including at least one memory and at least one hardware processor, and the 3D model of the structure 100 according to the 3D model generation program stored in the memory. Is generated.
 3Dモデル生成装置10は、通信ネットワークNに接続され、ユーザ端末装置20からの指示に応じて3Dモデルを生成し、3Dプリンタ30に3Dモデルを提供する。なお、3Dモデル生成装置10は、ユーザ端末装置20と一体で構成されてもよいし、3Dプリンタ30と一体で構成されてもよい。 The 3D model generation device 10 is connected to the communication network N, generates a 3D model in response to an instruction from the user terminal device 20, and provides the 3D model to the 3D printer 30. Note that the 3D model generation device 10 may be configured integrally with the user terminal device 20 or may be configured integrally with the 3D printer 30.
 ユーザ端末装置20は、コンピュータ端末であり、例えばパーソナルコンピュータやスマートフォンであってよい。3Dプリンタ30は、積層材を積層して構造物100を製造する。3Dプリンタ30は、構造物100を積層造形するものであればよく、積層の方法は任意であり、制限されない。 The user terminal device 20 is a computer terminal, and may be a personal computer or a smartphone, for example. The 3D printer 30 manufactures the structure 100 by laminating laminated materials. The 3D printer 30 only needs to be capable of layering the structure 100, and the method of layering is arbitrary and is not limited.
 図2は、本発明の実施形態に係る3Dモデル生成装置10の機能ブロック図である。3Dモデル生成装置10は、受信部11、変換部12、記憶部13、決定部14及び生成部15を備える。受信部11は、ユーザ端末装置20から、3Dモデルを生成する指示を受け付けたり、3Dモデルを生成するための条件を受け付けたりする。3Dモデルを生成するための条件は、構造物100が備えるべき密度分布の指定、構造物100に加えられる応力分布の指定及び構造物が備えるべき弾性率分布の指定のうち全部又は一部を含んでよい。 FIG. 2 is a functional block diagram of the 3D model generation apparatus 10 according to the embodiment of the present invention. The 3D model generation device 10 includes a reception unit 11, a conversion unit 12, a storage unit 13, a determination unit 14, and a generation unit 15. The receiving unit 11 receives an instruction to generate a 3D model from the user terminal device 20 or receives a condition for generating a 3D model. The conditions for generating the 3D model include all or part of the designation of the density distribution that the structure 100 should have, the designation of the stress distribution applied to the structure 100, and the designation of the elastic modulus distribution that the structure should have. It's okay.
 変換部12は、決定部14により第1パラメータの値を決定する前に、座標変換を行う。ここで、変換部12は、構造物100の応力分布を対角化するように座標変換を行ってよい。すなわち、変換部12は、座標軸が構造物100の主応力軸に一致するように座標変換を行ってよい。また、変換部12は、構造物100の弾性率分布の複数の成分のうち特定の成分を0とするように座標変換を行ってもよい。 The conversion unit 12 performs coordinate conversion before the determination unit 14 determines the value of the first parameter. Here, the conversion unit 12 may perform coordinate conversion so as to diagonalize the stress distribution of the structure 100. That is, the conversion unit 12 may perform coordinate conversion so that the coordinate axis coincides with the main stress axis of the structure 100. Further, the conversion unit 12 may perform coordinate conversion so that a specific component among the plurality of components of the elastic modulus distribution of the structure 100 is zero.
 決定部14は、空間的に変化する第1パラメータの値を、構造物100の密度が大きい箇所ほど小さく、密度が小さい箇所ほど大きくなるように決定する。ここで、第1パラメータは、空間の複数の方向に対応する複数の成分を含んでよい。本実施形態に係る3Dモデル生成装置10は、構造物100が備えるべき特性をユーザ端末装置20から受け付けて、当該特性を実現するように種々のパラメータを決定し、決定したパラメータに基づいて3Dモデルを生成する。第1パラメータは、そのような種々のパラメータのうちの1種類である。 The determination unit 14 determines the value of the first parameter that varies spatially so that it is smaller as the density of the structure 100 is higher, and is higher as the density is lower. Here, the first parameter may include a plurality of components corresponding to a plurality of directions in the space. The 3D model generation device 10 according to the present embodiment receives the characteristics that the structure 100 should have from the user terminal device 20, determines various parameters so as to realize the characteristics, and based on the determined parameters, the 3D model Is generated. The first parameter is one type of such various parameters.
 生成部15は、空間点に造形材を積層するか否かを指定する3Dモデルデータを、空間点を表す座標値を変数とし、第1パラメータに依存して値が決まる周期関数を含む不等式に従って生成する。生成部15は、ジャイロイドと呼ばれる曲面を変形することで、3Dモデルデータを生成する。ここで、ジャイロイドとは、無限に連結した、3方向に周期性を有する極小曲面である。ジャイロイドは、直交座標系における座標値を(x,y,z)と表すとき、sin(x)cos(y)+sin(y)cos(z)+sin(z)cos(x)=0という陰伏方程式によって近似的に表される。 The generation unit 15 uses 3D model data for designating whether or not a modeling material is laminated at a spatial point, a coordinate function representing the spatial point as a variable, and an inequality including a periodic function whose value is determined depending on the first parameter. Generate. The generation unit 15 generates 3D model data by deforming a curved surface called a gyroid. Here, the gyroid is a minimally curved surface having periodicity in three directions connected infinitely. When the coordinate value in the Cartesian coordinate system is expressed as (x, y, z), the gyroid is implicitly expressed as sin (x) cos (y) + sin (y) cos (z) + sin (z) cos (x) = 0. Approximately expressed by a yield equation.
 本実施形態に係る3Dモデル生成装置10は、ジャイロイドを表す陰伏方程式を変形した不等式を用いて、3Dモデルデータを生成する。より具体的には、サイン関数やコサイン関数の周期を、空間的に変化する第1パラメータに置き換え、ジャイロイドを表す陰伏方程式の3つの項の重み付けを、空間的に変化する第2パラメータに置き換え、ジャイロイドを表す陰伏方程式の等号を不等号に置き換え、ジャイロイドを表す陰伏方程式の右辺を空間的に変化する第3パラメータに置き換え、サイン関数やコサイン関数を一般の周期関数に置き換えることで、ジャイロイドを表す陰伏方程式を変形して、3Dモデルデータを生成するための不等式を得る。 The 3D model generation apparatus 10 according to the present embodiment generates 3D model data using an inequality obtained by modifying an implicit equation representing a gyroid. More specifically, the period of the sine function or cosine function is replaced with a first parameter that changes spatially, and the weighting of the three terms of the implicit equation representing the gyroidal is changed to a second parameter that changes spatially. Replace the equal sign of the implicit equation representing the gyroidal with an inequality sign, replace the right side of the implicit equation representing the gyroidal with a spatially changing third parameter, and replace the sine and cosine functions with a general periodic function Thus, the inequality for generating the 3D model data is obtained by transforming the implicit equation representing the gyroid.
 さらに具体的には、直交座標系における座標値を(x,y,z)と表し、第1パラメータの複数の成分をTx(x,y,z)、Ty(x,y,z)、Tz(x,y,z)と表し、第2パラメータの複数の成分をBx(x,y,z)、By(x,y,z)、Bz(x,y,z)と表し、0以上の第3パラメータをA(x,y,z)と表し、周期Tの周期関数をFと表すとき、本実施形態に係る3Dモデル生成装置10によって3Dモデルデータを生成するための不等式は、以下の数式(9)で表される。 More specifically, the coordinate value in the orthogonal coordinate system is expressed as (x, y, z), and the plurality of components of the first parameter are expressed as Tx (x, y, z), Ty (x, y, z), Tz. (X, y, z), and a plurality of components of the second parameter are represented as Bx (x, y, z), By (x, y, z), Bz (x, y, z), and zero or more When the third parameter is represented as A (x, y, z) and the periodic function of the period T is represented as F, the inequality for generating 3D model data by the 3D model generation apparatus 10 according to the present embodiment is as follows: It is expressed by Equation (9).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 第1パラメータの値を構造物100の密度に応じて決定し、第1パラメータに依存して値が決まる周期関数を含む不等式に従って3Dモデルデータを生成することで、積層造形に適した断面形状を有し、空隙の多寡により密度分布が連続的に変化する構造物100の3Dモデルデータが生成される。 By determining the value of the first parameter according to the density of the structure 100 and generating 3D model data according to an inequality including a periodic function whose value is determined depending on the first parameter, a cross-sectional shape suitable for additive manufacturing is obtained. And 3D model data of the structure 100 in which the density distribution continuously changes depending on the number of voids.
 記憶部13は、構造物100の密度が大きい箇所ほど第1パラメータの複数の成分の相乗平均値が小さく、密度が小さい箇所ほど第1パラメータの複数の成分の相乗平均値が大きくなるように、密度と第1パラメータの複数の成分を関係付ける第1条件13aを記憶する。より具体的には、直交座標系における座標値を(x,y,z)と表し、第1パラメータの複数の成分をTx(x,y,z)、Ty(x,y,z)、Tz(x,y,z)と表し、構造物100の密度の分布をD(x,y,z)と表し、造形材を積層する際に造形可能な最小周期をTminと表すとき、第1条件13aは、以下の数式(10)で表される。 The storage unit 13 is configured such that the geometric mean value of the plurality of components of the first parameter is smaller as the density of the structure 100 is higher, and the geometric average value of the components of the first parameter is larger as the density is lower. A first condition 13a relating the density and a plurality of components of the first parameter is stored. More specifically, the coordinate value in the orthogonal coordinate system is expressed as (x, y, z), and the plurality of components of the first parameter are expressed as Tx (x, y, z), Ty (x, y, z), Tz. It is expressed as (x, y, z), the density distribution of the structure 100 is expressed as D (x, y, z), and the minimum period that can be modeled when stacking modeling materials is expressed as T min . The condition 13a is expressed by the following mathematical formula (10).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
 なお、造形材を積層する際に造形可能な最小周期をTminは、3Dプリンタ30の性能によって規定される値であるが、ユーザが指定することとしてもよい。決定部14は、第1条件13aに基づいて、第1パラメータの複数の成分を決定してよい。また、生成部15は、3Dモデルデータを、座標値(x,y,z)を変数とし、第1パラメータの複数の成分に依存して値が決まる周期関数を含む不等式に従って生成してよい。 Incidentally, T min the minimum period possible shaping when stacking the modeling material is a value defined by the performance of the 3D printer 30, it is also possible for the user to specify. The determination unit 14 may determine a plurality of components of the first parameter based on the first condition 13a. The generation unit 15 may generate the 3D model data according to an inequality including a periodic function in which the coordinate value (x, y, z) is a variable and the value is determined depending on a plurality of components of the first parameter.
 第1パラメータの複数の成分の相乗平均値を構造物100の密度に応じて決定し、第1パラメータの複数の成分に依存して値が決まる周期関数を含む不等式に従って3Dモデルデータを生成することで、密度を小さくしたい箇所ほど空隙が多く、密度を大きくしたい箇所ほど空隙が少ない構造物の3Dモデルデータが生成される。 A geometric mean value of a plurality of components of the first parameter is determined according to the density of the structure 100, and 3D model data is generated according to an inequality including a periodic function whose value depends on the plurality of components of the first parameter. Thus, 3D model data of a structure having a larger number of voids in a portion where the density is desired to be reduced and a smaller number of voids in a portion where the density is desired to be increased is generated.
