WO2018221563A1 - Shaping method and shaping device - Google Patents

Shaping method and shaping device Download PDF

Info

Publication number
WO2018221563A1
WO2018221563A1 PCT/JP2018/020702 JP2018020702W WO2018221563A1 WO 2018221563 A1 WO2018221563 A1 WO 2018221563A1 JP 2018020702 W JP2018020702 W JP 2018020702W WO 2018221563 A1 WO2018221563 A1 WO 2018221563A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
particles
modeling
powder layer
liquid
Prior art date
Application number
PCT/JP2018/020702
Other languages
French (fr)
Japanese (ja)
Inventor
杉山 享
博一 宇佐美
陽平 政田
貴治 青谷
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018102240A external-priority patent/JP7191550B2/en
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2018221563A1 publication Critical patent/WO2018221563A1/en
Priority to US16/692,050 priority Critical patent/US11738504B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/30Producing shaped prefabricated articles from the material by applying the material on to a core or other moulding surface to form a layer thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a technique for modeling a three-dimensional object using a particulate material.
  • Patent Document 1 discloses a method of obtaining a shaped object by repeating a process of forming a thin layer of a powder material on a substrate and then locally heating at a high temperature with a laser to sinter the powder material. .
  • non-modeling region a region where the powder material is not sintered
  • the non-modeling region The powder material present on top of must be sintered. Since warpage may occur due to local heat shrinkage at that time, depending on the shape of the structure, it is necessary to add a support body (also referred to as a support structure) that suppresses the warp.
  • the support body is an essentially unnecessary structure, depending on the shape of the three-dimensional object model, it may be necessary to remove it after modeling.Thus, the three-dimensional object model having a shape or structure that makes it difficult to remove the support body can be modeled. Have difficulty. In particular, since it is necessary to use a metal working machine when removing a support body from a metal shaped article, a fine structure that is physically difficult to remove by the metal working machine cannot be formed. Further, since ceramics are easily damaged by a load, it has been difficult to selectively remove a support body from a ceramic model.
  • Patent Document 2 discloses a method of producing a composite shaped article of resin and metal particles by removing a region that has not been solidified after repeating the step of applying and solidifying a liquid binder to the metal particle-containing layer. ing. The resulting composite model is degreased and sintered by heat treatment to obtain a metal model.
  • the shape of the composite molded article of resin and metal is maintained by the resin component, but if the resin component is large, deformation and breakage during degreasing and voids in the formed molded article may be caused. On the other hand, if the resin component is small, the strength of the resin-metal composite model is weakened, and the model may be damaged when removing the particles in the non-modeling region.
  • this invention aims at providing the modeling technique with few restrictions of the shape which can be modeled.
  • the first aspect of the present invention is: Forming a powder layer using the first powder; Disposing a second powder having an average particle size smaller than that of the first powder in a partial region of the powder layer; A first heating step for heating the powder layer in which the second powder is disposed; Including The average particle size of the second powder is 1 nm or more and 500 nm or less, The first heating step provides a forming method characterized in that heating is performed at a temperature at which particles contained in the second powder are sintered or melted.
  • the second aspect of the present invention is: Powder layer forming means for forming a powder layer using the first powder; Arranging means for disposing a second powder having an average particle diameter smaller than that of the first powder in a partial region of the powder layer; Heating means for heating the powder layer so that particles contained in the second powder are sintered or melted;
  • the modeling apparatus characterized by having is provided.
  • FIG. 1A to 1H are diagrams schematically showing a modeling method according to an embodiment of the present invention.
  • 2A to 2G are views schematically showing a modeling method according to the embodiment of the present invention.
  • FIG. 3 is a diagram schematically illustrating a modeling method according to the embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a flow of the modeling method according to the first embodiment.
  • FIG. 5 is a diagram illustrating a flow of the modeling method according to the second embodiment.
  • FIG. 6 is a diagram illustrating a flow of the modeling method according to the third embodiment.
  • FIG. 7 is a diagram schematically illustrating a modeling apparatus according to the eighth embodiment.
  • FIG. 8 is a diagram schematically illustrating a modeling apparatus according to the ninth embodiment.
  • FIG. 9 is a diagram schematically illustrating a modeling apparatus according to the eleventh embodiment.
  • FIG. 10 is a diagram schematically illustrating a modeling apparatus according to the twelfth embodiment.
  • FIG. 11 is a diagram schematically illustrating a modeling apparatus according to the fourteenth embodiment.
  • FIG. 12 is a diagram schematically illustrating a modeling apparatus according to the fifteenth embodiment.
  • the present invention relates to a modeling method for producing a three-dimensional model using a particulate material.
  • the method of the present invention can be preferably used in a modeling process in a modeling apparatus called an additive manufacturing (AM) system, a three-dimensional printer, a rapid prototyping system, or the like.
  • AM additive manufacturing
  • the modeling method according to the embodiment of the present invention generally includes the following (Step 1) to (Step 4).
  • Step 1) Step of forming a powder layer using the first particles
  • Step 2) Step of applying second particles to the modeling region in the powder layer
  • Step 3) Sintering the second particles
  • the process of fixing the first particles in the modeling area (Process 4)
  • a sheet-like (or plate-like) shaped article having a thickness corresponding to one powder layer can be formed. Furthermore, by repeating the above (Step 1) to (Step 2) and laminating a large number of powder layers, a three-dimensional shaped object can be formed.
  • FIGS. 1A to 1H are examples of sequences in which (Step 4) is performed after repeating (Step 1) to (Step 3) a plurality of times, and FIGS. 2A to 2G are alternately (Step 1) and (Step 2). It is an example of the sequence which performs (process 3) and (process 4) after repeating several times.
  • FIG. 3 is an enlarged view schematically showing the structure of the powder layer.
  • slice data for forming each layer is generated from the three-dimensional shape data of the modeling target by a modeling apparatus or an external apparatus (for example, a personal computer).
  • a modeling apparatus or an external apparatus (for example, a personal computer).
  • the three-dimensional shape data data created by a three-dimensional CAD, a three-dimensional modeler, a three-dimensional scanner, or the like can be used.
  • an STL file can be preferably used.
  • the slice data is data obtained by slicing the three-dimensional shape of the modeling object at a predetermined interval (thickness), and is data including information such as a cross-sectional shape, a layer thickness, and a material arrangement. Since the thickness of the layer affects the modeling accuracy, the thickness of the layer may be determined according to the required modeling accuracy and the particle size of the particles used for modeling.
  • Step 1 Step of forming a powder layer using the first powder
  • the powder layer 11 is formed using the first powder including the first particles 1 based on the slice data of the modeling object.
  • a powder layer 11 an aggregate of a plurality of particles
  • a powder obtained by leveling a powder to a predetermined thickness is referred to as a “powder layer”
  • a laminate of a plurality of powder layers is referred to as a “laminate”. Call it.
  • the individual particles constituting the powder layer 11 are not fixed, but the form of the powder layer 11 is maintained by the frictional force acting between the particles.
  • first particles 1 constituting the first powder forming the powder layer 11 for example, resin particles, metal particles, ceramic particles, and the like can be used.
  • resin particles, metal particles, ceramic particles, and the like can be used as the first particles 1 constituting the first powder forming the powder layer 11.
  • there is a limit to the shapes that can be formed with metal or ceramics because post-processing (such as removal of a support body) is difficult with conventional modeling methods.
  • the method of the present embodiment can easily form a complex shape or a fine shape even with a metal or ceramic as described later. Therefore, modeling using metal particles or ceramic particles as the first particles is one of the objects to which the modeling method of this embodiment can be preferably applied.
  • Examples of metals that can be used as the first particles 1 include copper, tin, lead, gold, silver, platinum, palladium, iridium, titanium, tantalum, and iron. Further, a metal alloy such as a stainless alloy, a titanium alloy, a cobalt alloy, an aluminum alloy, a magnesium alloy, an iron alloy, a nickel alloy, a chromium alloy, a silicon alloy, or a zirconium alloy may be used as the first particles 1. Further, a material obtained by adding a nonmetallic element such as carbon to a metal such as carbon steel may be used as the first particle 1. As the first particles, oxide ceramics may be used, or non-oxide ceramics may be used.
  • oxide ceramics include metal oxides such as silica, alumina, zirconia, titania, magnesia, cerium oxide, zinc oxide, tin oxide, uranium oxide, barium titanate, barium hexaferrite, and mullite.
  • Non-oxide ceramics include silicon nitride, titanium nitride, aluminum nitride, silicon carbide, titanium carbide, tungsten carbide, boron carbide, titanium boride, zirconium boride, lanthanum boride, molybdenum silicide, iron silicide, barium silicide, etc.
  • the first particles may be composite particles of a plurality of types of metals or composite particles of a plurality of types of ceramics.
  • the first powder may contain substances other than the first particles 1.
  • the first An additive may be added to the powder. Thereby, the modeling can be facilitated and the modeling accuracy can be improved. Further, a plurality of types of first particles 1 made of different materials may be mixed in the first powder.
  • the average particle size of the first powder is preferably set to a size that does not cause aggregation in order to form the powder layer 11 satisfactorily.
  • the average particle size of the first particles 1 is a dimension suitable for the diffusion of the liquid applied in (Step 2), the particle fixation in the heat treatment of (Step 3), and the strength and function requirements of the modeled object. It is preferable to do.
  • the volume-based average particle diameter of the first particles 1 may be selected from a range of 1 ⁇ m or more and 500 ⁇ m or less, and preferably 1 ⁇ m or more and 100 ⁇ m or less. When the average particle diameter is 1 ⁇ m or more, the aggregation of particles during the formation of the powder layer is suppressed, and the layer formation with few defects tends to be facilitated.
  • the measurement of the average particle diameter can be performed using a laser diffraction / scattering particle size distribution measuring apparatus LA-950 (manufactured by HORIBA).
  • the attached dedicated software is used for setting the measurement conditions and analyzing the measurement data.
  • a specific measurement method first, a batch type cell containing a measurement solvent is set in a laser diffraction / scattering type particle size distribution measuring apparatus LA-950 (manufactured by HORIBA), and the optical axis and background are adjusted. I do.
  • the powder to be measured is added to the batch cell until the transmittance of the tungsten lamp reaches 95% to 90%, the particle size distribution is measured, and the volume-based average particle size is calculated from the obtained measurement results. be able to.
  • the first powder may contain a plurality of groups of first particles 1 having different average particle diameters (of course, the average particle diameter of each group is preferably set within the above-described numerical range. ).
  • the first powder contains a plurality of groups of particles having different average particle diameters
  • the particle size distribution of the first powder is measured, a peak indicating a high abundance ratio appears in the vicinity of the average particle diameter of each group .
  • the powder layer 11 is formed by mixing the first group of particles having a relatively large average particle diameter and the second group of particles having a relatively small average particle diameter, the first group of particles is formed.
  • the second group of particles can enter the gaps between the gaps, and voids in the powder layer 11 can be reduced.
  • the average particle diameter of the second group of particles is larger than the average particle diameter of the second particles described later and 0.41 times or less of the average particle diameter of the first group of particles.
  • the ratio of the average particle size of the first group of particles to the second group of particles is set in this way, the second group of particles is formed in the particle gap (octahedral site) when the first group of particles forms a close-packed structure. Since the particles can be arranged, the space filling rate of the powder layer 11 can be increased as much as possible. Thereby, as a result, a molded article with a small porosity can be produced.
  • the first group of particles and the second group of particles are preferably particles of the same material, but may be particles of different materials.
  • the first particles 1 preferably have an average circularity of 0.94 or more, and more preferably 0.96 or more. If the average circularity of the first particles 1 is 0.94 or more, the particles have a structure close to a sphere, and the number of points where the particles are in point contact can be reduced. As a result, the fluidity of the first powder containing the first particles 1 is improved, and when the powder layer 11 is formed, the first particles 1 are likely to be closely packed, so that the powder layer 11 with fewer voids is formed. It becomes easy to do.
  • the circularity of the particles can be measured as follows, and the average circularity can be obtained by averaging the circularities obtained by measuring 10 or more arbitrary particles.
  • Circularity (perimeter of a circle having the same area as the projected area of the particle) / (perimeter of the projected image of the particle)
  • the “particle projected image” can be obtained by binarizing the particle image.
  • the “particle projected area” is the area of the projected image of the particle
  • the “peripheral length of the projected image of the particle” is the length of the outline of the projected image of the particle.
  • the circularity is an index indicating the complexity of the shape of the particle, and indicates 1.00 when the particle is a perfect sphere, and the circularity becomes smaller as the projected image of the particle deviates from the circle.
  • the circularity of the particles can be measured using image processing of an observation image such as an electron microscope and a flow type particle image measuring device (for example, FPIA-3000 type manufactured by Toa Medical Electronics Co., Ltd.).
  • the powder layer 11 is formed by a container having an upper opening, a support body that can be raised and lowered set inside the container, and a material supply provided with a wiper. It can be formed using a device. Specifically, the upper surface of the support is adjusted to a position that is lower than the upper edge of the container by a thickness, and the material is supplied onto the flat plate by the material supply device and then flattened by the wiper. The powder layer 11 of the layer can be formed.
  • a powder layer having a desired thickness can be obtained by supplying the first powder onto a flat surface (the surface of the model or the object being fabricated) and leveling the surface of the powder with a layer thickness regulating means (for example, a blade). 11 may be formed. Further, the powder layer 11 may be pressed by a pressing means (for example, a pressure roller, a pressure plate, etc.). By increasing the number of contact points between the particles by pressurization, defects in the modeled object tend not to be formed. In addition, since the first particles 1 in the powder layer are densely present, the first particles 1 move during the subsequent steps (step 2) and (step 3) (the shape of the powder layer 11 is lost). ) Is suppressed, and a shaped object with high shape accuracy can be produced.
  • the modeling device has multiple types of first powders with different compositions (that is, it has multiple powder supply units that can store different types of first powders), and the first powder to be used can be switched. It may be. For example, when a plurality of powder layers 11 are laminated, the composition of the powder may be changed for each layer.
  • Step 2 Step of placing the second powder in the modeling region of the powder layer
  • the liquid application device applies the modeling powder S to the modeling region S of the powder layer 11.
  • a liquid 12 containing the second particles 2 and containing a second powder having an average particle diameter of 1 nm or more and 500 nm or less (also referred to as “particle dispersion 12”) is applied (FIGS. 1B and 2B).
  • the “modeling region S” refers to a region corresponding to the cross section of the modeling target (that is, a portion of the powder layer 11 that should be solidified and taken out as a modeled product).
  • An area outside the modeling area S that is, a part where the powder is to be finally removed) is referred to as a “non-modeling area N”.
  • the second powder is a powder that can be sintered and melted at least at a lower temperature and / or shorter time than the first powder.
  • the heating conditions in which the second particles constituting the second powder are sintered or melted can be set.
  • sining refers to a treatment in which the particles are fixed (bonded) by heating the powder at a temperature below the melting point in a state where the particles are in contact with each other.
  • not sintered means that the particles are not fixed and are fixed with a weak force, and the boundary between particles fixed with a weak force can be confirmed with an electron microscope. Including.
  • the modeling method of the present embodiment is heated at a temperature at which the particles contained in the second powder are sintered or melted, whereby the first particles in the modeling region S are heated by the second particles 2. It is characterized in that the first powder in the non-modeling region N is removed after the particles 1 are fixed.
  • the sintering or melting start temperature of the second powder is compared with the sintering start temperature of the first powder.
  • the sintering or melting start temperature of the second powder is significantly reduced as compared with the sintering start temperature of the first powder containing the first particles having an average particle diameter of 1 ⁇ m or more. I was able to confirm.
  • the sintering start temperature of the second powder is preferably 100 ° C. or more lower than the sintering start temperature of the first powder, and more preferably 300 ° C. or more.
  • the average particle diameter of the second particles 2 contained in the second powder is more preferably 1 nm or more and 200 nm or less.
  • the second particles 2 may be referred to as nanoparticles 2.
  • An average particle size of 200 nm or less is preferable because not only the sintering temperature is lowered, but also the dispersibility of the nanoparticles 2 in the liquid 12 is improved and the uniformity when the liquid 12 is applied is improved.
  • the average particle diameter of the nanoparticles 2 is smaller than the average particle diameter of the first particles 1. Thereby, the nanoparticles 2 are filled in the gaps between the first particles 1, and the first particles 1 are easily fixed to each other by the nanoparticles 2.
  • the average particle diameter of the nanoparticles 2 may be set to a size that allows the nanoparticles 2 to easily enter the gaps between the first particles 1 when the liquid is applied.
  • the nanoparticles 2 for example, resin particles, metal particles, ceramic particles, and the like can be used.
  • metal particles or ceramic particles when metal particles or ceramic particles are used as the first particles 1, it is preferable to use metal particles or ceramic particles as the nanoparticles 2.
  • metals that can be used as the nanoparticles 2 include copper, tin, lead, gold, silver, platinum, palladium, iridium, titanium, tantalum, iron, and nickel.
  • a metal alloy such as a stainless alloy, a titanium alloy, a cobalt alloy, an aluminum alloy, a magnesium alloy, an iron alloy, a nickel alloy, a chromium alloy, a silicon alloy, or a zirconium alloy may be used as the nanoparticles 2.
  • oxide ceramics may be used, or non-oxide ceramics may be used.
  • oxide ceramics include metal oxides such as silica, alumina, zirconia, titania, magnesia, cerium oxide, zinc oxide, tin oxide, uranium oxide, barium titanate, barium hexaferrite, and mullite.
  • Non-oxide ceramics include silicon nitride, titanium nitride, aluminum nitride, silicon carbide, titanium carbide, tungsten carbide, boron carbide, titanium boride, zirconium boride, lanthanum boride, molybdenum silicide, iron silicide, barium silicide, etc. Can be mentioned.
  • the nanoparticles 2 may be composite particles of a plurality of types of metals or composite particles of a plurality of types of ceramics.
  • the nanoparticle 2 preferably contains at least one type of the same component as the first particle 1.
  • the surface of the nanoparticle 2 and the surface of the first particle 1 are easily bonded when the nanoparticle 2 is sintered, and the first particle 1 can be firmly fixed.
  • the nanoparticles 2 are composed mainly of components contained in the first particles 1.
  • the final shaped object is a mixture of the first particles 1 and the nanoparticles 2
  • the nanoparticles 2 are composed of the same components (materials) as the first particles 1, the amount of impurities in the shaped object Since the material of the modeled object is homogenized, the strength and quality of the modeled object can be improved.
  • the first particle 1 is a stainless steel alloy containing iron, iron particles, iron oxide particles, or the like can be suitably used as the nanoparticles 2.
  • the composition of the first powder when the composition of the first powder can be changed for each region or layer, the composition of the nanoparticles 2 and the type of the liquid 12 are changed for each region or layer according to the composition of the first powder. It may be changed every time, or the same type of liquid 12 may be used. Since the concentration and amount of the liquid 12 affect the porosity of the modeled object, it may be determined according to the required porosity of the modeled object.
  • the step of drying the liquid 12 is preferably performed for each layer.
  • the liquid 12 that is gradually concentrated as the drying proceeds gathers at the grain boundaries between the first particles 1 due to the surface tension.
  • the nanoparticles 2 in the liquid selectively gather at the grain boundaries between the first particles 1 and aggregate.
  • the nanoparticles 2 are accumulated at the grain boundaries of the first particles 1, whereby the first particles 1 can be efficiently and firmly fixed during the sintering of the nanoparticles 2 described later.
  • it is preferable to select the optimum drying conditions such as temperature and time according to the concentration and amount of the liquid 12.
  • a solvent may be added.
  • an aqueous solvent, an organic solvent, or a mixed solvent of an aqueous solvent and an organic solvent can be used.
  • the aqueous solvent pure water or the like can be used.
  • the organic solvent alcohols such as methanol and ethanol, ketones such as methyl ethyl ketone, acetone and acetyl acetone, hydrocarbons such as hexane and cyclohexane, and the like are used.
  • the liquid 12 may contain a functional substance such as a pigment as necessary.
  • the liquid 12 may also contain a binder for fixing the particles.
  • An existing substance can be used as the binder, but the substance decomposed by the heat treatment described later (step 3), that is, the substance having a decomposition temperature lower than the temperature at which the nanoparticles are sintered or melted. Is preferred.
  • the first particles 1 in the modeling region S and / or the nanoparticles 2 in the modeling region S can be fixed up to (step 3), but can be removed in (step 3). Difficult to become impurities in the model.
  • Specific examples of the binder include resin materials and water-soluble carbohydrates. The binder is preferably dissolved in the liquid.
  • the application of the binder may be separated from the application process of the liquid 12, and a process of applying the binder to the powder layer 11 may be provided after (Process 2) and before (Process 3).
  • the binder can be applied to the modeling region S or / and the non-modeling region N.
  • the first particles 1 can be temporarily fixed, and the next powder layer formation tends to be facilitated.
  • a method of applying the binder a method of applying a liquid binder obtained by dissolving the binder in a liquid using a liquid application device is preferable.
  • the liquid binder a resin solution in which a resin material is dissolved in a solvent, a solution in which a water-soluble substance is dissolved in water, or the like can be used. If the liquid 12 in which the nanoparticles are dispersed and the liquid containing the binder are applied separately, the liquid can be optimized independently according to the liquid applied to each application apparatus, and thus the durability of the application apparatus Tends to be excellent, which is preferable.
  • the binder contributes to fixing the first particles 1 and / or the nanoparticles 2 in the modeling region S while performing (Step 2), and is decomposed and removed by heating in (Step 3). Accordingly, the binder applied in the modeling region S maintains the shape of the modeled object during (Step 2), and is decomposed by heat in (Step 3), and the decomposed product creates gaps between the first particles. Removed through. As a result, the binder is unlikely to remain as an impurity in the modeled object, and the first particles 1 in the non-modeled region N can be easily removed. It is preferable to determine the type and amount of the binder so that no binder remains.
  • any device can be used as long as it can apply the liquid in a desired amount at a desired position.
  • An inkjet apparatus can be preferably used from the viewpoint that the liquid amount and the arrangement position can be controlled with high accuracy.
  • the application of the particle dispersion 12 to the modeling area S is performed by an ink jet apparatus having a head provided with a nozzle for discharging each liquid.
  • a configuration in which the liquid binder is applied at a time is also preferable.
  • the viscosity of the liquid 12 needs to be an appropriate value, preferably 50 cP or less, more preferably 20 cP or less.
  • an appropriate value preferably 50 cP or less, more preferably 20 cP or less.
  • the volume concentration of the nanoparticles 2 in the liquid 12 is preferably higher within the above viscosity range. However, in the process of drying the liquid 12, it is desirable that the volume concentration of the liquid 12 is low in terms of facilitating the accumulation of the nanoparticles 2 near the contact point between the first particles 1. From these conditions, the volume concentration of the liquid 12 is preferably 50 vol% or less, and more preferably 30 vol% or less. The solid content concentration of 50 vol% or less is preferable because the nanoparticles 2 tend to accumulate between the first particles 1 when the liquid 12 dries, and contributes to the fixation of the first particles 1 efficiently. .
  • the liquid 12 may be applied a plurality of times, or may be dried every time it is applied. By applying a plurality of times, the concentration of the nanoparticles 2 in the powder layer 11 in the modeling region can be controlled.
  • Step 3 Step of sintering or melting the second powder and fixing the first particles in the modeling region
  • the powder layer 11 is heated under the condition that the second powder is sintered or melted.
  • region S are fixed through the nanoparticle 2 to sinter or fuse
  • reference numeral 13 denotes a region where the particles are fixed.
  • Step 1 In the modeling process of FIGS. 1A to 1H, (Step 1) to (Step 3), that is, FIGS. 1D to 1F are repeated, and the powder layer is laminated while fixing only the particles in the modeling region S.
  • the laminated body 14 which contains a thing inside is formed.
  • 2A to 2G (Step 1) and (Step 2), that is, FIGS. 2C to 2D are repeated, and the powder layer in a state where the nanoparticles 2 are provided in the modeling region S is laminated.
  • the laminate 16 composed of a plurality of powder layers is heated together.
  • the laminated body 14 which contains a modeled object inside is formed like FIG. 1G.
  • the atmosphere during heating can be arbitrarily determined according to the type of material.
  • an inert gas such as Ar or N2
  • an atmosphere with less oxygen such as a hydrogen gas atmosphere or a vacuum atmosphere
  • the organic component and the resin can be removed by heat in the situation where the first particles exist around, the remaining carbon component in the modeled object is maintained while maintaining the shape of the modeled object. Can be reduced.
  • the organic component and the resin component inside can be removed, and thus the degree of freedom in the shape of the modeled object is excellent.
  • Step 4 Step of removing first particles outside the modeling region
  • the powder outside the modeling region S is removed from the laminate 14 obtained in (Step 3) to obtain a modeled object 15 (FIG. 1F, FIG. 2G).
  • Any method including a known method may be used as a method for removing unnecessary powder from the laminate 14.
  • cleaning, air spraying, suction, vibration, etc. can be mentioned.
  • the first particles 1 contained in the powder to be removed are not fixed, or even if they are fixed, the first particles 1 are weakly fixed as compared to the modeling region S. Very easy. Further, the removed powder can be collected and reused as a modeling material.
  • the modeling method of this embodiment described above has the following characteristics. Rather than directly bonding the first particles 1 that are the main modeling material, the nanoparticles 2 are sintered or melted, and the first particles 1 that are present around them are indirectly bonded by the bonding action of the nanoparticles 2. To join. Therefore, the shape of the shaped article can be controlled by controlling the position and the range to which the nanoparticles 2 are applied. Moreover, in order to apply the nanoparticles 2 in the state of the particle dispersion 12, the position, range, amount, etc., to which the nanoparticles 2 are applied can be easily and accurately controlled by using a liquid application device such as an ink jet device. Can do.
  • the nanoparticles 2 are sintered or melted, the first particles 1 can be firmly bonded to each other. Moreover, since the nanoparticle 2 has the effect
  • Step 3 the location where the nanoparticles 2 are present is selectively fixed, so that the removal of the particles in the non-modeling region N is easy. Moreover, since it is not necessary to apply big force when removing the particle
  • the first particles 1 outside the modeling region S remain in the form until just before (Step 4), if there is an overhang structure, the first particles 1 under the overhang structure are It can be used as a support body. Thereby, a deformation
  • Step 1 to (Step 4) are merely examples of basic steps in the modeling method of the present embodiment, and the scope of the present invention is not limited to the above-described contents.
  • the specific processing content of each process described above may be changed as appropriate, or a process other than each process described above may be added.
  • a step of heating the shaped article 15 at a temperature higher than the heating temperature in (Step 3) may be provided.
  • the density of the shaped article 15 can be increased.
  • the shaped article 15 obtained by the method of the present embodiment is basically composed only of a shaping material (first particles 1 and nanoparticles 2), and a binder such as a resin binder like the shaped article of the conventional method. May not be included.
  • the composition change of the shaped article 15 is small before and after the heat treatment. Further, in the conventional method, there is a possibility that the shape of the modeled object changes when the resin is degreased by heat treatment. However, in the case of the modeled object 15 of the present embodiment, such a problem hardly occurs.
  • the first particles 1 and the nanoparticles 2 may be produced by any method including a known method.
  • a method for producing metal particles a gas atomization method and a water atomization method can be preferably used in that substantially spherical particles can be obtained.
  • a method for producing ceramic particles in terms of obtaining substantially spherical particles, a wet method such as a sol-gel method or a dry method in which a metal oxide liquefied in a high temperature air is cooled and solidified.
  • the production method can be preferably used.
  • the particle dispersion 12 may be produced by any method including a known method as long as a large number of nanoparticles 2 can be dispersed in the solution. For example, you may produce by adding the nanoparticle 2 in a solution and stirring.
  • a solution A was obtained by dispersing 5.0 g of iron nanoparticle powder (manufactured by Sigma Aldrich) having an average particle size of 25 nm in 45.0 g of ethanol (special grade Kishida Chemical Co., Ltd.). The volume concentration of the iron nanoparticles in the obtained solution A was 1.1 vol%. Solution A had a viscosity of 1.2 cP.
  • Solution B had a viscosity of 12.2 cP.
  • Solution D is a dispersion of iron nanoparticle powder having an average particle diameter of 3.6 nm in n-hexane so as to have a volume concentration of 0.9 vol%.
  • Solution D had a viscosity of 0.5 cP.
  • ⁇ Preparation of solution E> A silver ink (NBSIJ-KC01 manufactured by Mitsubishi Paper Industries Co., Ltd.) in which silver nanoparticles were dispersed in water was used as Solution E.
  • Solution E contained silver nanoparticles with an average particle diameter of 34 nm, and the volume concentration was 0.8 vol%.
  • the viscosity was 4.0 cP.
  • Preparation of solution F> A nickel nanoparticle aqueous dispersion having an average particle diameter of 160 nm prepared by a liquid phase reduction method was used as Solution F.
  • the volume concentration of nickel nanoparticles in the obtained solution F was 0.6 vol%.
  • the viscosity was 7.1 cP.
  • the firing start temperature of each powder was obtained by the following procedure.
  • An alumina container having a diameter of 5 mm and a height of 2.5 mm is packed with an amount of powder so that the bottom is not visible.
  • the alumina container was heated in an electric furnace for 60 minutes, and the state of the powder was observed.
  • heating is further performed under a condition where the temperature is increased by 10 ° C. and observation is repeated, and the temperature at which the sintering of the powder is confirmed is set as the sintering start temperature of the powder. Whether it was sintered or not was confirmed by the following method.
  • the sintering start temperature of the iron nanoparticle powder is 500 ° C. or lower, compared with the sintering start temperature 800 ° C. of the powder (powder B) of SUS316L (melting point 1400 ° C.) having a melting point lower than that of iron (melting point 1538 ° C.). But it was significantly lower.
  • the sintering start temperature was 300 ° C. or lower.
  • a shaped object having a desired shape is manufactured by applying the solution A, the solution B, or the solution D to the powder layer formed of the powder A or the powder B and performing a heat treatment.
  • Example 1 The embodiment will be described with reference to FIG. After forming a powder layer having a thickness of 20 mm ⁇ 10 mm and a thickness of 2 mm on the alumina substrate using the powder A (step S301), the solution A was applied to a 6 mm ⁇ region so as to have a penetration depth of 2 mm (step S302). . The obtained powder layer was put into an electric furnace and heat-treated at 600 ° C.
  • step S303 the SUS particles in the portion to which the solution A was applied (corresponding to the modeling region S) were solidified by the iron nanoparticles.
  • step S304 By removing the SUS particles in the portion where the solution A was not applied (corresponding to the non-modeling region N) (step S304), a plate-shaped modeled object could be obtained.
  • a powder layer of 20 mm ⁇ 10 mm and a thickness of 2 mm is formed on an alumina substrate using powder A (step S401), and then the solution D is penetrated into an area of 6 mm ⁇ to a penetration depth of 2 mm.
  • the obtained powder layer was put into an electric furnace, and heat-treated at 600 ° C. for 1 hour at a temperature higher than the sintering start temperature of iron nanoparticles and lower than the sintering start temperature of SUS particles (step S403).
  • the SUS particles in the portion to which the solution D was applied were solidified by the iron nanoparticles.
  • a first powder layer having a thickness of 20 mm ⁇ 10 mm and a thickness of 2 mm was formed using powder B (step S501), and then solution D was applied to a range of 10 mm ⁇ 10 mm (step S502).
  • a second powder layer having a thickness of 20 mm ⁇ 10 mm and a thickness of 2 mm is formed on the first powder layer using the powder B (step S503), and the penetration depth is 2 mm over the entire second powder layer.
  • Solution D was applied until it became (step S504) to obtain a laminate.
  • the obtained laminate was put in an electric furnace and heat-treated at 700 ° C., which is a temperature not lower than the sintering start temperature of iron nanoparticles and lower than the sintering start temperature of SUS particles, for 1 hour (step S505).
  • the SUS particles in the portion to which the solution D was applied (corresponding to the modeling region S) were solidified by the iron nanoparticles.
  • a desired shaped article could be obtained by removing the SUS particles in the portion (corresponding to the non-modeling region N) where the solution D was not applied (step S506).
  • the obtained shaped object had an overhang structure in which the second layer was larger than the first layer.
  • Example 4 Modeling was performed in the same procedure as in Example 3. First, a first powder layer having a thickness of 20 mm ⁇ 10 mm and a thickness of 2 mm was formed using the powder B, and then the solution F was applied to a range of 10 mm ⁇ 10 mm. Next, a second powder layer having a thickness of 20 mm ⁇ 10 mm and a thickness of 2 mm is formed on the first powder layer using the powder B, and the solution F is obtained until the penetration depth becomes 2 mm over the entire second powder layer. Was added to obtain a laminate.
  • the obtained laminate was put in an electric furnace and heat-treated at 700 ° C., which is a temperature not lower than the sintering start temperature of nickel nanoparticles and lower than the sintering start temperature of SUS particles, for 1 hour.
  • the SUS particles in the portion to which the solution F was applied were solidified by the nickel nanoparticles.
  • the desired shaped article could be obtained by removing the SUS particles in the portion where the solution F was not applied (corresponding to the non-modeling region N).
  • the obtained shaped object had an overhang structure in which the second layer was larger than the first layer.
  • iron nanoparticles are imparted to a desired region of a powder layer formed of powder made of SUS particles, and the iron nanoparticles are sintered, thereby obtaining a shaped article having a desired shape using SUS particles. It was confirmed that it was possible.
  • ⁇ Comparative example 4> After forming a first powder layer having a thickness of 20 mm ⁇ 10 mm and a thickness of 2 mm using the powder B, the solution D was applied to a range of 10 mm ⁇ 10 mm. Next, a second powder layer having a thickness of 20 mm ⁇ 10 mm and a thickness of 2 mm is formed on the first powder layer using the powder B, and the solution D is obtained until the penetration depth is 2 mm over the entire second powder layer.
  • the obtained laminate was placed in an electric furnace as it was and heat-treated at a temperature lower than the sintering start temperature of the iron nanoparticles for 1 hour. The laminate after the heat treatment was still in a powder state (a state in which particles were not bonded), and a desired shaped article could not be obtained.
  • Example 5 A first powder layer having a diameter of 15 mm ⁇ and a thickness of 400 ⁇ m was formed using the powder B, and then a solution E was discharged using an inkjet head to draw a circular pattern of 15 mm ⁇ . Next, a second powder layer of 15 mm ⁇ and a thickness of 400 ⁇ m is formed on the first powder layer using the powder B, and the solution E is ejected on the second powder layer using an inkjet head. A character pattern was drawn to obtain a laminate. The obtained laminate was put in an electric furnace and heat-treated at 650 ° C., which is a temperature not lower than the sintering start temperature of silver nanoparticles and lower than the sintering start temperature of SUS particles, for 3 hours.
  • the SUS particles in the portion to which the solution E was applied were solidified by the silver nanoparticles.
  • the desired shaped article could be obtained by removing the SUS particles in the portion where the solution E was not applied (corresponding to the non-modeling region N).
  • Example 6> A first powder layer having a diameter of 15 mm ⁇ and a thickness of 400 ⁇ m was formed using the powder D, and then a solution E was discharged using an inkjet head to draw a circular pattern of 15 mm ⁇ . Next, a second powder layer having a thickness of 15 mm ⁇ and a thickness of 400 ⁇ m is formed using the powder D on the first powder layer, and the solution E is ejected onto the second powder layer using an inkjet head. A character pattern was drawn to obtain a laminate. The obtained laminate was put in an electric furnace and heat-treated at 300 ° C., which is a temperature not lower than the sintering start temperature of silver nanoparticles and less than 400 ° C. of copper particles, for 1 hour.
  • coated solution E among the laminated bodies after heat processing was solidified with the silver nanoparticle.
  • a desired shaped article could be obtained by removing the copper particles in the portion (corresponding to the non-modeling region N) where the solution E was not applied.
  • Example 7 After forming a powder layer having a thickness of 200 ⁇ m using the powder C, the solution E was discharged using an inkjet head, and two 2.5 mm ⁇ 25 mm rectangular patterns were drawn horizontally at an interval of 7 mm. The step of forming the powder layer on the powder layer and the discharging step of the solution E were repeated 11 times so that the rectangular pattern overlapped on the powder layer. Subsequently, the drawing pattern was rotated by 85 ° at the center between the rectangles, and the pattern drawing step with the solution E and the powder layer forming step were repeated 12 times.
  • the drawing pattern was rotated by 85 °, and the step of drawing the pattern with the solution E and the step of repeating the powder layer forming step 12 times were further repeated twice to obtain a laminate.
  • the obtained laminate was put in an electric furnace and heat-treated at 650 ° C., which is a temperature not lower than the sintering start temperature of silver nanoparticles and lower than the sintering start temperature of SUS particles, for 1.5 hours.
  • the SUS particles in the portion to which the solution E was applied (corresponding to the modeling region S) were solidified by the silver nanoparticles.
  • the desired shaped article could be obtained by removing the SUS particles in the portion where the solution E was not applied (corresponding to the non-modeling region N).
  • the obtained model was further heated for 1 hour (1 hr) at 1300 ° C., which is equal to or higher than the sintering start temperature of SUS particles, in an atmosphere of Ar 97% and hydrogen 3%.
  • the obtained shaped object had an overhang structure with a plurality of rectangular parallelepipeds. Moreover, the strength was higher than before heating at 1300 ° C. due to sintering of the SUS particles.
  • FIG. 7 shows a modeling apparatus according to the eighth embodiment.
  • This modeling apparatus includes a powder supply unit 103 that stores and supplies powder, a layer thickness regulating blade 105, a liquid supply unit 104 that stores a particle dispersion, a liquid application unit 106 that applies a particle dispersion, and a powder layer. And a heater 102 for heating.
  • the powder supply unit 103, the layer thickness regulating blade 105, the liquid supply unit 104, the liquid application unit 106, and the heater 102 are provided in a movable head.
  • the modeling apparatus includes a drive mechanism 201 that moves the head in the direction of the arrow in FIG.
  • the drive mechanism 201 is composed of, for example, a ball screw and a motor.
  • FIG. 7 shows the uniaxial drive mechanism 201, a multi-axis drive mechanism may be provided so that the head can be scanned in multiple directions.
  • an ink jet device can be preferably used as the liquid application unit 106.
  • the powder supply unit 103 and the layer thickness regulating blade 105 constitute a powder layer forming unit that forms a powder layer using the first powder
  • the liquid supply unit 104 and the liquid application unit 106 are powders.
  • An application means for applying the second powder to the layer is constituted.
  • the heater 102 constitutes a heating unit that heats the powder layer.
  • the first powder composed of the first particles 1 is supplied to the powder supply unit 103, and the particle dispersion containing the second powder (second particle 2) is supplied to the liquid supply unit 104, respectively.
  • the base substrate 101 is set on the stage 107.
  • the first powder is supplied from the powder supply unit 103 onto the base substrate 101, and the surface thereof is leveled by the layer thickness regulating blade 105, whereby the powder of the first powder having a thickness of 100 ⁇ m is formed on the base substrate 101.
  • This powder layer is a layer underlying the laminate 108 and is hereinafter referred to as a “base layer”.
  • the amount of the first powder for one layer is supplied from the powder supply unit 103 onto the base layer, and the surface is leveled by the layer thickness regulating blade 105, A powder layer of the first powder is formed. Thereby, the powder layer for 1 slice of a molded article is formed.
  • the solution A is applied to the modeling region S in the powder layer based on the cross-sectional shape of the modeling target defined by the slice data.
  • the amount of liquid at this time is controlled so that the dispersion liquid in which the second powder is dispersed penetrates to a depth substantially equal to the thickness of the powder layer.
  • a powder layer in which the second particles 2 enter the gap between the first particles 1 in the modeling region S is formed.
  • the heater 102 at least a part of the first particles are not sintered, and the powder layer is heated and sintered or melted under the condition that the second particles are sintered or melted.
  • the first particles are fixed by the second particles.
  • a modeled object including an overhang structure and a fine structure can be manufactured with high quality.
  • a series of processes of forming the powder layer with the first powder, arranging the second powder, and heating the powder layer can be performed in one scan, high-speed modeling is possible, and Miniaturization can be achieved.
  • the base layer is laid between the base substrate 101 and the modeled object, no special processing for removing the modeled object from the base substrate 101 is required.
  • FIG. 8 shows a modeling apparatus according to the ninth embodiment.
  • the difference in configuration from Example 8 is that instead of providing the heater 102, a heating area (heating chamber) 110 for heating the entire laminate is provided.
  • a base layer having a thickness of 100 ⁇ m is formed on the base substrate 101.
  • the amount of the first powder for one layer is supplied from the powder supply unit 103 onto the base layer, and the surface is leveled by the layer thickness regulating blade 105, A powder layer is formed. Thereby, the powder layer for 1 slice of a molded article is formed.
  • a dispersion liquid in which the second powder is dispersed is applied to the modeling region S in the powder layer based on the cross-sectional shape of the modeling object defined by the slice data. The liquid amount at this time is controlled so that the dispersion liquid penetrates to a depth substantially equal to the thickness of the powder layer. Thereby, a powder layer in which the second particles 2 enter the gap between the first particles 1 in the modeling region S is formed.
  • a plurality of powder layers are formed by repeating formation of a powder layer composed of the first powder (first particles) and application of a dispersion containing the second powder (second particles).
  • a laminated body 109 in which is stacked is produced. Then, the laminated body 109 is moved to the heating area 110, and the laminated body 109 is heated under the condition that at least a part of the first particles are not sintered and the second particles are sintered or melted. . Thereby, the second particles are sintered, and the first particles in the modeling region S are fixed by the sintered or melted second particles. Thereafter, by removing the first powder in the non-modeling region N from the laminate 109, a modeled object having a desired shape is obtained.
  • a modeled object including an overhang structure and a fine structure can be manufactured with high quality.
  • the entire laminated body 109 is heated not for each layer, the entire laminated body 109 can be heated uniformly during the heat treatment, local thermal shock is reduced, and distortion and cracking during formation of the shaped object are suppressed.
  • a series of processes of forming the powder layer composed of the first particles 1 and arranging the second particles 2 can be performed by one scan, high-speed modeling is possible and the modeling apparatus is downsized. Can be achieved.
  • the number of heat treatments can be significantly reduced as compared with the case where heat treatment is performed for each layer, the modeling time can be shortened.
  • the base layer is laid between the base substrate 101 and the modeled object, no special processing for removing the modeled object from the base substrate 101 is required.
  • Example 10 After the dispersion liquid containing the second powder (second particle) is applied to the powder layer, the solution A is dried by allowing to stand for 1 minute.
  • Other modeling processes may be the same as those in Example 8 or Example 9. Further, the configuration of the modeling apparatus may be the same as that of the eighth embodiment or the ninth embodiment. Since the penetration of the dispersion liquid can be controlled by providing the drying step, it is possible to produce a shaped object with higher accuracy than the above-described embodiment. Further, by providing the drying step, the second particles 2 accumulate at the grain boundaries of the first particles 1, thereby making it possible to produce a shaped article having higher strength than the above-described embodiment.
  • FIG. 9 shows a modeling apparatus according to the eleventh embodiment.
  • the difference in configuration from the ninth embodiment is that a drying heater 111 is provided between the powder supply unit 103 and the liquid application unit 106.
  • the drying heater 111 is a drying auxiliary means for promoting the drying of the dispersion liquid containing the second powder (second particles) applied to the powder layer.
  • the powder layer is heated by the drying heater 111.
  • the dispersion A is applied to the heated powder layer.
  • the drying assist means is provided in the front stage of the liquid applying unit 106, but the drying assist means (such as a heater) may be provided in the subsequent stage of the liquid applying unit 106.
  • FIG. 10 shows a modeling apparatus according to the twelfth embodiment.
  • a pressurizing unit 112 is provided between the powder supply unit 103 and the liquid application unit 106.
  • a pressure roller as shown in FIG. 10 or a pressure plate may be used.
  • the powder layer is pressurized by the pressurizing means 112. By pressurizing the powder layer, the particles of the first powder come into close contact with each other, so that the porosity and defects of the shaped article can be reduced and the mechanical strength of the shaped article can be increased.
  • a modeled object in a state where unnecessary particles are removed
  • the modeled object is heated under a condition in which SUS particles can be sintered.
  • FIG. 11 shows a modeling apparatus according to the fourteenth embodiment.
  • the difference in configuration from Example 9 is that a second liquid application unit 113 for discharging a binder is provided after the liquid application unit 106 for discharging the second powder dispersion.
  • the first powder composed of the first particles 1 is contained in the powder supply unit 103, the solution containing the second particles 2 (nanoparticles) is contained in the liquid supply unit 104, and the resin binder is contained.
  • Each of the liquid binders is stored in the liquid supply unit 114.
  • Example 9 a base layer having a thickness of 100 ⁇ m is formed on the base substrate 101.
  • the amount of the first powder for one layer is supplied from the powder supply unit 103 onto the base layer, and the surface is leveled by the layer thickness regulating blade 105, A powder layer of the first powder is formed. Thereby, the powder layer for 1 slice of a molded article is formed.
  • a solution containing the second powder is applied to the modeling region S in the powder layer based on the cross-sectional shape of the modeling object defined by the slice data.
  • the amount of liquid at this time is controlled so that the solution penetrates to a depth substantially equal to the thickness of the powder layer.
  • the nanoparticles (second particles 2) enter the gaps between the first particles 1 in the modeling region S.
  • the liquid application unit 113 is used to apply the solution C to the powder layer. Thereby, the first particles 1 are temporarily fixed with the binder.
  • the formation of the powder layer of the first powder and the application of the solution C are repeated for each layer, thereby producing a laminate 109 in which a plurality of powder layers are stacked.
  • the laminated body 109 is moved to the heating area 110, and the laminated body 109 is heated under the condition that at least a part of the first particles are not sintered and the nanoparticles are sintered or melted.
  • the nanoparticles are sintered or melted, and the first particles are fixed by the sintered or melted nanoparticles.
  • a modeled object having a desired shape is obtained.
  • the powder layer can be molded and laminated with high accuracy, and defects in the shaped article are reduced.
  • the decomposition temperature of ethyl cellulose is lower than the sintering start temperature of the nanoparticles, ethyl cellulose is decomposed during heating.
  • each of the liquid application units 106 and 113 can be optimized independently, so that the durability of the liquid application unit Is excellent.
  • FIG. 12 shows a modeling apparatus according to the fifteenth embodiment.
  • the structural difference from Example 9 is that the first unit for producing the laminate 109 and the second unit for heating the laminate 109 are provided separately. With such a configuration, it is not necessary to shield the heating area 110 as compared with the ninth embodiment, so that the apparatus can be downsized. Moreover, since the production of the laminate 109 and the heating of the laminate 109 can be performed at the same time, the shaping speed is improved when producing a plurality of shaped objects.
  • the present invention has been described above with specific embodiments. However, the present invention is not limited to the above embodiments, and various modifications may be made without departing from the technical idea of the present invention.
  • only the second particles 2 are selectively sintered or melted by controlling the temperature of the heat treatment, but by appropriately controlling the time of the heat treatment or both the temperature and the time. Only the second particles 2 may be selectively sintered or melted.
  • grains 2 was performed with the dispersion liquid containing a 2nd particle
  • the second liquid application unit 113 is provided after the liquid application unit 106, but the second liquid application unit 113 may be provided before the liquid application unit 106. Further, the liquid application unit 106 applies a solution (dispersion liquid not containing a binder) containing second particles to the modeling region S, and the second liquid application unit 113 provides both the modeling region S and the non-modeling region N. A liquid binder may be added. Further, the configurations of the first to fifteenth embodiments may be combined with each other as long as there are no technical contradictions or physical restrictions.

