WO2018218540A1 - 光组件、光模块、光线路终端、光网络单元、光网络系统 - Google Patents

光组件、光模块、光线路终端、光网络单元、光网络系统 Download PDF

Info

Publication number
WO2018218540A1
WO2018218540A1 PCT/CN2017/086681 CN2017086681W WO2018218540A1 WO 2018218540 A1 WO2018218540 A1 WO 2018218540A1 CN 2017086681 W CN2017086681 W CN 2017086681W WO 2018218540 A1 WO2018218540 A1 WO 2018218540A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
signal
pin
optical module
module
Prior art date
Application number
PCT/CN2017/086681
Other languages
English (en)
French (fr)
Inventor
文玥
徐之光
余力强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2017/086681 priority Critical patent/WO2018218540A1/zh
Publication of WO2018218540A1 publication Critical patent/WO2018218540A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the present application relates to the field of optical network technologies, and in particular, to an optical component, an optical module, an optical line terminal, an optical network unit, and an optical network system.
  • FTTH Fiber-to-Home
  • ONU optical module Optical Network Unit
  • BOSA Bidirectional optical assembly
  • the existing BPSA includes TOSA and ROSA separately packaged and TOSA and ROSA package together.
  • TOSA and ROSA are packaged separately, and TOSA and ROSA are packaged together (ie, TOSA and ROSA use the same base coaxial package (referred to as single TO). BOSA package), the cost is lower, and it has gradually become the mainstream in the industry.
  • the socket of the single TO BOSA optical component needs to be grooved, and a cavity is formed in the socket to set the APD (avalanche photodiode, An avalanche diode) and an optical signal receiving structure such as a TIA (Trans-impedance Amplifier), and in order to ensure effective reception of the optical signal, the optical signal receiving structure needs to have a certain distance from the opening of the cavity, thereby The base of the single TO BOSA optical component is thicker, resulting in a longer pin of the high-speed signal passing through the base in the single TO BOSA optical component, and the signal transmitted through the pin is attenuated, affecting the transmission efficiency of the BOSA.
  • APD active photodiode
  • An avalanche diode an optical signal receiving structure
  • TIA Trans-impedance Amplifier
  • An embodiment of the present application provides an optical component, including: a base, the base includes a first area and a second area adjacently arranged in a first direction, where the thickness of the first area is smaller than a second area
  • the second region has a thickness, and the second region has a groove therein, wherein the first direction is parallel to the first surface, and the second direction is perpendicular to the first surface; a cover plate on the first surface of the base, the cover plate sealing the groove to form a sealed cavity with the base; an optical signal emitting structure on the surface of the cover plate for emitting a light beam; An optical signal receiving structure in the sealed cavity; a filter on the surface of the cover plate for receiving the emitted light beam, transmitting the emitted light beam to the outside, and receiving a signal input from the outside, transmitting the light a signal receiving structure; in the second direction, a first pin electrically connected to the optical signal transmitting structure through the first region, for inputting a driving signal of the optical signal transmitting structure; In the second direction,
  • the thickness of the first region of the base is smaller than the thickness of the second region, so that the base is penetrated in the second direction.
  • the length of the first pin is smaller than the thickness of the second region of the base, thereby reducing the length of the first pin and weakening the signal in the first pin. The attenuation improves the transmission quality of the signal in the first pin, thereby improving the signal transmission quality of the optical component.
  • the length of the first pin is shortened, so that the radius of the first through hole for passing the first pin in the first region is reduced under the same process capability, thereby causing the The radius of the filling medium in the first through hole is small, and finally the length of the electrical connection line between the optical signal transmitting structure and the first pin is reduced, and the quality of signal transmission is improved.
  • a shield wall is formed at the interface of the first region and the second region for avoiding mutual interference of signals in the first pin and the second pin.
  • an end of the first pin away from the optical signal emitting structure is higher than a second surface of the second area, and the second surface is the An opposite side of the first surface to ensure that the signal in the first pin does not interfere with the signal in the second pin, and the signal in the second pin does not affect the first pin Signal in.
  • the length of the first pin is not less than 2 mm.
  • the optical signal receiving structure includes an APD (avalanche photodiode) and a TIA (Trans-impedance Amplifier), wherein the APD is used to convert the optical signal into an electrical signal,
  • the TIA is used to amplify and output an electrical signal output by the APD.
  • the optical component further includes: an isolation diaphragm on a side of the cover plate facing the groove, the projection of the isolation diaphragm on a surface perpendicular to the second direction is completely A projection of the groove on a surface perpendicular to the second direction is covered.
  • the optical component further includes a lens structure directly above the filter for concentrating a light beam that is externally directed toward the optical component, and directing the light component to the outside Spread.
  • the embodiment of the present application further provides an optical module, comprising: the optical component according to any one of the preceding claims; a driving circuit electrically connected to the optical signal transmitting structure in the optical component; and an optical signal receiving structure in the optical component Electrically connected receiver.
  • the embodiment of the present application further provides an optical line terminal, including the foregoing optical module.
  • the embodiment of the present application further provides an optical network unit, including the foregoing optical module.
  • the embodiment of the present application further provides an optical network system, including an optical line terminal and a user end, where the optical line terminal includes at least one optical line terminal optical module, and the user end includes at least one optical network unit optical module, where The at least one optical line termination optical module is at least one optical line termination optical module is the optical module and/or the at least one optical network unit optical module, and at least one optical network unit optical module is the optical module.
  • FIG. 1 is a schematic structural diagram of an optical network system according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an optical module according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an optical component according to an embodiment of the present application.
  • FIG. 4 is a top plan view of the first pin in the optical module according to an embodiment of the present application.
  • the BOSA transmission technology refers to transmitting two channels (wavelengths) of information in a single fiber, that is, one wavelength is used for transmission on the ONU of the user end, and the optical signal is received by another wavelength.
  • the optical network system includes an optical line terminal 1 and a user terminal 2, wherein the optical line terminal 1 includes a plurality of optical line termination optical modules 101, and the user terminal 2 includes multiple optical networks.
  • the unit optical module 201, the optical line terminal optical module 101 in the optical signal terminal 1 and the optical network unit optical module 201 of the user terminal 2 may be in one-to-one correspondence, or may be one-to-many (such as a pair of n). This is not limited, as the case may be.