 記憶部13は、構造物100の応力分布から算出されるミーゼス応力が大きい箇所ほど第1パラメータの複数の成分の相乗平均値が小さく、ミーゼス応力が小さい箇所ほど第1パラメータの複数の成分の相乗平均値が大きくなるように、ミーゼス応力と第1パラメータの複数の成分を関係付ける第2条件13bを記憶する。より具体的には、直交座標系における座標値を(x,y,z)と表し、第1パラメータの複数の成分をTx(x,y,z)、Ty(x,y,z)、Tz(x,y,z)と表し、ミーゼス応力をσvm(x,y,z)と表し、変換係数をR(σvm)と表すとき、第2条件13bは、以下の数式(11)で表される。なお、ミーゼス応力σvmとは、主応力をσ,σ,σと表すとき、σvm=[(σ-σ+(σ-σ+(σ-σ]/2で表されるスカラーである。また、変換係数R(σvm)は、ミーゼス応力σvmの関数であってよい。 The storage unit 13 has a smaller geometric mean value of a plurality of components of the first parameter at a location where the Mises stress calculated from the stress distribution of the structure 100 is larger, and a synergy of the components of the first parameter at a location where the Mises stress is smaller. A second condition 13b that associates the Mises stress with a plurality of components of the first parameter is stored so that the average value becomes large. More specifically, the coordinate value in the orthogonal coordinate system is expressed as (x, y, z), and the plurality of components of the first parameter are expressed as Tx (x, y, z), Ty (x, y, z), Tz. When expressed as (x, y, z), Mises stress is expressed as σ vm (x, y, z), and conversion coefficient is expressed as R (σ vm ), the second condition 13b is expressed by the following formula (11). expressed. The Mises stress σ vm refers to σ vm = [(σ 1 −σ 2 ) 2 + (σ 2 −σ 3 ) 2 + (σ 3 −) when principal stresses are expressed as σ 1 , σ 2 , and σ 3. It is a scalar represented by σ 1 ) 2 ] / 2. Further, the conversion coefficient R (σ vm ) may be a function of the Mises stress σ vm .
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
 なお、3Dプリンタ30の分解能に応じて、数式(11)の右辺に上限値及び下限値を設けてもよい。決定部14は、第2条件13bに基づいて、第1パラメータの複数の成分を決定してよい。また、生成部15は、3Dモデルデータを、座標値(x,y,z)を変数とし、第1パラメータの複数の成分に依存して値が決まる周期関数を含む不等式に従って生成してよい。 It should be noted that an upper limit value and a lower limit value may be provided on the right side of Equation (11) according to the resolution of the 3D printer 30. The determination unit 14 may determine a plurality of components of the first parameter based on the second condition 13b. The generation unit 15 may generate the 3D model data according to an inequality including a periodic function in which the coordinate value (x, y, z) is a variable and the value is determined depending on a plurality of components of the first parameter.
 第1パラメータの複数の成分の相乗平均値を、構造物100に加えられるミーゼス応力に応じて決定し、第1パラメータの複数の成分に依存して値が決まる周期関数を含む不等式に従って3Dモデルデータを生成することで、ミーゼス応力が小さい箇所ほど空隙が多く、ミーゼス応力が大きい箇所ほど空隙が少ない構造物100の3Dモデルデータが生成される。 The geometric mean value of the plurality of components of the first parameter is determined according to the Mises stress applied to the structure 100, and the 3D model data according to an inequality including a periodic function whose value is determined depending on the plurality of components of the first parameter By generating the 3D model data of the structure 100, the portion having a smaller Mises stress has more voids and the portion having a larger Mises stress has fewer voids.
 記憶部13は、構造物100の弾性率分布の異方性及び第1パラメータの複数の成分の比を関係付ける第3条件13cを記憶する。より具体的には、弾性率分布の複数の垂直方向成分をKx(x,y,z)、Ky(x,y,z)、Kz(x,y,z)と表すとき、第3条件13cは、以下の数式(12)で表される。 The storage unit 13 stores a third condition 13c that relates the anisotropy of the elastic modulus distribution of the structure 100 and the ratio of the plurality of components of the first parameter. More specifically, when the plurality of vertical components of the elastic modulus distribution are expressed as Kx (x, y, z), Ky (x, y, z), Kz (x, y, z), the third condition 13c Is represented by the following formula (12).
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
 なお、第1パラメータの複数の成分には、それぞれ上限値及び下限値を設定してもよい。当該上限値及び下限値は、3Dプリンタ30の分解能によって決定されてよい。決定部14は、第3条件に基づいて、第1パラメータの複数の成分を決定してよい。また、生成部15は、3Dモデルデータを、座標値(x,y,z)を変数とし、第1パラメータの複数の成分に依存して値が決まる周期関数を含む不等式に従って生成してよい。 Note that an upper limit value and a lower limit value may be set for each of the plurality of components of the first parameter. The upper limit value and the lower limit value may be determined by the resolution of the 3D printer 30. The determination unit 14 may determine a plurality of components of the first parameter based on the third condition. The generation unit 15 may generate the 3D model data according to an inequality including a periodic function in which the coordinate value (x, y, z) is a variable and the value is determined depending on a plurality of components of the first parameter.
 第1パラメータの複数の成分の比を構造物100の弾性率分布の異方性に基づいて決定し、第1パラメータの複数の成分に依存して値が決まる周期関数を含む不等式に従って3Dモデルデータを生成することで、所望の異方的な弾性率を有する構造物100の3Dモデルデータが生成される。 The ratio of the plurality of components of the first parameter is determined based on the anisotropy of the elastic modulus distribution of the structure 100, and the 3D model data according to an inequality including a periodic function whose value depends on the plurality of components of the first parameter Is generated, 3D model data of the structure 100 having a desired anisotropic elastic modulus is generated.
 記憶部13は、構造物100の応力分布の異方性及び第1パラメータの複数の成分の比を関係付ける第4条件13dを記憶する。より具体的には、構造物100のせん断応力分布をσxy(x,y,z)、σyz(x,y,z)、σzx(x,y,z)と表すとき、第4条件13dは、以下の数式(13)で表される。 The storage unit 13 stores a fourth condition 13d that relates the anisotropy of the stress distribution of the structure 100 and the ratio of the plurality of components of the first parameter. More specifically, when the shear stress distribution of the structure 100 is expressed as σxy (x, y, z), σyz (x, y, z), σzx (x, y, z), the fourth condition 13d is: It is represented by the following formula (13).
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 決定部14は、第4条件13dに基づいて、第1パラメータの複数の成分を決定してよい。また、生成部15は、3Dモデルデータを、座標値(x,y,z)を変数とし、第1パラメータの複数の成分に依存して値が決まる周期関数を含む不等式に従って生成してよい。 The determination unit 14 may determine a plurality of components of the first parameter based on the fourth condition 13d. The generation unit 15 may generate the 3D model data according to an inequality including a periodic function in which the coordinate value (x, y, z) is a variable and the value is determined depending on a plurality of components of the first parameter.
 第1パラメータの複数の成分の比を、構造物100に加えられる応力分布の異方性に基づいて決定し、第1パラメータの複数の成分に依存して値が決まる周期関数を含む不等式に従って3Dモデルデータを生成することで、加えられる応力が大きい方向ほど小さい弾性率を有する構造物100の3Dモデルデータが生成される。すなわち、加えられる応力が大きい方向ほど硬く、加えられる応力が小さい方向ほど柔らかい構造物100の3Dモデルデータが生成される。これにより、応力に耐えられる十分な硬さを備え、軽量な構造物100を製造することができる。 The ratio of the plurality of components of the first parameter is determined based on the anisotropy of the stress distribution applied to the structure 100, and 3D according to an inequality that includes a periodic function whose value depends on the plurality of components of the first parameter. By generating model data, 3D model data of the structure 100 having a smaller elastic modulus in a direction in which applied stress is larger is generated. That is, 3D model data of the structure 100 is generated that is harder in the direction in which the applied stress is larger and softer in the direction in which the applied stress is smaller. As a result, a lightweight structure 100 having sufficient hardness to withstand stress can be manufactured.
 決定部14は、構造物100の応力分布に基づいて、応力分布が大きい箇所ほど第2パラメータが小さく、応力分布が小さい箇所ほど第2パラメータが大きくなるように、第2パラメータを決定してよい。また、生成部15は、3Dモデルデータを、第2パラメータによって複数の項の重み付けがされた不等式に従って生成してよい。 The determination unit 14 may determine the second parameter based on the stress distribution of the structure 100 such that the second parameter is smaller as the stress distribution is larger and the second parameter is larger as the stress distribution is smaller. . The generation unit 15 may generate the 3D model data according to an inequality in which a plurality of terms are weighted by the second parameter.
 第2パラメータを、構造物100に加えられる応力分布に基づいて決定し、第2パラメータによって複数の項の重み付けがされた不等式に従って3Dモデルデータを生成することで、加えられる応力分布に応じて弾性率が空間的に変化する構造物100の3Dモデルデータが生成される。 The second parameter is determined based on the stress distribution applied to the structure 100, and the 3D model data is generated according to the inequality in which a plurality of terms are weighted by the second parameter, so that the elasticity is obtained according to the applied stress distribution. 3D model data of the structure 100 whose rate varies spatially is generated.
 記憶部13は、応力分布の異方性及び第2パラメータの複数の成分の値の比を関係付ける第5条件13eを記憶する。より具体的には、直交座標系における座標値を(x,y,z)と表し、第2パラメータの複数の成分をBx(x,y,z)、By(x,y,z)、Bz(x,y,z)と表し、構造物100の垂直応力分布をσxx(x,y,z)、σyy(x,y,z)、σzz(x,y,z)と表すとき、第5条件13eは、以下の数式(14)で表される。 The storage unit 13 stores a fifth condition 13e relating the anisotropy of the stress distribution and the ratio of the values of the plurality of components of the second parameter. More specifically, the coordinate value in the orthogonal coordinate system is represented as (x, y, z), and the plurality of components of the second parameter are represented as Bx (x, y, z), By (x, y, z), Bz. (X, y, z), and when the vertical stress distribution of the structure 100 is expressed as σxx (x, y, z), σyy (x, y, z), σzz (x, y, z), the fifth The condition 13e is expressed by the following mathematical formula (14).
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 決定部14は、第5条件13eによって第2パラメータの複数の成分の比を決定し、さらにBx(x,y,z)×By(x,y,z)×Bz(x,y,z)=1という条件を置いて第2パラメータの複数の成分の値を決定してもよい。生成部15は、3Dモデルデータを、第2パラメータによって複数の項の重み付けがされた不等式に従って生成してよい。 The determination unit 14 determines the ratio of the plurality of components of the second parameter according to the fifth condition 13e, and further Bx (x, y, z) × By (x, y, z) × Bz (x, y, z). The value of the plurality of components of the second parameter may be determined under the condition = 1. The generation unit 15 may generate 3D model data according to an inequality in which a plurality of terms are weighted by the second parameter.
 第2パラメータの複数の成分の比を、構造物に加えられる応力分布の異方性に基づいて決定し、第2パラメータの複数の成分によって複数の項の重み付けがされた不等式に従って3Dモデルデータを生成することで、加えられる応力分布の異方性に応じて弾性率が異方的に変化する構造物100の3Dモデルデータが生成される。 A ratio of a plurality of components of the second parameter is determined based on anisotropy of a stress distribution applied to the structure, and the 3D model data is obtained according to an inequality in which a plurality of terms are weighted by the plurality of components of the second parameter. By generating, 3D model data of the structure 100 whose elastic modulus changes anisotropically according to the anisotropy of the applied stress distribution is generated.
 生成部15が3Dモデルを生成するために用いる不等式についてより詳細に記載する。不等式は、前掲の数式(9)で表される。 The inequality used by the generation unit 15 to generate the 3D model will be described in more detail. The inequality is expressed by Equation (9) above.
