WO2018221306A1 - Combustion chamber structure for engines - Google Patents

Combustion chamber structure for engines Download PDF

Info

Publication number
WO2018221306A1
WO2018221306A1 PCT/JP2018/019593 JP2018019593W WO2018221306A1 WO 2018221306 A1 WO2018221306 A1 WO 2018221306A1 JP 2018019593 W JP2018019593 W JP 2018019593W WO 2018221306 A1 WO2018221306 A1 WO 2018221306A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
engine
chamber structure
intake
piston
Prior art date
Application number
PCT/JP2018/019593
Other languages
French (fr)
Japanese (ja)
Inventor
今村 悟志
真生 福馬
康志 中原
井上 淳
浩太 松本
義治 植木
通治 河野
雄哉 本田
謙斗 大西
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017205154A external-priority patent/JP6566000B2/en
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to EP18809373.6A priority Critical patent/EP3617472A1/en
Priority to US16/618,041 priority patent/US11118499B2/en
Priority to CN201880035579.1A priority patent/CN110709594B/en
Publication of WO2018221306A1 publication Critical patent/WO2018221306A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/26Pistons  having combustion chamber in piston head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J1/00Pistons; Trunk pistons; Plungers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/102Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the spark plug being placed offset the cylinder centre axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/108Swirl flow, i.e. the axis of rotation of the main charge flow motion is vertical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a combustion chamber structure of a spark ignition type engine.
  • a configuration is employed in which fuel is injected from an injector into a combustion chamber, and an air-fuel mixture obtained by atomizing the injected fuel is ignited using an ignition plug.
  • the present invention has been made to solve the above-described problems, and can suppress the occurrence of pre-ignition even in operation in a high-load operation region, and can achieve uniform combustion in the entire combustion chamber. It is an object of the present invention to provide an engine combustion chamber structure capable of suppressing a decrease in emission performance.
  • the present invention relates to a combustion chamber structure of a spark ignition type engine, wherein a crown surface of a piston, a combustion chamber ceiling surface formed on a cylinder head, an injector and an ignition plug provided on the combustion chamber ceiling surface And an intake port and an exhaust port that are opened on the ceiling surface of the combustion chamber, and the intake air is based on the location where the ignition part of the ignition plug is disposed in a plan view from one side in the cylinder axial direction.
  • the injector injects fuel toward at least the exhaust port side when the side with the opening is the intake port side of the combustion chamber and the side with the exhaust port is the exhaust port side of the combustion chamber
  • the combustion chamber is provided with a reverse squish flow generator that draws the air-fuel mixture toward the intake port as the piston moves during the expansion stroke.
  • FIG. 1 is a schematic cross-sectional view in the cylinder axis direction showing an engine to which the combustion chamber structure of the engine according to the first embodiment is applied.
  • FIG. 2 is a cross-sectional view of the main part of the cylinder head in FIG.
  • FIG. 3 is a perspective view of the piston of the engine in FIG.
  • FIG. 4 is a perspective view showing the arrangement of the spark plug and the injector with respect to the piston.
  • FIG. 5 is a plan view of the crown surface of the piston. 6 is a cross-sectional view taken along line VI-VI in FIG. 7 is a cross-sectional view taken along line VII-VII in FIG.
  • FIG. 8 is a time chart showing the relationship between the fuel injection period, the ignition timing, and the crank angle.
  • FIG. 1 is a schematic cross-sectional view in the cylinder axis direction showing an engine to which the combustion chamber structure of the engine according to the first embodiment is applied.
  • FIG. 2 is a cross-sectional view of the main part of
  • FIG. 9 is a cross-sectional view showing the combustion chamber in a state where the piston is near the compression top dead center.
  • FIG. 10A is a cross-sectional view showing the combustion chamber in a state where the piston is near the compression top dead center.
  • FIG. 10B is a cross-sectional view showing the combustion chamber in a state where the piston is lowered after compression top dead center.
  • FIG. 11 is a cross-sectional view showing the swirl flow generated in the combustion chamber and the arrangement of ignition parts in the spark plug.
  • FIG. 12 is a plan view showing the fuel injected into the combustion chamber and the swirl flow generated in the combustion chamber.
  • FIG. 13 is a cross-sectional view of the main part of the cylinder head of the engine to which the engine combustion chamber structure according to the second embodiment is applied.
  • FIG. 10A is a cross-sectional view showing the combustion chamber in a state where the piston is near the compression top dead center.
  • FIG. 10B is a cross-sectional view showing the combustion chamber in a state
  • FIG. 14 is a plan view of the combustion chamber ceiling surface.
  • FIG. 15 is a perspective view showing the arrangement of the spark plug and the injector with respect to the piston.
  • FIG. 16 is a plan view showing the arrangement of the spark plug and the injector with respect to the piston.
  • FIG. 17 is a plan view of the crown surface of the piston.
  • FIG. 18 is a front view of the piston (viewed from the intake port side).
  • FIG. 19 is a rear view of the piston (viewed from the exhaust port side).
  • FIG. 23 is a perspective view of the piston (a perspective view seen from the exhaust port side).
  • FIG. 24 is a perspective view of the piston (a perspective view seen from the intake port side).
  • FIG. 25 is a cross-sectional view showing the combustion chamber when the piston is at top dead center.
  • FIG. 26 is a cross-sectional view showing the combustion chamber in the compression stroke.
  • FIG. 27 is a cross-sectional view for explaining the relationship between the flow of intake air and the injector (nozzle head).
  • FIG. 28 is a cross-sectional view of a principal part of an engine to which the engine combustion chamber structure according to the third embodiment is applied.
  • FIG. 29 is a perspective view of the piston.
  • FIG. 30 is a plan view of the crown surface of the piston.
  • FIG. 31 is a cross-sectional view taken along line XXXI-XXXI in FIG. 32 is a sectional view taken along line XXXII-XXXII in FIG.
  • FIG. 33 is a time chart showing the relationship between the fuel injection period, ignition timing, and crank angle according to mode III.
  • FIG. 1 is a schematic sectional view showing an engine to which the combustion chamber structure of the engine according to the first embodiment is applied
  • FIG. 2 is a sectional view of a main part of the cylinder head shown in FIG.
  • XYZ direction indications are given.
  • the Z direction is the cylinder axis direction
  • the Y direction is the extending direction of the crankshaft
  • the X direction is a direction orthogonal to both the Z direction and the Y direction.
  • the engine according to this embodiment includes a cylinder and a piston, and is a multi-cylinder engine mounted on a vehicle as a power source for driving the vehicle such as an automobile.
  • the engine includes an engine main body 1 and auxiliary equipment such as various intake and exhaust manifolds and various pumps that are assembled to the engine main body 1.
  • the fuel supplied to the engine body 1 is mainly composed of gasoline.
  • the engine main body 1 includes a normal SI (Spark Ignition) combustion in which an air-fuel mixture in a combustion chamber is forcibly ignited by an ignition plug, and a fuel injection timing in the SI combustion is set to be near a compression top dead center (TDC). It is possible to execute retarded SI combustion, and SICI combustion that combines SI combustion and CI (compression ignition) combustion.
  • SI combustion fuel is injected in the middle of the intake stroke, and the mixture is forcibly ignited in the vicinity of TDC in the compression stroke.
  • the retarded SI combustion fuel is injected before and after the TDC of the compression stroke, and the air-fuel mixture is forcibly ignited at the beginning of the subsequent expansion stroke.
  • SICI combustion the air-fuel mixture in the combustion chamber is forcibly ignited and combusted by flame propagation, and the unburned air-fuel mixture in the combustion chamber is combusted by self-ignition.
  • SI combustion is selected in a high rotation / high load region of the engine, retarded SI combustion is selected in a low rotation / high load region, and SICI combustion is selected in a low load region regardless of the rotational speed.
  • the engine body 1 includes a cylinder block 3, a cylinder head 4, and a piston 5.
  • the cylinder block 3 has a plurality of cylinders 2 (cylinder / only one of them is shown in the figure) arranged in a direction perpendicular to the paper surface of FIG.
  • the cylinder head 4 is mounted on the cylinder block 3 and closes the upper opening of the cylinder 2.
  • the piston 5 is accommodated in each cylinder 2 so as to be slidable back and forth, and is connected to the crankshaft 7 via a connecting rod 8. As the piston 5 reciprocates, the crankshaft 7 rotates about its central axis. The structure of the piston 5 will be described later.
  • a combustion chamber 6 is formed above the piston 5.
  • An intake port 9 and an exhaust port 10 communicating with the combustion chamber 6 are formed in the cylinder head 4.
  • the bottom surface 4a of the cylinder head 4 is a combustion chamber ceiling surface 6U.
  • the combustion chamber ceiling surface 6U has a pent roof type shape (flat pent roof type shape) slightly convex upward.
  • An intake side opening (intake port) 41 that is the downstream end of the intake port 9 and an exhaust side opening (exhaust port) 42 that is the upstream end of the exhaust port 10 are formed in the combustion chamber ceiling surface 6U.
  • the cylinder head 4 is assembled with an intake valve 11 for opening and closing the intake side opening 41 and an exhaust valve 12 for opening and closing the exhaust side opening 42.
  • the engine body 1 is a double overhead camshaft (DOHC) engine, and two intake side openings 41 and two exhaust side openings 42 are provided for each cylinder 2 and intake air is provided. Two valves 11 and two exhaust valves 12 are also provided.
  • DOHC double overhead camshaft
  • the intake valve 11 and the exhaust valve 12 are so-called poppet valves.
  • the intake valve 11 includes an umbrella-shaped valve body 11a that opens and closes the intake-side opening 41, and a stem 11b that extends perpendicularly from the valve body 11a.
  • the exhaust valve 12 includes an umbrella-shaped valve body 12a that opens and closes the exhaust-side opening 42, and a stem 12b that extends perpendicularly from the valve body 12a.
  • the valve body 11 a of the intake valve 11 has a valve surface 11 c that faces the combustion chamber 6.
  • the valve body 12 a of the exhaust valve 12 has a valve surface 12 c that faces the combustion chamber 6.
  • the combustion chamber wall surfaces defining the combustion chamber 6 are the inner wall surface of the cylinder 2, the crown surface 50 that is the upper surface (+ Z side surface) of the piston 5, the bottom surface 4 a of the cylinder head 4, and the valve of the intake valve 11. It consists of a surface 11 c and a valve surface 12 c of the exhaust valve 12. That is, the cylinder block 3, the cylinder head 4, the piston 5, and the valves 11 and 12 can be said to be combustion chamber constituent members that constitute the combustion chamber 6.
  • the cylinder head 4 is provided with an intake side valve mechanism 13 and an exhaust side valve mechanism 14 for driving the intake valve 11 and the exhaust valve 12, respectively.
  • the valve mechanisms 13 and 14 drive the intake valve 11 and the exhaust valve 12 in conjunction with the rotation of the crankshaft 7.
  • the valve body 11 a of the intake valve 11 opens and closes the intake side opening 41
  • the valve body 12 a of the exhaust valve 12 opens and closes the exhaust side opening 42.
  • the intake side valve mechanism 13 incorporates an intake side variable valve timing mechanism (intake side VVT) 15. Further, an exhaust side variable valve timing mechanism (exhaust side VVT) 16 is incorporated in the exhaust side valve mechanism 14.
  • the intake side VVT15 is an electric VVT provided on the intake camshaft
  • the exhaust side VVT16 is an electric VVT provided on the exhaust camshaft.
  • the intake side VVT 15 changes the opening / closing timing of the intake valve 11 by continuously changing the rotational phase of the intake cam shaft with respect to the crankshaft 7 within a predetermined angle range
  • the exhaust side VVT 16 The opening / closing timing of the exhaust valve 12 is changed by continuously changing the rotational phase of the cam shaft within a predetermined angle range.
  • one ignition plug 17 for supplying ignition energy to the air-fuel mixture in the combustion chamber 6 is attached to each cylinder 2.
  • the spark plug 17 is provided with an ignition part 17A at the tip thereof, and is attached to the cylinder head 4 so that the ignition part 17A faces the combustion chamber 6.
  • the spark plug 17 discharges a spark from its tip in response to power supply from an ignition circuit (not shown), and ignites the air-fuel mixture in the combustion chamber 6.
  • the cylinder head 4 (combustion chamber ceiling 6U) is provided with one injector 18 (fuel injection valve) for each cylinder 2 for injecting fuel mainly composed of gasoline into the combustion chamber 6 from the tip. Yes.
  • a fuel supply pipe 19 is connected to the injector 18, and the fuel supplied through the fuel supply pipe 19 is injected into the combustion chamber 6 (injected fuel 18E).
  • fuel can be injected from the injector 18 toward at least the exhaust port side (+ X side) in the combustion chamber 6.
  • a high-pressure fuel pump including a plunger-type pump linked to the crankshaft 7 is connected to the upstream side of the fuel supply pipe 19.
  • a common rail for pressure accumulation common to all the cylinders 2 is provided between the high-pressure fuel pump and the fuel supply pipe 19.
  • FIGS. 3 to 7 the structure of the piston 5, particularly the structure of the crown surface 50, will be described in detail.
  • 3 is a perspective view of the piston 5
  • FIG. 4 is a perspective view showing the positional relationship between the crown surface 50 of the piston 5, the spark plug 17 and the injector 18, and
  • FIG. 5 is a plan view of the crown surface 50.
  • 6 is a cross-sectional view taken along line VI-VI in FIG. 5
  • FIG. 7 is a cross-sectional view taken along line VII-VII in FIG.
  • the piston 5 includes a piston head 5A and a skirt portion 5S connected to the lower side ( ⁇ Z side) thereof.
  • the piston head 5 ⁇ / b> A is formed of a cylindrical body, and includes a crown surface 50 constituting a part (bottom surface) of the wall surface of the combustion chamber 6 on the upper surface and a side peripheral surface that is in sliding contact with the inner wall surface of the cylinder 2.
  • the skirt portion 5S is disposed on the + X side and the ⁇ X side of the piston head 5A, and suppresses swinging of the piston 5 when the piston 5 reciprocates.
  • a piston boss 5B that defines a pin hole extending in the Y direction is provided below the piston head 5A.
  • the piston pin 81 is inserted through the pin hole of the piston boss 5B.
  • the piston pin 81 is a pin that connects the small end portion 8 ⁇ / b> S of the connecting rod 8 and the piston 5.
  • the crown surface 50 is a surface facing the combustion chamber ceiling surface 6U in the Z direction, and includes a substantially annular cavity 5C at a substantially central portion in the radial direction (X direction and Y direction).
  • the cavity 5C is a portion recessed on the ⁇ Z side, and is a portion that receives fuel injection from the injector 18.
  • an intake side plane portion 55, an exhaust side plane portion 56 and a pair of side upper surfaces 57 are arranged.
  • the intake side plane portion 55 is a plane provided in a region adjacent to the ⁇ X side of the cavity 5C
  • the exhaust side plane portion 56 is a plane provided in a region adjacent to the + X side of the cavity 5C
  • the pair of side upper surfaces 57 are It is a generally flat surface adjacent to the + Y side and the ⁇ Y side of the cavity 5C.
  • a convex portion 53 that protrudes to the + Z side from the bottom portion of the cavity 5C is provided in the inner portion of the cavity 5C.
  • the intake side flat surface portion 55 is provided along a slight gap along the intake side top surface 43 of the cylinder head 4 shown in FIG. 2 when the piston 5 is near the top dead center (TDC).
  • the exhaust side flat surface portion 56 is provided along the exhaust side top surface 44 of the cylinder head 4 shown in FIG. 2 when the piston 5 is in the vicinity of the top dead center (TDC).
  • a reverse squish flow generation unit is configured by a combination of the intake side flat portion 55 and the intake side top surface 43.
  • the reverse squish flow generating portion is a radial outer edge region from the radial central region of the combustion chamber 6 when the piston 5 descends to the ⁇ Z side from the state near the top dead center (TDC). This is the part that generates the flow of the air-fuel mixture toward
  • the cavity 5 ⁇ / b> C includes a small cavity 51 and a large cavity 52.
  • the small cavity 51 is recessed at a position corresponding to the ignition part 17A of the spark plug 17, that is, a position directly below the ignition part 17A.
  • the large cavity 52 is recessed at a position adjacent to the small cavity 51, and has a larger projected area than the small cavity 51 in a plan view from the + Z side.
  • the projected area of the large cavity 52 is about 8 times larger than the projected area of the small cavity 51.
  • the convex portion 53 is disposed near the center of the crown surface 50 in the XY direction.
  • the convex portion 53 is provided at a substantially central portion of the combustion chamber 6 in the XY plane direction, and is convexly provided at a position directly below the nozzle head 18N of the injector 18 (see FIG. 4).
  • the small cavity 51 includes a first peripheral edge 511 that is an outer peripheral edge defining the small cavity 51.
  • the large cavity 52 includes a second peripheral edge 521 that is an outer peripheral edge that defines the large cavity 52.
  • the first peripheral edge 511 has a substantially fan shape in plan view from the + Z side, and becomes a boundary line between the convex portion 53, the intake side flat portion 55, and the large cavity 52.
  • the second peripheral edge 521 has a substantially C shape in plan view from the + Z side. That is, the large cavity 52 has a substantially C shape when the crown surface 50 is viewed from the + Z side.
  • the second peripheral edge 521 is a boundary line between the convex portion 53, the intake side flat portion 55, the exhaust side flat portion 56, and the small cavity 51.
  • a part of the first peripheral edge 511 is a common peripheral edge part also serving as a part of the second peripheral edge 521.
  • the first peripheral edge 511 of the small cavity 51 is partly in contact with a part of the second peripheral edge 521 of the large cavity 52.
  • the portion of the first peripheral edge 511 excluding the arc-shaped portion that forms a boundary with the convex portion 53 and the intake-side flat surface portion 55 is common to a part of the second peripheral edge 521.
  • a part of the second peripheral edge 521 corresponds to a C-shaped open portion (open end edge).
  • the common peripheral edge is a ridge line 54 protruding upward as shown in FIG. That is, in the present embodiment, the small cavity 51 and the large cavity 52 are adjacent to each other with the ridge line 54 as a boundary.
  • the large cavity 52 has a C shape surrounding the substantially circular convex portion 53 in a plan view from the + Z side.
  • the small cavity 51 is formed at a position between the large cavity 52 and the C-shaped open portion.
  • a substantially annular cavity 5 ⁇ / b> C surrounding the periphery of the convex portion 53 is formed on the crown surface 50 by the small cavity 51 and the large cavity 52.
  • the peripheral edge portion 531 on the outer periphery of the convex portion 53 is in contact with a part of the first peripheral edge 511 of the small cavity 51 and a part of the second peripheral edge 521 of the large cavity 52.
  • the convex portion 53 is formed in a mountain shape, and the peripheral edge portion 531 is a foot of the mountain.
  • a plurality of injection holes 181 are provided radially in the nozzle head 18N of the injector 18, and fuel is injected from each injection hole of the nozzle head 18N toward the small cavity 51 and the large cavity 52. At this time, the injected fuel 18E is smoothly introduced into the cavities 51 and 52 along the first peripheral edge 511 and the second peripheral edge 521 which are inclined surfaces.
  • the depth h2 of the large cavity 52 when the intake side plane portion 55 and the exhaust side plane portion 56 are used as a reference is deeper than the depth h1 of the small cavity 51.
  • the cavity 5C is designed such that the depth of the bottom surface becomes shallower as it goes from the exhaust port side (+ X side) to the intake port side ( ⁇ X side). More specifically, the bottom surface of the cavity 5C gradually rises upward (+ Z side) as it goes from the + X side to directly below the ignition part 17A of the spark plug 17.
  • the large cavity 52 is larger than the projected area of the small cavity 51, when considering the depths (recessed depths) h1 and h2 of the cavities 51 and 52 together, The large cavity 52 is formed with a larger volume than the small cavity 51.
  • FIG. 8 is a time chart showing the relationship between the fuel injection period, the ignition timing, and the crank angle.
  • the engine body 1 establishes operation at least in the fuel injection periods and ignition timings of mode I and mode II.
  • Mode I is employed when the above-described retarded SI combustion is performed.
  • the fuel injection period PF1 is before and after the TDC of the compression stroke, and the ignition timing is at the beginning of the expansion stroke. That is, fuel injection by the injector 18 is started from the timing T11 of the crank angle ⁇ CA11 at the end of the compression stroke before TDC, and fuel injection is executed until the timing T12 of the initial crank angle + CA12 after the TDC. Thereafter, the air-fuel mixture is ignited by the spark plug 17 at a predetermined crank angle + CA13 timing T13 in the initial stage of the expansion stroke.
  • ⁇ CA11 is 15 ° before TDC (more preferably, 10 ° before TDC)
  • + CA12 is 5 ° after TDC (more preferably, 2 ° after TDC)
  • + CA13 is 8 to 10 after compression TDC.
  • ° more preferably 9 ° after TDC
  • Mode II is employed in the above-described SI combustion and SICI combustion.
  • the fuel injection period PF2 is in the middle of the intake stroke, and the ignition timing is in the vicinity of TDC in the compression stroke. That is, the timing T21 to T22 sandwiching the crank angle CA2 at which the piston 5 descends about half of the stroke from the TDC in the exhaust process is set as the fuel injection period PF2.
  • the ignition timing is a timing T23 that reaches TDC.
  • CA2 is, for example, 70 ° after TDC.
  • fuel injection may be additionally performed in addition to CA2 at the crank angle CA3 before TDC.
  • FIGS. 9, 10A, and 10B are cross-sectional views showing the combustion chamber 6 when the piston 5 is in the vicinity of the TDC
  • FIG. 10B is a cross-sectional view showing the combustion chamber 6 in a state where the piston 5 is lowered after the TDC.
  • an imaginary line LSP that passes through the ignition part 17A of the spark plug 17 and extends in the Z direction is drawn.
  • the volume of the B portion is smaller than the volume of the A portion.
  • the crown surface 50 of the piston 5 is in the state closest to the combustion chamber ceiling surface 6U. Therefore, the intake side flat portion 55 faces the intake side top surface 43 with a slight gap (see the portion indicated by the arrow C), and the exhaust side flat portion 56 also faces the exhaust side top surface 44. Facing each other with a narrow gap.
  • the exhaust side flat portion 56 and the exhaust side top surface 44 are also in a state along each other, in the piston 5 and the combustion chamber ceiling surface 6U, the opposing area of the intake side flat portion 55 and the intake side top surface 43 is the same.
  • the reverse squish flow as indicated by the arrow is generated because it is larger than the facing area between the exhaust side flat portion 56 and the exhaust side top surface 44.
  • FIG. 11 is a cross-sectional view showing the swirl flow FS generated in the combustion chamber 6
  • FIG. 12 is a plan view showing the swirl flow FS generated in the combustion chamber 6.
  • fuel is injected radially from the nozzle head 18N of the injector 18 disposed at the radial center of the combustion chamber 6 (injected fuel 18E). That is, fuel is injected from the injector 18 into the large cavity 52 on the + X side, which is the exhaust port side, and also to the small cavity 51 on the ⁇ X side, which is the intake port side. Is done.
  • the directional axis does not face the ignition portion 17A of the spark plug 17. That is, in the fuel injection toward the small cavity 51, the directing shaft passes through both sides of the ignition part 17 ⁇ / b> A of the spark plug 17. Thereby, generation
  • the back portion (base portion 174) of the ground electrode 172 in the spark plug 17 is directed to the ⁇ X side (the radially outer side of the combustion chamber 6). This also can suppress the occurrence of plug covering.
  • a swirl flow FS is generated so as to go around the outer edge portion of the annular cavity 5 ⁇ / b> C (a combination of the small cavity 51 and the large cavity 52), as indicated by the white arrow in FIG. 12. Then, the mixture of fresh air and fuel is guided to the vicinity of the ignition part 17A of the spark plug 17 by the swirl flow FS.
  • the injector 18 is configured so as to be able to inject fuel including the exhaust port side (+ X side), so even in a high load operation region where the combustion chamber 6 is at a high temperature. Atomization in a short time is possible. Therefore, in this embodiment, generation
  • region can be suppressed.
  • the mixing is performed as the piston 5 descends to the ⁇ Z side. Since the reverse squish flow generation unit that draws air to the intake port side is provided, combustion is generated using the entire oxygen in the combustion chamber 6, and it is possible to suppress a decrease in emission performance.
  • the reverse squish flow generating portion is formed by the difference in the combustion chamber volume between the B portion on the intake port side and the A portion on the exhaust port side. Therefore, as the piston 5 descends toward the -Z side during the expansion stroke, the intake port side (particularly below the ignition part 17A of the spark plug 17) becomes negative pressure, which causes atomization on the exhaust port side. The mixed gas mixture can be drawn into the portion of the spark plug 17 where the ignition portion 17A is disposed.
  • the intake-side flat surface portion 55 of the crown surface 50 of the piston 5 is along and close to each other. Therefore, a reverse squish flow can be generated in the combustion chamber 6 using the negative pressure generated in the vicinity of the ignition part 17A of the spark plug 17 after the piston 5 passes TDC.
  • combustion can be generated using the entire oxygen in the combustion chamber 6, and a reduction in emission performance can be suppressed.
  • the intake side top surface 43 and the intake side flat portion 55 are each configured as a flat surface, and therefore, manufacture is easier than in the case where these regions are configured as curved surfaces. Therefore, it is possible to provide a reverse squish flow generation unit while suppressing an increase in manufacturing cost.
  • the exhaust-side top surface 44 and the exhaust-side flat portion 56 face each other also on the exhaust port side, and as shown in FIG.
  • the exhaust side top surface 44 and the exhaust side flat surface portion 56 are brought close to each other. Therefore, it is possible to prevent the fuel from adhering to the exhaust port side of the cylinder liner during fuel injection. Therefore, in this embodiment, the generation of deposits can be suppressed.
  • the opposed area between the exhaust side top surface 44 and the exhaust side flat surface portion 56 in plan view from the + Z side is defined as the intake side top surface 43 and the intake side plane. Since the area is smaller than the area facing the portion 55, it is difficult for the generation of the reverse squish flow when the piston 5 descends toward the ⁇ Z side.
  • the cavity 5C has a depth that gradually decreases toward the ignition portion 17A of the spark plug 17. A bottom surface is formed. Therefore, when the piston 5 rises toward the + Z side, the swirl component (swirl flow FS) in the cavity 5C is lifted toward the ignition part 17A of the spark plug 17. Therefore, the mixture of fresh air and fuel is guided to the vicinity of the ignition part 17A of the spark plug 17, and the residual gas in the vicinity of the ignition part 17A can be swept away.
  • the combustion chamber 6 of the engine body 1 even when the reverse squish flow generated when the piston 5 descends toward the ⁇ Z side is used, the combustion chamber 6 faces the ignition portion 17A of the spark plug 17. The air-fuel mixture is guided smoothly.
  • a cavity 5C formed by a combination of the small cavity 51 and the large cavity 52 is formed in an annular shape in plan view. Therefore, as described with reference to FIG. 12, as the piston 5 approaches TDC, the air-fuel mixture flows from the relatively hot exhaust port side to the relatively cold intake port side, and the ignition part 17A of the spark plug 17 Guided to the neighborhood. And as shown in FIG.4 and FIG.12, in the planar view from + Z side, since the ignition part 17A of the spark plug 17 is arrange
  • the ceiling surface of the combustion chamber 6 (combustion chamber ceiling surface 6U) is formed in a pent roof shape, so that a tumble flow is formed in the combustion chamber 6. And homogeneous combustion in the entire combustion chamber 6 is possible.
  • FIG. 13 is a cross-sectional view of a main part of an engine cylinder head to which the engine combustion chamber structure according to the second embodiment is applied
  • FIG. 14 is a plan view of the combustion chamber ceiling surface.
  • the combustion chamber ceiling surface 6U has a pent roof type shape as in the first embodiment.
  • the combustion chamber ceiling surface 6U of the first embodiment is a shallow (small gradient) pent roof type as shown in FIG. 2, whereas the combustion chamber ceiling surface 6U of the second embodiment is a deep type. It is a pent roof type (large gradient). That is, the combustion chamber 6 of the second embodiment has a structure in which the compression ratio is lowered by increasing the volume of the combustion chamber 6 compared to the first embodiment.
  • each intake side opening 41 is secured while arranging the injector 18 between the two intake side openings 41.
  • the two intake side openings 41 are arranged such that a part of them is located closer to the exhaust port than the center 2 a of the cylinder 2.
  • the injector 18 (nozzle head 18N) is also arranged so as to be offset from the center 2a of the cylinder 2 to the exhaust port side.
  • the amount of offset of the injector 18 depends mainly on the main flow of the intake air that is injected from the nozzle head 18N into the combustion chamber 6 through the intake side opening 41 during the fuel injection in mode II, that is, in the middle of the intake stroke. It is set at a position where it is easy to diffuse.
  • the injector 18 is offset from the center 2a of the cylinder 2 to the exhaust port side by about 2 mm.
  • FIG. 27 is a cross-sectional view for explaining the relationship between the intake air flow in the middle stage of the intake stroke and the injector 18.
  • the main flow Ms of the intake air introduced into the combustion chamber 6 through the intake port 9 forms a tumble flow while being introduced into the combustion chamber 6 along the upper wall surface of the intake port 9.
  • the center of the injector 18 is located at the center 2a of the cylinder 2, a part of the fuel is injected from the nozzle head 18N below the main flow Ms of intake air, and the main flow Ms of intake air. It becomes difficult to ride.
  • the center of the injector 2 (nozzle head 18N) is offset from the center 2a of the cylinder 2 to the exhaust port side by about 2 mm.
  • the offset amount is the fuel injected from the injector 18.
  • the center of the injector 18 is preferably offset from the center 2a of the cylinder 2 to the exhaust port side within a range of 2 to 5% of the diameter (bore diameter) of the cylinder 2. is there.
  • the crown surface 50 of the piston 5 of the second embodiment also has the same configuration as the first embodiment in that it includes a cavity 5C, an intake side flat portion 55, an exhaust side flat portion 56, and a pair of side upper surfaces 57.
  • the specific structure differs from the first embodiment in the following points.
  • FIG. 15 is a perspective view showing the arrangement relationship of the spark plug 17 and the injector 18 with respect to the piston 5, and FIG. 16 is a plan view showing the arrangement relationship.
  • FIG. 17 is a plan view of the crown surface 50 of the piston 5.
  • FIGS. 18 to 20 are a front view of the piston 5 (viewed from the intake port side) and a rear view (viewed from the exhaust port side), respectively.
  • 21 and 22 are cross-sectional views taken along lines XXI-XXI and XXII-XXII in FIG. 17, respectively.
  • FIG. 23 is a perspective view of the piston 5 as viewed from the exhaust side
  • FIG. 24 is a perspective view of the piston 5 as viewed from the intake port side.
  • the cavity 5C of the second embodiment has a smoothly continuous shape without the small cavity 51 and the large cavity 52 being separated by the ridge line 54 (in other words, without the ridge line 54). That is, as shown in FIG. 17, the cavity 5 ⁇ / b> C includes the convex portion 53 and one annular cavity (hereinafter referred to as an annular cavity 58) that smoothly and continuously surrounds the convex portion 53. Although the annular cavity 58 is not delimited by the ridge line 54, as in the first embodiment, the bottom surface of the annular cavity 58 (cavity 5C) goes from the exhaust side to directly below the ignition portion 17A of the ignition plug 17. , Gradually rising upward (+ Z side).
  • an intake side inclined surface portion 61 is provided between the intake side flat portion 55 and the annular cavity 58 in the crown surface 50 and between the pair of side upper surfaces 57.
  • an exhaust-side slope portion 62 is provided between the exhaust-side flat portion 56 and the annular cavity 58 and between the pair of side upper surfaces 57.
  • the intake-side inclined surface portion 61 is a flat inclined surface that slopes upward from the end portion of the intake-side flat surface portion 55 toward the exhaust port side, and the exhaust-side inclined surface portion 62 is inhaled from the end portion of the exhaust-side flat surface portion 56. It is a flat slope that slopes upward toward the side. As shown in FIG. 25, when the piston 5 is at the top dead center position, the slopes 61 and 62 face each other close to the pent roof portion of the combustion chamber ceiling surface 6U and extend substantially parallel to the pent roof portion. Surface. Since the combustion chamber ceiling surface 6U is a deep pent roof type, the portion corresponding to each lateral upper surface 57 of the crown surface 50 protrudes in a frustum shape toward the combustion chamber ceiling surface 6U. In the following description, this frustum-shaped protruding portion may be referred to as a side upper surface portion 57.
  • the annular cavity 58 is formed so as to be biased toward the exhaust port side on the crown surface 50.
  • the convex portion 53 has an oval shape (oval shape) elongated in the X direction, that is, the dimension 53X in the X direction is larger than the dimension 53Y in the Y direction when viewed in the cylinder axial direction.
  • the center 53 a of the convex portion 53 is offset from the center 5 a of the crown surface 50 (center 2 a of the cylinder 2) to the exhaust port side corresponding to the injector 18. Thereby, the center of the convex part 53 is located directly under the injector 18 (nozzle head 18N).
  • the annular cavity 58 includes an inner peripheral edge 581 and an outer peripheral edge 582 which are peripheral edges that define the annular cavity 58.
  • the inner peripheral edge 581 is a boundary line with the convex portion 53
  • the outer peripheral edge 582 is a boundary line with the intake side inclined surface portion 61, the exhaust side inclined surface portion 62, and the side upper surface 57.
  • the part on the exhaust side (exhaust side outer peripheral edge 582b) from the center 5a (line XXII-XXII in FIG. 17) of the crown surface 50 and the boundary line with the side upper surface 57 is The shape of the arc is along a substantially perfect circle centered on the center 5a.
  • a portion on the intake port side (intake side outer peripheral edge 582a) from the center 5a of the crown surface 50 and a boundary line with the side upper surface 57 is an ellipse centering on the center 5a or in the Y direction. It has an arc shape along an elongated ellipse.
  • the spark plug 17 is disposed on the combustion chamber ceiling surface 6U in the opposite direction to the first embodiment.
  • the spark plug 17 has a plug recess 45 formed on the combustion chamber ceiling surface 6U, and the tip of the ground electrode 172, that is, the end on the opposite side of the facing portion 173, is in the combustion chamber as viewed in the cylinder axial direction. 6 is arranged so as to face the inside in the radial direction.
  • the ignition plug 17 is arranged in this way, so that the compression stroke is performed.
  • the scavenging effect around the ignition part 17A is enhanced. That is, in the second embodiment in which the intake side inclined surface portion 61 corresponding to the pent roof portion of the combustion chamber ceiling surface 6U is provided on the crown surface 50 of the piston 5, the intake side top surface 43 of the combustion chamber ceiling surface 6U is provided during the compression stroke. As the intake air or air-fuel mixture is compressed between the intake side plane portion 55 of the piston 5 and the intake side flat portion 55, the squish heads toward the combustion chamber ceiling surface 6U along the intake side inclined surface portion 61 as shown by arrows in FIG. A stream is generated.
  • the spark plug 17 is arranged so that the tip of the ground electrode 172 faces the radially inner side of the combustion chamber 6, the residual gas in the plug recess 45 can be easily pushed out by the squish flow. That is, the scavenging effect around the ignition part 17A is enhanced.
  • the cavity shape of the annular cavity 58 allows the fuel injected from the injector 18 to be smoothly wound up along the combustion chamber ceiling surface 6U when the piston 5 is at or near the compression top dead center position in mode I. It is made into a shape. More specifically, as shown in FIG. 25, the annular cavity 58 is located on the inner peripheral side of the annular cavity 58, and the fuel injected from the injector 18 when the piston 5 is at or near the compression top dead center position.
  • a run-up portion 59a that guides outward along the convex portion 53, and a wind-up portion 59b that is located on the outer periphery of the run-up portion 59a and winds up the fuel guided along the run-up portion 59a toward the combustion chamber ceiling surface 6U. Including.
  • the run-up portion 59a has a cross-sectional arc shape that smoothly continues to the convex portion 53, and the winding portion 59b has a cross-section arc shape having a smaller radius of curvature than the run-up portion 59a.
  • the winding portion 59b extends to the upper side as much as the inclined surface portions 61, 62 are provided.
  • the fuel injected from the nozzle head 18N is effectively wound up along the pent roof portion of the combustion chamber ceiling surface 6U, and the fuel atomization is promoted. It has become.
  • the portion corresponding to the ends of the pair of side upper surfaces 57 corresponds to the cylinder axis. It is curved and directed to the ignition part 17A of the spark plug 17 in a direction view. That is, if the intake-side outer peripheral edge 582a is extended from the portion corresponding to the ends of the pair of side upper surfaces 57, a pair of intake-side outer peripheral edges 582a of the intake-side outer peripheral edge 582a passes through the ignition portion 17A. A portion corresponding to the end of the side upper surface 57 is formed. Thereby, as shown by the arrow in FIG. 16, the air-fuel mixture flowing from the exhaust port side to the intake port side along the annular cavity 58 is guided toward the ignition portion 17A.
  • a stepped portion 63 is formed on the outer periphery of the upper end of the piston head 5A of the piston 5.
  • the step portion 63 is for forming a gap for allowing unburned gas to escape between the outer peripheral surface of the upper end portion of the piston head 5A and the inner peripheral surface of the cylinder 2 during the expansion stroke. Generation of sound is suppressed.
  • the above is the combustion chamber structure of the second embodiment.
  • the combustion chamber structure of the second embodiment is such that the combustion chamber ceiling surface 6U is a deep pent roof type in order to increase the volume of the combustion chamber 6 and lower the compression ratio.
  • the combustion chamber structure of the second embodiment can enjoy substantially the same operational effects as the combustion chamber structure of the first embodiment. That is, when the piston 5 descends to the ⁇ Z side in the expansion stroke, a reverse squish flow that draws the air-fuel mixture toward the intake port is generated, and combustion is generated using the entire oxygen in the combustion chamber 6. It becomes possible to suppress a decrease in emission performance.
  • FIG. 28 is a cross-sectional view of a principal part of an engine to which the engine combustion chamber structure according to the third embodiment is applied.
  • FIGS. 29 to 32 show the piston 5. Specifically, FIG. 29 is a perspective view, FIG. 30 is a plan view, and FIGS. 31 and 32 are sectional views showing the piston 5, respectively. .
  • the crown surface 50 of the piston 5 of the third embodiment also has a cavity 5C (a cavity having a substantially circular outer edge when viewed in the cylinder axial direction), an intake side flat surface portion 55, an exhaust side flat surface portion 56, and a pair of side upper surfaces 57 (side surfaces).
  • the configuration is the same as that of the second embodiment in that it includes an upper surface portion 57), an intake-side slope portion 61, and an exhaust-side slope portion 62.
  • the specific structure is different from the second embodiment in the following points.
  • the crown surface 50 is provided with the cavity 5C including the convex portion 53 and the annular cavity 58 surrounding the convex portion 53. However, in the third embodiment, it is recessed downward ( ⁇ Z side).
  • One saddle-shaped cavity 5 ⁇ / b> C is provided on the crown surface 50.
  • This cavity 5C has a side elevation surface portion 512, an exhaust side elevation surface portion 513, an intake side elevation surface portion 514, and a bottom surface portion 511.
  • the side elevation surface portion 512, the exhaust side elevation surface portion 513, and the intake side elevation surface portion 514 are disposed on the peripheral edge portion of the cavity 5C when the crown surface 50 of the piston 5 is viewed in plan view.
  • the bottom surface portion 511 is disposed in a region inside the cavity 5C.
  • the bottom surface portion 511 is configured with a curved surface with a radius of curvature R511, and the side vertical surface portion 512 is configured with a curved surface with a radius of curvature R512.
  • the curvature radius R512 is smaller than the curvature radius R511. That is, the side vertical surface portion 512 is configured with a curved surface that rises in the Z direction from the bottom surface portion 511.
  • the side surfaces 512 and the bottom surface 511 are in contact with each other at the boundary portion P51 between the curved surfaces.
  • the side upright portions 512 are side surfaces of the cavity 5C corresponding to the side upper surface portions 57.
  • TDC compression top dead center
  • the side vertical surface portion 512 causes the air-fuel mixture to flow when the in-cylinder flow in the combustion chamber 6 is concentrated in the cavity 5C as the piston 5 rises during the compression stroke. It functions as a guide part that leads toward the ignition part 17A.
  • the spark plug 17 has the tip of the ground electrode 172, that is, the end on the opposite side of the facing portion 173, in the cylinder axial direction. It arrange
  • the exhaust side elevation surface portion 513 and the intake side elevation surface portion 514 are configured with curved surfaces that rise in the Z direction from the bottom surface portion 511, and are bounded by the bottom surface portion 511. It touches at the part. Then, as shown in FIG. 30, the exhaust side rising surface portion 513 is continuous with the exhaust side inclined surface portion 62 via a ridge line, and the intake side rising surface portion 514 is continuous with the intake side inclined surface portion 61 via a ridge line. ing.
  • the engine body 1 establishes the operation in the mode II as described above and the combustion injection timing and ignition timing in the mode III shown in FIG.
  • Mode II is employed during SI combustion, and mode III is primarily employed during SICI combustion. Therefore, mode II is mainly selected in the high engine speed range, and mode III is mainly selected in the high load / low speed range to the high load / medium speed range.
  • Mode III fuel injection periods PF3 and PF4 are the middle stage of the intake stroke and the latter stage of the compression stroke, and the ignition timing is the initial stage of the expansion stroke. That is, the timing T31 to T32 sandwiching the crank angle CA4 at which the piston 5 descends about half of the stroke from the TDC in the exhaust process is the preceding fuel injection period PF3, and the timing T33 in the latter stage of the compression process and immediately before the TDC in the compression stroke. Timing T34 is the subsequent fuel injection period PF4. Further, the ignition timing is a predetermined crank angle + CA5 timing T35 in the initial stage of the expansion stroke. CA4 is 70 ° after TDC. The start of the subsequent fuel injection period PF4 is, for example, 10 ° before TDC in the compression stroke.
  • the final period (timing T22) of the mode II fuel injection period PF2 shown in FIG. 8 is, for example, the middle period of the compression process, and from the intake stroke to the compression stroke.
  • the fuel may be injected all at once.
  • the cavity 5C has a bowl shape that is recessed downward (in the direction away from the combustion chamber ceiling surface 6U), and there is no obstacle inside, that is, there is no obstacle on the bottom surface portion 511.
  • the air-fuel mixture in the cavity 5C can be smoothly guided to the ignition part 17A of the spark plug 17, and flame propagation after ignition is smoothly executed.
  • the cavity 5C includes the side vertical surface portion 512 that sandwiches the ignition portion 17A of the spark plug 17 when the piston 5 is at the compression top dead center (TDC), as the piston 5 rises.
  • TDC compression top dead center
  • the side elevation surface portion 512 of the cavity 5C is configured with a curved surface, and the curvature radius R512 of the side elevation surface portion 512 is smaller than the curvature radius R511 of the bottom surface portion 511.
  • the air-fuel mixture in the cavity 5C can be more smoothly guided to the ignition part 17A of the spark plug 17, and the flame formed by the ignition can be smoothly spread in the Y direction (in the engine output shaft direction) in the combustion chamber 6. be able to.
  • the engine body 1 is configured to perform fuel injection from the injector 18 toward the cavity 5C in the middle of the intake stroke where the in-cylinder flow is relatively weak. Spraying can be concentrated to prevent fuel from adhering to the inner wall surface of the cylinder 2. Accordingly, the air-fuel mixture can be satisfactorily present in and around the ignition portion 17A of the spark plug 17 at the time of ignition, thereby ensuring high ignitability of the air-fuel mixture.
  • the small cavity 51 and the large cavity 52 are arranged so as to contact each other via the ridge line 54 , but the present invention is not limited to this.
  • the small cavity that is the first cavity and the large cavity that is the second cavity need only be disposed substantially adjacent to each other in terms of the flow of the air-fuel mixture (swirl flow FS) and flame propagation. May be separated.
  • the cavity 5C is configured by the combination of the small cavity 51 and the large cavity 52.
  • an integral annular cavity may be configured, or three or more An annular cavity may be constituted by a combination of cavities.
  • the intake-side flat portion 55 and the intake-side top surface 43 are each provided in a plane, but the present invention is not limited to this. For example, it may be configured with curved surfaces facing each other.
  • the projected area of the large cavity 52 is larger than the projected area of the small cavity 51 for the small cavity 51 and the large cavity 52 provided on the crown surface 50 of the piston 5.
  • the configuration in which the depth h2 of 52 is deeper than the depth h1 of the small cavity 51 is shown as an example, the present invention is not limited to this.
  • one of the intake side openings 41 is closed by the swirl control valve, and a swirl flow that is a vortex around the cylinder axis (around the cylinder axis) can be easily generated.
  • the swirl control valve in the above-described combustion of SI combustion or SICI combustion (modes II and III).
  • the intake side opening 41 and the exhaust side opening 42 are opened in the combustion chamber ceiling surface 6U.
  • the present invention is not limited to this.
  • it is good also as opening to the side surrounding surface of the cylinder 2 in the upper part of the combustion chamber 6.
  • the ceiling surface of the combustion chamber 6 (combustion chamber ceiling surface 6U) is configured to have a relatively flat pent roof shape, but the present invention is limited to this. It is not a thing. For example, a higher ratio pent roof shape can be used. This is advantageous for generating a stronger tumble flow.
  • the present invention is not limited to this.
  • the reverse squish flow generation unit may be configured only by the difference in the combustion chamber volume between the A part and the B part, and conversely, the combination of the intake side flat part 55 and the intake side top surface 43. It is good also as comprising a reverse squish flow production
  • the cavity 5C of the piston 5 (XXXI-XXXI cross section in FIG. 30) is configured by a combination of one bottom surface portion 511 and two side upright surface portions 512.
  • the present invention is not limited to this.
  • a cross-sectional configuration in which a curved surface or a flat surface is interposed between the bottom surface portion 511 and the side elevation surface portion 512 may be employed.
  • a combustion chamber structure of a spark ignition type engine includes a crown surface of a piston, a combustion chamber ceiling surface formed on a cylinder head, an injector and a spark plug provided on the combustion chamber ceiling surface, And an intake port and an exhaust port opened in the ceiling surface of the combustion chamber.
  • the side where the ignition port is opened is defined as the combustion chamber on the side where the ignition portion of the ignition plug is disposed.
  • the injector is configured to be able to inject fuel toward at least the exhaust port side.
  • generation part which draws in air-fuel mixture to the said inlet side accompanying the movement (falling) of the said piston during an expansion stroke is provided in the combustion chamber.
  • the injector is configured so that fuel can be injected toward the exhaust port side, atomization can be performed in a short time even in a high-load operation region where the combustion chamber becomes high temperature. Is possible. Therefore, in the said situation, generation
  • region can be suppressed.
  • the reverse squish flow generating portion is formed in the combustion chamber, the air-fuel mixture atomized on the exhaust port side as the piston descends during the expansion stroke. Can be pulled into the spark plug. Therefore, in the above aspect, the combustion in the entire combustion chamber can be caused to occur, and a reduction in emission performance can be suppressed.
  • the combustion chamber is configured to have a smaller volume on the intake port side than on the exhaust port side, and the reverse squish flow generator However, the combustion chamber volume is different between the intake port side and the exhaust port side.
  • the reverse squish flow generating portion is formed by the difference in the combustion chamber volume between the intake port side and the exhaust port side, so that the piston descends during the expansion stroke. Accordingly, an air flow (reverse squish flow) from the central portion of the combustion chamber (and the exhaust port side) toward the intake port side can be generated. Therefore, combustion can be generated using oxygen in the entire combustion chamber, and a reduction in emission performance can be suppressed.
  • the combustion chamber structure of the engine according to another aspect of the present invention has a partial region of the combustion chamber ceiling surface and a partial region of the crown surface of the piston on the intake port side of the combustion chamber.
  • regions that are opposed to each other in a state along each other and that are closer to each other than a central region in the radial direction of the combustion chamber are formed.
  • generation part is comprised by the combination of the partial area
  • the reverse squish flow generator is configured by a partial region of the combustion chamber ceiling surface and a partial region of the crown surface of the piston that are along and close to each other.
  • the reverse squish flow can be generated in the combustion chamber by utilizing the negative pressure between the regions generated after the piston passes through the compression top dead center.
  • a partial region of the combustion chamber ceiling surface and a partial region of the crown surface of the piston are flat surfaces.
  • the partial region of the combustion chamber ceiling surface and the partial region of the crown surface of the piston are each configured as a flat surface, and thus these regions are configured as curved surfaces. Compared with the case where it does, manufacture is easy and it becomes possible to provide a reverse squish flow production
  • the combustion chamber structure of the engine according to another aspect of the present invention is such that the combustion chamber ceiling surface and the crown surface of the piston face each other along the exhaust port side in the combustion chamber, Regions closer to each other than the central region in the radial direction of the combustion chamber are formed, and in a plan view from one side in the cylinder axis direction, the combustion chamber ceiling surface on the exhaust port side and the crown surface of the piston The areas facing each other have a smaller area than the reverse squish flow generator.
  • a region where the combustion chamber ceiling surface and the crown surface of the piston face each other is also provided on the exhaust port side.
  • it can suppress that a fuel adheres. Therefore, in the above aspect, deposits can be suppressed.
  • the area of the region where the combustion chamber ceiling surface and the crown surface of the piston face each other in a plan view is set to the reverse squish flow generation unit (on the intake port side, Since the area is smaller than the area where the ceiling surface and the crown surface of the piston face each other, the generation of the reverse squish flow when the piston descends is unlikely to be hindered.
  • a combustion chamber structure for an engine wherein the crown surface of the piston includes a cavity that is recessed in a cylinder axial direction, and the cavity has a bottom surface depth that is the exhaust gas. It is formed so as to become gradually shallower from the mouth side toward the ignition part side of the spark plug.
  • the bottom surface of the cavity is formed so that the depth gradually decreases toward the ignition plug ignition portion side.
  • the swirl component is lifted toward the ignition part of the spark plug. Therefore, the mixture of fresh air and fuel is guided to the vicinity of the ignition part of the spark plug, and the residual gas in the vicinity of the ignition part can be swept away.
  • the air-fuel mixture is smoothly guided toward the ignition portion of the spark plug even when the reverse squish flow generated when the piston is lowered is used.
  • the combustion chamber structure of an engine according to another aspect of the present invention is the above-described aspect, in a plan view from one side in the cylinder axial direction, wherein the cavity is annular in a state where a part thereof overlaps with an ignition part of the spark plug. Formed.
  • the cavity is formed in an annular shape, as the piston approaches the compression top dead center, the air-fuel mixture flows from the relatively hot exhaust port side to the relatively cool intake port. It is led to the vicinity of the ignition part of the spark plug. And since it is arrange
  • the ceiling surface of the combustion chamber is formed in a pent roof shape.
  • the ceiling surface of the combustion chamber (cylinder) is formed in a pent roof shape, a tumble flow can be formed in the combustion chamber, and homogeneous combustion in the entire combustion chamber can be achieved. Is possible.
  • the combustion chamber structure of an engine according to another aspect of the present invention is the above aspect, wherein the outer edge of the cavity has a plug directing portion that curves toward the ignition portion of the spark plug as viewed in the cylinder axial direction.
  • the air-fuel mixture guided along the cavity is guided well near the ignition part of the spark plug. Therefore, excellent ignitability can be ensured.
  • the combustion chamber structure of the engine according to another aspect of the present invention is the above-described aspect, wherein a partial area of the crown surface of the piston is an intake side plane portion positioned closer to the intake port than an area corresponding to the spark plug; An intake-side inclined surface portion that is located between the intake-side flat portion and a region corresponding to the spark plug and inclines upward from the intake port side toward the exhaust port side is formed.
  • the ignition part has an L-shaped ground electrode in a side view, and the tip of the ground electrode faces inward in the radial direction of the cylinder in a plan view from one side in the cylinder axial direction.
  • the combustion chamber structure of the engine according to another aspect of the present invention is the above-described aspect, wherein the crown surface of the piston is closer to the exhaust port side than the reverse squish flow generation unit in a plan view from one side in the cylinder axial direction. It includes a bowl-shaped cavity that is recessed in the axial direction at the position.
  • the air-fuel mixture is concentrated in the cavity as the piston rises during the compression stroke, and is atomized on the exhaust port side as the piston descends during the expansion stroke.
  • the air-fuel mixture is led to the ignition part of the spark plug and the vicinity thereof. Therefore, high ignitability of the air-fuel mixture can be ensured.
  • the air-fuel mixture can be smoothly guided to the spark plug, and flame propagation after ignition can be executed smoothly.
  • the cavity is configured with a curved surface curved in the cylinder axial direction, and in the plan view from one side in the cylinder axial direction, Of these, both side portions in the engine output shaft direction are configured with curved surfaces having a smaller radius of curvature than the region inside the peripheral edge.
  • the air-fuel mixture in the cavity is smoother because both side portions in the engine output shaft direction of the peripheral portion of the cavity rise compared to the inner region.
  • the flame led to the spark plug and formed by ignition spreads smoothly in the direction of the engine output shaft in the combustion chamber.
  • the combustion chamber structure for an engine according to another aspect of the present invention is configured so that both sides of the peripheral portion of the cavity in the engine output shaft direction have the ignition portion when the piston is at the compression top dead center position. It is in a position that can be sandwiched between them.
  • the cavity partially overlaps with the ignition part of the spark plug in a plan view from one side in the cylinder axial direction.
  • the air-fuel mixture flows from the relatively hot exhaust port side to the relatively cold intake port side, and the ignition part of the ignition plug Guided to the neighborhood. And since it is arrange
  • the ceiling surface of the combustion chamber is formed in a pent roof shape.
  • the ceiling surface of the combustion chamber (cylinder) is formed in a pent roof shape, a tumble flow can be formed in the combustion chamber, and homogeneous combustion in the entire combustion chamber can be achieved. Is possible.
  • the combustion chamber structure of the engine according to another aspect of the present invention is the above-described aspect, wherein a partial area of the crown surface of the piston is an intake side plane portion positioned closer to the intake port than an area corresponding to the spark plug; An intake-side inclined surface portion that is located between the intake-side flat portion and a region corresponding to the spark plug and inclines upward from the intake port side toward the exhaust port side is formed.
  • the ignition part has an L-shaped ground electrode in a side view, and the tip of the ground electrode faces the outside in the radial direction of the cylinder in a plan view from one side in the cylinder axial direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