Abstract

This shaping method is characterized by comprising a step for using a first power to form a powder layer, a step for placing a second powder having an average particle size smaller than that of the first powder on a region constituting a portion of the powder layer, and a first heating step for heating the powder layer on which the second powder is placed, wherein the average particle size of the second powder is 1-500 nm inclusive, and the heating in the first heating step occurs at a temperature at which the particles contained in the second powder are sintered or melted.

Description

造形方法及び造形装置Modeling method and modeling apparatus
 本発明は、粒子状の材料を用いて立体物を造形する技術に関する。 The present invention relates to a technique for modeling a three-dimensional object using a particulate material.
 立体物を造形する方法として、造形対象物である立体物モデルのスライスデータに従って造形材料を積層する積層造形法が注目されている。従来は樹脂材料を用いた造形が主流であったが、最近では、金属やセラミックスなど、樹脂以外の造形材料を用いた造形を行う装置も増えてきている。 As a method of modeling a three-dimensional object, a layered modeling method in which modeling materials are stacked in accordance with slice data of a three-dimensional object model that is a modeling object has attracted attention. Conventionally, modeling using a resin material has been the mainstream, but recently, an apparatus that performs modeling using a modeling material other than a resin such as metal or ceramics has been increasing.
 特許文献1では、基板上に粉末材料の薄層を形成した後にレーザで局所的に高温加熱を行い、粉末材料を焼結する、という工程を繰り返すことで造形物を得る方法が開示されている。特許文献1の手法では、オーバーハング構造や可動部のある構造など、粉末材料が焼結されていない領域(以下「非造形領域」とよぶ)の上に構造体を形成する場合、非造形領域の上部に存在する粉末材料を焼結しなければならない。その際の局所的な熱収縮により反りが発生することがあるため、構造体の形状によっては、反りを抑制するサポート体(サポート構造とも称す)を付加して造形する必要がある。サポート体は、本来不要な構造であるため、立体物モデルの形状次第では、造形後に除去が必要となる場合があるため、サポート体の除去が困難な形状ないし構造をもつ立体物モデルは造形が困難である。特に、金属の造形物からサポート体を除去する際には金属加工機を用いる必要があるため、金属加工機による除去が物理的に困難な微細構造は造形することができなかった。また、セラミックスは負荷により破損しやすいため、セラミックスの造形物から選択的にサポート体を除去することは困難であった。 Patent Document 1 discloses a method of obtaining a shaped object by repeating a process of forming a thin layer of a powder material on a substrate and then locally heating at a high temperature with a laser to sinter the powder material. . In the method of Patent Document 1, when a structure is formed on a region where the powder material is not sintered (hereinafter referred to as “non-modeling region”), such as a structure with an overhang structure or a movable part, the non-modeling region The powder material present on top of must be sintered. Since warpage may occur due to local heat shrinkage at that time, depending on the shape of the structure, it is necessary to add a support body (also referred to as a support structure) that suppresses the warp. Since the support body is an essentially unnecessary structure, depending on the shape of the three-dimensional object model, it may be necessary to remove it after modeling.Thus, the three-dimensional object model having a shape or structure that makes it difficult to remove the support body can be modeled. Have difficulty. In particular, since it is necessary to use a metal working machine when removing a support body from a metal shaped article, a fine structure that is physically difficult to remove by the metal working machine cannot be formed. Further, since ceramics are easily damaged by a load, it has been difficult to selectively remove a support body from a ceramic model.
 また、金属又はセラミックスなどの粒子と樹脂バインダーとの混合材料を用いて造形物の形状を作製した後に、樹脂を除去(脱脂)し焼結することで、金属又はセラミックスの造形物を得る手法が知られている。特許文献2では、金属粒子含有層に液状結合剤を塗布して固化する工程を繰り返した後に、固化していない領域を取り除くことで、樹脂と金属粒子の複合造形物を作製する手法が開示されている。得られた複合造形物を、熱処理により脱脂、焼結することで金属造形物を得ている。 Moreover, after producing the shape of a molded article using the mixed material of particles, such as metal or ceramics, and a resin binder, the method of obtaining the molded article of a metal or ceramics by removing (degreasing) resin and sintering. Are known. Patent Document 2 discloses a method of producing a composite shaped article of resin and metal particles by removing a region that has not been solidified after repeating the step of applying and solidifying a liquid binder to the metal particle-containing layer. ing. The resulting composite model is degreased and sintered by heat treatment to obtain a metal model.
 特許文献2の方法では、オーバーハング構造や可動部のある構造などを有する形状を作製する場合、結合剤を塗布していない粉末(固化していない粉末)をサポート体の代わりとして造形している。しかし、サポート体代わりの粉末は、脱脂及び焼結の前に除去しなければならないため、脱脂後に形状を維持できず、変形、破損することがある。また、造形物中に厚さが異なる造形形状が混在する場合には、厚い箇所での脱脂が不十分だと造形物中の不純物が増え、厚い箇所の脱脂を十分にすると薄い部分が変形、破損することがある。したがって、特許文献2の造形方法では、造形可能な形状、サイズに制限があった。とはいえ、形状維持のためにサポート体代わりの粉末を除去しないで熱処理を行うと、非造形領域の金属粒子が造形領域の金属粒子に合一してしまい、求める形状が得られない可能性がある。 In the method of Patent Document 2, when a shape having an overhang structure, a structure having a movable part, or the like is produced, a powder not coated with a binder (non-solidified powder) is formed instead of a support body. . However, since the powder in place of the support body must be removed before degreasing and sintering, the shape cannot be maintained after degreasing and may be deformed or broken. In addition, when modeling shapes with different thicknesses are mixed in the modeled object, impurities in the modeled object increase if the degreasing in the thick part is insufficient, and the thin part deforms if the degreasing of the thick part is sufficient, It may be damaged. Therefore, in the modeling method of Patent Document 2, there are limitations on the shape and size that can be modeled. However, if heat treatment is performed without removing the powder instead of the support body in order to maintain the shape, the metal particles in the non-modeling area may merge with the metal particles in the modeling area, and the desired shape may not be obtained. There is.
 また、樹脂と金属の複合造形物の形状は樹脂成分によって維持されるが、樹脂成分が多いと脱脂時の変形や破損、形成した造形物中の空隙の原因となる。一方で、樹脂成分が少ないと樹脂と金属の複合造形物の強度が弱くなるため、非造形領域の粒子を取り除く際に造形物が破損することがある。 In addition, the shape of the composite molded article of resin and metal is maintained by the resin component, but if the resin component is large, deformation and breakage during degreasing and voids in the formed molded article may be caused. On the other hand, if the resin component is small, the strength of the resin-metal composite model is weakened, and the model may be damaged when removing the particles in the non-modeling region.
特開2015-38237号公報Japanese Patent Laying-Open No. 2015-38237 特開2015-205485号公報Japanese Patent Laying-Open No. 2015-205485
 上述したように、従来の造形方法では造形可能な形状に制限がある。特に金属やセラミックスなどの造形材料を用いる方法では、所望の物性あるいは形状が造形できるとは言い難い状況である。
 そこで本発明は、造形可能な形状の制限が少ない造形技術を提供することを目的とする。
As described above, there is a limit to the shape that can be shaped by the conventional modeling method. In particular, in a method using a modeling material such as a metal or ceramics, it is difficult to say that a desired physical property or shape can be modeled.
Then, this invention aims at providing the modeling technique with few restrictions of the shape which can be modeled.
 本発明の第一態様は、
 第一の粉末を用いて粉末層を形成する工程と、
 前記粉末層の一部の領域に、前記第一の粉末よりも平均粒子径が小さい第二の粉末を配置する工程と、
 前記第二の粉末が配置された前記粉末層を加熱する第一の加熱工程と、
を含み、
 前記第二の粉末の平均粒子径が1nm以上、500nm以下であり、
 前記第一の加熱工程は、前記第二の粉末に含まれる粒子どうしが焼結または溶融する温度で加熱する
ことを特徴とする造形方法を提供する。
The first aspect of the present invention is:
Forming a powder layer using the first powder;
Disposing a second powder having an average particle size smaller than that of the first powder in a partial region of the powder layer;
A first heating step for heating the powder layer in which the second powder is disposed;
Including
The average particle size of the second powder is 1 nm or more and 500 nm or less,
The first heating step provides a forming method characterized in that heating is performed at a temperature at which particles contained in the second powder are sintered or melted.
 本発明の第二態様は、
 第一の粉末を用いて粉末層を形成する粉末層形成手段と、
 前記粉末層のうちの一部の領域に、平均粒子径が前記第一の粉末よりも小さい第二の粉末を配置する配置手段と、
 前記第二の粉末に含まれる粒子どうしが焼結または溶融するように前記粉末層を加熱する加熱手段と、
 を有することを特徴とする造形装置を提供する。
The second aspect of the present invention is:
Powder layer forming means for forming a powder layer using the first powder;
Arranging means for disposing a second powder having an average particle diameter smaller than that of the first powder in a partial region of the powder layer;
Heating means for heating the powder layer so that particles contained in the second powder are sintered or melted;
The modeling apparatus characterized by having is provided.
 本発明によれば、造形可能な形状の制限が少ない造形技術を提供することができる。 According to the present invention, it is possible to provide a modeling technique with few restrictions on shapes that can be modeled.
図1A~図1Hは、本発明の実施形態の造形方法を模式的に示す図である。1A to 1H are diagrams schematically showing a modeling method according to an embodiment of the present invention. 図2A~図2Gは、本発明の実施形態の造形方法を模式的に示す図である。2A to 2G are views schematically showing a modeling method according to the embodiment of the present invention. 図3は、本発明の実施形態の造形方法を模式的に示す図である。FIG. 3 is a diagram schematically illustrating a modeling method according to the embodiment of the present invention. 図4は、実施例1に係る造形方法のフローを示す図である。FIG. 4 is a diagram illustrating a flow of the modeling method according to the first embodiment. 図5は、実施例2に係る造形方法のフローを示す図である。FIG. 5 is a diagram illustrating a flow of the modeling method according to the second embodiment. 図6は、実施例3に係る造形方法のフローを示す図である。FIG. 6 is a diagram illustrating a flow of the modeling method according to the third embodiment. 図7は、実施例8に係る造形装置を模式的に示す図である。FIG. 7 is a diagram schematically illustrating a modeling apparatus according to the eighth embodiment. 図8は、実施例9に係る造形装置を模式的に示す図である。FIG. 8 is a diagram schematically illustrating a modeling apparatus according to the ninth embodiment. 図9は、実施例11に係る造形装置を模式的に示す図である。FIG. 9 is a diagram schematically illustrating a modeling apparatus according to the eleventh embodiment. 図10は、実施例12に係る造形装置を模式的に示す図である。FIG. 10 is a diagram schematically illustrating a modeling apparatus according to the twelfth embodiment. 図11は、実施例14に係る造形装置を模式的に示す図である。FIG. 11 is a diagram schematically illustrating a modeling apparatus according to the fourteenth embodiment. 図12は、実施例15に係る造形装置を模式的に示す図である。FIG. 12 is a diagram schematically illustrating a modeling apparatus according to the fifteenth embodiment.
 本発明は、粒子状の材料を用いて立体的な造形物を作製するための造形方法に関する。本発明の方法は、アディティブマニファクチャリング(AM)システム、三次元プリンタ、ラピッドプロトタイピングシステムなどと呼ばれる造形装置における造形プロセスに好ましく利用可能である。 The present invention relates to a modeling method for producing a three-dimensional model using a particulate material. The method of the present invention can be preferably used in a modeling process in a modeling apparatus called an additive manufacturing (AM) system, a three-dimensional printer, a rapid prototyping system, or the like.
 以下、本発明の好ましい実施形態及び実施例を示して、本発明を詳細に説明する。各図面において、同一部材あるいは対応する部材を示す箇所には、同一の符号を付与している。特に図示あるいは記述をしない構成や工程には、当該技術分野の周知技術又は公知技術を適用することが可能である。また、重複する説明は省略する場合がある。 Hereinafter, the present invention will be described in detail with reference to preferred embodiments and examples of the present invention. In each drawing, the same code | symbol is provided to the location which shows the same member or a corresponding member. In particular, a well-known technique or a well-known technique in the technical field can be applied to configurations and processes not shown or described. In addition, overlapping description may be omitted.
 (造形方法)
 本発明の実施形態に係る造形方法は、概略、下記の(工程1)~(工程4)を有する。
 (工程1)第一の粒子を用いて粉末層を形成する工程
 (工程2)粉末層のうちの造形領域に、第二の粒子を付与する工程
 (工程3)第二の粒子を焼結し、造形領域内の第一の粒子どうしを固定する工程
 (工程4)造形領域外の第一の粒子を取り除く工程
(Modeling method)
The modeling method according to the embodiment of the present invention generally includes the following (Step 1) to (Step 4).
(Step 1) Step of forming a powder layer using the first particles (Step 2) Step of applying second particles to the modeling region in the powder layer (Step 3) Sintering the second particles The process of fixing the first particles in the modeling area (Process 4) The process of removing the first particles outside the modeling area
 上記の(工程1)~(工程4)を行うことにより、粉末層1層分の厚みを有するシート状(又は板状)の造形物を形成することができる。さらに、上記の(工程1)~(工程2)を繰り返して多数の粉末層を積層することで、3次元的な造形物を形成することができる。 By performing the above (Step 1) to (Step 4), a sheet-like (or plate-like) shaped article having a thickness corresponding to one powder layer can be formed. Furthermore, by repeating the above (Step 1) to (Step 2) and laminating a large number of powder layers, a three-dimensional shaped object can be formed.
 (各工程の説明)
 以下、図1A~図1H、図2A~図2G、図3を用いて、造形方法の各工程について説明する。図1A~図1H、図2A~図2Gは、本実施形態の造形方法の流れを模式的に示している。図1A~図1Hは(工程1)~(工程3)を複数回繰り返したのち(工程4)を実行するシーケンスの例、図2A~図2Gは(工程1)と(工程2)を交互に複数回繰り返したのち(工程3)と(工程4)を実行するシーケンスの例である。図3は粉末層の構造を模式的に示す拡大図である。
(Description of each process)
Hereinafter, each step of the modeling method will be described with reference to FIGS. 1A to 1H, FIGS. 2A to 2G, and FIG. 1A to 1H and FIGS. 2A to 2G schematically show the flow of the modeling method of this embodiment. 1A to 1H are examples of sequences in which (Step 4) is performed after repeating (Step 1) to (Step 3) a plurality of times, and FIGS. 2A to 2G are alternately (Step 1) and (Step 2). It is an example of the sequence which performs (process 3) and (process 4) after repeating several times. FIG. 3 is an enlarged view schematically showing the structure of the powder layer.
 なお、造形を開始する前に、造形装置又は外部装置(例えばパーソナルコンピュータなど)によって、造形対象物の3次元形状データから、各層を形成するためのスライスデータが生成されているものとする。3次元形状データとしては、3次元CAD、3次元モデラー、3次元スキャナなどで作成されたデータを用いることができ、例えば、STLファイルなどを好ましく利用できる。スライスデータは、造形対象物の3次元形状を所定の間隔(厚み)でスライスして得られるデータであり、断面の形状、層の厚み、材料の配置などの情報を含むデータである。層の厚みは造形精度に影響するため、要求される造形精度や造形に用いる粒子の粒径に応じて層の厚みを決めると良い。 In addition, before starting modeling, it is assumed that slice data for forming each layer is generated from the three-dimensional shape data of the modeling target by a modeling apparatus or an external apparatus (for example, a personal computer). As the three-dimensional shape data, data created by a three-dimensional CAD, a three-dimensional modeler, a three-dimensional scanner, or the like can be used. For example, an STL file can be preferably used. The slice data is data obtained by slicing the three-dimensional shape of the modeling object at a predetermined interval (thickness), and is data including information such as a cross-sectional shape, a layer thickness, and a material arrangement. Since the thickness of the layer affects the modeling accuracy, the thickness of the layer may be determined according to the required modeling accuracy and the particle size of the particles used for modeling.
 (工程1)第一の粉末を用いて粉末層を形成する工程
 本工程では、造形対象物のスライスデータに基づき、第一の粒子1を含む第一の粉末を用いて粉末層11が形成される(図1A、図2A)。本明細書では、複数の粒子の集合体を「粉末」と称し、粉末を所定の厚さに均したものを「粉末層」と称し、複数の粉末層を積層したものを「積層体」と称す。本工程の段階では、粉末層11を構成する個々の粒子は固定されていないが、粒子間に作用する摩擦力により粉末層11の形態は保持される。
(Step 1) Step of forming a powder layer using the first powder In this step, the powder layer 11 is formed using the first powder including the first particles 1 based on the slice data of the modeling object. (FIGS. 1A and 2A). In the present specification, an aggregate of a plurality of particles is referred to as a “powder”, a powder obtained by leveling a powder to a predetermined thickness is referred to as a “powder layer”, and a laminate of a plurality of powder layers is referred to as a “laminate”. Call it. In the stage of this process, the individual particles constituting the powder layer 11 are not fixed, but the form of the powder layer 11 is maintained by the frictional force acting between the particles.
 粉末層11を形成する第一の粉末を構成する第一の粒子1としては、例えば、樹脂粒子、金属粒子、セラミックス粒子などを使用することができる。前述したように、従来の造形方法では後加工(サポート体の除去など)が困難という理由から、金属又はセラミックスで造形可能な形状に制限があった。これに対し、本実施形態の方法は後述するように金属やセラミックスでも複雑形状や微細形状の造形が容易である。したがって、第一の粒子に金属粒子やセラミックス粒子を用いる造形は、本実施形態の造形方法を好ましく適用できる対象の一つである。 As the first particles 1 constituting the first powder forming the powder layer 11, for example, resin particles, metal particles, ceramic particles, and the like can be used. As described above, there is a limit to the shapes that can be formed with metal or ceramics, because post-processing (such as removal of a support body) is difficult with conventional modeling methods. On the other hand, the method of the present embodiment can easily form a complex shape or a fine shape even with a metal or ceramic as described later. Therefore, modeling using metal particles or ceramic particles as the first particles is one of the objects to which the modeling method of this embodiment can be preferably applied.
 第一の粒子1として使用可能な金属としては、例えば、銅、錫、鉛、金、銀、白金、パラジウム、イリジウム、チタン、タンタル、鉄などが挙げられる。
 また、ステンレス合金、チタン合金、コバルト合金、アルミニウム合金、マグネシウム合金、鉄合金、ニッケル合金、クロム合金、シリコン合金、ジルコニウム合金などの金属合金を、第一の粒子1として用いてもよい。
 また、炭素鋼など金属に炭素などの非金属元素を添加したものを、第一の粒子1として用いてもよい。
 また、第一の粒子としては、酸化物セラミックスを用いてもよいし、非酸化物セラミックスを用いてもよい。酸化物セラミックスとしては、例えば、シリカ、アルミナ、ジルコニア、チタニア、マグネシア、酸化セリウム、酸化亜鉛、酸化スズ、酸化ウラン、チタン酸バリウム、バリウムヘキサフェライト、ムライトなどの金属酸化物が挙げられる。非酸化物セラミックスとしては、窒化ケイ素、窒化チタン、窒化アルミニウム、炭化ケイ素、炭化チタン、炭化タングステン、炭化ホウ素、ホウ化チタン、ホウ化ジルコニウム、ホウ化ランタン、モリブデンシリサイド、鉄シリサイド、バリウムシリサイドなどが挙げられる。第一の粒子は、複数種類の金属の複合粒子や、複数種類のセラミックスの複合粒子であってもよい。
Examples of metals that can be used as the first particles 1 include copper, tin, lead, gold, silver, platinum, palladium, iridium, titanium, tantalum, and iron.
Further, a metal alloy such as a stainless alloy, a titanium alloy, a cobalt alloy, an aluminum alloy, a magnesium alloy, an iron alloy, a nickel alloy, a chromium alloy, a silicon alloy, or a zirconium alloy may be used as the first particles 1.
Further, a material obtained by adding a nonmetallic element such as carbon to a metal such as carbon steel may be used as the first particle 1.
As the first particles, oxide ceramics may be used, or non-oxide ceramics may be used. Examples of oxide ceramics include metal oxides such as silica, alumina, zirconia, titania, magnesia, cerium oxide, zinc oxide, tin oxide, uranium oxide, barium titanate, barium hexaferrite, and mullite. Non-oxide ceramics include silicon nitride, titanium nitride, aluminum nitride, silicon carbide, titanium carbide, tungsten carbide, boron carbide, titanium boride, zirconium boride, lanthanum boride, molybdenum silicide, iron silicide, barium silicide, etc. Can be mentioned. The first particles may be composite particles of a plurality of types of metals or composite particles of a plurality of types of ceramics.
 第一の粉末は、第一の粒子1以外の物質を含んでいてもよい。例えば、粉末層11の成形を容易にすること、粉末層11の形態を保持すること、あるいは後述する(工程2)で付与する液体の拡散を良好に制御すること、などを目的として、第一の粉末に添加剤を添加してもよい。これにより造形の容易化及び造形精度の向上を図ることができる。また、第一の粉末の中に、異なる材料からなる複数種類の第一の粒子1を混合してもよい。 The first powder may contain substances other than the first particles 1. For example, for the purpose of facilitating the formation of the powder layer 11, maintaining the form of the powder layer 11, or favorably controlling the diffusion of the liquid applied in (Step 2) described later, the first An additive may be added to the powder. Thereby, the modeling can be facilitated and the modeling accuracy can be improved. Further, a plurality of types of first particles 1 made of different materials may be mixed in the first powder.
 第一の粉末の平均粒子径は、粉末層11を良好に形成するために、凝集が起こらない程度の寸法にすることが好ましい。また、第一の粒子1の平均粒子径は、(工程2)で付与する液体の拡散、(工程3)の加熱処理における粒子固定、さらには造形物の強度や機能の要求に適した寸法にすることが好ましい。具体的には、第一の粒子1の体積基準の平均粒子径が、1μm以上、500μm以下の範囲から選択されるとよく、好ましくは、1μm以上、100μm以下の範囲から選択されるとよい。平均粒子径が1μm以上であることで、粉末層形成時の粒子の凝集が抑えられ、欠陥の少ない層形成が容易になる傾向にある。 The average particle size of the first powder is preferably set to a size that does not cause aggregation in order to form the powder layer 11 satisfactorily. In addition, the average particle size of the first particles 1 is a dimension suitable for the diffusion of the liquid applied in (Step 2), the particle fixation in the heat treatment of (Step 3), and the strength and function requirements of the modeled object. It is preferable to do. Specifically, the volume-based average particle diameter of the first particles 1 may be selected from a range of 1 μm or more and 500 μm or less, and preferably 1 μm or more and 100 μm or less. When the average particle diameter is 1 μm or more, the aggregation of particles during the formation of the powder layer is suppressed, and the layer formation with few defects tends to be facilitated.
 平均粒子径の測定は、レーザ回折/散乱式粒径分布測定装置 LA-950(HORIBA社製)を用いて行うことができる。測定条件の設定及び測定データの解析は、付属の専用ソフトを用いる。具体的な測定方法としては、まず、測定溶媒が入ったバッチ式セルをレーザ回折/散乱式粒径分布測定装置 LA-950(HORIBA社製)にセットし、光軸の調整、バックグラウンドの調整を行う。ここで、使用する溶媒は測定する粒子が溶解しないものを選択する必要がある。また、測定する粒子の分散向上のために必要に応じて適宜分散剤を溶媒中に添加してもよい。測定対象の粉末を、タングステンランプの透過率が95%~90%になるまでバッチ式セルに添加し、粒子径分布の測定を行い、得られた測定結果から体積基準の平均粒子径を算出することができる。 The measurement of the average particle diameter can be performed using a laser diffraction / scattering particle size distribution measuring apparatus LA-950 (manufactured by HORIBA). The attached dedicated software is used for setting the measurement conditions and analyzing the measurement data. As a specific measurement method, first, a batch type cell containing a measurement solvent is set in a laser diffraction / scattering type particle size distribution measuring apparatus LA-950 (manufactured by HORIBA), and the optical axis and background are adjusted. I do. Here, it is necessary to select a solvent that does not dissolve the particles to be measured. Moreover, you may add a dispersing agent in a solvent suitably as needed for the dispersion | distribution improvement of the particle | grains to measure. The powder to be measured is added to the batch cell until the transmittance of the tungsten lamp reaches 95% to 90%, the particle size distribution is measured, and the volume-based average particle size is calculated from the obtained measurement results. be able to.
 第一の粉末が、平均粒子径の異なる複数群の第一の粒子1を含んでいてもよい(もちろん、各々の群の平均粒子径はいずれも上述した数値範囲に設定されることが好ましい。)。第一の粉末に平均粒子径の異なる複数群の粒子が含まれる場合、第一の粉末の粒子径分布を測定すると、それぞれの群の平均粒子径近傍に存在比率が高いことを示すピークが現れる。
 例えば、相対的に平均粒子径の大きい第一群の粒子と、相対的に平均粒子径の小さい第二群の粒子とを混合することで、粉末層11を形成したときに第一群の粒子どうしの間隙に第二群の粒子が入り込み、粉末層11の空隙を減らすことができる。このとき、第二群の粒子の平均粒子径が、後述する第二の粒子の平均粒子径よりも大きく、第一群の粒子の平均粒子径の0.41倍以下であることが好ましい。第一群の粒子と第二群の粒子の平均粒子径の比をこのように設定すると、第一群の粒子が最密構造を形成した場合の粒子間隙(八面体サイト)に第二群の粒子を配置できるため、粉末層11の空間充填率を可及的に大きくすることができる。これにより、結果的に空隙率の小さい造形物を作製することができる。なお、第一群の粒子と第二群の粒子は同じ材料の粒子であることが好ましいが、異なる材料の粒子でも構わない。
The first powder may contain a plurality of groups of first particles 1 having different average particle diameters (of course, the average particle diameter of each group is preferably set within the above-described numerical range. ). When the first powder contains a plurality of groups of particles having different average particle diameters, when the particle size distribution of the first powder is measured, a peak indicating a high abundance ratio appears in the vicinity of the average particle diameter of each group .
For example, when the powder layer 11 is formed by mixing the first group of particles having a relatively large average particle diameter and the second group of particles having a relatively small average particle diameter, the first group of particles is formed. The second group of particles can enter the gaps between the gaps, and voids in the powder layer 11 can be reduced. At this time, it is preferable that the average particle diameter of the second group of particles is larger than the average particle diameter of the second particles described later and 0.41 times or less of the average particle diameter of the first group of particles. When the ratio of the average particle size of the first group of particles to the second group of particles is set in this way, the second group of particles is formed in the particle gap (octahedral site) when the first group of particles forms a close-packed structure. Since the particles can be arranged, the space filling rate of the powder layer 11 can be increased as much as possible. Thereby, as a result, a molded article with a small porosity can be produced. The first group of particles and the second group of particles are preferably particles of the same material, but may be particles of different materials.
 第一の粒子1は、平均円形度が0.94以上であることが好ましく、より好ましくは0.96以上である。第一の粒子1の平均円形度が0.94以上であれば、粒子が球に近い構造を有することになり、粒子同士が点接触する点を少なくすることができる。そうなると、第一の粒子1を含む第一の粉末の流動性が向上し、粉末層11を形成するときに第一の粒子1が最密充填されやすくなるため、空隙が少ない粉末層11を形成しやすくなる。 The first particles 1 preferably have an average circularity of 0.94 or more, and more preferably 0.96 or more. If the average circularity of the first particles 1 is 0.94 or more, the particles have a structure close to a sphere, and the number of points where the particles are in point contact can be reduced. As a result, the fluidity of the first powder containing the first particles 1 is improved, and when the powder layer 11 is formed, the first particles 1 are likely to be closely packed, so that the powder layer 11 with fewer voids is formed. It becomes easy to do.
 粒子の円形度は、以下のように測定することができ、平均円形度は、任意の粒子10個以上について測定して得られた円形度を平均して得ることができる。
 