  • the optical line terminal optical module 101 and the optical network unit optical module 202 each include an optical component.
  • the optical component in the optical circuit terminal optical module 101 carries a certain downstream direction.
  • the optical signal of the specific wavelength of the rate is sent to the optical signal separator 3, and then distributed to the optical module unit optical module 201 of the user end by the optical signal splitter 3, and received by the optical signal receiving structure in the optical module unit optical module 201.
  • the optical signal transmitting structure in the optical network unit optical module 201 transmits an optical signal of a specific wavelength carrying a certain rate in the uplink direction to the optical signal separator 3, and is transmitted to the optical line terminal through the optical signal separator 3, and the optical signal is transmitted to the optical line terminal.
  • the optical line termination optical module 101 corresponding to the optical network unit optical module is received by the optical signal receiving structure in the optical line termination optical module 101, thereby completing uplink and downlink communication services.
  • the optical module includes an optical component 5 for receiving and transmitting optical signals, and a control circuit 4, wherein the control circuit 4 includes a driving chip 401 and a receiver 402, where The driving chip 401 is configured to provide a high-speed electrical signal and a bias voltage (or current) signal for the optical component 5 to control the optical signal transmitting structure 501 in the optical component 5 to emit an optical signal.
  • the receiver 402 It is configured to receive an optical signal output by the optical signal receiving structure 502 in the optical component 5, and amplify and output the optical signal.
  • the control circuit 4 may further include a micro-processing chip 403 for processing signals output by the receiver 402.
  • an embodiment of the present application provides an optical component, including: a base 10, wherein the base 10 includes a first area 11 and a second area 12 that are adjacently arranged along a first direction X, wherein In the second direction Y, the thickness of the first region 11 is smaller than the thickness of the second region 12, and the first surface 12 has a groove 13 in the first surface, wherein the first direction X is parallel to The first surface, the second direction Y is perpendicular to the first surface; a cover plate 20 on the first surface of the base 10, the cover plate 20 seals the groove 13, and the base 10 Forming a sealed cavity; an optical signal emitting structure 30 on a surface of the cover plate 20 for emitting a light beam; an optical signal receiving structure 40 located in the sealed cavity; a filter 50 located on a surface of the cover plate 20, Receiving the emitted light beam, transmitting the emitted light beam to the outside, receiving a signal input from the outside, and transmitting the signal to the optical signal receiving structure 40; in the second direction
  • the size of the cover plate 20 is not specifically limited in the embodiment of the present application, as long as the cover plate 20 is completely sealed, that is, the cover plate 20 is perpendicular to the
  • the projection on the surface of the second direction Y completely covers the projection of the groove 13 on the surface perpendicular to the second direction Y to ensure that the cover plate 20 completely seals the groove 13 and avoids the light
  • the optical signal emitted by the signal transmitting structure 30 is incident into the groove 13 and outputted through the optical signal receiving structure 40.
  • the optical signal transmitting structure 30 is a laser
  • the filter 50 is a filter
  • the first pin 60 and the second pin 70 are metal wires.
  • the optical signal receiving structure 40 includes an APD 41 (avalanche photodiode) and a TIA 42 (Trans-impedance Amplifier), wherein the APD 41 is used to convert an optical signal into an electrical signal, and the TIA 42 is used to The electrical signal outputted by the APD 41 is amplified and output.
  • APD 41 avalanche photodiode
  • TIA 42 Trans-impedance Amplifier
  • the thickness of the first region 11 in the second direction Y is not less than 1 mm, but the present application does not limit this. Depending on the process capability.
  • the thickness of the first region 11 is smaller than the thickness of the second region 12, so that the second direction Y penetrates through the
  • the length of the first pin 60 of the base 10 is smaller than the thickness of the second region 12 of the base 10, thereby reducing the length of the first pin 60 and attenuating the attenuation of the signal in the first pin 60.
  • the transmission quality of the signal in the first pin 60 is improved, thereby improving the signal transmission quality of the optical component.
  • the first through hole 61 for passing the first pin 60 in the first region 11 is made under the same process capability.
  • the radius of the first through hole 61 is smaller, and the length of the electrical connection line 62 between the optical signal transmitting structure 30 and the first pin 60 is finally reduced. Improve the quality of signal transmission.
  • the signal transmitted from the outside to the optical signal transmitting structure 30 may be a single-ended signal or a differential signal, and the signal transmitted from the outside to the optical signal transmitting structure 30 is In the single-ended signal, the first region has a first pin 60 and a first through hole 61, as shown in FIG. 3; when the signal transmitted from the outside to the optical signal transmitting structure 30 is a differential signal, The first area has two first pins 60 and two first through holes 61. As shown in FIG. 4, this application does not limit this, as the case may be.
  • the thickness of the first region 11 in the second direction Y is smaller than the thickness of the second region 12 in the second direction Y, so that the first region 11 and the second region are A shield wall is formed at the junction of 12 for avoiding mutual interference of signals in the first pin 60 and the second pin 70.
  • one end of the first pin 60 away from the optical signal transmitting structure 30 is higher than the second area.
  • the signal in the second pin 70 also does not affect the signal in the first pin 60.
  • the length of the first pin 60 is not less than 2 mm. However, this application does not limit this, as the case may be.
  • the optical component further includes: an isolation diaphragm 80 on a side of the cover plate 20 facing the groove 13 , the isolation diaphragm 80 A projection on a surface perpendicular to the second direction Y completely covers the projection of the groove 13 on a surface perpendicular to the second direction Y, as the isolation diaphragm 80 is perpendicular to the second
  • the projection on the surface of the direction Y coincides with the projection of the groove 13 on the surface perpendicular to the second direction Y to further isolate the optical signal emitted by the optical signal transmitting structure 30 from the emission of the optical signal
  • the optical signal emitted by structure 30 is incident into the sealed cavity and received by the optical signal receiving structure 40.
  • the first pin 60 also penetrates the cover plate 20 , which is It is not limited as long as the first pin 60 is inserted through the first region 11 or the first region 11 and the cover 20 located on the surface of the first region 11 .
  • the optical component further includes a lens structure 90 directly above the filter 50 for concentrating a light beam directed from the outside to the optical component. And diffusing the light beam that the light component emits to the outside.
  • the lens structure 90 is a ball lens, but the present application does not limit this, as the case may be.
  • the thickness of the cover plate 20 in the second direction Y is not required, as long as the cover plate 20 is supported on the upper surface of the optical signal transmitting structure 30 and the like.