A combustion chamber structure for engines, comprising: a piston crown surface; a combustion chamber ceiling surface formed in a cylinder head; an injector and a spark plug that are provided in the combustion chamber ceiling surface; and an intake port and an exhaust port that are opened in the ceiling surface of the combustion chamber. In the planar view from one side in the cylinder axial direction, the injector is configured such that fuel can be injected towards at least the exhaust port side, when the side having the intake port opened therein is the intake port side of the combustion chamber and the side having the exhaust port opened therein is the exhaust port side of the combustion chamber, using the site where the ignition section of the spark plug is arranged as the reference therefor. Provided in the combustion chamber is an inverse squish flow generating unit that draws the air-fuel mixture into the intake port side in conjunction with the movement of the piston during the expansion stroke.

Description

エンジンの燃焼室構造Engine combustion chamber structure
 本発明は、火花点火式のエンジンの燃焼室構造に関する。 The present invention relates to a combustion chamber structure of a spark ignition type engine.
 自動車等の車両の火花点火式のエンジンでは、インジェクタから燃焼室内に燃料を噴射し、当該噴射燃料が霧化されてなる混合気に対して、点火プラグを用いて着火させる構成が採用されている。 In a spark ignition engine of a vehicle such as an automobile, a configuration is employed in which fuel is injected from an injector into a combustion chamber, and an air-fuel mixture obtained by atomizing the injected fuel is ignited using an ignition plug. .
 ところで、エンジンを高負荷運転域で運転する場合には、燃焼室が高温となる。このため、高負荷運転域においては、ピストンが圧縮上死点近傍にあるタイミングで燃料噴射することにより、プリイグニッションの発生を抑えることがなされる。 By the way, when the engine is operated in a high-load operation region, the combustion chamber becomes hot. For this reason, in the high load operation region, the fuel injection is performed at the timing when the piston is in the vicinity of the compression top dead center, thereby suppressing the occurrence of pre-ignition.
 上記のようなタイミングで燃料噴射する場合には、燃料噴射から着火までの時間が短くなる。これに対する方策としては、例えば、特許文献1に開示されているような、相対的に内壁温度が高い排気側に向けて燃料噴射する構成を採用することが考えられる。このような構成を採用することにより、燃料噴射から着火までの時間が短時間の場合にあっても十分に霧化を図ることができる。 When fuel is injected at the above timing, the time from fuel injection to ignition is shortened. As a measure against this, for example, it is conceivable to employ a configuration in which fuel is injected toward the exhaust side having a relatively high inner wall temperature as disclosed in Patent Document 1. By adopting such a configuration, atomization can be sufficiently achieved even when the time from fuel injection to ignition is short.
 しかしながら、特許文献1に開示の構成のように、排気側に向けて多めの燃料噴射を行う場合には、燃焼の際に燃焼室全体の酸素を使いきれず、未燃燃料が残ってしまうことが懸念される。即ち、排気側に向けて多めの燃料噴射を行う場合には、燃焼室全体として見たときに、排気側に偏った状態で燃料濃度の高い領域が発生し、逆に吸気側などには燃料濃度の低い領域が発生する。このような燃料濃度の偏りに起因して、燃焼室内に未燃燃料が残ってしまう場合が生じ、エミッション性能の低下が懸念される。 However, when a large amount of fuel is injected toward the exhaust side as in the configuration disclosed in Patent Document 1, oxygen in the entire combustion chamber cannot be used up during combustion, and unburned fuel remains. Is concerned. That is, when a large amount of fuel is injected toward the exhaust side, when viewed as the entire combustion chamber, a region with a high fuel concentration is generated in a state of being biased toward the exhaust side. A region with low density occurs. Due to such an uneven fuel concentration, unburned fuel may remain in the combustion chamber, and there is a concern about a reduction in emission performance.
特開2016-94925号公報Japanese Unexamined Patent Publication No. 2016-94925
 本発明は、上記のような問題の解決を図ろうとなされたものであって、高負荷運転域での運転においてもプリイグニッションの発生を抑えることができるとともに、燃焼室全体での均質な燃焼によりエミッション性能の低下を抑制可能なエンジンの燃焼室構造を提供することを目的とする。 The present invention has been made to solve the above-described problems, and can suppress the occurrence of pre-ignition even in operation in a high-load operation region, and can achieve uniform combustion in the entire combustion chamber. It is an object of the present invention to provide an engine combustion chamber structure capable of suppressing a decrease in emission performance.
 そして、本発明は、火花点火式のエンジンの燃焼室構造であって、ピストンの冠面と、シリンダヘッドに形成された燃焼室天井面と、前記燃焼室天井面に設けられたインジェクタ及び点火プラグと、前記燃焼室の天井面に開口された吸気口及び排気口と、備え、気筒軸方向の一方側からの平面視において、前記点火プラグの着火部が配置された箇所を基準とし、前記吸気口が開口された側を前記燃焼室の吸気口側、前記排気口が開口された側を前記燃焼室の排気口側とするとき、前記インジェクタは、少なくとも前記排気口側に向けて燃料を噴射可能に構成されており、前記燃焼室には、膨張行程中の前記ピストンの移動に伴い混合気を前記吸気口側へと引き込む逆スキッシュ流生成部が設けられてなるものである。 The present invention relates to a combustion chamber structure of a spark ignition type engine, wherein a crown surface of a piston, a combustion chamber ceiling surface formed on a cylinder head, an injector and an ignition plug provided on the combustion chamber ceiling surface And an intake port and an exhaust port that are opened on the ceiling surface of the combustion chamber, and the intake air is based on the location where the ignition part of the ignition plug is disposed in a plan view from one side in the cylinder axial direction. The injector injects fuel toward at least the exhaust port side when the side with the opening is the intake port side of the combustion chamber and the side with the exhaust port is the exhaust port side of the combustion chamber The combustion chamber is provided with a reverse squish flow generator that draws the air-fuel mixture toward the intake port as the piston moves during the expansion stroke.
図1は、第1実施形態に係るエンジンの燃焼室構造が適用されるエンジンを示す気筒軸方向での概略断面図である。FIG. 1 is a schematic cross-sectional view in the cylinder axis direction showing an engine to which the combustion chamber structure of the engine according to the first embodiment is applied. 図2は、図1におけるシリンダヘッド要部の断面図である。FIG. 2 is a cross-sectional view of the main part of the cylinder head in FIG. 図3は、図1におけるエンジンのピストンの斜視図である。FIG. 3 is a perspective view of the piston of the engine in FIG. 図4は、ピストンに対する点火プラグ及びインジェクタの配置を示す斜視図である。FIG. 4 is a perspective view showing the arrangement of the spark plug and the injector with respect to the piston. 図5は、ピストンの冠面の平面図である。FIG. 5 is a plan view of the crown surface of the piston. 図6は、図5のVI-VI線断面図である。6 is a cross-sectional view taken along line VI-VI in FIG. 図7は、図5のVII―VII線断面図である。7 is a cross-sectional view taken along line VII-VII in FIG. 図8は、燃料噴射期間及び点火タイミングとクランク角との関係を示すタイムチャートである。FIG. 8 is a time chart showing the relationship between the fuel injection period, the ignition timing, and the crank angle. 図9は、ピストンが圧縮上死点付近にある状態での燃焼室を示す断面図である。FIG. 9 is a cross-sectional view showing the combustion chamber in a state where the piston is near the compression top dead center. 図10Aは、ピストンが圧縮上死点付近にある状態での燃焼室を示す断面図である。FIG. 10A is a cross-sectional view showing the combustion chamber in a state where the piston is near the compression top dead center. 図10Bは、ピストンが圧縮上死点後に下降した状態での燃焼室を示す断面図である。FIG. 10B is a cross-sectional view showing the combustion chamber in a state where the piston is lowered after compression top dead center. 図11は、燃焼室内で生じるスワール流と点火プラグにおける着火部の配置を示す断面図である。FIG. 11 is a cross-sectional view showing the swirl flow generated in the combustion chamber and the arrangement of ignition parts in the spark plug. 図12は、燃焼室に噴射された燃料と燃焼室内で生じるスワール流とを示す平面図である。FIG. 12 is a plan view showing the fuel injected into the combustion chamber and the swirl flow generated in the combustion chamber. 図13は、第2実施形態に係るエンジンの燃焼室構造が適用されるエンジンのシリンダヘッド要部の断面図である。FIG. 13 is a cross-sectional view of the main part of the cylinder head of the engine to which the engine combustion chamber structure according to the second embodiment is applied. 図14は、燃焼室天井面の平面図である。FIG. 14 is a plan view of the combustion chamber ceiling surface. 図15は、ピストンに対する点火プラグ及びインジェクタの配置を示す斜視図である。FIG. 15 is a perspective view showing the arrangement of the spark plug and the injector with respect to the piston. 図16は、ピストンに対する点火プラグ及びインジェクタの配置を示す平面図である。FIG. 16 is a plan view showing the arrangement of the spark plug and the injector with respect to the piston. 図17は、ピストンの冠面の平面図である。FIG. 17 is a plan view of the crown surface of the piston. 図18は、ピストンの正面図(吸気口側から視た図)である。FIG. 18 is a front view of the piston (viewed from the intake port side). 図19は、ピストンの背面図(排気口側から視た図)である。FIG. 19 is a rear view of the piston (viewed from the exhaust port side). 図20は、ピストンの側面図である。FIG. 20 is a side view of the piston. 図21は、図17のXXI-XXI線断面図である。21 is a cross-sectional view taken along line XXI-XXI in FIG. 図22は、図17のXXII-XXII線断面図である。22 is a cross-sectional view taken along line XXII-XXII in FIG. 図23は、ピストンの斜視図(排気口側から視た斜視図)である。FIG. 23 is a perspective view of the piston (a perspective view seen from the exhaust port side). 図24は、ピストンの斜視図(吸気口側から視た斜視図)である。FIG. 24 is a perspective view of the piston (a perspective view seen from the intake port side). 図25は、ピストンが上死点にあるときの燃焼室を示す断面図である。FIG. 25 is a cross-sectional view showing the combustion chamber when the piston is at top dead center. 図26は、圧縮行程の燃焼室を示す断面図である。FIG. 26 is a cross-sectional view showing the combustion chamber in the compression stroke. 図27は、吸気の流れとインジェクタ(ノズルヘッド)との関係を説明するための断面図である。FIG. 27 is a cross-sectional view for explaining the relationship between the flow of intake air and the injector (nozzle head). 図28は、第3実施形態に係るエンジンの燃焼室構造が適用されるエンジンの要部断面図である。FIG. 28 is a cross-sectional view of a principal part of an engine to which the engine combustion chamber structure according to the third embodiment is applied. 図29は、ピストンの斜視図である。FIG. 29 is a perspective view of the piston. 図30は、ピストンの冠面の平面図である。FIG. 30 is a plan view of the crown surface of the piston. 図31は、図30のXXXI-XXXI線断面図である。31 is a cross-sectional view taken along line XXXI-XXXI in FIG. 図32は、図30のXXXII-XXXII線断面図である。32 is a sectional view taken along line XXXII-XXXII in FIG. 図33は、モードIIIに係る燃料噴射期間及び点火タイミングとクランク角との関係を示すタイムチャートである。FIG. 33 is a time chart showing the relationship between the fuel injection period, ignition timing, and crank angle according to mode III.
 以下では、本発明の実施形態について、図面を参酌しながら説明する。なお、以下で説明する形態は、本発明の一態様であって、本発明は、その本質的な構成を除き何ら以下の形態に限定を受けるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the form demonstrated below is 1 aspect of this invention, Comprising: This invention is not limited to the following forms at all except the essential structure.
 (第1の実施形態)
 [エンジンの全体構成]
 図面に基づいて、第1実施形態に係る火花点火式のエンジンの燃焼室構造を詳細に説明する。図1は、第1実施形態に係るエンジンの燃焼室構造が適用されるエンジンを示す概略断面図、図2は、図1に示されたシリンダヘッドの要部の断面図である。図1及び図2、及び図3以降において、XYZの方向表示を付している。Z方向は気筒軸方向、Y方向はクランク軸の延伸方向、X方向はZ方向及びY方向の双方と直交する方向である。
(First embodiment)
[Entire engine configuration]
Based on the drawings, the combustion chamber structure of the spark ignition type engine according to the first embodiment will be described in detail. FIG. 1 is a schematic sectional view showing an engine to which the combustion chamber structure of the engine according to the first embodiment is applied, and FIG. 2 is a sectional view of a main part of the cylinder head shown in FIG. In FIGS. 1, 2, and 3 and subsequent figures, XYZ direction indications are given. The Z direction is the cylinder axis direction, the Y direction is the extending direction of the crankshaft, and the X direction is a direction orthogonal to both the Z direction and the Y direction.
 本実施形態に係るエンジンは、シリンダ及びピストンを含み、自動車等の車両の走行駆動用の動力源として、車両に搭載される多気筒エンジンである。エンジンは、エンジン本体1と、これに組み付けられた図外の吸排気マニホールド及び各種ポンプ等の補機とを含む。エンジン本体1に供給される燃料は、ガソリンを主成分とするものである。 The engine according to this embodiment includes a cylinder and a piston, and is a multi-cylinder engine mounted on a vehicle as a power source for driving the vehicle such as an automobile. The engine includes an engine main body 1 and auxiliary equipment such as various intake and exhaust manifolds and various pumps that are assembled to the engine main body 1. The fuel supplied to the engine body 1 is mainly composed of gasoline.
 本実施形態に係るエンジン本体1は、点火プラグにて燃焼室内の混合気に強制点火する通常のSI(Spark Ignition)燃焼と、SI燃焼において燃料噴射のタイミングを圧縮上死点(TDC)付近とするリタードSI燃焼と、SI燃焼とCI(Compression Ignition)燃焼とを組み合わせたSICI燃焼と、を実行することが可能とされている。SI燃焼では、吸気行程の中期に燃料が噴射され、圧縮行程のTDC付近で混合気に強制点火される。リタードSI燃焼では、圧縮行程のTDC前後で燃料が噴射され、その後の膨張行程初期に混合気に強制点火される。SICI燃焼では、燃焼室の混合気に強制点火して火炎伝播により燃焼させるとともに、燃焼室内の未燃混合気を自己着火により燃焼させる。 The engine main body 1 according to the present embodiment includes a normal SI (Spark Ignition) combustion in which an air-fuel mixture in a combustion chamber is forcibly ignited by an ignition plug, and a fuel injection timing in the SI combustion is set to be near a compression top dead center (TDC). It is possible to execute retarded SI combustion, and SICI combustion that combines SI combustion and CI (compression ignition) combustion. In SI combustion, fuel is injected in the middle of the intake stroke, and the mixture is forcibly ignited in the vicinity of TDC in the compression stroke. In the retarded SI combustion, fuel is injected before and after the TDC of the compression stroke, and the air-fuel mixture is forcibly ignited at the beginning of the subsequent expansion stroke. In SICI combustion, the air-fuel mixture in the combustion chamber is forcibly ignited and combusted by flame propagation, and the unburned air-fuel mixture in the combustion chamber is combusted by self-ignition.
 なお、SICI燃焼において、自己着火を発生させず、火炎伝播により燃焼を完了させる場合もある。これらの燃焼態様は、運転領域に応じて選択される。例えば、SI燃焼は、エンジンの高回転・高負荷領域で、リタードSI燃焼は低回転・高負荷領域で、SICI燃焼は回転数に依らず低負荷領域で、各々選択される。 In addition, in SICI combustion, self-ignition does not occur, and combustion may be completed by flame propagation. These combustion modes are selected according to the operation region. For example, SI combustion is selected in a high rotation / high load region of the engine, retarded SI combustion is selected in a low rotation / high load region, and SICI combustion is selected in a low load region regardless of the rotational speed.
 エンジン本体1は、シリンダブロック3、シリンダヘッド4及びピストン5を備える。シリンダブロック3は、図1の紙面に垂直な方向に並ぶ複数のシリンダ2(気筒/図中ではそのうちの1つのみを示す。)を有している。シリンダヘッド4は、シリンダブロック3上に取り付けられ、シリンダ2の上部開口を塞いでいる。ピストン5は、各シリンダ2に往復摺動可能に収容されており、コネクティングロッド8を介してクランク軸7と連結されている。ピストン5の往復摺動に応じて、クランク軸7はその中心軸回りに回転する。ピストン5の構造については、後述する。 The engine body 1 includes a cylinder block 3, a cylinder head 4, and a piston 5. The cylinder block 3 has a plurality of cylinders 2 (cylinder / only one of them is shown in the figure) arranged in a direction perpendicular to the paper surface of FIG. The cylinder head 4 is mounted on the cylinder block 3 and closes the upper opening of the cylinder 2. The piston 5 is accommodated in each cylinder 2 so as to be slidable back and forth, and is connected to the crankshaft 7 via a connecting rod 8. As the piston 5 reciprocates, the crankshaft 7 rotates about its central axis. The structure of the piston 5 will be described later.
 ピストン5の上方には燃焼室6が形成されている。シリンダヘッド4には、燃焼室6と連通する吸気ポート9及び排気ポート10が形成されている。シリンダヘッド4の底面4aは燃焼室天井面6Uであり、この燃焼室天井面6Uは、上向きに僅かに凸のペントルーフ型の形状(扁平ペントルーフ型形状)を有している。燃焼室天井面6Uには、吸気ポート9の下流端である吸気側開口部(吸気口)41と、排気ポート10の上流端である排気側開口部(排気口)42とが形成されている。シリンダヘッド4には、吸気側開口部41を開閉する吸気バルブ11と、排気側開口部42を開閉する排気バルブ12とが組み付けられている。 A combustion chamber 6 is formed above the piston 5. An intake port 9 and an exhaust port 10 communicating with the combustion chamber 6 are formed in the cylinder head 4. The bottom surface 4a of the cylinder head 4 is a combustion chamber ceiling surface 6U. The combustion chamber ceiling surface 6U has a pent roof type shape (flat pent roof type shape) slightly convex upward. An intake side opening (intake port) 41 that is the downstream end of the intake port 9 and an exhaust side opening (exhaust port) 42 that is the upstream end of the exhaust port 10 are formed in the combustion chamber ceiling surface 6U. . The cylinder head 4 is assembled with an intake valve 11 for opening and closing the intake side opening 41 and an exhaust valve 12 for opening and closing the exhaust side opening 42.
 なお、本実施形態に係るエンジン本体1は、ダブルオーバーヘッドカムシャフト式(DOHC)エンジンであり、吸気側開口部41と排気側開口部42とは、各シリンダ2につき2つずつ設けられると共に、吸気バルブ11及び排気バルブ12も2つずつ設けられている。 The engine body 1 according to the present embodiment is a double overhead camshaft (DOHC) engine, and two intake side openings 41 and two exhaust side openings 42 are provided for each cylinder 2 and intake air is provided. Two valves 11 and two exhaust valves 12 are also provided.
 図2に示されるように、吸気バルブ11及び排気バルブ12は、所謂ポペットバルブである。吸気バルブ11は、吸気側開口部41を開閉する傘状の弁体11aと、この弁体11aから垂直に延びるステム11bとを含む。同様に、排気バルブ12は、排気側開口部42を開閉する傘状の弁体12aと、この弁体12aから垂直に延びるステム12bとを含む。吸気バルブ11の弁体11aは、燃焼室6に臨むバルブ面11cを有する。排気バルブ12の弁体12aは、燃焼室6に臨むバルブ面12cを有する。 As shown in FIG. 2, the intake valve 11 and the exhaust valve 12 are so-called poppet valves. The intake valve 11 includes an umbrella-shaped valve body 11a that opens and closes the intake-side opening 41, and a stem 11b that extends perpendicularly from the valve body 11a. Similarly, the exhaust valve 12 includes an umbrella-shaped valve body 12a that opens and closes the exhaust-side opening 42, and a stem 12b that extends perpendicularly from the valve body 12a. The valve body 11 a of the intake valve 11 has a valve surface 11 c that faces the combustion chamber 6. The valve body 12 a of the exhaust valve 12 has a valve surface 12 c that faces the combustion chamber 6.
 本実施形態において、燃焼室6を区画する燃焼室壁面は、シリンダ2の内壁面、ピストン5の上面(+Z側の面)である冠面50、シリンダヘッド4の底面4a、吸気バルブ11のバルブ面11c及び排気バルブ12のバルブ面12cからなる。すなわち、シリンダブロック3、シリンダヘッド4、ピストン5及びバルブ11、12は、燃焼室6を構成する燃焼室構成部材と言える。 In the present embodiment, the combustion chamber wall surfaces defining the combustion chamber 6 are the inner wall surface of the cylinder 2, the crown surface 50 that is the upper surface (+ Z side surface) of the piston 5, the bottom surface 4 a of the cylinder head 4, and the valve of the intake valve 11. It consists of a surface 11 c and a valve surface 12 c of the exhaust valve 12. That is, the cylinder block 3, the cylinder head 4, the piston 5, and the valves 11 and 12 can be said to be combustion chamber constituent members that constitute the combustion chamber 6.
 シリンダヘッド4には、吸気バルブ11、排気バルブ12を各々駆動する吸気側動弁機構13、排気側動弁機構14が配設されている。これら動弁機構13,14によりクランク軸7の回転に連動して、吸気バルブ11及び排気バルブ12が駆動される。これら吸気バルブ11及び排気バルブ12の駆動により、吸気バルブ11の弁体11aが吸気側開口部41を開閉し、排気バルブ12の弁体12aが排気側開口部42を開閉する。 The cylinder head 4 is provided with an intake side valve mechanism 13 and an exhaust side valve mechanism 14 for driving the intake valve 11 and the exhaust valve 12, respectively. The valve mechanisms 13 and 14 drive the intake valve 11 and the exhaust valve 12 in conjunction with the rotation of the crankshaft 7. By driving the intake valve 11 and the exhaust valve 12, the valve body 11 a of the intake valve 11 opens and closes the intake side opening 41, and the valve body 12 a of the exhaust valve 12 opens and closes the exhaust side opening 42.
 吸気側動弁機構13には、吸気側可変バルブタイミング機構(吸気側VVT)15が組み込まれている。また、排気側動弁機構14には、排気側可変バルブタイミング機構(排気側VVT)16が組み込まれている。吸気側VVT15は吸気カム軸に設けられた電動式のVVTであり、排気側VVT16は排気カム軸に設けられた電動式のVVTである。そして、吸気側VVT15はクランク軸7に対する吸気カム軸の回転位相を所定の角度範囲内で連続的に変更することにより、吸気バルブ11の開閉タイミングを変更し、排気側VVT16はクランク軸7に対する排気カム軸の回転位相を所定の角度範囲内で連続的に変更することにより、排気バルブ12の開閉タイミングを変更する。 The intake side valve mechanism 13 incorporates an intake side variable valve timing mechanism (intake side VVT) 15. Further, an exhaust side variable valve timing mechanism (exhaust side VVT) 16 is incorporated in the exhaust side valve mechanism 14. The intake side VVT15 is an electric VVT provided on the intake camshaft, and the exhaust side VVT16 is an electric VVT provided on the exhaust camshaft. The intake side VVT 15 changes the opening / closing timing of the intake valve 11 by continuously changing the rotational phase of the intake cam shaft with respect to the crankshaft 7 within a predetermined angle range, and the exhaust side VVT 16 The opening / closing timing of the exhaust valve 12 is changed by continuously changing the rotational phase of the cam shaft within a predetermined angle range.
 シリンダヘッド4には、燃焼室6内の混合気に点火エネルギを供給する点火プラグ17が、各シリンダ2につき1つずつ取り付けられている。点火プラグ17は、その先端に着火部17Aを備え、この着火部17Aが燃焼室6内に臨む姿勢でシリンダヘッド4に取り付けられている。点火プラグ17は、図外の点火回路からの給電に応じてその先端から火花を放電して、燃焼室6内の混合気に点火する。 In the cylinder head 4, one ignition plug 17 for supplying ignition energy to the air-fuel mixture in the combustion chamber 6 is attached to each cylinder 2. The spark plug 17 is provided with an ignition part 17A at the tip thereof, and is attached to the cylinder head 4 so that the ignition part 17A faces the combustion chamber 6. The spark plug 17 discharges a spark from its tip in response to power supply from an ignition circuit (not shown), and ignites the air-fuel mixture in the combustion chamber 6.
 シリンダヘッド4(燃焼室天井面6U)には、先端部から燃焼室6内にガソリンを主成分とする燃料を噴射するインジェクタ18(燃料噴射弁)が、各シリンダ2につき1つずつ取り付けられている。インジェクタ18には、燃料供給管19が接続されており、当該燃料供給管19を通して供給された燃料を燃焼室6に噴射する(噴射燃料18E)。図2に示すように、本実施形態では、インジェクタ18からは、燃焼室6内の少なくとも排気口側(+X側)に向けて燃料噴射可能となっている。 The cylinder head 4 (combustion chamber ceiling 6U) is provided with one injector 18 (fuel injection valve) for each cylinder 2 for injecting fuel mainly composed of gasoline into the combustion chamber 6 from the tip. Yes. A fuel supply pipe 19 is connected to the injector 18, and the fuel supplied through the fuel supply pipe 19 is injected into the combustion chamber 6 (injected fuel 18E). As shown in FIG. 2, in the present embodiment, fuel can be injected from the injector 18 toward at least the exhaust port side (+ X side) in the combustion chamber 6.
 なお、図示を省略しているが、燃料供給管19の上流側には、クランク軸7と連動連結されたプランジャー式のポンプ等からなる高圧燃料ポンプが接続されている。そして、高圧燃料ポンプと燃料供給管19との間には、全シリンダ2に共通の蓄圧用のコモンレールが設けられている。この構成により、インジェクタ18からは、高い圧力の燃料が燃焼室6内に噴射される。 Although not shown, a high-pressure fuel pump including a plunger-type pump linked to the crankshaft 7 is connected to the upstream side of the fuel supply pipe 19. A common rail for pressure accumulation common to all the cylinders 2 is provided between the high-pressure fuel pump and the fuel supply pipe 19. With this configuration, high pressure fuel is injected from the injector 18 into the combustion chamber 6.
 [ピストンの詳細構造]
 図3~図7を参照して、ピストン5の構造、とりわけ冠面50の構造について詳細に説明する。図3は、ピストン5の斜視図、図4は、ピストン5の冠面50と点火プラグ17及びインジェクタ18との配置関係を示す斜視図、図5は、冠面50の平面図である。また、図6は、図5のVI-VI線断面図であり、図7は、図5のVII-VII線断面図である。
[Detailed structure of piston]