円形度=(粒子の投影面積と同じ面積の円の周囲長)/(粒子の投影像の周囲長)
 
 ここで、「粒子の投影像」は、粒子画像を二値化することで得ることができる。「粒子の投影面積」は粒子の投影像の面積であり、「粒子の投影像の周囲長」は粒子の投影像の輪郭線の長さである。
The circularity of the particles can be measured as follows, and the average circularity can be obtained by averaging the circularities obtained by measuring 10 or more arbitrary particles.

Circularity = (perimeter of a circle having the same area as the projected area of the particle) / (perimeter of the projected image of the particle)

Here, the “particle projected image” can be obtained by binarizing the particle image. The “particle projected area” is the area of the projected image of the particle, and the “peripheral length of the projected image of the particle” is the length of the outline of the projected image of the particle.
 円形度は粒子の形状の複雑さを示す指標であり、粒子が完全な球形の場合に1.00を示し、粒子の投影像が円形から外れる程、円形度は小さな値となる。なお、粒子の円形度は、電子顕微鏡などの観察画像の画像処理及び、フロー式粒子像測定装置(例えば、東亜医用電子社製FPIA-3000型)などを用いて測定を行うことができる。 The circularity is an index indicating the complexity of the shape of the particle, and indicates 1.00 when the particle is a perfect sphere, and the circularity becomes smaller as the projected image of the particle deviates from the circle. The circularity of the particles can be measured using image processing of an observation image such as an electron microscope and a flow type particle image measuring device (for example, FPIA-3000 type manufactured by Toa Medical Electronics Co., Ltd.).
 粉末層11の形成は、例えば、特開平8-281807号公報に開示されているように、上方開口したコンテナと、コンテナの内部に設定された昇降可能な支持体と、ワイパーを備えた材料供給装置とを用いて形成することができる。具体的には、支持体の上面がコンテナの上縁より一層の厚さ分だけ下方となる位置に調整し、材料供給装置により平板上に材料を供給した後、ワイパーによって平坦化することにより1層分の粉末層11を形成することができる。あるいは、平面(ステージ又は作製中の造形物の表面)上に第一の粉末を供給し、層厚規制手段(例えばブレードなど)で粉末の表面を均すことにより、所望の厚さの粉末層11を形成してもよい。さらに、加圧手段(例えば加圧ローラ、加圧板など)で粉末層11を加圧してもよい。加圧することによって粒子間の接触点数が増加することで、造形物の欠陥が形成されにくくなる傾向にある。また、粉末層中の第一の粒子1が緻密に存在することで、後段の(工程2)及び(工程3)の処理中に第一の粒子1が動くこと(粉末層11の形態が崩れること)が抑制され、形状精度の高い造形物を作製することができる。 For example, as disclosed in Japanese Patent Application Laid-Open No. 8-281807, the powder layer 11 is formed by a container having an upper opening, a support body that can be raised and lowered set inside the container, and a material supply provided with a wiper. It can be formed using a device. Specifically, the upper surface of the support is adjusted to a position that is lower than the upper edge of the container by a thickness, and the material is supplied onto the flat plate by the material supply device and then flattened by the wiper. The powder layer 11 of the layer can be formed. Alternatively, a powder layer having a desired thickness can be obtained by supplying the first powder onto a flat surface (the surface of the model or the object being fabricated) and leveling the surface of the powder with a layer thickness regulating means (for example, a blade). 11 may be formed. Further, the powder layer 11 may be pressed by a pressing means (for example, a pressure roller, a pressure plate, etc.). By increasing the number of contact points between the particles by pressurization, defects in the modeled object tend not to be formed. In addition, since the first particles 1 in the powder layer are densely present, the first particles 1 move during the subsequent steps (step 2) and (step 3) (the shape of the powder layer 11 is lost). ) Is suppressed, and a shaped object with high shape accuracy can be produced.
 造形装置が組成の異なる複数種類の第一の粉末を備えており(つまり、異なる種類の第一の粉末を収容可能な複数の粉末供給部を有し)、使用する第一の粉末を切り替え可能であってもよい。例えば、複数の粉末層11を積層する場合に、層ごとに粉末の組成を変えてもよい。 The modeling device has multiple types of first powders with different compositions (that is, it has multiple powder supply units that can store different types of first powders), and the first powder to be used can be switched. It may be. For example, when a plurality of powder layers 11 are laminated, the composition of the powder may be changed for each layer.
 (工程2)粉末層のうちの造形領域に、第二の粉末を配置する工程
 本工程では、造形対象物のスライスデータに基づき、液体付与装置によって、粉末層11のうちの造形領域Sに、第二の粒子2を含み、平均粒子径が1nm以上、500nm以下の第二の粉末を含む液体12(「粒子分散液12」とも呼ぶ)を付与する(図1B、図2B)。ここで「造形領域S」とは、造形対象物の断面に対応する領域(つまり、粉末層11のうち粉末を固めて造形物として取り出すべき部分)をさす。なお、造形領域S外の領域(つまり、最終的には粉末が除去されるべき部分)は「非造形領域N」と呼ぶ。
(Step 2) Step of placing the second powder in the modeling region of the powder layer In this step, based on the slice data of the modeling object, the liquid application device applies the modeling powder S to the modeling region S of the powder layer 11. A liquid 12 containing the second particles 2 and containing a second powder having an average particle diameter of 1 nm or more and 500 nm or less (also referred to as “particle dispersion 12”) is applied (FIGS. 1B and 2B). Here, the “modeling region S” refers to a region corresponding to the cross section of the modeling target (that is, a portion of the powder layer 11 that should be solidified and taken out as a modeled product). An area outside the modeling area S (that is, a part where the powder is to be finally removed) is referred to as a “non-modeling area N”.
 第二の粉末は、少なくとも、第一の粉末よりも低い温度及び/又は短い時間で焼結および溶融が可能な粉末である。言い換えると、第一の粉末と第二の粉末の混合粉末を加熱する場合、第一の粉末を構成する少なくとも一部の第一の粒子1どうしは焼結(当然ながら溶融も)せず、第二の粉末を構成する第二の粒子どうしが焼結または溶融する、加熱条件(温度や時間など)が設定できる。ここで「焼結」とは、粒子どうしが接触する状態で粉末を融点以下の温度で加熱し、粒子どうしを固定(結合)させる処理をいう。また、「焼結せず」とは、粒子どうしが、固定していない状態、および、弱い力で固定されており、弱い力で固定されている粒子間の境界が電子顕微鏡で確認できる状態を含む。 The second powder is a powder that can be sintered and melted at least at a lower temperature and / or shorter time than the first powder. In other words, when the mixed powder of the first powder and the second powder is heated, at least some of the first particles 1 constituting the first powder are not sintered (and naturally melted), The heating conditions (temperature, time, etc.) in which the second particles constituting the second powder are sintered or melted can be set. Here, “sintering” refers to a treatment in which the particles are fixed (bonded) by heating the powder at a temperature below the melting point in a state where the particles are in contact with each other. In addition, “not sintered” means that the particles are not fixed and are fixed with a weak force, and the boundary between particles fixed with a weak force can be confirmed with an electron microscope. Including.
 詳しくは後述するが、本実施形態の造形方法は、第二の粉末に含まれる粒子どうしが焼結または溶融する温度で加熱することで、第二の粒子2によって造形領域S内の第一の粒子1どうしを固定した後に、非造形領域N内の第一の粉末を取り除くという点に特徴を有する。 As will be described in detail later, the modeling method of the present embodiment is heated at a temperature at which the particles contained in the second powder are sintered or melted, whereby the first particles in the modeling region S are heated by the second particles 2. It is characterized in that the first powder in the non-modeling region N is removed after the particles 1 are fixed.
 平均粒子径が1nm以上、500nm以下の第二の粒子2を含む第二の粉末を用いることは、第二の粉末の焼結または溶融開始温度を第一の粉末の焼結開始温度に比べて十分に小さくする効果がある。本発明者の実験により、第二の粉末の焼結または溶融開始温度が、平均粒子径が1μm以上の第一の粒子を含む第一の粉末の焼結開始温度に比べて、有意に低下することが確認できた。第二の粉末の焼結開始温度は、第一の粉末の焼結開始温度よりに100℃以上低いと良く、300℃以上低いとより好ましい。
 第二の粉末に含まれる第二の粒子2の平均粒子径は、更に好ましくは1nm以上200nm以下である。以下、第二の粒子2をナノ粒子2と呼ぶ場合がある。
 平均粒子径が200nm以下であることで、焼結温度が低下するだけでなく、液体12中でのナノ粒子2の分散性が良くなり、液体12を付与する際の均一性が向上するため好ましい。
 ナノ粒子2の平均粒子径は第一の粒子1の平均粒子径よりも小さい。これにより、ナノ粒子2が第一の粒子1の間隙に充填され、ナノ粒子2による第一の粒子1どうしの固定が図られやすくなる。
 ナノ粒子2の平均粒子径は、液体付与時にナノ粒子2が第一の粒子1の間隙に容易に入り込むことができる程度のサイズに設定するとよい。
Using the second powder containing the second particles 2 having an average particle diameter of 1 nm or more and 500 nm or less is that the sintering or melting start temperature of the second powder is compared with the sintering start temperature of the first powder. There is an effect to make it small enough. According to the experiments of the present inventors, the sintering or melting start temperature of the second powder is significantly reduced as compared with the sintering start temperature of the first powder containing the first particles having an average particle diameter of 1 μm or more. I was able to confirm. The sintering start temperature of the second powder is preferably 100 ° C. or more lower than the sintering start temperature of the first powder, and more preferably 300 ° C. or more.
The average particle diameter of the second particles 2 contained in the second powder is more preferably 1 nm or more and 200 nm or less. Hereinafter, the second particles 2 may be referred to as nanoparticles 2.
An average particle size of 200 nm or less is preferable because not only the sintering temperature is lowered, but also the dispersibility of the nanoparticles 2 in the liquid 12 is improved and the uniformity when the liquid 12 is applied is improved. .
The average particle diameter of the nanoparticles 2 is smaller than the average particle diameter of the first particles 1. Thereby, the nanoparticles 2 are filled in the gaps between the first particles 1, and the first particles 1 are easily fixed to each other by the nanoparticles 2.
The average particle diameter of the nanoparticles 2 may be set to a size that allows the nanoparticles 2 to easily enter the gaps between the first particles 1 when the liquid is applied.
 ナノ粒子2としては、例えば、樹脂粒子、金属粒子、セラミックス粒子などを使用することができる。その中でも、第一の粒子1として、金属粒子又はセラミックス粒子を用いた場合には、ナノ粒子2として金属粒子又はセラミックス粒子を用いることが好ましい。ナノ粒子2として使用可能な金属としては、例えば、銅、錫、鉛、金、銀、白金、パラジウム、イリジウム、チタン、タンタル、鉄、ニッケルなどが挙げられる。また、ステンレス合金、チタン合金、コバルト合金、アルミニウム合金、マグネシウム合金、鉄合金、ニッケル合金、クロム合金、シリコン合金、ジルコニウム合金などの金属合金を、ナノ粒子2として用いてもよい。
 また、炭素鋼など金属に炭素などの非金属元素を添加したものを、ナノ粒子2として用いてもよい。
 また、ナノ粒子2としては、酸化物セラミックスを用いてもよいし、非酸化物セラミックスを用いてもよい。酸化物セラミックスとしては、例えば、シリカ、アルミナ、ジルコニア、チタニア、マグネシア、酸化セリウム、酸化亜鉛、酸化スズ、酸化ウラン、チタン酸バリウム、バリウムヘキサフェライト、ムライトなどの金属酸化物が挙げられる。非酸化物セラミックスとしては、窒化ケイ素、窒化チタン、窒化アルミニウム、炭化ケイ素、炭化チタン、炭化タングステン、炭化ホウ素、ホウ化チタン、ホウ化ジルコニウム、ホウ化ランタン、モリブデンシリサイド、鉄シリサイド、バリウムシリサイドなどが挙げられる。ナノ粒子2は、複数種類の金属の複合粒子や、複数種類のセラミックスの複合粒子であってもよい。
As the nanoparticles 2, for example, resin particles, metal particles, ceramic particles, and the like can be used. Among these, when metal particles or ceramic particles are used as the first particles 1, it is preferable to use metal particles or ceramic particles as the nanoparticles 2. Examples of metals that can be used as the nanoparticles 2 include copper, tin, lead, gold, silver, platinum, palladium, iridium, titanium, tantalum, iron, and nickel. Further, a metal alloy such as a stainless alloy, a titanium alloy, a cobalt alloy, an aluminum alloy, a magnesium alloy, an iron alloy, a nickel alloy, a chromium alloy, a silicon alloy, or a zirconium alloy may be used as the nanoparticles 2.
Moreover, what added nonmetallic elements, such as carbon, to metals, such as carbon steel, may be used as the nanoparticle 2.
Further, as the nanoparticles 2, oxide ceramics may be used, or non-oxide ceramics may be used. Examples of oxide ceramics include metal oxides such as silica, alumina, zirconia, titania, magnesia, cerium oxide, zinc oxide, tin oxide, uranium oxide, barium titanate, barium hexaferrite, and mullite. Non-oxide ceramics include silicon nitride, titanium nitride, aluminum nitride, silicon carbide, titanium carbide, tungsten carbide, boron carbide, titanium boride, zirconium boride, lanthanum boride, molybdenum silicide, iron silicide, barium silicide, etc. Can be mentioned. The nanoparticles 2 may be composite particles of a plurality of types of metals or composite particles of a plurality of types of ceramics.
 ナノ粒子2は、第一の粒子1と少なくとも一種類の同じ成分を含有することが好ましい。同じ成分を含有することで、ナノ粒子2の焼結時にナノ粒子2表面と第一の粒子1表面とが結合しやすくなり、強固に第一の粒子1を固定することができる。さらには、ナノ粒子2が、第一の粒子1に含有されている成分を主成分として構成されているとより好ましい。最終的な造形物は第一の粒子1とナノ粒子2の混合物になるところ、ナノ粒子2が第一の粒子1と同じ成分(材料)で構成されていれば、造形物内の不純物の量が少なくなり、造形物の材質が均質化されるので、造形物の強度や品質を向上することができる。例えば、第一の粒子1が鉄を含有するステンレス合金である場合、ナノ粒子2としては鉄粒子や酸化鉄粒子などを好適に使用できる。 The nanoparticle 2 preferably contains at least one type of the same component as the first particle 1. By containing the same component, the surface of the nanoparticle 2 and the surface of the first particle 1 are easily bonded when the nanoparticle 2 is sintered, and the first particle 1 can be firmly fixed. Furthermore, it is more preferable that the nanoparticles 2 are composed mainly of components contained in the first particles 1. When the final shaped object is a mixture of the first particles 1 and the nanoparticles 2, if the nanoparticles 2 are composed of the same components (materials) as the first particles 1, the amount of impurities in the shaped object Since the material of the modeled object is homogenized, the strength and quality of the modeled object can be improved. For example, when the first particle 1 is a stainless steel alloy containing iron, iron particles, iron oxide particles, or the like can be suitably used as the nanoparticles 2.
 前述のように、領域ごと又は層ごとに第一の粉末の組成を変更可能な構成の場合、ナノ粒子2の組成及び液体12の種類を、第一の粉末の組成に合わせて領域ごと又は層ごとに変えてもよいし、あるいはすべて同じ種類の液体12を用いてもよい。液体12の濃度及び量は、造形物の空隙率に影響するため、要求される造形物の空隙率に応じて決めるとよい。 As described above, when the composition of the first powder can be changed for each region or layer, the composition of the nanoparticles 2 and the type of the liquid 12 are changed for each region or layer according to the composition of the first powder. It may be changed every time, or the same type of liquid 12 may be used. Since the concentration and amount of the liquid 12 affect the porosity of the modeled object, it may be determined according to the required porosity of the modeled object.
 液体12を粉末層11に付与する工程と(工程3)のあいだに、液体12を乾燥させる工程を設けるとよい。液体12を乾燥させる工程は、1層ごとに行うのが好ましい。乾燥が進むにつれて徐々に濃縮される液体12が、その表面張力によって、第一の粒子1間の粒界に集まる。液体中のナノ粒子2は液体12の動きに伴い、選択的に第一の粒子1間の粒界に集まり、凝集する。乾燥工程の結果として、第一の粒子1の粒界にナノ粒子2が集積することによって後述するナノ粒子2の焼結時に第一の粒子1を効率的にかつ強固に固定することができる。液体を乾燥する際には、液体12の濃度や量などに応じて最適な温度、時間などの乾燥条件を選ぶとよい。 It is preferable to provide a step of drying the liquid 12 between the step of applying the liquid 12 to the powder layer 11 and (Step 3). The step of drying the liquid 12 is preferably performed for each layer. The liquid 12 that is gradually concentrated as the drying proceeds gathers at the grain boundaries between the first particles 1 due to the surface tension. As the liquid 12 moves, the nanoparticles 2 in the liquid selectively gather at the grain boundaries between the first particles 1 and aggregate. As a result of the drying process, the nanoparticles 2 are accumulated at the grain boundaries of the first particles 1, whereby the first particles 1 can be efficiently and firmly fixed during the sintering of the nanoparticles 2 described later. When drying the liquid, it is preferable to select the optimum drying conditions such as temperature and time according to the concentration and amount of the liquid 12.
 また、液体12の均一性を増すために、溶媒を添加してもよい。具体的な溶媒として水溶媒、有機溶媒若しくは水溶媒と有機溶媒の混合溶媒を用いることができる。水溶媒としては、純水等を用いることができる。また、有機溶媒としては、メタノールやエタノール等のアルコール、メチルエチルケトン、アセトン、アセチルアセトン等のケトン、ヘキサン、シクロヘキサン等の炭化水素等が用いられる。液体12に溶媒を添加すると、乾燥時に適切な速度で溶媒の蒸発が行われるため、ナノ粒子2の分散ムラが発生しにくい傾向にある。 Further, in order to increase the uniformity of the liquid 12, a solvent may be added. As a specific solvent, an aqueous solvent, an organic solvent, or a mixed solvent of an aqueous solvent and an organic solvent can be used. As the aqueous solvent, pure water or the like can be used. As the organic solvent, alcohols such as methanol and ethanol, ketones such as methyl ethyl ketone, acetone and acetyl acetone, hydrocarbons such as hexane and cyclohexane, and the like are used. When a solvent is added to the liquid 12, the solvent is evaporated at an appropriate speed during drying, and thus dispersion of the nanoparticles 2 tends to hardly occur.
 液体12中のナノ粒子2の分散性を制御するために添加剤を適宜添加することもできる。液体12は、必要に応じて顔料などの機能性物質を含んでいても良い。
 また、液体12は、粒子を固定するための結合剤を含んでもよい。結合剤としては既存の物質が使用可能であるが、後述する(工程3)の加熱処理により分解される物質、即ち、ナノ粒子が焼結する温度または溶融する温度よりも低い分解温度を有する物質が好ましい。加熱により分解されることで、(工程3)までは造形領域S内の第一の粒子1及び/又は造形領域S内のナノ粒子2を固定しながらも、(工程3)で除去できるため、造形物中の不純物となりにくい。具体的な結合剤としては、樹脂材料や水溶性炭水化物が挙げられる。結合剤は液体中に溶解することが好ましい。
In order to control the dispersibility of the nanoparticles 2 in the liquid 12, an additive may be added as appropriate. The liquid 12 may contain a functional substance such as a pigment as necessary.
The liquid 12 may also contain a binder for fixing the particles. An existing substance can be used as the binder, but the substance decomposed by the heat treatment described later (step 3), that is, the substance having a decomposition temperature lower than the temperature at which the nanoparticles are sintered or melted. Is preferred. By being decomposed by heating, the first particles 1 in the modeling region S and / or the nanoparticles 2 in the modeling region S can be fixed up to (step 3), but can be removed in (step 3). Difficult to become impurities in the model. Specific examples of the binder include resin materials and water-soluble carbohydrates. The binder is preferably dissolved in the liquid.
 また、結合剤の付与を液体12の付与工程とは分け、(工程2)の後かつ(工程3)の前に、粉末層11に対し結合剤を付与する工程を設けてもよい。この場合、結合剤は、造形領域Sまたは/および非造形領域Nに付与することができる。結合剤を付与することにより、第一の粒子1を仮固定することができ、次の粉末層形成が容易になる傾向にある。結合剤の付与方法としては、液体に結合剤を溶かした液体結合剤を、液体付与装置を用いて付与する方法が好ましい。液体結合剤には、樹脂材料を溶剤に溶かした樹脂溶液、水溶性物質を水に溶かした溶液などを用いることができる。
 ナノ粒子を分散させた液体12と結合剤を含有する液とを分けて付与すれば、それぞれの付与装置を付与する液体に応じて独立して最適化することができるため、付与装置の耐久性が優れる傾向にあり、好ましい。
In addition, the application of the binder may be separated from the application process of the liquid 12, and a process of applying the binder to the powder layer 11 may be provided after (Process 2) and before (Process 3). In this case, the binder can be applied to the modeling region S or / and the non-modeling region N. By applying the binder, the first particles 1 can be temporarily fixed, and the next powder layer formation tends to be facilitated. As a method of applying the binder, a method of applying a liquid binder obtained by dissolving the binder in a liquid using a liquid application device is preferable. As the liquid binder, a resin solution in which a resin material is dissolved in a solvent, a solution in which a water-soluble substance is dissolved in water, or the like can be used.
If the liquid 12 in which the nanoparticles are dispersed and the liquid containing the binder are applied separately, the liquid can be optimized independently according to the liquid applied to each application apparatus, and thus the durability of the application apparatus Tends to be excellent, which is preferable.
 結合剤は、(工程2)を行っている間は第一の粒子1及び/又は造形領域S内のナノ粒子2の固定に寄与し、(工程3)での加熱により分解され除去される。従って、造形領域S内に付与された結合剤は、(工程2)の間は造形物の形状を保ち、(工程3)において、熱によって分解され、分解物が第一の粒子間の隙間を通って除去される。その結果、結合剤が造形物中の不純物として残りにくく、非造形領域N内の第一の粒子1の除去も容易である。結合剤の残留が生じないように結合剤の種類及び量を決定することが好ましい。 The binder contributes to fixing the first particles 1 and / or the nanoparticles 2 in the modeling region S while performing (Step 2), and is decomposed and removed by heating in (Step 3). Accordingly, the binder applied in the modeling region S maintains the shape of the modeled object during (Step 2), and is decomposed by heat in (Step 3), and the decomposed product creates gaps between the first particles. Removed through. As a result, the binder is unlikely to remain as an impurity in the modeled object, and the first particles 1 in the non-modeled region N can be easily removed. It is preferable to determine the type and amount of the binder so that no binder remains.
 液体12あるいは液体結合剤の付与に用いる液体付与装置としては、所望の位置に所望の量で液体を付与できる装置であればどのようなものを用いてもよい。液量や配置位置が精度良く制御可能な点から、インクジェット装置を好ましく利用できる。
 粒子分散液である液体12と液体結合剤とを分けて付与する場合は、それぞれの液を吐出するノズルが設けられたヘッドを有するインクジェット装置により、造形領域Sへの粒子分散液12の付与と液体結合剤の付与を一度に行う構成も好ましい。
As the liquid application device used for applying the liquid 12 or the liquid binder, any device can be used as long as it can apply the liquid in a desired amount at a desired position. An inkjet apparatus can be preferably used from the viewpoint that the liquid amount and the arrangement position can be controlled with high accuracy.