  • the deformation may not occur on the basis of the optical signal emitted from the optical signal transmitting structure 30, and the center of the light beam may be on the same line as the center of the lens structure 90.
  • the sealed cavity formed by the groove 13 in the first surface of the second region 12 and the cover plate 20 satisfies the following condition: the sealed cavity can accommodate the
  • the optical signal receiving structure 40 can effectively receive the light beam transmitted by the optical filter 50 to improve the optical signal utilization rate of the external light beam, depending on the focal length of the lens structure 90;
  • the arrangement of the electrical connection lines between the second pin 70 and the optical signal receiving structure 40 depends on the process capability of the electrical connection lines.
  • the optical component further includes an optical signal detecting structure 100 for detecting the light extraction rate of the optical signal transmitting structure 30, specifically,
  • the optical signal detecting structure 100 is located on a side of the optical signal transmitting structure 30 facing away from the filter 50 to prevent the optical signal detecting structure 100 from affecting the optical signal transmitting structure 30.
  • the optical signal of the filter 50 is located on a side of the optical signal transmitting structure 30 facing away from the filter 50 to prevent the optical signal detecting structure 100 from affecting the optical signal transmitting structure 30.
  • the optical signal of the filter 50 is not limited to detect the light extraction rate of the optical signal transmitting structure 30.
  • the optical component further includes: forming a sealing cavity with the lens structure 90 and the base 10 for encapsulating the cover plate 20
  • the cap 110 of each component is configured to prevent the optical signal emitted by the optical signal emitting structure 30 from being directly emitted through the lens structure 90, while avoiding the externally input optical signal from being directly directed to the lens structure 90. Filter 50.
  • the optical component further includes: a brim (not shown) on a side of the stem 10 facing away from the cap, On a surface perpendicular to the second direction Y, the projection of the brim completely covers the projection of the base 10 such that the base 10 can be secured to the brim, in particular, in the present application
  • the projection of the brim is larger than the projection of the base 10, and the fixing manner between the base 10 and the brim is welding, but This application does not limit this, as the case may be.
  • the brim is in the second direction Y
  • the thickness is 1 mm to ensure that deformation does not occur when the base 10 is secured to the brim.
  • the embodiment of the present application further provides an optical module, including the optical component provided by any of the foregoing embodiments, and a driving circuit electrically connected to the optical signal transmitting structure 30 of the optical component; and the optical component
  • the optical signal receiving structure 40 is electrically connected to the receiver, wherein the optical component comprises: a base 10, the base 10 comprising a first area 11 and a second area 12 arranged adjacently in the first direction X, wherein In the second direction Y, the thickness of the first region 11 is smaller than the thickness of the second region 12, and the first surface 12 has a groove 13 in the first surface, wherein the first direction X is parallel to The first surface, the second direction Y is perpendicular to the first surface; a cover plate 20 on the first surface of the base 10, the cover plate 20 seals the groove 13, and the base 10 Forming a sealed cavity; an optical signal emitting structure 30 on a surface of the cover plate 20 for emitting a light beam; an optical signal receiving structure 40 located in the sealed cavity; a filter 50 located on
  • the driving circuit includes a PCB circuit board and a driving chip disposed on the PCB circuit board, where the driving chip is configured to generate a driving signal and output through the PCB circuit board.
  • the optical signal transmitting structure 30 generates an optical signal under the control of the driving signal outputted by the driving circuit, is reflected by the filter 50, emits the optical component, and is transmitted through the pigtail 120 to complete the signal transmission. .
  • the optical signal receiving structure 40 includes an APD (avalanche photodiode) and a TIA (Trans-impedance Amplifier), wherein the APD is used to convert an optical signal into an electrical signal, and the TIA is used for The electrical signal output by the APD is amplified and output to the receiver.
  • APD active photodiode
  • TIA Trans-impedance Amplifier
  • the optical module further includes a flexible printed circuit board electrically connecting the optical component and the control circuit, but the present application does not Limitation, depending on the situation.
  • the embodiment of the present application further provides an optical line terminal and an optical network unit, where the optical line terminal includes the optical module provided by any of the foregoing embodiments; and the optical network unit includes any of the foregoing embodiments.
  • the optical module provided.
  • the embodiment of the present application further provides an optical network system, where the optical network system includes an optical line terminal and a user end, where the optical line terminal includes at least one optical line terminal optical module, and the user end includes at least one Optical network unit optical module.
  • the at least one optical line termination optical module is at least one optical line termination optical module is the optical module provided by the foregoing embodiment; in another implementation of the present application, the at least one optical network unit optical module and the at least one optical network unit optical module are the optical modules provided by the foregoing embodiments.
  • the at least one optical line termination optical module has at least one optical line termination light The module is the optical module provided by the foregoing embodiment; and the at least one optical network unit optical module is at least one optical network unit optical module is the optical module provided by the foregoing embodiment. This application does not limit this, as the case may be.
  • the second direction is The thickness of the first region of the base is smaller than the thickness of the second region such that the length of the first pin penetrating the base in the second direction is smaller than the thickness of the second region of the base, thereby reducing
  • the length of the first pin reduces the attenuation of the signal in the first pin, improves the transmission quality of the signal in the first pin, and further improves the signal transmission quality of the optical component.
  • the length of the first pin is shortened, so that the radius of the first through hole for passing the first pin in the first region is reduced under the same process capability, thereby causing the The radius of the filling medium in the first through hole is small, and finally the length of the electrical connection line between the optical signal transmitting structure and the first pin is reduced, and the quality of signal transmission is improved.
  • the thickness of the first region in the second direction is smaller than the thickness of the second region in the second direction, thereby forming a boundary at the boundary between the first region and the second region. a shielding wall for avoiding mutual interference of signals in the first pin and the second pin.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本申请公开了光组件、光模块、光线路终端、光网络单元、光网络系统,所述光组件包括:底座,盖板、光信号发射结构、光信号接收结构、滤波器、第一插针和第二插针,其中,所述底座包括沿第一方向相邻排布的第一区域和第二区域,其中,且在第二方向上,所述第一区域的厚度小于所述第二区域的厚度,从而使得在所述第二方向上贯穿所述底座的第一插针的长度小于所述底座第二区域的厚度,从而减小了所述第一插针的长度,减弱了所述第一插针中信号的衰减,提高了所述第一插针中信号的传输质量,进而提高了所述光组件的信号传输质量。