 3Dプリンタ30によって構造物100を積層造形する際には、積層方向の高さを表すzの値を、数式(9)で表される不等式に代入し、不等式を満たす(x,y)の箇所に造形材を積層する。 When the structure 100 is layered by the 3D printer 30, a value of (x, y) that satisfies the inequality by substituting the value of z representing the height in the stacking direction into the inequality represented by the formula (9) A molding material is laminated on the substrate.
 このような不等式に従って構造物100を製造することで、造形材を積層するステップにおいて積層造形を容易に行うことができ、空隙の多寡により密度分布が連続的に変化する構造物100が製造される。 By manufacturing the structure 100 according to such an inequality, the layered modeling can be easily performed in the step of stacking the modeling materials, and the structure 100 in which the density distribution continuously changes due to the number of gaps is manufactured. .
 不等式に含まれる周期関数Fは、正弦波又は三角波を表す関数であってよい。例えば、F(x)=sin(x)の場合、周期関数Fの周期Tは、T=2πとなるから、不等式は以下の数式(15)で表される。 The periodic function F included in the inequality may be a function representing a sine wave or a triangular wave. For example, when F (x) = sin (x), since the period T of the periodic function F is T = 2π, the inequality is expressed by the following equation (15).
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 3Dモデル生成装置10により生成される3Dモデルデータは、造形材を積層する際の描画幅の指定を含んでよい。描画幅の指定は、空間の座標値毎に変化してよい。描画幅の指定によって、造形材を積層する際の造形材の幅を指定することができ、第1パラメータ等とは異なる観点で構造物の密度を調整することができる。 The 3D model data generated by the 3D model generation apparatus 10 may include designation of a drawing width when stacking modeling materials. The designation of the drawing width may change for each space coordinate value. By specifying the drawing width, the width of the modeling material when the modeling material is stacked can be specified, and the density of the structure can be adjusted from a viewpoint different from the first parameter or the like.
 なお、描画幅の指定は、構造物100を積層造形する際の3Dプリンタ30による描画幅を指定するものであり、構造物100が有する網目構造の断面幅を指定するものである。一方、不等式の右辺に現れている第3パラメータA(x,y,z)は、構造物100が有する網目構造の太さを指定するパラメータである。 The designation of the drawing width designates the drawing width by the 3D printer 30 when the structure 100 is layered, and designates the cross-sectional width of the mesh structure of the structure 100. On the other hand, the third parameter A (x, y, z) appearing on the right side of the inequality is a parameter that specifies the thickness of the network structure of the structure 100.
 生成部15は、3Dモデルデータを、少なくとも第1パラメータの値が異なる複数の不等式に従って生成してもよい。この場合、3Dプリンタ30は、パラメータの値が異なる複数の不等式に積層方向の高さを表すzの値を代入し、少なくともいずれかの不等式を満たす(x,y)の箇所に造形材を積層することとなる。複数の不等式に従って3Dモデルデータを生成することで、複数の特性が重ね合わされた構造物100の3Dモデルデータを生成することができる。 The generation unit 15 may generate the 3D model data according to a plurality of inequalities having different values of at least the first parameter. In this case, the 3D printer 30 substitutes the value of z representing the height in the stacking direction into a plurality of inequalities having different parameter values, and stacks the modeling material at a location (x, y) that satisfies at least one of the inequalities. Will be. By generating 3D model data according to a plurality of inequalities, 3D model data of the structure 100 in which a plurality of characteristics are superimposed can be generated.
 図3は、本発明の実施形態に係る3Dモデル生成装置10により実行される第1パラメータを決定する処理のフローチャートである。3Dモデル生成装置10は、はじめに、構造物100の密度分布を直接指定するか否かを判断する(S10)。構造物100の密度分布を直接指定するか否かの判断は、ユーザ端末装置20からの指示に基づいて行ってよい。 FIG. 3 is a flowchart of processing for determining the first parameter executed by the 3D model generation device 10 according to the embodiment of the present invention. First, the 3D model generation device 10 determines whether or not to directly specify the density distribution of the structure 100 (S10). The determination as to whether or not to directly specify the density distribution of the structure 100 may be made based on an instruction from the user terminal device 20.
 構造物100の密度分布を直接指定する場合(S10:Yes)、3Dモデル生成装置10は、ユーザ端末装置20から密度分布の指定を受け付ける(S11)。その後、第1条件13aに基づいて、第1パラメータの複数の成分の相乗平均値を決定する(S12)。なお、3Dモデル生成装置10は、第1パラメータの複数の成分の相乗平均値を決定する前に、変換部12によって座標変換を行ってもよい。 When directly specifying the density distribution of the structure 100 (S10: Yes), the 3D model generation device 10 receives the specification of the density distribution from the user terminal device 20 (S11). Thereafter, based on the first condition 13a, a geometric mean value of a plurality of components of the first parameter is determined (S12). Note that the 3D model generation apparatus 10 may perform coordinate conversion by the conversion unit 12 before determining the geometric mean value of the plurality of components of the first parameter.
 さらに、3Dモデル生成装置10は、構造物100の弾性率分布を指定するか否かを判断する(S13)。構造物100の弾性率分布を指定するか否かの判断は、ユーザ端末装置20からの指示に基づいて行ってよい。 Furthermore, the 3D model generation device 10 determines whether or not to specify the elastic modulus distribution of the structure 100 (S13). The determination as to whether or not to specify the elastic modulus distribution of the structure 100 may be made based on an instruction from the user terminal device 20.
 構造物100の弾性率分布を指定する場合(S13:Yes)、3Dモデル生成装置10は、ユーザ端末装置20から弾性率分布の指定を受け付ける(S14)。その後、第3条件13cに基づいて、第1パラメータの複数の成分の比を決定する(S15)。 When designating the elastic modulus distribution of the structure 100 (S13: Yes), the 3D model generation device 10 receives designation of the elastic modulus distribution from the user terminal device 20 (S14). Thereafter, the ratio of the plurality of components of the first parameter is determined based on the third condition 13c (S15).
 一方、構造物100の弾性率分布を指定しない場合(S13:No)、3Dモデル生成装置10は、ユーザ端末装置20から応力分布の指定を受け付ける(S16)。その後、第4条件13dに基づいて、第1パラメータの複数の成分の比を決定する(S17)。 On the other hand, when the elastic modulus distribution of the structure 100 is not specified (S13: No), the 3D model generation device 10 receives the specification of the stress distribution from the user terminal device 20 (S16). Thereafter, the ratio of the plurality of components of the first parameter is determined based on the fourth condition 13d (S17).
 また、構造物100の密度分布を直接指定しない場合(S10:No)、3Dモデル生成装置10は、ユーザ端末装置20から応力分布の指定を受け付ける(S18)。この場合、3Dモデル生成装置10は、受け付けた応力分布に基づいてミーゼス応力を算出し、第2条件13bに基づいて、第1パラメータの複数の成分の相乗平均値を決定する(S19)。さらに、3Dモデル生成装置10は、第4条件13dに基づいて、第1パラメータの複数の成分の比を決定する(S17)。なお、3Dモデル生成装置10は、第1パラメータの複数の成分の相乗平均値を決定する前に、変換部12によって座標変換を行ってもよい。以上により、第1パラメータを決定する処理が終了する。 Further, when the density distribution of the structure 100 is not directly designated (S10: No), the 3D model generation device 10 receives the designation of the stress distribution from the user terminal device 20 (S18). In this case, the 3D model generation device 10 calculates Mises stress based on the received stress distribution, and determines the geometric mean value of the plurality of components of the first parameter based on the second condition 13b (S19). Furthermore, the 3D model generation device 10 determines the ratio of the plurality of components of the first parameter based on the fourth condition 13d (S17). Note that the 3D model generation apparatus 10 may perform coordinate conversion by the conversion unit 12 before determining the geometric mean value of the plurality of components of the first parameter. Thus, the process for determining the first parameter ends.
 図4は、本発明の実施形態に係る3Dモデル生成装置10により実行される3Dモデルを生成する処理のフローチャートである。3Dモデルを生成する処理は、第1パラメータを決定する処理の後に行われる処理であり、第2パラメータを決定する処理と、第3パラメータを決定する処理とを含む。 FIG. 4 is a flowchart of a process for generating a 3D model executed by the 3D model generation apparatus 10 according to the embodiment of the present invention. The process of generating the 3D model is a process performed after the process of determining the first parameter, and includes a process of determining the second parameter and a process of determining the third parameter.
 はじめに、3Dモデル生成装置10は、応力分布を指定するか否かを判断する(S20)。応力分布を指定するか否かの判断は、ユーザ端末装置20からの指示に基づいて行ってよい。 First, the 3D model generation device 10 determines whether to specify a stress distribution (S20). The determination as to whether or not to specify the stress distribution may be made based on an instruction from the user terminal device 20.
 応力分布を指定する場合(S20:Yes)、3Dモデル生成装置10は、ユーザ端末装置20から応力分布を受け付ける(S21)。その後、3Dモデル生成装置10は、第5条件13eに基づいて、第2パラメータの複数の成分を決定する(S22)。 When the stress distribution is designated (S20: Yes), the 3D model generation device 10 receives the stress distribution from the user terminal device 20 (S21). Thereafter, the 3D model generation device 10 determines a plurality of components of the second parameter based on the fifth condition 13e (S22).
 一方、応力分布を指定しない場合(S20:No)、3Dモデル生成装置10は、第2パラメータの複数の成分の指定を受け付ける(S23)。例えば、第2パラメータの複数の成分を全て1とする指定を受け付けることができる。 On the other hand, when the stress distribution is not designated (S20: No), the 3D model generation device 10 accepts designation of a plurality of components of the second parameter (S23). For example, it is possible to accept the designation that all the plurality of components of the second parameter are 1.
 3Dモデル生成装置10は、第3パラメータの指定を受け付ける(S24)。また、造形材を積層する際の描画幅の指定を受け付ける(S25)。3Dモデル生成装置10は、以上の処理で決定されたパラメータを用いて、例えば数式(15)で表される不等式に基づいて、3Dモデルデータを生成する(S26)。 The 3D model generation device 10 receives the designation of the third parameter (S24). Also, designation of the drawing width when stacking the modeling materials is accepted (S25). The 3D model generation apparatus 10 generates 3D model data based on, for example, the inequality represented by Expression (15) using the parameters determined by the above processing (S26).
 図5は、本発明の実施形態に係る3Dモデル生成装置10により生成された3DモデルMの斜視図である。図5の左下には、x軸、y軸及びz軸を示している。 FIG. 5 is a perspective view of the 3D model M generated by the 3D model generation apparatus 10 according to the embodiment of the present invention. In the lower left of FIG. 5, the x axis, the y axis, and the z axis are shown.
 図6は、本発明の実施形態に係る3Dモデル生成装置10により生成された3DモデルMの上面図である。図6は、z軸方向から3DモデルMを図示しており、図6の左上には、x軸及びy軸を示している。 FIG. 6 is a top view of the 3D model M generated by the 3D model generation apparatus 10 according to the embodiment of the present invention. FIG. 6 illustrates the 3D model M from the z-axis direction, and the x-axis and the y-axis are illustrated in the upper left of FIG.
 3DモデルMによって、x軸方向には変形しやすいが、y軸方向及びz軸方向には変形しづらい構造物100が生成される。図5及び図6から読み取れるように、3DモデルMに基づいて製造される構造物100は、任意の切断面において、造形材が連続して存在することとなる。すなわち、任意の切断面において孤立点を有さず、積層造形が容易である。 The 3D model M generates a structure 100 that is easily deformed in the x-axis direction but difficult to deform in the y-axis direction and the z-axis direction. As can be read from FIG. 5 and FIG. 6, the structure 100 manufactured based on the 3D model M has the modeling material continuously present at an arbitrary cut surface. That is, there is no isolated point on any cut surface, and layered modeling is easy.
