WO2018221107A1 - Impact work machine - Google Patents

Impact work machine Download PDF

Info

Publication number
WO2018221107A1
WO2018221107A1 PCT/JP2018/017229 JP2018017229W WO2018221107A1 WO 2018221107 A1 WO2018221107 A1 WO 2018221107A1 JP 2018017229 W JP2018017229 W JP 2018017229W WO 2018221107 A1 WO2018221107 A1 WO 2018221107A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
speed
pressure
rotation speed
drilling
Prior art date
Application number
PCT/JP2018/017229
Other languages
French (fr)
Japanese (ja)
Inventor
英貴 山田
Original Assignee
工機ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工機ホールディングス株式会社 filed Critical 工機ホールディングス株式会社
Priority to JP2019522043A priority Critical patent/JP6927296B2/en
Publication of WO2018221107A1 publication Critical patent/WO2018221107A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D16/00Portable percussive machines with superimposed rotation, the rotational movement of the output shaft of a motor being modified to generate axial impacts on the tool bit

Definitions

  • the present invention relates to a hammering machine such as a hammer drill having a configuration in which a tip tool is hit using a change in pressure in a pressure chamber.
  • a hammer In a hammering machine such as a hammer drill, a hammer is reciprocated by a motor to expand / compress the air in the cylinder and move the hammer in the cylinder back and forth. Strikes and drives the tip tool via the mesonator (striking operation), and transmits the rotational force of the motor to the tip tool to rotate and drive the tip tool itself (rotation operation).
  • a drilling operation on a work material is made possible by a rotary hammering operation that combines this hammering motion and a rotational motion.
  • the drilling speed is also maximized by maximizing the rotation speed of the motor.
  • the operation of the striking mechanism for striking the tip tool will not catch up with the motor speed if the motor speed is too high.
  • the striking force becomes insufficient, and the perforation speed decreases. Since the rotation speed of the motor at which the drilling speed is maximized varies depending on the mass of a member (for example, striking element or meson) constituting the striking mechanism, the hardness of the work material, etc., it is difficult to set in advance.
  • the present invention has been made in view of such a situation, and an object thereof is to provide a striking work machine capable of appropriately controlling the drilling speed.
  • One embodiment of the present invention is a striking work machine.
  • This striking machine A motor that varies the pressure in the pressure chamber; A striking mechanism for striking a tip tool using fluctuations in pressure in the pressure chamber; Drilling speed detecting means for detecting the speed of drilling the work material; A control unit capable of controlling the number of rotations of the motor based on a detection result by the punching speed detection means.
  • the drilling speed detection means may include a distance sensor that detects a distance between the facing work material and itself.
  • the motor may be a brushless motor.
  • the control unit is capable of executing a rotation impact mode in which the impact tool is struck while rotating the tip tool and an impact mode in which the impact tool is struck without rotating the tip tool, and is based on a detection result by the drilling speed detection means. Whether to execute the rotation speed control of the motor may be switchable depending on the mode.
  • the control unit can execute rotation speed control of the motor based on a detection result by the punching speed detection means in the rotation hitting mode, and does not have to execute the rotation speed control in the hitting mode. .
  • the control unit may be capable of switching whether or not to execute the rotational speed control of the motor based on a detection result by the punching speed detection means in the rotary impact mode.
  • the rotational speed control of the motor based on the detection result by the punching speed detection means is As a result of increasing the rotation speed of the motor from the current rotation speed, the rotation speed of the motor is further increased when the drilling speed is increased, and the rotation speed of the motor is decreased when the drilling speed is decreased. And As a result of lowering the rotation speed of the motor from the current rotation speed, when the drilling speed is increased, the rotation speed of the motor is further decreased, and when the drilling speed is decreased, the rotation speed of the motor is increased. Control may be performed.
  • the controller may not make the rotation speed of the motor higher than a predetermined rotation speed regardless of the drilling speed.
  • Pressure detecting means for detecting the pressure in the pressure chamber;
  • the controller may be capable of controlling the number of rotations of the motor based on a detection result by the pressure detection unit.
  • the rotational speed control of the motor based on the detection result by the pressure detection means is within a range where the drilling speed satisfies a predetermined condition.
  • FIG. 1 is a side sectional view of an impact work machine 1 according to an embodiment of the present invention.
  • FIG. 3 is a circuit diagram of the impact work machine 1.
  • the time chart which shows an example of the time change of the rotation speed of the motor 3 in a drilling speed priority mode, and a drilling speed.
  • 4 is a control flowchart of the impact work machine 1 in the drilling speed priority mode.
  • the time chart which shows an example of the time change of the rotation speed of the motor 3, the drilling speed, and the pressure in the pressure chamber (air chamber) 7 in a feeling priority mode.
  • FIG. 1 is a side sectional view of an impact work machine 1 according to an embodiment of the present invention.
  • the striking work machine 1 is a hammer drill, and can apply a turning work, a drilling work, and a crushing work to a work material such as concrete or stone by applying a rotational force and a striking force to the tip tool 10. . Since the configuration from the rotation of the motor 3 to the rotation and impact of the tip tool 10 in the impact work machine 1 is well known, only a brief description will be given below.
  • the striking work machine 1 is AC-driven here, and a power cord 15 for connecting to an external AC power source extends from the lower rear end of the housing 2 (lower end of the handle portion 2a).
  • the rear portion of the housing 2 is a handle portion 2a, and a trigger switch 16 is provided on the handle portion 2a for the user to switch between driving and stopping of the motor 3.
  • a motor 3, a motion conversion mechanism 4, a rotation transmission mechanism 5, a cylinder 11, and a retainer sleeve (tool holding part) 12 are held in the housing 2.
  • the cylinder 11 and the retainer sleeve 12 are rotatable with respect to the housing 2 about the front-rear direction.
  • a piston 6, a striker 8, and an intermediate 9 are provided so as to be capable of reciprocating in the front-rear direction.
  • a pressure chamber (air chamber) 7 is provided between the piston 6 and the striker 8.
  • the front end tool 10 is detachably held at the front end portion of the retainer sleeve 12.
  • the motor 3 is an inner rotor type brushless motor, and is provided in a lower portion of the housing 2.
  • a control board 40 for controlling the driving of the motor 3 is provided behind the motor 3 in the housing 2.
  • the rotation of the motor 3 about the vertical direction is converted into a reciprocating motion in the front-rear direction of the piston 6 by a motion conversion mechanism 4 such as a crank mechanism.
  • a motion conversion mechanism 4 such as a crank mechanism.
  • the rotation of the motor 3 about the vertical direction is converted into the rotation of the cylinder 11 and the retainer sleeve 12 about the front-rear direction by the rotation transmission mechanism 5 including a pair of bevel gears.
  • the tip tool 10 is rotationally driven together with the retainer sleeve 12.
  • the user can change the operation mode of the impact work machine 1 with a mode setting dial 13 provided at the upper part of the housing 2, a hammer mode (impact mode) in which impact force is applied to the tip tool 10 without applying rotational force, It is possible to switch between a hammer drill mode (rotary impact mode) in which both the rotational force and the impact force are applied to the tool 10.
  • a shaft (depth gauge) 17 extending in the front-rear direction above the housing 2 is a member for determining the drilling depth by contacting the work piece with the front end, and is at a predetermined position in the front-rear direction with respect to the housing 2. Attached.
  • the striking work machine 1 includes a distance sensor 20 and a pressure sensor 30.
  • pressure is controlled under the conditions of control for maximizing the drilling speed (drilling speed priority mode) and a drilling speed of a certain level or more.
  • the control (feeling priority mode) for minimizing the pressure in the chamber 7 can be executed.
  • the user can select which control is to be performed by the control switching button 14.
  • the distance sensor 20 is provided in the housing 2 at a position below the pressure chamber 7 and faces the front outside the housing 2.
  • the distance sensor 20 detects the distance between the work material facing itself.
  • the pressure sensor 30 is provided in the piston 6, faces the pressure chamber 7, and detects the pressure in the pressure chamber 7.
  • FIG. 2 is a circuit diagram of the impact work machine 1.
  • the distance sensor 20 and the pressure sensor 30 are shown together in one block.
  • a diode bridge 103 as a rectifier circuit is connected to the AC power supply 50 via a noise countermeasure circuit 51.
  • An inverter circuit 102 is connected to the output side of the diode bridge 103 via a power factor correction circuit 104.
  • the noise countermeasure circuit 51 has a role of preventing noise generated in the inverter circuit 102 from being transmitted to the AC power supply 50 side.
  • the diode bridge 103 converts the alternating current of the alternating current power supply 50 into a direct current and supplies it to the inverter circuit 102.
  • the inverter circuit 102 has switching elements Tr1 to Tr6 such as FETs and IGBTs connected in a three-phase bridge, and supplies a drive current to the stator coils U1, V1, and W1 of the motor 3.
  • the motor control unit 105 that controls the inverter circuit 102 includes a controller 106.
  • a control signal (for example, a PWM signal) is sent from the controller 106 to each switching element of the inverter circuit 102 via the control signal output circuit 107.
  • Detection signals from the hall elements S1 to S3 are sent to the rotor position detection circuit 101.
  • the signal output from the rotor position detection circuit 101 is sent to the controller 106 and the motor rotation number detection circuit 108.
  • the motor rotation speed detection circuit 108 calculates the actual rotation speed of the motor 3.
  • the signal output from the motor rotation speed detection circuit 108 is sent to the controller 106.
  • the controller 106 includes a microprocessor that calculates a control signal to be output to the control signal output circuit 107, a memory that stores a program, an arithmetic expression, and data used to control the rotation speed of the motor 3, a timer that measures time, Have The controller 106 performs control in an operation mode (hammer mode or hammer drill mode) corresponding to the rotational position of the mode setting dial 13. Further, in the hammer drill mode, the controller 106 executes control in the drilling speed priority mode or the feeling priority mode according to the operation of the control switching button 14. The controller 106 detects the current flowing through the motor 3 based on the voltage across the resistor Rs provided in the current path of the motor 3.
  • FIG. 3 is a time chart showing an example of temporal changes in the rotation speed of the motor 3 and the drilling speed in the drilling speed priority mode.
  • the drilling speed is calculated from the time change of the output signal of the distance sensor 20 in the controller 106.
  • the controller 106 drives the motor 3 to rotate at the initial rotational speed.
  • the controller 106 increases the rotational speed of the motor 3 at time t1.
  • the controller 106 further increases the rotation speed of the motor 3 at time t2.
  • the controller 106 further increases the rotational speed of the motor 3 at time t3.
  • the increments of the rotation speed of the motor 3 at the times t1, t2, and t3 are equal.
  • the controller 106 decreases the rotation speed of the motor 3 at time t4.
  • the decrease range of the rotation speed of the motor 3 at time t4 is smaller than the increase width of the rotation speed of the motor 3 at time t3, and is halved in the illustrated example.
  • the controller 106 further decreases the rotation speed of the motor 3 at time t5.
  • a decrease width of the rotation speed of the motor 3 at time t5 is equal to a decrease width of the rotation speed of the motor 3 at time t4.
  • the controller 106 increases the rotation speed of the motor 3 at time t6.