Description

光组件、光模块、光线路终端、光网络单元、光网络系统 技术领域
本申请涉及光网络技术领域,尤其涉及一种光组件、光模块、光线路终端、光网络单元、光网络系统。
背景技术
随着可变比特率和突发性数据如Interne(互联网)等业务迅猛发展,用户对宽带的需求迅速增长。FTTH(Fiber To The Home,光纤到户)是目前解决用户带宽最优技术,而FTTH要得到普及关键是降低接入网用户端ONU(Optical Network Unit,光模块)的成本。其中,BOSA(Bidirectional optical assembly,双向光组件)是ONU光模块的关键组成器件的最主要构成部分,占据整个光模块成本的70%-80%,因此,如何降低BOSA的成本是降低ONU光模块成本,从而实现光纤到户的关键。
现有BPSA包括TOSA和ROSA分别封装以及TOSA和ROSA一起封装两种,其中,相较于TOSA和ROSA分别封装,TOSA和ROSA一起封装(即TOSA和ROSA采用同一个底座同轴封装(简称单TO BOSA封装),成本更低,逐渐成为业界主流。
但是现有单TO BOSA光组件中,由于需要隔离光串扰和电串扰,因此,单TO BOSA光组件的管座中需要挖槽,在该管座中形成一空腔,以设置APD(avalanche photodiode,雪崩二极管)以及TIA(Trans-impedance Amplifier,跨阻放大器)等光信号接收结构,而且,为了保证光信号的有效接收,该光信号接收结构距离空腔的开口处需要具有一定的距离,从而使得单TO BOSA光组件的底座较厚,造成单TO BOSA光组件中贯穿该底座的高速信号的插针较长,经该插针传输的信号衰减厉害,影响BOSA的传输效率。
发明内容
本申请实施例提供了一种光组件,包括:底座,所述底座包括沿第一方向相邻排布的第一区域和第二区域,在第二方向上,所述第一区域的厚度小于所述第二区域的厚度,且所述第二区域第一表面内具有凹槽,其中,所述第一方向平行于所述第一表面,所述第二方向垂直于所述第一表面;位于所述底座第一表面的盖板,所述盖板密封所述凹槽,与所述底座形成密封空腔;位于所述盖板表面的光信号发射结构,用于发射光束;位于所述密封空腔内的光信号接收结构;位于所述盖板表面的滤波器,用于接收所述发射光束,将所述发射光束向外界传输,并接收外界输入的信号,将其传输所述光信号接收结构;在所述第二方向上,贯穿所述第一区域,与所述光信号发射结构电连接的第一插针,用于输入所述光信号发射结构的驱动信号;在所述第二方向上,贯穿所述第二区域第二表面与所述光信号接收结构电连接的第二插针,用于将所述光信号接收结构输出的信号传输出去。
本申请实施例所提供的光组件中,在所述第二方向上,所述底座第一区域的厚度小于所述第二区域的厚度,从而使得在所述第二方向上贯穿所述底座的第一插针的长度小于所述底座第二区域的厚度,从而减小了所述第一插针的长度,减弱了所述第一插针中信号的 衰减,提高了所述第一插针中信号的传输质量,进而提高了所述光组件的信号传输质量。
由于所述第一插针的长度缩短了,从而在相同工艺能力下,使得所述第一区域中用于通过所述第一插针的第一通孔的半径减小了,进而使得所述第一通孔中填充介质的半径较小,最终减小了所述光信号发射结构与所述第一插针之间电连接线的长度,提高了信号传输的质量。
在一种实现方式中,第一区域和所述第二区域的交界处形成一屏蔽墙,用于避免所述第一插针和所述第二插针中信号的相互干扰。
在一种实现方式中,在所述第二方向上,所述第一插针远离所述光信号发射结构的一端高于所述第二区域的第二表面,所述第二表面为所述第一表面相对的一面,以保证所述第一插针中的信号不会干扰所述第二插针中的信号,所述第二插针中的信号也不会影响所述第一插针中的信号。
在一种实现方式中,所述第一插针的长度不小于2mm。
在一种实现方式中,所述光信号接收结构包括APD(avalanche photodiode,雪崩二极管)以及TIA(Trans-impedance Amplifier,跨阻放大器),其中,APD用于将光信号转换成电信号,所述TIA用于将所述APD输出的电信号放大,进行输出。
在一种实现方式中,所述光组件还包括:位于所述盖板朝向所述凹槽一侧的隔离膜片,所述隔离膜片在垂直于所述第二方向的表面上的投影完全覆盖所述凹槽在垂直于所述第二方向的表面上的投影。
在一种实现方式中,所述光组件还包括位于所述滤波器正上方的透镜结构,用于对外界射向所述光组件的光束进行会聚,并对所述光组件射向外界的光束进行扩散。
本申请实施例还提供了一种光模块,包括:上述任一项所述的光组件;与所述光组件中光信号发射结构电连接的驱动电路;与所述光组件中光信号接收结构电连接的接收机。
本申请实施例还提供了一种光线路终端,包括上述光模块。
本申请实施例还提供了一种光网络单元,包括上述光模块。
本申请实施例还提供了一种光网络系统,包括光线路终端和用户端,所述光线路终端中包括至少一个光线路终端光模块,所述用户端包括至少一个光网络单元光模块,其中,所述至少一个光线路终端光模块至少一个光线路终端光模块为上述光模块和/或所述至少一个光网络单元光模块至少一个光网络单元光模块为上述光模块。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一个实施例所提供的光网络系统的结构示意图;
图2为本申请一个实施例所提供的光模块的结构示意图;
图3为本申请一个实施例所提供的光组件的结构示意图;
图4为本申请一个实施例所提供的光组件中,第一插针处的俯视图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
目前BOSA传输技术是指在单根光纤中传输两个信道(波长)的信息,即在用户端ONU上行采用一种的波长作为发射,下行采用另一种波长接收光信号。
具体的,如图1所示,光网络系统包括光线路终端1和用户端2,其中,所述光线路终端1包括多个光线路终端光模块101,所述用户端2包括多个光网络单元光模块201,所述光信号终端1中的光线路终端光模块101与所述用户端2的光网络单元光模块201可以一一对应,也可以一对多(如一对n),本申请对此并不做限定,具体视情况而定。