When the liquid 12 that is a particle dispersion and the liquid binder are separately applied, the application of the particle dispersion 12 to the modeling area S is performed by an ink jet apparatus having a head provided with a nozzle for discharging each liquid. A configuration in which the liquid binder is applied at a time is also preferable.
 インクジェット装置にて吐出する場合には液体12の粘度は適切な値とすることが必要であり、50cP以下が好ましく、より好ましくは20cP以下である。一方で、第一の粒子1間に液体12を速やかに拡散させるため、また乾燥時に液体12を第一の粒子1間に凝集させるために、液体12の粘度を適切な値とする必要があるが、20cP以下であることで流体組成物吐出をより制御しやすくなる傾向にある。 When discharging with an ink jet apparatus, the viscosity of the liquid 12 needs to be an appropriate value, preferably 50 cP or less, more preferably 20 cP or less. On the other hand, in order to quickly diffuse the liquid 12 between the first particles 1 and to aggregate the liquid 12 between the first particles 1 during drying, it is necessary to set the viscosity of the liquid 12 to an appropriate value. However, it is in the tendency which becomes easier to control fluid composition discharge because it is 20 cP or less.
 造形物の体積密度を上げて強度をより高めるためには、液体12中のナノ粒子2の体積濃度は、上記粘度の範囲内で、高い方が好ましい。しかしながら、液体12を乾燥する過程において、第一の粒子1間の接触点近傍にナノ粒子2を集積させやすくする観点では、液体12の体積濃度は低い方が望ましい。これらの条件から、液体12の体積濃度が50vol%以下であることが好ましく、より好ましくは30vol%以下である。固形分濃度が50vol%以下であることで、液体12が乾燥する際に第一の粒子1間にナノ粒子2が集積する傾向があり、効率よく第一の粒子1の固定に寄与するため好ましい。
 また、液体12は複数回付与してもよく、付与するごとに乾燥させてもよい。複数回付与することで造形領域における粉末層11中のナノ粒子2の濃度を制御することができる。
In order to increase the volume density of the modeled object and increase the strength, the volume concentration of the nanoparticles 2 in the liquid 12 is preferably higher within the above viscosity range. However, in the process of drying the liquid 12, it is desirable that the volume concentration of the liquid 12 is low in terms of facilitating the accumulation of the nanoparticles 2 near the contact point between the first particles 1. From these conditions, the volume concentration of the liquid 12 is preferably 50 vol% or less, and more preferably 30 vol% or less. The solid content concentration of 50 vol% or less is preferable because the nanoparticles 2 tend to accumulate between the first particles 1 when the liquid 12 dries, and contributes to the fixation of the first particles 1 efficiently. .
The liquid 12 may be applied a plurality of times, or may be dried every time it is applied. By applying a plurality of times, the concentration of the nanoparticles 2 in the powder layer 11 in the modeling region can be controlled.
 (工程3)第二の粉末を焼結または溶融し、造形領域内の第一の粒子どうしを固定する工程
 本工程では、第二の粉末が焼結または溶融する条件にて粉末層11を加熱することで、焼結または溶融するナノ粒子2を介して、造形領域S内の第一の粒子1どうしを固定する(図1C、図1F、図2F)。
(Step 3) Step of sintering or melting the second powder and fixing the first particles in the modeling region In this step, the powder layer 11 is heated under the condition that the second powder is sintered or melted. By doing so, the 1st particle | grains 1 in the modeling area | region S are fixed through the nanoparticle 2 to sinter or fuse | melt (FIG. 1C, FIG. 1F, FIG. 2F).
 図1C、図1Fの符号13は粒子どうしが固定された領域を示している。図1A~図1Hの造形プロセスでは、(工程1)から(工程3)、即ち、図1D~図1Fを繰り返し、造形領域S内の粒子のみを固定しながら粉末層を積層することで、造形物を内部に含む積層体14が形成される。また、図2A~図2Gの造形プロセスでは、(工程1)と(工程2)、即ち、図2C~図2Dを繰り返し、造形領域S内にナノ粒子2を付与した状態の粉末層を積層したのち、複数の粉末層からなる積層体16をまとめて加熱する。この造形プロセスでも、図1Gと同じように、造形物を内部に含む積層体14が形成される。なお、積層体16を加熱する前に、積層体16を加圧する工程を設けてもよい。積層体16を加圧することによって、第一の粒子1間の接点数が増加し、加熱時の粒子間結着が効率よく進む傾向にあるからである。 In FIG. 1C and FIG. 1F, reference numeral 13 denotes a region where the particles are fixed. In the modeling process of FIGS. 1A to 1H, (Step 1) to (Step 3), that is, FIGS. 1D to 1F are repeated, and the powder layer is laminated while fixing only the particles in the modeling region S. The laminated body 14 which contains a thing inside is formed. 2A to 2G, (Step 1) and (Step 2), that is, FIGS. 2C to 2D are repeated, and the powder layer in a state where the nanoparticles 2 are provided in the modeling region S is laminated. After that, the laminate 16 composed of a plurality of powder layers is heated together. Also in this modeling process, the laminated body 14 which contains a modeled object inside is formed like FIG. 1G. In addition, before heating the laminated body 16, you may provide the process of pressurizing the laminated body 16. FIG. This is because pressurizing the laminate 16 increases the number of contacts between the first particles 1, and the interparticle binding during heating tends to proceed efficiently.
 加熱時の雰囲気は材料の種類に応じて任意に定めることができる。例えば金属の場合、Ar、N2などの不活性ガスや、水素ガス雰囲気、真空雰囲気などの酸素が少ない雰囲気で加熱することが、焼結時の金属の酸化を抑えることができるため好ましい。
 工程3の工程で、周囲に第一の粒子が存在する状況下で、有機成分、樹脂を熱により除去することができるため、造形物の形状を維持しながら、造形物中の残炭素成分を減らすことができる。特に造形物中に厚さが異なる造形形状が混在する場合でも、内部の有機成分、樹脂成分を除去することができるため、造形物の形状の自由度に優れる。
The atmosphere during heating can be arbitrarily determined according to the type of material. For example, in the case of metal, it is preferable to heat in an inert gas such as Ar or N2, an atmosphere with less oxygen, such as a hydrogen gas atmosphere or a vacuum atmosphere, because oxidation of the metal during sintering can be suppressed.
In the process of Step 3, since the organic component and the resin can be removed by heat in the situation where the first particles exist around, the remaining carbon component in the modeled object is maintained while maintaining the shape of the modeled object. Can be reduced. In particular, even when modeling shapes having different thicknesses are mixed in the modeled object, the organic component and the resin component inside can be removed, and thus the degree of freedom in the shape of the modeled object is excellent.
 (工程4)造形領域外の第一の粒子を取り除く工程
 本工程では、(工程3)で得られた積層体14から造形領域S外の粉末を除去し、造形物15を得る(図1F、図2G)。積層体14から不要な粉末を除去する方法としては、公知の方法含め、いかなる方法を用いてもよい。例えば、洗浄、エア吹付、吸引、加振などが挙げられる。
 本実施形態の造形方法では除去対象となる粉末に含まれる第一の粒子1は固定されていないか、固定されていたとしても、造形領域Sと比較して弱く固定されているため、除去が極めて容易である。また、除去した粉末は回収して造形材料として再利用することもできる。 
(Step 4) Step of removing first particles outside the modeling region In this step, the powder outside the modeling region S is removed from the laminate 14 obtained in (Step 3) to obtain a modeled object 15 (FIG. 1F, FIG. 2G). Any method including a known method may be used as a method for removing unnecessary powder from the laminate 14. For example, cleaning, air spraying, suction, vibration, etc. can be mentioned.
In the modeling method of the present embodiment, the first particles 1 contained in the powder to be removed are not fixed, or even if they are fixed, the first particles 1 are weakly fixed as compared to the modeling region S. Very easy. Further, the removed powder can be collected and reused as a modeling material.
 以上述べた本実施形態の造形方法は、次のような特徴を有する。
 ・主たる造形材料である第一の粒子1どうしを直接結合させるのではなく、ナノ粒子2を焼結または溶融させ、ナノ粒子2の結合作用によってその周囲に存在する第一の粒子1を間接的に結合させる。したがって、ナノ粒子2を付与する位置及び範囲を制御することで、造形物の形状を制御することができる。しかも粒子分散液12の状態でナノ粒子2を付与するため、インクジェット装置などの液体付与装置を利用することでナノ粒子2を付与する位置、範囲、量などを簡単にかつ高精度に制御することができる。
The modeling method of this embodiment described above has the following characteristics.
Rather than directly bonding the first particles 1 that are the main modeling material, the nanoparticles 2 are sintered or melted, and the first particles 1 that are present around them are indirectly bonded by the bonding action of the nanoparticles 2. To join. Therefore, the shape of the shaped article can be controlled by controlling the position and the range to which the nanoparticles 2 are applied. Moreover, in order to apply the nanoparticles 2 in the state of the particle dispersion 12, the position, range, amount, etc., to which the nanoparticles 2 are applied can be easily and accurately controlled by using a liquid application device such as an ink jet device. Can do.
 ・ナノ粒子2を焼結または溶融させるので、第一の粒子1どうしを強固に結合させることができる。また、ナノ粒子2が第一の粒子1の間隙を埋める作用があるので、造形物の空隙率を低減することができる。 ・ Since the nanoparticles 2 are sintered or melted, the first particles 1 can be firmly bonded to each other. Moreover, since the nanoparticle 2 has the effect | action which fills the clearance gap between the 1st particle | grains 1, the porosity of a molded article can be reduced.
 ・(工程3)ではナノ粒子2が存在する箇所が選択的に固定されるので、非造形領域Nの粒子の除去が容易である。また、非造形領域Nの粒子を除去する際に、大きな力を加える必要がないので、造形物を破損したり傷つけたりするおそれも少ない。 In (Step 3), the location where the nanoparticles 2 are present is selectively fixed, so that the removal of the particles in the non-modeling region N is easy. Moreover, since it is not necessary to apply big force when removing the particle | grains of the non-modeling area | region N, there is little possibility that a modeling thing will be damaged or damaged.
 ・(工程4)の直前まで造形領域S外の第一の粒子1が形態を保持したまま残っているため、オーバーハング構造がある場合には、オーバーハング構造の下の第一の粒子1をサポート体として利用することができる。これにより、造形物の変形、割れを抑制することができる。しかも、サポート体として利用される第一の粒子1は、除去が容易である。したがって、本実施形態の造形方法によれば、金属やセラミックスなどの材料を用いて、従来手法では造形が困難だった複雑形状や微細形状の造形を容易にかつ高品質に行うことが可能である。 -Since the first particles 1 outside the modeling region S remain in the form until just before (Step 4), if there is an overhang structure, the first particles 1 under the overhang structure are It can be used as a support body. Thereby, a deformation | transformation and crack of a molded article can be suppressed. And the 1st particle | grains 1 utilized as a support body are easy to remove. Therefore, according to the modeling method of the present embodiment, it is possible to easily and with high quality modeling complex shapes and fine shapes that have been difficult to model with conventional methods using materials such as metals and ceramics. .
 ・図2A~図2Gのように積層体16を形成し、まとめて加熱する場合には、造形物の全体が均一に加熱される。したがって、局所的な熱衝撃が少なくなり、造形物形成時のひずみや割れが低減する。 When the laminate 16 is formed as shown in FIGS. 2A to 2G and heated together, the entire model is heated uniformly. Accordingly, local thermal shock is reduced, and distortion and cracking during the formation of the molded article are reduced.
 ・樹脂を使用しなくても造形ができるため、脱脂による造形物の縮みや変形を回避できる。また、樹脂を使用しない、もしくは樹脂を使用しても工程2で除去することで、不純物の少ない造形物を作製できる。 ・ Since modeling is possible without using resin, shrinkage and deformation of the modeled object due to degreasing can be avoided. Further, even if a resin is not used or a resin is used, a molded article with few impurities can be produced by removing it in step 2.
 上述した(工程1)~(工程4)は本実施形態の造形方法のうちの基本的な工程を例示するものにすぎず、本発明の範囲は上述した内容に限定されるものではない。上述した各工程の具体的な処理内容を適宜変更したり、上述した各工程以外の工程を追加しても構わない。 The above-described (Step 1) to (Step 4) are merely examples of basic steps in the modeling method of the present embodiment, and the scope of the present invention is not limited to the above-described contents. The specific processing content of each process described above may be changed as appropriate, or a process other than each process described above may be added.
 例えば、(工程4)の後に、(工程3)での加熱温度よりも高い温度で造形物15を加熱する工程を設けてもよい。このような追加加熱処理を行うことで、造形物15の密度を高めることができる。この場合に、第一の粒子1が焼結する条件(加熱温度、加熱時間など)で造形物15を加熱してもよい。第一の粒子1どうしを焼結させることにより、造形物15の特性を向上させ、強度をより高めることができる。本実施形態の方法で得られる造形物15は基本的に造形材料のみ(第一の粒子1とナノ粒子2)で構成されており、従来方法の造形物のように樹脂バインダーのような結合剤を含まなくてよい。したがって、造形物15を追加で加熱(焼結)したとしても、加熱処理の前後で造形物15の組成変化が小さい。また、従来方法では加熱処理で樹脂を脱脂する際に造形物の形状が変化するおそれがあったが、本実施形態の造形物15の場合はそのような問題も生じにくい。 For example, after (Step 4), a step of heating the shaped article 15 at a temperature higher than the heating temperature in (Step 3) may be provided. By performing such additional heat treatment, the density of the shaped article 15 can be increased. In this case, you may heat the modeling thing 15 on the conditions (heating temperature, heating time, etc.) which the 1st particle | grains 1 sinter. By sintering the first particles 1, the characteristics of the shaped article 15 can be improved and the strength can be further increased. The shaped article 15 obtained by the method of the present embodiment is basically composed only of a shaping material (first particles 1 and nanoparticles 2), and a binder such as a resin binder like the shaped article of the conventional method. May not be included. Therefore, even if the shaped article 15 is additionally heated (sintered), the composition change of the shaped article 15 is small before and after the heat treatment. Further, in the conventional method, there is a possibility that the shape of the modeled object changes when the resin is degreased by heat treatment. However, in the case of the modeled object 15 of the present embodiment, such a problem hardly occurs.
 (粒子の製造方法)
 第一の粒子1及びナノ粒子2は、公知の方法を含む、いかなる方法で作製してもよい。例えば、金属粒子の製造方法としては、略球形の粒子を得ることができる点で、ガスアトマイズ法及び水アトマイズ法を好ましく用いることができる。また、セラミックス粒子の製造方法としては、略球形の粒子を得ることができる点で、ゾルゲル法などの湿式での製法や、高温の気中で液化させた金属酸化物を冷却し固化させる乾式での製法を、好ましく用いることができる。
(Production method of particles)
The first particles 1 and the nanoparticles 2 may be produced by any method including a known method. For example, as a method for producing metal particles, a gas atomization method and a water atomization method can be preferably used in that substantially spherical particles can be obtained. In addition, as a method for producing ceramic particles, in terms of obtaining substantially spherical particles, a wet method such as a sol-gel method or a dry method in which a metal oxide liquefied in a high temperature air is cooled and solidified. The production method can be preferably used.
 (粒子分散液の製造方法)
 粒子分散液12は、多数のナノ粒子2を溶液中に分散させることができれば、公知の方法を含む、いかなる方法で作製してもよい。例えば、ナノ粒子2を溶液中に添加し撹拌することで作製してもよい。
(Production method of particle dispersion)
The particle dispersion 12 may be produced by any method including a known method as long as a large number of nanoparticles 2 can be dispersed in the solution. For example, you may produce by adding the nanoparticle 2 in a solution and stirring.
 (実施例)
 次に、上記実施形態にかかる製造方法の具体的な実施例について説明する。
 <粉末Aの調整>
 平均粒子径が7μmのSUS粒子を含むSUS粉末(SUS316L エプソンアトミックス社製)を粉末Aとする。
 <粉末Bの調整>
 平均粒子径が30μmのSUS粒子を含むSUS粉末(SUS316L LPW社)を粉末Bとする。
 <粉末Cの調製>
 平均粒子径が11μmのSUS粒子を含む粉末(SUS316L 山陽特殊製鋼株式会社製)を粉末Cとする。
 <粉末Dの調製>
 平均粒径が8μmの銅粒子を含む銅粉末(SFR-Cu 日本アトマイズ加工株式会社製)を粉末Dとする。
(Example)
Next, specific examples of the manufacturing method according to the above embodiment will be described.
<Preparation of powder A>
SUS powder (SUS316L manufactured by Epson Atmix Co., Ltd.) containing SUS particles having an average particle diameter of 7 μm is designated as powder A.
<Preparation of powder B>
SUS powder (SUS316L LPW) containing SUS particles having an average particle diameter of 30 μm is designated as powder B.
<Preparation of powder C>
Powder (SUS316L manufactured by Sanyo Special Steel Co., Ltd.) containing SUS particles having an average particle diameter of 11 μm is designated as powder C.
<Preparation of powder D>
A copper powder containing copper particles having an average particle diameter of 8 μm (SFR-Cu manufactured by Nippon Atomizing Co., Ltd.) is designated as powder D.
 <溶液Aの調整>
 平均粒子径が25nmの鉄ナノ粒子の粉末(シグマアルドリッチ社製)5.0gをエタノール(特級 キシダ化学社製)45.0g中に分散させ、溶液Aを得た。得られた溶液A中の鉄ナノ粒子の体積濃度は1.1vol%であった。溶液Aの粘度は1.2cPであった。
<Preparation of solution A>
A solution A was obtained by dispersing 5.0 g of iron nanoparticle powder (manufactured by Sigma Aldrich) having an average particle size of 25 nm in 45.0 g of ethanol (special grade Kishida Chemical Co., Ltd.). The volume concentration of the iron nanoparticles in the obtained solution A was 1.1 vol%. Solution A had a viscosity of 1.2 cP.
 <溶液Bの調整>
 エチルセルロース(STD-4 日新化成株式会社製)5.0gをエタノール(特級 キシダ化学社製)45.0g中に添加、混合した後に7時間常温で撹拌し、溶液Bを得た。得られた溶液B中のエチルセルロースの体積濃度は8.1vol%であった。溶液Bの粘度は12.2cPであった。
<Preparation of solution B>
5.0 g of ethylcellulose (STD-4, manufactured by Nisshin Kasei Co., Ltd.) was added to and mixed with 45.0 g of ethanol (special grade Kishida Chemical Co., Ltd.), followed by stirring at room temperature for 7 hours to obtain Solution B. The volume concentration of ethylcellulose in the obtained solution B was 8.1 vol%. Solution B had a viscosity of 12.2 cP.
 <溶液Cの調整>
 エチルセルロース(STD-4 日新化成株式会社製)0.007gをエタノール(特級 キシダ化学社製)0.493g中に添加、混合した後に7時間常温で撹拌し、溶液Cを得た。得られた溶液C中のエチルセルロースの体積濃度は1.1vol%であった。
 <溶液Dの調整>
 鉄ナノコロイド(H10 立山マシン株式会社製)を溶液Dとした。溶液Dは平均粒子径3.6nmの鉄ナノ粒子の粉末を体積濃度0.9vol%となるように、n-ヘキサン中に界面活性剤を使用して分散したものである。溶液Dの粘度は0.5cPであった。
 <溶液Eの調整>
 水に銀ナノ粒子を分散させた銀インク(NBSIJ-KC01 三菱製紙株式会社製)を溶液Eとした。溶液Eは平均粒子径34nmの銀ナノ粒子を含有しており、体積濃度は0.8vоl%であった。粘度は 4.0cPであった。
 <溶液Fの調整>
 液相還元法で作製した平均粒子径が160nmのニッケルナノ粒子水分散体を溶液Fとした。得られた溶液F中のニッケルナノ粒子の体積濃度は0.6vol%であった。粘度は7.1cPであった。
<Preparation of solution C>
0.007 g of ethyl cellulose (STD-4 manufactured by Nisshin Kasei Co., Ltd.) was added to 0.493 g of ethanol (special grade Kishida Chemical Co., Ltd.), mixed, and stirred for 7 hours at room temperature to obtain Solution C. The volume concentration of ethyl cellulose in the obtained solution C was 1.1 vol%.
<Preparation of solution D>
Iron nanocolloid (H10, manufactured by Tateyama Machine Co., Ltd.) was used as Solution D. Solution D is a dispersion of iron nanoparticle powder having an average particle diameter of 3.6 nm in n-hexane so as to have a volume concentration of 0.9 vol%. Solution D had a viscosity of 0.5 cP.
<Preparation of solution E>
A silver ink (NBSIJ-KC01 manufactured by Mitsubishi Paper Industries Co., Ltd.) in which silver nanoparticles were dispersed in water was used as Solution E. Solution E contained silver nanoparticles with an average particle diameter of 34 nm, and the volume concentration was 0.8 vol%. The viscosity was 4.0 cP.
<Preparation of solution F>
A nickel nanoparticle aqueous dispersion having an average particle diameter of 160 nm prepared by a liquid phase reduction method was used as Solution F. The volume concentration of nickel nanoparticles in the obtained solution F was 0.6 vol%. The viscosity was 7.1 cP.
 <焼結開始温度の測定>
 それぞれの粉末の焼成開始温度を、以下の手順で取得した。
 直径5mm、高さ2.5mmのアルミナ容器に、底が見えなくなる程度の量の粉末を詰める。上記アルミナ容器を電気炉にて60分間加熱し、粉末の状態を観察した。粉末の焼結が確認できない場合は更に温度を10℃上げた条件で加熱し、観察することを繰り返し、粉末の焼結が確認されたときの温度を粉末の焼結開始温度とする。
 焼結したかどうかは、下記手法にて確認した。
 熱処理前に電子顕微鏡で粉末に含まれる平均粒子径程度の二つ以上の粒子が視野内に概ね収まる倍率の視野を定め、熱処理後の粉末に含まれるSUS粒子を、前記倍率にて30か所以上で観察した。半数以上の観察視野で、平均粒子径程度(平均粒子径以下)の粒子が結合し、もとの粒子間の境界が観察できなくなるまで粒子間が固定(結合)している場合に、粉末が焼結していると判断した。
 また、平均粒子径が25nmの鉄ナノ粒子(シグマアルドリッチ社製)の粉末についても同様の実験を行い、焼結開始温度を取得した。鉄ナノ粒子の粉末の焼結開始温度は、500℃以下であり、鉄(融点1538℃)よりも融点の低いSUS316L(融点1400℃)の粉末(粉末B)の焼結開始温度800℃に比べても有意に低かった。溶液Dを乾燥し、銀ナノ粒子についても同様の実験を行ったところ、焼結開始温度が300℃以下であった。
<Measurement of sintering start temperature>
The firing start temperature of each powder was obtained by the following procedure.
An alumina container having a diameter of 5 mm and a height of 2.5 mm is packed with an amount of powder so that the bottom is not visible. The alumina container was heated in an electric furnace for 60 minutes, and the state of the powder was observed. When the sintering of the powder cannot be confirmed, heating is further performed under a condition where the temperature is increased by 10 ° C. and observation is repeated, and the temperature at which the sintering of the powder is confirmed is set as the sintering start temperature of the powder.
Whether it was sintered or not was confirmed by the following method.
Before heat treatment, an electron microscope is used to determine a field of magnification at which two or more particles having an average particle size contained in the powder are approximately within the field of view, and SUS particles contained in the powder after heat treatment are 30 places at the above magnification. Observed above. When particles with an average particle size (less than the average particle size) are bonded in the observation field of more than half, and the particles are fixed (bonded) until the boundary between the original particles can no longer be observed, It was judged that it was sintered.
Moreover, the same experiment was performed about the powder of the iron nanoparticle (made by Sigma-Aldrich) whose average particle diameter is 25 nm, and sintering start temperature was acquired. The sintering start temperature of the iron nanoparticle powder is 500 ° C. or lower, compared with the sintering start temperature 800 ° C. of the powder (powder B) of SUS316L (melting point 1400 ° C.) having a melting point lower than that of iron (melting point 1538 ° C.). But it was significantly lower. When the solution D was dried and the same experiment was performed on the silver nanoparticles, the sintering start temperature was 300 ° C. or lower.