  • the increase width of the rotation speed of the motor 3 at time t6 is smaller than the decrease width of the rotation speed of the motor 3 at time t5, and is halved in the illustrated example.
  • the controller 106 further increases the rotation speed of the motor 3 at time t7.
  • the increase width of the rotation speed of the motor 3 at time t7 is equal to the increase width of the rotation speed of the motor 3 at time t6.
  • the controller 106 continues the control to calculate the drilling speed and change the rotation speed of the motor 3 after time t7.
  • FIG. 4 is a control flowchart of the impact work machine 1 in the drilling speed priority mode.
  • the controller 106 detects that the trigger switch 16 is turned on (YES in S1), it starts the motor 3 (S2), and controls the rotational speed of the motor 3 to a predetermined rotational speed N1 (initial value of the variable N1) (S3). .
  • the controller 106 determines whether or not the hammer drill mode is selected based on the rotational position of the mode setting dial 13 (S4). If the mode is not the hammer drill mode (NO in S4), the controller 106 drives the motor 3 as long as the trigger switch 16 is on. If the trigger switch 16 is turned off (NO in S5), the motor 3 is stopped (S6).
  • the controller 106 detects the current flowing through the motor 3 based on the voltage across the resistor Rs when the trigger switch 16 is on (YES in S7) (S8).
  • the controller 106 detects the distance to the work material from the output signal of the distance sensor 20 and substitutes it into the variable L0 if the actual load state, that is, the current flowing through the motor 3 is equal to or greater than a predetermined value (YES in S9) ( Similarly, after t seconds, the distance to the work material is detected and substituted into the variable L1 (S11), and the difference between the variable L0 and the variable L1 (L0 ⁇ L1) is substituted into the variable ⁇ L1 (S12).
  • the controller 106 substitutes the current rotational speed N1 of the motor 3 for the variable N, and substitutes the value of the variable ⁇ L1 for the variable ⁇ L (S19).
  • the controller 106 substitutes N + ⁇ N1 for the variable N1, controls the rotational speed of the motor 3 to N1 (S21), and returns to step S7.
  • the controller 106 determines whether or not the rotational speed of the motor 3 has been decreased immediately before (S14). When the rotation speed of the motor 3 is increased immediately before (NO in S14), the controller 106 changes the drilling speed (YES in S15) and increases the drilling speed (YES in S17). Is substituted for the variable N, and the value of the variable ⁇ L1 is substituted for the variable ⁇ L (S19). The controller 106 substitutes N + ⁇ N1 for the variable N1, controls the rotational speed of the motor 3 to N1 (S21), and returns to step S7.
  • the controller 106 substitutes the value of the variable ⁇ N1 for the variable ⁇ N (S17a), and substitutes a value that is 1 ⁇ 2 times ⁇ N for the variable ⁇ N1 (S17b). .
  • the controller 106 substitutes the current rotational speed N1 of the motor 3 for the variable N, and substitutes the value of the variable ⁇ L1 for the variable ⁇ L (S20).
  • the controller 106 substitutes N ⁇ N1 for the variable N1, controls the rotation speed of the motor 3 to N1 (S22), and returns to step S7.
  • the controller 106 changes the drilling speed (YES in S16) and increases the drilling speed (YES in S18). Is substituted for the variable N, and the value of the variable ⁇ L1 is substituted for the variable ⁇ L (S20). The controller 106 substitutes N ⁇ N1 for the variable N1, controls the rotation speed of the motor 3 to N1 (S22), and returns to step S7.
  • the controller 106 substitutes the value of the variable ⁇ N1 for the variable ⁇ N (S18a), and substitutes a value that is 1 ⁇ 2 times ⁇ N for the variable ⁇ N1 (S18b). .
  • the controller 106 substitutes the current rotational speed N1 of the motor 3 for the variable N, and substitutes the value of the variable ⁇ L1 for the variable ⁇ L (S19).
  • the controller 106 substitutes N + ⁇ N1 for the variable N1, controls the rotational speed of the motor 3 to N1 (S21), and returns to step S7.
  • controller 106 If the drilling speed has not changed in each of steps S15 and S16 (NO in S15 or NO in S16), controller 106 returns to step S7. It should be noted that the presence / absence of a change in drilling speed in steps S15 and S16 has a predetermined width, and if the change is less than the predetermined width, it is determined that there is no change, and if the change is greater than or equal to the predetermined width, it is determined that there is a change. If the trigger switch 16 is OFF in step S7 (NO in S7), the controller 106 stops the motor 3 (S6). The controller 106 does not make the rotation speed of the motor 3 higher than a predetermined rotation speed (allowable maximum rotation speed) regardless of the drilling speed. This is to protect the striking mechanism.
  • a predetermined rotation speed allowable maximum rotation speed
  • FIG. 5 is a time chart showing an example of temporal changes in the rotation speed of the motor 3, the drilling speed, and the pressure in the pressure chamber (air chamber) 7 in the feeling priority mode.
  • the pressure in the pressure chamber 7 is detected by the pressure sensor 30 and fed back to the controller 106.
  • the controller 106 drives the motor 3 to rotate at the initial rotational speed.
  • the controller 106 reduces the rotational speed of the motor 3 at time t1.
  • the controller 106 further reduces the rotational speed of the motor 3 at time t2.
  • the controller 106 further reduces the rotational speed of the motor 3 at time t3. .
  • the amount of decrease in the rotation speed of the motor 3 at the times t1, t2, and t3 is equal.
  • the controller 106 increases the rotational speed of the motor 3 at time t4.
  • the increase range of the rotation speed of the motor 3 at time t4 is smaller than the decrease width of the rotation speed of the motor 3 at time t3, and is halved in the illustrated example.
  • the controller 106 decreases the rotation speed of the motor 3 at time t5. .
  • the decrease width of the motor 3 at time t5 is smaller than the increase speed of the motor 3 at time t4, and is halved in the illustrated example.
  • the controller 106 increases the rotational speed of the motor 3 at time t6.
  • the increase width of the rotation speed of the motor 3 at time t6 is smaller than the decrease width of the rotation speed of the motor 3 at time t5, and is halved in the illustrated example.
  • the controller 106 maintains the rotational speed of the motor 3.
  • FIG. 6 is a control flowchart of the impact work machine 1 in the feeling priority mode.
  • steps up to step S12 are the same as those in FIG. 4, and illustrations prior to step S9 are omitted.
  • the controller 106 After substituting the difference between the variable L0 and the variable L1 (L0-L1) for the variable ⁇ L1 in step S12, the controller 106 checks whether the drilling speed is too slow (is not lower than a predetermined value) (S30). If the drilling speed is not too slow (YES in S30), the controller 106 detects the pressure in the pressure chamber 7 based on the signal from the pressure sensor 30, and substitutes it in the variable P1 (S31).
  • variable P does not contain a value (NO in S32)
  • the current rotational speed N1 of the motor 3 is assigned to the variable N
  • the value of the variable P1 is assigned to the variable P (S39).
  • the controller 106 substitutes N ⁇ N1 for the variable N1, controls the rotational speed of the motor 3 to N1 (S41), and returns to step S7.
  • the controller 106 determines whether or not the number of revolutions of the motor 3 has been increased immediately before (S33). When the controller 106 increases the rotational speed of the motor 3 immediately before (YES in S33), the pressure in the pressure chamber 7 changes (YES in S34), and the pressure in the pressure chamber 7 decreases (S36). YES), the current rotational speed N1 of the motor 3 is substituted into the variable N, and the value of the variable P1 is substituted into the variable P (S38). The controller 106 substitutes N + ⁇ N1 for the variable N1, controls the rotational speed of the motor 3 to N1 (S40), and returns to step S7.
  • step S36 When the pressure in the pressure chamber 7 increases in step S36 (NO in S36), the controller 106 substitutes the value of the variable ⁇ N1 for the variable ⁇ N (S36a), and substitutes a value that is 1 ⁇ 2 times ⁇ N for the variable ⁇ N1. (S36b).
  • the controller 106 substitutes the current rotational speed N1 of the motor 3 for the variable N, and substitutes the value of the variable P1 for the variable P (S39).
  • the controller 106 substitutes N ⁇ N1 for the variable N1, controls the rotational speed of the motor 3 to N1 (S41), and returns to step S7.
  • the controller 106 changes the pressure in the pressure chamber 7 (YES in S35), and the pressure in the pressure chamber 7 decreases (S37). YES), the current rotational speed N1 of the motor 3 is substituted into the variable N, and the value of the variable P1 is substituted into the variable P (S39).
  • the controller 106 substitutes N ⁇ N1 for the variable N1, controls the rotational speed of the motor 3 to N1 (S41), and returns to step S7.
  • step S37 If the pressure in the pressure chamber 7 has increased in step S37 (NO in S37), the controller 106 substitutes the value of the variable ⁇ N1 for the variable ⁇ N (S37a), and substitutes a value that is 1 ⁇ 2 times ⁇ N for the variable ⁇ N1. (S37b).
  • the controller 106 substitutes the current rotational speed N1 of the motor 3 for the variable N, and substitutes the value of the variable P1 for the variable P (S38).
  • the controller 106 substitutes N + ⁇ N1 for the variable N1, controls the rotational speed of the motor 3 to N1 (S40), and returns to step S7.
  • step S7 If the pressure in the pressure chamber 7 does not change in each of steps S34 and S35 (NO in S34 or NO in S35), the controller 106 returns to step S7.
  • the determination of whether or not there is a change in the pressure in the pressure chamber 7 in steps S34 and S35 has a predetermined width. If the change is less than the predetermined width, it is determined that there is no change. Is determined. If the drilling speed is too slow in step S30 (NO in S30), the controller 106 proceeds to step S41 if the number of rotations of the motor 3 is increased immediately before (YES in S42). If the rotation speed of the motor 3 is decreased immediately before (lowering), the process proceeds to step S40 (the rotation speed of the next motor 3 is increased).
  • the striking mechanism is controlled in order to detect the change in the drilling speed when the rotation speed of the motor 3 is changed by the output signal of the distance sensor 20 and to control the drilling speed to the maximum.
  • the optimum rotation speed of the motor 3 (the rotation speed of the motor 3 at which the drilling speed is maximized), which varies depending on the mass of the constituent members (for example, the striker 8 and the intermediate element 9) and the hardness of the work material, is appropriately derived to perform drilling. You can maximize speed.
  • the pressure change in the pressure chamber 7 when the number of revolutions of the motor 3 is changed is detected by the output signal of the pressure sensor 30, and the pressure is adjusted under the condition that the drilling speed is a predetermined value or more. Since the control is performed so that the pressure in the chamber 7 becomes the lowest, the reaction force can be reduced while maintaining a perforation speed of a certain level or more, and the work feeling can be improved.
  • the controller 106 can execute a rotation speed fixing mode that fixes the rotation speed of the motor 3 regardless of the drilling speed and the pressure in the pressure chamber 7. It may be.
  • the rotation speed fixing mode may be selected with the mode setting dial 13.
  • the number of rotations of the motor 3 in the rotation number fixing mode may be selectable from a plurality of stages.
  • the punching speed detecting means may be an acceleration sensor instead of the distance sensor 20. Since the integration of the acceleration becomes the speed, the drilling speed can be detected also by a signal from the acceleration sensor. If the shaft 17 as a depth gauge is slidable back and forth with respect to the housing 2 and the shaft 17 is retracted by the work material as the drilling progresses, the drilling speed can be detected from the retracted amount of the shaft 17. it can.
  • the retraction amount of the shaft 17 can be detected by, for example, providing a magnet at a predetermined interval on the shaft 17 and providing a magnetic sensor on the support portion of the shaft 17 on the housing 2 side.
  • SYMBOLS 1 Blow working machine (hammer drill), 2 ... Housing, 3 ... Motor (brushless motor), 4 ... Motion conversion mechanism, 5 ... Rotation transmission mechanism, 6 ... Piston, 7 ... Pressure chamber (air chamber), 8 ... Batter , 9 ... Meson, 10 ... Tip tool, 11 ... Cylinder, 12 ... Retainer sleeve (tool holder), 13 ... Mode setting dial, 14 ... Speed setting button, 15 ... Power cord, 16 ... Trigger switch, 17 ... Shaft ( Depth gauge), 20 ... distance sensor, 30 ... pressure sensor