 また、構造物100は、任意の切断面において、造形材の間に空隙が存在して、空隙が外部に通じている。構造物100は、連続する1枚の膜状の構造材によって構成され、3次元的な網目構造を形成している。また、構造物100は、切断面を任意の方向に連続的にずらした場合に、造形材の分布が連続的に変化する。例えば、ジャングルジム状の構造の場合、切断面を任意の方向に連続的にずらした場合に、造形材の分布が不連続に変化することがある。構造物100は、切断面を任意の方向に連続的にずらした場合に、造形材の分布が不連続に変化することがないため、積層造形する際に強度が確保し易い。 Further, in the structure 100, a gap exists between the modeling materials at any cut surface, and the gap communicates with the outside. The structure 100 is constituted by a single continuous film-like structural material, and forms a three-dimensional network structure. Further, in the structure 100, when the cut surface is continuously shifted in an arbitrary direction, the distribution of the modeling material continuously changes. For example, in the case of a jungle gym-shaped structure, the distribution of the modeling material may change discontinuously when the cut surface is continuously shifted in an arbitrary direction. Since the structure 100 does not discontinuously change the distribution of the modeling material when the cut surface is continuously shifted in an arbitrary direction, it is easy to ensure the strength when performing layered modeling.
 また、造形材及び空隙は、空間的に変化する周期で存在している。造形材及び空隙の空間的に変化する周期は、第1パラメータによって規定され、直接的又は間接的に指定された密度分布を実現する。3DモデルMによって、積層造形に適した断面形状を有し、空隙の多寡により密度分布が連続的に変化する構造物100を製造することができる。 Also, the modeling material and the gap exist with a spatially changing period. The spatially changing period of the modeling material and the gap is defined by the first parameter, and realizes the density distribution specified directly or indirectly. With the 3D model M, it is possible to manufacture a structure 100 that has a cross-sectional shape suitable for additive manufacturing and whose density distribution changes continuously due to the number of gaps.
 図7は、本発明の実施形態に係る構造物100の製造方法を示すフローチャートである。構造物100の製造は、3Dモデル生成装置10により生成された3Dモデルデータに基づいて、3Dプリンタ30によって実行される。 FIG. 7 is a flowchart showing a method for manufacturing the structure 100 according to the embodiment of the present invention. The manufacture of the structure 100 is executed by the 3D printer 30 based on the 3D model data generated by the 3D model generation apparatus 10.
 はじめに、3Dプリンタ30は、3Dモデル生成装置10により生成された3Dモデルデータを読み込む(S30)。その後、3Dプリンタ30は、積層方向の高さを初期化する(S31)。3Dプリンタ30は、例えば、直交座標系(x,y,z)のうち積層方向の高さをzとして、z=0によって積層方向の高さを初期化してよい。 First, the 3D printer 30 reads the 3D model data generated by the 3D model generation device 10 (S30). Thereafter, the 3D printer 30 initializes the height in the stacking direction (S31). For example, the 3D printer 30 may initialize the height in the stacking direction by z = 0, where z is the height in the stacking direction in the orthogonal coordinate system (x, y, z).
 3Dプリンタ30は、3Dモデルデータによって与えられる不等式を満たす座標(x,y)が存在するか否かを判断する(S32)。ここで、不等式は、例えば数式(15)で与えられてよい。不等式を満たす座標(x,y)が存在する場合(S32:Yes)、3Dモデルデータによって指定された描画幅で、座標(x,y)に造形材を積層する(S33)。座標(x,y)に造形材を積層した後及び不等式を満たす座標(x,y)が存在しない場合(S32:No)、積層方向の高さzの更新が有るか否かを判断する(S34)。積層方向の高さzの更新が有る場合(S34:Yes)、積層方向の高さzを所定の更新幅だけ更新する(S35)。積層方向の高さzの更新幅は、3Dプリンタ30の規定に基づいて設定されてよい。 The 3D printer 30 determines whether there is a coordinate (x, y) that satisfies the inequality given by the 3D model data (S32). Here, the inequality may be given by, for example, Expression (15). When there is a coordinate (x, y) that satisfies the inequality (S32: Yes), the modeling material is stacked at the coordinate (x, y) with the drawing width specified by the 3D model data (S33). After the modeling material is laminated at the coordinates (x, y) and when there is no coordinate (x, y) that satisfies the inequality (S32: No), it is determined whether or not there is an update of the height z in the lamination direction ( S34). When there is an update of the stacking direction height z (S34: Yes), the stacking direction height z is updated by a predetermined update width (S35). The update width of the height z in the stacking direction may be set based on the rules of the 3D printer 30.
 3Dプリンタ30は、以上の処理を繰り返し行って、積層方向の高さzの更新が無いと判断した場合(S34:No)、処理を終了する。 The 3D printer 30 repeats the above process, and if it is determined that the height z in the stacking direction has not been updated (S34: No), the process ends.
 図8は、本発明の実施形態に係る構造物100を示す図である。同図では、構造物100を俯瞰するように撮影した写真を示している。構造物100の造形材は、樹脂である。造形材を樹脂とすることで、構造物100を軽量にすることができる。 FIG. 8 is a diagram showing the structure 100 according to the embodiment of the present invention. In the figure, a photograph taken so that the structure 100 is viewed from above is shown. The modeling material of the structure 100 is a resin. By using the modeling material as a resin, the structure 100 can be reduced in weight.
 図8に示した構造物100は、円柱状であり、端面に近づくほど網目構造の周期が短く、中心ほど網目構造の周期が長くなるように形成されている。このような構造により、構造物100の外側から加えられる力に対して十分な強度を保ちつつ、中心部の空隙を相対的に多くすることができ、強度と軽さを両立した構造物100とすることができる。また、網目構造を円対称とすることで、回転運動に適した構造とすることができる。 The structure 100 shown in FIG. 8 has a columnar shape, and is formed such that the period of the network structure is shorter as it approaches the end surface, and the period of the network structure is longer as it is closer to the center. With such a structure, while maintaining a sufficient strength against the force applied from the outside of the structure 100, the gap in the center can be relatively increased, and the structure 100 having both strength and lightness can do. Moreover, it can be set as the structure suitable for rotational motion by making a network structure into circular symmetry.
 構造物100は、造形材の表面に造形材とは異なる材料による被膜が施されているものであってもよい。造形材が樹脂である場合、構造物100は、樹脂の表面に金属、セラミックス又はガラスの被膜が施されているものであってもよい。例えば、図8に示した構造物100を、めっき剤に浸漬して、造形材の表面に金属めっきを施すこととしてもよい。そのようにして、構造物100の骨格を樹脂等の造形材で形成し、表面を金属、セラミックス又はガラス等の造形材とは異なる材料で覆うことで、造形材のみでは実現することが困難な多様な特性を有する構造物100を得ることができる。例えば、構造物100の骨格を樹脂で形成し、表面を金属で覆うことで、高い剛性を有し、かつ軽量である構造物100を得ることができる。 The structure 100 may be one in which the surface of the modeling material is coated with a material different from the modeling material. When the modeling material is a resin, the structure 100 may have a metal, ceramic, or glass coating on the surface of the resin. For example, the structure 100 shown in FIG. 8 may be immersed in a plating agent and metal plating may be performed on the surface of the modeling material. In that way, it is difficult to realize the structure 100 alone by forming the skeleton of the structure 100 with a modeling material such as resin and covering the surface with a material different from the modeling material such as metal, ceramics, or glass. A structure 100 having various characteristics can be obtained. For example, the structure 100 having high rigidity and light weight can be obtained by forming the skeleton of the structure 100 with a resin and covering the surface with a metal.
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。 The embodiment described above is for facilitating the understanding of the present invention, and is not intended to limit the present invention. Each element included in the embodiment and its arrangement, material, condition, shape, size, and the like are not limited to those illustrated, and can be changed as appropriate. In addition, the structures shown in different embodiments can be partially replaced or combined.
 例えば、直交座標系における座標値を(x,y,z)と表し、第1パラメータの複数の成分をTx(x,y,z)、Ty(x,y,z)、Tz(x,y,z)と表し、第2パラメータの複数の成分をBx(x,y,z)、By(x,y,z)、Bz(x,y,z)と表し、0以上の第3パラメータをA(x,y,z)と表し、周期Tの周期関数をFと表し、所定のボクセル[i,j,k]の中心座標を(x,y,z)と表し、所定のボクセル[i,j,k]に対応する第4パラメータをWijk(x,y,z)と表すとき、本実施形態に係る3Dモデル生成装置10によって3Dモデルデータを生成するための不等式は、以下の数式(16)で表されてもよい。ここで、所定のボクセル[i,j,k]は、複数のボクセルであってよく、例えば[1,2,3](i=1,j=2,k=3)や[10,10,10](i=10,j=10,k=10)等のボクセル番号で識別されてよい。 For example, a coordinate value in the orthogonal coordinate system is represented as (x, y, z), and a plurality of components of the first parameter are represented by Tx (x, y, z), Ty (x, y, z), Tz (x, y). , Z), a plurality of components of the second parameter are represented as Bx (x, y, z), By (x, y, z), Bz (x, y, z), and a third parameter of 0 or more is represented. A (x, y, z) is represented, a periodic function of the period T is represented by F, a center coordinate of a predetermined voxel [i, j, k] is represented by (x i , y j , z k ), When the fourth parameter corresponding to the voxel [i, j, k] is expressed as W ijk (x, y, z), the inequality for generating the 3D model data by the 3D model generation device 10 according to the present embodiment is: It may be expressed by the following mathematical formula (16). Here, the predetermined voxel [i, j, k] may be a plurality of voxels, for example, [1, 2, 3] (i = 1, j = 2, k = 3) or [10, 10, 10] (i = 10, j = 10, k = 10) or the like.
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 ここで、和Σi,j,kは、所定のボクセルにわたって行われる。これにより、構造物100の密度の分布D(x,y,z)が必ずしも(x,y,z)=(0,0,0)を中心とする対称な分布でない場合であっても、構造材及び空隙が適切な周期で連続的に存在するように3Dモデルデータを生成することができる。 Here, the sum Σ i, j, k is performed over a predetermined voxel. Thus, even if the density distribution D (x, y, z) of the structure 100 is not necessarily a symmetric distribution centered at (x, y, z) = (0, 0, 0), the structure The 3D model data can be generated so that the material and the void continuously exist at an appropriate period.
 また、第1パラメータの複数の成分がTx(x,y,z)=1、Ty(x,y,z)=1、Tz(x,y,z)=1であり、第2パラメータの複数の成分がBx(x,y,z)=1、By(x,y,z)=1、Bz(x,y,z)=1であり、F(x)=sin(x)であり、周期関数Fの周期TがT=2πである場合、3Dモデル生成装置10によって3Dモデルデータを生成するための不等式は、以下の数式(17)で表されてもよい。ここで、DbaseはD(x,y,z)の平均であり、Wbase(x,y,z)=1-Σi,j,kijk(x,y,z)である。 The plurality of components of the first parameter are Tx (x, y, z) = 1, Ty (x, y, z) = 1, Tz (x, y, z) = 1, and the plurality of second parameters. Are Bx (x, y, z) = 1, By (x, y, z) = 1, Bz (x, y, z) = 1, F (x) = sin (x), When the period T of the periodic function F is T = 2π, an inequality for generating 3D model data by the 3D model generation apparatus 10 may be expressed by the following Expression (17). Here, D base is an average of D (x, y, z), and W base (x, y, z) = 1−Σ i, j, k W ijk (x, y, z).
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 なお、Wijk(x,y,z)の関数形は任意であるが、例えば、ボクセルの一片の長さをsと表すとき、以下の数式(18)で表されるものであってよい。 The function form of W ijk (x, y, z) is arbitrary. For example, when the length of one voxel piece is expressed as s, it may be expressed by the following mathematical formula (18).
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 また、所定のボクセル[i,j,k]に関して、応力が加わる方向に応じて3次元回転行列Ri,j,kを定義し、数式(16)又は数式(17)に示す不等式に用いられる座標値を(x,y,z)からRi,j,k(x,y,z)に置き換えてもよい。