 以下、粉末Aもしくは粉末Bで形成した粉末層に対し溶液Aもしくは溶液Bもしくは溶液Dを塗布し加熱処理を施すことで、所望の形状を有する造形物を作製した例を説明する。
 <実施例1>
 図4を参照しながら、実施例について説明する。
 粉末Aを用いてアルミナ基板の上に20mm×10mm、厚さ2mmの粉末層を形成した(ステップS301)後に、6mmΦの領域に溶液Aを浸透深さ2mmとなるように付与した(ステップS302)。得られた粉末層を電気炉に入れ、鉄ナノ粒子の粉末の焼結開始温度以上、SUS粒子の粉末の焼結開始温度未満の600℃で1時間熱処理した(ステップS303)。熱処理後の粉末層のうち、溶液Aを塗布した部分(造形領域Sに相当)のSUS粒子は鉄ナノ粒子によって固化していた。溶液Aを塗布していない部分(非造形領域Nに相当)のSUS粒子を除去する(ステップS304)ことで板状の造形物を得ることができた。
Hereinafter, an example will be described in which a shaped object having a desired shape is manufactured by applying the solution A, the solution B, or the solution D to the powder layer formed of the powder A or the powder B and performing a heat treatment.
<Example 1>
The embodiment will be described with reference to FIG.
After forming a powder layer having a thickness of 20 mm × 10 mm and a thickness of 2 mm on the alumina substrate using the powder A (step S301), the solution A was applied to a 6 mmΦ region so as to have a penetration depth of 2 mm (step S302). . The obtained powder layer was put into an electric furnace and heat-treated at 600 ° C. for 1 hour at a temperature not less than the sintering start temperature of the iron nanoparticle powder and less than the sintering start temperature of the SUS particle powder (step S303). Of the powder layer after the heat treatment, the SUS particles in the portion to which the solution A was applied (corresponding to the modeling region S) were solidified by the iron nanoparticles. By removing the SUS particles in the portion where the solution A was not applied (corresponding to the non-modeling region N) (step S304), a plate-shaped modeled object could be obtained.
 <実施例2>
 図5を参照しながら、粉末Aを用いてアルミナ基板の上に20mm×10mm、厚さ2mmの粉末層を形成(ステップS401)した後に、6mmΦの領域に溶液Dを浸透深さ2mmとなるように付与した(ステップS402)。得られた粉末層を電気炉に入れ、鉄ナノ粒子の焼結開始温度以上、SUS粒子の焼結開始温度未満の600℃で1時間熱処理した(ステップS403)。熱処理後の粉末層のうち、溶液Dを塗布した部分(造形領域Sに相当)のSUS粒子は鉄ナノ粒子によって固化していた。溶液Dを塗布していない部分(非造形領域Nに相当)のSUS粒子を除去(ステップS404)することで板状の造形物を得ることができた。
<Example 2>
Referring to FIG. 5, a powder layer of 20 mm × 10 mm and a thickness of 2 mm is formed on an alumina substrate using powder A (step S401), and then the solution D is penetrated into an area of 6 mmΦ to a penetration depth of 2 mm. (Step S402). The obtained powder layer was put into an electric furnace, and heat-treated at 600 ° C. for 1 hour at a temperature higher than the sintering start temperature of iron nanoparticles and lower than the sintering start temperature of SUS particles (step S403). Of the powder layer after the heat treatment, the SUS particles in the portion to which the solution D was applied (corresponding to the modeling region S) were solidified by the iron nanoparticles. By removing the SUS particles in the portion where the solution D was not applied (corresponding to the non-modeling region N) (step S404), a plate-shaped modeled object could be obtained.
 <実施例3>
 図6を参照しながら、粉末Bを用いて20mm×10mm、厚さ2mmの第一の粉末層を形成した(ステップS501)後に、10mm×10mmの範囲に溶液Dを付与した(ステップS502)。次いで、第一の粉末層の上に、粉末Bを用いて20mm×10mm、厚さ2mmの第二の粉末層を形成(ステップS503)し、第二の粉末層の全体に浸透深さ2mmとなるまで溶液Dを付与し(ステップS504)、積層体を得た。得られた積層体を電気炉に入れ、鉄ナノ粒子の焼結開始温度以上、SUS粒子の焼結開始温度未満の温度である700℃で1時間熱処理した(ステップS505)。熱処理後の積層体のうち、溶液Dを塗布した部分(造形領域Sに相当)のSUS粒子は鉄ナノ粒子によって固化していた。溶液Dを塗布していない部分(非造形領域Nに相当)のSUS粒子を除去することで所望の造形物を得ることができた(ステップS506)。得られた造形物は、第一層よりも第二層の方が大きいオーバーハング構造を有していた。
<Example 3>
Referring to FIG. 6, a first powder layer having a thickness of 20 mm × 10 mm and a thickness of 2 mm was formed using powder B (step S501), and then solution D was applied to a range of 10 mm × 10 mm (step S502). Next, a second powder layer having a thickness of 20 mm × 10 mm and a thickness of 2 mm is formed on the first powder layer using the powder B (step S503), and the penetration depth is 2 mm over the entire second powder layer. Solution D was applied until it became (step S504) to obtain a laminate. The obtained laminate was put in an electric furnace and heat-treated at 700 ° C., which is a temperature not lower than the sintering start temperature of iron nanoparticles and lower than the sintering start temperature of SUS particles, for 1 hour (step S505). In the laminated body after the heat treatment, the SUS particles in the portion to which the solution D was applied (corresponding to the modeling region S) were solidified by the iron nanoparticles. A desired shaped article could be obtained by removing the SUS particles in the portion (corresponding to the non-modeling region N) where the solution D was not applied (step S506). The obtained shaped object had an overhang structure in which the second layer was larger than the first layer.
 <実施例4>
 実施例3と同様の手順で造形を行った。まず粉末Bを用いて20mm×10mm、厚さ2mmの第一の粉末層を形成した後に、10mm×10mmの範囲に溶液Fを付与した。次いで、第一の粉末層の上に、粉末Bを用いて20mm×10mm、厚さ2mmの第二の粉末層を形成し、第二の粉末層の全体に浸透深さ2mmとなるまで溶液Fを付与し、積層体を得た。得られた積層体を電気炉に入れ、ニッケルナノ粒子の焼結開始温度以上、SUS粒子の焼結開始温度未満の温度である700℃で1時間熱処理した。熱処理後の積層体のうち、溶液Fを塗布した部分(造形領域Sに相当)のSUS粒子はニッケルナノ粒子によって固化していた。溶液Fを塗布していない部分(非造形領域Nに相当)のSUS粒子を除去することで所望の造形物を得ることができた。得られた造形物は、第一層よりも第二層の方が大きいオーバーハング構造を有していた。
<Example 4>
Modeling was performed in the same procedure as in Example 3. First, a first powder layer having a thickness of 20 mm × 10 mm and a thickness of 2 mm was formed using the powder B, and then the solution F was applied to a range of 10 mm × 10 mm. Next, a second powder layer having a thickness of 20 mm × 10 mm and a thickness of 2 mm is formed on the first powder layer using the powder B, and the solution F is obtained until the penetration depth becomes 2 mm over the entire second powder layer. Was added to obtain a laminate. The obtained laminate was put in an electric furnace and heat-treated at 700 ° C., which is a temperature not lower than the sintering start temperature of nickel nanoparticles and lower than the sintering start temperature of SUS particles, for 1 hour. In the laminated body after the heat treatment, the SUS particles in the portion to which the solution F was applied (corresponding to the modeling region S) were solidified by the nickel nanoparticles. The desired shaped article could be obtained by removing the SUS particles in the portion where the solution F was not applied (corresponding to the non-modeling region N). The obtained shaped object had an overhang structure in which the second layer was larger than the first layer.
 上記実施例1乃至4により、SUS粒子からなる粉末で形成した粉末層の所望の領域に鉄ナノ粒子を付与し、鉄ナノ粒子を焼結させることにより、SUS粒子による所望形状の造形物を得ることができることが確認できた。 According to Examples 1 to 4, iron nanoparticles are imparted to a desired region of a powder layer formed of powder made of SUS particles, and the iron nanoparticles are sintered, thereby obtaining a shaped article having a desired shape using SUS particles. It was confirmed that it was possible.
 比較例として、従来の樹脂バインダーで粉末を固化する造形を行った。
 <比較例1>
 粉末Bを用いて20mm×10mm、厚さ2mmの第一の粉末層を形成した後に、10mm×10mmの範囲に溶液Bを付与した。次いで、第一の粉末層の上に、粉末Bを用いて20mm×10mm、厚さ2mmの第二の粉末層を形成し、第二の粉末層の全体に浸透深さ2mmとなるまで溶液Bを付与し、樹脂金属複合体である積層体を得た。得られた積層体から、溶液Bを付与していない領域の粉末Bを除去した後に、積層体を電気炉に入れ、SUS粒子の焼結開始温度以上の温度で加熱し、造形物を得た。
As a comparative example, modeling was performed by solidifying powder with a conventional resin binder.
<Comparative Example 1>
After forming the 1st powder layer of 20 mm x 10 mm and thickness 2mm using the powder B, the solution B was provided to the range of 10 mm x 10 mm. Next, a second powder layer having a thickness of 20 mm × 10 mm and a thickness of 2 mm is formed on the first powder layer using the powder B, and the solution B is used until the penetration depth becomes 2 mm over the entire second powder layer. To obtain a laminate that is a resin-metal composite. After removing the powder B in the region where the solution B was not applied from the obtained laminate, the laminate was placed in an electric furnace and heated at a temperature equal to or higher than the sintering start temperature of the SUS particles to obtain a shaped article. .
 この方法では、溶液Bを付与していない領域の粉末Bを除去する際に、樹脂金属複合体の一部で破損が発生した。また、最終的に得られた金属の造形物の一部でも破損が確認され、造形物の一部では反りが確認された。この方法では、オーバーハング構造を形成することができず、所望の造形物は得られなかった。 In this method, when the powder B in the region where the solution B was not applied was removed, a part of the resin-metal composite was damaged. Further, damage was confirmed even in a part of the finally obtained metal model, and warping was confirmed in a part of the model. In this method, an overhang structure could not be formed, and a desired shaped article could not be obtained.
 <比較例2>
 粉末Bを用いて20mm×10mm、厚さ2mmの第一の粉末層を形成した後に、10mm×10mmの範囲に溶液Bを付与した。次いで、第一の粉末層の上に、粉末Bを用いて20mm×10mm、厚さ2mmの第二の粉末層を形成し、第二の粉末層の全体に浸透深さ2mmとなるまで溶液Bを付与し、樹脂金属複合体である積層体を得た。得られた積層体をそのまま電気炉に入れ、エチルセルロースの分解温度以上、SUS粒子の焼結開始温度未満の温度で1時間熱処理した。加熱処理後の積層体は依然として粉末の状態(粒子どうしが結合していない状態)であり、所望の造形物は得られなかった。
<Comparative example 2>
After forming the 1st powder layer of 20 mm x 10 mm and thickness 2mm using the powder B, the solution B was provided to the range of 10 mm x 10 mm. Next, a second powder layer having a thickness of 20 mm × 10 mm and a thickness of 2 mm is formed on the first powder layer using the powder B, and the solution B is used until the penetration depth becomes 2 mm over the entire second powder layer. To obtain a laminate that is a resin-metal composite. The obtained laminate was put in an electric furnace as it was and heat-treated at a temperature not lower than the decomposition temperature of ethyl cellulose and lower than the sintering start temperature of SUS particles for 1 hour. The laminate after the heat treatment was still in a powder state (a state in which particles were not bonded), and a desired shaped article could not be obtained.
 <比較例3>
 粉末Bを用いて20mm×10mm、厚さ2mmの第一の粉末層を形成した後に、10mm×10mmの範囲に溶液Bを付与した。次いで、第一の粉末層の上に、粉末Bを用いて20mm×10mm、厚さ2mmの第二の粉末層を形成し、第二の粉末層の全体に浸透深さ2mmとなるまで溶液Bを付与し、樹脂金属複合体である積層体を得た。得られた積層体をそのまま電気炉に入れ、SUS粒子の焼結開始温度以上の温度で1時間熱処理した。溶液Bを付与した領域及び溶液Bを付与しない領域のいずれの領域のSUS粒子も焼結し、積層体全体で金属焼結体が形成されてしまい、所望の造形物は得られなかった。
<Comparative Example 3>
After forming the 1st powder layer of 20 mm x 10 mm and thickness 2mm using the powder B, the solution B was provided to the range of 10 mm x 10 mm. Next, a second powder layer having a thickness of 20 mm × 10 mm and a thickness of 2 mm is formed on the first powder layer using the powder B, and the solution B is used until the penetration depth becomes 2 mm over the entire second powder layer. To obtain a laminate that is a resin-metal composite. The obtained laminate was directly put into an electric furnace and heat-treated at a temperature equal to or higher than the sintering start temperature of SUS particles for 1 hour. The SUS particles in any of the region to which the solution B was applied and the region to which the solution B was not applied were sintered, and a metal sintered body was formed in the entire laminate, and a desired shaped article was not obtained.
 <比較例4>
 粉末Bを用いて20mm×10mm、厚さ2mmの第一の粉末層を形成した後に、10mm×10mmの範囲に溶液Dを付与した。次いで、第一の粉末層の上に、粉末Bを用いて20mm×10mm、厚さ2mmの第二の粉末層を形成し、第二の粉末層の全体に浸透深さ2mmとなるまで溶液Dを付与し、積層体を得た。得られた積層体をそのまま電気炉に入れ、鉄ナノ粒子の焼結開始温度より低い温度で1時間熱処理した。加熱処理後の積層体は依然として粉末の状態(粒子どうしが結合していない状態)であり、所望の造形物は得られなかった。
<Comparative example 4>
After forming a first powder layer having a thickness of 20 mm × 10 mm and a thickness of 2 mm using the powder B, the solution D was applied to a range of 10 mm × 10 mm. Next, a second powder layer having a thickness of 20 mm × 10 mm and a thickness of 2 mm is formed on the first powder layer using the powder B, and the solution D is obtained until the penetration depth is 2 mm over the entire second powder layer. Was added to obtain a laminate. The obtained laminate was placed in an electric furnace as it was and heat-treated at a temperature lower than the sintering start temperature of the iron nanoparticles for 1 hour. The laminate after the heat treatment was still in a powder state (a state in which particles were not bonded), and a desired shaped article could not be obtained.
 <実施例5>
 粉末Bを用いて15mmφ、厚さ400μmの第一の粉末層を形成した後に、インクジェットヘッドを用いて溶液Eを吐出し、15mmφの円パターンを描画した。
 次いで、第一の粉末層の上に、粉末Bを用いて15mmφ、厚さ400μmの第二の粉末層を形成し、第二の粉末層上に、インクジェットヘッドを用いて溶液Eを吐出し、文字パターンを描画し、積層体を得た。
 得られた積層体を電気炉に入れ、銀ナノ粒子の焼結開始温度以上、SUS粒子の焼結開始温度未満の温度である650℃で3時間熱処理した。
 熱処理後の積層体のうち、溶液Eを塗布した部分(造形領域Sに相当)のSUS粒子は銀ナノ粒子によって固化していた。
 溶液Eを塗布していない部分(非造形領域Nに相当)のSUS粒子を除去することで所望の造形物を得ることができた。
<Example 5>
A first powder layer having a diameter of 15 mmφ and a thickness of 400 μm was formed using the powder B, and then a solution E was discharged using an inkjet head to draw a circular pattern of 15 mmφ.
Next, a second powder layer of 15 mmφ and a thickness of 400 μm is formed on the first powder layer using the powder B, and the solution E is ejected on the second powder layer using an inkjet head. A character pattern was drawn to obtain a laminate.
The obtained laminate was put in an electric furnace and heat-treated at 650 ° C., which is a temperature not lower than the sintering start temperature of silver nanoparticles and lower than the sintering start temperature of SUS particles, for 3 hours.
In the laminated body after the heat treatment, the SUS particles in the portion to which the solution E was applied (corresponding to the modeling region S) were solidified by the silver nanoparticles.
The desired shaped article could be obtained by removing the SUS particles in the portion where the solution E was not applied (corresponding to the non-modeling region N).
 <実施例6>
 粉末Dを用いて15mmφ、厚さ400μmの第一の粉末層を形成した後に、インクジェットヘッドを用いて溶液Eを吐出し、15mmφの円パターンを描画した。
 次いで、第一の粉末層の上に、粉末Dを用いて15mmφ、厚さ400μmの第二の粉末層を形成し、第二の粉末層上に、インクジェットヘッドを用いて溶液Eを吐出し、文字パターンを描画し、積層体を得た。
 得られた積層体を電気炉に入れ、銀ナノ粒子の焼結開始温度以上、銅粒子の焼結開始温度400℃未満の温度である300℃で1時間熱処理した。
 熱処理後の積層体のうち、溶液Eを塗布した部分(造形領域Sに相当)の銅粒子は銀ナノ粒子によって固化していた。
 溶液Eを塗布していない部分(非造形領域Nに相当)の銅粒子を除去することで所望の造形物を得ることができた。
<Example 6>
A first powder layer having a diameter of 15 mmφ and a thickness of 400 μm was formed using the powder D, and then a solution E was discharged using an inkjet head to draw a circular pattern of 15 mmφ.
Next, a second powder layer having a thickness of 15 mmφ and a thickness of 400 μm is formed using the powder D on the first powder layer, and the solution E is ejected onto the second powder layer using an inkjet head. A character pattern was drawn to obtain a laminate.
The obtained laminate was put in an electric furnace and heat-treated at 300 ° C., which is a temperature not lower than the sintering start temperature of silver nanoparticles and less than 400 ° C. of copper particles, for 1 hour.
The copper particle of the part (equivalent to modeling area | region S) which apply | coated solution E among the laminated bodies after heat processing was solidified with the silver nanoparticle.
A desired shaped article could be obtained by removing the copper particles in the portion (corresponding to the non-modeling region N) where the solution E was not applied.
 <実施例7>
 粉末Cを用いて厚さ200μmの粉末層を形成した後に、インクジェットヘッドを用いて溶液Eを吐出し、2.5mm×25mmの長方形パターン二本を間隔7mmで水平に描画した。上記粉末層上に、長方形のパターンが重なるように粉末層上へ粉末層を形成する工程と溶液Eを吐出工程を11回繰り返した。
 続いて、上記描画パターンを各長方形間の中心で85°回転させ、同様に溶液Eでパターンを描画する工程と、粉末層形成工程を12回繰り返した。
 同様に、描画パターンを85°回転させ、溶液Eでパターンを描画する工程と、粉末層形成工程を12回繰り返す工程をさらに2回繰り返し、積層体を得た。
 得られた積層体を電気炉に入れ、銀ナノ粒子の焼結開始温度以上、SUS粒子の焼結開始温度未満の温度である650℃で1.5時間熱処理した。
 熱処理後の積層体のうち、溶液Eを塗布した部分(造形領域Sに相当)のSUS粒子は銀ナノ粒子によって固化していた。
 溶液Eを塗布していない部分(非造形領域Nに相当)のSUS粒子を除去することで所望の造形物を得ることができた。得られた造形物を、Ar97%、水素3%の雰囲気において、SUS粒子の焼結開始温度以上である1300℃で1時間(1hr)さらに加熱した。
 得られた造形物は、複数の直方体によるオーバーハング構造を有していた。また、SUS粒子同士の焼結により、1300℃で加熱する前よりも強度が高くなっていた。
<Example 7>
After forming a powder layer having a thickness of 200 μm using the powder C, the solution E was discharged using an inkjet head, and two 2.5 mm × 25 mm rectangular patterns were drawn horizontally at an interval of 7 mm. The step of forming the powder layer on the powder layer and the discharging step of the solution E were repeated 11 times so that the rectangular pattern overlapped on the powder layer.
Subsequently, the drawing pattern was rotated by 85 ° at the center between the rectangles, and the pattern drawing step with the solution E and the powder layer forming step were repeated 12 times.
Similarly, the drawing pattern was rotated by 85 °, and the step of drawing the pattern with the solution E and the step of repeating the powder layer forming step 12 times were further repeated twice to obtain a laminate.
The obtained laminate was put in an electric furnace and heat-treated at 650 ° C., which is a temperature not lower than the sintering start temperature of silver nanoparticles and lower than the sintering start temperature of SUS particles, for 1.5 hours.
In the laminated body after the heat treatment, the SUS particles in the portion to which the solution E was applied (corresponding to the modeling region S) were solidified by the silver nanoparticles.
The desired shaped article could be obtained by removing the SUS particles in the portion where the solution E was not applied (corresponding to the non-modeling region N). The obtained model was further heated for 1 hour (1 hr) at 1300 ° C., which is equal to or higher than the sintering start temperature of SUS particles, in an atmosphere of Ar 97% and hydrogen 3%.
The obtained shaped object had an overhang structure with a plurality of rectangular parallelepipeds. Moreover, the strength was higher than before heating at 1300 ° C. due to sintering of the SUS particles.
 以上述べた実施例及び比較例から、本実施形態の造形方法によれば、オーバーハング構造などの複雑な形状を含む造形物を、サポート体を形成することなく簡単に作製できることがわかる。続いて、本発明の造形方法及び造形装置のさらなる実施形態を説明する。 From the examples and comparative examples described above, it can be seen that according to the modeling method of the present embodiment, a model including a complicated shape such as an overhang structure can be easily manufactured without forming a support body. Subsequently, further embodiments of the modeling method and the modeling apparatus of the present invention will be described.
 <実施例8>
 図7に実施例8に係る造形装置を示す。この造形装置は、粉末を収容し供給する粉末供給部103と、層厚規制ブレード105と、粒子分散液を収容する液体供給部104と、粒子分散液を付与する液体付与部106と、粉末層を加熱するヒーター102とを有する。粉末供給部103、層厚規制ブレード105、液体供給部104、液体付与部106、及びヒーター102は、移動可能なヘッドに設けられている。また、造形装置は、ヘッドを図7の矢印方向に移動させる駆動機構201と、作製中の造形物が配置され、上下に移動可能なステージ107とを有する。図7ではステージ107のみを示しているが、粉末層は、粉末の量に応じてステージからの高さが可変な不図示の壁面を有するコンテナ内に形成される。以下、実施例9~15も同様である。駆動機構201は例えばボールねじとモータにより構成される。図7では1軸の駆動機構201を示したが、多軸の駆動機構を設けてヘッドを多方向に走査できるようにしてもよい。液体付与部106としては例えばインクジェット装置を好ましく利用できる。なお本実施例では、粉末供給部103及び層厚規制ブレード105が、第一の粉末を用いて粉末層を形成する粉末層形成手段を構成し、液体供給部104及び液体付与部106が、粉末層に対し第二の粉末を付与する付与手段を構成する。また、ヒーター102が、粉末層に加熱処理を施す加熱手段を構成する。
<Example 8>
FIG. 7 shows a modeling apparatus according to the eighth embodiment. This modeling apparatus includes a powder supply unit 103 that stores and supplies powder, a layer thickness regulating blade 105, a liquid supply unit 104 that stores a particle dispersion, a liquid application unit 106 that applies a particle dispersion, and a powder layer. And a heater 102 for heating. The powder supply unit 103, the layer thickness regulating blade 105, the liquid supply unit 104, the liquid application unit 106, and the heater 102 are provided in a movable head. Further, the modeling apparatus includes a drive mechanism 201 that moves the head in the direction of the arrow in FIG. 7 and a stage 107 on which a modeled object being manufactured is arranged and is movable up and down. Although only the stage 107 is shown in FIG. 7, the powder layer is formed in a container having a wall surface (not shown) whose height from the stage is variable depending on the amount of powder. The same applies to Examples 9 to 15 below. The drive mechanism 201 is composed of, for example, a ball screw and a motor. Although FIG. 7 shows the uniaxial drive mechanism 201, a multi-axis drive mechanism may be provided so that the head can be scanned in multiple directions. For example, an ink jet device can be preferably used as the liquid application unit 106. In this embodiment, the powder supply unit 103 and the layer thickness regulating blade 105 constitute a powder layer forming unit that forms a powder layer using the first powder, and the liquid supply unit 104 and the liquid application unit 106 are powders. An application means for applying the second powder to the layer is constituted. In addition, the heater 102 constitutes a heating unit that heats the powder layer.
 造形を開始する前に、第一の粒子1からなる第一の粉末を粉末供給部103に、第二の粉末(第二の粒子2)を含有する粒子分散液を液体供給部104に、それぞれ収容しておく。また、ベース基板101をステージ107に設置する。続いて、ベース基板101上に粉末供給部103から第一の粉末を供給し、層厚規制ブレード105によってその表面を均すことで、ベース基板101上に厚さ100μmの第一の粉末の粉末層を形成する。この粉末層は積層体108の下敷きとなる層であり、以下「ベース層」と呼ぶ。 Before starting modeling, the first powder composed of the first particles 1 is supplied to the powder supply unit 103, and the particle dispersion containing the second powder (second particle 2) is supplied to the liquid supply unit 104, respectively. Store. In addition, the base substrate 101 is set on the stage 107. Subsequently, the first powder is supplied from the powder supply unit 103 onto the base substrate 101, and the surface thereof is leveled by the layer thickness regulating blade 105, whereby the powder of the first powder having a thickness of 100 μm is formed on the base substrate 101. Form a layer. This powder layer is a layer underlying the laminate 108 and is hereinafter referred to as a “base layer”.
 次いで、スライスデータで定義される厚みに基づいて、1層分の量の第一の粉末を粉末供給部103からベース層上に供給し、層厚規制ブレード105によってその表面を均すことで、第一の粉末の粉末層を形成する。これにより、造形物の1スライス分の粉末層が形成される。 Next, based on the thickness defined by the slice data, the amount of the first powder for one layer is supplied from the powder supply unit 103 onto the base layer, and the surface is leveled by the layer thickness regulating blade 105, A powder layer of the first powder is formed. Thereby, the powder layer for 1 slice of a molded article is formed.
 次いで、液体付与部106を用いて、スライスデータで定義される造形対象物の断面形状に基づいて、粉末層内の造形領域Sに溶液Aを付与する。このときの液量は、第二の粉末を分散させた分散液が粉末層の厚みと略等しい深さまで浸透する量に制御される。これにより、造形領域S内の第一の粒子1の間隙に第二の粒子2が入り込んだ状態の粉末層が形成される。次いで、ヒーター102を用いて、第一の粒子どうしの少なくとも一部は焼結せず、かつ、第二の粒子どうしは焼結または溶融する条件にて粉末層を加熱し、焼結または溶融する第二の粒子によって第一の粒子どうしを固定する。 Next, using the liquid application unit 106, the solution A is applied to the modeling region S in the powder layer based on the cross-sectional shape of the modeling target defined by the slice data. The amount of liquid at this time is controlled so that the dispersion liquid in which the second powder is dispersed penetrates to a depth substantially equal to the thickness of the powder layer. Thereby, a powder layer in which the second particles 2 enter the gap between the first particles 1 in the modeling region S is formed. Next, by using the heater 102, at least a part of the first particles are not sintered, and the powder layer is heated and sintered or melted under the condition that the second particles are sintered or melted. The first particles are fixed by the second particles.
 各層のスライスデータに基づいて、第一の粉末の粉末層の形成、分散液の付与、粉末層の加熱といった一連の処理を層ごとに繰り返すことで、複数の粉末層が重ねられた積層体108が作製される。その後、積層体108から非造形領域Nの第一の粉末を取り除くことで、所望形状の造形物が得られる。 Based on the slice data of each layer, by repeating a series of processes such as formation of the powder layer of the first powder, application of the dispersion, and heating of the powder layer for each layer, the laminate 108 in which a plurality of powder layers are stacked. Is produced. Thereafter, the first powder in the non-modeling region N is removed from the laminate 108, whereby a modeled object having a desired shape is obtained.
 本実施例の造形装置によれば、オーバーハング構造や微細構造などを含む造形物を高品質に作製することができる。また、第一の粉末による粉末層の形成、第二の粉末の配置、粉末層の加熱の一連のプロセスを、1回の走査で実施できるので、高速な造形が可能であるとともに、造形装置の小型化を図ることができる。また、ベース基板101と造形物の間にベース層を敷くので、造形物をベース基板101から取り外すための特別な加工が必要ない。 According to the modeling apparatus of the present embodiment, a modeled object including an overhang structure and a fine structure can be manufactured with high quality. In addition, since a series of processes of forming the powder layer with the first powder, arranging the second powder, and heating the powder layer can be performed in one scan, high-speed modeling is possible, and Miniaturization can be achieved. In addition, since the base layer is laid between the base substrate 101 and the modeled object, no special processing for removing the modeled object from the base substrate 101 is required.
 <実施例9>
 図8に実施例9に係る造形装置を示す。実施例8との構成上の違いは、ヒーター102を設ける代わりに、積層体全体を加熱処理するための加熱エリア(加熱室)110を設けた点である。
<Example 9>
FIG. 8 shows a modeling apparatus according to the ninth embodiment. The difference in configuration from Example 8 is that instead of providing the heater 102, a heating area (heating chamber) 110 for heating the entire laminate is provided.
 実施例8と同様にして、ベース基板101上に厚さ100μmのベース層を形成する。次いで、スライスデータで定義される厚みに基づいて、1層分の量の第一の粉末を粉末供給部103からベース層上に供給し、層厚規制ブレード105によってその表面を均すことで、粉末層を形成する。これにより、造形物の1スライス分の粉末層が形成される。次いで、液体付与部106を用いて、スライスデータで定義される造形対象物の断面形状に基づいて、粉末層内の造形領域Sに第二の粉末を分散させた分散液を付与する。このときの液量は、分散液が粉末層の厚みと略等しい深さまで浸透する量に制御される。これにより、造形領域S内の第一の粒子1の間隙に第二の粒子2が入り込んだ状態の粉末層が形成される。 In the same manner as in Example 8, a base layer having a thickness of 100 μm is formed on the base substrate 101. Next, based on the thickness defined by the slice data, the amount of the first powder for one layer is supplied from the powder supply unit 103 onto the base layer, and the surface is leveled by the layer thickness regulating blade 105, A powder layer is formed. Thereby, the powder layer for 1 slice of a molded article is formed. Next, using the liquid application unit 106, a dispersion liquid in which the second powder is dispersed is applied to the modeling region S in the powder layer based on the cross-sectional shape of the modeling object defined by the slice data. The liquid amount at this time is controlled so that the dispersion liquid penetrates to a depth substantially equal to the thickness of the powder layer. Thereby, a powder layer in which the second particles 2 enter the gap between the first particles 1 in the modeling region S is formed.
 各層のスライスデータに基づいて、第一の粉末(第一の粒子)からなる粉末層の形成と第二の粉末(第二の粒子)を含む分散液の付与を繰り返すことで、複数の粉末層が重ねられた積層体109が作製される。その後、積層体109を加熱エリア110に移動させ、第一の粒子どうしの少なくとも一部は焼結せず、かつ、第二の粒子どうしは焼結または溶融する条件にて積層体109を加熱する。これにより、第二の粒子が焼結し、焼結または溶融した第二の粒子によって造形領域S内の第一の粒子どうしが固定される。その後、積層体109から非造形領域Nの第一の粉末を取り除くことで、所望形状の造形物が得られる。 Based on the slice data of each layer, a plurality of powder layers are formed by repeating formation of a powder layer composed of the first powder (first particles) and application of a dispersion containing the second powder (second particles). A laminated body 109 in which is stacked is produced. Then, the laminated body 109 is moved to the heating area 110, and the laminated body 109 is heated under the condition that at least a part of the first particles are not sintered and the second particles are sintered or melted. . Thereby, the second particles are sintered, and the first particles in the modeling region S are fixed by the sintered or melted second particles. Thereafter, by removing the first powder in the non-modeling region N from the laminate 109, a modeled object having a desired shape is obtained.
 本実施例の造形装置によれば、オーバーハング構造や微細構造などを含む造形物を高品質に作製することができる。また、層ごとではなく、積層体109の全体を加熱するため、熱処理時に積層体109の全体を均一に加熱でき、局所的な熱衝撃が少なくなり、造形物形成時のひずみや割れが抑制される。また、第一の粒子1からなる粉末層の形成と第二の粒子2の配置の一連のプロセスを、1回の走査で実施できるので、高速な造形が可能であるとともに、造形装置の小型化を図ることができる。また、層ごとに加熱処理するのに比べ、加熱処理の回数を大幅に削減できるので、造形時間の短縮を図ることができる。また、ベース基板101と造形物の間にベース層を敷くので、造形物をベース基板101から取り外すための特別な加工が必要ない。 According to the modeling apparatus of the present embodiment, a modeled object including an overhang structure and a fine structure can be manufactured with high quality. In addition, since the entire laminated body 109 is heated not for each layer, the entire laminated body 109 can be heated uniformly during the heat treatment, local thermal shock is reduced, and distortion and cracking during formation of the shaped object are suppressed. The In addition, since a series of processes of forming the powder layer composed of the first particles 1 and arranging the second particles 2 can be performed by one scan, high-speed modeling is possible and the modeling apparatus is downsized. Can be achieved. In addition, since the number of heat treatments can be significantly reduced as compared with the case where heat treatment is performed for each layer, the modeling time can be shortened. In addition, since the base layer is laid between the base substrate 101 and the modeled object, no special processing for removing the modeled object from the base substrate 101 is required.
 <実施例10>
 実施例10では、粉末層に第二の粉末(第二の粒子)を含む分散液を付与した後に一分間静置することで、溶液Aのエタノールを乾燥させる。それ以外の造形プロセスは実施例8又は実施例9と同じでよい。また、造形装置の構成も実施例8又は実施例9と同じでよい。乾燥工程を設けることにより分散液の浸透を制御できるため、前述の実施形態よりもさらに精度が高い造形物を作製することができる。また、乾燥工程を設けることにより、第一の粒子1の粒界に第二の粒子2が集積することによって、前述の実施形態よりも更に強度が高い造形物を作製することができる。
<Example 10>
In Example 10, after the dispersion liquid containing the second powder (second particle) is applied to the powder layer, the solution A is dried by allowing to stand for 1 minute. Other modeling processes may be the same as those in Example 8 or Example 9. Further, the configuration of the modeling apparatus may be the same as that of the eighth embodiment or the ninth embodiment. Since the penetration of the dispersion liquid can be controlled by providing the drying step, it is possible to produce a shaped object with higher accuracy than the above-described embodiment. Further, by providing the drying step, the second particles 2 accumulate at the grain boundaries of the first particles 1, thereby making it possible to produce a shaped article having higher strength than the above-described embodiment.
 <実施例11>
 図9に実施例11に係る造形装置を示す。実施例9との構成上の違いは、粉末供給部103と液体付与部106の間に乾燥用ヒーター111を設けた点である。乾燥用ヒーター111は粉末層に付与された第二の粉末(第二の粒子)を含む分散液の乾燥を促進するための乾燥補助手段である。本実施形態では、粉末層を形成した後に、乾燥用ヒーター111によって粉末層を加熱する。その後、加熱された粉末層に対し分散液Aの付与を行う。このような構成により、実施例10のような自然乾燥に比べて、分散液に含まれる溶媒の乾燥が促進され、乾燥時間を短縮することができ、造形時間の短縮を図ることができる。なお、図9では乾燥補助手段を液体付与部106の前段に設けたが、液体付与部106の後段に乾燥補助手段(ヒーターなど)を設けてもよい。
<Example 11>
FIG. 9 shows a modeling apparatus according to the eleventh embodiment. The difference in configuration from the ninth embodiment is that a drying heater 111 is provided between the powder supply unit 103 and the liquid application unit 106. The drying heater 111 is a drying auxiliary means for promoting the drying of the dispersion liquid containing the second powder (second particles) applied to the powder layer. In the present embodiment, after the powder layer is formed, the powder layer is heated by the drying heater 111. Thereafter, the dispersion A is applied to the heated powder layer. With such a configuration, the drying of the solvent contained in the dispersion liquid is promoted compared to the natural drying as in Example 10, the drying time can be shortened, and the modeling time can be shortened. In FIG. 9, the drying assist means is provided in the front stage of the liquid applying unit 106, but the drying assist means (such as a heater) may be provided in the subsequent stage of the liquid applying unit 106.
 <実施例12>
 図10に実施例12に係る造形装置を示す。実施例9との構成上の違いは、粉末供給部103と液体付与部106の間に加圧手段112を設けた点である。加圧手段112としては、図10に示すような加圧ローラを用いてもよいし、加圧板を用いてもよい。本実施例では、第一の粉末の粉末層を形成した後に、加圧手段112によって粉末層を加圧する。粉末層を加圧することにより、第一の粉末の粒子どうしが密に接触するようになるため、造形物の空隙率や欠陥を低減し、造形物の機械強度を高めることができる。
<Example 12>
FIG. 10 shows a modeling apparatus according to the twelfth embodiment. A difference in configuration from the ninth embodiment is that a pressurizing unit 112 is provided between the powder supply unit 103 and the liquid application unit 106. As the pressure unit 112, a pressure roller as shown in FIG. 10 or a pressure plate may be used. In this embodiment, after the powder layer of the first powder is formed, the powder layer is pressurized by the pressurizing means 112. By pressurizing the powder layer, the particles of the first powder come into close contact with each other, so that the porosity and defects of the shaped article can be reduced and the mechanical strength of the shaped article can be increased.
 <実施例13>
 実施例13では、造形物(不要な粒子が除去された状態の物)を加熱エリア110に配置し、SUS粒子どうしが焼結可能な条件にて造形物を加熱する。これにより、造形物の主たる材料であるSUS粒子の焼結が進行するので、造形物の空隙が少なくなり、造形物の機械強度を一層高めることができる。
<Example 13>
In the thirteenth embodiment, a modeled object (in a state where unnecessary particles are removed) is arranged in the heating area 110, and the modeled object is heated under a condition in which SUS particles can be sintered. Thereby, since sintering of the SUS particle | grains which are the main materials of a molded article advances, the space | gap of a molded article decreases and the mechanical strength of a molded article can be raised further.
 <実施例14>
 図11に実施例14に係る造形装置を示す。実施例9との構成上の違いは、第二の粉末の分散液を吐出する液体付与部106の後段に、結合剤を吐出する第二の液体付与部113を設けた点である。
<Example 14>
FIG. 11 shows a modeling apparatus according to the fourteenth embodiment. The difference in configuration from Example 9 is that a second liquid application unit 113 for discharging a binder is provided after the liquid application unit 106 for discharging the second powder dispersion.
 造形を開始する前に、第一の粒子1からなる第一の粉末を粉末供給部103に、第二の粒子2(ナノ粒子)を含有する溶液を液体供給部104に、樹脂結合剤を含有する液体結合剤である溶液を液体供給部114に、それぞれ収容しておく。 Before starting modeling, the first powder composed of the first particles 1 is contained in the powder supply unit 103, the solution containing the second particles 2 (nanoparticles) is contained in the liquid supply unit 104, and the resin binder is contained. Each of the liquid binders is stored in the liquid supply unit 114.
 実施例9と同様にして、ベース基板101上に厚さ100μmのベース層を形成する。次いで、スライスデータで定義される厚みに基づいて、1層分の量の第一の粉末を粉末供給部103からベース層上に供給し、層厚規制ブレード105によってその表面を均すことで、第一の粉末の粉末層を形成する。これにより、造形物の1スライス分の粉末層が形成される。 In the same manner as in Example 9, a base layer having a thickness of 100 μm is formed on the base substrate 101. Next, based on the thickness defined by the slice data, the amount of the first powder for one layer is supplied from the powder supply unit 103 onto the base layer, and the surface is leveled by the layer thickness regulating blade 105, A powder layer of the first powder is formed. Thereby, the powder layer for 1 slice of a molded article is formed.
 次いで、液体付与部106を用いて、スライスデータで定義される造形対象物の断面形状に基づいて、粉末層内の造形領域Sに第二の粉末を含む溶液を付与する。このときの液量は、溶液が粉末層の厚みと略等しい深さまで浸透する量に制御される。これにより、造形領域S内の第一の粒子1の間隙にナノ粒子(第二の粒子2)が入り込む。 Next, using the liquid application unit 106, a solution containing the second powder is applied to the modeling region S in the powder layer based on the cross-sectional shape of the modeling object defined by the slice data. The amount of liquid at this time is controlled so that the solution penetrates to a depth substantially equal to the thickness of the powder layer. As a result, the nanoparticles (second particles 2) enter the gaps between the first particles 1 in the modeling region S.
 次いで、液体付与部113を用いて、粉末層に溶液Cを付与する。これにより、第一の粒子1が結合剤で仮固定される。 Next, the liquid application unit 113 is used to apply the solution C to the powder layer. Thereby, the first particles 1 are temporarily fixed with the binder.
 各層のスライスデータに基づいて、第一の粉末の粉末層の形成と溶液Cの付与を層ごとに繰り返すことで、複数の粉末層が重ねられた積層体109が作製される。その後、積層体109を加熱エリア110に移動させ、第一の粒子どうしの少なくとも一部は焼結せず、かつ、ナノ粒子どうしは焼結または溶融する条件にて積層体109を加熱する。これにより、ナノ粒子どうしが焼結または溶融し、焼結または溶融したナノ粒子によって第一の粒子どうしが固定される。その後、積層体109から非造形領域Nの第一の粒子を取り除くことで、所望形状の造形物が得られる。 Based on the slice data of each layer, the formation of the powder layer of the first powder and the application of the solution C are repeated for each layer, thereby producing a laminate 109 in which a plurality of powder layers are stacked. Thereafter, the laminated body 109 is moved to the heating area 110, and the laminated body 109 is heated under the condition that at least a part of the first particles are not sintered and the nanoparticles are sintered or melted. Thereby, the nanoparticles are sintered or melted, and the first particles are fixed by the sintered or melted nanoparticles. Thereafter, by removing the first particles in the non-modeling region N from the laminate 109, a modeled object having a desired shape is obtained.
 本実施例では、粉末層の第一の粒子どうしがエチルセルロースによっても固定されるため、粉末層の成形及び積層を精度良く行うことができ、造形物中の欠陥が少なくなる。なお、エチルセルロースの分解温度はナノ粒子の焼結開始温度よりも低いため、加熱時にエチルセルロースは分解される。
 また、ナノ粒子を含有する溶液と結合剤を含有する溶液を独立して付与することで、各液体付与部106と113をそれぞれ独立して最適化することができるため、液体付与部の耐久性が優れる。
In the present embodiment, since the first particles of the powder layer are also fixed by ethyl cellulose, the powder layer can be molded and laminated with high accuracy, and defects in the shaped article are reduced. In addition, since the decomposition temperature of ethyl cellulose is lower than the sintering start temperature of the nanoparticles, ethyl cellulose is decomposed during heating.
In addition, by independently applying the solution containing the nanoparticles and the solution containing the binder, each of the liquid application units 106 and 113 can be optimized independently, so that the durability of the liquid application unit Is excellent.
 <実施例15>
 図12に実施例15に係る造形装置を示す。実施例9との構成上の違いは、積層体109を作製する第1のユニットと積層体109を加熱する第2のユニットとを分けて設けた点である。
 このような構成により、実施例9に比べて、加熱エリア110の遮熱が必要なくなるため、装置の小型化を図ることができる。
 また、積層体109の作製と積層体109の加熱を同時に実施できるため、複数の造形物を作製する際には造形速度が向上する。
<Example 15>
FIG. 12 shows a modeling apparatus according to the fifteenth embodiment. The structural difference from Example 9 is that the first unit for producing the laminate 109 and the second unit for heating the laminate 109 are provided separately.
With such a configuration, it is not necessary to shield the heating area 110 as compared with the ninth embodiment, so that the apparatus can be downsized.
Moreover, since the production of the laminate 109 and the heating of the laminate 109 can be performed at the same time, the shaping speed is improved when producing a plurality of shaped objects.
 (その他)
 以上、本発明について具体的な形態を挙げて説明してきたが、本発明は上記形態に制限されるものではなく、本発明の技術思想から離脱しない範囲で、様々の変更を行ってもよい。例えば上記実施例では、熱処理の温度を制御することで第二の粒子2のみを選択的に焼結または溶融させたが、熱処理の時間、又は、温度と時間の両方を適切に制御することで第二の粒子2のみを選択的に焼結または溶融させてもよい。また上記実施例では、第二の粒子を含む分散液により第二の粒子2の配置を行ったが、液体ではなく、粉末の状態で第二の粒子2の配置を行ってもよい。また実施例14では、液体付与部106の後段に第二の液体付与部113を設けたが、液体付与部106の前段に第二の液体付与部113を設けてもよい。また、液体付与部106で造形領域Sに対し第二の粒子を含む溶液(結合剤を含まない分散液)を付与し、第二の液体付与部113で造形領域Sと非造形領域Nの両方に液体結合剤を付与してもよい。また、上記実施例1~15の構成は、技術的な矛盾や物理的な制約がない限り、互いに組み合わせてもよい。
(Other)
The present invention has been described above with specific embodiments. However, the present invention is not limited to the above embodiments, and various modifications may be made without departing from the technical idea of the present invention. For example, in the above embodiment, only the second particles 2 are selectively sintered or melted by controlling the temperature of the heat treatment, but by appropriately controlling the time of the heat treatment or both the temperature and the time. Only the second particles 2 may be selectively sintered or melted. Moreover, in the said Example, although the arrangement | positioning of the 2nd particle | grains 2 was performed with the dispersion liquid containing a 2nd particle | grain, you may arrange | position the 2nd particle | grains 2 in a powder state instead of a liquid. In the fourteenth embodiment, the second liquid application unit 113 is provided after the liquid application unit 106, but the second liquid application unit 113 may be provided before the liquid application unit 106. Further, the liquid application unit 106 applies a solution (dispersion liquid not containing a binder) containing second particles to the modeling region S, and the second liquid application unit 113 provides both the modeling region S and the non-modeling region N. A liquid binder may be added. Further, the configurations of the first to fifteenth embodiments may be combined with each other as long as there are no technical contradictions or physical restrictions.

Claims (25)

  1.  第一の粉末を用いて粉末層を形成する工程と、
     前記粉末層の一部の領域に、前記第一の粉末よりも平均粒子径が小さい第二の粉末を配置する工程と、
     前記第二の粉末が配置された前記粉末層を加熱する第一の加熱工程と、
    を含み、
     前記第二の粉末の平均粒子径が1nm以上、500nm以下であり、
     前記第一の加熱工程は、前記第二の粉末に含まれる粒子どうしが焼結または溶融する温度で加熱する
    ことを特徴とする造形方法。
    Forming a powder layer using the first powder;
    Disposing a second powder having an average particle size smaller than that of the first powder in a partial region of the powder layer;
    A first heating step for heating the powder layer in which the second powder is disposed;
    Including
    The average particle size of the second powder is 1 nm or more and 500 nm or less,
    The first heating step includes heating at a temperature at which particles contained in the second powder are sintered or melted.
  2.  前記第一の加熱工程の後に、前記一部の領域外の前記第一の粉末を取り除く工程をさらに含む
    ことを特徴とする請求項1に記載の造形方法。
    The modeling method according to claim 1, further comprising a step of removing the first powder outside the partial area after the first heating step.
  3.  前記一部の領域外の前記第一の粉末を取り除く工程の後に、前記一部の領域の粉末を加熱する第二の加熱工程をさらに含む
    ことを特徴とする請求項2に記載の造形方法。
    The modeling method according to claim 2, further comprising a second heating step of heating the powder in the partial region after the step of removing the first powder outside the partial region.
  4.  前記一部の領域外の前記第一の粉末を取り除く工程の後に、前記第一の粉末に含まれる粒子どうしが焼結するように前記粉末層を加熱する第二の加熱工程をさらに含む
    ことを特徴とする請求項2に記載の造形方法。
    The method further includes a second heating step of heating the powder layer so that particles contained in the first powder are sintered after the step of removing the first powder outside the partial region. The modeling method according to claim 2, wherein the modeling method is characterized.
  5.  前記粉末層を形成する工程と、前記第二の粉末を配置する工程と、を交互に複数回繰り返したのち、前記第一の加熱工程を行う、
    ことを特徴とする請求項1から4のいずれか1項に記載の造形方法。
    The step of forming the powder layer and the step of arranging the second powder are alternately repeated a plurality of times, and then the first heating step is performed.
    The modeling method according to any one of claims 1 to 4, characterized in that:
  6.  前記第一の粉末の平均粒子径は1μm以上、500μm以下である
    ことを特徴とする請求項1から5のいずれか1項に記載の造形方法。
    6. The modeling method according to claim 1, wherein an average particle diameter of the first powder is 1 μm or more and 500 μm or less.
  7.  前記第二の粉末の平均粒子径は1nm以上、200nm以下である
    ことを特徴とする請求項1から6のいずれか1項に記載の造形方法。
    The modeling method according to any one of claims 1 to 6, wherein an average particle diameter of the second powder is 1 nm or more and 200 nm or less.
  8.  前記第一の粉末を構成する粒子と前記第二の粉末を構成する粒子とが少なくとも一種類の同じ成分を含む
    ことを特徴とする請求項1から7のいずれか1項に記載の造形方法。
    The modeling method according to any one of claims 1 to 7, wherein the particles constituting the first powder and the particles constituting the second powder contain at least one same component.
  9.  前記第二の粉末を構成する粒子が前記第一の粉末を構成する粒子に含まれる成分を主成分として構成されている
    ことを特徴とする請求項1から8のいずれか1項に記載の造形方法。
    The modeling according to any one of claims 1 to 8, wherein the particles constituting the second powder are mainly composed of components contained in the particles constituting the first powder. Method.
  10.  前記第一の粉末と前記第二の粉末とが、共に、金属又はセラミックスの粒子を含む粉末である
    ことを特徴とする請求項1から9のいずれか1項に記載の造形方法。
    The modeling method according to any one of claims 1 to 9, wherein both the first powder and the second powder are powders containing metal or ceramic particles.
  11.  前記第二の粉末を配置する工程は、液体付与装置によって、前記一部の領域に、前記第二の粉末を含む液体を付与する工程である
    ことを特徴とする請求項1から10のいずれか1項に記載の造形方法。
    11. The step of arranging the second powder is a step of applying a liquid containing the second powder to the partial region by a liquid application device. The modeling method according to 1.
  12.  前記液体が結合剤を含む
    ことを特徴とする請求項11に記載の造形方法。
    The modeling method according to claim 11, wherein the liquid contains a binder.
  13.  前記液体に含まれる前記結合剤の体積濃度が50vol%以下である
    ことを特徴とする請求項12に記載の造形方法。
    The modeling method according to claim 12, wherein a volume concentration of the binder contained in the liquid is 50 vol% or less.
  14.  前記液体を付与する工程と前記第一の加熱工程のあいだに、前記液体を乾燥させる工程をさらに含む
    ことを特徴とする請求項11から13のいずれか1項に記載の造形方法。
    The modeling method according to any one of claims 11 to 13, further comprising a step of drying the liquid between the step of applying the liquid and the first heating step.
  15.  前記液体の粘度が50cP以下である
    ことを特徴とする請求項12から14のいずれか1項に記載の造形方法。
    The modeling method according to claim 12, wherein the liquid has a viscosity of 50 cP or less.
  16.  前記粉末層を形成する工程と前記第二の粉末を配置する工程のあいだに、前記粉末層を加圧する工程をさらに含む
    ことを特徴とする請求項1から15のいずれか1項に記載の造形方法。
    The shaping according to any one of claims 1 to 15, further comprising a step of pressurizing the powder layer between the step of forming the powder layer and the step of arranging the second powder. Method.
  17.  前記粉末層を形成する工程と前記第一の加熱工程のあいだに、前記粉末層に対し結合剤を付与する工程をさらに含む
    ことを特徴とする請求項1から16のいずれか1項に記載の造形方法。
    The method according to any one of claims 1 to 16, further comprising a step of applying a binder to the powder layer between the step of forming the powder layer and the first heating step. Modeling method.
  18.  前記結合剤を付与する領域が、前記粉末層のうちの前記一部の領域外の領域である
    ことを特徴とする請求項17に記載の造形方法。
    The modeling method according to claim 17, wherein the region to which the binder is applied is a region outside the partial region of the powder layer.
  19.  第一の粉末を用いて粉末層を形成する粉末層形成手段と、
     前記粉末層のうちの一部の領域に、平均粒子径が前記第一の粉末よりも小さい第二の粉末を配置する配置手段と、
     前記第二の粉末に含まれる粒子どうしが焼結または溶融するように前記粉末層を加熱する加熱手段と、
     を有することを特徴とする造形装置。
    Powder layer forming means for forming a powder layer using the first powder;
    Arranging means for disposing a second powder having an average particle diameter smaller than that of the first powder in a partial region of the powder layer;
    Heating means for heating the powder layer so that particles contained in the second powder are sintered or melted;
    A modeling apparatus comprising:
  20.  前記配置手段は、前記一部の領域に、前記第二の粉末を含む液体を付与する液体付与装置である
    ことを特徴とする請求項19に記載の造形装置。
    The modeling apparatus according to claim 19, wherein the arrangement unit is a liquid application device that applies a liquid containing the second powder to the partial area.
  21.  前記液体付与装置がインクジェット装置である
    ことを特徴とする請求項20に記載の造形装置。
    The modeling apparatus according to claim 20, wherein the liquid application device is an inkjet device.
  22.  前記一部の領域に付与された前記液体の乾燥を促進する乾燥補助手段をさらに有する
    ことを特徴とする請求項20又は21に記載の造形装置。
    The modeling apparatus according to claim 20 or 21, further comprising a drying assist unit that promotes drying of the liquid applied to the partial area.
  23.  前記乾燥補助手段は、前記液体が付与される前の前記粉末層を加熱するヒーターである
    ことを特徴とする請求項22に記載の造形装置。
    The modeling apparatus according to claim 22, wherein the drying assist unit is a heater that heats the powder layer before the liquid is applied.
  24.  前記粉末層を加圧する加圧手段をさらに有する
    ことを特徴とする請求項19から23のいずれか1項に記載の造形装置。
    The modeling apparatus according to claim 19, further comprising a pressurizing unit that pressurizes the powder layer.
  25.  前記粉末層形成手段と前記配置手段とが第1のユニットとして構成され、
     前記加熱手段が第2のユニットとして構成されている
    ことを特徴とする請求項19から24のいずれか1項に記載の造形装置。
     
    The powder layer forming means and the arranging means are configured as a first unit,
    The modeling apparatus according to any one of claims 19 to 24, wherein the heating unit is configured as a second unit.
PCT/JP2018/020702 2017-05-31 2018-05-30 Shaping method and shaping device WO2018221563A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/692,050 US11738504B2 (en) 2017-05-31 2019-11-22 Shaping method and shaping device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-108246 2017-05-31
JP2017108246 2017-05-31
JP2018-102240 2018-05-29
JP2018102240A JP7191550B2 (en) 2017-05-31 2018-05-29 Article manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/692,050 Continuation US11738504B2 (en) 2017-05-31 2019-11-22 Shaping method and shaping device

Publications (1)

Publication Number Publication Date
WO2018221563A1 true WO2018221563A1 (en) 2018-12-06

Family

ID=64454754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020702 WO2018221563A1 (en) 2017-05-31 2018-05-30 Shaping method and shaping device

Country Status (2)

Country Link
JP (1) JP2023029359A (en)
WO (1) WO2018221563A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11738504B2 (en) 2017-05-31 2023-08-29 Canon Kabushiki Kaisha Shaping method and shaping device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161544A (en) * 2012-02-01 2013-08-19 Nano Cube Japan Co Ltd Conductive material and manufacturing method of the same
WO2015141032A1 (en) * 2014-03-18 2015-09-24 株式会社 東芝 Additive layer manufacturing device and method for manufacturing additive layer manufacturing article
WO2017006610A1 (en) * 2015-07-06 2017-01-12 株式会社日立製作所 Powder material, lamination-fabricated article, and method for manufacturing lamination-fabricated article
US20170014910A1 (en) * 2015-07-17 2017-01-19 Applied Materials, Inc. Selective material dispensing in additive manufacturing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013161544A (en) * 2012-02-01 2013-08-19 Nano Cube Japan Co Ltd Conductive material and manufacturing method of the same
WO2015141032A1 (en) * 2014-03-18 2015-09-24 株式会社 東芝 Additive layer manufacturing device and method for manufacturing additive layer manufacturing article
WO2017006610A1 (en) * 2015-07-06 2017-01-12 株式会社日立製作所 Powder material, lamination-fabricated article, and method for manufacturing lamination-fabricated article
US20170014910A1 (en) * 2015-07-17 2017-01-19 Applied Materials, Inc. Selective material dispensing in additive manufacturing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11738504B2 (en) 2017-05-31 2023-08-29 Canon Kabushiki Kaisha Shaping method and shaping device

Also Published As

Publication number Publication date
JP2023029359A (en) 2023-03-03

Similar Documents

Publication Publication Date Title
US11738504B2 (en) Shaping method and shaping device
Kumar et al. The effects of Hot Isostatic Pressing on parts fabricated by binder jetting additive manufacturing
Bai et al. Binder jetting additive manufacturing with a particle-free metal ink as a binder precursor
Zhang et al. Additive manufacturing of zirconia ceramics: A state-of-the-art review
Ziaee et al. Binder jetting: A review of process, materials, and methods
Miyanaji et al. Effect of fine powder particles on quality of binder jetting parts
US11913095B2 (en) Fabrication of metallic parts by additive manufacturing
CN107223077B (en) Additive manufacturing method, method of processing object data, data carrier, object data processor and manufactured object
Shahzad et al. Additive manufacturing of zirconia parts by indirect selective laser sintering
US20220266511A1 (en) Additive manufacturing material for powder rapid prototyping manufacturing
JP2023029359A (en) Manufacturing method for article
JP2020002430A (en) Method and apparatus for molding
Scheithauer et al. Processing of thermoplastic suspensions for additive manufacturing of ceramic-and metal-ceramic-composites by thermoplastic 3D-printing (T3DP)
JP2020084311A (en) Molding method, and molding apparatus
US20200384535A1 (en) Three-dimensional shaping method
US11413688B2 (en) Immiscible-interface assisted direct metal drawing
WO2020009009A1 (en) Modeling method and modeling device
JP2020200535A (en) Three-dimensional shaping method
JP6935279B2 (en) Manufacturing method of three-dimensional object and manufacturing equipment used for it
JP2020172071A (en) Three-dimensional modelling apparatus and method for modelling object by three-dimensional modelling apparatus
Malik et al. Robocasting—Printing Ceramics into Functional Materials
JP7234716B2 (en) Powder for three-dimensional modeling, container containing powder, method for producing three-dimensional model, and apparatus for producing three-dimensional model
Diener Relation of process parameters and green parts quality in the Layerwise Slurry Deposition Print process of SiSiC
Deckers et al. Production of alumina parts through Selective Laser Sintering of alumina-polyamide composite powder
McAllister A Critical Review of Multi-Phase Materials and Optimization Strategies for Additive Printing Technologies

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809574

Country of ref document: EP

Kind code of ref document: A1