Abstract

Provided is an impact work machine capable of suitably controlling a drilling speed. An impact work machine (1) comprises: a motor (3) for varying the pressure in a pressure chamber (7); an impact element (8) and an intermediate element (9) that impact a tip tool (10) due to the varied pressure in the pressure chamber (7); a distance sensor (20) for detecting the speed of drilling in a material to be cut; and a control unit capable of controlling the rotation speed of the motor (3) on the basis of the detection results from the distance sensor (20). The control unit can execute control of the rotation speed of the motor (3) based on the detection results from the distance sensor (20) in a rotation impact mode where the tip tool (10) is impacted while being rotated.

Description

打撃作業機Hammering machine
本発明は、圧力室の圧力の変動を利用して先端工具を打撃する構成を有するハンマドリル等の打撃作業機に関する。 The present invention relates to a hammering machine such as a hammer drill having a configuration in which a tip tool is hit using a change in pressure in a pressure chamber.
ハンマドリル等の打撃作業機(打撃工具)においては、モータによりシリンダ内のピストンを往復動させることで、シリンダ内の空気を膨張/圧縮し、シリンダ内の打撃子を前後動させることで、打撃子が中間子を介して先端工具を打撃し駆動し(打撃動作)、また、モータの回転力を先端工具に伝達して先端工具自体を回転させ駆動する(回転動作)。ハンマドリルにおいては、この打撃動作と回転動作を組み合わせた回転打撃動作により、被削材への穿孔作業を可能とする。 In a hammering machine such as a hammer drill, a hammer is reciprocated by a motor to expand / compress the air in the cylinder and move the hammer in the cylinder back and forth. Strikes and drives the tip tool via the mesonator (striking operation), and transmits the rotational force of the motor to the tip tool to rotate and drive the tip tool itself (rotation operation). In a hammer drill, a drilling operation on a work material is made possible by a rotary hammering operation that combines this hammering motion and a rotational motion.
特開2017-13173号公報JP 2017-13173 A
作業時に、穿孔速度を最大にしたいという要望がある。ここで、回転動作であれば、モータの回転数を最大とすることで、穿孔速度も最大になる。しかしながら、圧力室の圧力の変動により先端工具を打撃する打撃動作及び回転打撃動作の場合、モータの回転数を高くしすぎると、先端工具を打撃する打撃機構の動作がモータの回転数に追いつかず、打撃力が不十分となり、かえって穿孔速度が低下する。穿孔速度が最大となるモータの回転数は、打撃機構を構成する部材(例えば打撃子や中間子)の質量や被削材の硬さ等により異なるため、事前の設定は困難である。 There is a desire to maximize the drilling speed during work. Here, in the rotation operation, the drilling speed is also maximized by maximizing the rotation speed of the motor. However, in the case of the striking operation and the rotational striking operation for striking the tip tool due to fluctuations in pressure in the pressure chamber, the operation of the striking mechanism for striking the tip tool will not catch up with the motor speed if the motor speed is too high. In addition, the striking force becomes insufficient, and the perforation speed decreases. Since the rotation speed of the motor at which the drilling speed is maximized varies depending on the mass of a member (for example, striking element or meson) constituting the striking mechanism, the hardness of the work material, etc., it is difficult to set in advance.
本発明はこうした状況を認識してなされたものであり、その目的は、穿孔速度の適切な制御が可能な打撃作業機を提供することにある。 The present invention has been made in view of such a situation, and an object thereof is to provide a striking work machine capable of appropriately controlling the drilling speed.
本発明のある態様は、打撃作業機である。この打撃作業機は、
圧力室の圧力を変動させるモータと、
前記圧力室の圧力の変動を利用して先端工具を打撃する打撃機構と、
被削材に対する穿孔の速度を検出する穿孔速度検出手段と、
前記穿孔速度検出手段による検出結果に基づいて前記モータの回転数を制御可能な制御部と、を備える。
One embodiment of the present invention is a striking work machine. This striking machine
A motor that varies the pressure in the pressure chamber;
A striking mechanism for striking a tip tool using fluctuations in pressure in the pressure chamber;
Drilling speed detecting means for detecting the speed of drilling the work material;
A control unit capable of controlling the number of rotations of the motor based on a detection result by the punching speed detection means.
前記穿孔速度検出手段は、対向する被削材と自身との間の距離を検出する距離センサを含んでもよい。 The drilling speed detection means may include a distance sensor that detects a distance between the facing work material and itself.
前記モータが、ブラシレスモータであってもよい。 The motor may be a brushless motor.
前記制御部は、前記先端工具を回転させながら打撃する回転打撃モードと、前記先端工具を回転させずに打撃する打撃モードと、を実行可能であり、前記穿孔速度検出手段による検出結果に基づいた前記モータの回転数制御を実行するか否かを、モードに応じて切替可能であってもよい。 The control unit is capable of executing a rotation impact mode in which the impact tool is struck while rotating the tip tool and an impact mode in which the impact tool is struck without rotating the tip tool, and is based on a detection result by the drilling speed detection means. Whether to execute the rotation speed control of the motor may be switchable depending on the mode.
前記制御部は、前記回転打撃モードにおいて、前記穿孔速度検出手段による検出結果に基づいた前記モータの回転数制御を実行可能であり、前記打撃モードにおいては前記回転数制御を実行しなくてもよい。 The control unit can execute rotation speed control of the motor based on a detection result by the punching speed detection means in the rotation hitting mode, and does not have to execute the rotation speed control in the hitting mode. .
前記制御部は、前記回転打撃モードにおいて、前記穿孔速度検出手段による検出結果に基づいた前記モータの回転数制御を実行するか否かを切替可能であってもよい。 The control unit may be capable of switching whether or not to execute the rotational speed control of the motor based on a detection result by the punching speed detection means in the rotary impact mode.
前記穿孔速度検出手段による検出結果に基づいた前記モータの回転数制御は、
前記モータの回転数を現在の回転数から高くした結果、前記穿孔速度が速くなった場合は前記モータの回転数を更に高くし、前記穿孔速度が遅くなった場合は前記モータの回転数を低くし、
前記モータの回転数を現在の回転数から低くした結果、前記穿孔速度が速くなった場合は前記モータの回転数を更に低くし、前記穿孔速度が遅くなった場合は前記モータの回転数を高くする制御であってもよい。
The rotational speed control of the motor based on the detection result by the punching speed detection means is
As a result of increasing the rotation speed of the motor from the current rotation speed, the rotation speed of the motor is further increased when the drilling speed is increased, and the rotation speed of the motor is decreased when the drilling speed is decreased. And
As a result of lowering the rotation speed of the motor from the current rotation speed, when the drilling speed is increased, the rotation speed of the motor is further decreased, and when the drilling speed is decreased, the rotation speed of the motor is increased. Control may be performed.
前記制御部は、前記穿孔速度に関わらず、前記モータの回転数を所定回転数より高くしなくてもよい。 The controller may not make the rotation speed of the motor higher than a predetermined rotation speed regardless of the drilling speed.
前記圧力室の圧力を検出する圧力検出手段を備え、
前記制御部は、前記圧力検出手段による検出結果に基づいて前記モータの回転数を制御可能であってもよい。
Pressure detecting means for detecting the pressure in the pressure chamber;
The controller may be capable of controlling the number of rotations of the motor based on a detection result by the pressure detection unit.
前記圧力検出手段による検出結果に基づいた前記モータの回転数制御は、前記穿孔速度が所定条件を満たす範囲において、
前記モータの回転数を現在の回転数から高くした結果、前記圧力室の圧力が低くなった場合は前記モータの回転数を更に高くし、前記圧力室の圧力が高くなった場合は前記モータの回転数を低くし、
前記モータの回転数を現在の回転数から低くした結果、前記圧力室の圧力が低くなった場合は前記モータの回転数を更に低くし、前記圧力室の圧力が高くなった場合は前記モータの回転数を高くする制御であってもよい。
The rotational speed control of the motor based on the detection result by the pressure detection means is within a range where the drilling speed satisfies a predetermined condition.
As a result of increasing the rotational speed of the motor from the current rotational speed, when the pressure in the pressure chamber decreases, the rotational speed of the motor is further increased, and when the pressure in the pressure chamber increases, the motor Reduce the rotation speed,
As a result of lowering the rotational speed of the motor from the current rotational speed, when the pressure in the pressure chamber becomes lower, the rotational speed of the motor is further reduced, and when the pressure in the pressure chamber becomes higher, Control to increase the number of revolutions may be used.
なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above-described constituent elements, and those obtained by converting the expression of the present invention between methods and systems are also effective as aspects of the present invention.
本発明によれば、穿孔速度の適切な制御が可能な打撃作業機を提供することができる。 According to the present invention, it is possible to provide an impact working machine capable of appropriately controlling the drilling speed.
本発明の実施の形態に係る打撃作業機1の側断面図。1 is a side sectional view of an impact work machine 1 according to an embodiment of the present invention. 打撃作業機1の回路図。FIG. 3 is a circuit diagram of the impact work machine 1. 穿孔速度優先モードにおけるモータ3の回転数及び穿孔速度の時間変化の一例を示すタイムチャート。The time chart which shows an example of the time change of the rotation speed of the motor 3 in a drilling speed priority mode, and a drilling speed. 穿孔速度優先モードにおける打撃作業機1の制御フローチャート。4 is a control flowchart of the impact work machine 1 in the drilling speed priority mode. フィーリング優先モードにおけるモータ3の回転数、穿孔速度及び圧力室(空気室)7内の圧力の時間変化の一例を示すタイムチャート。The time chart which shows an example of the time change of the rotation speed of the motor 3, the drilling speed, and the pressure in the pressure chamber (air chamber) 7 in a feeling priority mode. フィーリング優先モードにおける打撃作業機1の制御フローチャート。The control flowchart of the hit working machine 1 in the feeling priority mode.
以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材、処理等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, process, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
図1は、本発明の実施の形態に係る打撃作業機1の側断面図である。図1により、前後及び上下方向を定義する。打撃作業機1は、ハンマドリルであり、先端工具10に回転力と打撃力を加えることで、コンクリートや石材等の被削材に対して、斫り作業、穴あけ作業、破砕作業を行うことができる。打撃作業機1において、モータ3の回転から先端工具10の回転及び打撃に至るまでの構成は周知なので、以下では簡単な説明に留める。 FIG. 1 is a side sectional view of an impact work machine 1 according to an embodiment of the present invention. With reference to FIG. 1, the front-rear and vertical directions are defined. The striking work machine 1 is a hammer drill, and can apply a turning work, a drilling work, and a crushing work to a work material such as concrete or stone by applying a rotational force and a striking force to the tip tool 10. . Since the configuration from the rotation of the motor 3 to the rotation and impact of the tip tool 10 in the impact work machine 1 is well known, only a brief description will be given below.