With reference to FIGS. 3 to 7, the structure of the piston 5, particularly the structure of the crown surface 50, will be described in detail. 3 is a perspective view of the piston 5, FIG. 4 is a perspective view showing the positional relationship between the crown surface 50 of the piston 5, the spark plug 17 and the injector 18, and FIG. 5 is a plan view of the crown surface 50. 6 is a cross-sectional view taken along line VI-VI in FIG. 5, and FIG. 7 is a cross-sectional view taken along line VII-VII in FIG.
 ピストン5は、ピストンヘッド5Aと、その下方(-Z側)に連接されたスカート部5Sを含む。ピストンヘッド5Aは円柱体からなり、燃焼室6の壁面の一部(底面)を構成する冠面50を上面に備えると共に、シリンダ2の内壁面と摺接する側周面とを備える。なお、スカート部5Sは、ピストンヘッド5Aの+X側及び-X側に配置され、ピストン5の往復運動の際の首振り揺動を抑制する。図7に示されるように、ピストンヘッド5Aの下方には、Y方向に延びるピン孔を区画するピストンボス5Bが設けられている。ピストンボス5Bのピン孔には、ピストンピン81が挿通される。ピストンピン81は、コネクティングロッド8の小端部8Sと、ピストン5とを連結するピンである。 The piston 5 includes a piston head 5A and a skirt portion 5S connected to the lower side (−Z side) thereof. The piston head 5 </ b> A is formed of a cylindrical body, and includes a crown surface 50 constituting a part (bottom surface) of the wall surface of the combustion chamber 6 on the upper surface and a side peripheral surface that is in sliding contact with the inner wall surface of the cylinder 2. The skirt portion 5S is disposed on the + X side and the −X side of the piston head 5A, and suppresses swinging of the piston 5 when the piston 5 reciprocates. As shown in FIG. 7, a piston boss 5B that defines a pin hole extending in the Y direction is provided below the piston head 5A. The piston pin 81 is inserted through the pin hole of the piston boss 5B. The piston pin 81 is a pin that connects the small end portion 8 </ b> S of the connecting rod 8 and the piston 5.
 冠面50は、燃焼室天井面6UとZ方向に対向する面であって、その径方向(X方向及びY方向)の概ね中央部分に略環状のキャビティ5Cを含む。キャビティ5Cは、-Z側に凹入された部分であり、インジェクタ18から燃料の噴射を受ける部分である。冠面50におけるキャビティ5Cの外周には、吸気側平面部55、排気側平面部56及び一対の側方上面57が配置されている。吸気側平面部55は、キャビティ5Cの-X側に隣接する領域に設けられる平面、排気側平面部56は、キャビティ5Cの+X側に隣接する領域に設けられる平面、一対の側方上面57はキャビティ5Cの+Y側及び-Y側に各々隣接する、概ね平坦な面である。また、キャビティ5Cの内側部分には、キャビティ5Cの底部よりも+Z側に隆起した凸部53が設けられている。 The crown surface 50 is a surface facing the combustion chamber ceiling surface 6U in the Z direction, and includes a substantially annular cavity 5C at a substantially central portion in the radial direction (X direction and Y direction). The cavity 5C is a portion recessed on the −Z side, and is a portion that receives fuel injection from the injector 18. On the outer periphery of the cavity 5 </ b> C on the crown surface 50, an intake side plane portion 55, an exhaust side plane portion 56 and a pair of side upper surfaces 57 are arranged. The intake side plane portion 55 is a plane provided in a region adjacent to the −X side of the cavity 5C, the exhaust side plane portion 56 is a plane provided in a region adjacent to the + X side of the cavity 5C, and the pair of side upper surfaces 57 are It is a generally flat surface adjacent to the + Y side and the −Y side of the cavity 5C. Further, a convex portion 53 that protrudes to the + Z side from the bottom portion of the cavity 5C is provided in the inner portion of the cavity 5C.
 吸気側平面部55は、ピストン5が上死点(TDC)付近にあるときに、図2に示されるシリンダヘッド4における吸気側天面43に僅かな隙間を空けて沿うよう設けられている。排気側平面部56は、同様に、ピストン5が上死点(TDC)付近にあるときに、図2に示されるシリンダヘッド4における排気側天面44に沿うよう設けられている。ここで、エンジン本体1においては、吸気側平面部55と吸気側天面43との組み合わせにより逆スキッシュ流生成部が構成されている。具体的に、逆スキッシュ流生成部とは、ピストン5が上死点(TDC)付近にある状態から-Z側に下降して行く際に、燃焼室6の径方向中央領域から径方向外縁領域に向けた混合気の流れを生成する部分である。 The intake side flat surface portion 55 is provided along a slight gap along the intake side top surface 43 of the cylinder head 4 shown in FIG. 2 when the piston 5 is near the top dead center (TDC). Similarly, the exhaust side flat surface portion 56 is provided along the exhaust side top surface 44 of the cylinder head 4 shown in FIG. 2 when the piston 5 is in the vicinity of the top dead center (TDC). Here, in the engine main body 1, a reverse squish flow generation unit is configured by a combination of the intake side flat portion 55 and the intake side top surface 43. Specifically, the reverse squish flow generating portion is a radial outer edge region from the radial central region of the combustion chamber 6 when the piston 5 descends to the −Z side from the state near the top dead center (TDC). This is the part that generates the flow of the air-fuel mixture toward
 キャビティ5Cは、小キャビティ51、大キャビティ52を含む。図4に示すように、小キャビティ51は、点火プラグ17の着火部17Aに対応する位置、つまり着火部17Aの真下の位置に凹設されている。大キャビティ52は、小キャビティ51に隣接する位置に凹設され、+Z側からの平面視において、小キャビティ51よりも大きい投影面積を有している。例えば、大キャビティ52の投影面積は、小キャビティ51の投影面積に対して8倍程度大きい。凸部53は、冠面50のXY方向の中央付近に配置されている。凸部53は、XY面方向において、燃焼室6の略中央部分に設けられており、インジェクタ18のノズルヘッド18N(図4を参照。)の真下の位置に凸設されている。 The cavity 5 </ b> C includes a small cavity 51 and a large cavity 52. As shown in FIG. 4, the small cavity 51 is recessed at a position corresponding to the ignition part 17A of the spark plug 17, that is, a position directly below the ignition part 17A. The large cavity 52 is recessed at a position adjacent to the small cavity 51, and has a larger projected area than the small cavity 51 in a plan view from the + Z side. For example, the projected area of the large cavity 52 is about 8 times larger than the projected area of the small cavity 51. The convex portion 53 is disposed near the center of the crown surface 50 in the XY direction. The convex portion 53 is provided at a substantially central portion of the combustion chamber 6 in the XY plane direction, and is convexly provided at a position directly below the nozzle head 18N of the injector 18 (see FIG. 4).
 小キャビティ51は、当該小キャビティ51を区画する外周縁である第1周縁511を含む。大キャビティ52は、当該大キャビティ52を区画する外周縁である第2周縁521を含む。第1周縁511は、+Z側からの平面視において、略扇形の形状であり、凸部53、吸気側平面部55及び大キャビティ52との境界線となる。第2周縁521は、+Z側からの平面視において、略C字形の形状を有する。つまり、大キャビティ52は、冠面50を+Z側から平面視した場合において、略C字形状をしている。第2周縁521は、凸部53、吸気側平面部55、排気側平面部56及び小キャビティ51との境界線となる。 The small cavity 51 includes a first peripheral edge 511 that is an outer peripheral edge defining the small cavity 51. The large cavity 52 includes a second peripheral edge 521 that is an outer peripheral edge that defines the large cavity 52. The first peripheral edge 511 has a substantially fan shape in plan view from the + Z side, and becomes a boundary line between the convex portion 53, the intake side flat portion 55, and the large cavity 52. The second peripheral edge 521 has a substantially C shape in plan view from the + Z side. That is, the large cavity 52 has a substantially C shape when the crown surface 50 is viewed from the + Z side. The second peripheral edge 521 is a boundary line between the convex portion 53, the intake side flat portion 55, the exhaust side flat portion 56, and the small cavity 51.
 第1周縁511の一部は、第2周縁521の一部を兼ねる共通周縁部である。換言すると、小キャビティ51の第1周縁511は、その一部において、大キャビティ52の第2周縁521の一部と境界を接する。より具体的には、第1周縁511における、凸部53及び吸気側平面部55と各々境界をなす円弧状部分を除いた部分は、第2周縁521の一部と共通である。この第2周縁521の一部は、C字形状の開放部分(開放端縁)に相当する。共通周縁部は、図4等に示されているように、上方へ突出した稜線54である。即ち、本実施形態では、稜線54を境に小キャビティ51と大キャビティ52とが隣り合っている。 A part of the first peripheral edge 511 is a common peripheral edge part also serving as a part of the second peripheral edge 521. In other words, the first peripheral edge 511 of the small cavity 51 is partly in contact with a part of the second peripheral edge 521 of the large cavity 52. More specifically, the portion of the first peripheral edge 511 excluding the arc-shaped portion that forms a boundary with the convex portion 53 and the intake-side flat surface portion 55 is common to a part of the second peripheral edge 521. A part of the second peripheral edge 521 corresponds to a C-shaped open portion (open end edge). The common peripheral edge is a ridge line 54 protruding upward as shown in FIG. That is, in the present embodiment, the small cavity 51 and the large cavity 52 are adjacent to each other with the ridge line 54 as a boundary.
 図5等に示されるように、大キャビティ52は+Z側からの平面視において略円形の凸部53を取り囲むC字形状を有している。小キャビティ51は、このような大キャビティ52の、C字形状の開放部分に挟まれる位置に形成されている。これにより、稜線54で区切られてはいるが、小キャビティ51及び大キャビティ52によって、凸部53の周囲を囲む略環状のキャビティ5Cが冠面50に形成されている。 As shown in FIG. 5 and the like, the large cavity 52 has a C shape surrounding the substantially circular convex portion 53 in a plan view from the + Z side. The small cavity 51 is formed at a position between the large cavity 52 and the C-shaped open portion. Thereby, although it is delimited by the ridgeline 54, a substantially annular cavity 5 </ b> C surrounding the periphery of the convex portion 53 is formed on the crown surface 50 by the small cavity 51 and the large cavity 52.
 また、凸部53の外周における周縁部531は、小キャビティ51の第1周縁511の一部及び大キャビティ52の第2周縁521の一部と境界を接する。なお、本実施形態では、凸部53は山形状に形成されており、周縁部531が山の裾野となっている。 Further, the peripheral edge portion 531 on the outer periphery of the convex portion 53 is in contact with a part of the first peripheral edge 511 of the small cavity 51 and a part of the second peripheral edge 521 of the large cavity 52. In the present embodiment, the convex portion 53 is formed in a mountain shape, and the peripheral edge portion 531 is a foot of the mountain.
 インジェクタ18のノズルヘッド18Nには、放射状に複数の噴射孔181が設けられており、ノズルヘッド18Nの各噴射孔からは、小キャビティ51及び大キャビティ52に向けて燃料が噴射される。このとき、噴射燃料18Eは、斜面である第1周縁511及び第2周縁521に沿って各キャビティ51,52内へと円滑に導入される。 A plurality of injection holes 181 are provided radially in the nozzle head 18N of the injector 18, and fuel is injected from each injection hole of the nozzle head 18N toward the small cavity 51 and the large cavity 52. At this time, the injected fuel 18E is smoothly introduced into the cavities 51 and 52 along the first peripheral edge 511 and the second peripheral edge 521 which are inclined surfaces.
 図7に示すように、吸気側平面部55及び排気側平面部56を基準としたときの大キャビティ52の深さh2は、小キャビティ51の深さh1よりも深くなっている。これにより、キャビティ5Cは、その底面の深さが排気口側(+X側)から吸気口側(-X側)に行くのに従って浅くなるようになっている。より具体的には、キャビティ5Cの底面は、+X側から点火プラグ17の着火部17Aの真下へと行くのに従って、上方(+Z側)へと漸次上がっている。 As shown in FIG. 7, the depth h2 of the large cavity 52 when the intake side plane portion 55 and the exhaust side plane portion 56 are used as a reference is deeper than the depth h1 of the small cavity 51. Thus, the cavity 5C is designed such that the depth of the bottom surface becomes shallower as it goes from the exhaust port side (+ X side) to the intake port side (−X side). More specifically, the bottom surface of the cavity 5C gradually rises upward (+ Z side) as it goes from the + X side to directly below the ignition part 17A of the spark plug 17.
 また、上述のように、大キャビティ52の投影面積は、小キャビティ51の投影面積よりも大きいので、各キャビティ51,52の深さ(凹入深さ)h1,h2を合わせて考慮するとき、大キャビティ52は小キャビティ51に比べて大きな容積を以って形成されていることになる。 Further, as described above, since the projected area of the large cavity 52 is larger than the projected area of the small cavity 51, when considering the depths (recessed depths) h1 and h2 of the cavities 51 and 52 together, The large cavity 52 is formed with a larger volume than the small cavity 51.
 [燃料噴射期間及び点火タイミングとクランク角]
 図8を参照して、燃料噴射期間及び点火タイミングとクランク角との関係を説明する。図8は、燃料噴射期間及び点火タイミングとクランク角との関係を示すタイムチャートである。
[Fuel injection period, ignition timing and crank angle]
With reference to FIG. 8, the relationship between the fuel injection period, the ignition timing, and the crank angle will be described. FIG. 8 is a time chart showing the relationship between the fuel injection period, the ignition timing, and the crank angle.
 図8に示すように、本実施形態に係るエンジン本体1は、少なくともモードI及びモードIIの燃料噴射期間及び点火タイミングで、運転を成立させる。 As shown in FIG. 8, the engine body 1 according to the present embodiment establishes operation at least in the fuel injection periods and ignition timings of mode I and mode II.
 モードIは、上述のリタードSI燃焼の実行の際に採用されるもので、燃料噴射期間PF1は圧縮行程のTDC前後、点火タイミングは膨張行程初期である。即ち、TDCよりも前の圧縮行程終盤のクランク角-CA11のタイミングT11からインジェクタ18による燃料噴射が開始され、TDC後の膨張行程開始初期のクランク角+CA12のタイミングT12まで燃料噴射が実行される。その後、膨張行程初期の所定のクランク角+CA13のタイミングT13において、点火プラグ17によって混合気に点火される。各クランク角は、例えば、-CA11がTDC前15°(より好ましくはTDC前、10°)、+CA12がTDC後5°(より好ましくは、TDC後2°)、+CA13が圧縮TDC後8~10°(より好ましくは、TDC後9°)である。このモードIによれば、TDC前後で燃料が噴射されるので、ノッキングを防止することができる。 Mode I is employed when the above-described retarded SI combustion is performed. The fuel injection period PF1 is before and after the TDC of the compression stroke, and the ignition timing is at the beginning of the expansion stroke. That is, fuel injection by the injector 18 is started from the timing T11 of the crank angle −CA11 at the end of the compression stroke before TDC, and fuel injection is executed until the timing T12 of the initial crank angle + CA12 after the TDC. Thereafter, the air-fuel mixture is ignited by the spark plug 17 at a predetermined crank angle + CA13 timing T13 in the initial stage of the expansion stroke. As for each crank angle, for example, −CA11 is 15 ° before TDC (more preferably, 10 ° before TDC), + CA12 is 5 ° after TDC (more preferably, 2 ° after TDC), and + CA13 is 8 to 10 after compression TDC. ° (more preferably 9 ° after TDC). According to this mode I, since fuel is injected before and after TDC, knocking can be prevented.
 モードIIは、上述のSI燃焼及びSICI燃焼の際に採用されるもので、燃料噴射期間PF2は吸気行程の中期、点火タイミングは圧縮行程のTDC付近である。即ち、排気工程におけるTDCからピストン5が行程の半分程度下降するクランク角CA2を挟んだタイミングT21~T22が、燃料噴射期間PF2とされる。点火タイミングは、TDCに至るタイミングT23である。CA2は、例えば、TDC後70°である。 Mode II is employed in the above-described SI combustion and SICI combustion. The fuel injection period PF2 is in the middle of the intake stroke, and the ignition timing is in the vicinity of TDC in the compression stroke. That is, the timing T21 to T22 sandwiching the crank angle CA2 at which the piston 5 descends about half of the stroke from the TDC in the exhaust process is set as the fuel injection period PF2. The ignition timing is a timing T23 that reaches TDC. CA2 is, for example, 70 ° after TDC.
 なお、ノッキング防止のため、TDC前のクランク角CA3で、CA2に加えて追加的に燃料噴射を行わせてもよい。 In addition, in order to prevent knocking, fuel injection may be additionally performed in addition to CA2 at the crank angle CA3 before TDC.
 [逆スキッシュ流]
 燃焼室6内で生じる逆スキッシュ流について、図9及び図10A、図10Bを用い説明する。図9及び図10Aは、ピストン5がTDC付近にある場合の燃焼室6を示す断面図、図10Bは、TDC後にピストン5が下降した状態での燃焼室6を示す断面図である。
[Reverse Squish Flow]
The reverse squish flow generated in the combustion chamber 6 will be described with reference to FIGS. 9, 10A, and 10B. 9 and 10A are cross-sectional views showing the combustion chamber 6 when the piston 5 is in the vicinity of the TDC, and FIG. 10B is a cross-sectional view showing the combustion chamber 6 in a state where the piston 5 is lowered after the TDC.
 先ず、図9に示すように、点火プラグ17の着火部17Aを通り、Z方向に延びる仮想線LSPを引く。 First, as shown in FIG. 9, an imaginary line LSP that passes through the ignition part 17A of the spark plug 17 and extends in the Z direction is drawn.
 図9に示すように、ピストン5がTDC付近にある場合、上記仮想線LSPよりも+X側の部分(A部分;矢印Aで指し示す部分)と、上記仮想線LSPよりも-X側の部分(B部分;矢印Bで指し示す部分)と、を比較する。図9からも明らかなように、本実施形態に係る燃焼室6の構造では、B部分の容積は、A部分の容積よりも小さくなっている。 As shown in FIG. 9, when the piston 5 is in the vicinity of TDC, a portion on the + X side from the virtual line LSP (A portion; a portion indicated by an arrow A) and a portion on the −X side from the virtual line LSP ( B part; the part indicated by arrow B). As is clear from FIG. 9, in the structure of the combustion chamber 6 according to this embodiment, the volume of the B portion is smaller than the volume of the A portion.
 燃焼室6においては、上記のような燃焼室容積の差異により、膨張行程中のピストン5の下降に伴い混合気を+X側から-X側へと引き込む逆スキッシュ流が生成されることになる。即ち、燃焼室6では、上記燃焼室容積の差異により、逆スキッシュ流生成部を形成している。 In the combustion chamber 6, due to the difference in the combustion chamber volume as described above, a reverse squish flow that draws the air-fuel mixture from the + X side to the −X side is generated as the piston 5 descends during the expansion stroke. That is, in the combustion chamber 6, a reverse squish flow generating portion is formed due to the difference in the combustion chamber volume.
 次に、図10Aに示すように、ピストン5がTDC付近にある場合、ピストン5の冠面50が燃焼室天井面6Uに最も接近した状態となっている。このため、吸気側平面部55が吸気側天面43に対して僅かな隙間を空けた状態で対向し(矢印Cで指し示す部分を参照)、排気側平面部56も排気側天面44に対して狭い隙間を空けた状態で対向している。 Next, as shown in FIG. 10A, when the piston 5 is in the vicinity of TDC, the crown surface 50 of the piston 5 is in the state closest to the combustion chamber ceiling surface 6U. Therefore, the intake side flat portion 55 faces the intake side top surface 43 with a slight gap (see the portion indicated by the arrow C), and the exhaust side flat portion 56 also faces the exhaust side top surface 44. Facing each other with a narrow gap.
 図10Bに示すように、TDC後の膨張行程において、ピストン5が下降して行くと吸気側平面部55が吸気側天面43から離間し(矢印Dで指し示す部分を参照)、排気側平面部56も排気側天面44から離間する。このとき、ハッチングを付した矢印で示すように、-X側に向けた逆スキッシュ流(混合気を-X側の領域に引き込む流れ)が生成される。本実施形態では、吸気側平面部55と吸気側天面43とにより、逆スキッシュ流生成部が構成されているといえる。 As shown in FIG. 10B, in the expansion stroke after TDC, when the piston 5 descends, the intake side flat surface portion 55 is separated from the intake side top surface 43 (see the portion indicated by the arrow D), and the exhaust side flat surface portion. 56 is also separated from the exhaust side top surface 44. At this time, as indicated by hatched arrows, a reverse squish flow (flow that draws the air-fuel mixture into the −X side region) toward the −X side is generated. In the present embodiment, it can be said that the intake side flat surface portion 55 and the intake side top surface 43 constitute an inverse squish flow generating portion.
 なお、排気側平面部56と排気側天面44とについても互いに沿った状態にあるが、ピストン5及び燃焼室天井面6Uでは、吸気側平面部55と吸気側天面43との対向面積が、排気側平面部56と排気側天面44との対向面積よりも大きいため、矢印で示すような逆スキッシュ流が生成される。 Although the exhaust side flat portion 56 and the exhaust side top surface 44 are also in a state along each other, in the piston 5 and the combustion chamber ceiling surface 6U, the opposing area of the intake side flat portion 55 and the intake side top surface 43 is the same. The reverse squish flow as indicated by the arrow is generated because it is larger than the facing area between the exhaust side flat portion 56 and the exhaust side top surface 44.
 ここで、図10Aに示す状態において、互いに近接して対向する排気側平面部56と排気側天面44とを設けることにより、TDC付近で燃料噴射された際に、噴射燃料がシリンダ2の内壁面(シリンダライナ)に直接付着することが防止される。これにより、デポジットの生成が抑制される。 Here, in the state shown in FIG. 10A, by providing the exhaust-side flat portion 56 and the exhaust-side top surface 44 that face each other close to each other, when the fuel is injected near the TDC, the injected fuel is within the cylinder 2. Direct adhesion to the wall surface (cylinder liner) is prevented. Thereby, the production | generation of a deposit is suppressed.
 [スワール流]
 燃焼室6内で生じるスワール流について、図11及び図12を用い説明する。図11は、燃焼室6内で生じるスワール流FSを示す断面図であり、図12は、燃焼室6内で生じるスワール流FSを示す平面図である。
[Swirl style]
A swirl flow generated in the combustion chamber 6 will be described with reference to FIGS. 11 and 12. FIG. 11 is a cross-sectional view showing the swirl flow FS generated in the combustion chamber 6, and FIG. 12 is a plan view showing the swirl flow FS generated in the combustion chamber 6.
 図12に示すように、燃焼室6の径方向中心部分に配設されたインジェクタ18のノズルヘッド18Nからは、放射状に燃料が噴射される(噴射燃料18E)。即ち、インジェクタ18からは、排気口側である+X側にある大キャビティ52内に向けて燃料が噴射されるとともに、吸気口側である-X側にある小キャビティ51に向けても燃料が噴射される。 As shown in FIG. 12, fuel is injected radially from the nozzle head 18N of the injector 18 disposed at the radial center of the combustion chamber 6 (injected fuel 18E). That is, fuel is injected from the injector 18 into the large cavity 52 on the + X side, which is the exhaust port side, and also to the small cavity 51 on the −X side, which is the intake port side. Is done.
 ただし、小キャビティ51に向けての燃料噴射は、点火プラグ17の着火部17Aに対して指向軸が向かないようになっている。即ち、小キャビティ51に向けての燃料噴射は、指向軸が点火プラグ17の着火部17Aの両脇を通過するようになっている。これにより、プラグ被りの発生を抑制することができる。また、本実施形態では、点火プラグ17における接地電極172の背部(基部174)が、-X側(燃焼室6の径方向外側)を向けられている。これによっても、プラグ被りの発生を抑制することができる。 However, in the fuel injection toward the small cavity 51, the directional axis does not face the ignition portion 17A of the spark plug 17. That is, in the fuel injection toward the small cavity 51, the directing shaft passes through both sides of the ignition part 17 </ b> A of the spark plug 17. Thereby, generation | occurrence | production of plug covering can be suppressed. In the present embodiment, the back portion (base portion 174) of the ground electrode 172 in the spark plug 17 is directed to the −X side (the radially outer side of the combustion chamber 6). This also can suppress the occurrence of plug covering.
 燃焼室6内には、図12の白抜き矢印で示すように、環状のキャビティ5C(小キャビティ51と大キャビティ52との組み合わせ)の外縁部分を周回するようにスワール流FSが生じる。そして、新気と燃料との混合気がスワール流FSにより点火プラグ17の着火部17Aの近傍へと導かれる。 In the combustion chamber 6, a swirl flow FS is generated so as to go around the outer edge portion of the annular cavity 5 </ b> C (a combination of the small cavity 51 and the large cavity 52), as indicated by the white arrow in FIG. 12. Then, the mixture of fresh air and fuel is guided to the vicinity of the ignition part 17A of the spark plug 17 by the swirl flow FS.
 ここで、環状のキャビティ5Cの底面に仮想線L52Bを引くとき、当該底面は、箇所P1から箇所P2を通り箇所P3へと行くに従って上方(図12の紙面手前側)に上がってくるように構成されている。このため、図11に示すように、スワール流FSに導かれた混合気が、+X側から点火プラグ17の着火部17A付近に向けて漸次+Z側へと持ち上げられる。よって、燃焼室6では、着火部17A近傍の残留ガスを押し流すことができる。 Here, when an imaginary line L52B is drawn on the bottom surface of the annular cavity 5C, the bottom surface is configured to rise upward (front side in FIG. 12) from the point P1 through the point P2 to the point P3. Has been. For this reason, as shown in FIG. 11, the air-fuel mixture guided to the swirl flow FS is gradually lifted from the + X side toward the ignition portion 17A of the spark plug 17 toward the + Z side. Therefore, in the combustion chamber 6, the residual gas in the vicinity of the ignition part 17A can be pushed away.
 [効果]
 本実施形態に係るエンジン本体1の燃焼室6では、排気口側(+X側)を含み燃料を噴射可能にインジェクタ18が構成されているので、燃焼室6が高温になる高負荷運転領域においても、短時間での霧化が可能である。よって、本実施形態では、高負荷運転域におけるプリイグニッションの発生を抑制することができる。
[effect]
In the combustion chamber 6 of the engine main body 1 according to the present embodiment, the injector 18 is configured so as to be able to inject fuel including the exhaust port side (+ X side), so even in a high load operation region where the combustion chamber 6 is at a high temperature. Atomization in a short time is possible. Therefore, in this embodiment, generation | occurrence | production of the pre-ignition in a high load driving | operation area | region can be suppressed.
 また、本実施形態に係るエンジン本体1の燃焼室6では、図9及び図10A、図10Bを用い説明したように、燃焼室6において、ピストン5が-Z側へと下降するのに伴い混合気を吸気口側へと引き込む逆スキッシュ流生成部が設けられているので、燃焼室6における全体の酸素を使って燃焼を生じさせ、エミッション性能の低下を抑制することが可能となる。 Further, in the combustion chamber 6 of the engine body 1 according to the present embodiment, as described with reference to FIGS. 9, 10A, and 10B, in the combustion chamber 6, the mixing is performed as the piston 5 descends to the −Z side. Since the reverse squish flow generation unit that draws air to the intake port side is provided, combustion is generated using the entire oxygen in the combustion chamber 6, and it is possible to suppress a decrease in emission performance.
 なお、本実施形態では、混合気を吸気口側のB部分と排気口側のA部分との燃焼室容積の差異を以って逆スキッシュ流生成部を形成することとしている。そのため、膨張行程時においてピストン5が-Z側に向けて下降するのに伴い、吸気口側(特に、点火プラグ17の着火部17Aの下方)が負圧となり、これにより排気口側で霧化された混合気を点火プラグ17の着火部17Aが配設された部分へと引き込むことができる。 In this embodiment, the reverse squish flow generating portion is formed by the difference in the combustion chamber volume between the B portion on the intake port side and the A portion on the exhaust port side. Therefore, as the piston 5 descends toward the -Z side during the expansion stroke, the intake port side (particularly below the ignition part 17A of the spark plug 17) becomes negative pressure, which causes atomization on the exhaust port side. The mixed gas mixture can be drawn into the portion of the spark plug 17 where the ignition portion 17A is disposed.
 また、本実施形態に係るエンジン本体1の燃焼室6では、図10A、図10Bを用い説明したように、シリンダヘッド4の底面である燃焼室6の天井面6Uにおける吸気側天面43と、ピストン5の冠面50における吸気側平面部55と、が互いに沿い、且つ、互いに近接するようになっている。そのため、ピストン5がTDCを通過した後に点火プラグ17の着火部17A付近で生じる負圧を利用して、燃焼室6内に逆スキッシュ流を生成することができる。 Further, in the combustion chamber 6 of the engine body 1 according to the present embodiment, as described with reference to FIGS. 10A and 10B, the intake side top surface 43 on the ceiling surface 6U of the combustion chamber 6 that is the bottom surface of the cylinder head 4; The intake-side flat surface portion 55 of the crown surface 50 of the piston 5 is along and close to each other. Therefore, a reverse squish flow can be generated in the combustion chamber 6 using the negative pressure generated in the vicinity of the ignition part 17A of the spark plug 17 after the piston 5 passes TDC.
 よって、本実施形態では、燃焼室6における全体の酸素を使って燃焼を生じさせ、エミッション性能の低下を抑制することができる。 Therefore, in the present embodiment, combustion can be generated using the entire oxygen in the combustion chamber 6, and a reduction in emission performance can be suppressed.
 なお、本実施形態では、吸気側天面43と吸気側平面部55とを、それぞれ平面で構成することとしているので、これら領域を曲面で構成する場合に比べて、製造が容易である。そのため、製造コストの上昇を抑えながら、逆スキッシュ流生成部を設けることが可能となる。 In the present embodiment, the intake side top surface 43 and the intake side flat portion 55 are each configured as a flat surface, and therefore, manufacture is easier than in the case where these regions are configured as curved surfaces. Therefore, it is possible to provide a reverse squish flow generation unit while suppressing an increase in manufacturing cost.
 また、本実施形態に係るエンジン本体1の燃焼室6では、排気口側においても、排気側天面44と排気側平面部56とが対向するようにし、図10Aに示すように、ピストン5がTDC付近にある場合においては、排気側天面44と排気側平面部56とを近接させている。そのため、燃料噴射時において、シリンダライナの排気口側に対して燃料が付着するのを抑制することができる。よって、本実施形態では、デポジットの発生を抑制することができる。 Further, in the combustion chamber 6 of the engine body 1 according to the present embodiment, the exhaust-side top surface 44 and the exhaust-side flat portion 56 face each other also on the exhaust port side, and as shown in FIG. In the case of being in the vicinity of TDC, the exhaust side top surface 44 and the exhaust side flat surface portion 56 are brought close to each other. Therefore, it is possible to prevent the fuel from adhering to the exhaust port side of the cylinder liner during fuel injection. Therefore, in this embodiment, the generation of deposits can be suppressed.
 また、本実施形態に係るエンジン本体1の燃焼室6では、+Z側からの平面視において、排気側天面44と排気側平面部56との対向面積を、吸気側天面43と吸気側平面部55との対向面積よりも小面積としているので、ピストン5が-Z側に向けて下降する際における逆スキッシュ流の生成が阻害され難い。 Further, in the combustion chamber 6 of the engine body 1 according to the present embodiment, the opposed area between the exhaust side top surface 44 and the exhaust side flat surface portion 56 in plan view from the + Z side is defined as the intake side top surface 43 and the intake side plane. Since the area is smaller than the area facing the portion 55, it is difficult for the generation of the reverse squish flow when the piston 5 descends toward the −Z side.
 また、本実施形態に係るエンジン本体1の燃焼室6では、図11及び図12を用い説明したように、点火プラグ17の着火部17Aに向けて深さが漸次浅くなるように、キャビティ5Cの底面が形成されている。そのため、ピストン5が+Z側に向けて上昇する際において、キャビティ5C内でのスワール成分(スワール流FS)は、点火プラグ17の着火部17Aに向けて持ち上げられることになる。よって、新気と燃料との混合気が点火プラグ17の着火部17A近傍に導かれ、着火部17A近傍の残留ガスを押し流すことができる。 Further, in the combustion chamber 6 of the engine body 1 according to the present embodiment, as described with reference to FIGS. 11 and 12, the cavity 5C has a depth that gradually decreases toward the ignition portion 17A of the spark plug 17. A bottom surface is formed. Therefore, when the piston 5 rises toward the + Z side, the swirl component (swirl flow FS) in the cavity 5C is lifted toward the ignition part 17A of the spark plug 17. Therefore, the mixture of fresh air and fuel is guided to the vicinity of the ignition part 17A of the spark plug 17, and the residual gas in the vicinity of the ignition part 17A can be swept away.
 また、本実施形態に係るエンジン本体1の燃焼室6では、ピストン5が-Z側に向けて下降する際に生じる逆スキッシュ流を利用する場合においても、点火プラグ17の着火部17Aに向けてスムーズに混合気が導かれる。 Further, in the combustion chamber 6 of the engine body 1 according to the present embodiment, even when the reverse squish flow generated when the piston 5 descends toward the −Z side is used, the combustion chamber 6 faces the ignition portion 17A of the spark plug 17. The air-fuel mixture is guided smoothly.
 また、本実施形態に係るエンジン本体1の燃焼室6では、小キャビティ51と大キャビティ52との組み合わせよりなるキャビティ5Cが平面視で環状に形成されている。そのため、図12を用い説明したように、ピストン5がTDCに近付くに従って、混合気が相対的に高温の排気口側から相対的に低温の吸気口側へと流れ、点火プラグ17の着火部17A近傍に導かれる。そして、図4及び図12に示すように、+Z側からの平面視において、点火プラグ17の着火部17Aがキャビティ5Cの一部と重複するように配設されているので、優れた着火性を確保することができる。 Further, in the combustion chamber 6 of the engine body 1 according to the present embodiment, a cavity 5C formed by a combination of the small cavity 51 and the large cavity 52 is formed in an annular shape in plan view. Therefore, as described with reference to FIG. 12, as the piston 5 approaches TDC, the air-fuel mixture flows from the relatively hot exhaust port side to the relatively cold intake port side, and the ignition part 17A of the spark plug 17 Guided to the neighborhood. And as shown in FIG.4 and FIG.12, in the planar view from + Z side, since the ignition part 17A of the spark plug 17 is arrange | positioned so that it may overlap with a part of cavity 5C, it was excellent in ignitability. Can be secured.
 また、本実施形態に係るエンジン本体1の燃焼室6では、燃焼室6の天井面(燃焼室天井面6U)がペントルーフ形状で形成されているので、燃焼室6内にタンブル流を形成することができ、燃焼室6全体での均質な燃焼が可能である。 Further, in the combustion chamber 6 of the engine body 1 according to the present embodiment, the ceiling surface of the combustion chamber 6 (combustion chamber ceiling surface 6U) is formed in a pent roof shape, so that a tumble flow is formed in the combustion chamber 6. And homogeneous combustion in the entire combustion chamber 6 is possible.
 (第2の実施形態)
 次に、本発明の第2実施形態に係る火花点火式のエンジンの燃焼室構造を詳細に説明する。なお、第2実施形態の基本的な構造は第1実施形態と共通するため、以下の説明では、第1実施形態と共通する構成要素については同一符号を付して説明を省略又は簡略化し、主に第1実施形態に係る燃焼室構造との相違点について詳細に説明する。
(Second Embodiment)
Next, the combustion chamber structure of the spark ignition type engine according to the second embodiment of the present invention will be described in detail. In addition, since the basic structure of 2nd Embodiment is common in 1st Embodiment, in the following description, about the component which is common in 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted or simplified, Differences from the combustion chamber structure according to the first embodiment will be mainly described in detail.
 図13は、第2実施形態に係るエンジンの燃焼室構造が適用されるエンジンのシリンダヘッドの要部の断面図であり、図14は、燃焼室天井面の平面図である。 FIG. 13 is a cross-sectional view of a main part of an engine cylinder head to which the engine combustion chamber structure according to the second embodiment is applied, and FIG. 14 is a plan view of the combustion chamber ceiling surface.
 燃焼室天井面6Uは、第1実施形態と同様にペントルーフ型の形状である。第1実施形態の燃焼室天井面6Uが、図2に示すような浅型の(勾配の小さい)ペントルーフ型であるのに対して、第2実施形態の燃焼室天井面6Uは、深型の(勾配が大きい)ペントルーフ型である。つまり、第2実施形態の燃焼室6は、第1実施形態よりも燃焼室6の容積を大きくして圧縮比を下げた構造となっている。 The combustion chamber ceiling surface 6U has a pent roof type shape as in the first embodiment. The combustion chamber ceiling surface 6U of the first embodiment is a shallow (small gradient) pent roof type as shown in FIG. 2, whereas the combustion chamber ceiling surface 6U of the second embodiment is a deep type. It is a pent roof type (large gradient). That is, the combustion chamber 6 of the second embodiment has a structure in which the compression ratio is lowered by increasing the volume of the combustion chamber 6 compared to the first embodiment.
 このような深型のペントルーフ型の燃焼室天井面6Uにおいて、2つの吸気側開口部41の間にインジェクタ18を配置しながら、必要とされる各吸気側開口部41の開口面積を確保するには、X方向において、2つの吸気側開口部41をよりシリンダ2の中心寄りに配置する必要がある。そのため、第2実施形態では、図14に示すように、2つの吸気側開口部41は、それらの一部分がシリンダ2の中心2aよりも排気口側に位置するように配置されている。 In such a deep pent roof type combustion chamber ceiling surface 6U, the required opening area of each intake side opening 41 is secured while arranging the injector 18 between the two intake side openings 41. In the X direction, it is necessary to arrange the two intake side openings 41 closer to the center of the cylinder 2. Therefore, in the second embodiment, as shown in FIG. 14, the two intake side openings 41 are arranged such that a part of them is located closer to the exhaust port than the center 2 a of the cylinder 2.
 これに伴い、インジェクタ18(ノズルヘッド18N)もシリンダ2の中心2aから排気口側にオフセットされた配置となっている。インジェクタ18のオフセット量は、主にモードIIにおける燃料噴射時、すなわち吸気行程の中期にノズルヘッド18Nから噴射される燃料が、吸気側開口部41から燃焼室6に導入される吸気の主流に乗って拡散し易い位置に設定されている。当例では、インジェクタ18は、シリンダ2の中心2aから約2mmだけ排気口側にオフセットされている。 Accordingly, the injector 18 (nozzle head 18N) is also arranged so as to be offset from the center 2a of the cylinder 2 to the exhaust port side. The amount of offset of the injector 18 depends mainly on the main flow of the intake air that is injected from the nozzle head 18N into the combustion chamber 6 through the intake side opening 41 during the fuel injection in mode II, that is, in the middle of the intake stroke. It is set at a position where it is easy to diffuse. In this example, the injector 18 is offset from the center 2a of the cylinder 2 to the exhaust port side by about 2 mm.
 図27は、吸気行程の中期の吸気の流れとインジェクタ18との関係を説明するための断面図である。同図に示すように、吸気ポート9を通じて燃焼室6に導入される吸気の主流Msは、吸気ポート9の上側壁面に沿って燃焼室6に導入されつつタンブル流を形成する。このような状態において、シリンダ2の中心2aにインジェクタ18の中心が位置する場合には、燃料の一部は吸気の主流Msよりも下方でノズルヘッド18Nから噴射されることとなり、吸気の主流Msに乗り難くなる。これに対して、インジェクタ18がシリンダ2の中心2aから排気口側にオフセットされた構成によれば、吸気の主流Msよりも上方又はその近傍位置でノズルヘッド18Nから燃料が噴射されるため、燃料が吸気の主流Msに乗って拡散し易くなる。 FIG. 27 is a cross-sectional view for explaining the relationship between the intake air flow in the middle stage of the intake stroke and the injector 18. As shown in the figure, the main flow Ms of the intake air introduced into the combustion chamber 6 through the intake port 9 forms a tumble flow while being introduced into the combustion chamber 6 along the upper wall surface of the intake port 9. In such a state, when the center of the injector 18 is located at the center 2a of the cylinder 2, a part of the fuel is injected from the nozzle head 18N below the main flow Ms of intake air, and the main flow Ms of intake air. It becomes difficult to ride. On the other hand, according to the configuration in which the injector 18 is offset from the center 2a of the cylinder 2 toward the exhaust port, fuel is injected from the nozzle head 18N at a position above or near the main stream Ms of intake air. Becomes easy to diffuse on the mainstream Ms of the intake air.
 なお、この実施形態では、シリンダ2の中心2aからインジェクタ18(ノズルヘッド18N)の中心が約2mmだけ排気口側にオフセットされているが、この場合のオフセット量は、インジェクタ18から噴射される燃料が吸気の主流Msに乗って良好に拡散されるように設定されていればよい。例えば、インジェクタ18(ノズルヘッド18N)の中心は、シリンダ2の中心2aから、当該シリンダ2の直径(ボア径)の2~5%の範囲内で排気口側にオフセットされているのが好適である。 In this embodiment, the center of the injector 2 (nozzle head 18N) is offset from the center 2a of the cylinder 2 to the exhaust port side by about 2 mm. In this case, the offset amount is the fuel injected from the injector 18. Should be set so as to diffuse well on the mainstream Ms of the intake air. For example, the center of the injector 18 (nozzle head 18N) is preferably offset from the center 2a of the cylinder 2 to the exhaust port side within a range of 2 to 5% of the diameter (bore diameter) of the cylinder 2. is there.
 第2実施形態のピストン5の冠面50もキャビティ5C、吸気側平面部55、排気側平面部56及び一対の側方上面57を含む点で第1実施形態と構成が共通している。しかし、以下の点で第1実施形態と具体的な構造が相違している。 The crown surface 50 of the piston 5 of the second embodiment also has the same configuration as the first embodiment in that it includes a cavity 5C, an intake side flat portion 55, an exhaust side flat portion 56, and a pair of side upper surfaces 57. However, the specific structure differs from the first embodiment in the following points.
 図15は、ピストン5に対する点火プラグ17及びインジェクタ18の配置関係を示す斜視図、図16は、同配置関係を示す平面図である。図17は、ピストン5の冠面50の平面図であり、図18~図20は、それぞれピストン5の正面図(吸気口側から視た図)、背面図(排気口側から視た図)、側面図であり、図21、図22は、それぞれ図17のXXI-XXI線、XXII-XXII線断面図である。また、図23は、排気側から視たピストン5の斜視図であり、図24は、吸気口側から視たピストン5の斜視図である。 15 is a perspective view showing the arrangement relationship of the spark plug 17 and the injector 18 with respect to the piston 5, and FIG. 16 is a plan view showing the arrangement relationship. FIG. 17 is a plan view of the crown surface 50 of the piston 5. FIGS. 18 to 20 are a front view of the piston 5 (viewed from the intake port side) and a rear view (viewed from the exhaust port side), respectively. 21 and 22 are cross-sectional views taken along lines XXI-XXI and XXII-XXII in FIG. 17, respectively. FIG. 23 is a perspective view of the piston 5 as viewed from the exhaust side, and FIG. 24 is a perspective view of the piston 5 as viewed from the intake port side.
 第2実施形態のキャビティ5Cは、小キャビティ51と大キャビティ52とが稜線54により区切られることなく(換言すれば、稜線54を介することなく)滑らかに連続した形状を有している。つまり、キャビティ5Cは、図17に示すように、凸部53とこれを取り囲むように滑らかに連続する一つの環状のキャビティ(以下、環状キャビティ58と称す)とを含む。環状キャビティ58は、稜線54により区切られていないが、第1実施形態と同様に、環状キャビティ58(キャビティ5C)の底面は、排気側から点火プラグ17の着火部17Aの真下へと行くのに従って、上方(+Z側)へと漸次上がっている。 The cavity 5C of the second embodiment has a smoothly continuous shape without the small cavity 51 and the large cavity 52 being separated by the ridge line 54 (in other words, without the ridge line 54). That is, as shown in FIG. 17, the cavity 5 </ b> C includes the convex portion 53 and one annular cavity (hereinafter referred to as an annular cavity 58) that smoothly and continuously surrounds the convex portion 53. Although the annular cavity 58 is not delimited by the ridge line 54, as in the first embodiment, the bottom surface of the annular cavity 58 (cavity 5C) goes from the exhaust side to directly below the ignition portion 17A of the ignition plug 17. , Gradually rising upward (+ Z side).
 図17~図20に示すように、冠面50のうち、吸気側平面部55と環状キャビティ58との間であってかつ一対の側方上面57の間には、吸気側斜面部61が設けられ、排気側平面部56と環状キャビティ58との間であってかつ一対の側方上面57の間には排気側斜面部62が設けられている。 As shown in FIGS. 17 to 20, an intake side inclined surface portion 61 is provided between the intake side flat portion 55 and the annular cavity 58 in the crown surface 50 and between the pair of side upper surfaces 57. In addition, an exhaust-side slope portion 62 is provided between the exhaust-side flat portion 56 and the annular cavity 58 and between the pair of side upper surfaces 57.
 吸気側斜面部61は、吸気側平面部55の末端部分から排気口側に向かって先上がりに傾斜する平坦な斜面であり、排気側斜面部62は、排気側平面部56の末端部分から吸気側に向かって先上がりに傾斜する平坦な斜面である。図25に示すように、各斜面部61、62は、ピストン5が上死点位置にあるときに、燃焼室天井面6Uのペントルーフ部分に近接して対向し、当該ペントルーフ部分と略平行に延びる面である。なお、燃焼室天井面6Uが深型のペントルーフ型であるため、冠面50のうち各側方上面57に対応する部分は、当該燃焼室天井面6Uに向かって錐台状に突出している。以下の説明では、この錐台状の突出部分のことを側方上面部57と称する場合がある。 The intake-side inclined surface portion 61 is a flat inclined surface that slopes upward from the end portion of the intake-side flat surface portion 55 toward the exhaust port side, and the exhaust-side inclined surface portion 62 is inhaled from the end portion of the exhaust-side flat surface portion 56. It is a flat slope that slopes upward toward the side. As shown in FIG. 25, when the piston 5 is at the top dead center position, the slopes 61 and 62 face each other close to the pent roof portion of the combustion chamber ceiling surface 6U and extend substantially parallel to the pent roof portion. Surface. Since the combustion chamber ceiling surface 6U is a deep pent roof type, the portion corresponding to each lateral upper surface 57 of the crown surface 50 protrudes in a frustum shape toward the combustion chamber ceiling surface 6U. In the following description, this frustum-shaped protruding portion may be referred to as a side upper surface portion 57.
 環状キャビティ58は、冠面50において排気口側に偏って形成されている。凸部53は、図17に示すように、気筒軸方向視においてX方向の寸法53XがY方向の寸法53Yよりも大きい、つまりX方向に細長いオーバル形状(長円形)を有している。凸部53の中心53aは、インジェクタ18に対応して冠面50の中心5a(シリンダ2の中心2a)から排気口側にオフセットされている。これにより、凸部53の中心はインジェクタ18(ノズルヘッド18N)の直下に位置している。 The annular cavity 58 is formed so as to be biased toward the exhaust port side on the crown surface 50. As shown in FIG. 17, the convex portion 53 has an oval shape (oval shape) elongated in the X direction, that is, the dimension 53X in the X direction is larger than the dimension 53Y in the Y direction when viewed in the cylinder axial direction. The center 53 a of the convex portion 53 is offset from the center 5 a of the crown surface 50 (center 2 a of the cylinder 2) to the exhaust port side corresponding to the injector 18. Thereby, the center of the convex part 53 is located directly under the injector 18 (nozzle head 18N).
 環状キャビティ58は、当該環状キャビティ58を区画する周縁である内周縁581と外周縁582とを含む。内周縁581は、凸部53との境界線となり、外周縁582は、吸気側斜面部61、排気側斜面部62及び側方上面57との境界線となる。 The annular cavity 58 includes an inner peripheral edge 581 and an outer peripheral edge 582 which are peripheral edges that define the annular cavity 58. The inner peripheral edge 581 is a boundary line with the convex portion 53, and the outer peripheral edge 582 is a boundary line with the intake side inclined surface portion 61, the exhaust side inclined surface portion 62, and the side upper surface 57.
 外周縁582のうち、冠面50の中心5a(図17中のXXII-XXII線)よりも排気側の部分(排気側外周縁582b)であって側方上面57との境界線となる部分は、当該中心5aを中心とする略真円に沿った円弧状である。他方、冠面50の中心5aよりも吸気口側の部分(吸気側外周縁582a)であって側方上面57との境界線となる部分は、当該中心5aを中心とする楕円又はY方向に細長い長円に沿った円弧状である。このように、環状キャビティ58及び凸部53が形成される結果、当該環状キャビティ58は冠面50において排気口側に偏っている。 Of the outer peripheral edge 582, the part on the exhaust side (exhaust side outer peripheral edge 582b) from the center 5a (line XXII-XXII in FIG. 17) of the crown surface 50 and the boundary line with the side upper surface 57 is The shape of the arc is along a substantially perfect circle centered on the center 5a. On the other hand, a portion on the intake port side (intake side outer peripheral edge 582a) from the center 5a of the crown surface 50 and a boundary line with the side upper surface 57 is an ellipse centering on the center 5a or in the Y direction. It has an arc shape along an elongated ellipse. Thus, as a result of the formation of the annular cavity 58 and the convex portion 53, the annular cavity 58 is biased toward the exhaust port side on the crown surface 50.
 第2実施形態では、図13及び図15に示すように、点火プラグ17は第1実施形態とは反対の向きで燃焼室天井面6Uに配置されている。具体的には、点火プラグ17は、燃焼室天井面6Uに形成されたプラグ凹部45内に、接地電極172の先端、すなわち対向部173の反基部側の末端が、気筒軸方向視において燃焼室6の径方向内側を向くように配置されている。燃焼室天井面6Uが深型のペントルーフ型とされ、冠面50に吸気側斜面部61が設けられている第2実施形態では、このように点火プラグ17が配置されることで、圧縮行程時に着火部17Aの周りの掃気効果を高めるようにされている。つまり、ピストン5の冠面50に、燃焼室天井面6Uのペントルーフ部分に対応する吸気側斜面部61が設けられる第2実施形態では、圧縮行程時に、燃焼室天井面6Uの吸気側天面43とピストン5の吸気側平面部55との間で吸気又は混合気が圧縮されるに伴い、図26中に矢印で示すように、吸気側斜面部61に沿って燃焼室天井面6Uに向かうスキッシュ流が生成される。この際、接地電極172の先端が燃焼室6の径方向内側を向くように点火プラグ17が配置されていることで、当該スキッシュ流によりプラグ凹部45内の残留ガスを押し出し易くなる。つまり、着火部17Aの周りの掃気効果が高められる。 In the second embodiment, as shown in FIGS. 13 and 15, the spark plug 17 is disposed on the combustion chamber ceiling surface 6U in the opposite direction to the first embodiment. Specifically, the spark plug 17 has a plug recess 45 formed on the combustion chamber ceiling surface 6U, and the tip of the ground electrode 172, that is, the end on the opposite side of the facing portion 173, is in the combustion chamber as viewed in the cylinder axial direction. 6 is arranged so as to face the inside in the radial direction. In the second embodiment in which the combustion chamber ceiling surface 6U is a deep pent roof type and the crown surface 50 is provided with the intake-side inclined surface portion 61, the ignition plug 17 is arranged in this way, so that the compression stroke is performed. The scavenging effect around the ignition part 17A is enhanced. That is, in the second embodiment in which the intake side inclined surface portion 61 corresponding to the pent roof portion of the combustion chamber ceiling surface 6U is provided on the crown surface 50 of the piston 5, the intake side top surface 43 of the combustion chamber ceiling surface 6U is provided during the compression stroke. As the intake air or air-fuel mixture is compressed between the intake side plane portion 55 of the piston 5 and the intake side flat portion 55, the squish heads toward the combustion chamber ceiling surface 6U along the intake side inclined surface portion 61 as shown by arrows in FIG. A stream is generated. At this time, since the spark plug 17 is arranged so that the tip of the ground electrode 172 faces the radially inner side of the combustion chamber 6, the residual gas in the plug recess 45 can be easily pushed out by the squish flow. That is, the scavenging effect around the ignition part 17A is enhanced.
 環状キャビティ58のキャビティ形状は、モードIにおいて、ピストン5が圧縮上死点位置又はその近傍にあるときにインジェクタ18から噴射される燃料を燃焼室天井面6Uに沿って円滑に巻き上げることが可能な形状とされている。詳しくは、環状キャビティ58は、図25に示すように、当該環状キャビティ58の内周側に位置し、ピストン5が圧縮上死点位置又はその近傍にあるときにインジェクタ18から噴射された燃料を凸部53に沿って外向きに案内する助走部59aと、この助走部59aの外周に位置し、当該助走部59aに沿って案内される燃料を燃焼室天井面6Uに向かって巻き上げる巻き上げ部59bとを含む。助走部59aは凸部53に滑らかに連続する断面円弧状であり、巻き上げ部59bは助走部59aよりも曲率半径が小さい断面円弧状である。吸気側斜面部61及び排気側斜面部62に対応する部分では、これら斜面部61、62が設けられている分、巻き上げ部59bがより上方まで延在している。これにより、図25中に破線矢印で示すように、ノズルヘッド18Nから噴射される燃料が燃焼室天井面6Uのペントルーフ部分に沿って効果的に巻き上げられ、燃料の霧化促進が図られるようになっている。 The cavity shape of the annular cavity 58 allows the fuel injected from the injector 18 to be smoothly wound up along the combustion chamber ceiling surface 6U when the piston 5 is at or near the compression top dead center position in mode I. It is made into a shape. More specifically, as shown in FIG. 25, the annular cavity 58 is located on the inner peripheral side of the annular cavity 58, and the fuel injected from the injector 18 when the piston 5 is at or near the compression top dead center position. A run-up portion 59a that guides outward along the convex portion 53, and a wind-up portion 59b that is located on the outer periphery of the run-up portion 59a and winds up the fuel guided along the run-up portion 59a toward the combustion chamber ceiling surface 6U. Including. The run-up portion 59a has a cross-sectional arc shape that smoothly continues to the convex portion 53, and the winding portion 59b has a cross-section arc shape having a smaller radius of curvature than the run-up portion 59a. In the portions corresponding to the intake-side inclined surface portion 61 and the exhaust-side inclined surface portion 62, the winding portion 59b extends to the upper side as much as the inclined surface portions 61, 62 are provided. As a result, as shown by broken line arrows in FIG. 25, the fuel injected from the nozzle head 18N is effectively wound up along the pent roof portion of the combustion chamber ceiling surface 6U, and the fuel atomization is promoted. It has become.
