WO2018221479A1 - Novel fluorescent substance for transporter function analysis - Google Patents

Novel fluorescent substance for transporter function analysis Download PDF

Info

Publication number
WO2018221479A1
WO2018221479A1 PCT/JP2018/020440 JP2018020440W WO2018221479A1 WO 2018221479 A1 WO2018221479 A1 WO 2018221479A1 JP 2018020440 W JP2018020440 W JP 2018020440W WO 2018221479 A1 WO2018221479 A1 WO 2018221479A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
acid
optionally substituted
sulfonic acid
Prior art date
Application number
PCT/JP2018/020440
Other languages
French (fr)
Japanese (ja)
Inventor
山口 浩明
成康 眞野
裕 山岸
Original Assignee
五稜化薬株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五稜化薬株式会社, 国立大学法人東北大学 filed Critical 五稜化薬株式会社
Publication of WO2018221479A1 publication Critical patent/WO2018221479A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J9/00Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility

Definitions

  • the present invention relates to a fluorescent substrate used for functional analysis of a transporter.
  • Non-Patent Document 1 a fluorescent substrate in which chenodeoxycholic acid (CDCA) is labeled with nitrobenzooxadiazole (NBD) has been produced and reported (Non-Patent Document 1), but there are problems such as easy quenching and weak fluorescence.
  • CCDCA chenodeoxycholic acid
  • NBD nitrobenzooxadiazole
  • HTS high-throughput screening
  • an object of the present invention is to provide a fluorescent substrate that is difficult to quench and has high fluorescence intensity while maintaining the high transport ability of the transporter substrate.
  • a probe exhibiting a high S / N ratio can be created by imparting water solubility to the fluorescent substrate.
  • a fluorescent substrate in which various bile acids and Tokyo Green (TG), Tokyo Magenta (TM), or hydroxycoumarin (HC), or derivatives thereof are bonded via a linker is quenched while maintaining high transport ability. It has been found that it becomes a fluorescent substrate of a transporter that is difficult and has high fluorescence intensity.
  • the S / N ratio at the time of saturation of CDCA-NBD uptake (after 10 minutes), that is, (uptake by transporter expressing cells) / (uptake by transporter non-expressing cells (mock cells))
  • TG is 5.7
  • HC is 3.6, indicating an excellent S / N ratio, so that a fluorescent substrate that can be used in HTS has been successfully provided.
  • ALF (I) [Wherein, A is cholic acid, chenodeoxycholic acid, deoxycholic acid, lithocholic acid, ursocholic acid, ursodeoxycholic acid, ⁇ -mulicholic acid, ⁇ -mulicholic acid, ⁇ -mulicholic acid, ⁇ -mulicholic acid, hyocholic acid, hyodeoxycholic acid 7-oxo-deoxycholic acid, 7-oxo-lithocholic acid, 1-oxo-lithocholic acid, or 2-oxo-lithocholic acid, or derivatives thereof, L represents a linker, and F represents a monovalent group of a compound represented by the following formula:
  • R 1 , R 3 , R 4 , R 6 , R 9 , and R 11 are the same or different and each represents a hydrogen atom, a halogen atom, a sulfonic acid group, a salt of a sulfonic acid group, C1 ⁇ Represents a 6 alkyl group or a C1-6 alkenyl group, R 2 represents an oxygen atom or an optionally substituted nitrogen atom, R 5 represents a hydroxyl group or an optionally substituted nitrogen atom, R 7 represents an optionally substituted C1-6 alkyl group, an optionally substituted C1-6 alkoxy group, a carboxy group, a salt of a carboxy group, a sulfonic acid group, or a salt of a sulfonic acid group, n represents a natural number from 0 to 4, R 8 and R 12 are each independently a hydroxyl group, a halogen atom, an amino group, a C1-6 alkyl group, a C
  • R 10 represents a hydroxyl group or an optionally substituted nitrogen atom
  • X represents an oxygen atom or an optionally substituted silicon atom
  • the nitrogen atom which may be substituted and the substituent of the silicon atom which may be substituted are the same or different, and each may be a C1-6 alkyl group which may be substituted.
  • the substituents of the C1-6 alkyl group which may be the same or different are each a halogen atom, a carboxylic acid, a carboxylic acid salt, a sulfonic acid, or a sulfonic acid salt.
  • the group represented by A in the compound represented by the formula (I) in the present specification represents a monovalent group of a compound taken up by OATP1B1 and / or OATP1B3, specifically, cholic acid, chenodeoxycholic acid, Deoxycholic acid, lithocholic acid, ursocholic acid, ursodeoxycholic acid, ⁇ -mulicholic acid, ⁇ -mulicholic acid, ⁇ -mulicholic acid, hyocholic acid, hyodeoxycholic acid, 7-oxo-deoxycholic acid, 7-oxo- It means a monovalent group of lithocholic acid, 1-oxo-lithocholic acid, and 2-oxo-lithocholic acid (hereinafter referred to as “cholic acid and the like”) or derivatives thereof.
  • a “derivative” such as cholic acid is a compound in which an arbitrary part of a group is substituted with another group or an arbitrary group is introduced while maintaining a basic steroid skeleton in cholic acid or the like. Meaning a compound that maintains the ability to be taken up by transporting polypeptide 1B1 (OATP1B1) and / or OATP1B3.
  • the linking group for cholic acid or the like or a derivative thereof to bind to L may be at any position of cholic acid or the like or a derivative thereof, but is preferably bonded at a carboxylic acid residue moiety.
  • the bonding mode can be appropriately selected according to the type of the linking group. For example, when the linking group is a carboxylic acid, the bonding mode can be bonded by an ester bond. In the present specification, the “ester bond” includes an amide bond as well as an ester bond.
  • organic anion transporting polypeptide 1B1 (OATP1B1)” is also known as SLCO1B1.
  • Organic anion transporting polypeptide 1B3 (OATP1B3)” is also known as SLCO1B3.
  • OATP1B1 and OATP1B3 are both a single carrier transporter (SLC) transporter that is specifically expressed on the hepatocyte basement membrane side and acts on the incorporation of many statins into hepatocytes. Orally administered statins are selectively taken up by hepatocytes via OATP1B1 and inhibit cholesterol biosynthesis.
  • SLC single carrier transporter
  • Whether a derivative such as cholic acid is taken up by OATP1B1 and / or OATP1B3 can be examined by the following method.
  • Cells that expressed OATP1B1, OATP1B3, and mock cells were seeded at about 2 ⁇ 10 5 cells / well in 24-well plates that were appropriately coated, and after 72 hours of growth, the cells were washed with a buffer solution. After one to several washes, buffer is added to the cells and preincubated for 10 minutes. Add a buffer containing a test cholic acid derivative conjugated with a fluorescent label, and after incubation for a certain period of time, remove the buffer and add an ice-cold buffer containing 1% bovine serum albumin (BSA). Stop the capture.
  • BSA bovine serum albumin
  • the cells are further washed several times with an ice-cold buffer solution, dried, and then the fluorescence of a measurement sample obtained by lysing the cells by adding Lysis Buffer is measured. When the fluorescence of the measurement sample is confirmed, it is determined that a derivative such as cholic acid is taken up by OATP1B1 and / or OATP1B3.
  • A is a group represented by the following formula:
  • R 13 represents a hydrogen atom or a hydroxyl group
  • R 14 and R 15 represent a hydrogen atom, a hydroxyl group or an oxygen atom
  • a solid line and a dotted line represent a single bond when R 14 or R 15 to be bonded is a hydrogen atom or a hydroxyl group, respectively, and a double bond when R 14 or R 15 to be bonded is an oxygen atom.
  • the group represented by F in the compound represented by formula (I) represents a fluorescent substance, more specifically, a monovalent group of the compound represented by the following formula:
  • R 1 , R 3 , R 4 , R 6 , R 9 , and R 11 are the same or different and each represents a hydrogen atom, a halogen atom, a sulfonic acid group, a salt of a sulfonic acid group, or C1.
  • R 2 represents an oxygen atom or an optionally substituted nitrogen atom
  • R 5 represents a hydroxyl group or an optionally substituted nitrogen atom
  • R 7 represents an optionally substituted C1-6 alkyl group, an optionally substituted C1-6 alkoxy group, a carboxy group, a salt of a carboxy group, a sulfonic acid group, or a salt of a sulfonic acid group
  • n represents a natural number from 0 to 4
  • R 8 and R 12 are each independently a hydroxyl group, a halogen atom, an amino group, a C1-6 alkyl group, a C2-6 alkenyl group, a C2-6 alkynyl group, a C1-6 alkoxy group, or a C1-6 alkoxycarbonyl group.
  • R 10 represents a hydroxyl group or an optionally substituted nitrogen atom
  • X represents an oxygen atom or an optionally substituted silicon atom
  • the nitrogen atom which may be substituted and the substituent of the silicon atom which may be substituted are the same or different, and each may be a C1-6 alkyl group which may be substituted.
  • the substituents of the C1-6 alkyl group which may be the same or different are each a halogen atom, a carboxylic acid, a carboxylic acid salt, a sulfonic acid, or a sulfonic acid salt.
  • F in the compound represented by the formula (I) is preferably TokyoGreen (registered trademark) represented by the following formula that emits green fluorescence.
  • n represents a natural number of 0 to 4, and R 17 independently represents a C1-6 alkyl group, a C1-6 alkenyl group, a C1-6 alkynyl group, a C1-6 alkoxy group, a hydroxyl group, a carboxy group, Group, a sulfonic acid group, a C1-6 alkoxycarbonyl group, a halogen atom, or an amino group, and R 18 represents a C1-6 alkyl group or a C1-6 alkoxy group.
  • R 17 represents a C1-6 alkyl group, a C1-6 alkenyl group, a C1-6 alkynyl group, a C1-6 alkoxy group, a hydroxyl group, a carboxy group, a sulfonic acid group, a C1-6 alkoxycarbonyl group, a halogen atom. Or an amino group, and R 18 represents a C1-6 alkyl group or a C1-6 alkoxy group.
  • R 17 is preferably a C1-4 alkyl group or a C1-4 alkoxy group, and more preferably a methyl group or a methoxy group.
  • R 18 is preferably a C1-4 alkyl group or a C1-4 alkoxy group, and more preferably a methyl group or a methoxy group.
  • TokyoMagenta represented by the following formula is preferable.
  • n represents a natural number of 0 to 4, and each R 19 independently represents a C1-6 alkyl group, a C1-6 alkenyl group, a C1-6 alkynyl group, a C1-6 alkoxy group, a hydroxyl group, a carboxy group, It represents group, a sulfonic acid group, C1 ⁇ 6 alkoxycarbonyl group, a halogen atom, or an amino group, R 20 represents a C1 ⁇ 6 alkyl group or a C1 ⁇ 6 alkoxy group.
  • R 19 is a C1-6 alkyl group, a C1-6 alkenyl group, a C1-6 alkynyl group, a C1-6 alkoxy group, a hydroxyl group, a carboxy group, a sulfonic acid group, a C1-6 alkoxycarbonyl group, a halogen atom. Or an amino group, and R 20 represents a C1-6 alkyl group or a C1-6 alkoxy group.
  • R 19 is preferably a C1-4 alkyl group or a C1-4 alkoxy group, and more preferably a methyl group or a methoxy group.
  • R 20 is preferably a C1-4 alkyl group or a C1-4 alkoxy group, and more preferably a methyl group or a methoxy group.
  • the compound of the present invention is preferably a compound represented by the following formula (V) or formula (VI).
  • R 1 , R 3 , R 4 , R 6 , R 9 , and R 11 are the same or different and each represents a hydrogen atom, a halogen atom, a sulfonic acid group, a salt of a sulfonic acid group, C1 ⁇ Represents a 6 alkyl group or a C1-6 alkenyl group, R 2 represents an oxygen atom or an optionally substituted nitrogen atom, R 5 represents a hydroxyl group or an optionally substituted nitrogen atom, R 7 represents an optionally substituted C1-6 alkyl group, an optionally substituted C1-6 alkoxy group, a carboxy group, a salt of a carboxy group, a sulfonic acid group, or a salt of a sulfonic acid group, n represents a natural number from 0 to 4, R 8 and R 12 are each independently a hydroxyl group, a halogen atom, an amino group, a C1-6 alkyl group, a C
  • a carboxy group, a salt of a carboxy group, a sulfonic acid group, or a salt of a sulfonic acid group, R 10 represents a hydroxyl group or an optionally substituted nitrogen atom
  • X represents an oxygen atom or an optionally substituted silicon atom
  • R 13 represents a hydrogen atom or a hydroxyl group
  • R 14 and R 15 represent a hydrogen atom, a hydroxyl group or an oxygen atom
  • a solid line and a dotted line represent a single bond when R 14 or R 15 to be bonded is a hydrogen atom or a hydroxyl group, respectively, and a double bond when R 14 or R 15 to be bonded is an oxygen atom
  • the nitrogen atom which may be substituted and the substituent of the silicon atom which may be substituted are the same or different, and each may be a C1-6 alkyl group which may be substituted.
  • the substituents of the C1-6 alkyl group which may be the same or different are each a halogen atom, a carboxylic acid, a carboxylic acid salt, a sulfonic acid, or a sulfonic acid salt.
  • R 1 is preferably a hydrogen atom or a halogen atom.
  • R 2 is preferably an oxygen atom.
  • R 3 is preferably a hydrogen atom or a halogen atom.
  • R 4 is preferably a hydroxyl group or a nitrogen atom which may be substituted with a C1-6 alkyl group, and more preferably a hydroxyl group or a C1-4 alkyl group. It is a good nitrogen atom, more preferably a hydroxyl group or a nitrogen atom which may be substituted with a methyl group.
  • R 5 is preferably a hydrogen atom or a halogen atom.
  • R 6 is preferably a hydroxyl group or an optionally substituted nitrogen atom.
  • R 7 is preferably a hydroxyl group or an optionally substituted nitrogen atom.
  • X is preferably an oxygen atom or a silicon atom optionally substituted by 1 to 2 C1-6 alkyl groups, more preferably an oxygen atom or 2 C1-6 A silicon atom substituted with a 4 alkyl group, more preferably an oxygen atom, or a silicon atom substituted with two methyl groups.
  • R 9 is preferably a hydrogen atom.
  • R 10 is preferably a hydroxyl group or a di (C1-6 alkyl) amino group (preferably a dimethylamino group or a diethylamino group).
  • R 11 is preferably a hydrogen atom.
  • R 13 is preferably a hydrogen atom or a hydroxyl group.
  • R 14 and R 15 are preferably a hydrogen atom, a hydroxyl group or an oxygen atom.
  • the solid and dotted lines represent a single bond when R 14 or R 15 to be bonded is a hydrogen atom or a hydroxyl group, respectively.
  • R 14 or R 15 to be bonded is an oxygen atom, it represents a double bond.
  • the compound of the present invention is a compound represented by the formula (V),
  • R 1 represents a hydrogen atom or a halogen atom
  • R 2 represents an oxygen atom or an optionally substituted nitrogen atom
  • R 3 represents a hydrogen atom or a halogen atom
  • R 4 represents a hydroxyl group or an optionally substituted nitrogen atom
  • R 5 represents a hydrogen atom or a halogen atom
  • R 6 represents a hydroxyl group or an optionally substituted nitrogen atom
  • R 7 represents a methyl group or a methoxy group
  • X represents an oxygen atom or an optionally substituted silicon atom
  • the optionally substituted nitrogen atom and the optionally substituted silicon atom substituent are the same or different and each is a C1-6 alkyl group.
  • R 13 represents a hydrogen atom or a hydroxyl group
  • R 14 and R 15 represent a hydrogen atom, a hydroxyl group or an oxygen atom
  • a solid line and a dotted line represent a single bond when R 14 or R 15 to be bonded is a hydrogen atom or a hydroxyl group, and a double bond when R 14 or R 15 to be bonded is an oxygen atom, respectively. It is.
  • the present invention is an intermediate compound represented by the following formulas (VII) to (IX). These compounds can be used as intermediates for synthesizing the compounds of the present invention represented by the formula (I).
  • the group represented by L in the compounds represented by formulas (I), (V), (VI), (VII), (VIII), and (IX) represents a linker.
  • the linker is a group that binds cholic acid or the like or a derivative thereof to the fluorescent dye compound represented by F in formula (I).
  • the linker may be any group as long as the compound of the present invention can maintain the high transport ability of the transporter substrate represented by A and can maintain the fluorescence intensity of the fluorescent substance represented by F. There may be.
  • the linker moiety is a group that can be bonded to A and F at both ends by an ester bond, an amide bond, or a sulfonic acid amide bond, respectively.
  • L has a linear or branched C2-14 alkylene chain which may be substituted.
  • substituent when the alkylene chain of L is substituted include a hydroxyl group, amino group, halogen atom, oxo group, C1-4 alkoxy group, C1-4 alkoxycarbonyl group, C1-4 alkoxycarbonyloxy group, C1 ⁇
  • a 4-alkylaminocarboxy group, a carboxylic acid group, or a —CONH— (CH 2 ) 2 —SO 3 H group can be mentioned.
  • the number of substituents may be 1 to 4, 1 to 3, 1 to 2, or 1.
  • L is —NH— (CH 2 ) p — (CHR 21 ) q — (CH 2 ) r —NHCO— (the CO group is a group derived from R 8 or R 12 ), or —NH— (CH 2 P ⁇ (CHR 21 ) q — (CH 2 ) r —NHSO 2 — (wherein the SO 2 group is a group derived from R 8 or R 12 ) [wherein, p and r are respectively , The same or different, a natural number of 2 to 10, q is 0 or 1, and R 21 is a carboxylic acid group or a —CONH— (CH 2 ) 2 —SO 3 H group].
  • C1-6 alkyl group means a linear or branched saturated hydrocarbon group having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, Examples include i-propyl group, n-butyl group, sec-butyl group, t-butyl group, isobutyl group, pentyl group, isopentyl group, 2,3-dimethylpropyl group, hexyl group, and cyclohexyl group.
  • a C1-4 alkyl group more preferably a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a sec-butyl group, a t-butyl group, and an isobutyl group. More preferred is a C1-3 alkyl group, for example, a methyl group, an ethyl group, an n-propyl group, and an i-propyl group, and most preferred is a methyl group or an ethyl group.
  • the “C1-6 alkoxy group” means a group ((C1-6 alkyl group) -O— group) bonded to the C1-6 alkyl group via an oxygen atom.
  • the base part may be linear or branched.
  • the C1-6 alkoxy group means that the alkyl group moiety has 1 to 6 carbon atoms. Examples of the alkoxy group include a methoxy group, an ethoxy group, a 1-propyloxy group, a 2-propyloxy group, a 2-methyl-1-propyloxy group, a 2-methyl-2-propyloxy group, and 2,2-dimethyl.
  • the C1-6 alkoxy group is preferably a C1-4 alkoxy group, more preferably a C1-3 alkoxy group, still more preferably a methoxy group or an ethoxy group.