 
Further, for a given voxel [i, j, k], a three-dimensional rotation matrix R i, j, k is defined according to the direction in which the stress is applied, and is used in the inequality shown in Equation (16) or Equation (17). The coordinate value may be replaced from (x, y, z) to R i, j, k (x, y, z) t .



Claims (24)

  1.  空間的に変化する第1パラメータの値を、構造物の密度が大きい箇所ほど小さく、前記密度が小さい箇所ほど大きくなるように決定する決定部と、
     空間点に造形材を積層するか否かを指定する3Dモデルデータを、前記空間点を表す座標値を変数とし、前記第1パラメータに依存して値が決まる周期関数を含む不等式に従って生成する生成部と、
     を備える3Dモデル生成装置。
    A determination unit that determines the value of the first parameter that varies spatially to be smaller as the density of the structure is smaller, and larger as the density is lower;
    Generation that generates 3D model data that specifies whether or not to stack a modeling material on a spatial point, according to an inequality including a periodic function whose value depends on the first parameter, with the coordinate value representing the spatial point as a variable And
    A 3D model generation device comprising:
  2.  前記第1パラメータは、複数の方向に対応する複数の成分を含み、
     前記決定部は、
     前記密度が大きい箇所ほど前記第1パラメータの複数の成分の相乗平均値が小さく、前記密度が小さい箇所ほど前記第1パラメータの複数の成分の相乗平均値が大きくなるように、前記密度と前記第1パラメータの複数の成分を関係付ける第1条件に基づいて、前記第1パラメータの複数の成分を決定し、
     前記生成部は、前記3Dモデルデータを、前記座標値を変数とし、前記第1パラメータの複数の成分に依存して値が決まる前記周期関数を含む前記不等式に従って生成する、
     請求項1に記載の3Dモデル生成装置。
    The first parameter includes a plurality of components corresponding to a plurality of directions,
    The determination unit is
    The higher the density, the smaller the geometric mean value of the plurality of components of the first parameter, and the smaller the density, the greater the geometric mean value of the plurality of components of the first parameter. Determining a plurality of components of the first parameter based on a first condition relating a plurality of components of one parameter;
    The generating unit generates the 3D model data according to the inequality including the periodic function in which the coordinate value is a variable and the value is determined depending on a plurality of components of the first parameter.
    The 3D model generation apparatus according to claim 1.
  3.  直交座標系における前記座標値を(x,y,z)と表し、前記第1パラメータの複数の成分をTx(x,y,z)、Ty(x,y,z)、Tz(x,y,z)と表し、前記密度の分布をD(x,y,z)と表し、前記造形材を積層する際に造形可能な最小周期をTminと表すとき、
     前記第1条件は、
    Figure JPOXMLDOC01-appb-M000001
     