打撃作業機1は、ここでは交流駆動であり、ハウジング2の後端下部(ハンドル部2aの下端部)から、外部の交流電源に接続するための電源コード15が延びる。ハウジング2の後部はハンドル部2aであり、ハンドル部2aには使用者がモータ3の駆動、停止を切り替えるためのトリガスイッチ16が設けられる。ハウジング2内には、モータ3、運動変換機構4、回転伝達機構5、シリンダ11、及びリテーナスリーブ(工具保持部)12が保持される。シリンダ11及びリテーナスリーブ12は、前後方向を軸としてハウジング2に対して回転自在である。シリンダ11及びリテーナスリーブ12内には、ピストン6、打撃子8及び中間子9が、前後方向に往復動可能に設けられる。ピストン6と打撃子8との間は、圧力室(空気室)7となっている。リテーナスリーブ12の前端部に、先端工具10が着脱可能に保持される。 The striking work machine 1 is AC-driven here, and a power cord 15 for connecting to an external AC power source extends from the lower rear end of the housing 2 (lower end of the handle portion 2a). The rear portion of the housing 2 is a handle portion 2a, and a trigger switch 16 is provided on the handle portion 2a for the user to switch between driving and stopping of the motor 3. A motor 3, a motion conversion mechanism 4, a rotation transmission mechanism 5, a cylinder 11, and a retainer sleeve (tool holding part) 12 are held in the housing 2. The cylinder 11 and the retainer sleeve 12 are rotatable with respect to the housing 2 about the front-rear direction. In the cylinder 11 and the retainer sleeve 12, a piston 6, a striker 8, and an intermediate 9 are provided so as to be capable of reciprocating in the front-rear direction. A pressure chamber (air chamber) 7 is provided between the piston 6 and the striker 8. The front end tool 10 is detachably held at the front end portion of the retainer sleeve 12.
モータ3は、ここではインナーロータ型のブラシレスモータであり、ハウジング2の下部に設けられる。ハウジング2内においてモータ3の後方には、モータ3の駆動を制御するための制御基板40が設けられる。上下方向を軸とするモータ3の回転は、クランク機構等の運動変換機構4により、ピストン6の前後方向の往復動に変換される。ピストン6の往復動により、圧力室7の圧力(空気圧)が変動(膨張/圧縮)し、打撃子8が前後に往復駆動される。打撃子8が中間子9を打撃し、中間子9が先端工具10を打撃する。一方、上下方向を軸とするモータ3の回転は、一対のベベルギアを含む回転伝達機構5により、前後方向を軸とするシリンダ11及びリテーナスリーブ12の回転に変換される。リテーナスリーブ12と共に先端工具10が回転駆動される。使用者は、ハウジング2の上部に設けられたモード設定ダイヤル13により、打撃作業機1の動作モードを、先端工具10に回転力は加えずに打撃力を加えるハンマモード(打撃モード)と、先端工具10に回転力及び打撃力の双方を加えるハンマドリルモード(回転打撃モード)と、の間で切替え可能である。ハウジング2の上方において前後方向に延びるシャフト(深さゲージ)17は、前端が被削材と接触することで穿孔深さを定めるための部材であり、前後方向の任意の位置でハウジング2に対して取り付けられる。 Here, the motor 3 is an inner rotor type brushless motor, and is provided in a lower portion of the housing 2. A control board 40 for controlling the driving of the motor 3 is provided behind the motor 3 in the housing 2. The rotation of the motor 3 about the vertical direction is converted into a reciprocating motion in the front-rear direction of the piston 6 by a motion conversion mechanism 4 such as a crank mechanism. By the reciprocating motion of the piston 6, the pressure (air pressure) of the pressure chamber 7 fluctuates (expands / compresses), and the striker 8 is driven back and forth back and forth. The striker 8 strikes the intermediate piece 9, and the intermediate piece 9 strikes the tip tool 10. On the other hand, the rotation of the motor 3 about the vertical direction is converted into the rotation of the cylinder 11 and the retainer sleeve 12 about the front-rear direction by the rotation transmission mechanism 5 including a pair of bevel gears. The tip tool 10 is rotationally driven together with the retainer sleeve 12. The user can change the operation mode of the impact work machine 1 with a mode setting dial 13 provided at the upper part of the housing 2, a hammer mode (impact mode) in which impact force is applied to the tip tool 10 without applying rotational force, It is possible to switch between a hammer drill mode (rotary impact mode) in which both the rotational force and the impact force are applied to the tool 10. A shaft (depth gauge) 17 extending in the front-rear direction above the housing 2 is a member for determining the drilling depth by contacting the work piece with the front end, and is at a predetermined position in the front-rear direction with respect to the housing 2. Attached.
本実施の形態の打撃作業機1は、距離センサ20及び圧力センサ30を備え、ハンマドリルモードにおいて、穿孔速度を最大化する制御(穿孔速度優先モード)と、一定以上の穿孔速度という条件下で圧力室7の圧力を最低化する制御(フィーリング優先モード)と、を実行可能であることを特徴とする。使用者は、制御切替ボタン14により、いずれの制御を行うかを選択できる。距離センサ20は、ハウジング2内において圧力室7の下方となる位置に設けられ、ハウジング2外の前方に臨む。距離センサ20は、自身と対向する被削材との間の距離を検出する。圧力センサ30は、ピストン6に設けられ、圧力室7内に臨み、圧力室7内の圧力を検出する。 The striking work machine 1 according to the present embodiment includes a distance sensor 20 and a pressure sensor 30. In the hammer drill mode, pressure is controlled under the conditions of control for maximizing the drilling speed (drilling speed priority mode) and a drilling speed of a certain level or more. The control (feeling priority mode) for minimizing the pressure in the chamber 7 can be executed. The user can select which control is to be performed by the control switching button 14. The distance sensor 20 is provided in the housing 2 at a position below the pressure chamber 7 and faces the front outside the housing 2. The distance sensor 20 detects the distance between the work material facing itself. The pressure sensor 30 is provided in the piston 6, faces the pressure chamber 7, and detects the pressure in the pressure chamber 7.
図2は、打撃作業機1の回路図である。図2において、距離センサ20及び圧力センサ30を一つのブロックにまとめて示している。交流電源50には、雑音対策回路51を介して整流回路としてのダイオードブリッジ103が接続される。ダイオードブリッジ103の出力側には、力率改善回路104を介してインバータ回路102が接続される。雑音対策回路51は、インバータ回路102で生じたノイズを交流電源50側に伝えないようにする役割を持つ。ダイオードブリッジ103は、交流電源50の交流を直流に変換し、インバータ回路102に供給する。インバータ回路102は、3相ブリッジ接続されたFETやIGBT等のスイッチング素子Tr1~Tr6を有し、モータ3のステータコイルU1、V1、W1に駆動電流を供給する。 FIG. 2 is a circuit diagram of the impact work machine 1. In FIG. 2, the distance sensor 20 and the pressure sensor 30 are shown together in one block. A diode bridge 103 as a rectifier circuit is connected to the AC power supply 50 via a noise countermeasure circuit 51. An inverter circuit 102 is connected to the output side of the diode bridge 103 via a power factor correction circuit 104. The noise countermeasure circuit 51 has a role of preventing noise generated in the inverter circuit 102 from being transmitted to the AC power supply 50 side. The diode bridge 103 converts the alternating current of the alternating current power supply 50 into a direct current and supplies it to the inverter circuit 102. The inverter circuit 102 has switching elements Tr1 to Tr6 such as FETs and IGBTs connected in a three-phase bridge, and supplies a drive current to the stator coils U1, V1, and W1 of the motor 3.
インバータ回路102を制御するモータ制御部105は、コントローラ106を有している。コントローラ106からは制御信号出力回路107を介してインバータ回路102の各スイッチング素子に制御信号(例えばPWM信号)が送られる。ホール素子S1~S3の検出信号は、ロータ位置検出回路101に送られる。ロータ位置検出回路101から出力された信号は、コントローラ106及びモータ回転数検出回路108に送られる。モータ回転数検出回路108は、モータ3の実際の回転数を算出する。モータ回転数検出回路108から出力された信号は、コントローラ106に送られる。コントローラ106は、制御信号出力回路107へ出力する制御信号を演算するマイクロプロセッサと、モータ3の回転数の制御に用いるプログラム、演算式、データが格納されたメモリと、時間を測定するタイマと、を有する。コントローラ106は、モード設定ダイヤル13の回転位置に応じた動作モード(ハンマモードかハンマドリルモード)での制御を実行する。また、コントローラ106は、ハンマドリルモードの場合、制御切替ボタン14の操作に応じて、穿孔速度優先モード又はフィーリング優先モードでの制御を実行する。コントローラ106は、モータ3の電流経路に設けられた抵抗Rsの両端の電圧により、モータ3に流れる電流を検出する。 The motor control unit 105 that controls the inverter circuit 102 includes a controller 106. A control signal (for example, a PWM signal) is sent from the controller 106 to each switching element of the inverter circuit 102 via the control signal output circuit 107. Detection signals from the hall elements S1 to S3 are sent to the rotor position detection circuit 101. The signal output from the rotor position detection circuit 101 is sent to the controller 106 and the motor rotation number detection circuit 108. The motor rotation speed detection circuit 108 calculates the actual rotation speed of the motor 3. The signal output from the motor rotation speed detection circuit 108 is sent to the controller 106. The controller 106 includes a microprocessor that calculates a control signal to be output to the control signal output circuit 107, a memory that stores a program, an arithmetic expression, and data used to control the rotation speed of the motor 3, a timer that measures time, Have The controller 106 performs control in an operation mode (hammer mode or hammer drill mode) corresponding to the rotational position of the mode setting dial 13. Further, in the hammer drill mode, the controller 106 executes control in the drilling speed priority mode or the feeling priority mode according to the operation of the control switching button 14. The controller 106 detects the current flowing through the motor 3 based on the voltage across the resistor Rs provided in the current path of the motor 3.
図3は、穿孔速度優先モードにおけるモータ3の回転数及び穿孔速度の時間変化の一例を示すタイムチャートである。穿孔速度は、コントローラ106において、距離センサ20の出力信号の時間変化から算出される。コントローラ106は、まず、初期回転数にてモータ3を回転駆動する。その後、コントローラ106は、時刻t1においてモータ3の回転数を高める。時刻t1においてモータ3の回転数を高めた結果、穿孔速度が上昇したため、コントローラ106は、時刻t2においてモータ3の回転数を更に高める。時刻t2においてモータ3の回転数を高めた結果、穿孔速度が更に上昇したため、コントローラ106は、時刻t3においてモータ3の回転数を更に高める。時刻t1、t2、t3におけるモータ3の回転数の上昇幅は等しい。 FIG. 3 is a time chart showing an example of temporal changes in the rotation speed of the motor 3 and the drilling speed in the drilling speed priority mode. The drilling speed is calculated from the time change of the output signal of the distance sensor 20 in the controller 106. First, the controller 106 drives the motor 3 to rotate at the initial rotational speed. Thereafter, the controller 106 increases the rotational speed of the motor 3 at time t1. As a result of increasing the rotation speed of the motor 3 at time t1, the drilling speed has increased, so the controller 106 further increases the rotation speed of the motor 3 at time t2. As a result of increasing the rotational speed of the motor 3 at time t2, the drilling speed has further increased, so the controller 106 further increases the rotational speed of the motor 3 at time t3. The increments of the rotation speed of the motor 3 at the times t1, t2, and t3 are equal.
時刻t3においてモータ3の回転数を高めた結果、穿孔速度が低下したため、コントローラ106は、時刻t4においてモータ3の回転数を低下させる。時刻t4におけるモータ3の回転数の低下幅は、時刻t3におけるモータ3の回転数の上昇幅よりも小さく、図示の例では半分としている。時刻t4においてモータ3の回転数を低下させた結果、穿孔速度が上昇したため、コントローラ106は、時刻t5においてモータ3の回転数を更に低下させる。時刻t5におけるモータ3の回転数の低下幅は、時刻t4におけるモータ3の回転数の低下幅と等しい。時刻t5においてモータ3の回転数を低下させた結果、穿孔速度が低下したため、コントローラ106は、時刻t6においてモータ3の回転数を高める。時刻t6におけるモータ3の回転数の上昇幅は、時刻t5におけるモータ3の回転数の低下幅よりも小さく、図示の例では半分としている。時刻t6においてモータ3の回転数を高めた結果、穿孔速度が上昇したため、コントローラ106は、時刻t7においてモータ3の回転数を更に上昇させる。時刻t7におけるモータ3の回転数の上昇幅は、時刻t6におけるモータ3の回転数の上昇幅と等しい。コントローラ106は時刻t7以降についても、穿孔速度を算出しモータ3の回転数を変更する制御を継続し続ける。 As a result of increasing the rotation speed of the motor 3 at time t3, the drilling speed has decreased, so the controller 106 decreases the rotation speed of the motor 3 at time t4. The decrease range of the rotation speed of the motor 3 at time t4 is smaller than the increase width of the rotation speed of the motor 3 at time t3, and is halved in the illustrated example. As a result of the decrease in the rotation speed of the motor 3 at time t4, the drilling speed has increased. Therefore, the controller 106 further decreases the rotation speed of the motor 3 at time t5. A decrease width of the rotation speed of the motor 3 at time t5 is equal to a decrease width of the rotation speed of the motor 3 at time t4. As a result of reducing the rotation speed of the motor 3 at time t5, the drilling speed has decreased, so the controller 106 increases the rotation speed of the motor 3 at time t6. The increase width of the rotation speed of the motor 3 at time t6 is smaller than the decrease width of the rotation speed of the motor 3 at time t5, and is halved in the illustrated example. As a result of increasing the rotation speed of the motor 3 at time t6, the drilling speed has increased, so the controller 106 further increases the rotation speed of the motor 3 at time t7. The increase width of the rotation speed of the motor 3 at time t7 is equal to the increase width of the rotation speed of the motor 3 at time t6. The controller 106 continues the control to calculate the drilling speed and change the rotation speed of the motor 3 after time t7.
図4は、穿孔速度優先モードにおける打撃作業機1の制御フローチャートである。コントローラ106は、トリガスイッチ16のオンを検出すると(S1のYES)、モータ3を起動し(S2)、モータ3の回転数を所定回転数N1(変数N1の初期値)に制御する(S3)。コントローラ106は、モード設定ダイヤル13の回転位置により、ハンマドリルモードか否かを判断し(S4)、ハンマドリルモードでなければ(S4のNO)、トリガスイッチ16がオンされている限りモータ3の駆動を継続し(S5のYES)、トリガスイッチ16がオフになると(S5のNO)、モータ3を停止する(S6)。 FIG. 4 is a control flowchart of the impact work machine 1 in the drilling speed priority mode. When the controller 106 detects that the trigger switch 16 is turned on (YES in S1), it starts the motor 3 (S2), and controls the rotational speed of the motor 3 to a predetermined rotational speed N1 (initial value of the variable N1) (S3). . The controller 106 determines whether or not the hammer drill mode is selected based on the rotational position of the mode setting dial 13 (S4). If the mode is not the hammer drill mode (NO in S4), the controller 106 drives the motor 3 as long as the trigger switch 16 is on. If the trigger switch 16 is turned off (NO in S5), the motor 3 is stopped (S6).
コントローラ106は、ハンマドリルモードにおいて(S4のYES)、トリガスイッチ16がオンである場合(S7のYES)、抵抗Rsの両端の電圧によりモータ3に流れる電流を検出する(S8)。コントローラ106は、実負荷状態、すなわちモータ3に流れる電流が所定値以上であれば(S9のYES)、距離センサ20の出力信号により被削材までの距離を検出して変数L0に代入し(S10)、t秒後にも同様に被削材までの距離を検出して変数L1に代入し(S11)、変数ΔL1に変数L0と変数L1の差(L0-L1)を代入する(S12)。コントローラ106は、変数ΔLに値が入っていない場合(S13のNO)、現在のモータ3の回転数N1を変数Nに代入し、変数ΔL1の値を変数ΔLに代入する(S19)。コントローラ106は、変数N1にN+ΔN1を代入し、モータ3の回転数をN1に制御し(S21)、ステップS7に戻る。 In the hammer drill mode (YES in S4), the controller 106 detects the current flowing through the motor 3 based on the voltage across the resistor Rs when the trigger switch 16 is on (YES in S7) (S8). The controller 106 detects the distance to the work material from the output signal of the distance sensor 20 and substitutes it into the variable L0 if the actual load state, that is, the current flowing through the motor 3 is equal to or greater than a predetermined value (YES in S9) ( Similarly, after t seconds, the distance to the work material is detected and substituted into the variable L1 (S11), and the difference between the variable L0 and the variable L1 (L0−L1) is substituted into the variable ΔL1 (S12). If the variable ΔL does not contain a value (NO in S13), the controller 106 substitutes the current rotational speed N1 of the motor 3 for the variable N, and substitutes the value of the variable ΔL1 for the variable ΔL (S19). The controller 106 substitutes N + ΔN1 for the variable N1, controls the rotational speed of the motor 3 to N1 (S21), and returns to step S7.
コントローラ106は、ステップS13において変数ΔLに値が入っている場合(S13のYES)、直前にモータ3の回転数を下げたか否かを判断する(S14)。コントローラ106は、直前にモータ3の回転数を上げた場合において(S14のNO)、穿孔速度が変化し(S15のYES)、かつ穿孔速度が上がった場合(S17のYES)、現在のモータ3の回転数N1を変数Nに代入し、変数ΔL1の値を変数ΔLに代入する(S19)。コントローラ106は、変数N1にN+ΔN1を代入し、モータ3の回転数をN1に制御し(S21)、ステップS7に戻る。コントローラ106は、ステップS17において穿孔速度が下がった場合(S17のNO)、変数ΔNに変数ΔN1の値を代入し(S17a)、変数ΔN1にΔNの1/2倍の値を代入する(S17b)。コントローラ106は、現在のモータ3の回転数N1を変数Nに代入し、変数ΔL1の値を変数ΔLに代入する(S20)。コントローラ106は、変数N1にN-ΔN1を代入し、モータ3の回転数をN1に制御し(S22)、ステップS7に戻る。 If the variable ΔL has a value in step S13 (YES in S13), the controller 106 determines whether or not the rotational speed of the motor 3 has been decreased immediately before (S14). When the rotation speed of the motor 3 is increased immediately before (NO in S14), the controller 106 changes the drilling speed (YES in S15) and increases the drilling speed (YES in S17). Is substituted for the variable N, and the value of the variable ΔL1 is substituted for the variable ΔL (S19). The controller 106 substitutes N + ΔN1 for the variable N1, controls the rotational speed of the motor 3 to N1 (S21), and returns to step S7. When the drilling speed decreases in step S17 (NO in S17), the controller 106 substitutes the value of the variable ΔN1 for the variable ΔN (S17a), and substitutes a value that is ½ times ΔN for the variable ΔN1 (S17b). . The controller 106 substitutes the current rotational speed N1 of the motor 3 for the variable N, and substitutes the value of the variable ΔL1 for the variable ΔL (S20). The controller 106 substitutes N−ΔN1 for the variable N1, controls the rotation speed of the motor 3 to N1 (S22), and returns to step S7.
コントローラ106は、直前にモータ3の回転数を下げた場合において(S14のYES)、穿孔速度が変化し(S16のYES)、かつ穿孔速度が上がった場合(S18のYES)、現在のモータ3の回転数N1を変数Nに代入し、変数ΔL1の値を変数ΔLに代入する(S20)。コントローラ106は、変数N1にN-ΔN1を代入し、モータ3の回転数をN1に制御し(S22)、ステップS7に戻る。コントローラ106は、ステップS18において穿孔速度が低下した場合(S18のNO)、変数ΔNに変数ΔN1の値を代入し(S18a)、変数ΔN1にΔNの1/2倍の値を代入する(S18b)。コントローラ106は、現在のモータ3の回転数N1を変数Nに代入し、変数ΔL1の値を変数ΔLに代入する(S19)。コントローラ106は、変数N1にN+ΔN1を代入し、モータ3の回転数をN1に制御し(S21)、ステップS7に戻る。 When the rotational speed of the motor 3 is decreased immediately before (YES in S14), the controller 106 changes the drilling speed (YES in S16) and increases the drilling speed (YES in S18). Is substituted for the variable N, and the value of the variable ΔL1 is substituted for the variable ΔL (S20). The controller 106 substitutes N−ΔN1 for the variable N1, controls the rotation speed of the motor 3 to N1 (S22), and returns to step S7. When the drilling speed is reduced in step S18 (NO in S18), the controller 106 substitutes the value of the variable ΔN1 for the variable ΔN (S18a), and substitutes a value that is ½ times ΔN for the variable ΔN1 (S18b). . The controller 106 substitutes the current rotational speed N1 of the motor 3 for the variable N, and substitutes the value of the variable ΔL1 for the variable ΔL (S19). The controller 106 substitutes N + ΔN1 for the variable N1, controls the rotational speed of the motor 3 to N1 (S21), and returns to step S7.
コントローラ106は、ステップS15及びS16の各々において穿孔速度が変化しなかった場合(S15のNO又はS16のNO)、ステップS7に戻る。なお、ステップS15及びS16における穿孔速度の変化有無の判定は、所定の幅があり、変化が所定幅未満であれば変化無しと判定し、変化が所定幅以上であれは変化ありと判定する。コントローラ106は、ステップS7においてトリガスイッチ16がオフであれば(S7のNO)、モータ3を停止する(S6)。コントローラ106は、穿孔速度に関わらず、モータ3の回転数を所定回転数(許容最大回転数)より高くしない。打撃機構を保護するためである。 If the drilling speed has not changed in each of steps S15 and S16 (NO in S15 or NO in S16), controller 106 returns to step S7. It should be noted that the presence / absence of a change in drilling speed in steps S15 and S16 has a predetermined width, and if the change is less than the predetermined width, it is determined that there is no change, and if the change is greater than or equal to the predetermined width, it is determined that there is a change. If the trigger switch 16 is OFF in step S7 (NO in S7), the controller 106 stops the motor 3 (S6). The controller 106 does not make the rotation speed of the motor 3 higher than a predetermined rotation speed (allowable maximum rotation speed) regardless of the drilling speed. This is to protect the striking mechanism.
図5は、フィーリング優先モードにおけるモータ3の回転数、穿孔速度及び圧力室(空気室)7内の圧力の時間変化の一例を示すタイムチャートである。圧力室7内の圧力は、圧力センサ30により検出され、コントローラ106にフィードバックされる。コントローラ106は、まず、初期回転数にてモータ3を回転駆動する。その後、コントローラ106は、時刻t1においてモータ3の回転数を低下させる。時刻t1においてモータ3の回転数を低下させた結果、穿孔速度は所定値以上であり、圧力室7内の圧力が低下したため、コントローラ106は、時刻t2においてモータ3の回転数を更に低下させる。時刻t2においてモータ3の回転数を低下させた結果、穿孔速度は所定値以上であり、圧力室7内の圧力が更に低下したため、コントローラ106は、時刻t3においてモータ3の回転数を更に低下させる。時刻t1、t2、t3におけるモータ3の回転数の低下幅は等しい。 FIG. 5 is a time chart showing an example of temporal changes in the rotation speed of the motor 3, the drilling speed, and the pressure in the pressure chamber (air chamber) 7 in the feeling priority mode. The pressure in the pressure chamber 7 is detected by the pressure sensor 30 and fed back to the controller 106. First, the controller 106 drives the motor 3 to rotate at the initial rotational speed. Thereafter, the controller 106 reduces the rotational speed of the motor 3 at time t1. As a result of reducing the rotational speed of the motor 3 at time t1, the drilling speed is equal to or higher than a predetermined value, and the pressure in the pressure chamber 7 is reduced. Therefore, the controller 106 further reduces the rotational speed of the motor 3 at time t2. As a result of reducing the rotational speed of the motor 3 at time t2, the drilling speed is equal to or higher than a predetermined value, and the pressure in the pressure chamber 7 further decreases. Therefore, the controller 106 further reduces the rotational speed of the motor 3 at time t3. . The amount of decrease in the rotation speed of the motor 3 at the times t1, t2, and t3 is equal.
時刻t3においてモータ3の回転数を低下させた結果、圧力室7内の圧力は低下したものの穿孔速度が所定値を下回ったため、コントローラ106は、時刻t4においてモータ3の回転数を上昇させる。時刻t4におけるモータ3の回転数の上昇幅は、時刻t3におけるモータ3の回転数の低下幅よりも小さく、図示の例では半分としている。時刻t4においてモータ3の回転数を上昇させた結果、圧力室7内の圧力は上昇した一方で穿孔速度は所定値以上に戻ったため、コントローラ106は、時刻t5においてモータ3の回転数を低下させる。時刻t5におけるモータ3の回転数の低下幅は、時刻t4におけるモータ3の回転数の上昇幅よりも小さく、図示の例では半分としている。時刻t5においてモータ3の回転数を低下させた結果、圧力室7内の圧力は低下したものの穿孔速度が所定値を下回ったため、コントローラ106は、時刻t6においてモータ3の回転数を上昇させる。時刻t6におけるモータ3の回転数の上昇幅は、時刻t5におけるモータ3の回転数の低下幅よりも小さく、図示の例では半分としている。時刻t6においてモータ3の回転数を高めた結果、圧力室7内の圧力は上昇した一方で穿孔速度は所定値と同等になったため、コントローラ106は、モータ3の回転数を維持する。 As a result of reducing the rotational speed of the motor 3 at time t3, the pressure in the pressure chamber 7 is reduced, but the drilling speed falls below a predetermined value. Therefore, the controller 106 increases the rotational speed of the motor 3 at time t4. The increase range of the rotation speed of the motor 3 at time t4 is smaller than the decrease width of the rotation speed of the motor 3 at time t3, and is halved in the illustrated example. As a result of increasing the rotation speed of the motor 3 at time t4, the pressure in the pressure chamber 7 increased, but the drilling speed returned to a predetermined value or more. Therefore, the controller 106 decreases the rotation speed of the motor 3 at time t5. . The decrease width of the motor 3 at time t5 is smaller than the increase speed of the motor 3 at time t4, and is halved in the illustrated example. As a result of reducing the rotational speed of the motor 3 at time t5, the pressure in the pressure chamber 7 is reduced, but the drilling speed falls below a predetermined value. Therefore, the controller 106 increases the rotational speed of the motor 3 at time t6. The increase width of the rotation speed of the motor 3 at time t6 is smaller than the decrease width of the rotation speed of the motor 3 at time t5, and is halved in the illustrated example. As a result of increasing the rotational speed of the motor 3 at time t6, the pressure in the pressure chamber 7 has increased, but the drilling speed has become equal to a predetermined value, so the controller 106 maintains the rotational speed of the motor 3.
図6は、フィーリング優先モードにおける打撃作業機1の制御フローチャートである。本図において、ステップS12までは図4と共通であり、ステップS9以前の図示は省略している。コントローラ106は、ステップS12において変数ΔL1に変数L0と変数L1の差(L0-L1)を代入した後、穿孔速度が遅すぎないか(所定値を下回っていないか)を確認する(S30)。コントローラ106は、穿孔速度が遅すぎなければ(S30のYES)、圧力センサ30からの信号により圧力室7内の圧力を検出し、変数P1に代入する(S31)。コントローラ106は、変数Pに値が入っていない場合(S32のNO)、現在のモータ3の回転数N1を変数Nに代入し、変数P1の値を変数Pに代入する(S39)。コントローラ106は、変数N1にN-ΔN1を代入し、モータ3の回転数をN1に制御し(S41)、ステップS7に戻る。 FIG. 6 is a control flowchart of the impact work machine 1 in the feeling priority mode. In this figure, steps up to step S12 are the same as those in FIG. 4, and illustrations prior to step S9 are omitted. After substituting the difference between the variable L0 and the variable L1 (L0-L1) for the variable ΔL1 in step S12, the controller 106 checks whether the drilling speed is too slow (is not lower than a predetermined value) (S30). If the drilling speed is not too slow (YES in S30), the controller 106 detects the pressure in the pressure chamber 7 based on the signal from the pressure sensor 30, and substitutes it in the variable P1 (S31). When the variable P does not contain a value (NO in S32), the current rotational speed N1 of the motor 3 is assigned to the variable N, and the value of the variable P1 is assigned to the variable P (S39). The controller 106 substitutes N−ΔN1 for the variable N1, controls the rotational speed of the motor 3 to N1 (S41), and returns to step S7.
コントローラ106は、ステップS32において変数Pに値が入っている場合(S32のYES)、直前にモータ3の回転数を上げたか否かを判断する(S33)。コントローラ106は、直前にモータ3の回転数を上げた場合において(S33のYES)、圧力室7内の圧力が変化し(S34のYES)、かつ圧力室7内の圧力が下がった場合(S36のYES)、現在のモータ3の回転数N1を変数Nに代入し、変数P1の値を変数Pに代入する(S38)。コントローラ106は、変数N1にN+ΔN1を代入し、モータ3の回転数をN1に制御し(S40)、ステップS7に戻る。コントローラ106は、ステップS36において圧力室7内の圧力が上がった場合(S36のNO)、変数ΔNに変数ΔN1の値を代入し(S36a)、変数ΔN1にΔNの1/2倍の値を代入する(S36b)。コントローラ106は、現在のモータ3の回転数N1を変数Nに代入し、変数P1の値を変数Pに代入する(S39)。コントローラ106は、変数N1にN-ΔN1を代入し、モータ3の回転数をN1に制御し(S41)、ステップS7に戻る。 If the variable P has a value in step S32 (YES in S32), the controller 106 determines whether or not the number of revolutions of the motor 3 has been increased immediately before (S33). When the controller 106 increases the rotational speed of the motor 3 immediately before (YES in S33), the pressure in the pressure chamber 7 changes (YES in S34), and the pressure in the pressure chamber 7 decreases (S36). YES), the current rotational speed N1 of the motor 3 is substituted into the variable N, and the value of the variable P1 is substituted into the variable P (S38). The controller 106 substitutes N + ΔN1 for the variable N1, controls the rotational speed of the motor 3 to N1 (S40), and returns to step S7. When the pressure in the pressure chamber 7 increases in step S36 (NO in S36), the controller 106 substitutes the value of the variable ΔN1 for the variable ΔN (S36a), and substitutes a value that is ½ times ΔN for the variable ΔN1. (S36b). The controller 106 substitutes the current rotational speed N1 of the motor 3 for the variable N, and substitutes the value of the variable P1 for the variable P (S39). The controller 106 substitutes N−ΔN1 for the variable N1, controls the rotational speed of the motor 3 to N1 (S41), and returns to step S7.
コントローラ106は、直前にモータ3の回転数を下げた場合において(S33のNO)、圧力室7内の圧力が変化し(S35のYES)、かつ圧力室7内の圧力が下がった場合(S37のYES)、現在のモータ3の回転数N1を変数Nに代入し、変数P1の値を変数Pに代入する(S39)。コントローラ106は、変数N1にN-ΔN1を代入し、モータ3の回転数をN1に制御し(S41)、ステップS7に戻る。コントローラ106は、ステップS37において圧力室7内の圧力が上がった場合(S37のNO)、変数ΔNに変数ΔN1の値を代入し(S37a)、変数ΔN1にΔNの1/2倍の値を代入する(S37b)。コントローラ106は、現在のモータ3の回転数N1を変数Nに代入し、変数P1の値を変数Pに代入する(S38)。コントローラ106は、変数N1にN+ΔN1を代入し、モータ3の回転数をN1に制御し(S40)、ステップS7に戻る。 When the number of revolutions of the motor 3 is decreased immediately before (NO in S33), the controller 106 changes the pressure in the pressure chamber 7 (YES in S35), and the pressure in the pressure chamber 7 decreases (S37). YES), the current rotational speed N1 of the motor 3 is substituted into the variable N, and the value of the variable P1 is substituted into the variable P (S39). The controller 106 substitutes N−ΔN1 for the variable N1, controls the rotational speed of the motor 3 to N1 (S41), and returns to step S7. If the pressure in the pressure chamber 7 has increased in step S37 (NO in S37), the controller 106 substitutes the value of the variable ΔN1 for the variable ΔN (S37a), and substitutes a value that is ½ times ΔN for the variable ΔN1. (S37b). The controller 106 substitutes the current rotational speed N1 of the motor 3 for the variable N, and substitutes the value of the variable P1 for the variable P (S38). The controller 106 substitutes N + ΔN1 for the variable N1, controls the rotational speed of the motor 3 to N1 (S40), and returns to step S7.
コントローラ106は、ステップS34及びS35の各々において圧力室7内の圧力が変化しなかった場合(S34のNO又はS35のNO)、ステップS7に戻る。なお、ステップS34及びS35における圧力室7内の圧力の変化有無の判定は、所定の幅があり、変化が所定幅未満であれば変化無しと判定し、変化が所定幅以上であれは変化ありと判定する。コントローラ106は、ステップS30において穿孔速度が遅すぎる場合において(S30のNO)、直前にモータ3の回転数を上げた場合(S42のYES)、ステップS41に進み(次のモータ3の回転数を下げ)、直前にモータ3の回転数を下げた場合(S42のNO)、ステップS40に進む(次のモータ3の回転数を上げる)。 If the pressure in the pressure chamber 7 does not change in each of steps S34 and S35 (NO in S34 or NO in S35), the controller 106 returns to step S7. The determination of whether or not there is a change in the pressure in the pressure chamber 7 in steps S34 and S35 has a predetermined width. If the change is less than the predetermined width, it is determined that there is no change. Is determined. If the drilling speed is too slow in step S30 (NO in S30), the controller 106 proceeds to step S41 if the number of rotations of the motor 3 is increased immediately before (YES in S42). If the rotation speed of the motor 3 is decreased immediately before (lowering), the process proceeds to step S40 (the rotation speed of the next motor 3 is increased).
本実施の形態によれば、下記の効果を奏することができる。 According to the present embodiment, the following effects can be achieved.
(1) 穿孔速度優先モードでは、モータ3の回転数を変化させた場合の穿孔速度の変化を距離センサ20の出力信号によって検出し、穿孔速度が最大となるように制御するため、打撃機構を構成する部材(例えば打撃子8や中間子9)の質量や被削材の硬さ等によって異なるモータ3の最適回転数(穿孔速度が最大となるモータ3の回転数)を適切に導き出して、穿孔速度を最大化できる。 (1) In the punching speed priority mode, the striking mechanism is controlled in order to detect the change in the drilling speed when the rotation speed of the motor 3 is changed by the output signal of the distance sensor 20 and to control the drilling speed to the maximum. The optimum rotation speed of the motor 3 (the rotation speed of the motor 3 at which the drilling speed is maximized), which varies depending on the mass of the constituent members (for example, the striker 8 and the intermediate element 9) and the hardness of the work material, is appropriately derived to perform drilling. You can maximize speed.
(2) フィーリング優先モードでは、モータ3の回転数を変化させた場合の圧力室7内の圧力の変化を圧力センサ30の出力信号によって検出し、穿孔速度が所定値以上という条件下で圧力室7内の圧力が最低となるように制御するため、一定以上の穿孔速度を維持したまま打撃反力を低減し、作業のフィーリングを良くすることができる。 (2) In the feeling priority mode, the pressure change in the pressure chamber 7 when the number of revolutions of the motor 3 is changed is detected by the output signal of the pressure sensor 30, and the pressure is adjusted under the condition that the drilling speed is a predetermined value or more. Since the control is performed so that the pressure in the chamber 7 becomes the lowest, the reaction force can be reduced while maintaining a perforation speed of a certain level or more, and the work feeling can be improved.
(3) 穿孔速度優先モードとフィーリング優先モードとを使用者が切替可能であるため、使用者の好みや作業現場の状況に合わせて使用者自身が打撃作業機1の能力を選択、変更できて便利である。 (3) Since the user can switch between the punching speed priority mode and the feeling priority mode, the user himself can select and change the ability of the hitting work machine 1 according to the user's preference and the situation of the work site. And convenient.
以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形が可能であることは当業者に理解されるところである。以下、変形例について触れる。 The present invention has been described above by taking the embodiment as an example. However, it is understood by those skilled in the art that various modifications can be made to each component and each processing process of the embodiment within the scope of the claims. By the way. Hereinafter, modifications will be described.
コントローラ106は、実施の形態で説明した穿孔速度優先モード及びフィーリング優先モードの他に、穿孔速度や圧力室7内の圧力によらずモータ3の回転数を固定する回転数固定モードを実行可能であってもよい。この場合、回転数固定モードも、モード設定ダイヤル13により選択可能とすればよい。回転数固定モードによるモータ3の回転数は、複数段階から選択可能としてもよい。 In addition to the drilling speed priority mode and the feeling priority mode described in the embodiment, the controller 106 can execute a rotation speed fixing mode that fixes the rotation speed of the motor 3 regardless of the drilling speed and the pressure in the pressure chamber 7. It may be. In this case, the rotation speed fixing mode may be selected with the mode setting dial 13. The number of rotations of the motor 3 in the rotation number fixing mode may be selectable from a plurality of stages.
穿孔速度検出手段は、距離センサ20に替えて、加速度センサとしてもよい。加速度の積分が速度になるので、加速度センサからの信号によっても穿孔速度を検出可能である。深さゲージとしてのシャフト17をハウジング2に対して前後にスライド可能とし、穿孔が進むにつれて被削材によってシャフト17が後退する構成とすれば、シャフト17の後退量から穿孔速度を検出することもできる。シャフト17の後退量は、例えば、シャフト17に所定間隔でマグネットを設け、ハウジング2側のシャフト17の支持部に磁気センサを設けることで検出できる。 The punching speed detecting means may be an acceleration sensor instead of the distance sensor 20. Since the integration of the acceleration becomes the speed, the drilling speed can be detected also by a signal from the acceleration sensor. If the shaft 17 as a depth gauge is slidable back and forth with respect to the housing 2 and the shaft 17 is retracted by the work material as the drilling progresses, the drilling speed can be detected from the retracted amount of the shaft 17. it can. The retraction amount of the shaft 17 can be detected by, for example, providing a magnet at a predetermined interval on the shaft 17 and providing a magnetic sensor on the support portion of the shaft 17 on the housing 2 side.
1…打撃作業機(ハンマドリル)、2…ハウジング、3…モータ(ブラシレスモータ)、4…運動変換機構、5…回転伝達機構、6…ピストン、7…圧力室(空気室)、8…打撃子、9…中間子、10…先端工具、11…シリンダ、12…リテーナスリーブ(工具保持部)、13…モード設定ダイヤル、14…速度設定ボタン、15…電源コード、16…トリガスイッチ、17…シャフト(深さゲージ)、20…距離センサ、30…圧力センサ DESCRIPTION OF SYMBOLS 1 ... Blow working machine (hammer drill), 2 ... Housing, 3 ... Motor (brushless motor), 4 ... Motion conversion mechanism, 5 ... Rotation transmission mechanism, 6 ... Piston, 7 ... Pressure chamber (air chamber), 8 ... Batter , 9 ... Meson, 10 ... Tip tool, 11 ... Cylinder, 12 ... Retainer sleeve (tool holder), 13 ... Mode setting dial, 14 ... Speed setting button, 15 ... Power cord, 16 ... Trigger switch, 17 ... Shaft ( Depth gauge), 20 ... distance sensor, 30 ... pressure sensor

Claims (10)

  1. 圧力室の圧力を変動させるモータと、
    前記圧力室の圧力の変動を利用して先端工具を打撃する打撃機構と、
    被削材に対する穿孔の速度を検出する穿孔速度検出手段と、
    前記穿孔速度検出手段による検出結果に基づいて前記モータの回転数を制御可能な制御部と、を備える、打撃作業機。
    A motor that varies the pressure in the pressure chamber;
    A striking mechanism for striking a tip tool using fluctuations in pressure in the pressure chamber;
    Drilling speed detecting means for detecting the speed of drilling the work material;
    A striking work machine comprising: a control unit capable of controlling the number of rotations of the motor based on a detection result by the punching speed detection means.
  2. 前記穿孔速度検出手段は、対向する被削材と自身との間の距離を検出する距離センサを含む、請求項1に記載の打撃作業機。 The striking work machine according to claim 1, wherein the drilling speed detection means includes a distance sensor that detects a distance between the facing work material and itself.
  3. 前記モータが、ブラシレスモータである、請求項1又は2に記載の打撃作業機。 The striking work machine according to claim 1 or 2, wherein the motor is a brushless motor.
  4. 前記制御部は、前記先端工具を回転させながら打撃する回転打撃モードと、前記先端工具を回転させずに打撃する打撃モードと、を実行可能であり、前記穿孔速度検出手段による検出結果に基づいた前記モータの回転数制御を実行するか否かを、モードに応じて切替可能である、請求項1から3のいずれか一項に記載の打撃作業機。 The control unit is capable of executing a rotation impact mode in which the impact tool is struck while rotating the tip tool and an impact mode in which the impact tool is struck without rotating the tip tool, and is based on a detection result by the drilling speed detection means. The striking work machine according to any one of claims 1 to 3, wherein whether or not to execute rotation speed control of the motor can be switched according to a mode.
  5. 前記制御部は、前記回転打撃モードにおいて、前記穿孔速度検出手段による検出結果に基づいた前記モータの回転数制御を実行可能であり、前記打撃モードにおいては前記回転数制御を実行しない、請求項4に記載の打撃作業機。 The said control part can perform rotation speed control of the said motor based on the detection result by the said punching speed detection means in the said rotation impact mode, and does not perform the said rotation speed control in the said impact mode. The blow work machine described in 1.
  6. 前記制御部は、前記回転打撃モードにおいて、前記穿孔速度検出手段による検出結果に基づいた前記モータの回転数制御を実行するか否かを切替可能である、請求項4又は5に記載の打撃作業機。 6. The striking work according to claim 4 or 5, wherein the control unit can switch whether or not to execute the rotational speed control of the motor based on a detection result by the punching speed detecting means in the rotational striking mode. Machine.
  7. 前記穿孔速度検出手段による検出結果に基づいた前記モータの回転数制御は、
    前記モータの回転数を現在の回転数から高くした結果、前記穿孔速度が速くなった場合は前記モータの回転数を更に高くし、前記穿孔速度が遅くなった場合は前記モータの回転数を低くし、
    前記モータの回転数を現在の回転数から低くした結果、前記穿孔速度が速くなった場合は前記モータの回転数を更に低くし、前記穿孔速度が遅くなった場合は前記モータの回転数を高くする制御である、請求項1から6のいずれか一項に記載の打撃作業機。
    The rotational speed control of the motor based on the detection result by the punching speed detection means is
    As a result of increasing the rotation speed of the motor from the current rotation speed, the rotation speed of the motor is further increased when the drilling speed is increased, and the rotation speed of the motor is decreased when the drilling speed is decreased. And
    As a result of lowering the rotation speed of the motor from the current rotation speed, when the drilling speed is increased, the rotation speed of the motor is further decreased, and when the drilling speed is decreased, the rotation speed of the motor is increased. The hitting work machine according to any one of claims 1 to 6, wherein the hitting work machine is a control to perform.
  8. 前記制御部は、前記穿孔速度に関わらず、前記モータの回転数を所定回転数より高くしない、請求項1から7のいずれか一項に記載の打撃作業機。 The striking work machine according to any one of claims 1 to 7, wherein the control unit does not make the rotation speed of the motor higher than a predetermined rotation speed regardless of the drilling speed.
  9. 前記圧力室の圧力を検出する圧力検出手段を備え、
    前記制御部は、前記圧力検出手段による検出結果に基づいて前記モータの回転数を制御可能である、請求項1から8のいずれか一項に記載の打撃作業機。
    Pressure detecting means for detecting the pressure in the pressure chamber;
    The striking work machine according to any one of claims 1 to 8, wherein the control unit is capable of controlling a rotation speed of the motor based on a detection result by the pressure detection unit.
  10. 前記圧力検出手段による検出結果に基づいた前記モータの回転数制御は、前記穿孔速度が所定条件を満たす範囲において、
    前記モータの回転数を現在の回転数から高くした結果、前記圧力室の圧力が低くなった場合は前記モータの回転数を更に高くし、前記圧力室の圧力が高くなった場合は前記モータの回転数を低くし、
    前記モータの回転数を現在の回転数から低くした結果、前記圧力室の圧力が低くなった場合は前記モータの回転数を更に低くし、前記圧力室の圧力が高くなった場合は前記モータの回転数を高くする制御である、請求項9に記載の打撃作業機。
    The rotational speed control of the motor based on the detection result by the pressure detection means is within a range where the drilling speed satisfies a predetermined condition.
    As a result of increasing the rotational speed of the motor from the current rotational speed, when the pressure in the pressure chamber decreases, the rotational speed of the motor is further increased, and when the pressure in the pressure chamber increases, the motor Reduce the rotation speed,
    As a result of lowering the rotational speed of the motor from the current rotational speed, when the pressure in the pressure chamber becomes lower, the rotational speed of the motor is further reduced, and when the pressure in the pressure chamber becomes higher, The striking work machine according to claim 9, which is a control for increasing the number of rotations.
PCT/JP2018/017229 2017-05-31 2018-04-27 Impact work machine WO2018221107A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019522043A JP6927296B2 (en) 2017-05-31 2018-04-27 Strike work machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-108725 2017-05-31
JP2017108725 2017-05-31

Publications (1)

Publication Number Publication Date
WO2018221107A1 true WO2018221107A1 (en) 2018-12-06

Family

ID=64454551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017229 WO2018221107A1 (en) 2017-05-31 2018-04-27 Impact work machine

Country Status (2)

Country Link
JP (1) JP6927296B2 (en)
WO (1) WO2018221107A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002321110A (en) * 2001-03-15 2002-11-05 Hilti Ag Hand tool apparatus with electronic depth stopper
JP2010173053A (en) * 2009-02-02 2010-08-12 Hitachi Koki Co Ltd Electric boring tool
JP2012091314A (en) * 2010-09-30 2012-05-17 Hitachi Koki Co Ltd Power tool
JP2015223690A (en) * 2014-05-30 2015-12-14 日立工機株式会社 Electric tool
JP2016049603A (en) * 2014-08-29 2016-04-11 日立工機株式会社 Striking work machine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6600960B2 (en) * 2015-03-30 2019-11-06 工機ホールディングス株式会社 Reciprocating tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002321110A (en) * 2001-03-15 2002-11-05 Hilti Ag Hand tool apparatus with electronic depth stopper
JP2010173053A (en) * 2009-02-02 2010-08-12 Hitachi Koki Co Ltd Electric boring tool
JP2012091314A (en) * 2010-09-30 2012-05-17 Hitachi Koki Co Ltd Power tool
JP2015223690A (en) * 2014-05-30 2015-12-14 日立工機株式会社 Electric tool
JP2016049603A (en) * 2014-08-29 2016-04-11 日立工機株式会社 Striking work machine

Also Published As

Publication number Publication date
JPWO2018221107A1 (en) 2020-03-19
JP6927296B2 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
JP6380560B2 (en) Impact tool
EP2085755B1 (en) Power Tool having Motor Speed Monitor
JP6035698B2 (en) Impact tool
CN200988190Y (en) Impact rotating tool
US10688614B2 (en) Portable power tool
JP6443453B2 (en) Hammering machine
KR101453891B1 (en) Impact power tools and method for controlling thereof
US11731256B2 (en) Electric tool
JP2006231446A (en) Impact fastening tool
JP6347291B2 (en) Impact tool
WO2018221107A1 (en) Impact work machine
JP5376208B2 (en) Electric drilling tool
JP6391323B2 (en) Hand-held machine tool
KR101957437B1 (en) Electronic Tool having Hitting Function and Hitting Method of the Same
JP6094316B2 (en) Electric tool
EP1184762B1 (en) Rotary hammer
JP6477879B2 (en) Impact tool
US20170274517A1 (en) Hand-held chiselling machine tool
JP6950547B2 (en) Strike work machine
JPWO2020175007A1 (en) Electric work machine
JP5403110B2 (en) Impact tool
JP7040987B2 (en) Electric tool
CN111098412A (en) Electric hammer
JP2006136530A (en) Sewing machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809077

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019522043

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809077

Country of ref document: EP

Kind code of ref document: A1