需要说的是,所述光线路终端光模块101和所述光网络单元光模块202中均包括光组件,具体工作时,所述光线路终端光模块101中的光组件中发射下行方向携带一定速率的特定波长的光信号至光信号分离器3,经所述光信号分离器3分光后发送至用户端的各个光网络单元光模块201,被光网络单元光模块201中的光信号接收结构接收;而光网络单元光模块201中的光信号发射结构发射上行方向携带一定速率的特定波长的光信号至光信号分离器3,经光信号分离器3会光后发送给光线路终端中与该光网络单元光模块对应的光线路终端光模块101,被所述光线路终端光模块101中的光信号接收结构接收,从而完成上行和下行的通信业务。
如图2所示,所述光模块包括光组件5和控制电路4,其中,所述光组件5用于接收和发送光信号,所述控制电路4包括驱动芯片401和接收机402,其中,所述驱动芯片401用于为所述光组件5提供高速电信号和偏置电压(或电流)信号,以便于控制所述光组件5中光信号发射结构501发射光信号,所述接收机402用于接收所述光组件5中光信号接收结构502输出的光信号,并对其进行放大后输出。此外,所述控制电路4还可以包括微处理芯片403,用于对所述接收机402输出的信号进行处理。
如图3所示,本申请实施例提供了一种光组件,包括:底座10,所述底座10包括沿第一方向X相邻排布的第一区域11和第二区域12,其中,在第二方向Y上,所述第一区域11的厚度小于所述第二区域12的厚度,且所述第二区域12第一表面内具有凹槽13,其中,所述第一方向X平行于所述第一表面,所述第二方向Y垂直于所述第一表面;位于所述底座10第一表面的盖板20,所述盖板20密封所述凹槽13,与所述底座10形成密封空腔;位于所述盖板20表面的光信号发射结构30,用于发射光束;位于所述密封空腔内的光信号接收结构40;位于所述盖板20表面的滤波器50,用于接收所述发射光束,将所述发射光束向外界传输,并接收外界输入的信号,将其传输给所述光信号接收结构40;在所述第二方向Y上,贯穿所述第一区域11,与所述光信号发射结构20电连接的第一插针60,用于输入所述光信号发射结构30的驱动信号;在所述第二方向Y上,贯穿所述第二区域 12第二表面与所述光信号接收结构40电连接的第二插针70,用于将所述光信号接收结构40输出的信号传输出去。
需要说明的是,本申请实施例对所述盖板20的大小不做具体限定,只要保证所述盖板20完全密封所述凹槽13即可,即所述盖板20在垂直于所述第二方向Y的表面上的投影完全覆盖所述凹槽13在垂直于所述第二方向Y的表面上的投影,以保证所述盖板20完全密封所述凹槽13,避免所述光信号发射结构30发射的光信号射入所述凹槽13中,经所述光信号接收结构40输出。
具体的,在本申请的一个实施例中,所述光信号发射结构30为激光器,所述滤波器50为滤波片,所述第一插针60和所述第二插针70为金属走线,所述光信号接收结构40包括APD41(avalanche photodiode,雪崩二极管)以及TIA42(Trans-impedance Amplifier,跨阻放大器),其中,APD41用于将光信号转换成电信号,所述TIA42用于将所述APD41输出的电信号放大,进行输出。但本申请对此并不做限定,具体视情况而定。
在上述任一实施例的基础上,在本申请的一个实施例中,所述第一区域11在所述第二方向Y上的厚度不小于1mm,但本申请对此并不做限定,具体视工艺能力而定。
本申请实施例所提供的光组件中,在所述第二方向Y上,所述第一区域11的厚度小于所述第二区域12的厚度,从而使得在所述第二方向Y上贯穿所述底座10的第一插针60的长度小于所述底座10第二区域12的厚度,从而减小了所述第一插针60的长度,减弱了所述第一插针60中信号的衰减,提高了所述第一插针60中信号的传输质量,进而提高了所述光组件的信号传输质量。
如图4所示,由于所述第一插针60的长度缩短了,从而在相同工艺能力下,使得所述第一区域11中用于通过所述第一插针60的第一通孔61的半径减小了,进而使得所述第一通孔61中填充介质的半径较小,最终减小了所述光信号发射结构30与所述第一插针60之间电连接线62的长度,提高了信号传输的质量。
需要说明的是,在本申请实施例中,外界传输给所述光信号发射结构30的信号可以为单端信号,也可以为差分信号,当外界传输给所述光信号发射结构30的信号为单端信号时,所述第一区域具有一个第一插针60、一个第一通孔61,如图3所示;当外界传输给所述光信号发射结构30的信号为差分信号时,所述第一区域具有二个第一插针60、二个第一通孔61,如图4所示,本申请对此并不做限定,具体视情况而定。
此外,在本申请实施例中,所述第一区域11在第二方向Y的厚度小于所述第二区域12在第二方向Y上的厚度,从而在第一区域11和所述第二区域12的交界处形成一屏蔽墙,用于避免所述第一插针60和所述第二插针70中信号的相互干扰。
在上述实施例的基础上,在本申请的一个实施例中,在所述第二方向Y上,所述第一插针60远离所述光信号发射结构30的一端高于所述第二区域12的第二表面,所述第二表面为所述第一表面相对的一面,以保证所述第一插针60中的信号不会干扰所述第二插针70中的信号,所述第二插针70中的信号也不会影响所述第一插针60中的信号。具体的,在本申请的一个实施例中,所述第一插针60的长度不小于2mm。但本申请对此并不做限定,具体视情况而定。
在上述实施例的基础上,在本申请的一个实施例中,所述光组件还包括:位于所述盖板20朝向所述凹槽13一侧的隔离膜片80,所述隔离膜片80在垂直于所述第二方向Y的表面上的投影完全覆盖所述凹槽13在垂直于所述第二方向Y的表面上的投影,如所述隔离膜片80在垂直于所述第二方向Y的表面上的投影与所述凹槽13在垂直于所述第二方向Y的表面上的投影重合,以进一步隔离所述光信号发射结构30发射的光信号,避免所述光信号发射结构30发射的光信号射入所述密封空腔内,被所述光信号接收结构40接收。
需要说明的是,当所述盖板20延伸至所述第一区域11中第一插针60对应的区域时,所述第一插针60还贯穿所述盖板20,本申请对此并不做限定,只要保证所述第一插针60贯穿所述第一区域11或贯穿所述第一区域11及位于所述第一区域11表面的盖板20即可。
在上述实施例的基础上,在本申请的一个实施例中,所述光组件还包括位于所述滤波器50正上方的透镜结构90,用于对外界射向所述光组件的光束进行会聚,并对所述光组件射向外界的光束进行扩散。具体的,所述透镜结构90为球透镜,但本申请对此并不做限定,具体视情况而定。
需要说明的是,在本申请实施例对所述盖板20在第二方向Y上的厚度也不做要求,只要保证所述盖板20在承载其上表面上光信号发射结构30等各部件的基础上不发生变形即可,以保证所述光信号发射结构30发射的光信号经所述滤波器50反射后,该光束中心可以与所述透镜结构90的中心在同一直线上。
还需要说明的是,在本申请实施例中,所述第二区域12第一表面内的凹槽13与所述盖板20形成的密封空腔满足以下条件:所述密封空腔可以容纳所述光信号接收结构40;所述光信号接收结构40可以有效接收所述滤光器50透射的光束,以提高外界光束的光信号利用率,具体视所述透镜结构90的焦距而定;便于所述第二插针70与所述光信号接收结构40之间电连接线的设置,具体视所述电连接线的形成工艺能力而定。
在上述任一实施例的基础上,在本申请的一个实施例中,所述光组件还包括光信号检测结构100,用于检测所述光信号发射结构30的出光率,具体的,在本申请的一个实施例中,所述光信号检测结构100位于所述光信号发射结构30背离所述滤波器50的一侧,以免所述光信号检测结构100影响所述光信号发射结构30射向所述滤波器50的光信号。
在上述实施例的基础上,在本申请的一个实施例中,所述光组件还包括:与所述透镜结构90、所述底座10构成另一密封腔,用于封装所述盖板20上各组件的管帽110,用于避免所述光信号发射结构30发射的光信号不经过所述透镜结构90直接射出,同时避免外界输入的光信号不经所述透镜结构90直接射向所述滤波器50。
在上述任一实施例的基础上,在本申请的一个实施例中,所述光组件还包括:位于所述管座10背离所述管帽一侧的帽沿(图中未示出),在垂直于所述第二方向Y的表面上,所述帽沿的投影完全覆盖所述底座10的投影,以使得所述底座10可以固定在所述帽沿上,具体的,在本申请的一个实施例中,在垂直于所述第二方向Y的表面上,所述帽沿的投影大于所述底座10的投影,所述底座10与所述帽沿之间的固定方式为焊接,但本申请对此并不做限定,具体视情况而定。
在上述实施例的基础上,在本申请的一个实施例中,所述帽沿在所述第二方向Y上的 厚度为1mm,以保证在将所述底座10固定在所述帽沿上时不会发生变形。
相应的,本申请实施例还提供了一种光模块,包括上述任一实施例所提供的光组件,与所述光组件中光信号发射结构30电连接的驱动电路;与所述光组件中光信号接收结构40电连接的接收机,其中,所述光组件包括:底座10,所述底座10包括沿第一方向X相邻排布的第一区域11和第二区域12,其中,在第二方向Y上,所述第一区域11的厚度小于所述第二区域12的厚度,且所述第二区域12第一表面内具有凹槽13,其中,所述第一方向X平行于所述第一表面,所述第二方向Y垂直于所述第一表面;位于所述底座10第一表面的盖板20,所述盖板20密封所述凹槽13,与所述底座10形成密封空腔;位于所述盖板20表面的光信号发射结构30,用于发射光束;位于所述密封空腔内的光信号接收结构40;位于所述盖板20表面的滤波器50,用于接收所述发射光束,将所述发射光束向外界传输,并接收外界输入的信号,将其传输所述光信号接收结构40;在所述第二方向Y上,贯穿所述第一区域11,与所述光信号发射结构20电连接的第一插针60,用于输入所述光信号发射结构30的驱动信号;在所述第二方向Y上,贯穿所述第二区域12第二表面与所述光信号接收结构40电连接的第二插针70,用于将所述光信号接收结构40输出的信号传输出去。
具体的,在本申请的一个实施例中,所述驱动电路包括PCB电路板以及设置在所述PCB电路板上的驱动芯片,所述驱动芯片用于产生驱动信号,经所述PCB电路板输出给所述第一插针60,并经所述第一插针60输出给所述光信号发射结构30,为所述光信号发射结构30提供高速电信号和偏置电流信号(或偏置电压信号)。所述光信号发射结构30在所述驱动电路输出的驱动信号的控制下,产生光信号,经所述滤波器50反射,射出所述光组件,并经尾纤120传输出去,完成信号的发射。外界利用尾纤120输送给所述光组件的光信号,经所述透镜结构50透射,射向所述光信号接收结构40,经所述光信号接收结构40输出给所述接收机。具体的,所述光信号接收结构40包括APD(avalanche photodiode,雪崩二极管)以及TIA(Trans-impedance Amplifier,跨阻放大器),其中,APD用于将光信号转换成电信号,所述TIA用于将所述APD输出的电信号放大,输出给所述接收机。
具体的,在上述实施例的基础上,在本申请的一个实施例中,所述光模块还包括电连接所述光组件与所述控制电路的柔性印刷电路板,但本申请对此并不做限定,具体视情况而定。
另外,本申请实施例还提供了一种光线路终端和一种光网络单元,所述光线路终端包括上述任一实施例所提供的光模块;所述光网络单元包括上述任一实施例所提供的光模块。
此外,本申请实施例还提供了一种光网络系统,所述光网络系统包括光线路终端和用户端,所述光线路终端中包括至少一个光线路终端光模块,所述用户端包括至少一个光网络单元光模块。
在上述实施例的基础上,在本申请的一个实施例中,所述至少一个光线路终端光模块至少一个光线路终端光模块为上述实施例所提供的光模块;在本申请的另一个实施例中,所述至少一个光网络单元光模块至少一个光网络单元光模块为上述实施例所提供的光模块。在本申请的又一个实施例中,所述至少一个光线路终端光模块至少一个光线路终端光 模块为上述实施例所提供的光模块;且所述至少一个光网络单元光模块至少一个光网络单元光模块为上述实施例所提供的光模块。本申请对此并不做限定,具体视情况而定。
综上所述,本申请实施例所提供的光组件、包括该光组件的光模块、包括该光模块的光线路终端、光网络单元和光网络系统中,在所述第二方向上,所述底座第一区域的厚度小于所述第二区域的厚度,从而使得在所述第二方向上贯穿所述底座的第一插针的长度小于所述底座第二区域的厚度,从而减小了所述第一插针的长度,减弱了所述第一插针中信号的衰减,提高了所述第一插针中信号的传输质量,进而提高了所述光组件的信号传输质量。
由于所述第一插针的长度缩短了,从而在相同工艺能力下,使得所述第一区域中用于通过所述第一插针的第一通孔的半径减小了,进而使得所述第一通孔中填充介质的半径较小,最终减小了所述光信号发射结构与所述第一插针之间电连接线的长度,提高了信号传输的质量。
此外,在本申请实施例中,所述第一区域在第二方向的厚度小于所述第二区域在第二方向上的厚度,从而在第一区域和所述第二区域的交界处形成一屏蔽墙,用于避免所述第一插针和所述第二插针中信号的相互干扰。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

  1. 一种光组件,其特征在于,包括:
    底座,所述底座包括沿第一方向相邻排布的第一区域和第二区域,在第二方向上,所述第一区域的厚度小于所述第二区域的厚度,且所述第二区域第一表面内具有凹槽,其中,所述第一方向平行于所述第一表面,所述第二方向垂直于所述第一表面;
    位于所述底座第一表面的盖板,所述盖板密封所述凹槽,与所述底座形成密封空腔;
    位于所述盖板表面的光信号发射结构,用于发射光束;
    位于所述密封空腔内的光信号接收结构;
    位于所述盖板表面的滤波器,用于接收所述发射光束,将所述发射光束向外界传输,并接收外界输入的信号,将其传输所述光信号接收结构;
    在所述第二方向上,贯穿所述第一区域,与所述光信号发射结构电连接的第一插针,用于输入所述光信号发射结构的驱动信号;
    在所述第二方向上,贯穿所述第二区域第二表面与所述光信号接收结构电连接的第二插针,用于将所述光信号接收结构输出的信号传输出去。
  2. 根据权利要求1所述的光组件,其特征在于,所述第一区域和所述第二区域交接的边界形成一屏蔽墙。
  3. 根据权利要求1所述的光组件,其特征在于,在所述第二方向上,所述第一插针远离所述光信号发射结构的一端高于所述第二区域的第二表面,所述第二表面为所述第一表面相对的一面。
  4. 根据权利要求3所述的光组件,其特征在于,所述第一插针的长度不小于2mm。
  5. 一种光模块,其特征在于,包括:
    权利要求1-4任一项所述的光组件;
    与所述光组件中光信号发射结构电连接的驱动电路;
    与所述光组件中光信号接收结构电连接的接收机。
  6. 一种光线路终端,其特征在于,包括权利要求5所述的光模块。
  7. 一种光网络单元,其特征在于,包括权利要求5所述的光模块。
  8. 一种光网络系统,其特征在于,包括光线路终端和用户端,所述光线路终端中包括至少一个光线路终端光模块,所述用户端包括至少一个光网络单元光模块,其中,所述至少一个光线路终端光模块至少一个光线路终端光模块为权利要求5所述的光模块和/或所述至少一个光网络单元光模块至少一个光网络单元光模块为权利要求5所述的光模块。
PCT/CN2017/086681 2017-05-31 2017-05-31 光组件、光模块、光线路终端、光网络单元、光网络系统 WO2018218540A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/086681 WO2018218540A1 (zh) 2017-05-31 2017-05-31 光组件、光模块、光线路终端、光网络单元、光网络系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/086681 WO2018218540A1 (zh) 2017-05-31 2017-05-31 光组件、光模块、光线路终端、光网络单元、光网络系统

Publications (1)

Publication Number Publication Date
WO2018218540A1 true WO2018218540A1 (zh) 2018-12-06

Family

ID=64455218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086681 WO2018218540A1 (zh) 2017-05-31 2017-05-31 光组件、光模块、光线路终端、光网络单元、光网络系统

Country Status (1)

Country Link
WO (1) WO2018218540A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100183268A1 (en) * 2009-01-16 2010-07-22 Sumitomo Electric Industries, Ltd. Bi-directional optical subassembly with a wdm filter attached to a cap and a method to assemble the same
US20130107265A1 (en) * 2011-10-26 2013-05-02 Ezconn Corporation Otdr light reflection structure of optical sub-assembly for transceivers of pon system
CN203950058U (zh) * 2014-06-24 2014-11-19 上海波汇通信科技有限公司 一种低成本小型化的单纤双向光学组件
CN105247401A (zh) * 2013-05-31 2016-01-13 华为技术有限公司 微型双向光学次模块

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100183268A1 (en) * 2009-01-16 2010-07-22 Sumitomo Electric Industries, Ltd. Bi-directional optical subassembly with a wdm filter attached to a cap and a method to assemble the same
US20130107265A1 (en) * 2011-10-26 2013-05-02 Ezconn Corporation Otdr light reflection structure of optical sub-assembly for transceivers of pon system
CN105247401A (zh) * 2013-05-31 2016-01-13 华为技术有限公司 微型双向光学次模块
CN203950058U (zh) * 2014-06-24 2014-11-19 上海波汇通信科技有限公司 一种低成本小型化的单纤双向光学组件

Similar Documents

Publication Publication Date Title
US20190033542A1 (en) Optical transceiver
WO2019105113A1 (zh) 光收发器件
CN211603627U (zh) 一种光模块
CN111313969B (zh) 一种光模块
US9086552B2 (en) Optical module
CN109075874B (zh) 晶体管外形(to)封装光收发器
KR20110112770A (ko) 양방향 광송수신 장치
WO2020082707A1 (zh) 半导体光放大器芯片、光接收子组件和光模块
CN110954999B (zh) 一种光收发器件
US20210149129A1 (en) Receiver Optical Subassembly, Combo Transceiver Subassembly, Combo Optical Module, Communications Apparatus, and PON System
US20180306987A1 (en) Bidirectional Optical Sub Assembly
CN215181032U (zh) 一种光模块
CN111628828A (zh) 一种高灵敏度光接收器件
CN113721331B (zh) 一种光模块
CN217443592U (zh) 光模块
CN114035285A (zh) 一种光模块
CN207339856U (zh) 板间自由空间通信光模块
CN113885143A (zh) 一种光模块
CN215678864U (zh) 一种光模块
CN112346181A (zh) 一种光模块
CN112904494B (zh) 一种光模块
WO2018218540A1 (zh) 光组件、光模块、光线路终端、光网络单元、光网络系统
CN113296199A (zh) 一种单纤双向光组件和光模块
CN216310327U (zh) 一种光模块
CN115201977A (zh) 一种光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911775

Country of ref document: EP

Kind code of ref document: A1