     と表される、
     請求項2に記載の3Dモデル生成装置。
    The coordinate value in the orthogonal coordinate system is represented as (x, y, z), and the plurality of components of the first parameter are represented by Tx (x, y, z), Ty (x, y, z), Tz (x, y). when z) and represents, it represents the distribution of the density D (x, y, z) and, representing the minimum period possible modeling and T min when stacking the modeling material,
    The first condition is:
    Figure JPOXMLDOC01-appb-M000001


    Expressed as
    The 3D model generation apparatus according to claim 2.
  4.  前記決定部は、前記構造物の応力分布から算出されるミーゼス応力が大きい箇所ほど前記第1パラメータの複数の成分の相乗平均値が小さく、前記ミーゼス応力が小さい箇所ほど前記第1パラメータの複数の成分の相乗平均値が大きくなるように、前記ミーゼス応力と前記第1パラメータの複数の成分を関係付ける第2条件に基づいて、前記第1パラメータの複数の成分を決定し、
     前記生成部は、前記3Dモデルデータを、前記座標値を変数とし、前記第1パラメータの複数の成分に依存して値が決まる前記周期関数を含む前記不等式に従って生成する、
     請求項1に記載の3Dモデル生成装置。
    The determination unit has a smaller geometric mean value of the plurality of components of the first parameter for a portion where the Mises stress calculated from the stress distribution of the structure is large, and a plurality of the first parameter for a portion where the Mises stress is small. Determining a plurality of components of the first parameter based on a second condition relating the Mises stress and the plurality of components of the first parameter so that a geometric mean value of the components is increased;
    The generating unit generates the 3D model data according to the inequality including the periodic function in which the coordinate value is a variable and the value is determined depending on a plurality of components of the first parameter.
    The 3D model generation apparatus according to claim 1.
  5.  直交座標系における前記座標値を(x,y,z)と表し、前記第1パラメータの複数の成分をTx(x,y,z)、Ty(x,y,z)、Tz(x,y,z)と表し、前記ミーゼス応力をσvm(x,y,z)と表し、変換係数をR(σvm)と表すとき、
     前記第2条件は、
    Figure JPOXMLDOC01-appb-M000002
     と表される、
     請求項4に記載の3Dモデル生成装置。
    The coordinate value in the orthogonal coordinate system is represented as (x, y, z), and the plurality of components of the first parameter are represented by Tx (x, y, z), Ty (x, y, z), Tz (x, y). , Z), the Mises stress as σ vm (x, y, z), and the conversion coefficient as R (σ vm ),
    The second condition is:
    Figure JPOXMLDOC01-appb-M000002
    Expressed as
    The 3D model generation apparatus according to claim 4.
  6.  前記決定部は、
     前記構造物の弾性率分布の異方性及び前記第1パラメータの複数の成分の比を関係付ける第3条件に基づいて、前記第1パラメータの複数の成分を決定する、
     請求項2から5のいずれか1項に記載の3Dモデル生成装置。
    The determination unit is
    Determining a plurality of components of the first parameter based on a third condition relating the anisotropy of the elastic modulus distribution of the structure and the ratio of the plurality of components of the first parameter;
    The 3D model generation device according to any one of claims 2 to 5.
  7.  前記弾性率分布の複数の垂直方向成分をKx(x,y,z)、Ky(x,y,z)、Kz(x,y,z)と表すとき、
     前記第3条件は、
    Figure JPOXMLDOC01-appb-M000003
     