 なお、環状キャビティ58の吸気側外周縁582aのうち、一対の側方上面57の末端に対応する部分(図16の破線丸枠の部分/本発明のプラグ指向部に相当する)は、気筒軸方向視で点火プラグ17の着火部17Aに湾曲して指向している。すなわち、一対の側方上面57の末端に対応する部分から吸気側外周縁582aを延長したとすると、吸気側外周縁582aが着火部17Aを通るように、当該吸気側外周縁582aのうち一対の側方上面57の末端に対応する部分が形成されている。これにより、図16中の矢印で示すように、環状キャビティ58に沿って排気口側から吸気口側に流れる混合気が着火部17Aに向かって案内されるようになっている。 Of the intake-side outer peripheral edge 582a of the annular cavity 58, the portion corresponding to the ends of the pair of side upper surfaces 57 (corresponding to the broken-line circle frame portion in FIG. 16 / the plug directing portion of the present invention) corresponds to the cylinder axis. It is curved and directed to the ignition part 17A of the spark plug 17 in a direction view. That is, if the intake-side outer peripheral edge 582a is extended from the portion corresponding to the ends of the pair of side upper surfaces 57, a pair of intake-side outer peripheral edges 582a of the intake-side outer peripheral edge 582a passes through the ignition portion 17A. A portion corresponding to the end of the side upper surface 57 is formed. Thereby, as shown by the arrow in FIG. 16, the air-fuel mixture flowing from the exhaust port side to the intake port side along the annular cavity 58 is guided toward the ignition portion 17A.
 第2実施形態のピストン5においては、図18~図20に示すように、当該ピストン5のピストンヘッド5Aの上端部外周に段差部63が形成されている。この段差部63は、膨張行程において、当該ピストンヘッド5Aの上端部外周面とシリンダ2の内周面との間に未燃焼ガスを逃がすための隙間を形成するためのものであり、これによりノック音の発生が抑制されるようになっている。 In the piston 5 of the second embodiment, as shown in FIGS. 18 to 20, a stepped portion 63 is formed on the outer periphery of the upper end of the piston head 5A of the piston 5. The step portion 63 is for forming a gap for allowing unburned gas to escape between the outer peripheral surface of the upper end portion of the piston head 5A and the inner peripheral surface of the cylinder 2 during the expansion stroke. Generation of sound is suppressed.
 以上が第2実施形態の燃焼室構造である。第2実施形態の燃焼室構造は、燃焼室6の容積を大きくして圧縮比を下げるために、燃焼室天井面6Uが深型のペントルーフ型とされたものであるが、基本的な構造は第1実施形態と共通する。そのため、第2実施形態の燃焼室構造についても第1実施形態の燃焼室構造とほぼ同等の作用効果を享受することができる。すなわち、膨張行程においてピストン5が-Z側へと下降する際には、混合気を吸気口側へと引き込む逆スキッシュ流が生成され、燃焼室6における全体の酸素を使って燃焼を生じさせ、エミッション性能の低下を抑制することが可能となる。また、圧縮行程においてピストン5が+Z側に向けて上昇する際には、環状キャビティ58内でのスワール成分(スワール流FS)が、点火プラグ17の着火部17Aに向かって持ち上げられることになる。よって、点火プラグ17の着火部17A近傍の残留ガスを押し流すことができ、着火安定性の向上を図ることができる。 The above is the combustion chamber structure of the second embodiment. The combustion chamber structure of the second embodiment is such that the combustion chamber ceiling surface 6U is a deep pent roof type in order to increase the volume of the combustion chamber 6 and lower the compression ratio. Common to the first embodiment. Therefore, the combustion chamber structure of the second embodiment can enjoy substantially the same operational effects as the combustion chamber structure of the first embodiment. That is, when the piston 5 descends to the −Z side in the expansion stroke, a reverse squish flow that draws the air-fuel mixture toward the intake port is generated, and combustion is generated using the entire oxygen in the combustion chamber 6. It becomes possible to suppress a decrease in emission performance. Further, when the piston 5 rises toward the + Z side in the compression stroke, the swirl component (swirl flow FS) in the annular cavity 58 is lifted toward the ignition portion 17A of the spark plug 17. Therefore, the residual gas in the vicinity of the ignition part 17A of the spark plug 17 can be swept away, and the ignition stability can be improved.
 (第3の実施形態)
 次に、本発明の第3実施形態に係る火花点火式のエンジンの燃焼室構造を詳細に説明する。第3実施形態の基本的な構造は第2実施形態と共通するため、以下の説明では、主に第2実施形態に係る燃焼室構造との相違点について詳細に説明する。
(Third embodiment)
Next, the combustion chamber structure of the spark ignition type engine according to the third embodiment of the present invention will be described in detail. Since the basic structure of the third embodiment is the same as that of the second embodiment, in the following description, differences from the combustion chamber structure according to the second embodiment will be mainly described in detail.
 図28は、第3実施形態に係るエンジンの燃焼室構造が適用されるエンジンの要部断面図である。また、図29~図32は、ピストン5を示しており、具体的は、図29は斜視図で、図30は平面図で、図31及び図32は断面図でそれぞれピストン5を示している。 FIG. 28 is a cross-sectional view of a principal part of an engine to which the engine combustion chamber structure according to the third embodiment is applied. FIGS. 29 to 32 show the piston 5. Specifically, FIG. 29 is a perspective view, FIG. 30 is a plan view, and FIGS. 31 and 32 are sectional views showing the piston 5, respectively. .
 第3実施形態のピストン5の冠面50もキャビティ5C(気筒軸方向視においてほぼ円形の外縁を有するキャビティ)、吸気側平面部55、排気側平面部56、一対の側方上面57(側方上面部57)、吸気側斜面部61及び排気側斜面部62を含む点で第2実施形態と構成が共通している。しかし、以下の点で第2実施形態と具体的な構造が相違している。 The crown surface 50 of the piston 5 of the third embodiment also has a cavity 5C (a cavity having a substantially circular outer edge when viewed in the cylinder axial direction), an intake side flat surface portion 55, an exhaust side flat surface portion 56, and a pair of side upper surfaces 57 (side surfaces). The configuration is the same as that of the second embodiment in that it includes an upper surface portion 57), an intake-side slope portion 61, and an exhaust-side slope portion 62. However, the specific structure is different from the second embodiment in the following points.
 第2実施形態では、冠面50には、凸部53とこれを取り囲む環状キャビティ58とを含むキャビティ5Cが設けられていたが、第3実施形態では、下向きに(-Z側)に凹入した一つの椀状のキャビティ5Cが冠面50に設けられている。 In the second embodiment, the crown surface 50 is provided with the cavity 5C including the convex portion 53 and the annular cavity 58 surrounding the convex portion 53. However, in the third embodiment, it is recessed downward (−Z side). One saddle-shaped cavity 5 </ b> C is provided on the crown surface 50.
 このキャビティ5Cは、側方立面部512と、排気側立面部513と、吸気側立面部514と、底面部511とを有している。この内、側方立面部512、排気側立面部513、及び吸気側立面部514は、ピストン5の冠面50を平面視する場合に、キャビティ5Cの周縁部に配設されている。これに対して、底面部511は、キャビティ5Cの内側の領域に配設されている。 This cavity 5C has a side elevation surface portion 512, an exhaust side elevation surface portion 513, an intake side elevation surface portion 514, and a bottom surface portion 511. Among these, the side elevation surface portion 512, the exhaust side elevation surface portion 513, and the intake side elevation surface portion 514 are disposed on the peripheral edge portion of the cavity 5C when the crown surface 50 of the piston 5 is viewed in plan view. . On the other hand, the bottom surface portion 511 is disposed in a region inside the cavity 5C.
 図31に示すように、キャビティ5Cにおいて、底面部511は、曲率半径R511の湾曲面を以って構成されており、側方立面部512は、曲率半径R512の湾曲面を以って構成されている。曲率半径R512は曲率半径R511よりも小さい。つまり、側方立面部512は、底面部511よりもZ方向に立ち上がった湾曲面を以って構成されている。なお、側方立面部512と底面部511とは、互いの境界部分P51で湾曲面同士が接している。 As shown in FIG. 31, in the cavity 5C, the bottom surface portion 511 is configured with a curved surface with a radius of curvature R511, and the side vertical surface portion 512 is configured with a curved surface with a radius of curvature R512. Has been. The curvature radius R512 is smaller than the curvature radius R511. That is, the side vertical surface portion 512 is configured with a curved surface that rises in the Z direction from the bottom surface portion 511. The side surfaces 512 and the bottom surface 511 are in contact with each other at the boundary portion P51 between the curved surfaces.
 図30に示すように、側方立面部512は側方上面部57に対応するキャビティ5Cの側面であり、この図30及び図28から見てとれるように、各側方立面部512は、ピストン5が圧縮上死点(TDC)にある場合に、間に点火プラグ17の着火部17Aを挟み得るような位置まで立ち上がっている(図28の二点鎖線参照)。これにより、側方立面部512は、圧縮行程中におけるピストン5の上昇に伴って、燃焼室6内における筒内流動がキャビティ5C内に集約される際に、混合気の流れを点火プラグ17の着火部17Aに向けて導く案内部として機能する。なお、詳細図は示していないが、第3実施形態では、点火プラグ17は、第1実施形態と同様に、接地電極172の先端、すなわち対向部173の反基部側の末端が、気筒軸方向視において燃焼室6の径方向外側を向くように配置されている。 As shown in FIG. 30, the side upright portions 512 are side surfaces of the cavity 5C corresponding to the side upper surface portions 57. As can be seen from FIG. 30 and FIG. When the piston 5 is at the compression top dead center (TDC), it rises to a position where the ignition portion 17A of the spark plug 17 can be sandwiched therebetween (see the two-dot chain line in FIG. 28). As a result, the side vertical surface portion 512 causes the air-fuel mixture to flow when the in-cylinder flow in the combustion chamber 6 is concentrated in the cavity 5C as the piston 5 rises during the compression stroke. It functions as a guide part that leads toward the ignition part 17A. Although not shown in detail, in the third embodiment, as in the first embodiment, the spark plug 17 has the tip of the ground electrode 172, that is, the end on the opposite side of the facing portion 173, in the cylinder axial direction. It arrange | positions so that it may face the radial direction outer side of the combustion chamber 6 in view.
 側方立面部512と同様に、排気側立面部513及び吸気側立面部514も底面部511よりもZ方向に立ち上がった湾曲面を以って構成されており、底面部511と境界部分で接している。そして、図30に示すように、排気側立面部513は、排気側斜面部62に稜線を介して連続し、吸気側立面部514は、吸気側斜面部61に稜線を介して連続している。 Similarly to the side elevation surface portion 512, the exhaust side elevation surface portion 513 and the intake side elevation surface portion 514 are configured with curved surfaces that rise in the Z direction from the bottom surface portion 511, and are bounded by the bottom surface portion 511. It touches at the part. Then, as shown in FIG. 30, the exhaust side rising surface portion 513 is continuous with the exhaust side inclined surface portion 62 via a ridge line, and the intake side rising surface portion 514 is continuous with the intake side inclined surface portion 61 via a ridge line. ing.
 なお、この第3実施形態に係るエンジン本体1は、上述したようなモードIIと、図33に示すモードIIIの燃焼噴射時期及び点火タイミングで運転を成立させる。モードIIはSI燃焼の際に採用され、モードIIIはSICI燃焼の際に主に採用される。そのため、エンジンの高回転域では主にモードIIが選択され、高負荷低回転域から高負荷中回転域では主にモードIIIが選択される。 Note that the engine body 1 according to the third embodiment establishes the operation in the mode II as described above and the combustion injection timing and ignition timing in the mode III shown in FIG. Mode II is employed during SI combustion, and mode III is primarily employed during SICI combustion. Therefore, mode II is mainly selected in the high engine speed range, and mode III is mainly selected in the high load / low speed range to the high load / medium speed range.
 モードIIIの燃料噴射期間PF3、PF4は吸気行程の中期および圧縮行程の後期であり、点火タイミングは膨張行程の初期である。即ち、排気工程におけるTDCからピストン5が行程の半分程度下降するクランク角CA4を挟んだタイミングT31~T32が前段の燃料噴射期間PF3とされ、圧縮工程の後期のタイミングT33から圧縮行程におけるTDC直前のタイミングT34が後段の燃料噴射期間PF4とされる。また、点火タイミングは、膨張行程初期の所定のクランク角+CA5のタイミングT35である。CA4は、TDC後70°である。後段の燃料噴射期間PF4の始期は例えば圧縮行程におけるTDC前10°である。なお、このようにモードIIとモードIIIとで運転を成立させる場合、図8に示す、モードIIの燃料噴射期間PF2の終期(タイミングT22)は、例えば圧縮工程中期とされ、吸気行程から圧縮行程に亘って一括して燃料が噴射されるようにしてもよい。 Mode III fuel injection periods PF3 and PF4 are the middle stage of the intake stroke and the latter stage of the compression stroke, and the ignition timing is the initial stage of the expansion stroke. That is, the timing T31 to T32 sandwiching the crank angle CA4 at which the piston 5 descends about half of the stroke from the TDC in the exhaust process is the preceding fuel injection period PF3, and the timing T33 in the latter stage of the compression process and immediately before the TDC in the compression stroke. Timing T34 is the subsequent fuel injection period PF4. Further, the ignition timing is a predetermined crank angle + CA5 timing T35 in the initial stage of the expansion stroke. CA4 is 70 ° after TDC. The start of the subsequent fuel injection period PF4 is, for example, 10 ° before TDC in the compression stroke. When the operation is established in the mode II and the mode III in this way, the final period (timing T22) of the mode II fuel injection period PF2 shown in FIG. 8 is, for example, the middle period of the compression process, and from the intake stroke to the compression stroke. The fuel may be injected all at once.
 以上のような第3実施形態の燃焼室構造の場合も、膨張行程においてピストン5が-Z側へと下降する際には、混合気を吸気口側へと引き込む逆スキッシュ流が生成され、燃焼室6における全体の酸素を使って燃焼を生じさせ、エミッション性能の低下を抑制することが可能となる。 Also in the case of the combustion chamber structure of the third embodiment as described above, when the piston 5 descends to the −Z side in the expansion stroke, a reverse squish flow that draws the air-fuel mixture toward the intake port is generated, and the combustion Combustion is caused by using the entire oxygen in the chamber 6, and it is possible to suppress a decrease in emission performance.
 なお、第3実施形態では、キャビティ5Cが下向き(燃焼室天井面6Uから離れる方向)に凹入した椀状であり、内側に障害物が存在しない、つまり底面部511に障害物が存在しないので、キャビティ5C内の混合気をスムーズに点火プラグ17の着火部17Aに導くことができるとともに、着火後の火炎伝搬がスムーズに実行される。 In the third embodiment, the cavity 5C has a bowl shape that is recessed downward (in the direction away from the combustion chamber ceiling surface 6U), and there is no obstacle inside, that is, there is no obstacle on the bottom surface portion 511. In addition, the air-fuel mixture in the cavity 5C can be smoothly guided to the ignition part 17A of the spark plug 17, and flame propagation after ignition is smoothly executed.
 また、キャビティ5Cは、ピストン5が圧縮上死点(TDC)にあるときに点火プラグ17の着火部17Aを間に挟む側方立面部512を備えているので、ピストン5の上昇に伴って燃焼室6内の筒内流動がキャビティ5C内に集約される際に、混合気が当該側方立面部512によって点火プラグ17の着火部17A及びその周辺にスムーズに導かれる。そのため、高い着火性が実現される。 Further, since the cavity 5C includes the side vertical surface portion 512 that sandwiches the ignition portion 17A of the spark plug 17 when the piston 5 is at the compression top dead center (TDC), as the piston 5 rises. When the in-cylinder flow in the combustion chamber 6 is concentrated in the cavity 5C, the air-fuel mixture is smoothly guided to the ignition portion 17A of the spark plug 17 and its periphery by the side vertical surface portion 512. Therefore, high ignitability is realized.
 特に、キャビティ5Cの側方立面部512が湾曲面を以って構成されているとともに、当該側方立面部512の曲率半径R512が底面部511の曲率半径R511よりも小さくなっているので、キャビティ5C内の混合気をよりスムーズに点火プラグ17の着火部17Aに導くことができるとともに、着火により形成された火炎を、燃焼室6内においてY方向(機関出力軸方向)にスムーズに広げることができる。 In particular, the side elevation surface portion 512 of the cavity 5C is configured with a curved surface, and the curvature radius R512 of the side elevation surface portion 512 is smaller than the curvature radius R511 of the bottom surface portion 511. In addition, the air-fuel mixture in the cavity 5C can be more smoothly guided to the ignition part 17A of the spark plug 17, and the flame formed by the ignition can be smoothly spread in the Y direction (in the engine output shaft direction) in the combustion chamber 6. be able to.
 また、第3実施形態では、エンジン本体1は、筒内流動が比較的弱い吸気行程の中盤にインジェクタ18からキャビティ5Cに向かって燃料噴射を実行するように構成されているので、キャビティ5C内に噴霧を集約させて、シリンダ2の内壁面への燃料付着を抑制することができる。従って、着火時に点火プラグ17の着火部17A及びその周辺に混合気を良好に存在させることができ、これにより混合気の高い着火性を確保することができる。 In the third embodiment, the engine body 1 is configured to perform fuel injection from the injector 18 toward the cavity 5C in the middle of the intake stroke where the in-cylinder flow is relatively weak. Spraying can be concentrated to prevent fuel from adhering to the inner wall surface of the cylinder 2. Accordingly, the air-fuel mixture can be satisfactorily present in and around the ignition portion 17A of the spark plug 17 at the time of ignition, thereby ensuring high ignitability of the air-fuel mixture.
 [変形例]
 以上、本発明の一態様としての実施形態について説明したが、本発明はこれに限定されるものではなく、例えば、次のような変形例を採用することも可能である。
[Modification]
As mentioned above, although embodiment as one aspect | mode of this invention was described, this invention is not limited to this, For example, the following modifications can also be employ | adopted.
 (1)上記第1実施形態では、小キャビティ51と大キャビティ52とが、稜線54を介して互いに接するように配置されている例を示したが、本発明はこれに限定を受けるものではない。例えば、第1キャビティである小キャビティと第2キャビティである大キャビティとは、混合気の流れ(スワール流FS)及び火炎伝播の観点で実質的に隣接配置されていればよく、構造的に互いが離間していてもよい。 (1) In the first embodiment, an example in which the small cavity 51 and the large cavity 52 are arranged so as to contact each other via the ridge line 54 is shown, but the present invention is not limited to this. . For example, the small cavity that is the first cavity and the large cavity that is the second cavity need only be disposed substantially adjacent to each other in terms of the flow of the air-fuel mixture (swirl flow FS) and flame propagation. May be separated.
 また、上記第1実施形態では、小キャビティ51と大キャビティ52との組み合わせを以ってキャビティ5Cを構成することとしたが、一体の環状キャビティを構成することとしてもよいし、3つ以上のキャビティの組み合わせを以って環状キャビティを構成してもよい。 In the first embodiment, the cavity 5C is configured by the combination of the small cavity 51 and the large cavity 52. However, an integral annular cavity may be configured, or three or more An annular cavity may be constituted by a combination of cavities.
 (2)上記第1~第3実施形態では、吸気側平面部55及び吸気側天面43をそれぞれ平面でもうけることとしたが、本発明は、これに限定を受けるものではない。例えば、互いに対向する曲面を以って構成することとしてもよい。 (2) In the first to third embodiments, the intake-side flat portion 55 and the intake-side top surface 43 are each provided in a plane, but the present invention is not limited to this. For example, it may be configured with curved surfaces facing each other.
 (3)上記第1実施形態では、ピストン5の冠面50に設けた小キャビティ51と大キャビティ52とについて、大キャビティ52の投影面積が小キャビティ51の投影面積よりも広く、かつ、大キャビティ52の深さh2が小キャビティ51の深さh1よりも深いとの構成を例として示したが、本発明はこれに限定を受けるものではない。例えば、大キャビティと小キャビティとの深さを同一とし、投影面積の差異だけで、大キャビティの容積を小キャビティの容積よりも大きくすることも可能である。 (3) In the first embodiment, the projected area of the large cavity 52 is larger than the projected area of the small cavity 51 for the small cavity 51 and the large cavity 52 provided on the crown surface 50 of the piston 5. Although the configuration in which the depth h2 of 52 is deeper than the depth h1 of the small cavity 51 is shown as an example, the present invention is not limited to this. For example, it is possible to make the large cavity and the small cavity have the same depth, and to make the volume of the large cavity larger than the volume of the small cavity only by the difference in projected area.
 (4)上記第1~第3実施形態では、燃焼室天井面6Uに2つの吸気側開口部41が設けられてなる例を示したが、そのうちの1つの吸気側開口部41に連通する吸気ポート9に、スワールコントロールバルブを設け、燃焼室6内におけるスワール流FSを積極的に発生させることが可能な構成を採用することとしてもよい。 (4) In the first to third embodiments, the example in which the two intake side openings 41 are provided on the combustion chamber ceiling surface 6U has been described, but the intake air communicating with one of the intake side openings 41 is shown. A configuration may be adopted in which a swirl control valve is provided in the port 9 so that the swirl flow FS in the combustion chamber 6 can be actively generated.
 スワール流FSを積極的に活用する状況において、スワールコントロールバルブによって一方の吸気側開口部41を閉止し、シリンダ軸回り(気筒軸周り)の渦流であるスワール流を発生させ易くすることができる。これにより、例えば、上述のSI燃焼やSICI燃焼(モードII、III)の燃焼において、スワールコントロールバルブを動作させることが望ましい。 In a situation where the swirl flow FS is actively used, one of the intake side openings 41 is closed by the swirl control valve, and a swirl flow that is a vortex around the cylinder axis (around the cylinder axis) can be easily generated. Thereby, for example, it is desirable to operate the swirl control valve in the above-described combustion of SI combustion or SICI combustion (modes II and III).
 (5)上記第1~第3実施形態では、吸気側開口部41及び排気側開口部42を燃焼室天井面6Uに開口することとしたが、本発明はこれに限定を受けるものではない。例えば、燃焼室6の上部におけるシリンダ2の側周面に開口することとしてもよい。 (5) In the first to third embodiments, the intake side opening 41 and the exhaust side opening 42 are opened in the combustion chamber ceiling surface 6U. However, the present invention is not limited to this. For example, it is good also as opening to the side surrounding surface of the cylinder 2 in the upper part of the combustion chamber 6. FIG.
 (6)上記第1~第3実施形態では、燃焼室6の天井面(燃焼室天井面6U)を比較的扁平なペントルーフ形状で構成することとしたが、本発明は、これに限定を受けるものではない。例えば、より高レシオのペントルーフ形状とすることなどもできる。これによって、さらに強いタンブル流を生成するのに優位となる。 (6) In the first to third embodiments, the ceiling surface of the combustion chamber 6 (combustion chamber ceiling surface 6U) is configured to have a relatively flat pent roof shape, but the present invention is limited to this. It is not a thing. For example, a higher ratio pent roof shape can be used. This is advantageous for generating a stronger tumble flow.
 (7)上記第1実施形態では、図9に示すようなA部分とB部分との燃焼室容積の差異、及び図10A、図10Bに示すような吸気側平面部55と吸気側天面43との組み合わせ、を以って逆スキッシュ流生成部を構成することとしたが、本発明は、これに限定を受けるものではない。例えば、A部分とB部分との燃焼室容積の差異だけを以って逆スキッシュ流生成部を構成することとしてもよいし、逆に、吸気側平面部55と吸気側天面43との組み合わせだけを以って逆スキッシュ流生成部を構成することとしてもよい。 (7) In the first embodiment, the difference in the combustion chamber volume between the A portion and the B portion as shown in FIG. 9 and the intake side flat portion 55 and the intake side top surface 43 as shown in FIGS. 10A and 10B. However, the present invention is not limited to this. For example, the reverse squish flow generation unit may be configured only by the difference in the combustion chamber volume between the A part and the B part, and conversely, the combination of the intake side flat part 55 and the intake side top surface 43. It is good also as comprising a reverse squish flow production | generation part only by using.
 (8)上記第3実施形態では、ピストン5のキャビティ5Cについて(図30のXXXI-XXXI断面)、1つの底面部511と2つの側方立面部512との組み合わせを以って断面を構成することとしたが、本発明は、これに限定されない。例えば、底面部511と側方立面部512との間に湾曲面や平面が介挿された断面構成を採用することもできる。 (8) In the third embodiment, the cavity 5C of the piston 5 (XXXI-XXXI cross section in FIG. 30) is configured by a combination of one bottom surface portion 511 and two side upright surface portions 512. However, the present invention is not limited to this. For example, a cross-sectional configuration in which a curved surface or a flat surface is interposed between the bottom surface portion 511 and the side elevation surface portion 512 may be employed.
 以上説明した本発明についてまとめると以下の通りである。 The summary of the present invention described above is as follows.
 本発明の一局面に係る火花点火式のエンジンの燃焼室構造は、ピストンの冠面と、シリンダヘッドに形成された燃焼室天井面と、前記燃焼室天井面に設けられたインジェクタ及び点火プラグと、前記燃焼室の天井面に開口された吸気口及び排気口と、を備える。 A combustion chamber structure of a spark ignition type engine according to an aspect of the present invention includes a crown surface of a piston, a combustion chamber ceiling surface formed on a cylinder head, an injector and a spark plug provided on the combustion chamber ceiling surface, And an intake port and an exhaust port opened in the ceiling surface of the combustion chamber.
 本局面に係るエンジンの燃焼室構造では、気筒軸方向の一方側からの平面視において、前記点火プラグの着火部が配置された箇所を基準とし、前記吸気口が開口された側を前記燃焼室の吸気口側、前記排気口が開口された側を前記燃焼室の排気口側とするとき、前記インジェクタは、少なくとも前記排気口側に向けて燃料を噴射可能に構成されている。そして、本局面に係るエンジンの燃焼室構造では、燃焼室には、膨張行程中に前記ピストンの移動(下降)に伴い混合気を前記吸気口側へと引き込む逆スキッシュ流生成部が設けられてなる。 In the combustion chamber structure of the engine according to this aspect, in a plan view from one side in the cylinder axial direction, the side where the ignition port is opened is defined as the combustion chamber on the side where the ignition portion of the ignition plug is disposed. When the intake port side and the side where the exhaust port is opened are the exhaust port side of the combustion chamber, the injector is configured to be able to inject fuel toward at least the exhaust port side. And in the combustion chamber structure of the engine which concerns on this situation, the reverse squish flow production | generation part which draws in air-fuel mixture to the said inlet side accompanying the movement (falling) of the said piston during an expansion stroke is provided in the combustion chamber. Become.
 上記局面に係るエンジンの燃焼室構造では、排気口側に向けて燃料を噴射可能にインジェクタが構成されているので、燃焼室が高温になる高負荷運転領域においても、短時間での霧化が可能である。よって、上記局面では、高負荷運転域におけるプリイグニッションの発生を抑制することができる。 In the combustion chamber structure of the engine according to the above aspect, since the injector is configured so that fuel can be injected toward the exhaust port side, atomization can be performed in a short time even in a high-load operation region where the combustion chamber becomes high temperature. Is possible. Therefore, in the said situation, generation | occurrence | production of the pre-ignition in a high load driving | operation area | region can be suppressed.
 また、上記局面に係るエンジンの燃焼室構造では、燃焼室に逆スキッシュ流生成部が形成されているので、膨張行程時においてピストンが下降するのに伴い、排気口側で霧化された混合気を点火プラグの側へと引き込むことができる。よって、上記局面では、燃焼室全体の酸素を使って燃焼を生じさせ、エミッション性能の低下を抑制することができる。 Further, in the combustion chamber structure of the engine according to the above aspect, since the reverse squish flow generating portion is formed in the combustion chamber, the air-fuel mixture atomized on the exhaust port side as the piston descends during the expansion stroke. Can be pulled into the spark plug. Therefore, in the above aspect, the combustion in the entire combustion chamber can be caused to occur, and a reduction in emission performance can be suppressed.
 従って、上記局面に係るエンジンの燃焼室構造では、高負荷運転域での運転においてもプリイグニッションの発生を抑えることができるとともに、燃焼室全体での均質な燃焼によりエミッション性能の低下を抑制可能である。 Therefore, in the combustion chamber structure of the engine according to the above aspect, it is possible to suppress the occurrence of pre-ignition even in the operation in the high load operation region, and it is possible to suppress the deterioration of the emission performance by homogeneous combustion in the entire combustion chamber. is there.
 本発明の別局面に係るエンジンの燃焼室構造では、上記局面において、前記燃焼室は、前記排気口側よりも前記吸気口側の方が容積が小さく構成されており、前記逆スキッシュ流生成部が、前記吸気口側と前記排気口側とでの前記燃焼室容積の差異を以って構成されている。 In the combustion chamber structure for an engine according to another aspect of the present invention, in the above aspect, the combustion chamber is configured to have a smaller volume on the intake port side than on the exhaust port side, and the reverse squish flow generator However, the combustion chamber volume is different between the intake port side and the exhaust port side.
 上記局面に係るエンジンの燃焼室構造では、吸気口側と排気口側との燃焼室容積の差異を以って逆スキッシュ流生成部が形成されているので、膨張行程時においてピストンが下降するのに伴い、燃焼室の中央部分(及び排気口側)から吸気口側へ向かう気流(逆スキッシュ流)を生成することができる。そのため、燃焼室全体の酸素を使って燃焼を生じさせ、エミッション性能の低下を抑制することができる。 In the combustion chamber structure of the engine according to the above aspect, the reverse squish flow generating portion is formed by the difference in the combustion chamber volume between the intake port side and the exhaust port side, so that the piston descends during the expansion stroke. Accordingly, an air flow (reverse squish flow) from the central portion of the combustion chamber (and the exhaust port side) toward the intake port side can be generated. Therefore, combustion can be generated using oxygen in the entire combustion chamber, and a reduction in emission performance can be suppressed.
 本発明の別局面に係るエンジンの燃焼室構造は、上記局面において、前記燃焼室の前記吸気口側には、前記燃焼室天井面の一部領域と前記ピストンの冠面の一部領域とが、互いに沿う状態で対向するとともに、前記燃焼室の径方向の中央領域よりも互いに近接する領域が形成されている。そして、本局面においては、前記逆スキッシュ流生成部が、前記互いに近接する前記燃焼室天井面の一部領域と前記ピストンの冠面の一部領域との組み合わせを以って構成されている。 In the above aspect, the combustion chamber structure of the engine according to another aspect of the present invention has a partial region of the combustion chamber ceiling surface and a partial region of the crown surface of the piston on the intake port side of the combustion chamber. In addition, regions that are opposed to each other in a state along each other and that are closer to each other than a central region in the radial direction of the combustion chamber are formed. And in this aspect, the said reverse squish flow production | generation part is comprised by the combination of the partial area | region of the said combustion chamber ceiling surface which adjoins mutually, and the partial area | region of the crown surface of the said piston.
 上記局面に係るエンジンの燃焼室構造では、互いに沿い、且つ、互いに近接する燃焼室天井面の一部領域とピストンの冠面の一部領域とにより、逆スキッシュ流生成部を構成しているので、ピストンが圧縮上死点を通過した後に生じる上記領域間での負圧を利用して、燃焼室内に逆スキッシュ流を生成することができる。 In the combustion chamber structure of the engine according to the above aspect, the reverse squish flow generator is configured by a partial region of the combustion chamber ceiling surface and a partial region of the crown surface of the piston that are along and close to each other. The reverse squish flow can be generated in the combustion chamber by utilizing the negative pressure between the regions generated after the piston passes through the compression top dead center.
 よって、上記局面では、燃焼室全体の酸素を使って燃焼を生じさせ、エミッション性能の低下を抑制することができる。 Therefore, in the above aspect, it is possible to cause combustion using oxygen in the entire combustion chamber and suppress a decrease in emission performance.
 本発明の別局面に係るエンジンの燃焼室構造は、上記局面において、前記燃焼室天井面の一部領域、及び前記ピストンの冠面の一部領域は、それぞれ平面である。 In the combustion chamber structure for an engine according to another aspect of the present invention, in the above aspect, a partial region of the combustion chamber ceiling surface and a partial region of the crown surface of the piston are flat surfaces.
 上記局面に係るエンジンの燃焼室構造では、燃焼室天井面の上記一部領域と、ピストンの冠面の上記一部領域と、をそれぞれ平面で構成することとしているので、これら領域を曲面で構成する場合に比べて、製造が容易であり、製造コストの上昇を抑えながら、逆スキッシュ流生成部を設けることが可能となる。 In the engine combustion chamber structure according to the above aspect, the partial region of the combustion chamber ceiling surface and the partial region of the crown surface of the piston are each configured as a flat surface, and thus these regions are configured as curved surfaces. Compared with the case where it does, manufacture is easy and it becomes possible to provide a reverse squish flow production | generation part, suppressing the raise in manufacturing cost.
 本発明の別局面に係るエンジンの燃焼室構造は、上記局面において、前記燃焼室における排気口側にも、前記燃焼室天井面と前記ピストンの冠面とが、互いに沿う状態で対向するとともに、前記燃焼室の径方向の中央領域よりも互いに近接する領域が形成されてなり、気筒軸方向の一方側からの平面視において、前記排気口側における前記燃焼室天井面と前記ピストンの冠面とが対向する領域は、前記逆スキッシュ流生成部よりも小面積である。 In the above aspect, the combustion chamber structure of the engine according to another aspect of the present invention is such that the combustion chamber ceiling surface and the crown surface of the piston face each other along the exhaust port side in the combustion chamber, Regions closer to each other than the central region in the radial direction of the combustion chamber are formed, and in a plan view from one side in the cylinder axis direction, the combustion chamber ceiling surface on the exhaust port side and the crown surface of the piston The areas facing each other have a smaller area than the reverse squish flow generator.
 上記局面に係るエンジンの燃焼室構造では、排気口側にも燃焼室天井面とピストンの冠面とが対向する領域を設けられていることによって、燃料噴射時において、シリンダライナの排気口側に対して燃料が付着するのを抑制することができる。よって、上記局面では、デポジットの発生を抑制することができる。 In the combustion chamber structure of the engine according to the above aspect, a region where the combustion chamber ceiling surface and the crown surface of the piston face each other is also provided on the exhaust port side. On the other hand, it can suppress that a fuel adheres. Therefore, in the above aspect, deposits can be suppressed.
 また、上記局面に係るエンジンの燃焼室構造では、平面視における燃焼室天井面とピストンの冠面とが対向する領域の面積を、逆スキッシュ流生成部(吸気口側において平面視における燃焼室の天井面とピストンの冠面とが対向する領域)よりも小面積としているので、ピストン下降時における逆スキッシュ流の生成が阻害され難い。 Further, in the combustion chamber structure of the engine according to the above aspect, the area of the region where the combustion chamber ceiling surface and the crown surface of the piston face each other in a plan view is set to the reverse squish flow generation unit (on the intake port side, Since the area is smaller than the area where the ceiling surface and the crown surface of the piston face each other, the generation of the reverse squish flow when the piston descends is unlikely to be hindered.
 本発明の別局面に係るエンジンの燃焼室構造は、上記局面において、前記ピストンの冠面は、気筒軸方向に凹設されてなるキャビティを含み、前記キャビティは、底面の深さが、前記排気口側から前記点火プラグの着火部の側に向けて漸次浅くなるように形成されている。 According to another aspect of the present invention, there is provided a combustion chamber structure for an engine according to the above aspect, wherein the crown surface of the piston includes a cavity that is recessed in a cylinder axial direction, and the cavity has a bottom surface depth that is the exhaust gas. It is formed so as to become gradually shallower from the mouth side toward the ignition part side of the spark plug.
 上記局面に係るエンジンの燃焼室構造では、点火プラグの着火部の側に向けて深さが漸次浅くなるように、キャビティの底面が形成されているので、ピストンの上昇時において、キャビティ内でのスワール成分は、点火プラグの着火部に向けて持ち上げられることになる。よって、新気と燃料との混合気が点火プラグの着火部近傍に導かれ、着火部近傍の残留ガスを押し流すことができる。 In the combustion chamber structure of the engine according to the above aspect, the bottom surface of the cavity is formed so that the depth gradually decreases toward the ignition plug ignition portion side. The swirl component is lifted toward the ignition part of the spark plug. Therefore, the mixture of fresh air and fuel is guided to the vicinity of the ignition part of the spark plug, and the residual gas in the vicinity of the ignition part can be swept away.
 また、上記局面に係るエンジンの燃焼室構造では、ピストンの下降時に生じる逆スキッシュ流を利用する場合においても、点火プラグの着火部に向けてスムーズに混合気が導かれる。 In the engine combustion chamber structure according to the above aspect, the air-fuel mixture is smoothly guided toward the ignition portion of the spark plug even when the reverse squish flow generated when the piston is lowered is used.
 本発明の別局面に係るエンジンの燃焼室構造は、上記局面において、気筒軸方向の一方側からの平面視で、前記キャビティは、前記点火プラグの着火部と一部が重複する状態で、環状に形成されてなる。 The combustion chamber structure of an engine according to another aspect of the present invention is the above-described aspect, in a plan view from one side in the cylinder axial direction, wherein the cavity is annular in a state where a part thereof overlaps with an ignition part of the spark plug. Formed.
 上記局面に係るエンジンの燃焼室構造では、キャビティが環状に形成されているので、ピストンが圧縮上死点に近付くに従って、混合気が相対的に高温の排気口側から相対的に低温の吸気口側へと流れ、点火プラグの着火部近傍に導かれる。そして、平面視において、点火プラグの着火部がキャビティの一部と重複するように配設されているので、優れた着火性を確保することができる。 In the engine combustion chamber structure according to the above aspect, since the cavity is formed in an annular shape, as the piston approaches the compression top dead center, the air-fuel mixture flows from the relatively hot exhaust port side to the relatively cool intake port. It is led to the vicinity of the ignition part of the spark plug. And since it is arrange | positioned so that the ignition part of a spark plug may overlap with a part of cavity in planar view, the outstanding ignitability is securable.
 本発明の別局面に係るエンジンの燃焼室構造は、上記局面において、前記燃焼室天井面は、ペントルーフ形状で形成されてなる。 In the combustion chamber structure for an engine according to another aspect of the present invention, the ceiling surface of the combustion chamber is formed in a pent roof shape.
 上記局面に係るエンジンの燃焼室構造では、燃焼室(気筒)の天井面がペントルーフ形状で形成されているので、燃焼室内にタンブル流を形成することができ、燃焼室全体での均質な燃焼が可能である。 In the engine combustion chamber structure according to the above aspect, since the ceiling surface of the combustion chamber (cylinder) is formed in a pent roof shape, a tumble flow can be formed in the combustion chamber, and homogeneous combustion in the entire combustion chamber can be achieved. Is possible.
 本発明の別局面に係るエンジンの燃焼室構造は、上記局面において、前記キャビティの外縁は、気筒軸方向視において前記点火プラグの着火部に指向して湾曲するプラグ指向部を有する。 The combustion chamber structure of an engine according to another aspect of the present invention is the above aspect, wherein the outer edge of the cavity has a plug directing portion that curves toward the ignition portion of the spark plug as viewed in the cylinder axial direction.
 上記局面に係るエンジンの燃焼室構造では、キャビティに沿って案内される混合気が点火プラグの着火部近傍に良好に導かれる。そのため、優れた着火性を確保することができる。 In the combustion chamber structure of the engine according to the above aspect, the air-fuel mixture guided along the cavity is guided well near the ignition part of the spark plug. Therefore, excellent ignitability can be ensured.
 本発明の別局面に係るエンジンの燃焼室構造は、上記局面において、前記ピストンの冠面の一部領域として、前記点火プラグに対応する領域よりも吸気口側に位置する吸気側平面部と、この吸気側平面部と前記点火プラグに対応する領域との間に位置し、吸気口側から排気口側に向かって先上がりに傾斜する吸気側斜面部とが形成され、前記点火プラグは、前記着火部が側面視でL字形の接地電極を有するとともに、気筒軸方向の一方側からの平面視において、前記接地電極の先端が気筒の径方向内側を向いている。 The combustion chamber structure of the engine according to another aspect of the present invention is the above-described aspect, wherein a partial area of the crown surface of the piston is an intake side plane portion positioned closer to the intake port than an area corresponding to the spark plug; An intake-side inclined surface portion that is located between the intake-side flat portion and a region corresponding to the spark plug and inclines upward from the intake port side toward the exhaust port side is formed. The ignition part has an L-shaped ground electrode in a side view, and the tip of the ground electrode faces inward in the radial direction of the cylinder in a plan view from one side in the cylinder axial direction.
 上記局面に係るエンジンの燃焼室構造では、圧縮行程においてピストンが移動(上昇)すると、燃焼室天井面とピストンの吸気側平面部との間で混合気(吸気)が圧縮され、吸気側斜面部に沿って燃焼室天井面に向かうスキッシュ流が生成される。そしてこの際、接地電極の先端が気筒の径方向内側を向くように点火プラグが配置されていることで、当該スキッシュ流により残留ガスを押し出し易くなり、着火部周りの掃気効果が高められる。 In the combustion chamber structure of the engine according to the above aspect, when the piston moves (rises) in the compression stroke, the air-fuel mixture (intake) is compressed between the combustion chamber ceiling surface and the intake-side flat portion of the piston, and the intake-side inclined surface portion A squish flow toward the combustion chamber ceiling is generated. At this time, since the spark plug is disposed so that the tip of the ground electrode faces the inside in the radial direction of the cylinder, the residual gas can be easily pushed out by the squish flow, and the scavenging effect around the ignition portion is enhanced.
 本発明の別局面に係るエンジンの燃焼室構造は、上記局面において、前記ピストンの冠面は、気筒軸方向の一方側からの平面視で、前記逆スキッシュ流生成部よりも前記排気口側の位置において気筒軸方向に凹設されてなる椀状のキャビティを含む。 The combustion chamber structure of the engine according to another aspect of the present invention is the above-described aspect, wherein the crown surface of the piston is closer to the exhaust port side than the reverse squish flow generation unit in a plan view from one side in the cylinder axial direction. It includes a bowl-shaped cavity that is recessed in the axial direction at the position.
 上記局面に係るエンジンの燃焼室構造では、圧縮行程中におけるピストンの上昇に伴って、混合気がキャビティ内に集約され、膨張行程時においてピストンが下降するのに伴い、排気口側で霧化された混合気が点火プラグの着火部及びその周辺に導かれる。そのため、混合気の高い着火性を確保することができる。特に、キャビティの内側に障害物が存在しないので、混合気をスムーズに点火プラグに導くことができるとともに、着火後の火炎伝搬をスムーズに実行させることが可能となる。 In the engine combustion chamber structure according to the above aspect, the air-fuel mixture is concentrated in the cavity as the piston rises during the compression stroke, and is atomized on the exhaust port side as the piston descends during the expansion stroke. The air-fuel mixture is led to the ignition part of the spark plug and the vicinity thereof. Therefore, high ignitability of the air-fuel mixture can be ensured. In particular, since there is no obstacle inside the cavity, the air-fuel mixture can be smoothly guided to the spark plug, and flame propagation after ignition can be executed smoothly.
 上記局面に係るエンジンの燃焼室構造において、前記キャビティは、気筒軸方向に湾曲した湾曲面を以って構成されており、気筒軸方向の一方側からの平面視において、前記キャビティの周縁部のうち機関出力軸方向の両側部分は、当該周縁部の内側の領域よりも曲率半径が小さい湾曲面を以って構成されている。 In the combustion chamber structure of the engine according to the above aspect, the cavity is configured with a curved surface curved in the cylinder axial direction, and in the plan view from one side in the cylinder axial direction, Of these, both side portions in the engine output shaft direction are configured with curved surfaces having a smaller radius of curvature than the region inside the peripheral edge.
 上記局面に係るエンジンの燃焼室構造では、キャビティの周縁部のうち機関出力軸方向の両側部分がそれよりも内側の領域に比べて立ち上がった形状となるので、キャビティ内の混合気がよりスムーズに点火プラグに導かれ、また、着火により形成された火炎が、燃焼室内において機関出力軸方向にスムーズに広がることとなる。 In the combustion chamber structure of the engine according to the above aspect, the air-fuel mixture in the cavity is smoother because both side portions in the engine output shaft direction of the peripheral portion of the cavity rise compared to the inner region. The flame led to the spark plug and formed by ignition spreads smoothly in the direction of the engine output shaft in the combustion chamber.
 本発明の別局面に係るエンジンの燃焼室構造は、上記局面において、前記キャビティの周縁部のうち機関出力軸方向の両側部分は、前記ピストンが圧縮上死点位置にあるときに前記着火部を間に挟み得る位置にある。 In the above aspect, the combustion chamber structure for an engine according to another aspect of the present invention is configured so that both sides of the peripheral portion of the cavity in the engine output shaft direction have the ignition portion when the piston is at the compression top dead center position. It is in a position that can be sandwiched between them.
 上記局面に係るエンジンの燃焼室構造では、圧縮行程中におけるピストンの上昇に伴って、燃焼室内における筒内流動がキャビティ内に集約される際に、混合気が点火プラグ及びその周辺に良好に導かれる。そのため、より高い着火性を確保することが可能となる。 In the combustion chamber structure of the engine according to the above aspect, when the in-cylinder flow in the combustion chamber is concentrated in the cavity as the piston rises during the compression stroke, the air-fuel mixture is well guided to the spark plug and its surroundings. It is burned. Therefore, higher ignitability can be ensured.
 本発明の別局面に係るエンジンの燃焼室構造は、上記局面において、気筒軸方向の一方側からの平面視において、前記キャビティは、前記点火プラグの着火部と一部が重複している。 In the engine combustion chamber structure according to another aspect of the present invention, in the above aspect, the cavity partially overlaps with the ignition part of the spark plug in a plan view from one side in the cylinder axial direction.
 上記局面に係るエンジンの燃焼室構造では、ピストンが圧縮上死点に近付くに従って、混合気が相対的に高温の排気口側から相対的に低温の吸気口側へと流れ、点火プラグの着火部近傍に導かれる。そして、平面視において、点火プラグの着火部がキャビティの一部と重複するように配設されているので、優れた着火性を確保することができる。 In the engine combustion chamber structure according to the above aspect, as the piston approaches compression top dead center, the air-fuel mixture flows from the relatively hot exhaust port side to the relatively cold intake port side, and the ignition part of the ignition plug Guided to the neighborhood. And since it is arrange | positioned so that the ignition part of a spark plug may overlap with a part of cavity in planar view, the outstanding ignitability is securable.
 本発明の別局面に係るエンジンの燃焼室構造は、上記局面において、前記燃焼室天井面は、ペントルーフ形状で形成されてなる。 In the combustion chamber structure for an engine according to another aspect of the present invention, the ceiling surface of the combustion chamber is formed in a pent roof shape.
 上記局面に係るエンジンの燃焼室構造では、燃焼室(気筒)の天井面がペントルーフ形状で形成されているので、燃焼室内にタンブル流を形成することができ、燃焼室全体での均質な燃焼が可能である。 In the engine combustion chamber structure according to the above aspect, since the ceiling surface of the combustion chamber (cylinder) is formed in a pent roof shape, a tumble flow can be formed in the combustion chamber, and homogeneous combustion in the entire combustion chamber can be achieved. Is possible.
 本発明の別局面に係るエンジンの燃焼室構造は、上記局面において、前記ピストンの冠面の一部領域として、前記点火プラグに対応する領域よりも吸気口側に位置する吸気側平面部と、この吸気側平面部と前記点火プラグに対応する領域との間に位置し、吸気口側から排気口側に向かって先上がりに傾斜する吸気側斜面部とが形成され、前記点火プラグは、前記着火部が側面視でL字形の接地電極を有するとともに、気筒軸方向の一方側からの平面視において、前記接地電極の先端が気筒の径方向外側を向いている。 The combustion chamber structure of the engine according to another aspect of the present invention is the above-described aspect, wherein a partial area of the crown surface of the piston is an intake side plane portion positioned closer to the intake port than an area corresponding to the spark plug; An intake-side inclined surface portion that is located between the intake-side flat portion and a region corresponding to the spark plug and inclines upward from the intake port side toward the exhaust port side is formed. The ignition part has an L-shaped ground electrode in a side view, and the tip of the ground electrode faces the outside in the radial direction of the cylinder in a plan view from one side in the cylinder axial direction.
 上記局面に係るエンジンの燃焼室構造では、圧縮行程においてピストンが移動(上昇)すると、燃焼室天井面とピストンの吸気側平面部との間で混合気(吸気)が圧縮され、吸気側斜面部に沿って燃焼室天井面に向かうスキッシュ流が生成される。そしてこの際、当該スキッシュ流により残留ガスが押し出され、これにより着火部周りの掃気効果が高められる。 In the combustion chamber structure of the engine according to the above aspect, when the piston moves (rises) in the compression stroke, the air-fuel mixture (intake) is compressed between the combustion chamber ceiling surface and the intake-side flat portion of the piston, and the intake-side inclined surface portion A squish flow toward the combustion chamber ceiling is generated. At this time, residual gas is pushed out by the squish flow, thereby enhancing the scavenging effect around the ignition part.

Claims (16)

  1.  火花点火式のエンジンの燃焼室構造であって、
     ピストンの冠面と、
     シリンダヘッドに形成された燃焼室天井面と、
     前記燃焼室天井面に設けられたインジェクタ及び点火プラグと、
     前記燃焼室の天井面に開口された吸気口及び排気口と、
    を備え、
     気筒軸方向の一方側からの平面視において、前記点火プラグの着火部が配置された箇所を基準とし、前記吸気口が開口された側を前記燃焼室の吸気口側、前記排気口が開口された側を前記燃焼室の排気口側とするとき、
     前記インジェクタは、少なくとも前記排気口側に向けて燃料を噴射可能に構成されており、
     前記燃焼室には、膨張行程中の前記ピストンの移動に伴い混合気を前記吸気口側へと引き込む逆スキッシュ流生成部が設けられてなる、エンジンの燃焼室構造。
    A combustion chamber structure of a spark ignition type engine,
    The crown of the piston,
    A combustion chamber ceiling surface formed on the cylinder head;
    An injector and a spark plug provided on the combustion chamber ceiling surface;
    An intake port and an exhaust port opened in the ceiling surface of the combustion chamber;
    With
    In a plan view from one side in the cylinder axis direction, the location where the ignition portion of the ignition plug is disposed is used as a reference, and the side where the intake port is opened is the intake port side of the combustion chamber and the exhaust port is opened. When the other side is the exhaust port side of the combustion chamber,
    The injector is configured to be able to inject fuel toward at least the exhaust port side,
    A combustion chamber structure of an engine, wherein the combustion chamber is provided with a reverse squish flow generation unit that draws an air-fuel mixture toward the intake port as the piston moves during an expansion stroke.
  2.  請求項1に記載のエンジンの燃焼室構造であって、
     前記燃焼室は、前記排気口側よりも前記吸気口側の方が容積が小さく構成されており、
     前記逆スキッシュ流生成部は、前記吸気口側と前記排気口側とでの前記燃焼室容積の差異を以って構成されている、エンジンの燃焼室構造。
    The engine combustion chamber structure according to claim 1,
    The combustion chamber is configured to have a smaller volume on the intake port side than on the exhaust port side,
    The reverse squish flow generation unit is a combustion chamber structure of an engine configured with a difference in the combustion chamber volume between the intake port side and the exhaust port side.
  3.  請求項1に記載のエンジンの燃焼室構造であって、
     前記燃焼室の前記吸気口側には、前記燃焼室天井面の一部領域と前記ピストンの冠面の一部領域とが、互いに沿う状態で対向するとともに、前記燃焼室の径方向の中央領域よりも互いに近接する領域が形成されており、
     前記逆スキッシュ流生成部は、前記互いに近接する前記燃焼室天井面の一部領域と前記ピストンの冠面の一部領域との組み合わせを以って構成されている、エンジンの燃焼室構造。
    The engine combustion chamber structure according to claim 1,
    On the intake port side of the combustion chamber, a partial region of the combustion chamber ceiling surface and a partial region of the crown surface of the piston face each other in a state along each other, and a radial central region of the combustion chamber Regions closer to each other are formed,
    The engine combustion chamber structure, wherein the reverse squish flow generation unit is configured by a combination of a partial region of the ceiling surface of the combustion chamber and a partial region of the crown surface of the piston that are close to each other.
  4.  請求項3に記載のエンジンの燃焼室構造であって、
     前記燃焼室天井面の一部領域、及び前記ピストンの冠面の一部領域は、それぞれ平面である、エンジンの燃焼室構造。
    The engine combustion chamber structure according to claim 3,
    The combustion chamber structure of an engine, wherein a partial region of the combustion chamber ceiling surface and a partial region of the crown surface of the piston are flat surfaces.
  5.  請求項3又は請求項4に記載のエンジンの燃焼室構造であって、
     前記燃焼室における排気口側にも、前記燃焼室天井面と前記ピストンの冠面とが、互いに沿う状態で対向するとともに、前記燃焼室の径方向の中央領域よりも互いに近接する領域が形成されてなり、
     気筒軸方向の一方側からの平面視において、前記排気口側における前記燃焼室天井面と前記ピストンの冠面とが対向する領域は、前記逆スキッシュ流生成部よりも小面積である、エンジンの燃焼室構造。
    The engine combustion chamber structure according to claim 3 or 4,
    The combustion chamber ceiling surface and the crown surface of the piston face each other along the exhaust port side in the combustion chamber, and a region closer to each other than the central region in the radial direction of the combustion chamber is formed. And
    In a plan view from one side in the cylinder axis direction, an area where the combustion chamber ceiling surface and the crown surface of the piston face each other on the exhaust port side is smaller than the reverse squish flow generating portion. Combustion chamber structure.
  6.  請求項1から請求項5の何れかに記載のエンジンの燃焼室構造であって、
     前記ピストンの冠面は、気筒軸方向に凹設されてなるキャビティを含み、
     前記キャビティは、底面の深さが、前記排気口側から前記点火プラグの着火部の側に向けて漸次浅くなるように形成されている、エンジンの燃焼室構造。
    The engine combustion chamber structure according to any one of claims 1 to 5,
    The crown surface of the piston includes a cavity that is recessed in the cylinder axial direction,
    The combustion chamber structure of the engine, wherein the cavity is formed so that the depth of the bottom surface gradually becomes shallower from the exhaust port side toward the ignition part side of the ignition plug.
  7.  請求項6に記載のエンジンの燃焼室構造であって、
     気筒軸方向の一方側からの平面視において、前記キャビティは、前記点火プラグの着火部と一部が重複する状態で、環状に形成されてなる、エンジンの燃焼室構造。
    The engine combustion chamber structure according to claim 6,
    A combustion chamber structure of an engine, wherein the cavity is formed in an annular shape in a state of being partially overlapped with an ignition part of the spark plug in a plan view from one side in the cylinder axis direction.
  8.  請求項1から請求項7の何れかに記載のエンジンの燃焼室構造であって、
     前記燃焼室天井面は、ペントルーフ形状で形成されてなる、エンジンの燃焼室構造。
    The engine combustion chamber structure according to any one of claims 1 to 7,
    The combustion chamber structure of the engine, wherein the combustion chamber ceiling surface is formed in a pent roof shape.
  9.  請求項7に記載のエンジンの燃焼室構造であって、
     前記キャビティの外縁は、気筒軸方向視において前記点火プラグの着火部に指向して湾曲するプラグ指向部を有する、エンジンの燃焼室構造。
    The engine combustion chamber structure according to claim 7,
    The combustion chamber structure of the engine, wherein the outer edge of the cavity has a plug directing portion that curves toward the ignition portion of the spark plug as viewed in the cylinder axial direction.
  10.  請求項3に記載のエンジンの燃焼室構造であって、
     前記ピストンの冠面の一部領域として、前記点火プラグに対応する領域よりも吸気口側に位置する吸気側平面部と、この吸気側平面部と前記点火プラグに対応する領域との間に位置し、吸気口側から排気口側に向かって先上がりに傾斜する吸気側斜面部とが形成され、
     前記点火プラグは、前記着火部が側面視でL字形の接地電極を有するとともに、気筒軸方向の一方側からの平面視において、前記接地電極の先端が気筒の径方向内側を向いている、エンジンの燃焼室構造。
    The engine combustion chamber structure according to claim 3,
    As a partial region of the crown surface of the piston, an intake side plane portion located closer to the intake port than a region corresponding to the spark plug, and a position between the intake side plane portion and the region corresponding to the spark plug And an intake side slope portion that is inclined upwardly from the intake side toward the exhaust side,
    The ignition plug has an ignition electrode in which the ignition part has an L-shaped ground electrode in a side view, and a tip of the ground electrode faces a radially inner side of the cylinder in a plan view from one side in the cylinder axial direction. Combustion chamber structure.
  11.  請求項1から5の何れか一項に記載のエンジンの燃焼室構造において、
     前記ピストンの冠面は、気筒軸方向の一方側からの平面視で、前記逆スキッシュ流生成部よりも前記排気口側の位置において気筒軸方向に凹設されてなる椀状のキャビティを含む、エンジンの燃焼室構造。
    In the combustion chamber structure of the engine according to any one of claims 1 to 5,
    The top surface of the piston includes a bowl-shaped cavity that is recessed in the cylinder axial direction at a position closer to the exhaust port than the reverse squish flow generating portion in a plan view from one side in the cylinder axial direction. Engine combustion chamber structure.
  12.  請求項11に記載のエンジンの燃焼室構造であって、
     前記キャビティは、気筒軸方向に湾曲した湾曲面を以って構成されており、
     気筒軸方向の一方側からの平面視において、前記キャビティの周縁部のうち機関出力軸方向の両側部分は、当該周縁部の内側の領域よりも曲率半径が小さい湾曲面を以って構成されている、エンジンの燃焼室構造。
    The engine combustion chamber structure according to claim 11,
    The cavity is configured with a curved surface curved in the cylinder axial direction,
    In plan view from one side in the cylinder axis direction, both side portions in the engine output axis direction of the peripheral portion of the cavity are configured with curved surfaces having a smaller radius of curvature than the region inside the peripheral portion. The engine combustion chamber structure.
  13.  請求項12に記載のエンジンの燃焼室構造であって、
     前記キャビティの周縁部のうち機関出力軸方向の両側部分は、前記ピストンが圧縮上死点位置にあるときに前記着火部を間に挟み得る位置にある、エンジンの燃焼室構造。
    The engine combustion chamber structure according to claim 12,
    The combustion chamber structure of the engine, wherein both side portions in the engine output axis direction of the peripheral portion of the cavity are in positions where the ignition portion can be sandwiched when the piston is at the compression top dead center position.
  14.  請求項11から13の何れか一項に記載のエンジンの燃焼室構造であって、
     気筒軸方向の一方側からの平面視において、前記キャビティは、前記点火プラグの着火部と一部が重複している、エンジンの燃焼室構造。
    A combustion chamber structure for an engine according to any one of claims 11 to 13,
    The combustion chamber structure of the engine, wherein the cavity partially overlaps with the ignition part of the spark plug in a plan view from one side in the cylinder axis direction.
  15.  請求項11から請求項14の何れかに記載のエンジンの燃焼室構造であって、
     前記燃焼室天井面は、ペントルーフ形状で形成されてなる、エンジンの燃焼室構造。
    The engine combustion chamber structure according to any one of claims 11 to 14,
    The combustion chamber structure of the engine, wherein the combustion chamber ceiling surface is formed in a pent roof shape.
  16.  請求項11~請求項15の何れかに記載のエンジンの燃焼室構造であって、
     前記ピストンの冠面の一部領域として、前記点火プラグに対応する領域よりも吸気口側に位置する吸気側平面部と、この吸気側平面部と前記点火プラグに対応する領域との間に位置し、吸気口側から排気口側に向かって先上がりに傾斜する吸気側斜面部とが形成され、
     前記点火プラグは、前記着火部が側面視でL字形の接地電極を有するとともに、気筒軸方向の一方側からの平面視において、前記接地電極の先端が気筒の径方向外側を向いている、エンジンの燃焼室構造。
    The engine combustion chamber structure according to any one of claims 11 to 15,
    As a partial region of the crown surface of the piston, an intake side plane portion located closer to the intake port than a region corresponding to the spark plug, and a position between the intake side plane portion and the region corresponding to the spark plug And an intake side slope portion that is inclined upwardly from the intake side toward the exhaust side,
    The ignition plug has an ignition electrode in which the ignition portion has an L-shaped ground electrode in a side view, and a tip of the ground electrode faces a radially outer side of the cylinder in a plan view from one side in the cylinder axial direction. Combustion chamber structure.
PCT/JP2018/019593 2017-06-02 2018-05-22 Combustion chamber structure for engines WO2018221306A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18809373.6A EP3617472A1 (en) 2017-06-02 2018-05-22 Combustion chamber structure for engines
US16/618,041 US11118499B2 (en) 2017-06-02 2018-05-22 Combustion chamber structure for engines
CN201880035579.1A CN110709594B (en) 2017-06-02 2018-05-22 Combustion chamber structure of engine

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2017109599 2017-06-02
JP2017-109599 2017-06-02
JP2017-162679 2017-08-25
JP2017162679 2017-08-25
JP2017205154A JP6566000B2 (en) 2017-06-02 2017-10-24 engine
JP2017-205154 2017-10-24

Publications (1)

Publication Number Publication Date
WO2018221306A1 true WO2018221306A1 (en) 2018-12-06

Family

ID=64456553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019593 WO2018221306A1 (en) 2017-06-02 2018-05-22 Combustion chamber structure for engines

Country Status (1)

Country Link
WO (1) WO2018221306A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11391230B2 (en) 2019-11-07 2022-07-19 Saudi Arabian Oil Company Compression ignition engines and methods for operating the same under cold start fast idle conditions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10131756A (en) * 1996-10-31 1998-05-19 Fuji Heavy Ind Ltd Inner-cylinder injection type engine
JPH11107759A (en) * 1997-10-02 1999-04-20 Fuji Heavy Ind Ltd Cylinder injection type engine
JP2001159315A (en) * 1999-12-03 2001-06-12 Mazda Motor Corp Spark ignition type engine
JP2004232583A (en) * 2003-01-31 2004-08-19 Nissan Motor Co Ltd Cylinder direct injection spark ignition type internal combustion engine
JP2016094925A (en) 2014-11-17 2016-05-26 トヨタ自動車株式会社 Internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10131756A (en) * 1996-10-31 1998-05-19 Fuji Heavy Ind Ltd Inner-cylinder injection type engine
JPH11107759A (en) * 1997-10-02 1999-04-20 Fuji Heavy Ind Ltd Cylinder injection type engine
JP2001159315A (en) * 1999-12-03 2001-06-12 Mazda Motor Corp Spark ignition type engine
JP2004232583A (en) * 2003-01-31 2004-08-19 Nissan Motor Co Ltd Cylinder direct injection spark ignition type internal combustion engine
JP2016094925A (en) 2014-11-17 2016-05-26 トヨタ自動車株式会社 Internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3617472A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11391230B2 (en) 2019-11-07 2022-07-19 Saudi Arabian Oil Company Compression ignition engines and methods for operating the same under cold start fast idle conditions

Similar Documents

Publication Publication Date Title
JP6565999B2 (en) engine
JP6566000B2 (en) engine
JP2002129962A (en) Piston for in-cylinder injection engine
JP6565987B2 (en) engine
WO2018221639A1 (en) Combustion chamber structure for engines
WO2018221306A1 (en) Combustion chamber structure for engines
WO2018221308A1 (en) Combustion chamber structure for engines
JPH06146886A (en) Cylinder injection type internal combustion engine
WO2019044647A1 (en) Combustion chamber structure of engine
JP2019039419A (en) Combustion chamber structure of engine
WO2018221638A1 (en) Combustion chamber structure for engines
JP6610631B2 (en) Engine combustion chamber structure
JP6620783B2 (en) Engine combustion chamber structure
JP6565968B2 (en) engine
JP6627844B2 (en) engine
JP6489157B2 (en) Engine combustion chamber structure
JP6620784B2 (en) Engine combustion chamber structure
JP6620785B2 (en) engine
JPH11200863A (en) Combustion chamber for internal combustion engine
JPH1144215A (en) Piston for cylinder injection internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018809373

Country of ref document: EP

Effective date: 20191128