  • the “C1-6 alkoxycarbonyl group” means a group ((C1-6 alkyl group) -C ( ⁇ O) bonded to the C1-6 alkoxy group via an oxo group (> C ⁇ O). ) -Group), and the alkyl group moiety may be linear or branched.
  • the C1-6 alkoxycarbonyl group means that the alkyl group moiety has 1 to 6 carbon atoms. Examples of the alkoxy group include a methoxycarbonyl group, an ethoxycarbonyl group, a 1-propyloxycarbonyl group, a 2-propyloxycarbonyl group, a 2-methyl-1-propyloxycarbonyl group, and a 2-methyl-2-propyloxycarbonyl group.
  • 2,2-dimethyl-1-propyloxycarbonyl group 1,2-dimethyl-1-propyloxycarbonyl group, 1-butyloxycarbonyl group, 2-butyloxycarbonyl group, 2-methyl-1-butyloxycarbonyl group, 3-methyl-1-butyloxycarbonyl group, 2-methyl-2-butyloxycarbonyl group, 3-methyl-2-butyloxycarbonyl group, 1-pentyloxycarbonyl group, 2-pentyloxycarbonyl group, 3-pentyloxycarbonyl group, 2-methyl-1-pentyl Oxycarbonyl group, 3-methyl-1-penty Examples include oxycarbonyl group, 2-methyl-2-pentyloxycarbonyl group, 3-methyl-2-pentyloxycarbonyl group, 1-hexyloxycarbonyl group, 2-hexyloxycarbonyl group, and 3-hexyloxycarbonyl group.
  • the C1-6 alkoxycarbonyl group is preferably a C1-4 alkoxycarbonyl group, more preferably a C1-3 alkoxycarbonyl group, and still more preferably a methoxycarbonyl group or an ethoxycarbonyl group.
  • the “C2-6 alkenyl group” is a carbon atom formed by removing one hydrogen atom from any carbon atom of a linear or branched unsaturated hydrocarbon having one or more carbon-carbon double bonds. It means a monovalent group having 2 to 6 numbers.
  • Examples of the C2-6 alkenyl group include a vinyl group, propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-methyl-1-propenyl group, 2-methyl-1- Propenyl group, 1-methyl-2-propenyl group, 2-methyl-2-propenyl group, 1-methylidene-1-propane group, 1-pentenyl group, 1-pentenyl group, 3-pentenyl group, 4-pentenyl group, 1-methyl-1-butenyl group, 1-methyl-2-butenyl group, 1-methyl-3-butenyl group, 1-methylidenebutyl group, 2-methyl-1-butenyl group, 2-methyl-2-butenyl group, 2-methyl-3-butenyl group, 2-methylidenebutyl group, 3-methyl-1-butenyl group, 3-methyl-2-butenyl group, 3-methyl-3-butenyl group, 1-ethyl-1 Propenyl group,
  • the “C2-6 alkynyl group” is a carbon atom obtained by removing one hydrogen atom from any carbon atom of a linear or branched unsaturated hydrocarbon having one or more carbon-carbon triple bonds. It means a monovalent group having 2 to 6 numbers.
  • Examples of the C2-6 alkynyl group include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, pentynyl group, hexynyl group, phenylethynyl group and the like. it can.
  • a C2-4 alkynyl group is preferable, and an ethynyl group is more preferable.
  • Halogen atom means a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a fluorine atom, a chlorine atom and a bromine atom, more preferably a fluorine atom or a chlorine atom. .
  • salt in a salt of a sulfonic acid group and a salt of a carboxy group means a salt formed by combining the compound of the present invention with an inorganic or organic base at the sulfonic acid group or carboxy group.
  • the salt examples include alkali metal and alkaline earth metal salts such as lithium, sodium, potassium, magnesium, calcium; ammonia, methylamine, dimethylamine, trimethylamine, dicyclohexylamine, tris (hydroxymethyl) aminomethane, N, N -Salts of amines such as bis (hydroxyethyl) piperazine, 2-amino-2-methyl-1-propanol, ethanolamine, N-methylglucamine, L-glucamine; or bases such as lysine, ⁇ -hydroxylysine, arginine A salt with a functional amino acid can be formed.
  • alkali metal and alkaline earth metal salts such as lithium, sodium, potassium, magnesium, calcium
  • ammonia methylamine, dimethylamine, trimethylamine, dicyclohexylamine, tris (hydroxymethyl) aminomethane, N, N -Salts of amines such as bis (hydroxyethyl) piperazine, 2-amino-2-methyl-1-propano
  • the present invention relates to a transporter function measurement kit comprising the compound.
  • Transporters include OATP1B1 and / or OATP1B3.
  • the kit of the present invention may comprise a container for storing the compound, an instruction manual, and a package for storing the components of the kit such as a paper box or a plastic case.
  • the fluorescent substrate of the present invention can provide a fluorescent substrate for a transporter that can be put to practical use because it maintains high transporter transportability and is not easily quenched and has high fluorescence intensity.
  • CDCA-Lys-TG 0.025 ⁇ M
  • CDCA-Lys-HC 0.1 ⁇ M
  • CDCA-Lys-DCTM 0.01 ⁇ M
  • CDCA-Lys-Et 2 AC 0. Set to 1 ⁇ M (D).
  • each graph represents the amount of uptake per 1 mg of protein (uptake) (pmol / mg protein), and the horizontal axis represents the elapsed time (minutes).
  • a white circle represents a cell into which an empty vector has been introduced (control)
  • a black triangle represents a cell into which OATP1B1 has been introduced
  • a black square represents a cell into which OATP1B3 has been introduced.
  • 2 is a graph showing the concentration dependency of CDCA-Lys-TG uptake in OATP1B1-expressing HEK293 cells.
  • the vertical axis of the small graph represents the uptake amount after 30 seconds per mg of protein (pmol / mg protein / 30 sec), and the horizontal axis represents the uptake amount after 30 seconds per mg of protein divided by the concentration of the fluorescent substrate. Value (ml / mg protein / 30 sec) (same in FIGS. 2B to 3D and FIGS. 3A to 3D).
  • 2 is a graph showing the concentration dependence of CDCA-Lys-HC uptake in OATP1B1 and OATP1B3 expressing HEK293 cells. It is a graph showing the concentration dependence of CDCA-Lys-DCTM uptake in OATP1B1-expressing HEK293 cells. It is a graph showing the concentration dependence of uptake of CDCA-Lys-Et 2 AC in OATP1B1-expressing HEK293 cells. 2 is a graph showing the concentration dependency of CDCA-Lys-TG uptake in OATP1B3-expressing HEK293 cells. 2 is a graph showing the concentration dependency of CDCA-Lys-HC uptake in OATP1B3-expressing HEK293 cells.
  • each graph represents the amount of uptake per mg of protein (uptake) (pmol / mg protein), the horizontal axis represents the elapsed time (minutes), and the white circle represents the cells into which the empty vector was introduced (control).
  • the black triangle represents a cell into which OATP1B1 has been introduced, and the black square represents a cell into which OATP1B3 has been introduced (the same applies to FIGS. 5B and C and FIG. 6).
  • the compound of the present invention can be obtained by binding cholic acid or the like or a derivative thereof and a fluorescent dye F through a linker while referring to the Examples of the present application.
  • it can be obtained by attaching a linker to cholic acid or the like or a derivative thereof, and then attaching a fluorescent dye to the remaining end of the linker.
  • it can be obtained by binding a linker to a fluorescent dye and then binding cholic acid or the like or a derivative thereof to the remaining end of the linker.
  • Cholic acid or the like or derivatives thereof can be synthesized by methods described in the literature, or can be obtained as commercially available reagents. Moreover, the coupling
  • Fluorescent dye F is disclosed in WO 2012/099218 and Yasuteru Urano et al. am. Chem. soc (2005) 127: 4888-4894 and the like.
  • the binding between the fluorescent dye and the linker is carried out, for example, by introducing an N-succinimide group into the carboxy group of the fluorescent dye using N-hydroxysuccinimide (NHS), and then this N-succinimide fluorescent dye and cholic acid or the like It can be obtained by binding a derivative-bound linker.
  • the present invention is a method for determining whether a test substance is transported by OATP1B1 and / or OATP1B3, the method comprising the following steps: Contacting the test substance and the compound of the present invention with an OATP1B1 and / or OATP1B3-expressing cell culture, Removing the test substance and the compound of the present invention that have not been taken up into the cells, A step of measuring the fluorescence intensity of the compound of the present invention incorporated into the cell, and the obtained fluorescence intensity is contacted with the OATP1B1 and / or OATP1B3 expressing cell in the absence of the test substance in the same manner; And a step of determining that the test substance is transported by OATP1B1 and / or OATP1B3 when it is smaller than the fluor
  • the step of bringing the test substance and the compound of the present invention into contact with an OATP1B1 and / or OATP1B3 expressing cell culture comprises culturing OATP1B1 and / or OATP1B3 expressing cells on a dish, This can be done by replacing with a buffer containing the compound.
  • the test substance and the compound of the present invention that have not been taken up into the cells can be removed, for example, by removing the buffer solution and then adding a buffer solution containing BSA.
  • the fluorescence intensity of the compound of the present invention incorporated into the cells is measured by measuring the fluorescence of the cell lysate obtained by drying the cells and then lysing the cells by adding a cell lysis buffer. be able to.
  • the fluorescence can be measured with a commercially available measuring instrument by selecting an excitation wavelength and a fluorescence wavelength suitable for the fluorescent substance that binds to the compound of the present invention used (see Table 1).
  • the determination of whether or not the test substance is transported by OATP1B1 and / or OATP1B3 is based on the control in which only the compound of the present invention is contacted with the OATP1B1 and / or OATP1B3 expressing cell culture without contacting the test substance. This is done by comparing with the obtained fluorescence intensity. If the fluorescence intensity is comparable to the control, it can be determined that it is not transported by OATP1B1 and / or OATP1B3, and if the fluorescence intensity is lower than the control, it can be determined that it is transported by OATP1B1 and / or OATP1B3.
  • the fluorescence intensity of the control is such that only the compound of the present invention is brought into contact with OATP1B1 and / or OATP1B3 expressing cell culture, the compound of the present invention that has not been taken up into the cells is removed, and It is obtained by measuring the fluorescence intensity of the compound.
  • the screening method of the present invention can be performed by quenching using a quencher without removing the test substance and the compound of the present invention.
  • the present invention is a method for determining whether a test substance is transported by OATP1B1 and / or OATP1B3, the method comprising the following steps: Contacting the test substance and the compound of the present invention with an OATP1B1 and / or OATP1B3-expressing cell culture, Adding a quencher to the cell culture to quench the compounds of the invention that have not been taken up into the cells; A step of measuring the fluorescence intensity of the compound of the present invention incorporated into the cell, and the obtained fluorescence intensity is contacted with the OATP1B1 and / or OATP1B3 expressing cell in the absence of the test substance in the same manner; And a step of determining that the test substance is transported by OATP1B1 and / or OATP1B3 when it is smaller than the fluorescence intensity of the compound of the present invention
  • the compound used as a quencher is not particularly limited as long as it can quench the compound of the present invention and is not taken up by cells, and can be selected according to the fluorescent dye to be used.
  • the fluorescent dye for example, brilliant black (4-acetylamino-5-hydroxy-6- [7-sodiosulfo-4- [4- (sodiosulfo) phenylazo] -1-naphthylazo] naphthalene-1,7-disulfonic acid disodium as a quencher CAS number 2519-30-4) can be used.
  • the fluorescence intensity per unit weight of the protein can also be used as the fluorescence intensity. Therefore, the present invention is a method for determining whether or not a test substance is transported by OATP1B1 and / or OATP1B3, the method comprising the following steps: Contacting the test substance and the compound of the present invention with an OATP1B1 and / or OATP1B3-expressing cell culture, A step of removing the test substance and the compound of the present invention that has not been taken up into the cells, or a quencher is added to the cell culture to quench the compound of the present invention that has not been taken up into the cells.
  • Step to make Measuring the fluorescence intensity of the compound of the present invention incorporated into the cells.
  • the step of measuring the protein concentration in the cell lysate, and the obtained (fluorescence intensity / protein concentration) are contacted with OATP1B1 and / or OATP1B3 expressing cells in the same manner in the absence of the test substance. It is related to the step of determining that the test substance is transported by OATP1B1 and / or OATP1B3 when it is small compared with (fluorescence intensity / protein concentration) of the compound of the present invention incorporated in the inside.
  • Protein concentration can be measured by Bradfold or the like. For example, it can be performed by measuring the fluorescence of the cell lysate obtained by drying the cells into which the fluorescent substrate has been incorporated and then adding NaOH or the like to lyse the cells. The protein concentration can be determined by creating a calibration curve using BSA as a standard substance and the absorbance obtained in the sample as the concentration on the calibration curve.
  • Example 1 Synthesis of Compounds 1 to 10 In order to evaluate transporter transport ability, the following compounds 1-10 were synthesized.
  • TM-COOH 43.0 mg, 0.111 mmol
  • NHS 25.5 mg, 0.222 mmol
  • DIC 43.0 microliters, 0.278 mmol
  • Example 2 Evaluation of uptake by OATP1B1 and OATP1B3 expressing cells (1) Culturing of OATP1B1 and OATP1B3 expressing HEK293 cells OATP1B1 and OATP1B3 stably expressing HEK293 cells have already been established (Yamaguchi et al., 200, Cancer, et al. 163-169; Yamaguchi et al., Biol. Pharm. Bull. 2011; 34; 389-395). As a control, HEK293 cells (mock cells) into which an empty vector was introduced were used.
  • OATP1B1 / HEK293, OATP1B3 / HEK293 cells and mock cells were used in a medium containing 10% FBS and G-418 (0.5 mg / mL) in Dulbecco's modified Eagle's medium in a 5% CO 2 environment. Cultured at 37 ° C. These cells were maintained by subculture using a plastic dish every 3 or 4 days.
  • Fluorescent substrate As fluorescent substrates, CDCA-Lys-TG, CDCA-Lys-HC, CDCA-Lys-DCTM, CDCA-Lys-Et 2 AC, CDCA-Lys-TM, CDCA-Lys-DFTG, CDCA-Lys -SiR, CDCA-C2-DCTM, CDCA-C5-DCTM, CDCA-Lys-DCTM, CA-Tauro-nor-HC, and CA-Tauro-nor-TG were used. Table 1 shows the measurement excitation wavelength, (Excitation wavelength) (nm), and fluorescence wavelength (nm) of each fluorescent substrate.
  • OATP1B1 / HEK293, OATP1B3 / HEK293 cells and mock cells were seeded at about 200,000 cells / well on poly-L-lysine coated 24-well plates and grown for 72 hours. . The medium was changed 24 hours before the uptake experiment.
  • the cells were mixed with Krebs-Henseleit (KH) buffer (118 mM NaCl, 23.8 mM NaHCO 3 , 4.83 mM KCl, 0.96 mM KH 2 PO 4 , 1.20 mM MgSO 4 , 12.5 mM N- (2-hydroxyethyl) piperazine- After washing once with N′-2-ethanesulfonic acid (HEPES), 5.0 mM D-glucose, and 1.53 mM CaCl 2 , pH 7.4), KH buffer was added to the cells, and preincubation was performed for 10 minutes.
  • KH buffer 118 mM NaCl, 23.8 mM NaHCO 3 , 4.83 mM KCl, 0.96 mM KH 2 PO 4 , 1.20 mM MgSO 4 , 12.5 mM N- (2-hydroxyethyl) piperazine-
  • HEPES N′-2-ethanesulfonic acid
  • Incorporation was started by replacing with KH buffer containing each fluorescently labeled compound (or each fluorescently labeled compound and inhibitor). The uptake reaction was stopped by removing the incubation buffer after the specified time of incubation and adding ice-cooled KH buffer containing 1% of bovine serum albumin (BSA). The cells were further washed twice with ice-cooled KH buffer, dried, and lysed with Lysis Buffer added to obtain a fluorescence measurement sample. A microplate reader Infinite 200 PRO (Tecan Japan, Kanagawa, Japan) was used for fluorescence measurement. Wash with ice-cooled KH buffer twice, dry, add 0.5N NaOH and dissolve it as a protein quantification sample, and determine protein concentration by Bradford method using bovine serum albumin (BSA) as standard did.
  • BSA bovine serum albumin
  • the protein quantification sample performed protein quantification by Bradford method. To each well of 96 well plate, 5 ⁇ L of a protein quantification sample and 200 ⁇ L of 5-fold diluted Bio-Rad Protein Assay Reagent Concentrate (Bio-Rad Laboratories, Hercules, CA, USA) were added, and after 5 minutes, the absorbance at an absorption wavelength of 595 nm was measured. It was measured. A calibration curve was prepared using BSA as the standard protein.
  • the transporter-specific uptake was calculated by subtracting the transporter non-specific uptake by mock cells (Vec / HEK cells) from the uptake of OATP1B1 / HEK cells and OATP1B3 / HEK cells. Michaelis-Menten wave and Eadie Hofste Plot were created using data analysis software Kaleida Graph (HuLinks Inc, Tokyo, Japan). In the inhibition test, the amount of transporter-specific uptake in the absence of an inhibitor was taken as 100%, and Uptake% of Control was calculated. The test of significant difference between the Control group and the inhibitor (or PAH) group was performed by Dannett test using statistical analysis software JMP Pro 12 (SAS Institute Inc., North Carolina, USA) (* p ⁇ 0.05). ).
  • Inhibition constants of each inhibitor in transport through OATP1B1 are shown in Table 3, and inhibition constants of each inhibitor in transport through OATP1B3 are shown in Table 4 (in the table, [1] Izumi et al., Drug Metab Dispos. 2013 Oct; 41 (10): 1859-66; [2] Matsushima et al., Drug Metab Dispos. 2008 Apr; 36 (4): 663-9; [3] Tahara et al., Drug Metas 34: 74 -747, 2006).
  • the inhibition constant in the transport via OATP1B1 and OATP1B3 shows that the value of most inhibitors is 0.1 when compared with the case where a fluorescent substrate is used and the case where Estradiol-17 ⁇ -glucuronide or Fexofenadine which are known substrates are used. Correlation within -10 times was shown. This suggests that CDCA-Lys-TG, CDCA-Lys-HC, CDCA-Lys-DCTM, and CDCA-Lys-Et 2 AC exhibit inhibitory sensitivities comparable to known substrates of OATP1B1 and OATP1B3.

Abstract

The purpose of the present invention is to provide a fluorescent substrate for a transporter, the fluorescent substrate maintaining high transport performance while being unlikely to be quenched and exhibiting strong fluorescent intensity. The present invention relates to a compound represented by formula (I). Formula (I): A-L-F [In the formula: A denotes cholic acid, chenodeoxycholic acid, deoxycholic acid, lithocholic acid, ursocholic acid, ursodeoxycholic acid, α-muricholic acid, β-muricholic acid, ω-muricholic acid, hyocholic acid, hyodeoxycholic acid, 7-oxo-deoxycholic acid, 7-oxo-lithocholic acid, 1-oxo-lithocholic acid, 2-oxo-lithocholic acid, or a derivative of these; L denotes a linker; and F denotes Tokyo Green (TG), Tokyo Magenta (TM), hydroxycoumarin (HC), or a derivative of these.]

Description

新規トランスポーター機能解析用蛍光物質New transporter functional analysis phosphor
 本発明は、トランスポーターの機能解析に用いる蛍光基質に関する。 The present invention relates to a fluorescent substrate used for functional analysis of a transporter.
 創薬において、開発薬物の細胞内外への輸送を担うトランスポーターを評価することは、薬物の動態特性、有効性(薬効)や安全性を評価する上で重要であり、そのために欧州医薬品庁(EMA)についでアメリカ食品医薬品局(FDA)が薬物相互作用の観点から、開発薬物のトランスポーター検討に関するガイダンスを発表した。トランスポーターは細胞における様々な物質の取り込み・排出を担う重要な膜輸送タンパク質であり、薬物の細胞内外への輸送を支配している。近年のポストゲノム研究の発展により、多くのトランスポーターが同定され、さらにその機能や基質の種類が明らかとなってきた。こうした背景を踏まえ、薬物に対するトランスポーター輸送能の評価をより迅速に、また簡便に行える創薬スクリーニングシステムの開発が望まれている。 In drug discovery, it is important to evaluate transporters responsible for transporting developed drugs into and out of cells in order to evaluate the kinetic properties, efficacy (drug efficacy) and safety of drugs. Following the EMA), the US Food and Drug Administration (FDA) issued guidance on transporter studies for developed drugs from the perspective of drug interactions. Transporters are important membrane transport proteins responsible for the uptake and excretion of various substances in cells, and govern the transport of drugs into and out of cells. Recent developments in post-genomic research have identified many transporters, and their functions and types of substrates have become clear. Based on such a background, development of a drug discovery screening system capable of more quickly and simply evaluating transporter transport ability for drugs is desired.
 現在、トランスポーター基質を用いたスクリーニングシステムにおいては、放射性同位元素(RI)で標識した基質を用いる方法や、非RI標識基質をLC/MS/MSで測定する方法が主流となっている。これらの方法は、基質の特異性を変化させること無くトランスポーターの輸送能を定量化できる点で優れている。しかし、測定操作の煩雑さや高価な測定装置が必要なこと等から、従来法に代わる技術が切望されている。このように、トランスポーター基質の蛍光色素による標識化(蛍光基質)は、測定操作や測定機器の簡易化などの優位性から、次世代の創薬スクリーニングシステムのツールとして位置づけられているにもかかわらず、現状では蛍光標識された基質自体が限られており、有望な創薬スクリーニングシステムの構築には至っていない。 Currently, in screening systems using transporter substrates, methods using a substrate labeled with a radioisotope (RI) and methods for measuring a non-RI-labeled substrate by LC / MS / MS are the mainstream. These methods are excellent in that the transportability of the transporter can be quantified without changing the specificity of the substrate. However, due to the complexity of the measurement operation and the need for an expensive measurement device, a technique that replaces the conventional method is eagerly desired. As described above, although the transporter substrate is labeled with a fluorescent dye (fluorescent substrate), it is positioned as a tool for next-generation drug discovery screening systems because of its superiority in measurement procedures and simplification of measurement equipment. However, at present, fluorescently labeled substrates themselves are limited, and no promising drug discovery screening system has been established.
 また、ケノデオキシコール酸(CDCA)をニトロベンゾオキサジアゾール(NBD)で標識した蛍光基質が作製され、報告されている(非特許文献1)が、消光しやすく蛍光が弱いなどの問題があった。また、ハイスループット・スクリーニング(HTS)等で利用する場合には、高いS/N比が求められているが、これまでHTSで利用可能なS/N比を有する蛍光基質は報告されていなかった。 In addition, a fluorescent substrate in which chenodeoxycholic acid (CDCA) is labeled with nitrobenzooxadiazole (NBD) has been produced and reported (Non-Patent Document 1), but there are problems such as easy quenching and weak fluorescence. In addition, when used in high-throughput screening (HTS) or the like, a high S / N ratio is required, but no fluorescent substrate having an S / N ratio that can be used in HTS has been reported so far. .
 よって、本発明は、トランスポーター基質の高い輸送能を維持しながらも、消光しにくく蛍光強度の強い蛍光基質を提供することを目的とする。 Therefore, an object of the present invention is to provide a fluorescent substrate that is difficult to quench and has high fluorescence intensity while maintaining the high transport ability of the transporter substrate.
 本発明者らは、種々の蛍光物質と基質との組み合わせについて輸送活性を評価した結果、蛍光基質の水溶性を付与することにより高いS/N比を示すプローブの創製が可能であることを見出し、種々の胆汁酸と、TokyoGreen(TG)、TokyoMagenta(TM)、若しくはヒドロキシクマリン(HC)、又はそれらの誘導体とをリンカーを介して結合した蛍光基質が高い輸送能を維持しながらも、消光しにくく蛍光強度の強いトランスポーターの蛍光基質となることを見出した。例えば、CDCA-NBDの取込飽和時(10分後)のS/N比、すなわち、(トランスポーター発現細胞による取込量)/(トランスポーター非発現細胞(mock細胞)による取込量)が2.5であるのに対し、TGは5.7、HCは3.6と優れたS/N比を示すことから、HTSでの利用が可能な蛍光基質を提供することに成功した。 As a result of evaluating the transport activity of combinations of various fluorescent substances and substrates, the present inventors have found that a probe exhibiting a high S / N ratio can be created by imparting water solubility to the fluorescent substrate. In addition, a fluorescent substrate in which various bile acids and Tokyo Green (TG), Tokyo Magenta (TM), or hydroxycoumarin (HC), or derivatives thereof are bonded via a linker is quenched while maintaining high transport ability. It has been found that it becomes a fluorescent substrate of a transporter that is difficult and has high fluorescence intensity. For example, the S / N ratio at the time of saturation of CDCA-NBD uptake (after 10 minutes), that is, (uptake by transporter expressing cells) / (uptake by transporter non-expressing cells (mock cells)) In contrast to 2.5, TG is 5.7 and HC is 3.6, indicating an excellent S / N ratio, so that a fluorescent substrate that can be used in HTS has been successfully provided.
 本発明はかかる知見に基づきなされたものであり、よって、本発明は下記式(I)で表される化合物に関する:
         A-L-F      (I)
[式中、Aは、コール酸、ケノデオキシコール酸、デオキシコール酸、リトコール酸、ウルソコール酸、ウルソデオキシコール酸、αミュリコール酸、βミュリコール酸、ωミュリコール酸、ヒオコール酸、ヒオデオキシコール酸、7-オキソ-デオキシコール酸、7-オキソ-リトコール酸、1-オキソ-リトコール酸、若しくは2-オキソ-リトコール酸、又はそれらの誘導体を表し、
Lは、リンカーを示し、かつ、
Fは、下記式で表される化合物の1価の基を示す、
The present invention has been made on the basis of such findings. Therefore, the present invention relates to a compound represented by the following formula (I):
ALF (I)
[Wherein, A is cholic acid, chenodeoxycholic acid, deoxycholic acid, lithocholic acid, ursocholic acid, ursodeoxycholic acid, α-mulicholic acid, β-mulicholic acid, ω-mulicholic acid, hyocholic acid, hyodeoxycholic acid 7-oxo-deoxycholic acid, 7-oxo-lithocholic acid, 1-oxo-lithocholic acid, or 2-oxo-lithocholic acid, or derivatives thereof,
L represents a linker, and
F represents a monovalent group of a compound represented by the following formula:
Figure JPOXMLDOC01-appb-C000006
[上記式中、R、R、R、R、R、及びR11は、同一又は異なって、それぞれ、水素原子、ハロゲン原子、スルホン酸基、スルホン酸基の塩、C1~6アルキル基、又はC1~6アルケニル基を表し、
 Rは、酸素原子又は置換されていても良い窒素原子を表し、
 Rは、水酸基又は置換されていても良い窒素原子を表し、
 Rは、置換されていても良いC1~6アルキル基、置換されていても良いC1~6アルコキシ基、カルボキシ基、カルボキシ基の塩、スルホン酸基、又はスルホン酸基の塩を表し、
 nは0~4の自然数を表し、
 R及びR12は、それぞれ独立して、水酸基、ハロゲン原子、アミノ基、C1~6アルキル基、C1~6アルケニル基、C1~6アルキニル基、C1~6アルコキシ基、C1~6アルコキシカルボニル基、カルボキシ基、カルボキシ基の塩、スルホン酸基、又はスルホン酸基の塩を表し、
 R10は、水酸基又は置換されていても良い窒素原子を表し、かつ、
 Xは、酸素原子であるか、又は置換されていても良い珪素原子を表し、
 ここで、置換されていても良い窒素原子、及び置換されていても良い珪素原子の置換基は、同一又は異なって、それぞれ、置換されていても良いC1~6アルキル基であり、置換されていても良いC1~6アルキル基の置換基は、同一又は異なって、それぞれ、ハロゲン原子、カルボン酸、カルボン酸の塩、スルホン酸、又はスルホン酸の塩である]。
Figure JPOXMLDOC01-appb-C000006
[In the above formula, R 1 , R 3 , R 4 , R 6 , R 9 , and R 11 are the same or different and each represents a hydrogen atom, a halogen atom, a sulfonic acid group, a salt of a sulfonic acid group, C1˜ Represents a 6 alkyl group or a C1-6 alkenyl group,
R 2 represents an oxygen atom or an optionally substituted nitrogen atom,
R 5 represents a hydroxyl group or an optionally substituted nitrogen atom,
R 7 represents an optionally substituted C1-6 alkyl group, an optionally substituted C1-6 alkoxy group, a carboxy group, a salt of a carboxy group, a sulfonic acid group, or a salt of a sulfonic acid group,
n represents a natural number from 0 to 4,
R 8 and R 12 are each independently a hydroxyl group, a halogen atom, an amino group, a C1-6 alkyl group, a C1-6 alkenyl group, a C1-6 alkynyl group, a C1-6 alkoxy group, or a C1-6 alkoxycarbonyl group. , A carboxy group, a salt of a carboxy group, a sulfonic acid group, or a salt of a sulfonic acid group,
R 10 represents a hydroxyl group or an optionally substituted nitrogen atom, and
X represents an oxygen atom or an optionally substituted silicon atom;
Here, the nitrogen atom which may be substituted and the substituent of the silicon atom which may be substituted are the same or different, and each may be a C1-6 alkyl group which may be substituted. The substituents of the C1-6 alkyl group which may be the same or different are each a halogen atom, a carboxylic acid, a carboxylic acid salt, a sulfonic acid, or a sulfonic acid salt.
 本明細書における式(I)で表される化合物においてAで表される基は、OATP1B1及び/又はOATP1B3により取り込まれる化合物の1価の基を表し、具体的には、コール酸、ケノデオキシコール酸、デオキシコール酸、リトコール酸、ウルソコール酸、ウルソデオキシコール酸、αミュリコール酸、βミュリコール酸、ωミュリコール酸、ヒオコール酸、ヒオデオキシコール酸、7-オキソ-デオキシコール酸、7-オキソ-リトコール酸、1-オキソ-リトコール酸、及び2-オキソ-リトコール酸(以下、「コール酸等」という)、又はそれらの誘導体の一価の基を意味する。コール酸等の「誘導体」とは、コール酸等における基本ステロイド骨格を維持しながら、任意の一部の基が別の基に置換され又は任意の基が導入された化合物であって、organic anion transporting polypeptide 1B1(OATP1B1)及び/又はOATP1B3により取り込まれる能力を維持する化合物を意味する。コール酸等又はそれらの誘導体がLと結合するための結合基は、コール酸等又はそれらの誘導体の任意の位置であってよいが、好ましくは、カルボン酸残基部分において結合する。結合様式は、結合基の種類に応じて適宜選択することができるが、例えば、結合基がカルボン酸の場合には、エステル結合により結合することができる。本明細書において、「エステル結合」とは、エステル結合の他、アミド結合を含む。 The group represented by A in the compound represented by the formula (I) in the present specification represents a monovalent group of a compound taken up by OATP1B1 and / or OATP1B3, specifically, cholic acid, chenodeoxycholic acid, Deoxycholic acid, lithocholic acid, ursocholic acid, ursodeoxycholic acid, α-mulicholic acid, β-mulicholic acid, ω-mulicholic acid, hyocholic acid, hyodeoxycholic acid, 7-oxo-deoxycholic acid, 7-oxo- It means a monovalent group of lithocholic acid, 1-oxo-lithocholic acid, and 2-oxo-lithocholic acid (hereinafter referred to as “cholic acid and the like”) or derivatives thereof. A “derivative” such as cholic acid is a compound in which an arbitrary part of a group is substituted with another group or an arbitrary group is introduced while maintaining a basic steroid skeleton in cholic acid or the like. Meaning a compound that maintains the ability to be taken up by transporting polypeptide 1B1 (OATP1B1) and / or OATP1B3. The linking group for cholic acid or the like or a derivative thereof to bind to L may be at any position of cholic acid or the like or a derivative thereof, but is preferably bonded at a carboxylic acid residue moiety. The bonding mode can be appropriately selected according to the type of the linking group. For example, when the linking group is a carboxylic acid, the bonding mode can be bonded by an ester bond. In the present specification, the “ester bond” includes an amide bond as well as an ester bond.
 本明細書において、「organic anion transporting polypeptide 1B1(OATP1B1)」は、SLCO1B1としても知られる。また、「organic anion transporting polypeptide 1B3(OATP1B3)」は、SLCO1B3としても知られる。OATP1B1及びOATP1B3は、共に肝細胞基底膜側に特異的に発現し、多くのスタチンの肝細胞への取り込みに作用するsolute carrier transporter(SLC)トランスポーターである。経口投与されたスタチンはOATP1B1を介して選択的に肝細胞に取り込まれ、コレステロールの生合成を阻害する。 In this specification, “organic anion transporting polypeptide 1B1 (OATP1B1)” is also known as SLCO1B1. “Organic anion transporting polypeptide 1B3 (OATP1B3)” is also known as SLCO1B3. OATP1B1 and OATP1B3 are both a single carrier transporter (SLC) transporter that is specifically expressed on the hepatocyte basement membrane side and acts on the incorporation of many statins into hepatocytes. Orally administered statins are selectively taken up by hepatocytes via OATP1B1 and inhibit cholesterol biosynthesis.
 コール酸等の誘導体がOATP1B1及び/又はOATP1B3により取り込まれるか否かは、以下の方法により調べることができる。適宜コーティングされた24穴プレートにOATP1B1を発現させた細胞、OATP1B3を発現させた細胞、及びmock細胞を、それぞれ約2×10細胞/wellで播種し、72時間生育後、細胞を緩衝液で1~数回洗浄した後、緩衝液を細胞に加え、10分間プレインキュベーションを行う。蛍光標識と結合させた被検コール酸等の誘導体を含有する緩衝液を添加し、一定時間インキュベーション後、緩衝液を除去し、bovine serum albumin(BSA)1%を含む氷冷した緩衝液を加えて取込みを停止させる。細胞をさらに氷冷した緩衝液で数回洗浄し、乾燥後、Lysis Bufferを加えて細胞を溶解させて得られた測定サンプルの蛍光を測定する。測定サンプルの蛍光が確認された場合には、コール酸等の誘導体がOATP1B1及び/又はOATP1B3により取り込まれると判定される。 Whether a derivative such as cholic acid is taken up by OATP1B1 and / or OATP1B3 can be examined by the following method. Cells that expressed OATP1B1, OATP1B3, and mock cells were seeded at about 2 × 10 5 cells / well in 24-well plates that were appropriately coated, and after 72 hours of growth, the cells were washed with a buffer solution. After one to several washes, buffer is added to the cells and preincubated for 10 minutes. Add a buffer containing a test cholic acid derivative conjugated with a fluorescent label, and after incubation for a certain period of time, remove the buffer and add an ice-cold buffer containing 1% bovine serum albumin (BSA). Stop the capture. The cells are further washed several times with an ice-cold buffer solution, dried, and then the fluorescence of a measurement sample obtained by lysing the cells by adding Lysis Buffer is measured. When the fluorescence of the measurement sample is confirmed, it is determined that a derivative such as cholic acid is taken up by OATP1B1 and / or OATP1B3.
 一態様において、Aは下記式で表される基である: In one embodiment, A is a group represented by the following formula:
Figure JPOXMLDOC01-appb-C000007
[上記式中、R13は水素原子又は水酸基を表し、
 R14及びR15は水素原子、水酸基又は酸素原子を表し、
 実線と点線で示した線は、それぞれ、結合するR14又はR15が水素原子又は水酸基のときは単結合を表し、結合するR14又はR15が酸素原子のときは二重結合を表す]。
Figure JPOXMLDOC01-appb-C000007
[In the above formula, R 13 represents a hydrogen atom or a hydroxyl group,
R 14 and R 15 represent a hydrogen atom, a hydroxyl group or an oxygen atom,
A solid line and a dotted line represent a single bond when R 14 or R 15 to be bonded is a hydrogen atom or a hydroxyl group, respectively, and a double bond when R 14 or R 15 to be bonded is an oxygen atom.] .
 本明細書における式(I)で表される化合物においてFで表される基は、蛍光物質を表し、より具体的には、下記式で表される化合物の1価の基である: In the present specification, the group represented by F in the compound represented by formula (I) represents a fluorescent substance, more specifically, a monovalent group of the compound represented by the following formula:
Figure JPOXMLDOC01-appb-C000008
[上記式中、R、R、R、R、R、及びR11は、同一又は異なって、それぞれ、水素原子、ハロゲン原子、スルホン酸基、スルホン酸基の塩、又はC1~6アルキル基を表し、
 Rは、酸素原子又は置換されていても良い窒素原子を表し、
 Rは、水酸基又は置換されていても良い窒素原子を表し、
 Rは、置換されていても良いC1~6アルキル基、置換されていても良いC1~6アルコキシ基、カルボキシ基、カルボキシ基の塩、スルホン酸基、又はスルホン酸基の塩を表し、
 nは0~4の自然数を表し、
 R及びR12は、それぞれ独立して、水酸基、ハロゲン原子、アミノ基、C1~6アルキル基、C2~6アルケニル基、C2~6アルキニル基、C1~6アルコキシ基、C1~6アルコキシカルボニル基、カルボキシ基、カルボキシ基の塩、スルホン酸基、又はスルホン酸基の塩を表し、
 R10は、水酸基又は置換されていても良い窒素原子を表し、かつ、
 Xは、酸素原子であるか、又は置換されていても良い珪素原子を表し、
 ここで、置換されていても良い窒素原子、及び置換されていても良い珪素原子の置換基は、同一又は異なって、それぞれ、置換されていても良いC1~6アルキル基であり、置換されていても良いC1~6アルキル基の置換基は、同一又は異なって、それぞれ、ハロゲン原子、カルボン酸、カルボン酸の塩、スルホン酸、又はスルホン酸の塩である]。
Figure JPOXMLDOC01-appb-C000008
[In the above formula, R 1 , R 3 , R 4 , R 6 , R 9 , and R 11 are the same or different and each represents a hydrogen atom, a halogen atom, a sulfonic acid group, a salt of a sulfonic acid group, or C1. Represents 6 alkyl groups,
R 2 represents an oxygen atom or an optionally substituted nitrogen atom,
R 5 represents a hydroxyl group or an optionally substituted nitrogen atom,
R 7 represents an optionally substituted C1-6 alkyl group, an optionally substituted C1-6 alkoxy group, a carboxy group, a salt of a carboxy group, a sulfonic acid group, or a salt of a sulfonic acid group,
n represents a natural number from 0 to 4,
R 8 and R 12 are each independently a hydroxyl group, a halogen atom, an amino group, a C1-6 alkyl group, a C2-6 alkenyl group, a C2-6 alkynyl group, a C1-6 alkoxy group, or a C1-6 alkoxycarbonyl group. , A carboxy group, a salt of a carboxy group, a sulfonic acid group, or a salt of a sulfonic acid group,
R 10 represents a hydroxyl group or an optionally substituted nitrogen atom, and
X represents an oxygen atom or an optionally substituted silicon atom;
Here, the nitrogen atom which may be substituted and the substituent of the silicon atom which may be substituted are the same or different, and each may be a C1-6 alkyl group which may be substituted. The substituents of the C1-6 alkyl group which may be the same or different are each a halogen atom, a carboxylic acid, a carboxylic acid salt, a sulfonic acid, or a sulfonic acid salt.
 本明細書における式(I)で表される化合物におけるFとして好ましくは、緑色の蛍光を発する下記式で表されるTokyoGreen(登録商標)である。 In the present specification, F in the compound represented by the formula (I) is preferably TokyoGreen (registered trademark) represented by the following formula that emits green fluorescence.
Figure JPOXMLDOC01-appb-C000009
[式中、nは0~4の自然数を表し、R17は、それぞれ独立して、C1~6アルキル基、C1~6アルケニル基、C1~6アルキニル基、C1~6アルコキシ基、水酸基、カルボキシ基、スルホン酸基、C1~6アルコキシカルボニル基、ハロゲン原子、又はアミノ基を表し、R18はC1~6アルキル基又はC1~6アルコキシ基を表す。]
Figure JPOXMLDOC01-appb-C000009
[Wherein n represents a natural number of 0 to 4, and R 17 independently represents a C1-6 alkyl group, a C1-6 alkenyl group, a C1-6 alkynyl group, a C1-6 alkoxy group, a hydroxyl group, a carboxy group, Group, a sulfonic acid group, a C1-6 alkoxycarbonyl group, a halogen atom, or an amino group, and R 18 represents a C1-6 alkyl group or a C1-6 alkoxy group. ]
 TokyoGreen(登録商標)として、好ましくは、以下の化合物である。 As Tokyo Green (registered trademark), the following compounds are preferable.
Figure JPOXMLDOC01-appb-C000010
[式中、R17は、C1~6アルキル基、C1~6アルケニル基、C1~6アルキニル基、C1~6アルコキシ基、水酸基、カルボキシ基、スルホン酸基、C1~6アルコキシカルボニル基、ハロゲン原子、又はアミノ基を表し、R18はC1~6アルキル基又はC1~6アルコキシ基を表す。]
Figure JPOXMLDOC01-appb-C000010
[Wherein R 17 represents a C1-6 alkyl group, a C1-6 alkenyl group, a C1-6 alkynyl group, a C1-6 alkoxy group, a hydroxyl group, a carboxy group, a sulfonic acid group, a C1-6 alkoxycarbonyl group, a halogen atom. Or an amino group, and R 18 represents a C1-6 alkyl group or a C1-6 alkoxy group. ]
 上述において、R17として好ましくは、C1~4アルキル基又はC1~4アルコキシ基であり、より好ましくは、メチル基又はメトキシ基である。また、R18として好ましくは、C1~4アルキル基又はC1~4アルコキシ基であり、より好ましくは、メチル基又はメトキシ基である。 In the above, R 17 is preferably a C1-4 alkyl group or a C1-4 alkoxy group, and more preferably a methyl group or a methoxy group. R 18 is preferably a C1-4 alkyl group or a C1-4 alkoxy group, and more preferably a methyl group or a methoxy group.
 また、本明細書における式(I)で表される化合物におけるFとして好ましくは、下記式で表されるTokyoMagentaである。 Moreover, as F in the compound represented by the formula (I) in this specification, TokyoMagenta represented by the following formula is preferable.
Figure JPOXMLDOC01-appb-C000011
[式中、nは0~4の自然数を表し、R19は、それぞれ独立して、C1~6アルキル基、C1~6アルケニル基、C1~6アルキニル基、C1~6アルコキシ基、水酸基、カルボキシ基、スルホン酸基、C1~6アルコキシカルボニル基、ハロゲン原子、又はアミノ基を表し、R20はC1~6アルキル基又はC1~6アルコキシ基を表す。]
Figure JPOXMLDOC01-appb-C000011
[In the formula, n represents a natural number of 0 to 4, and each R 19 independently represents a C1-6 alkyl group, a C1-6 alkenyl group, a C1-6 alkynyl group, a C1-6 alkoxy group, a hydroxyl group, a carboxy group, It represents group, a sulfonic acid group, C1 ~ 6 alkoxycarbonyl group, a halogen atom, or an amino group, R 20 represents a C1 ~ 6 alkyl group or a C1 ~ 6 alkoxy group. ]
 TokyoMagentaとして、好ましくは、以下の化合物である。 As TokyoMagenta, the following compounds are preferable.
Figure JPOXMLDOC01-appb-C000012
[式中、R19は、C1~6アルキル基、C1~6アルケニル基、C1~6アルキニル基、C1~6アルコキシ基、水酸基、カルボキシ基、スルホン酸基、C1~6アルコキシカルボニル基、ハロゲン原子、又はアミノ基を表し、R20はC1~6アルキル基又はC1~6アルコキシ基を表す。]
Figure JPOXMLDOC01-appb-C000012
[Wherein R 19 is a C1-6 alkyl group, a C1-6 alkenyl group, a C1-6 alkynyl group, a C1-6 alkoxy group, a hydroxyl group, a carboxy group, a sulfonic acid group, a C1-6 alkoxycarbonyl group, a halogen atom. Or an amino group, and R 20 represents a C1-6 alkyl group or a C1-6 alkoxy group. ]
 上述において、R19として好ましくは、C1~4アルキル基又はC1~4アルコキシ基であり、より好ましくは、メチル基又はメトキシ基である。また、R20として好ましくは、C1~4アルキル基又はC1~4アルコキシ基であり、より好ましくは、メチル基又はメトキシ基である。 In the above, R 19 is preferably a C1-4 alkyl group or a C1-4 alkoxy group, and more preferably a methyl group or a methoxy group. R 20 is preferably a C1-4 alkyl group or a C1-4 alkoxy group, and more preferably a methyl group or a methoxy group.
 また、本明細書における式(I)で表される化合物におけるFとして好ましくは、下記式で表されるヒドロキシクマリンである。 Further, as the F in the compound represented by the formula (I) in the present specification, hydroxycoumarin represented by the following formula is preferable.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 本発明の化合物として、好ましくは、下記式(V)又は式(VI)で表される化合物である。 The compound of the present invention is preferably a compound represented by the following formula (V) or formula (VI).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
[上記式中、R、R、R、R、R、及びR11は、同一又は異なって、それぞれ、水素原子、ハロゲン原子、スルホン酸基、スルホン酸基の塩、C1~6アルキル基、又はC1~6アルケニル基を表し、
 Rは、酸素原子又は置換されていても良い窒素原子を表し、
 Rは、水酸基又は置換されていても良い窒素原子を表し、
 Rは、置換されていても良いC1~6アルキル基、置換されていても良いC1~6アルコキシ基、カルボキシ基、カルボキシ基の塩、スルホン酸基、又はスルホン酸基の塩を表し、
 nは0~4の自然数を表し、
 R及びR12は、それぞれ独立して、水酸基、ハロゲン原子、アミノ基、C1~6アルキル基、C1~6アルケニル基、C1~6アルキニル基、C1~6アルコキシ基、C1~6アルコキシカルボニル基、カルボキシ基、カルボキシ基の塩、スルホン酸基、又はスルホン酸基の塩を表し、
 R10は、水酸基又は置換されていても良い窒素原子を表し、かつ、
 Xは、酸素原子であるか、又は置換されていても良い珪素原子を表し、
 R13は水素原子又は水酸基を表し、
 R14及びR15は水素原子、水酸基又は酸素原子を表し、
 実線と点線で示した線は、それぞれ、結合するR14又はR15が水素原子又は水酸基のときは単結合を表し、結合するR14又はR15が酸素原子のときは二重結合を表し、
 ここで、置換されていても良い窒素原子、及び置換されていても良い珪素原子の置換基は、同一又は異なって、それぞれ、置換されていても良いC1~6アルキル基であり、置換されていても良いC1~6アルキル基の置換基は、同一又は異なって、それぞれ、ハロゲン原子、カルボン酸、カルボン酸の塩、スルホン酸、又はスルホン酸の塩である]。
Figure JPOXMLDOC01-appb-C000015
[In the above formula, R 1 , R 3 , R 4 , R 6 , R 9 , and R 11 are the same or different and each represents a hydrogen atom, a halogen atom, a sulfonic acid group, a salt of a sulfonic acid group, C1˜ Represents a 6 alkyl group or a C1-6 alkenyl group,
R 2 represents an oxygen atom or an optionally substituted nitrogen atom,
R 5 represents a hydroxyl group or an optionally substituted nitrogen atom,
R 7 represents an optionally substituted C1-6 alkyl group, an optionally substituted C1-6 alkoxy group, a carboxy group, a salt of a carboxy group, a sulfonic acid group, or a salt of a sulfonic acid group,
n represents a natural number from 0 to 4,
R 8 and R 12 are each independently a hydroxyl group, a halogen atom, an amino group, a C1-6 alkyl group, a C1-6 alkenyl group, a C1-6 alkynyl group, a C1-6 alkoxy group, or a C1-6 alkoxycarbonyl group. , A carboxy group, a salt of a carboxy group, a sulfonic acid group, or a salt of a sulfonic acid group,
R 10 represents a hydroxyl group or an optionally substituted nitrogen atom, and
X represents an oxygen atom or an optionally substituted silicon atom;
R 13 represents a hydrogen atom or a hydroxyl group,
R 14 and R 15 represent a hydrogen atom, a hydroxyl group or an oxygen atom,
A solid line and a dotted line represent a single bond when R 14 or R 15 to be bonded is a hydrogen atom or a hydroxyl group, respectively, and a double bond when R 14 or R 15 to be bonded is an oxygen atom,
Here, the nitrogen atom which may be substituted and the substituent of the silicon atom which may be substituted are the same or different, and each may be a C1-6 alkyl group which may be substituted. The substituents of the C1-6 alkyl group which may be the same or different are each a halogen atom, a carboxylic acid, a carboxylic acid salt, a sulfonic acid, or a sulfonic acid salt.
 前記化合物においてRとして好ましくは、水素原子又はハロゲン原子である。
 Rとして好ましくは、酸素原子である。
 Rとして好ましくは、水素原子又はハロゲン原子である。
 Rとして好ましくは、水酸基であるか、又はC1~6アルキル基で置換されていても良い窒素原子であり、より好ましくは、水酸基であるか、又はC1~4アルキル基で置換されていても良い窒素原子であり、更に好ましくは、水酸基であるか、又はメチル基で置換されていても良い窒素原子である。
 Rとして好ましくは、水素原子又はハロゲン原子である。
 Rとして好ましくは、水酸基又は置換されていても良い窒素原子である。
 Rとして好ましくは、水酸基又は置換されていても良い窒素原子である。
 Xとして好ましくは、酸素原子であるか、又は1~2個のC1~6アルキル基で置換されていても良い珪素原子であり、より好ましくは、酸素原子であるか、又は2個のC1~4アルキル基で置換された珪素原子であり、更に好ましくは、酸素原子であるか、又は2個のメチル基で置換された珪素原子である。
 Rとして好ましくは、水素原子である。
 R10として好ましくは、水酸基、ジ(C1~6アルキル)アミノ基(好ましくは、ジメチルアミノ基、又はジエチルアミノ基)である。
 R11として好ましくは、水素原子である。
 R13として好ましくは、水素原子又は水酸基である。
 R14及びR15として好ましくは、水素原子、水酸基又は酸素原子であり、実線と点線で示した線は、それぞれ、結合するR14又はR15が水素原子又は水酸基のときは単結合を表し、結合するR14又はR15が酸素原子のときは二重結合を表す。
In the compound, R 1 is preferably a hydrogen atom or a halogen atom.
R 2 is preferably an oxygen atom.
R 3 is preferably a hydrogen atom or a halogen atom.
R 4 is preferably a hydroxyl group or a nitrogen atom which may be substituted with a C1-6 alkyl group, and more preferably a hydroxyl group or a C1-4 alkyl group. It is a good nitrogen atom, more preferably a hydroxyl group or a nitrogen atom which may be substituted with a methyl group.
R 5 is preferably a hydrogen atom or a halogen atom.
R 6 is preferably a hydroxyl group or an optionally substituted nitrogen atom.
R 7 is preferably a hydroxyl group or an optionally substituted nitrogen atom.
X is preferably an oxygen atom or a silicon atom optionally substituted by 1 to 2 C1-6 alkyl groups, more preferably an oxygen atom or 2 C1-6 A silicon atom substituted with a 4 alkyl group, more preferably an oxygen atom, or a silicon atom substituted with two methyl groups.
R 9 is preferably a hydrogen atom.
R 10 is preferably a hydroxyl group or a di (C1-6 alkyl) amino group (preferably a dimethylamino group or a diethylamino group).
R 11 is preferably a hydrogen atom.
R 13 is preferably a hydrogen atom or a hydroxyl group.
R 14 and R 15 are preferably a hydrogen atom, a hydroxyl group or an oxygen atom. The solid and dotted lines represent a single bond when R 14 or R 15 to be bonded is a hydrogen atom or a hydroxyl group, respectively. When R 14 or R 15 to be bonded is an oxygen atom, it represents a double bond.
 よって、一例において、本発明の化合物は、式(V)で表される化合物であって、
 Rが、水素原子又はハロゲン原子を表し、
 Rが、酸素原子又は置換されていても良い窒素原子を表し、
 Rが、水素原子又はハロゲン原子を表し、
 Rが、水酸基又は置換されていても良い窒素原子を表し、
 Rが、水素原子又はハロゲン原子を表し、
 Rが、水酸基又は置換されていても良い窒素原子を表し、
 Rが、メチル基又はメトキシ基を表し、かつ、
 Xは、酸素原子であるか、又は置換されていても良い珪素原子を表し、
 ここで、置換されていても良い窒素原子、及び置換されていても良い珪素原子の置換基は、それぞれ同一又は異なって、C1~6アルキル基である、。
 R13が、水素原子又は水酸基を表し、
 R14及びR15が、水素原子、水酸基又は酸素原子を表し、
 実線と点線で示した線は、それぞれ、結合するR14又はR15が水素原子又は水酸基のときは単結合を表し、結合するR14又はR15が酸素原子のときは二重結合を表す化合物である。
Therefore, in one example, the compound of the present invention is a compound represented by the formula (V),
R 1 represents a hydrogen atom or a halogen atom,
R 2 represents an oxygen atom or an optionally substituted nitrogen atom,
R 3 represents a hydrogen atom or a halogen atom,
R 4 represents a hydroxyl group or an optionally substituted nitrogen atom,
R 5 represents a hydrogen atom or a halogen atom,
R 6 represents a hydroxyl group or an optionally substituted nitrogen atom,
R 7 represents a methyl group or a methoxy group, and
X represents an oxygen atom or an optionally substituted silicon atom;
Here, the optionally substituted nitrogen atom and the optionally substituted silicon atom substituent are the same or different and each is a C1-6 alkyl group.
R 13 represents a hydrogen atom or a hydroxyl group,
R 14 and R 15 represent a hydrogen atom, a hydroxyl group or an oxygen atom,
A solid line and a dotted line represent a single bond when R 14 or R 15 to be bonded is a hydrogen atom or a hydroxyl group, and a double bond when R 14 or R 15 to be bonded is an oxygen atom, respectively. It is.
 別の態様において、本発明は以下の式(VII)~(IX)で表される中間体化合物である。これらの化合物は、式(I)で表される本発明の化合物を合成するための中間体として使用することができる。 In another embodiment, the present invention is an intermediate compound represented by the following formulas (VII) to (IX). These compounds can be used as intermediates for synthesizing the compounds of the present invention represented by the formula (I).
Figure JPOXMLDOC01-appb-C000016
[式中、X、R~R、R~R11、及びR13~R15、並びに、実線と点線で表される線の定義は、上述と同様である。]
Figure JPOXMLDOC01-appb-C000016
[Wherein, definitions of X, R 1 to R 7 , R 9 to R 11 , and R 13 to R 15 , and lines represented by solid lines and dotted lines are the same as described above. ]
 本明細書における式(I)、(V)、(VI)、(VII)、(VIII)、及び(IX)で表される化合物においてLで表される基は、リンカーを示す。リンカーは、コール酸等又はそれらの誘導体と、式(I)においてFで表される蛍光色素化合物とを結合する基である。リンカーは、本発明の化合物が、Aで表されるトランスポーター基質の高い輸送能を維持することができ、かつ、Fで表される蛍光物質の蛍光強度を維持できる基であればいかなる基であっても良い。好ましくは、リンカー部分は、その両末端において、それぞれA及びFと、エステル結合、アミド結合、又はスルホン酸アミド結合により結合することができる基である。例えば、Lは、置換されていても良い、直鎖又は分岐状のC2~14のアルキレン鎖を有する。Lのアルキレン鎖が置換されている場合の置換基としては、水酸基、アミノ基、ハロゲン原子、オキソ基、C1~4アルコキシ基、C1~4アルコキシカルボニル基、C1~4アルコキシカルボニルオキシ基、C1~4アルキルアミノカルボキシ基、カルボン酸基、又は-CONH-(CH-SOH基を挙げることができる。Lのアルキレン鎖が置換されている場合の置換基の数は、1~4個、1~3個、1~2個、又は1個であってもよい。好ましくはLは、-NH-(CH-(CHR21-(CH-NHCO-(CO基はR又はR12に由来する基)、又は-NH-(CH-(CHR21-(CH-NHSO-(SO基はR又はR12に由来する基)で表される基である
[式中、p及びrは、それぞれ、同一又は異なって、2~10の自然数であり、
 qは0又は1であり、かつ、
 R21は、カルボン酸基、又は-CONH-(CH-SOH基である]。
In the present specification, the group represented by L in the compounds represented by formulas (I), (V), (VI), (VII), (VIII), and (IX) represents a linker. The linker is a group that binds cholic acid or the like or a derivative thereof to the fluorescent dye compound represented by F in formula (I). The linker may be any group as long as the compound of the present invention can maintain the high transport ability of the transporter substrate represented by A and can maintain the fluorescence intensity of the fluorescent substance represented by F. There may be. Preferably, the linker moiety is a group that can be bonded to A and F at both ends by an ester bond, an amide bond, or a sulfonic acid amide bond, respectively. For example, L has a linear or branched C2-14 alkylene chain which may be substituted. Examples of the substituent when the alkylene chain of L is substituted include a hydroxyl group, amino group, halogen atom, oxo group, C1-4 alkoxy group, C1-4 alkoxycarbonyl group, C1-4 alkoxycarbonyloxy group, C1˜ A 4-alkylaminocarboxy group, a carboxylic acid group, or a —CONH— (CH 2 ) 2 —SO 3 H group can be mentioned. When the alkylene chain of L is substituted, the number of substituents may be 1 to 4, 1 to 3, 1 to 2, or 1. Preferably L is —NH— (CH 2 ) p — (CHR 21 ) q — (CH 2 ) r —NHCO— (the CO group is a group derived from R 8 or R 12 ), or —NH— (CH 2 P − (CHR 21 ) q — (CH 2 ) r —NHSO 2 — (wherein the SO 2 group is a group derived from R 8 or R 12 ) [wherein, p and r are respectively , The same or different, a natural number of 2 to 10,
q is 0 or 1, and
R 21 is a carboxylic acid group or a —CONH— (CH 2 ) 2 —SO 3 H group].
 本明細書において、「C1~6アルキル基」とは、炭素数が1~6個の直鎖又は分岐状の飽和炭化水素基を意味し、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、イソブチル基、ペンチル基、イソペンチル基、2,3-ジメチルプロピル基、ヘキシル基、及びシクロヘキシル基などが挙げられ、好ましくは、C1~4アルキル基であり、より好ましくは、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、及びイソブチル基である。更に好ましくは、C1~3アルキル基であり、例えば、メチル基、エチル基、n-プロピル基、及びi-プロピル基、であり、最も好ましくは、メチル基又はエチル基である。 In the present specification, the “C1-6 alkyl group” means a linear or branched saturated hydrocarbon group having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, Examples include i-propyl group, n-butyl group, sec-butyl group, t-butyl group, isobutyl group, pentyl group, isopentyl group, 2,3-dimethylpropyl group, hexyl group, and cyclohexyl group. A C1-4 alkyl group, more preferably a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a sec-butyl group, a t-butyl group, and an isobutyl group. More preferred is a C1-3 alkyl group, for example, a methyl group, an ethyl group, an n-propyl group, and an i-propyl group, and most preferred is a methyl group or an ethyl group.
 本明細書において、「C1~6アルコキシ基」とは、前記C1~6アルキル基と酸素原子を介して結合する基((C1~6アルキル基)-O-基)のことであり、該アルキル基部分は直鎖状であっても分岐状であってもよい。C1~6アルコキシ基とは、該アルキル基部分の炭素原子数が1~6個であることを意味する。アルコキシ基としては、例えば、メトキシ基、エトキシ基、1-プロピルオキシ基、2-プロピルオキシ基、2-メチル-1-プロピルオキシ基、2-メチル-2-プロピルオキシ基、2,2-ジメチル-1-プロピルオキシ基、1-ブチルオキシ基、2-ブチルオキシ基、2-メチル-1-ブチルオキシ基、3-メチル-1-ブチルオキシ基、2-メチル-2-ブチルオキシ基、3-メチル-2-ブチルオキシ基、1-ペンチルオキシ基、2-ペンチルオキシ基、3-ペンチルオキシ基、2-メチル-1-ペンチルオキシ基、3-メチル-1-ペンチルオキシ基、2-メチル-2-ペンチルオキシ基、3-メチル-2-ペンチルオキシ基、1-ヘキシルオキシ基、2-ヘキシルオキシ基、3-ヘキシルオキシ基などが挙げられる。C1~6アルコキシ基として、好ましくはC1~4アルコキシ基であり、より好ましくは、C1~3アルコキシ基であり、より更に好ましくは、メトキシ基又はエトキシ基である。 In the present specification, the “C1-6 alkoxy group” means a group ((C1-6 alkyl group) -O— group) bonded to the C1-6 alkyl group via an oxygen atom. The base part may be linear or branched. The C1-6 alkoxy group means that the alkyl group moiety has 1 to 6 carbon atoms. Examples of the alkoxy group include a methoxy group, an ethoxy group, a 1-propyloxy group, a 2-propyloxy group, a 2-methyl-1-propyloxy group, a 2-methyl-2-propyloxy group, and 2,2-dimethyl. -1-propyloxy group, 1-butyloxy group, 2-butyloxy group, 2-methyl-1-butyloxy group, 3-methyl-1-butyloxy group, 2-methyl-2-butyloxy group, 3-methyl-2- Butyloxy group, 1-pentyloxy group, 2-pentyloxy group, 3-pentyloxy group, 2-methyl-1-pentyloxy group, 3-methyl-1-pentyloxy group, 2-methyl-2-pentyloxy group 3-methyl-2-pentyloxy group, 1-hexyloxy group, 2-hexyloxy group, 3-hexyloxy group and the like. The C1-6 alkoxy group is preferably a C1-4 alkoxy group, more preferably a C1-3 alkoxy group, still more preferably a methoxy group or an ethoxy group.
 本明細書において、「C1~6アルコキシカルボニル基」とは、前記C1~6アルコキシ基とオキソ基(>C=O)を介して結合する基((C1~6アルキル基)-C(=O)-基)のことであり、該アルキル基部分は直鎖状であっても分岐状であってもよい。C1~6アルコキシカルボニル基とは、該アルキル基部分の炭素原子数が1~6個であることを意味する。アルコキシ基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、1-プロピルオキシカルボニル基、2-プロピルオキシカルボニル基、2-メチル-1-プロピルオキシカルボニル基、2-メチル-2-プロピルオキシカルボニル基、2,2-ジメチル-1-プロピルオキシカルボニル基、1-ブチルオキシカルボニル基、2-ブチルオキシカルボニル基、2-メチル-1-ブチルオキシカルボニル基、3-メチル-1-ブチルオキシカルボニル基、2-メチル-2-ブチルオキシカルボニル基、3-メチル-2-ブチルオキシカルボニル基、1-ペンチルオキシカルボニル基、2-ペンチルオキシカルボニル基、3-ペンチルオキシカルボニル基、2-メチル-1-ペンチルオキシカルボニル基、3-メチル-1-ペンチルオキシカルボニル基、2-メチル-2-ペンチルオキシカルボニル基、3-メチル-2-ペンチルオキシカルボニル基、1-ヘキシルオキシカルボニル基、2-ヘキシルオキシカルボニル基、3-ヘキシルオキシカルボニル基などが挙げられる。C1~6アルコキシカルボニル基として、好ましくはC1~4アルコキシカルボニル基であり、より好ましくは、C1~3アルコキシカルボニル基であり、より更に好ましくは、メトキシカルボニル基又はエトキシカルボニル基である。 In this specification, the “C1-6 alkoxycarbonyl group” means a group ((C1-6 alkyl group) -C (═O) bonded to the C1-6 alkoxy group via an oxo group (> C═O). ) -Group), and the alkyl group moiety may be linear or branched. The C1-6 alkoxycarbonyl group means that the alkyl group moiety has 1 to 6 carbon atoms. Examples of the alkoxy group include a methoxycarbonyl group, an ethoxycarbonyl group, a 1-propyloxycarbonyl group, a 2-propyloxycarbonyl group, a 2-methyl-1-propyloxycarbonyl group, and a 2-methyl-2-propyloxycarbonyl group. 2,2-dimethyl-1-propyloxycarbonyl group, 1-butyloxycarbonyl group, 2-butyloxycarbonyl group, 2-methyl-1-butyloxycarbonyl group, 3-methyl-1-butyloxycarbonyl group, 2-methyl-2-butyloxycarbonyl group, 3-methyl-2-butyloxycarbonyl group, 1-pentyloxycarbonyl group, 2-pentyloxycarbonyl group, 3-pentyloxycarbonyl group, 2-methyl-1-pentyl Oxycarbonyl group, 3-methyl-1-penty Examples include oxycarbonyl group, 2-methyl-2-pentyloxycarbonyl group, 3-methyl-2-pentyloxycarbonyl group, 1-hexyloxycarbonyl group, 2-hexyloxycarbonyl group, and 3-hexyloxycarbonyl group. . The C1-6 alkoxycarbonyl group is preferably a C1-4 alkoxycarbonyl group, more preferably a C1-3 alkoxycarbonyl group, and still more preferably a methoxycarbonyl group or an ethoxycarbonyl group.
 「C2~6アルケニル基」とは、1以上の炭素-炭素間の二重結合を有する直鎖又は分岐状の不飽和炭化水素の任意の炭素原子から一個の水素原子を除去してなる炭素原子数が2~6個の一価の基を意味する。C2~6アルケニル基としては、例えば、ビニル基、プロペニル基、イソプロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-メチル-1-プロペニル基、2-メチル-1-プロペニル基、1-メチル-2-プロペニル基、2-メチル-2-プロペニル基、1-メチリデン-1-プロパン基、1-ペンテニル基、1-ペンテニル基、3-ペンテニル基、4-ペンテニル基、1-メチル-1-ブテニル基、1-メチル-2-ブテニル基、1-メチル-3-ブテニル基、1-メチリデンブチル基、2-メチル-1-ブテニル基、2-メチル-2-ブテニル基、2-メチル-3-ブテニル基、2-メチリデンブチル基、3-メチル-1-ブテニル基、3-メチル-2-ブテニル基、3-メチル-3-ブテニル基、1-エチル-1-プロペニル基、1-エチル-2-プロペニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基、4-ヘキセニル基、5-ヘキセニル基、1-メチル-1-ペンテニル基、1-メチル-2-ペンテニル基、1-メチル-3-ペンテニル基、1-メチル-4-ペンテニル基、1-メチリデンペンチル基、2-メチル-1-ペンテニル基、2-メチル-2-ペンテニル基、2-メチル-3-ペンテニル基、2-メチル-4-ペンテニル基、2-メチリデンペンチル基、3-メチル-1-ペンテニル基、3-メチル-2-ペンテニル基、3-メチル-3-ペンテニル基、3-メチル-4-ペンテニル基、3-メチリデンペンチル基、4-メチル-1-ペンテニル基、4-メチル-2-ペンテニル基、4-メチル-3-ペンテニル基、4-メチル-4-ペンテニル基、1-エチル-1-ブテニル基、1-エチル-2-ブテニル基、1-エチル-3-ブテニル基、2-エチル-1-ブテニル基、2-エチル-2-ブテニル基、2-エチル-3-ブテニル基、1-(1-メチルエチル)-1-プロペニル基、1-(1-メチルエチル)-2-プロペニル基、1-エチル-2-メチル-1-プロペニル基、又は、1-エチル-2-メチル-2-プロペニル基を挙げることができる。好ましくは、C2~4アルケニル基であり、より好ましくは、ビニル基である。 The “C2-6 alkenyl group” is a carbon atom formed by removing one hydrogen atom from any carbon atom of a linear or branched unsaturated hydrocarbon having one or more carbon-carbon double bonds. It means a monovalent group having 2 to 6 numbers. Examples of the C2-6 alkenyl group include a vinyl group, propenyl group, isopropenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-methyl-1-propenyl group, 2-methyl-1- Propenyl group, 1-methyl-2-propenyl group, 2-methyl-2-propenyl group, 1-methylidene-1-propane group, 1-pentenyl group, 1-pentenyl group, 3-pentenyl group, 4-pentenyl group, 1-methyl-1-butenyl group, 1-methyl-2-butenyl group, 1-methyl-3-butenyl group, 1-methylidenebutyl group, 2-methyl-1-butenyl group, 2-methyl-2-butenyl group, 2-methyl-3-butenyl group, 2-methylidenebutyl group, 3-methyl-1-butenyl group, 3-methyl-2-butenyl group, 3-methyl-3-butenyl group, 1-ethyl-1 Propenyl group, 1-ethyl-2-propenyl group, 1-hexenyl group, 2-hexenyl group, 3-hexenyl group, 4-hexenyl group, 5-hexenyl group, 1-methyl-1-pentenyl group, 1-methyl- 2-pentenyl group, 1-methyl-3-pentenyl group, 1-methyl-4-pentenyl group, 1-methylidenepentyl group, 2-methyl-1-pentenyl group, 2-methyl-2-pentenyl group, 2- Methyl-3-pentenyl group, 2-methyl-4-pentenyl group, 2-methylidenepentyl group, 3-methyl-1-pentenyl group, 3-methyl-2-pentenyl group, 3-methyl-3-pentenyl group, 3-methyl-4-pentenyl group, 3-methylidenepentyl group, 4-methyl-1-pentenyl group, 4-methyl-2-pentenyl group, 4-methyl-3-pentenyl group, 4 Methyl-4-pentenyl group, 1-ethyl-1-butenyl group, 1-ethyl-2-butenyl group, 1-ethyl-3-butenyl group, 2-ethyl-1-butenyl group, 2-ethyl-2-butenyl group Group, 2-ethyl-3-butenyl group, 1- (1-methylethyl) -1-propenyl group, 1- (1-methylethyl) -2-propenyl group, 1-ethyl-2-methyl-1-propenyl And a 1-ethyl-2-methyl-2-propenyl group. A C2-4 alkenyl group is preferable, and a vinyl group is more preferable.
 「C2~6アルキニル基」とは、1以上の炭素-炭素間の三重重結合を有する直鎖又は分岐状の不飽和炭化水素の任意の炭素原子から一個の水素原子を除去してなる炭素原子数が2~6個の一価の基を意味する。C2~6アルキニル基としては、エチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、ペンチニル基、ヘキシニル基、フェニルエチニル基等を挙げることができる。好ましくは、C2~4アルキニル基であり、より好ましくは、エチニル基である。 The “C2-6 alkynyl group” is a carbon atom obtained by removing one hydrogen atom from any carbon atom of a linear or branched unsaturated hydrocarbon having one or more carbon-carbon triple bonds. It means a monovalent group having 2 to 6 numbers. Examples of the C2-6 alkynyl group include ethynyl group, 1-propynyl group, 2-propynyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, pentynyl group, hexynyl group, phenylethynyl group and the like. it can. A C2-4 alkynyl group is preferable, and an ethynyl group is more preferable.
 「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子、及びヨウ素原子を意味し、好ましくは、フッ素原子、塩素原子、及び臭素原子であり、より好ましくは、フッ素原子、又は塩素原子である。 “Halogen atom” means a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, preferably a fluorine atom, a chlorine atom and a bromine atom, more preferably a fluorine atom or a chlorine atom. .
 本明細書において、スルホン酸基の塩及びカルボキシ基の塩における「塩」とは、本発明の化合物が、スルホン酸基又はカルボキシ基において無機又は有機の塩基と結合して形成した塩を意味する。塩としては、例えば、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム等のアルカリ金属及びアルカリ土類金属塩;アンモニア、メチルアミン、ジメチルアミン、トリメチルアミン、ジシクロヘキシルアミン、トリス(ヒドロキシメチル)アミノメタン、N,N-ビス(ヒドロキシエチル)ピペラジン、2-アミノ-2-メチル-1-プロパノール、エタノールアミン、N-メチルグルカミン、L-グルカミン等のアミンの塩;又はリジン、δ-ヒドロキシリジン、アルギニンなどの塩基性アミノ酸との塩を形成することができる。 In the present specification, the term “salt” in a salt of a sulfonic acid group and a salt of a carboxy group means a salt formed by combining the compound of the present invention with an inorganic or organic base at the sulfonic acid group or carboxy group. . Examples of the salt include alkali metal and alkaline earth metal salts such as lithium, sodium, potassium, magnesium, calcium; ammonia, methylamine, dimethylamine, trimethylamine, dicyclohexylamine, tris (hydroxymethyl) aminomethane, N, N -Salts of amines such as bis (hydroxyethyl) piperazine, 2-amino-2-methyl-1-propanol, ethanolamine, N-methylglucamine, L-glucamine; or bases such as lysine, δ-hydroxylysine, arginine A salt with a functional amino acid can be formed.
 別の態様において、本発明は、前記化合物を含むトランスポーター機能測定用キットに関する。トランスポーターとしては、OATP1B1及び/又はOATP1B3が含まれる。本発明のキットは、前記化合物の他、化合物を収納するための容器、取扱い説明書、及びキ紙箱又はプラスチックケース等のキットの構成物を格納するパッケージからなっていてもよい。 In another aspect, the present invention relates to a transporter function measurement kit comprising the compound. Transporters include OATP1B1 and / or OATP1B3. In addition to the compound, the kit of the present invention may comprise a container for storing the compound, an instruction manual, and a package for storing the components of the kit such as a paper box or a plastic case.
 本発明の蛍光基質は、高いトランスポーター輸送能を維持しながらも、消光しにくく蛍光強度が強いことから、実用化可能なトランスポーターの蛍光基質を提供することが可能である。 The fluorescent substrate of the present invention can provide a fluorescent substrate for a transporter that can be put to practical use because it maintains high transporter transportability and is not easily quenched and has high fluorescence intensity.
OATP1B1及びOATP1B3発現HEK293細胞におけるCDCA-Lys-TG、CDCA-Lys-HC、CDCA-Lys-DCTM、及びCDCA-Lys-EtACの取り込みの時間依存性を表すグラフである。各蛍光基質濃度をCDCA-Lys-TG 0.025μM(A)、CDCA-Lys-HC 0.1μM(B)、CDCA-Lys-DCTM 0.01μM(C)、CDCA-Lys-EtAC 0.1μM(D)に設定した。データは、平均±標準誤差(n=3)を表す。各グラフの縦軸は、タンパク質1mg当りの取り込み量(uptake)(pmol/mg protein)を表し、横軸は経過時間(分)を表す。白丸はエンプティベクターが導入された細胞(コントロール)を表し、黒三角はOATP1B1が導入された細胞を表し、黒四角はOATP1B3が導入された細胞を表す。 2 is a graph showing the time dependency of uptake of CDCA-Lys-TG, CDCA-Lys-HC, CDCA-Lys-DCTM, and CDCA-Lys-Et 2 AC in OATP1B1 and OATP1B3-expressing HEK293 cells. The concentration of each fluorescent substrate was CDCA-Lys-TG 0.025 μM (A), CDCA-Lys-HC 0.1 μM (B), CDCA-Lys-DCTM 0.01 μM (C), CDCA-Lys-Et 2 AC 0. Set to 1 μM (D). Data represent mean ± standard error (n = 3). The vertical axis of each graph represents the amount of uptake per 1 mg of protein (uptake) (pmol / mg protein), and the horizontal axis represents the elapsed time (minutes). A white circle represents a cell into which an empty vector has been introduced (control), a black triangle represents a cell into which OATP1B1 has been introduced, and a black square represents a cell into which OATP1B3 has been introduced. OATP1B1発現HEK293細胞におけるCDCA-Lys-TGの取り込みの濃度依存性を表すグラフである。データは、平均±標準誤差(n=3)を示し、縦軸はタンパク質1mg当りの30秒後の取り込み量(pmol/mg protein/30sec)を表し、横軸は蛍光基質の濃度(μM)を表す(図2B~D及び図3A~Dにおいて同じ)。小さいグラフの縦軸は、タンパク質1mg当りの30秒後の取り込み量(pmol/mg protein/30sec)を表し、横軸はタンパク質1mg当りの30秒後の取り込み量を、蛍光基質の濃度で割った値(ml/mg protein/30sec)を表す(図2B~D及び図3A~Dにおいて同じ)。2 is a graph showing the concentration dependency of CDCA-Lys-TG uptake in OATP1B1-expressing HEK293 cells. The data show the mean ± standard error (n = 3), the vertical axis represents the uptake after 30 seconds per 1 mg protein (pmol / mg protein / 30 sec), and the horizontal axis represents the concentration (μM) of the fluorescent substrate. (Same in FIGS. 2B-D and FIGS. 3A-D). The vertical axis of the small graph represents the uptake amount after 30 seconds per mg of protein (pmol / mg protein / 30 sec), and the horizontal axis represents the uptake amount after 30 seconds per mg of protein divided by the concentration of the fluorescent substrate. Value (ml / mg protein / 30 sec) (same in FIGS. 2B to 3D and FIGS. 3A to 3D). OATP1B1およびOATP1B3発現HEK293細胞におけるCDCA-Lys-HCの取り込みの濃度依存性を表すグラフである。2 is a graph showing the concentration dependence of CDCA-Lys-HC uptake in OATP1B1 and OATP1B3 expressing HEK293 cells. OATP1B1発現HEK293細胞におけるCDCA-Lys-DCTMの取り込みの濃度依存性を表すグラフである。It is a graph showing the concentration dependence of CDCA-Lys-DCTM uptake in OATP1B1-expressing HEK293 cells. OATP1B1発現HEK293細胞におけるCDCA-Lys-EtACの取り込みの濃度依存性を表すグラフである。It is a graph showing the concentration dependence of uptake of CDCA-Lys-Et 2 AC in OATP1B1-expressing HEK293 cells. OATP1B3発現HEK293細胞におけるCDCA-Lys-TGの取り込みの濃度依存性を表すグラフである。2 is a graph showing the concentration dependency of CDCA-Lys-TG uptake in OATP1B3-expressing HEK293 cells. OATP1B3発現HEK293細胞におけるCDCA-Lys-HCの取り込みの濃度依存性を表すグラフである。2 is a graph showing the concentration dependency of CDCA-Lys-HC uptake in OATP1B3-expressing HEK293 cells. OATP1B3発現HEK293細胞におけるCDCA-Lys-DCTMの取り込みの濃度依存性を表すグラフである。It is a graph showing the concentration dependence of CDCA-Lys-DCTM uptake in OATP1B3-expressing HEK293 cells. OATP1B3発現HEK293細胞におけるCDCA-Lys-EtACの取り込みの濃度依存性を表すグラフである。It is a graph showing the concentration dependence of the uptake of CDCA-Lys-Et 2 AC in OATP1B3-expressing HEK293 cells. OATP1B1およびOATP1B3発現HEK293細胞のCDCA-Lys-TG、CDCA-Lys-HC、CDCA-Lys-DCTM、CDCA-Lys-EtAC取り込みに対するcyclosporine A、rifampicin、T、T、pravastatin、BSP、ES、PAH(コントロール)、及びCDCAによる阻害効果を表すグラフである。データは平均±標準誤差(n=3~6)で示す。縦軸は、各蛍光基質の取り込み割合(% of control)を表し、横軸は蛍光基質の種類を表す。黒いバーはOATP1B1発現HEK293細胞を表し、白いバーはOATP1B3発現HEK293細胞を表す。OATP1B1 and OATP1B3 expressing HEK293 cells CDCA-Lys-TG, CDCA- Lys-HC, CDCA-Lys-DCTM, cyclosporine A against CDCA-Lys-Et 2 AC uptake, rifampicin, T 4, T 3 , pravastatin, BSP, E It is a graph showing the inhibitory effect by 3 S, PAH (control), and CDCA. Data are shown as mean ± standard error (n = 3-6). The vertical axis represents the uptake ratio (% of control) of each fluorescent substrate, and the horizontal axis represents the type of fluorescent substrate. Black bars represent OATP1B1-expressing HEK293 cells and white bars represent OATP1B3-expressing HEK293 cells. OATP1B1およびOATP1B3発現HEK293細胞におけるCDCA-Lys-TM,CDCA-Lys-DFTG,及びCDCA-Lys-SiR取り込みの時間依存性試験の結果を表すグラフである。各グラフの縦軸は、タンパク質1mg当りの取り込み量(uptake)(pmol/mg protein)を表し、横軸は経過時間(分)を表し、白丸はエンプティベクターが導入された細胞(コントロール)を表し、黒三角はOATP1B1が導入された細胞を表し、黒四角はOATP1B3が導入された細胞を表す(図5B及びC、及び図6についても同様)。It is a graph showing the result of the time-dependent test of CDCA-Lys-TM, CDCA-Lys-DFTG, and CDCA-Lys-SiR uptake in OATP1B1 and OATP1B3-expressing HEK293 cells. The vertical axis of each graph represents the amount of uptake per mg of protein (uptake) (pmol / mg protein), the horizontal axis represents the elapsed time (minutes), and the white circle represents the cells into which the empty vector was introduced (control). The black triangle represents a cell into which OATP1B1 has been introduced, and the black square represents a cell into which OATP1B3 has been introduced (the same applies to FIGS. 5B and C and FIG. 6). OATP1B1およびOATP1B3発現HEK293細胞におけるCDCA-C2-DCTM,CDCA-C5-DCTM,及びCA-Lys-DCTM取り込みの時間依存性試験の結果を表すグラフである。It is a graph showing the result of the time-dependent test of CDCA-C2-DCTM, CDCA-C5-DCTM, and CA-Lys-DCTM uptake in OATP1B1 and OATP1B3-expressing HEK293 cells. OATP1B1およびOATP1B3発現HEK293細胞におけるCDCA-Tauro-nor-HC,及びCA-Tauro-nor-TG取り込みの時間依存性試験の結果を表すグラフである。It is a graph showing the result of the time-dependent test of CDCA-Tauro-nor-HC and CA-Tauro-nor-TG uptake in OATP1B1 and OATP1B3-expressing HEK293 cells. OATP1B1およびOATP1B3発現HEK293細胞におけるCA-Lys-DCTM、CDCA-Lys-TM,及びCDCA-Lys-DFTG取り込みの時間依存性試験の結果を表すグラフである。It is a graph showing the result of the time-dependent test of CA-Lys-DCTM, CDCA-Lys-TM, and CDCA-Lys-DFTG uptake in OATP1B1 and OATP1B3-expressing HEK293 cells.
1.製造方法
 本発明の化合物は、本願実施例を参照しながら、コール酸等又はそれらの誘導体と、蛍光色素Fをリンカーを介して結合させることにより得ることができる。例えば、コール酸等又はそれらの誘導体にリンカーを結合させ、その後、リンカーの残りの末端に蛍光色素を結合させることにより得ることができる。あるいは、蛍光色素にリンカーを結合させた後、、リンカーの残りの末端にコール酸等又はそれらの誘導体を結合させることにより得ることができる。
1. Production Method The compound of the present invention can be obtained by binding cholic acid or the like or a derivative thereof and a fluorescent dye F through a linker while referring to the Examples of the present application. For example, it can be obtained by attaching a linker to cholic acid or the like or a derivative thereof, and then attaching a fluorescent dye to the remaining end of the linker. Alternatively, it can be obtained by binding a linker to a fluorescent dye and then binding cholic acid or the like or a derivative thereof to the remaining end of the linker.
 コール酸等又はそれらの誘導体は、文献記載の方法により合成することができ、又は市販の試薬として入手することができる。また、コール酸等又はそれらの誘導体とリンカーとの結合は、コール酸のカルボキシ基にリンカーをアミド結合させる等して、文献記載の方法に準じて行うことができる。 Cholic acid or the like or derivatives thereof can be synthesized by methods described in the literature, or can be obtained as commercially available reagents. Moreover, the coupling | bonding of cholic acid etc. or those derivatives, and a linker can be performed according to the method of literature description, such as making a linker amide bond to the carboxy group of cholic acid.
 蛍光色素Fは、WO2012/099218及びYasuteru Uranoら、J.am.Chem.soc(2005)127:4888ー4894等を参照して合成することができる。蛍光色素とリンカーとの結合は、例えば、蛍光色素のカルボキシ基をN-ヒドロキシスクシンイミド(NHS)を用いてN-スクシンイミド基を導入し、次いで、このN-スクシンイミド蛍光色素とコール酸等又はそれらの誘導体が結合したリンカーとを結合させることにより得ることができる。 Fluorescent dye F is disclosed in WO 2012/099218 and Yasuteru Urano et al. am. Chem. soc (2005) 127: 4888-4894 and the like. The binding between the fluorescent dye and the linker is carried out, for example, by introducing an N-succinimide group into the carboxy group of the fluorescent dye using N-hydroxysuccinimide (NHS), and then this N-succinimide fluorescent dye and cholic acid or the like It can be obtained by binding a derivative-bound linker.
2.スクリーニング方法
 本発明の蛍光基質はOATP1B1及び/又はOATP1B3により輸送されることから、OATP1B1及び/又はOATP1B3により輸送される物質のスクリーニングに用いることができる。よって、一態様において本発明は、被検物質がOATP1B1及び/又はOATP1B3により輸送されるか否かを決定する方法であって、以下のステップを備える方法:
 該被検物質及び本発明の化合物をOATP1B1及び/又はOATP1B3発現細胞培養物に接触させるステップ、
 前記細胞内に取り込まれなかった、該被検物質及び本発明の化合物を除去するステップ、
 細胞内に取り込まれた本発明の化合物の蛍光強度を測定するステップ、及び
 得られた蛍光強度が該被検物質の非存在下で同様にしてOATP1B1及び/又はOATP1B3発現細胞に接触させることにより細胞内に取り込まれた本発明の化合物の蛍光強度と比較して、小さい場合には該被検物質がOATP1B1及び/又はOATP1B3により輸送されると決定するステップ、に関する。
2. Screening Method Since the fluorescent substrate of the present invention is transported by OATP1B1 and / or OATP1B3, it can be used for screening a substance transported by OATP1B1 and / or OATP1B3. Therefore, in one aspect, the present invention is a method for determining whether a test substance is transported by OATP1B1 and / or OATP1B3, the method comprising the following steps:
Contacting the test substance and the compound of the present invention with an OATP1B1 and / or OATP1B3-expressing cell culture,
Removing the test substance and the compound of the present invention that have not been taken up into the cells,
A step of measuring the fluorescence intensity of the compound of the present invention incorporated into the cell, and the obtained fluorescence intensity is contacted with the OATP1B1 and / or OATP1B3 expressing cell in the absence of the test substance in the same manner; And a step of determining that the test substance is transported by OATP1B1 and / or OATP1B3 when it is smaller than the fluorescence intensity of the compound of the present invention incorporated therein.
 該被検物質及び本発明の化合物をOATP1B1及び/又はOATP1B3発現細胞培養物に接触させるステップは、ディッシュ上でOATP1B1及び/又はOATP1B3発現細胞を培養した後、培地を該被検物質及び本発明の化合物を含有する緩衝液と置換することにより行うことができる。前記細胞内に取り込まれなかった、該被検物質及び本発明の化合物の除去は、例えば、前記緩衝液を除去した後、BSAを含む緩衝液を添加することにより行うことができる。細胞内に取り込まれた本発明の化合物の蛍光強度の測定は、細胞を乾燥させた後、細胞溶解緩衝液を加えて細胞を溶解させて得られた細胞溶解液の蛍光を測定することにより行うことができる。蛍光の測定は、使用した本発明の化合物に結合する蛍光物質に適した励起波長と蛍光波長を選択して市販の測定機器により行うことができる(表1参照)。 The step of bringing the test substance and the compound of the present invention into contact with an OATP1B1 and / or OATP1B3 expressing cell culture comprises culturing OATP1B1 and / or OATP1B3 expressing cells on a dish, This can be done by replacing with a buffer containing the compound. The test substance and the compound of the present invention that have not been taken up into the cells can be removed, for example, by removing the buffer solution and then adding a buffer solution containing BSA. The fluorescence intensity of the compound of the present invention incorporated into the cells is measured by measuring the fluorescence of the cell lysate obtained by drying the cells and then lysing the cells by adding a cell lysis buffer. be able to. The fluorescence can be measured with a commercially available measuring instrument by selecting an excitation wavelength and a fluorescence wavelength suitable for the fluorescent substance that binds to the compound of the present invention used (see Table 1).
 被検物質がOATP1B1及び/又はOATP1B3により輸送されるか否かの決定は、該被検物質を接触させずに本発明の化合物のみをOATP1B1及び/又はOATP1B3発現細胞培養物に接触させたコントロールについて得られた蛍光強度と比較することにより行う。蛍光強度がコントロールと同程度であれば、OATP1B1及び/又はOATP1B3により輸送されないと決定され、蛍光強度がコントロールよりも小さければ、OATP1B1及び/又はOATP1B3により輸送されると決定することができる。コントロールの蛍光強度は、本発明の化合物のみをOATP1B1及び/又はOATP1B3発現細胞培養物に接触させ、前記細胞内に取り込まれなかった本発明の化合物を除去し、細胞内に取り込まれた本発明の化合物の蛍光強度を測定することにより得られる。 The determination of whether or not the test substance is transported by OATP1B1 and / or OATP1B3 is based on the control in which only the compound of the present invention is contacted with the OATP1B1 and / or OATP1B3 expressing cell culture without contacting the test substance. This is done by comparing with the obtained fluorescence intensity. If the fluorescence intensity is comparable to the control, it can be determined that it is not transported by OATP1B1 and / or OATP1B3, and if the fluorescence intensity is lower than the control, it can be determined that it is transported by OATP1B1 and / or OATP1B3. The fluorescence intensity of the control is such that only the compound of the present invention is brought into contact with OATP1B1 and / or OATP1B3 expressing cell culture, the compound of the present invention that has not been taken up into the cells is removed, and It is obtained by measuring the fluorescence intensity of the compound.
 あるいは、本発明のスクリーニング方法は、該被検物質及び本発明の化合物を除去することなく、クエンチャーを用いて消光することにより行うこともできる。すなわち、一態様において、本発明は、被検物質がOATP1B1及び/又はOATP1B3により輸送されるか否かを決定する方法であって、以下のステップを備える方法:
 該被検物質及び本発明の化合物をOATP1B1及び/又はOATP1B3発現細胞培養物に接触させるステップ、
 前記細胞培養物にクエンチャーを添加して、細胞内に取り込まれなかった本発明の化合物を消光させるステップ、
 細胞内に取り込まれた本発明の化合物の蛍光強度を測定するステップ、及び
 得られた蛍光強度が該被検物質の非存在下で同様にしてOATP1B1及び/又はOATP1B3発現細胞に接触させることにより細胞内に取り込まれた本発明の化合物の蛍光強度と比較して、小さい場合には該被検物質がOATP1B1及び/又はOATP1B3により輸送されると決定するステップ、に関する。
Alternatively, the screening method of the present invention can be performed by quenching using a quencher without removing the test substance and the compound of the present invention. That is, in one aspect, the present invention is a method for determining whether a test substance is transported by OATP1B1 and / or OATP1B3, the method comprising the following steps:
Contacting the test substance and the compound of the present invention with an OATP1B1 and / or OATP1B3-expressing cell culture,
Adding a quencher to the cell culture to quench the compounds of the invention that have not been taken up into the cells;
A step of measuring the fluorescence intensity of the compound of the present invention incorporated into the cell, and the obtained fluorescence intensity is contacted with the OATP1B1 and / or OATP1B3 expressing cell in the absence of the test substance in the same manner; And a step of determining that the test substance is transported by OATP1B1 and / or OATP1B3 when it is smaller than the fluorescence intensity of the compound of the present invention incorporated therein.
 クエンチャーとして用いられる化合物は、本発明の化合物を消光することができ、かつ、細胞に取り込まれない化合物であれば特に制限されるものではなく、用いる蛍光色素に応じて選択することができる。例えば、クエンチャーとして、ブリリアントブラック(4-アセチルアミノ-5-ヒドロキシ-6-[7-ソジオスルホ-4-[4-(ソジオスルホ)フェニルアゾ]-1-ナフチルアゾ]ナフタレン-1,7-ジスルホン酸二ナトリウム;CAS番号2519-30-4)を用いることができる。 The compound used as a quencher is not particularly limited as long as it can quench the compound of the present invention and is not taken up by cells, and can be selected according to the fluorescent dye to be used. For example, brilliant black (4-acetylamino-5-hydroxy-6- [7-sodiosulfo-4- [4- (sodiosulfo) phenylazo] -1-naphthylazo] naphthalene-1,7-disulfonic acid disodium as a quencher CAS number 2519-30-4) can be used.
 本発明のスクリーニング方法において、タンパク質の単位重量当りの蛍光強度を前記蛍光強度として使用することもできる。よって、本発明は、被検物質がOATP1B1及び/又はOATP1B3により輸送されるか否かを決定する方法であって、以下のステップを備える方法:
 該被検物質及び本発明の化合物をOATP1B1及び/又はOATP1B3発現細胞培養物に接触させるステップ、
 前記細胞内に取り込まれなかった、該被検物質及び本発明の化合物を除去するステップ、若しくは、前記細胞培養物にクエンチャーを添加して、細胞内に取り込まれなかった本発明の化合物を消光させるステップ、
 細胞内に取り込まれた本発明の化合物の蛍光強度を測定するステップ、
 細胞溶解物中のタンパク質濃度を測定するステップ、及び
 得られた(蛍光強度/タンパク質濃度)が、該被検物質の非存在下で同様にしてOATP1B1及び/又はOATP1B3発現細胞に接触させることにより細胞内に取り込まれた本発明の化合物の(蛍光強度/タンパク質濃度)と比較して、小さい場合には該被検物質がOATP1B1及び/又はOATP1B3により輸送されると決定するステップ、に関する。
In the screening method of the present invention, the fluorescence intensity per unit weight of the protein can also be used as the fluorescence intensity. Therefore, the present invention is a method for determining whether or not a test substance is transported by OATP1B1 and / or OATP1B3, the method comprising the following steps:
Contacting the test substance and the compound of the present invention with an OATP1B1 and / or OATP1B3-expressing cell culture,
A step of removing the test substance and the compound of the present invention that has not been taken up into the cells, or a quencher is added to the cell culture to quench the compound of the present invention that has not been taken up into the cells. Step to make,
Measuring the fluorescence intensity of the compound of the present invention incorporated into the cells,
The step of measuring the protein concentration in the cell lysate, and the obtained (fluorescence intensity / protein concentration) are contacted with OATP1B1 and / or OATP1B3 expressing cells in the same manner in the absence of the test substance. It is related to the step of determining that the test substance is transported by OATP1B1 and / or OATP1B3 when it is small compared with (fluorescence intensity / protein concentration) of the compound of the present invention incorporated in the inside.
 タンパク質濃度は、Bradfoldなどにより測定することができる。例えば、蛍光基質を取り込ませた細胞を乾燥させた後、NaOH等を加えて細胞を溶解させて得られた細胞溶解液の蛍光を測定することにより行うことができる。タンパク質濃度の決定は、BSAを標準物質として検量線を作成し、サンプルにおいて得られた吸光度が該当する検量線上の濃度として決定することができる。 Protein concentration can be measured by Bradfold or the like. For example, it can be performed by measuring the fluorescence of the cell lysate obtained by drying the cells into which the fluorescent substrate has been incorporated and then adding NaOH or the like to lyse the cells. The protein concentration can be determined by creating a calibration curve using BSA as a standard substance and the absorbance obtained in the sample as the concentration on the calibration curve.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれに限定されるものではない。なお、本願全体を通して引用される全文献は参照によりそのまま本願に組み込まれる。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. It should be noted that all documents cited throughout this application are incorporated herein by reference in their entirety.
(実施例1)化合物1~10の合成
 トランスポーター輸送能を評価するため、以下に示す化合物1-10を合成した。
Example 1 Synthesis of Compounds 1 to 10 In order to evaluate transporter transport ability, the following compounds 1-10 were synthesized.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(1)蛍光基質の合成
 最初に、下記の化合物11-17を合成した。化合物11-14、及び17に関しては文献を参考に合成した。
(1) Synthesis of fluorescent substrate First, the following compounds 11-17 were synthesized. Compounds 11-14 and 17 were synthesized with reference to literature.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 化合物15及び16は、以下の方法で合成した。
(a)化合物15の合成
Compounds 15 and 16 were synthesized by the following method.
(A) Synthesis of Compound 15
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 50mLナスフラスコ中のTM-COOH(43.0mg,0.111mmol)及びNHS(25.5mg,0.222mmol)を塩化メチレン(3.00mL)で溶解させた。そこにDIC(43.0μL,0.278mmol)を加え、室温で2.5時間攪拌した。反応液を濃縮し、シリカゲルカラムクロマトグラフィーにて粗精製した。得られた化合物15の粗精製物はそのまま次の反応に用いた。 TM-COOH (43.0 mg, 0.111 mmol) and NHS (25.5 mg, 0.222 mmol) in a 50 mL eggplant flask were dissolved in methylene chloride (3.00 mL). DIC (43.0 microliters, 0.278 mmol) was added there, and it stirred at room temperature for 2.5 hours. The reaction solution was concentrated and roughly purified by silica gel column chromatography. The obtained crude product of compound 15 was used in the next reaction as it was.
(b)化合物16の合成 (B) Synthesis of Compound 16
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 30mLナスフラスコ中のDCTM-COOH(30.9mg,0.0676mmol)及びNHS(9.33mg,0.0811mmol)を塩化メチレン(1.50mL)で溶解させた。そこにDIC(12.5μL,0.0811mmol)を加え、室温で2時間攪拌した。反応液を濃縮した後、シリカゲルカラムクロマトグラフィーにて精製し、化合物16を18.4mg(0.0332mmol)、収率49%で得た。 DCTM-COOH (30.9 mg, 0.0676 mmol) and NHS (9.33 mg, 0.0811 mmol) in a 30 mL eggplant flask were dissolved in methylene chloride (1.50 mL). DIC (12.5 microliters, 0.0811 mmol) was added there, and it stirred at room temperature for 2 hours. The reaction solution was concentrated and then purified by silica gel column chromatography to obtain 18.4 mg (0.0332 mmol) of Compound 16 in a yield of 49%.
1H NMR (Acetone-d6,400MHz)
δ 8.14(s,1H),8.11(d,J=7.7Hz,1H),7.45(d,J=7.7Hz,1H),6.85(d,J=9.3Hz,2H),6.72-6.63(m,2H),3.00(s,4H),2.20(s,3H),0.88(s,6H)
MS(ESI)
calcd. for [M-H] 552.04,found 552.03
1H NMR (acetone-d6,400MHz)
δ 8.14 (s, 1H), 8.11 (d, J = 7.7 Hz, 1H), 7.45 (d, J = 7.7 Hz, 1H), 6.85 (d, J = 9. 3Hz, 2H), 6.72-6.63 (m, 2H), 3.00 (s, 4H), 2.20 (s, 3H), 0.88 (s, 6H)
MS (ESI)
calcd. for [M−H] 552.04, found 552.03
(2)ケノデオキシコール酸誘導体の合成
 次に、化合物11-17とのカップリングに必要なケノデオキシコール酸誘導体18、20、及び21とコール酸誘導体19を文献を参考に合成した。
(2) Synthesis of chenodeoxycholic acid derivative Next, chenodeoxycholic acid derivatives 18, 20, and 21 required for coupling with compound 11-17 and cholic acid derivative 19 were synthesized with reference to literature.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
(3)化合物1~10の合成
 以下記載のルートに従い、化合物1-10を合成した。
(3) Synthesis of Compounds 1 to 10 Compound 1-10 was synthesized according to the route described below.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
c)-1.化合物1の合成 c) -1. Synthesis of compound 1
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 20mLナスフラスコ中の化合物11(19.9mg,0.0657mmol)及び化合物18(46.9mg,0.0739mmol)をDMF(1.00mL)で溶解させた。そこにEtN(31.0μL,0.224mmol)を加え、室温で16時間攪拌した。反応液に0.1N HClを加え、酢酸エチルで有機層を抽出した。有機層を飽和食塩水で洗浄した後、乾燥、濃縮、シリカゲルカラムクロマトグラフィーにて精製し、化合物1を14.4mg(0.0203mmol)、収率31%で得た。 Compound 11 (19.9 mg, 0.0657 mmol) and compound 18 (46.9 mg, 0.0739 mmol) in a 20 mL eggplant flask were dissolved in DMF (1.00 mL). Et 3 N (31.0 μL, 0.224 mmol) was added thereto, and the mixture was stirred at room temperature for 16 hours. 0.1N HCl was added to the reaction solution, and the organic layer was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried, concentrated, and purified by silica gel column chromatography to obtain Compound 1 (14.4 mg, 0.0203 mmol) in a yield of 31%.
1H NMR(CDOD,400MHz)
δ 8.63(s,1H),7.49(d,J=8.8Hz,1H),6.70(dd,J=2.2,8.8Hz,1H),6.52(d,J=2.2Hz1H),4.28(m,1H),3.75(s,1H),3.45-3.33(m,3H),2.38-2.05(m,3H),1.98-0.85(m,35H),0.63(s,3H)
MS(ESI)
calcd. for [M-2H]2- 353.19, found 353.17
1H NMR (CD 3 OD, 400 MHz)
δ 8.63 (s, 1H), 7.49 (d, J = 8.8 Hz, 1H), 6.70 (dd, J = 2.2, 8.8 Hz, 1H), 6.52 (d, J = 2.2 Hz 1H), 4.28 (m, 1H), 3.75 (s, 1H), 3.45-3.33 (m, 3H), 2.38-2.05 (m, 3H) 1.98-0.85 (m, 35H), 0.63 (s, 3H)
MS (ESI)
calcd. for [M-2H] 2- 353.19 , found 353.17
c)-2.化合物2の合成 c) -2. Synthesis of compound 2
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
化合物12(26.7mg,0.0746mmol)及び化合物18(41.9mg,0.0660mmol)をDMF(1.30mL)で溶解させた。そこにEtN(28.0μL,0.202mmol)を加え、室温で2時間攪拌した。反応液に0.1N HClを加え、酢酸エチルで有機層を抽出した。有機層を飽和食塩水で洗浄した後、乾燥、濃縮、シリカゲルカラムクロマトグラフィーにて精製し、化合物2を27.5mg(0.0360mmol)、収率55%で得た。 Compound 12 (26.7 mg, 0.0746 mmol) and compound 18 (41.9 mg, 0.0660 mmol) were dissolved in DMF (1.30 mL). Et 3 N (28.0 μL, 0.202 mmol) was added thereto, and the mixture was stirred at room temperature for 2 hours. 0.1N HCl was added to the reaction solution, and the organic layer was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried, concentrated, and purified by silica gel column chromatography to obtain 27.5 mg (0.0360 mmol) of Compound 2 in a yield of 55%.
1H NMR (CDOD, 400 MHz) 
δ 9.05(m,1H),8.61(s,1H),7.55(d,J=8.9Hz,1H),6.82(d,J=8.9Hz,1H),6.55(s,1H),4.37(m,1H),3.74(s,1H),3.53(q,J=7.1Hz,4H),3.45-3.33(m,3H),2.35-2.07(m,3H),2.02-0.80(m,41H),0.61(s,3H)
MS(ESI)
calcd. for [M-H] 762.47, found 762.43
1H NMR (CD 3 OD, 400 MHz)
δ 9.05 (m, 1H), 8.61 (s, 1H), 7.55 (d, J = 8.9 Hz, 1H), 6.82 (d, J = 8.9 Hz, 1H), 6 .55 (s, 1H), 4.37 (m, 1H), 3.74 (s, 1H), 3.53 (q, J = 7.1 Hz, 4H), 3.45-3.33 (m , 3H), 2.35-2.07 (m, 3H), 2.02-0.80 (m, 41H), 0.61 (s, 3H)
MS (ESI)
calcd. for [M−H] 762.47, found 762.43
c)-3.化合物3の合成 c) -3. Synthesis of compound 3
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 20mLナスフラスコ中の化合物13(10.0mg,0.0226mmol)及び化合物18(12.7mg,0.0200mmol)をDMF(0.600mL)で溶解させた。そこにEtN(9.00μL,0.0650mmol)を加え、室温で24時間攪拌した。反応液に0.1N HClを加え、酢酸エチルで有機層を抽出した。有機層を飽和食塩水で洗浄した後、乾燥、濃縮、シリカゲルカラムクロマトグラフィーにて精製し、化合物3を7.10mg(0.00836mmol)、収率42%で得た。 Compound 13 (10.0 mg, 0.0226 mmol) and compound 18 (12.7 mg, 0.0200 mmol) in a 20 mL eggplant flask were dissolved in DMF (0.600 mL). Et 3 N (9.00 μL, 0.0650 mmol) was added thereto, and the mixture was stirred at room temperature for 24 hours. 0.1N HCl was added to the reaction solution, and the organic layer was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried, concentrated and purified by silica gel column chromatography to obtain 7.10 mg (0.00836 mmol) of Compound 3 in a yield of 42%.
1H NMR(CDOD,400MHz)
δ 7.93(s,1H),7.87(d,J=7.9Hz,1H),7.36(d,J=7.9Hz,1H),7.04(d,J=9.2Hz,2H),6.81-6.68(m,4H),4.37(m,1H),3.77(s,1H),3.45(m,1H),3.21(m,2H),2.35-2.10(m,6H),2.00-0.85(m,35H),0.67(s,3H)
MS(ESI)
calcd. for [M-2H]2- 423.22, found 423.20
1H NMR (CD 3 OD, 400 MHz)
δ 7.93 (s, 1H), 7.87 (d, J = 7.9 Hz, 1H), 7.36 (d, J = 7.9 Hz, 1H), 7.04 (d, J = 9. 2Hz, 2H), 6.81-6.68 (m, 4H), 4.37 (m, 1H), 3.77 (s, 1H), 3.45 (m, 1H), 3.21 (m , 2H), 2.35-2.10 (m, 6H), 2.00-0.85 (m, 35H), 0.67 (s, 3H)
MS (ESI)
calcd. for [M-2H] 2- 423.22 , found 423.20
c)-4.化合物4の合成 c) -4. Synthesis of compound 4
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 30mLナスフラスコ中の化合物14(5.00mg,0.0104mmol)及び化合物18(7.03mg,0.0135mmol)を塩化メチレン(4.50mL)及びDMF(1.00mL)で溶解させた。そこにiPrNEt(10.0μL,0.0575mmol)を加え、室温で20時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで有機層を抽出した。有機層を飽和食塩水で洗浄した後、乾燥、濃縮、シリカゲルカラムクロマトグラフィーにて精製し、化合物4を4.50mg(0.00508mmol)、収率49%で得た。 Compound 14 (5.00 mg, 0.0104 mmol) and compound 18 (7.03 mg, 0.0135 mmol) in a 30 mL eggplant flask were dissolved in methylene chloride (4.50 mL) and DMF (1.00 mL). IPr 2 NEt (10.0 μL, 0.0575 mmol) was added thereto, and the mixture was stirred at room temperature for 20 hours. A saturated aqueous ammonium chloride solution was added to the reaction solution, and the organic layer was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried, concentrated, and purified by silica gel column chromatography to obtain 4.50 mg (0.00508 mmol) of Compound 4 in a yield of 49%.
1H NMR(CDOD,400MHz)
δ 7.94(s,1H),7.88(d,J=7.8Hz,1H),7.35(d,J=7.8Hz,1H),6.68(d,J=7.4Hz,2H),6.58(dd,J=1.3,11.4Hz,2H),4.31(m,1H),3.76(s,1H),3.44(m,2H),3.38-3.31(m,1H),2.37-2.10(m,6H),1.99-0.85(m,35H),0.66(s,3H)
1H NMR (CD 3 OD, 400 MHz)
δ 7.94 (s, 1H), 7.88 (d, J = 7.8 Hz, 1H), 7.35 (d, J = 7.8 Hz, 1H), 6.68 (d, J = 7. 4Hz, 2H), 6.58 (dd, J = 1.3, 11.4Hz, 2H), 4.31 (m, 1H), 3.76 (s, 1H), 3.44 (m, 2H) 3.38-3.31 (m, 1H), 2.37-2.10 (m, 6H), 1.99-0.85 (m, 35H), 0.66 (s, 3H)
c)-5.化合物5の合成 c) -5. Synthesis of compound 5
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 30mLナスフラスコ中の粗精製した化合物15(14.5mg)及び化合物18(7.71mg,0.0148mmol)を塩化メチレン(3.00mL)で溶解させた。そこにiPrNEt(7.72μL,0.0444mmol)を加え、室温で20時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで有機層を抽出した。有機層を飽和食塩水で洗浄した後、乾燥、濃縮、シリカゲルカラムクロマトグラフィーにて精製し、化合物5を4.30mg(0.00483mmol)、収率33%で得た。 Crude compound 15 (14.5 mg) and compound 18 (7.71 mg, 0.0148 mmol) in a 30 mL eggplant flask were dissolved in methylene chloride (3.00 mL). There iPr 2 NEt (7.72μL, 0.0444mmol) and stirred at room temperature for 20 hours. A saturated aqueous ammonium chloride solution was added to the reaction solution, and the organic layer was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried, concentrated, and purified by silica gel column chromatography to obtain 4.30 mg (0.00483 mmol) of compound 5 in a yield of 33%.
1H NMR (CDOD,400MHz)
δ 7.85(s,1H),7.82(d,J=7.9Hz,1H),7.22(d,J=7.9Hz,1H),7.04(d,J=2.2Hz,2H),6.88(d,J=9.5Hz,2H),6.44(m,2H),4.31(m,1H),3.76(s,1H),3.43(m,2H),3.37-3.32(m,1H),2.37-2.10(m,6H),2.00-0.85(m,35H),0.66(s,3H),0.51(d,J=5.6Hz,6H)
1H NMR (CD 3 OD, 400 MHz)
δ 7.85 (s, 1H), 7.82 (d, J = 7.9 Hz, 1H), 7.22 (d, J = 7.9 Hz, 1H), 7.04 (d, J = 2. 2 Hz, 2H), 6.88 (d, J = 9.5 Hz, 2H), 6.44 (m, 2H), 4.31 (m, 1H), 3.76 (s, 1H), 3.43 (M, 2H), 3.37-3.32 (m, 1H), 2.37-2.10 (m, 6H), 2.00-0.85 (m, 35H), 0.66 (s , 3H), 0.51 (d, J = 5.6 Hz, 6H)
c)-6.化合物6の合成 c) -6. Synthesis of Compound 6
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 20mLナスフラスコ中の化合物16(4.00mg,0.00722mmol)及び化合物18(20.8mg,0.0327mmol)をDMF(1.00mL)で溶解させた。そこにEtN(14.0μL,0.101mmol)を加え、室温で16時間攪拌した。反応液に0.1N HClを加え、酢酸エチルで有機層を抽出した。有機層を飽和食塩水で洗浄した後、乾燥、濃縮、シリカゲルカラムクロマトグラフィーにて精製し化合物6を3.20mg(0.00333mmol)、収率46%で得た。 Compound 16 (4.00 mg, 0.00722 mmol) and compound 18 (20.8 mg, 0.0327 mmol) in a 20 mL eggplant flask were dissolved in DMF (1.00 mL). Et 3 N (14.0 μL, 0.101 mmol) was added thereto, and the mixture was stirred at room temperature for 16 hours. 0.1N HCl was added to the reaction solution, and the organic layer was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried, concentrated and purified by silica gel column chromatography to obtain 3.20 mg (0.00333 mmol) of Compound 6 in a yield of 46%.
1H NMR(CDOD,400MHz)
δ 7.81(d,J=6.8Hz,1H),7.75(s,1H),7.70(d,J=6.8Hz,1H),6.73(d,J=9.6Hz,2H),
6.42(d,J=9.6Hz,2H),4.19(m,1H),3.68(s,1H),3.43-3.25(m,3H),2.25-0.65(m,50H)
MS(ESI)
calcd. for [M-2H]2- 478.20, found 478.20
1H NMR (CD 3 OD, 400 MHz)
δ 7.81 (d, J = 6.8 Hz, 1H), 7.75 (s, 1H), 7.70 (d, J = 6.8 Hz, 1H), 6.73 (d, J = 9. 6Hz, 2H),
6.42 (d, J = 9.6 Hz, 2H), 4.19 (m, 1H), 3.68 (s, 1H), 3.43-3.25 (m, 3H), 2.25 0.65 (m, 50H)
MS (ESI)
calcd. for [M-2H] 2- 478.20, found 478.20
e)化合物7の合成 e) Synthesis of Compound 7
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 50mLナスフラスコ中の化合物16(5.00mg,0.00903mmol)及び化合物20(9.22mg,0.0212mmol)を塩化メチレン(3.00mL)で溶解させた。そこにiPrNEt(20.0μL,0.115mmol)を加え、室温で5時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで有機層を抽出した。有機層を飽和食塩水で洗浄した後、乾燥、濃縮、シリカゲルカラムクロマトグラフィーにて精製し、化合物7を4.50mg(0.00515mmol)、収率57%で得た。 Compound 16 (5.00 mg, 0.00903 mmol) and compound 20 (9.22 mg, 0.0212 mmol) in a 50 mL eggplant flask were dissolved in methylene chloride (3.00 mL). IPr 2 NEt (20.0 μL, 0.115 mmol) was added thereto, and the mixture was stirred at room temperature for 5 hours. A saturated aqueous ammonium chloride solution was added to the reaction solution, and the organic layer was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried, concentrated, and purified by silica gel column chromatography to obtain 4.50 mg (0.00515 mmol) of Compound 7 in a yield of 57%.
1H NMR(CDOD,400MHz)
δ 8.13(m,1H),7.85(s,1H),7.81(d,J=7.9Hz,1H),7.23(d,J=7.9Hz,1H),6.84(dd,J=1.7,9.3Hz,2H),6.55(d,J=9.3Hz,2H),3.77-3.69(m,2H),3.55(m,2H),3.49-3.42(m,2H),3.26-3.20(m,1H),2.32-2.09(m,6H),2.01-0.85(m,35H),0.65(s,3H)
1H NMR (CD 3 OD, 400 MHz)
δ 8.13 (m, 1H), 7.85 (s, 1H), 7.81 (d, J = 7.9 Hz, 1H), 7.23 (d, J = 7.9 Hz, 1H), 6 .84 (dd, J = 1.7, 9.3 Hz, 2H), 6.55 (d, J = 9.3 Hz, 2H), 3.77-3.69 (m, 2H), 3.55 ( m, 2H), 3.49-3.42 (m, 2H), 3.26-3.20 (m, 1H), 2.32-2.09 (m, 6H), 2.01-0. 85 (m, 35H), 0.65 (s, 3H)
f)化合物8の合成 f) Synthesis of Compound 8
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 50mLナスフラスコ中の化合物16(8.92mg,0.0161mmol)及び化合物21(9.30mg,0.0195mmol)を塩化メチレン(3.00mL)で溶解させた。そこにiPrNEt(17.0μL,0.0975mmol)を加え、室温で10時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで有機層を抽出した。有機層を飽和食塩水で洗浄した後、乾燥、濃縮、シリカゲルカラムクロマトグラフィーにて精製し、化合物8を10.0mg(0.0109mmol)、収率68%で得た。 Compound 16 (8.92 mg, 0.0161 mmol) and compound 21 (9.30 mg, 0.0195 mmol) in a 50 mL eggplant flask were dissolved in methylene chloride (3.00 mL). IPr 2 NEt (17.0 μL, 0.0975 mmol) was added thereto, and the mixture was stirred at room temperature for 10 hours. A saturated aqueous ammonium chloride solution was added to the reaction solution, and the organic layer was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried, concentrated and purified by silica gel column chromatography to obtain 10.0 mg (0.0109 mmol) of Compound 8 in a yield of 68%.
1H NMR(CDOD,400MHz)
δ 8.58(m,1H),7.98(m,1H),7.85(s,1H),7.81(d,J=8.0Hz,1H),7.23(d,J=8.0Hz,1H),6.86(d,J=9.5Hz,2H),6.57(d,J=9.5Hz,2H),3.78(s,1H),3.48-3.33(m,3H),3.26-3.12(m,2H),2.32-2.18(m,2H),2.14-2.04(m,4H),2.00-0.86(m,41H),0.66(s,3H)
1H NMR (CD 3 OD, 400 MHz)
δ 8.58 (m, 1H), 7.98 (m, 1H), 7.85 (s, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H), 6.86 (d, J = 9.5 Hz, 2H), 6.57 (d, J = 9.5 Hz, 2H), 3.78 (s, 1H), 3.48. −3.33 (m, 3H), 3.26−3.12 (m, 2H), 2.32-2.18 (m, 2H), 2.14−2.04 (m, 4H), 2 .00-0.86 (m, 41H), 0.66 (s, 3H)
c)-9.化合物9の合成 c) -9. Synthesis of compound 9
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 30mLナスフラスコ中の化合物17(5.00mg,0.00765mmol)及び化合物18(6.98mg,0.0134mmol)を塩化メチレン(3.00mL)で溶解させた。そこにiPrNEt(6.99μL,0.0402mmol)を加え、室温で20時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで有機層を抽出した。有機層を飽和食塩水で洗浄した後、乾燥、濃縮、シリカゲルカラムクロマトグラフィーにて精製し、化合物9を3.60mg(0.00340mmol)、収率44%で得た。 Compound 17 (5.00 mg, 0.00765 mmol) and compound 18 (6.98 mg, 0.0134 mmol) in a 30 mL eggplant flask were dissolved in methylene chloride (3.00 mL). IPr 2 NEt (6.99 μL, 0.0402 mmol) was added thereto, and the mixture was stirred at room temperature for 20 hours. A saturated aqueous ammonium chloride solution was added to the reaction solution, and the organic layer was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried, concentrated and purified by silica gel column chromatography to obtain 3.60 mg (0.00340 mmol) of Compound 9 in a yield of 44%.
1H NMR(CDOD,400MHz)
δ 7.88(s,1H),7.84(d,J=7.9Hz,1H),7.38(d,J=2.8Hz,2H),7.24(d,J=7.9Hz,1H),7.04(d,J=9.6Hz,2H),6.78(dd,J=2.8,9.6Hz,2H),4.40(m,1H),3.76(s,1H),3.50-3.43(m,2H),3.39-3.30(m,13H),2.37-2.09(m,6H),2.05-0.89(m,35H),0.67(s,3H),0.61(d,J=5.9Hz,6H)
1H NMR (CD 3 OD, 400 MHz)
δ 7.88 (s, 1H), 7.84 (d, J = 7.9 Hz, 1H), 7.38 (d, J = 2.8 Hz, 2H), 7.24 (d, J = 7. 9 Hz, 1H), 7.04 (d, J = 9.6 Hz, 2H), 6.78 (dd, J = 2.8, 9.6 Hz, 2H), 4.40 (m, 1H), 3. 76 (s, 1H), 3.50-3.43 (m, 2H), 3.39-3.30 (m, 13H), 2.37-2.09 (m, 6H), 2.05- 0.89 (m, 35H), 0.67 (s, 3H), 0.61 (d, J = 5.9 Hz, 6H)
(d)化合物10の合成 (D) Synthesis of Compound 10
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 50mLナスフラスコ中の化合物16(8.92mg,0.0161mmol)及び化合物19(9.40mg,0.0175mmol)を塩化メチレン(3.00mL)で溶解させた。そこにiPrNEt(17.4μL,0.100mmol)を加え、室温で10時間攪拌した。反応液に飽和塩化アンモニウム水溶液を加え、酢酸エチルで有機層を抽出した。有機層を飽和食塩水で洗浄した後、乾燥、濃縮、シリカゲルカラムクロマトグラフィーにて精製し、化合物10を4.3mg(0.00441mmol)、収率27%で得た。 Compound 16 (8.92 mg, 0.0161 mmol) and compound 19 (9.40 mg, 0.0175 mmol) in a 50 mL eggplant flask were dissolved in methylene chloride (3.00 mL). IPr 2 NEt (17.4 μL, 0.100 mmol) was added thereto, and the mixture was stirred at room temperature for 10 hours. A saturated aqueous ammonium chloride solution was added to the reaction solution, and the organic layer was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried, concentrated and purified by silica gel column chromatography to obtain Compound 10 (4.3 mg, 0.00441 mmol) in a yield of 27%.
1H NMR(CDOD,400MHz)
δ 7.82(s,1H),7.78(d,J=7.9Hz,1H),7.20(d,J=7.9Hz,1H),6.77(dd,J=0.80,9.3Hz,2H),6.39(d,J=9.3Hz,2H),4.29(m,1H),3.93(s,1H),3.77(m,1H),3.45-3.33(m,3H),2.37-2.10(m,6H),2.03-0.83(m,39H),0.68(s,3H)
1H NMR (CD 3 OD, 400 MHz)
δ 7.82 (s, 1H), 7.78 (d, J = 7.9 Hz, 1H), 7.20 (d, J = 7.9 Hz, 1H), 6.77 (dd, J = 0. 80, 9.3 Hz, 2H), 6.39 (d, J = 9.3 Hz, 2H), 4.29 (m, 1H), 3.93 (s, 1H), 3.77 (m, 1H) 3.45-3.33 (m, 3H), 2.37-2.10 (m, 6H), 2.03-0.83 (m, 39H), 0.68 (s, 3H)
(実施例2)OATP1B1及びOATP1B3発現細胞による取り込み評価
(1)OATP1B1及びOATP1B3発現HEK293細胞の培養
 OATP1B1及びOATP1B3安定発現HEK293細胞はすでに樹立されたもの(Yamaguchi et al. , Cancer. Lett. 2008;260;163-169;Yamaguchi et al. , Biol. Pharm.Bull. 2011;34;389-395)を用いた。コントロールとして、エンプティベクターを導入したHEK293細胞(mock細胞)を使用した。OATP1B1/HEK293、OATP1B3/HEK293細胞及びmock細胞は、Dulbecco’s modified Eagle’s mediumに10%FBS及びG-418(0.5mg/mL)を添加した培地を用いて、5%CO環境下37℃で培養した。これらの細胞はplastic dishを用いて、3、4日ごとに継代培養を行い維持した。
(Example 2) Evaluation of uptake by OATP1B1 and OATP1B3 expressing cells (1) Culturing of OATP1B1 and OATP1B3 expressing HEK293 cells OATP1B1 and OATP1B3 stably expressing HEK293 cells have already been established (Yamaguchi et al., 200, Cancer, et al. 163-169; Yamaguchi et al., Biol. Pharm. Bull. 2011; 34; 389-395). As a control, HEK293 cells (mock cells) into which an empty vector was introduced were used. OATP1B1 / HEK293, OATP1B3 / HEK293 cells and mock cells were used in a medium containing 10% FBS and G-418 (0.5 mg / mL) in Dulbecco's modified Eagle's medium in a 5% CO 2 environment. Cultured at 37 ° C. These cells were maintained by subculture using a plastic dish every 3 or 4 days.
(2)蛍光基質
 蛍光基質として、CDCA-Lys-TG、CDCA-Lys-HC、CDCA-Lys-DCTM、CDCA-Lys-EtAC、CDCA-Lys-TM、CDCA-Lys-DFTG、CDCA-Lys-SiR、CDCA-C2-DCTM、CDCA-C5-DCTM、CDCA-Lys-DCTM、CA-Tauro-nor-HC、及びCA-Tauro-nor-TGを用いた。各蛍光基質の測定励起波長と(Excitation wavelength)(nm)と、蛍光波長(Fluorescence wavelength)(nm)を表1に示す。
(2) Fluorescent substrate As fluorescent substrates, CDCA-Lys-TG, CDCA-Lys-HC, CDCA-Lys-DCTM, CDCA-Lys-Et 2 AC, CDCA-Lys-TM, CDCA-Lys-DFTG, CDCA-Lys -SiR, CDCA-C2-DCTM, CDCA-C5-DCTM, CDCA-Lys-DCTM, CA-Tauro-nor-HC, and CA-Tauro-nor-TG were used. Table 1 shows the measurement excitation wavelength, (Excitation wavelength) (nm), and fluorescence wavelength (nm) of each fluorescent substrate.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
(3)取り込み試験方法
 Poly-L-lysine coatingした24-well platesにOATP1B1/HEK293、OATP1B3/HEK293細胞及びmock細胞(Vec/HEK293)を約20万cells/wellで播種し、72時間生育させた。また、取り込み実験24時間前には培地交換を行った。細胞をKrebs-Henseleit(KH)buffer(118mM NaCl、23.8mM NaHCO、4.83mM KCl、0.96mM KHPO、1.20mM MgSO、12.5mM N-(2-hydroxyethyl)piperazine-N’-2-ethanesulfonic acid(HEPES)、5.0mM D-glucose、及び1.53mM CaCl、pH7.4)で1回洗浄した後、KH bufferを細胞に加え、10分間preincubationを行った。
(3) Uptake test method OATP1B1 / HEK293, OATP1B3 / HEK293 cells and mock cells (Vec / HEK293) were seeded at about 200,000 cells / well on poly-L-lysine coated 24-well plates and grown for 72 hours. . The medium was changed 24 hours before the uptake experiment. The cells were mixed with Krebs-Henseleit (KH) buffer (118 mM NaCl, 23.8 mM NaHCO 3 , 4.83 mM KCl, 0.96 mM KH 2 PO 4 , 1.20 mM MgSO 4 , 12.5 mM N- (2-hydroxyethyl) piperazine- After washing once with N′-2-ethanesulfonic acid (HEPES), 5.0 mM D-glucose, and 1.53 mM CaCl 2 , pH 7.4), KH buffer was added to the cells, and preincubation was performed for 10 minutes.
 取り込みは各蛍光標識化合物(または各蛍光標識化合物と阻害剤)を含むKH bufferと置換することにより開始した。取り込み反応は、規定時間のincubation後、incubation bufferを取り除き、bovine serum albumin(BSA)1%を含む氷冷したKH bufferを加えることにより停止した。細胞をさらに氷冷したKH bufferで2回洗浄し、乾燥後、Lysis Bufferを加えて溶解させたものを蛍光測定サンプルとした。蛍光測定にはマイクロプレートリーダーInfinite 200 PRO(Tecan Japan,神奈川,日本)を用いた。氷冷したKH bufferで2回洗浄し、乾燥後、0.5規定のNaOHを加え溶解させたものをタンパク定量用サンプルとし、bovine serum albumin(BSA)をスタンダードとしたBradford法によりタンパク質濃度を決定した。 Incorporation was started by replacing with KH buffer containing each fluorescently labeled compound (or each fluorescently labeled compound and inhibitor). The uptake reaction was stopped by removing the incubation buffer after the specified time of incubation and adding ice-cooled KH buffer containing 1% of bovine serum albumin (BSA). The cells were further washed twice with ice-cooled KH buffer, dried, and lysed with Lysis Buffer added to obtain a fluorescence measurement sample. A microplate reader Infinite 200 PRO (Tecan Japan, Kanagawa, Japan) was used for fluorescence measurement. Wash with ice-cooled KH buffer twice, dry, add 0.5N NaOH and dissolve it as a protein quantification sample, and determine protein concentration by Bradford method using bovine serum albumin (BSA) as standard did.
(4)タンパク質定量方法
 タンパク定量用サンプルはBradford法によりタンパク定量を行った。96well plateの各ウェルにタンパク定量用サンプル5μL及び5倍希釈したBio-Rad Protein Assay Dye Reagent Concentrate(Bio-Rad Laboratories,Hercules,CA,米国)200μLを加え、5分後に、吸収波長595nmにおける吸光度を測定した。標準タンパクとしてBSAを用い検量線を作製した。
(4) Protein quantification method The protein quantification sample performed protein quantification by Bradford method. To each well of 96 well plate, 5 μL of a protein quantification sample and 200 μL of 5-fold diluted Bio-Rad Protein Assay Reagent Concentrate (Bio-Rad Laboratories, Hercules, CA, USA) were added, and after 5 minutes, the absorbance at an absorption wavelength of 595 nm was measured. It was measured. A calibration curve was prepared using BSA as the standard protein.
(5)統計解析
 実験結果は、平均±標準誤差(mean±SE)で示した。トランスポーター特異的な取り込み量はOATP1B1/HEK細胞及びOATP1B3/HEK細胞の取り込み量からmock細胞(Vec/HEK細胞)によるトランスポーター非特異的取り込み量を差し引くことで算出した。Michaelis-Menten wave、Eadie Hofstee Plotは、データ解析ソフトKaleida Graph(HuLinks Inc,東京,日本)を用いて作成した。阻害試験では、阻害剤非存在下のトランスポーター特異的な取り込み量を100%とし、Uptake % of Controlを算出した。Control群と阻害剤(またはPAH)群間における有意差の検定は、統計解析ソフトJMP Pro 12(SAS Institudte Inc.,North Carolina,米国)を用いてDannett testにより行った(*p<0.05)。
(5) Statistical analysis The experimental results are shown as mean ± standard error (mean ± SE). The transporter-specific uptake was calculated by subtracting the transporter non-specific uptake by mock cells (Vec / HEK cells) from the uptake of OATP1B1 / HEK cells and OATP1B3 / HEK cells. Michaelis-Menten wave and Eadie Hofste Plot were created using data analysis software Kaleida Graph (HuLinks Inc, Tokyo, Japan). In the inhibition test, the amount of transporter-specific uptake in the absence of an inhibitor was taken as 100%, and Uptake% of Control was calculated. The test of significant difference between the Control group and the inhibitor (or PAH) group was performed by Dannett test using statistical analysis software JMP Pro 12 (SAS Institute Inc., North Carolina, USA) (* p <0.05). ).
(6)時間依存性試験
 CDCA-Lys-TG、CDCA-Lys-HC、CDCA-Lys-DCTM、及びCDCA-Lys-EtACのOATP1B1およびOATP1B3発現HEK293細胞への取り込みの時間依存性を試験した(n=3)。結果を図1に示す。各蛍光基質濃度をCDCA-Lys-TG 0.025μM(A)、CDCA-Lys-HC 0.1μM(B)、CDCA-Lys-DCTM 0.01μM (C)、CDCA-Lys-EtAC 0.1μM(D)に設定した。4つの蛍光基質全てについて、mock細胞に比べてOATP1B1及びOATP1B3発現細胞における取り込み量の有意な上昇が認められた。データは、平均±標準誤差を表す。
(6) Time dependency test The time dependency of CDCA-Lys-TG, CDCA-Lys-HC, CDCA-Lys-DCTM, and CDCA-Lys-Et 2 AC uptake into OATP1B1 and OATP1B3 expressing HEK293 cells was tested. (N = 3). The results are shown in FIG. Concentration of each fluorescent substrate was CDCA-Lys-TG 0.025 μM (A), CDCA-Lys-HC 0.1 μM (B), CDCA-Lys-DCTM 0.01 μM (C), CDCA-Lys-Et 2 AC 0. Set to 1 μM (D). For all four fluorescent substrates, a significant increase in uptake in OATP1B1 and OATP1B3 expressing cells was observed compared to mock cells. Data represent mean ± standard error.
(7)濃度依存性試験
 OATP1B1およびOATP1B3発現HEK293細胞におけるCDCA-Lys-TG、CDCA-Lys-HC、CDCA-Lys-DCTM、CDCA-Lys-EtACの取り込みの濃度依存性を2回試験した(n=3)。それぞれの結果を図2A~D及び図3A~Dに示す。4つの蛍光基質の取り込みは濃度依存的に増加し、高濃度域で飽和が認められた。上述の時間依存性試験の結果より、4つの蛍光基質すべての取り込み時間を、OATP1B1およびOATP1B3を介する取り込みの初速度が評価可能である30秒とした。データは、平均±標準誤差で示した。また、みかけのミカエリス定数(Km値)はEadie Hofstee Plotより算出して動態パラメーターを算出した。結果を以下の表2に示す。
(7) Concentration dependency test The concentration dependency of uptake of CDCA-Lys-TG, CDCA-Lys-HC, CDCA-Lys-DCTM, and CDCA-Lys-Et 2 AC in OATP1B1 and OATP1B3-expressing HEK293 cells was tested twice. (N = 3). The respective results are shown in FIGS. 2A to 2D and FIGS. 3A to 3D. Uptake of the four fluorescent substrates increased in a concentration-dependent manner, and saturation was observed in the high concentration range. From the results of the time-dependent test described above, the uptake time of all four fluorescent substrates was 30 seconds at which the initial rate of uptake through OATP1B1 and OATP1B3 can be evaluated. Data are shown as mean ± standard error. Further, the apparent Michaelis constant (Km value) was calculated from Eadie Hofste Plot to calculate the kinetic parameter. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
(8)OATP1B1およびOATP1B3発現HEK293細胞のCDCA-Lys-TG、CDCA-Lys-HC、CDCA-Lys-DCTM、CDCA-Lys-EtAC取り込みに対する典型基質・典型阻害剤による阻害効果
 各蛍光基質濃度をCDCA-Lys-TG 0.02μM(A)、CDCA-Lys-HC 0.1μM(B)、CDCA-Lys-DCTM 0.01μM(C)、CDCA-Lys-EtAC 0.1μM(D)に設定し、OATP1B1およびOATP1B3の典型的な基質および阻害剤としてcyclosporine A、rifampicin、T、T、pravastatin、BSP、及びESを、競合物質として非標識胆汁酸であるCDCAを、ネガティブコントロールとしてPAHを用いて、OATP1B1およびOATP1B3を介した取り込みに対する阻害効果を評価した。結果を図4に示す。データは、平均±標準誤差(n=3~6)で示した。4つ全ての蛍光基質についてOATP1B1およびOATP1B3の典型的な基質および阻害剤による取り込み量の減少が認められた。これらの阻害感受性は、既知の輸送基質と同様の傾向を示すことが明らかとなった。一方、PAH添加時には取り込み量がコントロールとほぼ変わらない値を示した。
(8) Inhibitory effect of typical substrate / typical inhibitor on CDCA-Lys-TG, CDCA-Lys-HC, CDCA-Lys-DCTM, CDCA-Lys-Et 2 AC uptake of HEA 293 cells expressing OATP1B1 and OATP1B3 CDCA-Lys-TG 0.02 μM (A), CDCA-Lys-HC 0.1 μM (B), CDCA-Lys-DCTM 0.01 μM (C), CDCA-Lys-Et 2 AC 0.1 μM (D) Cyclosporine A, rifampicin, T 4 , T 3 , pravastatin, BSP, and E 3 S as typical substrates and inhibitors of OATP1B1 and OATP1B3, CDCA, which is an unlabeled bile acid, as a negative substance, As control With PAH, it was assessed inhibitory effect on uptake via OATP1B1 and OATP1B3. The results are shown in FIG. Data are shown as mean ± standard error (n = 3-6). A decrease in uptake by OATP1B1 and OATP1B3 typical substrates and inhibitors was observed for all four fluorescent substrates. It became clear that these inhibition sensitivities show the same tendency as known transport substrates. On the other hand, when PAH was added, the uptake amount was almost the same as that of the control.
(9)CDCA-Lys-TG、CDCA-Lys-HC、CDCA-Lys-DCTM、CDCA-Lys-EtACを用いたOATP1B1およびOATP1B3典型基質・典型阻害剤の阻害定数(K値)の算出
 各蛍光基質濃度をCDCA-Lys-TG 0.025μM、CDCA-Lys-HC 0.1μM、CDCA-Lys-DCTM 0.01μM、CDCA-Lys-EtAC 0.1μMに設定し、OATP1B1およびOATP1B3典型阻害剤であるCyclosporine A、Rifampicin、Ritonavir、Erythromycin、Verapamil、Probenecidの阻害定数を算出した。OATP1B1を介した輸送における各阻害剤の阻害定数を表3に、OATP1B3を介した輸送における各阻害剤の阻害定数を表4に示す(表中、[1]Izumi et al.,Drug Metab Dispos. 2013 Oct;41(10):1859-66;[2] Matsushima et al., Drug Metab Dispos. 2008 Apr;36(4):663-9;[3] Tahara et al., Drug Metab Dispos 34:743-747, 2006)。OATP1B1およびOATP1B3を介した輸送における阻害定数は、蛍光基質を用いた場合と、既知基質であるEstradiol-17β―glucuronideやFexofenadineを用いた場合と比較したところ、ほとんどの阻害剤の値が0.1-10倍以内の相関を示した。このことから、CDCA-Lys-TG、CDCA-Lys-HC、CDCA-Lys-DCTM、CDCA-Lys-EtACは、OATP1B1およびOATP1B3の既知基質と同等の阻害感受性を示すことが示唆された。
(9) Calculation of inhibition constant (K i value) of OATP1B1 and OATP1B3 typical substrate / typical inhibitor using CDCA-Lys-TG, CDCA-Lys-HC, CDCA-Lys-DCTM, CDCA-Lys-Et 2 AC Each fluorescent substrate concentration was set to CDCA-Lys-TG 0.025 μM, CDCA-Lys-HC 0.1 μM, CDCA-Lys-DCTM 0.01 μM, CDCA-Lys-Et 2 AC 0.1 μM, and OATP1B1 and OATP1B3 typical Inhibitory constants for the inhibitors Cyclosporine A, Rifampicin, Ritonavir, Erythromycin, Verapamil, and Probenecid were calculated. Inhibition constants of each inhibitor in transport through OATP1B1 are shown in Table 3, and inhibition constants of each inhibitor in transport through OATP1B3 are shown in Table 4 (in the table, [1] Izumi et al., Drug Metab Dispos. 2013 Oct; 41 (10): 1859-66; [2] Matsushima et al., Drug Metab Dispos. 2008 Apr; 36 (4): 663-9; [3] Tahara et al., Drug Metas 34: 74 -747, 2006). The inhibition constant in the transport via OATP1B1 and OATP1B3 shows that the value of most inhibitors is 0.1 when compared with the case where a fluorescent substrate is used and the case where Estradiol-17β-glucuronide or Fexofenadine which are known substrates are used. Correlation within -10 times was shown. This suggests that CDCA-Lys-TG, CDCA-Lys-HC, CDCA-Lys-DCTM, and CDCA-Lys-Et 2 AC exhibit inhibitory sensitivities comparable to known substrates of OATP1B1 and OATP1B3.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
(10)OATP1B1およびOATP1B3発現HEK293細胞におけるCDCA-Lys-TM,CDCA-Lys-DFTG,CDCA-Lys-SiR,CDCA-C2-DCTM,CDCA-C5-DCTM,CA-Lys-DCTM,CA-Tauro-nor-HC,及びCA-Tauro-nor-TGの取り込みの時間依存性試験
 各蛍光基質濃度を0.1μMに設定し、取り込み実験を行った。結果を図5A~Cに示す。全ての蛍光基質がmock細胞に比べてOATP1B1およびOATP1B3発現細胞において有意な取り込み量の上昇が認められた。データは、平均±標準誤差(n=3)で示した。
(10) CDCA-Lys-TM, CDCA-Lys-DFTG, CDCA-Lys-SiR, CDCA-C2-DCTM, CDCA-C5-DCTM, CA-Lys-DCTM, CA-Tauro- in OATP1B1 and OATP1B3-expressing HEK293 cells Time-dependent test of uptake of nor-HC and CA-Tauro-nor-TG The uptake experiment was conducted with each fluorescent substrate concentration set to 0.1 μM. The results are shown in FIGS. All fluorescent substrates showed a significant increase in uptake in OATP1B1 and OATP1B3 expressing cells compared to mock cells. Data are shown as mean ± standard error (n = 3).
(11)OATP1B1およびOATP1B3発現HEK293細胞におけるCDCA-Lys-TM,CDCA-Lys-DFTG,及びCA-Lys-DCTM取り込みの時間依存性試験
 各蛍光基質濃度を0.005μMに設定し取り込み実験を行った。結果を図6に示す。全ての蛍光基質がmock細胞に比べてOATP1B1およびOATP1B3発現細胞において有意な取り込み量の上昇が認められた。データは、平均±標準誤差(n=3)で示した。

 
(11) Time-dependent test of CDCA-Lys-TM, CDCA-Lys-DFTG, and CA-Lys-DCTM uptake in OATP1B1 and OATP1B3-expressing HEK293 cells The uptake experiment was conducted with each fluorescent substrate concentration set to 0.005 μM . The results are shown in FIG. All fluorescent substrates showed a significant increase in uptake in OATP1B1 and OATP1B3 expressing cells compared to mock cells. Data are shown as mean ± standard error (n = 3).

Claims (10)

  1.  下記式(I)で表される化合物:
             A-L-F      (I)
    [式中、Aは、コール酸、ケノデオキシコール酸、デオキシコール酸、リトコール酸、ウルソコール酸、ウルソデオキシコール酸、αミュリコール酸、βミュリコール酸、ωミュリコール酸、ヒオコール酸、ヒオデオキシコール酸、7-オキソ-デオキシコール酸、7-オキソ-リトコール酸、1-オキソ-リトコール酸、若しくは2-オキソ-リトコール酸、又はそれらの誘導体を表し、
    Lは、リンカーを示し、かつ、
    Fは、下記式で表される化合物の1価の基を示す、
    Figure JPOXMLDOC01-appb-C000001
    [上記式中、R、R、R、R、R、及びR11は、同一又は異なって、それぞれ、水素原子、ハロゲン原子、スルホン酸基、スルホン酸基の塩、C1~6アルキル基、又はC1~6アルケニル基を表し、
     Rは、酸素原子又は置換されていても良い窒素原子を表し、
     Rは、水酸基又は置換されていても良い窒素原子を表し、
     Rは、置換されていても良いC1~6アルキル基、置換されていても良いC1~6アルコキシ基、カルボキシ基、カルボキシ基の塩、スルホン酸基、又はスルホン酸基の塩を表し、
     nは0~4の自然数を表し、
     R及びR12は、それぞれ独立して、水酸基、ハロゲン原子、アミノ基、C1~6アルキル基、C1~6アルケニル基、C1~6アルキニル基、C1~6アルコキシ基、C1~6アルコキシカルボニル基、カルボキシ基、カルボキシ基の塩、スルホン酸基、又はスルホン酸基の塩を表し、
     R10は、水酸基又は置換されていても良い窒素原子を表し、かつ、
     Xは、酸素原子であるか、又は置換されていても良い珪素原子を表し、
     ここで、置換されていても良い窒素原子、及び置換されていても良い珪素原子の置換基は、同一又は異なって、それぞれ、置換されていても良いC1~6アルキル基であり、置換されていても良いC1~6アルキル基の置換基は、同一又は異なって、それぞれ、ハロゲン原子、カルボン酸、カルボン酸の塩、スルホン酸、又はスルホン酸の塩である]。
    Compound represented by the following formula (I):
    ALF (I)
    [Wherein, A is cholic acid, chenodeoxycholic acid, deoxycholic acid, lithocholic acid, ursocholic acid, ursodeoxycholic acid, α-mulicholic acid, β-mulicholic acid, ω-mulicholic acid, hyocholic acid, hyodeoxycholic acid 7-oxo-deoxycholic acid, 7-oxo-lithocholic acid, 1-oxo-lithocholic acid, or 2-oxo-lithocholic acid, or derivatives thereof,
    L represents a linker, and
    F represents a monovalent group of a compound represented by the following formula:
    Figure JPOXMLDOC01-appb-C000001
    [In the above formula, R 1 , R 3 , R 4 , R 6 , R 9 , and R 11 are the same or different and each represents a hydrogen atom, a halogen atom, a sulfonic acid group, a salt of a sulfonic acid group, Represents a 6 alkyl group or a C1-6 alkenyl group,
    R 2 represents an oxygen atom or an optionally substituted nitrogen atom,
    R 5 represents a hydroxyl group or an optionally substituted nitrogen atom,
    R 7 represents an optionally substituted C1-6 alkyl group, an optionally substituted C1-6 alkoxy group, a carboxy group, a salt of a carboxy group, a sulfonic acid group, or a salt of a sulfonic acid group,
    n represents a natural number from 0 to 4,
    R 8 and R 12 are each independently a hydroxyl group, a halogen atom, an amino group, a C1-6 alkyl group, a C1-6 alkenyl group, a C1-6 alkynyl group, a C1-6 alkoxy group, or a C1-6 alkoxycarbonyl group. , A carboxy group, a salt of a carboxy group, a sulfonic acid group, or a salt of a sulfonic acid group,
    R 10 represents a hydroxyl group or an optionally substituted nitrogen atom, and
    X represents an oxygen atom or an optionally substituted silicon atom;
    Here, the nitrogen atom which may be substituted and the substituent of the silicon atom which may be substituted are the same or different, and each may be a C1-6 alkyl group which may be substituted. The substituents of the C1-6 alkyl group which may be the same or different are each a halogen atom, a carboxylic acid, a carboxylic acid salt, a sulfonic acid, or a sulfonic acid salt.
  2.  Aが下記式(IV)で表される、請求項1に記載の化合物:
    Figure JPOXMLDOC01-appb-C000002
    [上記式中、R13は水素原子又は水酸基を表し、
     R14及びR15は水素原子、水酸基又は酸素原子を表し、
     実線と点線で示した線は、それぞれ、結合するR14又はR15が水素原子又は水酸基のときは単結合を表し、結合するR14又はR15が酸素原子のときは二重結合を表す]。
    The compound according to claim 1, wherein A is represented by the following formula (IV):
    Figure JPOXMLDOC01-appb-C000002
    [In the above formula, R 13 represents a hydrogen atom or a hydroxyl group,
    R 14 and R 15 represent a hydrogen atom, a hydroxyl group or an oxygen atom,
    A solid line and a dotted line represent a single bond when R 14 or R 15 to be bonded is a hydrogen atom or a hydroxyl group, respectively, and a double bond when R 14 or R 15 to be bonded is an oxygen atom.] .
  3.  下記式(V)又は式(VI)で表される、請求項1に記載の化合物:
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    [上記式中、R、R、R、R、R、及びR11は、同一又は異なって、それぞれ、水素原子、ハロゲン原子、スルホン酸基、スルホン酸基の塩、C1~6アルキル基、又はC1~6アルケニル基を表し、
     Rは、酸素原子又は置換されていても良い窒素原子を表し、
     Rは、水酸基又は置換されていても良い窒素原子を表し、
     Rは、置換されていても良いC1~6アルキル基、置換されていても良いC1~6アルコキシ基、カルボキシ基、カルボキシ基の塩、スルホン酸基、又はスルホン酸基の塩を表し、
     nは0~4の自然数を表し、
     R及びR12は、それぞれ独立して、水酸基、ハロゲン原子、アミノ基、C1~6アルキル基、C1~6アルケニル基、C1~6アルキニル基、C1~6アルコキシ基、C1~6アルコキシカルボニル基、カルボキシ基、カルボキシ基の塩、スルホン酸基、又はスルホン酸基の塩を表し、
     R10は、水酸基又は置換されていても良い窒素原子を表し、かつ、
     Xは、酸素原子であるか、又は置換されていても良い珪素原子を表し、
     R13は水素原子又は水酸基を表し、
     R14及びR15は水素原子、水酸基又は酸素原子を表し、
     実線と点線で示した線は、それぞれ、結合するR14又はR15が水素原子又は水酸基のときは単結合を表し、結合するR14又はR15が酸素原子のときは二重結合を表し、
     ここで、置換されていても良い窒素原子、及び置換されていても良い珪素原子の置換基は、同一又は異なって、それぞれ、置換されていても良いC1~6アルキル基であり、置換されていても良いC1~6アルキル基の置換基は、同一又は異なって、それぞれ、ハロゲン原子、カルボン酸、カルボン酸の塩、スルホン酸、又はスルホン酸の塩である]。
    The compound according to claim 1, which is represented by the following formula (V) or formula (VI):
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    [In the above formula, R 1 , R 3 , R 4 , R 6 , R 9 , and R 11 are the same or different and each represents a hydrogen atom, a halogen atom, a sulfonic acid group, a salt of a sulfonic acid group, Represents a 6 alkyl group or a C1-6 alkenyl group,
    R 2 represents an oxygen atom or an optionally substituted nitrogen atom,
    R 5 represents a hydroxyl group or an optionally substituted nitrogen atom,
    R 7 represents an optionally substituted C1-6 alkyl group, an optionally substituted C1-6 alkoxy group, a carboxy group, a salt of a carboxy group, a sulfonic acid group, or a salt of a sulfonic acid group,
    n represents a natural number from 0 to 4,
    R 8 and R 12 are each independently a hydroxyl group, a halogen atom, an amino group, a C1-6 alkyl group, a C1-6 alkenyl group, a C1-6 alkynyl group, a C1-6 alkoxy group, or a C1-6 alkoxycarbonyl group. , A carboxy group, a salt of a carboxy group, a sulfonic acid group, or a salt of a sulfonic acid group,
    R 10 represents a hydroxyl group or an optionally substituted nitrogen atom, and
    X represents an oxygen atom or an optionally substituted silicon atom;
    R 13 represents a hydrogen atom or a hydroxyl group,
    R 14 and R 15 represent a hydrogen atom, a hydroxyl group or an oxygen atom,
    A solid line and a dotted line represent a single bond when R 14 or R 15 to be bonded is a hydrogen atom or a hydroxyl group, respectively, and a double bond when R 14 or R 15 to be bonded is an oxygen atom,
    Here, the nitrogen atom which may be substituted and the substituent of the silicon atom which may be substituted are the same or different, and each may be a C1-6 alkyl group which may be substituted. The substituents of the C1-6 alkyl group which may be the same or different are each a halogen atom, a carboxylic acid, a carboxylic acid salt, a sulfonic acid, or a sulfonic acid salt.
  4.  請求項3に記載の式(V)で表される化合物であって、
     Rが、水素原子又はハロゲン原子を表し、
     Rが、酸素原子又は置換されていても良い窒素原子を表し、
     Rが、水素原子又はハロゲン原子を表し、
     Rが、水酸基又は置換されていても良い窒素原子を表し、
     Rが、水素原子又はハロゲン原子を表し、
     Rが、水酸基又は置換されていても良い窒素原子を表し、
     R7が、メチル基又はメトキシ基を表し、かつ、
     Xは、酸素原子であるか、又は置換されていても良い珪素原子を表し、
     ここで、置換されていても良い窒素原子、及び置換されていても良い珪素原子の置換基は、それぞれ同一又は異なって、C1~6アルキル基である、。
     R13が、水素原子又は水酸基を表し、
     R14及びR15が、水素原子、水酸基又は酸素原子を表し、
     実線と点線で示した線は、それぞれ、結合するR14又はR15が水素原子又は水酸基のときは単結合を表し、結合するR14又はR15が酸素原子のときは二重結合を表す化合物。
    A compound represented by the formula (V) according to claim 3,
    R 1 represents a hydrogen atom or a halogen atom,
    R 2 represents an oxygen atom or an optionally substituted nitrogen atom,
    R 3 represents a hydrogen atom or a halogen atom,
    R 4 represents a hydroxyl group or an optionally substituted nitrogen atom,
    R 5 represents a hydrogen atom or a halogen atom,
    R 6 represents a hydroxyl group or an optionally substituted nitrogen atom,
    R7 represents a methyl group or a methoxy group, and
    X represents an oxygen atom or an optionally substituted silicon atom;
    Here, the optionally substituted nitrogen atom and the optionally substituted silicon atom substituent are the same or different and each is a C1-6 alkyl group.
    R 13 represents a hydrogen atom or a hydroxyl group,
    R 14 and R 15 represent a hydrogen atom, a hydroxyl group or an oxygen atom,
    A solid line and a dotted line represent a single bond when R 14 or R 15 to be bonded is a hydrogen atom or a hydroxyl group, and a double bond when R 14 or R 15 to be bonded is an oxygen atom, respectively. .
  5.  Lが、エステル結合、アミド結合、又はスルホンアミド結合により、A及びFと結合し、置換されていても良い、直鎖又は分岐状のC2~14のアルキレン鎖を有する、請求項1~請求項4のいずれか1項に記載の化合物。 L is linked to A and F by an ester bond, an amide bond, or a sulfonamide bond, and has a linear or branched C2-14 alkylene chain which may be substituted. 5. The compound according to any one of 4.
  6.  請求項5に記載の化合物化合物であって、Lが、
    -NH-(CH-(CHR21-(CH-NHCO-、又は
    -NH-(CH-(CHR21-(CH-NHSO
    で表される基である化合物
    [式中、p及びrは、それぞれ、同一又は異なって、2~10の自然数であり、
     qは0又は1であり、かつ、
     R21は、カルボン酸基、又は-CONH-(CH-SOH基である]。
    6. A compound compound according to claim 5, wherein L is
    —NH— (CH 2 ) p — (CHR 21 ) q — (CH 2 ) r —NHCO—, or —NH— (CH 2 ) p — (CHR 21 ) q — (CH 2 ) r —NHSO 2
    A compound represented by the formula: wherein p and r are the same or different and are each a natural number of 2 to 10;
    q is 0 or 1, and
    R 21 is a carboxylic acid group or a —CONH— (CH 2 ) 2 —SO 3 H group].
  7.  下記式(VII)~(IX)のいずれか1つで表される化合物:
    Figure JPOXMLDOC01-appb-C000005
    [上記式中、R、R、R、R、R、及びR11は、同一又は異なって、それぞれ、水素原子、ハロゲン原子、スルホン酸基、スルホン酸基の塩、C1~6アルキル基、又はC1~6アルケニル基を表し、
     Rは、酸素原子又は置換されていても良い窒素原子を表し、
     Rは、水酸基又は置換されていても良い窒素原子を表し、
     Rは、置換されていても良いC1~6アルキル基、置換されていても良いC1~6アルコキシ基、カルボキシ基、カルボキシ基の塩、スルホン酸基、又はスルホン酸基の塩を表し、
     nは0~4の自然数を表し、
     R及びR12は、それぞれ独立して、水酸基、ハロゲン原子、アミノ基、C1~6アルキル基、C1~6アルケニル基、C1~6アルキニル基、C1~6アルコキシ基、C1~6アルコキシカルボニル基、カルボキシ基、カルボキシ基の塩、スルホン酸基、又はスルホン酸基の塩を表し、
     R10は、水酸基又は置換されていても良い窒素原子を表し、かつ、
     Xは、酸素原子であるか、又は置換されていても良い珪素原子を表し、
     R13は水素原子又は水酸基を表し、
     R14及びR15は水素原子、水酸基又は酸素原子を表し、
     実線と点線で示した線は、それぞれ、結合するR14又はR15が水素原子又は水酸基のときは単結合を表し、結合するR14又はR15が酸素原子のときは二重結合を表し、
     ここで、置換されていても良い窒素原子、及び置換されていても良い珪素原子の置換基は、同一又は異なって、それぞれ、置換されていても良いC1~6アルキル基であり、置換されていても良いC1~6アルキル基の置換基は、同一又は異なって、それぞれ、ハロゲン原子、カルボン酸、カルボン酸の塩、スルホン酸、又はスルホン酸の塩である]。
    A compound represented by any one of the following formulas (VII) to (IX):
    Figure JPOXMLDOC01-appb-C000005
    [In the above formula, R 1 , R 3 , R 4 , R 6 , R 9 , and R 11 are the same or different and each represents a hydrogen atom, a halogen atom, a sulfonic acid group, a salt of a sulfonic acid group, C1˜ Represents a 6 alkyl group or a C1-6 alkenyl group,
    R 2 represents an oxygen atom or an optionally substituted nitrogen atom,
    R 5 represents a hydroxyl group or an optionally substituted nitrogen atom,
    R 7 represents an optionally substituted C1-6 alkyl group, an optionally substituted C1-6 alkoxy group, a carboxy group, a salt of a carboxy group, a sulfonic acid group, or a salt of a sulfonic acid group,
    n represents a natural number from 0 to 4,
    R 8 and R 12 are each independently a hydroxyl group, a halogen atom, an amino group, a C1-6 alkyl group, a C1-6 alkenyl group, a C1-6 alkynyl group, a C1-6 alkoxy group, or a C1-6 alkoxycarbonyl group. , A carboxy group, a salt of a carboxy group, a sulfonic acid group, or a salt of a sulfonic acid group,
    R 10 represents a hydroxyl group or an optionally substituted nitrogen atom, and
    X represents an oxygen atom or an optionally substituted silicon atom;
    R 13 represents a hydrogen atom or a hydroxyl group,
    R 14 and R 15 represent a hydrogen atom, a hydroxyl group or an oxygen atom,
    A solid line and a dotted line represent a single bond when R 14 or R 15 to be bonded is a hydrogen atom or a hydroxyl group, respectively, and a double bond when R 14 or R 15 to be bonded is an oxygen atom,
    Here, the nitrogen atom which may be substituted and the substituent of the silicon atom which may be substituted are the same or different, and each may be a C1-6 alkyl group which may be substituted. The substituents of the C1-6 alkyl group which may be the same or different are each a halogen atom, a carboxylic acid, a carboxylic acid salt, a sulfonic acid, or a sulfonic acid salt.
  8.  請求項1~請求項6のいずれか1項に記載の化合物を含む、トランスポーター機能測定用キット。 A transporter function measurement kit comprising the compound according to any one of claims 1 to 6.
  9.  被検物質がOATP1B1及び/又はOATP1B3により輸送されるか否かを決定する方法であって、以下のステップを備える方法:
     該被検物質及び請求項1~請求項6のいずれか1項に記載の化合物をOATP1B1及び/又はOATP1B3発現細胞に接触させるステップ、
     前記細胞内に取り込まれなかった、該被検物質及び請求項1~請求項6のいずれか1項に記載の化合物を除去するステップ、若しくは、前記細胞培養物にクエンチャーを添加して、細胞内に取り込まれなかった請求項1~請求項6のいずれか1項に記載の化合物を消光させるステップ、
     細胞内に取り込まれた請求項1~請求項6のいずれか1項に記載の化合物の蛍光強度を測定するステップ、及び
     得られた蛍光強度が該被検物質の非存在下で請求項1~請求項6のいずれか1項に記載の化合物を同様にしてOATP1B1及び/又はOATP1B3発現細胞に接触させた細胞内に取り込まれた請求項1~請求項6のいずれか1項に記載の化合物の蛍光強度と比較して、小さい場合には該被検物質がOATP1B1及び/又はOATP1B3により輸送されると決定するステップ。
    A method for determining whether a test substance is transported by OATP1B1 and / or OATP1B3, the method comprising the following steps:
    Contacting the test substance and the compound according to any one of claims 1 to 6 with OATP1B1 and / or OATP1B3-expressing cells;
    A step of removing the test substance and the compound according to any one of claims 1 to 6 that have not been taken up into the cell, or adding a quencher to the cell culture, Quenching the compound according to any one of claims 1 to 6, which is not incorporated in
    The step of measuring the fluorescence intensity of the compound according to any one of claims 1 to 6 incorporated into cells, and the obtained fluorescence intensity in the absence of the test substance. The compound according to any one of claims 1 to 6, wherein the compound according to any one of claims 6 to 6 is taken into a cell contacted with an OATP1B1 and / or OATP1B3 expressing cell in the same manner. A step of determining that the test substance is transported by OATP1B1 and / or OATP1B3 when it is smaller than the fluorescence intensity.
  10.  被検物質がOATP1B1及び/又はOATP1B3により輸送されるか否かを決定する方法であって、以下のステップを備える方法:
     該被検物質及び請求項1~請求項6のいずれか1項に記載の化合物をOATP1B1及び/又はOATP1B3発現細胞培養物に接触させるステップ、
     前記細胞内に取り込まれなかった、該被検物質及び請求項1~請求項6のいずれか1項に記載の化合物を除去するステップ、若しくは、前記細胞培養物にクエンチャーを添加して、細胞内に取り込まれなかった請求項1~請求項6のいずれか1項に記載の化合物を消光させるステップ、
     細胞内に取り込まれた請求項1~請求項6のいずれか1項に記載の化合物の蛍光強度を測定するステップ、及び
     得られた蛍光強度が該被検物質の非存在下で請求項1~請求項6のいずれか1項に記載の化合物を同様にしてOATP1B1及び/又はOATP1B3発現細胞に接触させた細胞内に取り込まれた請求項1~請求項6のいずれか1項に記載の化合物の蛍光強度と比較して、小さい場合には該被検物質がOATP1B1及び/又はOATP1B3により輸送されると決定するステップ。
    A method for determining whether a test substance is transported by OATP1B1 and / or OATP1B3, the method comprising the following steps:
    Contacting the test substance and the compound according to any one of claims 1 to 6 with an OATP1B1 and / or OATP1B3-expressing cell culture,
    A step of removing the test substance and the compound according to any one of claims 1 to 6 that have not been taken up into the cell, or adding a quencher to the cell culture, Quenching the compound according to any one of claims 1 to 6, which is not incorporated in
    The step of measuring the fluorescence intensity of the compound according to any one of claims 1 to 6 incorporated into cells, and the obtained fluorescence intensity in the absence of the test substance. The compound according to any one of claims 1 to 6, wherein the compound according to any one of claims 6 to 6 is taken into a cell contacted with an OATP1B1 and / or OATP1B3 expressing cell in the same manner. A step of determining that the test substance is transported by OATP1B1 and / or OATP1B3 when it is smaller than the fluorescence intensity.
PCT/JP2018/020440 2017-05-29 2018-05-29 Novel fluorescent substance for transporter function analysis WO2018221479A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017105444A JP2018199648A (en) 2017-05-29 2017-05-29 Novel transporter function-analyzing fluorescent substance
JP2017-105444 2017-05-29

Publications (1)

Publication Number Publication Date
WO2018221479A1 true WO2018221479A1 (en) 2018-12-06

Family

ID=64455071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020440 WO2018221479A1 (en) 2017-05-29 2018-05-29 Novel fluorescent substance for transporter function analysis

Country Status (2)

Country Link
JP (1) JP2018199648A (en)
WO (1) WO2018221479A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072891A (en) * 1993-05-08 1995-01-06 Hoechst Ag Monomer bile acid derivative, its preparation and use of this compound as medicine
WO2002012267A1 (en) * 2000-08-10 2002-02-14 Norgine Europe Bv Method for the production of fluorescein bile acid derivatives
GB2459976A (en) * 2008-05-15 2009-11-18 Norgine Bv Determining functional activity of MRP2 and/or MRP3 efflux pathway
WO2014029756A1 (en) * 2012-08-20 2014-02-27 Novassay Sa Cholyl-l-lysyl-fluorescein assay
CN105541955A (en) * 2015-12-16 2016-05-04 中国药科大学 23-hydroxybetulinic acid fluorescent probe and its preparation method and use in cellular localization and uptake
WO2017035501A1 (en) * 2015-08-27 2017-03-02 Academia Sinica Sialyltransferase inhibitors and uses thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072891A (en) * 1993-05-08 1995-01-06 Hoechst Ag Monomer bile acid derivative, its preparation and use of this compound as medicine
WO2002012267A1 (en) * 2000-08-10 2002-02-14 Norgine Europe Bv Method for the production of fluorescein bile acid derivatives
GB2459976A (en) * 2008-05-15 2009-11-18 Norgine Bv Determining functional activity of MRP2 and/or MRP3 efflux pathway
WO2014029756A1 (en) * 2012-08-20 2014-02-27 Novassay Sa Cholyl-l-lysyl-fluorescein assay
WO2017035501A1 (en) * 2015-08-27 2017-03-02 Academia Sinica Sialyltransferase inhibitors and uses thereof
CN105541955A (en) * 2015-12-16 2016-05-04 中国药科大学 23-hydroxybetulinic acid fluorescent probe and its preparation method and use in cellular localization and uptake

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
BARBER, J. A. ET AL.: "Quantification of drug- induced inhibition of canalicular cholyl-1-lysyl- fluorescein excretion from hepatocytes by high content cell imaging", TOXICOLOGICAL SCIENCES, vol. 148, no. 1, 2015, pages 48 - 59, XP055570388, ISSN: 1096-0929 *
BAXTER, D. J. ET AL.: "Biliary lipid output by isolated perfused rat livers in response to cholyl- lysylfluorescein", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1256, no. 3, 1995, pages 374 - 380, XP000615216, ISSN: 0925-4439 *
CANTORE, M. ET AL.: "The Src Family Kinase Fyn Mediates Hyperosmolarity-induced Mrp2 and Bsep Retrieval from Canalicular Membrane", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 286, no. 52, 2011, pages 45014 - 45029, XP055570395, ISSN: 0021-9258 *
DATABASE Registry CAS; 19 June 2018 (2018-06-19), Database accession no. 787542-95-4 *
DE MEY, C. ET AL.: "Effects of renal insufficiency on the elimination of fluorescein lisicol (NRL972), an investigational marker of hepatic transporter function", INTERNATIONAL JOURNAL OF CLINICAL PHARMACOLOGY AND THERAPEUTICS, vol. 53, no. 7, 2015, pages 523 - 530, ISSN: 0946-1965 *
DE WAART, D. R . ET AL.: "Hepatic transport mechanisms of cholyl-L-lysyl-fluorescein", JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, vol. 334, no. 1, 2010, pages 78 - 86, XP055090728, ISSN: 0022-3565 *
GUO, H. ET AL.: "Competitive affinity-based proteome profiling and imaging to reveal potential cellular targets of betulinic acid", CHEMICAL COMMUNICATIONS, vol. 53, no. 69, 7 August 2017 (2017-08-07), Cambridge, United Kingdom, pages 9620 - 9623, XP055570447, ISSN: 1359-7345 *
HOLZINGER, F. ET AL.: "Transport of fluorescent bile acids by the isolated perfused rat liver: kinetics, sequestration, and mobilization", HEPATOLOGY ( PHILADELPHIA), vol. 28, no. 2, 1998, pages 510 - 520, XP055570400, ISSN: 0270-9139 *
MAITRA, U. ET AL.: "Bile acid derived PET-based cation sensors: molecular structure dependence of their sensitivity", CHEMISTRY - AN ASIAN JOURNAL, vol. 4, no. 6, 2009, pages 989 - 997, XP055570434, ISSN: 1861-4728 *
MILKIEWICZ, P. ET AL.: "Visualization of the transport of primary and secondary bile acids across liver tissue in rats: In vivo study with fluorescent bile acids", JOURNAL OF HEPATOLOGY, vol. 34, no. 1, 2001, pages 4 - 10, XP027303116, ISSN: 0168-8278 *
MILLS, C. 0. ET AL.: "Different pathways of canalicular secretion of sulfated and non-sulfated fluorescent bile acids: A study in isolated hepatocyte couplets and TR - rats", JOURNAL OF HEPATOLOGY, vol. 31, no. 4, October 1999 (1999-10-01), pages 678 - 684, XP085003936, ISSN: 0168-8278 *
SUN, J. ET AL.: "Biological deoxycholic acid- coumarin conjugates: photo-switchable structures and self-assembly morphology", TETRAHEDRON LETTERS, vol. 57, no. 19, 2016, pages 2125 - 2128, XP029512949, ISSN: 0040-4039 *

Also Published As

Publication number Publication date
JP2018199648A (en) 2018-12-20

Similar Documents

Publication Publication Date Title
JP5228190B2 (en) Peroxynitrite fluorescent probe
US10006913B2 (en) Fluorescent-HAP: a diagnostic stain for HBV cores in cells
Cardoso et al. Chain length effect on the binding of amphiphiles to serum albumin and to POPC bilayers
US10113968B2 (en) Specific detection and quantification of cardiolipin and isolated mitochondria by positively charged AIE fluorogens and method of manufacturing thereof
Wawrzinek et al. DBD dyes as fluorescence lifetime probes to study conformational changes in proteins
US20220144860A1 (en) Fluorescent gtp analogues and use
Zhou et al. Investigation of the molecular characteristics of bisindole inhibitors as HIV-1 glycoprotein-41 fusion inhibitors
EP3833715A2 (en) Silicon-substituted rhodamine dyes and dye conjugates
Chong et al. Pro-fluorescent mitochondria-targeted real-time responsive redox probes synthesised from carboxy isoindoline nitroxides: Sensitive probes of mitochondrial redox status in cells
WO2018221479A1 (en) Novel fluorescent substance for transporter function analysis
AU2002334874B2 (en) Substituted diphenyloxazoles, the synthesis thereof, and the use thereof as fluorescence probes
JP5561692B2 (en) Novel fluorescent compound and method for detecting intracellular cholesterol using the same
CN107033100B (en) A kind of benzothiazole derivant, preparation method and its medical usage
Polshakov et al. NMR screening and studies of target–ligand interactions
Aoki et al. Design and synthesis of a photocleavable biotin-linker for the photoisolation of ligand–receptor complexes based on the photolysis of 8-quinolinyl sulfonates in aqueous solution
Фалетров et al. Interaction of nitrobenzoxadiazole derivatives of piperazine and aniline with bovine serum albumine in silico and in vitro
Goretta et al. Effects of chemical modification of sphingomyelin ammonium group on formation of liquid-ordered phase
JP6449632B2 (en) Fluorescein derivative or salt thereof, fluorescent probe for measuring glutathione-S-transferase, and method for measuring glutathione-S-transferase activity using the same
EP2396418A1 (en) Methods for the detection of fatty-acylated proteins
JP2007055956A (en) New quinoline compound as fluorescent labeling reagent and hydrophobic site-detecting reagent
JP7058081B2 (en) Cyclin-dependent kinase substrate
JP5229700B2 (en) Novel fluorescent compound and method for detecting intracellular cholesterol using the same
CN102621299B (en) Method for detecting tacrolimus
WO2016114722A1 (en) Alpha-cell selective probe for ex-vivo two photon imaging of alpha cells in intact pancreatic islets
CN103012193B (en) Leucogentian violet haptens, artificial antigen and preparation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18810199

Country of ref document: EP

Kind code of ref document: A1