     と表される、
     請求項6に記載の3Dモデル生成装置。
    When the plurality of vertical components of the elastic modulus distribution are expressed as Kx (x, y, z), Ky (x, y, z), Kz (x, y, z),
    The third condition is:
    Figure JPOXMLDOC01-appb-M000003


    Expressed as
    The 3D model generation apparatus according to claim 6.
  8.  前記決定部は、
     前記構造物の応力分布の異方性及び前記第1パラメータの複数の成分の比を関係付ける第4条件に基づいて、前記第1パラメータの複数の成分を決定する、
     請求項2から5のいずれか1項に記載の3Dモデル生成装置。
    The determination unit is
    Determining a plurality of components of the first parameter based on a fourth condition relating anisotropy of stress distribution of the structure and a ratio of the plurality of components of the first parameter;
    The 3D model generation device according to any one of claims 2 to 5.
  9.  前記構造物のせん断応力分布をσxy(x,y,z)、σyz(x,y,z)、σzx(x,y,z)と表すとき、
     前記第4条件は、
    Figure JPOXMLDOC01-appb-M000004
     と表される、
     請求項8に記載の3Dモデル生成装置。
    When the shear stress distribution of the structure is represented as σxy (x, y, z), σyz (x, y, z), σzx (x, y, z),
    The fourth condition is:
    Figure JPOXMLDOC01-appb-M000004
    Expressed as
    The 3D model generation apparatus according to claim 8.
  10.  前記決定部は、前記構造物の応力分布に基づいて、前記応力分布が大きい箇所ほど第2パラメータが小さく、前記応力分布が小さい箇所ほど前記第2パラメータが大きくなるように、前記第2パラメータを決定し、
     前記生成部は、前記3Dモデルデータを、前記第2パラメータによって複数の項の重み付けがされた前記不等式に従って生成する、
     請求項1から9のいずれか1項に記載の3Dモデル生成装置。
    The determination unit sets the second parameter based on the stress distribution of the structure so that the second parameter is smaller as the stress distribution is larger and the second parameter is larger as the stress distribution is smaller. Decide
    The generation unit generates the 3D model data according to the inequality in which a plurality of terms are weighted by the second parameter.
    The 3D model generation apparatus according to any one of claims 1 to 9.
  11.  前記第2パラメータは、複数の方向に対応する複数の成分を含み、
     前記決定部は、前記応力分布の異方性及び前記第2パラメータの複数の成分の値の比を関係付ける第5条件に基づいて、前記第2パラメータの複数の成分を決定する、
     請求項10に記載の3Dモデル生成装置。
    The second parameter includes a plurality of components corresponding to a plurality of directions,
    The determining unit determines a plurality of components of the second parameter based on a fifth condition relating anisotropy of the stress distribution and a ratio of values of the plurality of components of the second parameter;
    The 3D model generation apparatus according to claim 10.
  12.  直交座標系における前記座標値を(x,y,z)と表し、前記第2パラメータの複数の成分をBx(x,y,z)、By(x,y,z)、Bz(x,y,z)と表し、前記構造物の垂直応力分布をσxx(x,y,z)、σyy(x,y,z)、σzz(x,y,z)と表すとき、
     前記第5条件は、
    Figure JPOXMLDOC01-appb-M000005
     と表される、
     請求項11に記載の3Dモデル生成装置。
    The coordinate value in the orthogonal coordinate system is represented as (x, y, z), and the plurality of components of the second parameter are represented by Bx (x, y, z), By (x, y, z), Bz (x, y). , Z), and when the vertical stress distribution of the structure is expressed as σxx (x, y, z), σyy (x, y, z), σzz (x, y, z),
    The fifth condition is:
    Figure JPOXMLDOC01-appb-M000005
    Expressed as
    The 3D model generation apparatus according to claim 11.
  13.  直交座標系における前記座標値を(x,y,z)と表し、前記第1パラメータの複数の成分をTx(x,y,z)、Ty(x,y,z)、Tz(x,y,z)と表し、周期Tの前記周期関数をFと表し、前記第2パラメータの複数の成分をBx(x,y,z)、By(x,y,z)、Bz(x,y,z)と表し、0以上の第3パラメータをA(x,y,z)と表すとき、
     前記不等式は、
    Figure JPOXMLDOC01-appb-M000006
     と表される、
     請求項10から12のいずれか1項に記載の3Dモデル生成装置。
    The coordinate value in the orthogonal coordinate system is represented as (x, y, z), and the plurality of components of the first parameter are represented by Tx (x, y, z), Ty (x, y, z), Tz (x, y). , Z), the periodic function of the period T as F, and the plurality of components of the second parameter as Bx (x, y, z), By (x, y, z), Bz (x, y, z), and when the third parameter equal to or greater than 0 is represented as A (x, y, z),
    The inequality is
    Figure JPOXMLDOC01-appb-M000006
    Expressed as
    The 3D model generation device according to any one of claims 10 to 12.
  14.  前記3Dモデルデータは、前記造形材を積層する際の描画幅の指定を含む、
     請求項1から13のいずれか1項に記載の3Dモデル生成装置。
    The 3D model data includes designation of a drawing width when laminating the modeling material,
    The 3D model generation device according to any one of claims 1 to 13.
  15.  前記生成部は、前記3Dモデルデータを、少なくとも前記第1パラメータの値が異なる複数の前記不等式に従って生成する、
     請求項1から14のいずれか1項に記載の3Dモデル生成装置。
    The generation unit generates the 3D model data according to a plurality of the inequalities having different values of at least the first parameter.
    The 3D model generation apparatus according to any one of claims 1 to 14.
  16.  前記周期関数は、正弦波又は三角波を表す関数である、
     請求項1から15のいずれか1項に記載の3Dモデル生成装置。
    The periodic function is a function representing a sine wave or a triangular wave.
    The 3D model generation apparatus according to any one of claims 1 to 15.
  17.  前記決定部により前記第1パラメータの値を決定する前に、座標変換を行う変換部をさらに備える、
     請求項1から16のいずれか1項に記載の3Dモデル生成装置。
    Before determining the value of the first parameter by the determination unit, further comprising a conversion unit for performing coordinate conversion;
    The 3D model generation device according to any one of claims 1 to 16.
  18.  前記変換部は、前記構造物の応力分布を対角化するように座標変換を行う、
     請求項17に記載の3Dモデル生成装置。
    The conversion unit performs coordinate conversion so as to diagonalize the stress distribution of the structure,
    The 3D model generation apparatus according to claim 17.
  19. 空間的に変化する第1パラメータの値を、構造物の密度が大きい箇所ほど小さく、前記密度が小さい箇所ほど大きくなるように決定するステップと、
     空間点に造形材を積層するか否かを指定する3Dモデルデータを、前記空間点を表す座標値を変数とし、前記第1パラメータに依存して値が決まる周期関数を含む不等式に従って生成するステップと、
     を含む3Dモデル生成方法。
    Determining the value of the first parameter that varies spatially so that the density of the structure is small as the density is high, and the density is low as the density is low.
    Generating 3D model data for designating whether or not a modeling material is to be stacked on a spatial point according to an inequality including a periodic function whose value depends on the first parameter, with the coordinate value representing the spatial point as a variable When,
    A 3D model generation method including:
  20.  3Dモデル生成装置に備えられたコンピュータを、
    空間的に変化する第1パラメータの値を、構造物の密度が大きい箇所ほど小さく、前記密度が小さい箇所ほど大きくなるように決定する決定部、及び
     空間点に造形材を積層するか否かを指定する3Dモデルデータを、前記空間点を表す座標値を変数とし、前記第1パラメータに依存して値が決まる周期関数を含む不等式に従って生成する生成部、
     として機能させる3Dモデル生成プログラム。
    A computer provided in the 3D model generation device
    A determination unit that determines a value of the first parameter that varies spatially to be smaller as the density of the structure is smaller and larger as the density is lower, and whether or not the modeling material is stacked on the spatial point. A generating unit that generates 3D model data to be specified according to an inequality including a periodic function in which a coordinate value representing the spatial point is a variable and a value is determined depending on the first parameter;
    3D model generation program to function as
  21.  直交座標系における座標値を(x,y,z)と表し、第1パラメータの複数の成分をTx(x,y,z)、Ty(x,y,z)、Tz(x,y,z)と表し、周期Tの周期関数をFと表し、第2パラメータの複数の成分をBx(x,y,z)、By(x,y,z)、Bz(x,y,z)と表し、0以上の第3パラメータをA(x,y,z)と表すとき、
     不等式
    Figure JPOXMLDOC01-appb-M000007
     を満たす箇所に造形材が存在し、前記不等式を満たさない箇所に空隙がある、
     構造物。
    A coordinate value in the orthogonal coordinate system is represented as (x, y, z), and a plurality of components of the first parameter are represented by Tx (x, y, z), Ty (x, y, z), Tz (x, y, z). ), A periodic function of the period T is represented as F, and a plurality of components of the second parameter are represented as Bx (x, y, z), By (x, y, z), Bz (x, y, z). , When a third parameter equal to or greater than 0 is expressed as A (x, y, z),
    Inequality
    Figure JPOXMLDOC01-appb-M000007
    There is a modeling material in a place that satisfies, and there is a gap in a place that does not satisfy the inequality,
    Structure.
  22.  任意の切断面において、造形材が連続して存在し、
     前記切断面において、前記造形材の間に空隙が存在して、前記空隙が外部に通じており、
     前記切断面を任意の方向に連続的にずらした場合に、前記造形材の分布が連続的に変化し、
     前記造形材及び前記空隙は、空間的に変化する周期で存在している、
     構造物。
    In any cut surface, the modeling material exists continuously,
    In the cut surface, a gap exists between the modeling materials, the gap leads to the outside,
    When the cut surface is continuously shifted in an arbitrary direction, the distribution of the modeling material continuously changes,
    The modeling material and the gap exist in a spatially changing cycle.
    Structure.
  23.  前記造形材の表面に前記造形材とは異なる材料による被膜が施されている、
     請求項21又は22に記載の構造物。
    The surface of the modeling material is coated with a material different from the modeling material,
    The structure according to claim 21 or 22.
  24.  積層方向をzとする直交座標系における座標値を(x,y,z)と表し、第1パラメータの複数の成分をTx(x,y,z)、Ty(x,y,z)、Tz(x,y,z)と表し、周期Tの周期関数をFと表し、第2パラメータの複数の成分をBx(x,y,z)、By(x,y,z)、Bz(x,y,z)と表し、0以上の第3パラメータをA(x,y,z)と表すとき、
     積層方向の高さを表すzの値を不等式
    Figure JPOXMLDOC01-appb-M000008
     に代入し、前記不等式を満たす(x,y)の箇所に造形材を積層するステップを含む、
     構造物を製造する方法。
     
    A coordinate value in the orthogonal coordinate system in which the stacking direction is z is represented as (x, y, z), and a plurality of components of the first parameter are represented by Tx (x, y, z), Ty (x, y, z), Tz. (X, y, z), a periodic function of the period T as F, and a plurality of components of the second parameter as Bx (x, y, z), By (x, y, z), Bz (x, y, z), and when a third parameter equal to or greater than 0 is represented as A (x, y, z),
    The inequality of the value of z representing the height in the stacking direction
    Figure JPOXMLDOC01-appb-M000008
    Substituting for and forming a modeling material at a location (x, y) that satisfies the inequality,
    A method of manufacturing a structure.
PCT/JP2018/021161 2017-06-01 2018-06-01 3d model generation device, 3d model generation method, 3d model generation program, structure, and structure manufacturing method WO2018221722A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-109525 2017-06-01
JP2017109525 2017-06-01

Publications (1)

Publication Number Publication Date
WO2018221722A1 true WO2018221722A1 (en) 2018-12-06

Family

ID=64456235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021161 WO2018221722A1 (en) 2017-06-01 2018-06-01 3d model generation device, 3d model generation method, 3d model generation program, structure, and structure manufacturing method

Country Status (1)

Country Link
WO (1) WO2018221722A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344629A (en) * 2002-05-28 2003-12-03 Murata Mfg Co Ltd Three-dimensional periodic structure and method for manufacturing the same
US20110205583A1 (en) * 2010-02-23 2011-08-25 Simpleware Limited Image processing method and method of three-dimensional printing incorporating the same
JP2016037641A (en) * 2014-08-08 2016-03-22 ホウムラ産業株式会社 Three-dimensional molded article and production method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344629A (en) * 2002-05-28 2003-12-03 Murata Mfg Co Ltd Three-dimensional periodic structure and method for manufacturing the same
US20110205583A1 (en) * 2010-02-23 2011-08-25 Simpleware Limited Image processing method and method of three-dimensional printing incorporating the same
JP2016037641A (en) * 2014-08-08 2016-03-22 ホウムラ産業株式会社 Three-dimensional molded article and production method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YASUI, TOMOHIRO, DEVELOPMENT OF LARGE SCALE 3D PRINTER ''ARCHIFAB'' AND APPLICATION FOR 3D PRINTING LIGHTWEIGHT STRUCTURES BASED ON ''GYROID'' SHAPE, 2015, pages 22 - 28, Retrieved from the Internet <URL:http://fab.sfc.keio.ac.jp/paper/files/2015-yasui.pdf> [retrieved on 20180815] *

Similar Documents

Publication Publication Date Title
Langelaar Combined optimization of part topology, support structure layout and build orientation for additive manufacturing
CN110222432B (en) Local constraint damping plate parameter optimization design method based on genetic algorithm
US10613496B2 (en) Support structure constrained topology optimization for additive manufacturing
Cottrell et al. Isogeometric analysis of structural vibrations
Matsui et al. Continuous approximation of material distribution for topology optimization
Lim et al. DSC‐Ritz method for high‐mode frequency analysis of thick shallow shells
CN112214856B (en) Precision machine tool rigidity optimization design method for overall structure
US20170277168A1 (en) Additive manufacturing apparatus and computer program product
CN111310377B (en) Non-probability reliability topological optimization design method for continuum structure
He et al. Topology optimization using node-based smoothed finite element method
CN113826100A (en) Method for lightening and/or designing an article for additive manufacturing
EP4080397A1 (en) Computer aided generative design with modal analysis driven shape modification process
JP6762744B2 (en) Structure strength prediction method, structure modeling method, structure laminated modeling support method and program
WO2018221722A1 (en) 3d model generation device, 3d model generation method, 3d model generation program, structure, and structure manufacturing method
Liu et al. Development of a novel rectangular–circular grid filling pattern of fused deposition modeling in cellular lattice structures
CN114169233A (en) Method, system, equipment and storage medium for optimizing particle size of material particles
Kim et al. Optimal distribution of an active layer for transient vibration control of a flexible plate
CN112632820A (en) Dynamic vibration absorber parameter design method for vibration and noise reduction of wallboard structure
CN107644117A (en) Electric automobile suspends decoupling method and device
CN114474741B (en) Multi-axis unsupported 3D printing curved surface slicing method, device and server
van Hal et al. Hybrid finite element-wave based method for acoustic problems
Shimoda et al. Node-based free-form optimization method for vibration problems of shell structures
CN113111560B (en) Generation method and system of microscopic structure model of heterogeneous mineral casting
CN112712859B (en) Method for constructing three-dimensional negative poisson ratio structure based on positive tetrahedron frame
Cho et al. Enhancing buckling performance of perforated composite laminates by manipulating fiber direction using a genetic algorithm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809738

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP