WO2018216925A1 - Method for preparing arsenic adsorbent, arsenic adsorbent prepared thereby, and method for removing arsenic using same arsenic adsorbent - Google Patents

Method for preparing arsenic adsorbent, arsenic adsorbent prepared thereby, and method for removing arsenic using same arsenic adsorbent Download PDF

Info

Publication number
WO2018216925A1
WO2018216925A1 PCT/KR2018/005218 KR2018005218W WO2018216925A1 WO 2018216925 A1 WO2018216925 A1 WO 2018216925A1 KR 2018005218 W KR2018005218 W KR 2018005218W WO 2018216925 A1 WO2018216925 A1 WO 2018216925A1
Authority
WO
WIPO (PCT)
Prior art keywords
arsenic
adsorbent
adsorption
ldh
trivalent
Prior art date
Application number
PCT/KR2018/005218
Other languages
French (fr)
Korean (ko)
Inventor
장민
Original Assignee
주식회사 산하이앤씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 산하이앤씨 filed Critical 주식회사 산하이앤씨
Publication of WO2018216925A1 publication Critical patent/WO2018216925A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption

Definitions

  • the invention according to synthetic methods Layered Double Hydroxide Preparation of arsenic sorbent for adsorbing an arsenic contained in water, relates to the arsenic removal method using an arsenic adsorbent and the arsenic sorbent prepared by a production method, the layered double hydroxide Mg 2 + Fe 3 + or a metal cation and economical and environmentally friendly anion is Cl - or the like, or an invention relating to a process for producing arsenic adsorbent optimized around the SO 4 2-.
  • Arsenic is the first group of carcinogens, and is known for its chemical stability, for the use of pesticides or herbicides, for artificial activities such as mining activities, or for the change in the geochemical stability of arsenic in underground rock due to changes in reduction-oxidation potential (REDOX). It is known to be eluted underwater due to a decrease or the like.
  • Arsenic contamination can extend to groundwater and surface water and poses serious problems for human and other living health. Prolonged consumption of arsenic-contaminated water can cause serious health problems, including skin lesions, liver cancer, and gastrointestinal damage.
  • Arsenic is a metalloid in the form of arsenite and arsenate. Trivalent is about 10 times more toxic than pentavalent arsenic. It is related.
  • LDH layered double hydroxide
  • 2D two-dimensional ionic layered compound.
  • Such compounds are also known as hydrotalcite, and these compounds have a variety of brucite structures due to the availability of a wide range of compositions and methods of preparation.
  • LDH contains a positively charged metal hydroxide layer and an exchangeable anion (-) between the layers for charge neutrality, and chemically [M 1-x 2+ M x 3 + (OH) 2 ] x + And [(A) m / x m- nH 2 O] x- are composed of layers.
  • Divalent and trivalent metal cations are represented by M 2+ and M 3+ , respectively. These M 2+ and M 3+ species are used for the synthesis of LDH compounds, and the compound interlayer anions (A m ⁇ ) include NO 2 3- , CO 3 3- and the like. Water molecules are usually buried between the hydroxide layers during synthesis.
  • the value of X varies from 0.20 to 0.33, and the M 2+ to M 3+ mole ratio is 2.0 to 4.0 with supercapacities, based on the excellent anion exchange capability of organic or inorganic anions. It is applied as an adsorbent in catalysts, drug delivery and water treatment, and has great potential due to its non-toxicity, low cost, high surface area, pore and possibility of functional chemicals tuning.
  • the prior art 1 discloses a method of removing arsenic in water using a layered double hydroxide.
  • Korean Patent Registration No. 10-1185877 discloses a method of preparing LDH, an arsenic adsorbent, by mixing a Mn (NO 3 ) 2 solution with a Fe (NO 3 ) 3 solution.
  • Table 1 shows the maximum adsorption amount of trivalent arsenic and pentavalent arsenic using LDH disclosed in Korean Patent Registration No. 10-1185877, which is the prior art 1, and shows the maximum adsorption amount of arsenic using Langmuir adsorption model. The calculated values are shown in a table.
  • Arsenic maximum adsorption amount of LDH prepared according to the prior art 1 is 13.725 (mg As / g LDH) for trivalent arsenic and 10.5 (mg As / g LDH) for pentavalent arsenic, but still increases the maximum adsorption amount of arsenic. There is a need for improved LDH.
  • Korean Patent Registration No. 10-0968952 discloses a method of purifying metal mine drainage using coal mine drainage sludge (CMDS), specifically, the water discharged from the metal mine is coal mine drainage. By reacting with the sludge, the heavy metal contained in the metal mine effluent is fixed to the coal mine drainage sludge to purify the metal mine drainage.
  • CMDS coal mine drainage sludge
  • Patent Document 1 KR10-1185877 B
  • Patent Document 2 KR10-0968952 B
  • Arsenic adsorbent manufacturing method to solve the above problems is, (a) comprises the step of mixing the magnesium compound solution and the solution of the iron compound, the magnesium compound is either of MgSO 4 .7H 2 O or MgCl 2 and, and the one wherein the iron compound is any one of Fe 2 (SO 4) 3 .5H 2 O , or FeCl 3.
  • the magnesium compounds are MgSO 4 and .7H 2 O, wherein the iron compound is Fe 2 (SO 4) 3 .5H 2 O.
  • the magnesium compound is 240 to 250 parts by weight based on 100 parts by weight of the iron compound.
  • the mole ratio of magnesium and iron in the mixture of step (a) is 2.2: 1 to 2.7: 1.
  • step (b) after step (a), maintaining the pH of the mixture solution produced in step (a) at 9 to 10; And (c) after step (b), further drying the solid produced from the mixture produced in step (b) at 90 to 110 ° C. for 10 to 24 hours.
  • Arsenic adsorbent according to the present invention includes an arsenic adsorbent prepared by the above-described manufacturing method.
  • Arsenic removal method comprises the step of contacting the arsenic adsorbent prepared by the above-described method for producing arsenic adsorbent with arsenic-containing water.
  • Arsenic contained in the water by the above-mentioned problem solving means can be effectively removed far superior to the prior art. That is, the improved LDH produced by mixing the magnesium compound and the iron compound can remove a large amount of arsenic more effectively than the LDH according to the prior art.
  • FIG. 1 is a diagram conceptually illustrating a layered double hydroxide in which sulfate is inserted.
  • Figure 2 is a graph showing the adsorption kinetics results for the arsenic pentavalent of the arsenic adsorbent LDH according to the present invention.
  • Figure 3 is a graph showing the adsorption kinetics results for the arsenic trivalent of the arsenic adsorbent LDH according to the present invention.
  • Figure 4 is a graph showing the adsorption isotherm results for the arsenic pentavalent of the arsenic adsorbent LDH according to the present invention.
  • Figure 5 is a graph showing the adsorption isotherm results for the arsenic trivalent of the arsenic adsorbent LDH according to the present invention.
  • Figure 6 is a graph showing the results of the adsorption isotherm comparison of the arsenic trivalent and pentavalent of the MSFS in the arsenic adsorbent LDH according to the present invention and CMDS of the prior art 2.
  • Magnesium and iron chemicals are added to 100 mL of water with the weight shown in [Table 2] and dissolved by stirring at 150 to 500 rpm for about 30 minutes to 1 hour.
  • the pH of the solution is then adjusted to 10 using 1-10 M NaOH. After adjusting to pH 10, stirring is continued for 1 to 5 hours. After stirring, the solution is allowed to stand until no solid is left in the supernatant. After the supernatant is poured still, the solids are dried in a drying oven at 100 degrees for 10 to 24 hours.
  • the solids are washed with tap water using a washing mechanism with a sieve (mesh), but washed until the electrical conductivity of the washing water is 0 to 10 mS / cm.
  • Table 3 and Figure 2 are the adsorption kinetics results of the arsenic pentavalent of the arsenic adsorbent LDH according to the present invention.
  • the equilibrium adsorption capacity (Qeq) is 69.2 mg / g MSFS, which is relatively higher than other media.
  • the adsorption capacity sequence was found to be MSFS> MCFS> MSFC> MCFC. It can be seen that the ion exchange rate with arsenic pentavalent increases when sulfate enters the compound interlayer anion.
  • MSFS has lower initial sorption rate than MSFC or MCFS. This is because the sulfate in the LDH layer takes time for the diffusion required to sufficiently ion exchange with arsenic pentavalent.
  • Table 4 and FIG. 3 are adsorption kinetics results for the arsenic trivalent of the arsenic adsorbent LDH according to the present invention.
  • the equilibrium adsorption capacity (Qeq) was 52.3 mg / g, which was much higher than other media.
  • the adsorption rates and capabilities of other media besides MSFS are similar.
  • the adsorption capacity sequence is shown as MSFS> MCFS, MSFC, MCFC. Therefore, the adsorption efficiency for arsenic trivalent is high in MSFS similar to arsenic pentavalent.
  • arsenic trivalent is not ionized in water, so the adsorption mechanism of arsenic trivalent is related to the binding force of anions present in the layer. That is, since chloride has a higher binding force with a compound than sulfate, adsorption of arsenic trivalent has tended to be delayed.
  • MSFS has a much higher adsorption capacity than other media.
  • Qmax the maximum adsorption amount
  • the maximum adsorption amount Qmax is 4.2 times higher than the maximum adsorption amount Qmax according to the prior art 1, which is 10.5 mg / g.
  • the Langmuir model fits well with the MSFS, indicating that only sulphate is present in the adsorption layer, so that arsenic pentavalent is adsorbed in the form of ion exchange. .
  • K F is an indicator of the adsorption capacity of the adsorbent
  • 1 / n is the adsorption strength for the adsorption capacity. If 1 / n is less than 1, the adsorption proceeds chemically, but the lower the value, the higher the adsorption affinity.
  • MSFS is suitable for removing Arsenic pentavalent when the K F value is higher and 1 / n is relatively lower than other media.
  • MSFS had higher adsorption capacity than other media.
  • the maximum adsorption amount (Qmax) using the Langmuir model showed similar results with 56.2 to 61.6 mg / g in all four media.
  • the maximum adsorption amount shows a adsorption capacity of 4.0 to 4.5 times or more as compared with the maximum adsorption amount Qmax according to the prior art 1 which is 13.725 mg / g.
  • MSFS had a K F of 16.23, which is higher than other media, and 1 / n was 0.55.
  • MSFS is faster in arsenic trivalent removal than other media, the results show no significant difference from other media in adsorption after 24 hour shaking. This is because the charge) is neutral and similar exchange occurs with anions bound in the LDH layer.
  • FIG. 6 are adsorption isotherm comparison results for arsenic trivalent and pentavalent of MSFS and CMDS in LDH, the arsenic adsorbent according to the present invention.
  • MSFS showed a maximum adsorption amount (Qmax) of 2.33 times for arsenic pentavalent and 1.6 times higher for arsenic trivalent than CMDS.
  • Qmax maximum adsorption amount
  • the model parameters were similar to those of the previous experiment, but the higher arsenic concentration (1 to 80 mg / L) resulted in higher Determination coefficient (R 2 ) of the Freundlich model than Langmuir. . The reason seems to be that arsenic adsorption takes place in a multilayer form in the layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention relates to a method for preparing an arsenic adsorbent wherein the arsenic adsorbent is prepared by mixing a magnesium compound and an iron compound, the method comprising step (a) for mixing a magnesium compound solution and an iron compound solution, wherein the magnesium compound is any one of MgSO4·7H2O or MgCl2, and the iron compound is any one of Fe2(SO4)3·5H2O or FeCl3.

Description

[규칙 제26조에 의한 보정 10.05.2018] 비소 흡착제 제조방법, 그 제조방법으로 제조된 비소 흡착제 및 그 비소 흡착제를 이용한 비소 제거방법[Correction 10.05.2018 by Rule 26] Arsenic adsorbent manufacturing method, arsenic adsorbent manufactured by the method and arsenic removal method using the arsenic adsorbent
본 발명은 수중에 포함된 비소를 흡착하는 비소 흡착제인 층상 이중 수산화물 제조방법, 그 제조방법으로 제조된 비소 흡착제 및 그 비소 흡착제를 이용한 비소 제거방법에 관한 것으로서, 층상 이중 수산화물 합성하는데 있어서 Mg 2 +또는 Fe 3 + 금속 양이온과 경제적이며 친환경적인 음이온인 Cl - 또는 SO 4 2-을 중심으로 최적화된 비소 흡착제를 제조하는 방법 등에 관한 발명이다.The invention according to synthetic methods Layered Double Hydroxide Preparation of arsenic sorbent for adsorbing an arsenic contained in water, relates to the arsenic removal method using an arsenic adsorbent and the arsenic sorbent prepared by a production method, the layered double hydroxide Mg 2 + Fe 3 + or a metal cation and economical and environmentally friendly anion is Cl - or the like, or an invention relating to a process for producing arsenic adsorbent optimized around the SO 4 2-.
비소는 제1군의 발암 물질로, 화학적 유출, 살충제 또는 제초제의 사용, 광업 활동과 같은 인위적인 활동 또는 지하 암반 내 비소가 REDOX (reduction-oxidation potential)의 변화에 따른 지구화학적 안정성(geochemical stability)의 감소 등으로 인해 수중으로 용출되는 것으로 알려져 있다.Arsenic is the first group of carcinogens, and is known for its chemical stability, for the use of pesticides or herbicides, for artificial activities such as mining activities, or for the change in the geochemical stability of arsenic in underground rock due to changes in reduction-oxidation potential (REDOX). It is known to be eluted underwater due to a decrease or the like.
비소 오염은 지하수와 지표수로 확대될 수 있으며 인간과 다른 생명체 건강에 심각한 문제를 낳고 있다. 비소 오염된 물을 장기간 섭취 시 피부 병변, 간암, 위장 손상 등 심각한 건강 문제를 일으킬 수 있다. Arsenic contamination can extend to groundwater and surface water and poses serious problems for human and other living health. Prolonged consumption of arsenic-contaminated water can cause serious health problems, including skin lesions, liver cancer, and gastrointestinal damage.
비소는 3가(arsenite)와 5가(arsenate) 형태로 존재하는 준금속(metalloid)으로, 3가는 5가 비소보다 독성이 약 10배 더 높으며 인간독성에 대한 우려는 대부분 3가 비소의 노출과 관련이 있다. Arsenic is a metalloid in the form of arsenite and arsenate. Trivalent is about 10 times more toxic than pentavalent arsenic. It is related.
비소 오염은 전 세계적인 현상이며 많은 건강 상의 위험을 줄 수 있기 때문에 수중에서 비소를 제거하는 데 매우 효과적이고 경제적인 기술에 대한 요구가 시급한 실정이다. As arsenic contamination is a worldwide phenomenon and can pose a number of health risks, there is an urgent need for highly effective and economical techniques to remove arsenic from water.
오염된 물에서 비소를 제거하기 위해 산화, 응결/응집, 흡착, 이온 교환 및 막과 같은 기술들이 개발되었지만, 이러한 다양한 기술들 중 흡착은 복잡하지 않고 경제적이며 효과적인 방법인 것으로 널리 알려져 있다.Although technologies such as oxidation, coagulation / agglomeration, adsorption, ion exchange and membranes have been developed to remove arsenic from contaminated water, adsorption is widely known to be a complex, economical and effective method.
도 1은 황산염이 삽입된 층상 이중 수산화물 (layered double hydroxide, LDH)로, 2차원(2D) 이온상 층상 화합물이다. 이와 같은 화합물들은 하이드로탈사이트(hydrotalcite)라고도 알려져 있으며, 이러한 화합물은 광범위한 조성 및 제조 방법의 유용성으로 인해 다양한 브루사이트(brucite) 구조를 갖는다. 1 is a layered double hydroxide (LDH) containing sulfate, a two-dimensional (2D) ionic layered compound. Such compounds are also known as hydrotalcite, and these compounds have a variety of brucite structures due to the availability of a wide range of compositions and methods of preparation.
LDH는 양(+)으로 하전된 금속 수산화물 층과 전하 중립성을 위해 층 사이에 교환 가능한 음이온(-)이 삽입되어 있으며, 화학적으로 [M 1-x 2+ M x 3 + (OH) 2] x +과 [(A) m/x m- nH 2O] x-가 층으로 구성되어 있다. LDH contains a positively charged metal hydroxide layer and an exchangeable anion (-) between the layers for charge neutrality, and chemically [M 1-x 2+ M x 3 + (OH) 2 ] x + And [(A) m / x m- nH 2 O] x- are composed of layers.
2가 및 3가 금속 양이온은 각각 M 2+ 및 M 3+로 표시된다. 이들 M 2+ 및 M 3+ 종은 LDH 화합물의 합성에 사용되며, 화합물 층간 음이온 (A m-)은 NO 2 3-, CO 3 3-등이 있다. 물 분자는 일반적으로 합성 과정에서 수산화물 층 사이에 묻혀 있다.Divalent and trivalent metal cations are represented by M 2+ and M 3+ , respectively. These M 2+ and M 3+ species are used for the synthesis of LDH compounds, and the compound interlayer anions (A m − ) include NO 2 3- , CO 3 3- and the like. Water molecules are usually buried between the hydroxide layers during synthesis.
일반적으로 X 값은 0.20에서 0.33 사이의 범위에서 달라지며, M 2+대 M 3+ 몰(mole)비는 2.0에서 4.0로 뛰어난 유기 또는 무기 음이온의 음이온 교환 능력을 바탕으로 수퍼 캐패시터(capacity), 촉매(catalyst), 약물 전달(drug delivery) 및 수처리시 흡착제로 적용되며, 비독성, 저비용, 높은 표면적, 공극 및 기능기(functional chemicals) 튜닝(tuning) 가능성으로 인해 큰 잠재력을 갖고 있다. In general, the value of X varies from 0.20 to 0.33, and the M 2+ to M 3+ mole ratio is 2.0 to 4.0 with supercapacities, based on the excellent anion exchange capability of organic or inorganic anions. It is applied as an adsorbent in catalysts, drug delivery and water treatment, and has great potential due to its non-toxicity, low cost, high surface area, pore and possibility of functional chemicals tuning.
층상 이중 수산화물을 이용하여 수중의 비소를 제거하는 방법을 개시한 종래기술 1을 살펴본다. 대한민국 특허등록번호 제10-1185877호에서는 Mn(NO 3) 2 용액과 Fe(NO 3) 3 용액을 혼합하여 비소 흡착제인 LDH 제조하는 방법을 개시하고 있다.The prior art 1 discloses a method of removing arsenic in water using a layered double hydroxide. Korean Patent Registration No. 10-1185877 discloses a method of preparing LDH, an arsenic adsorbent, by mixing a Mn (NO 3 ) 2 solution with a Fe (NO 3 ) 3 solution.
Figure PCTKR2018005218-appb-img-000001
Figure PCTKR2018005218-appb-img-000001
[표 1]TABLE 1
[표 1]은 종래기술 1인 대한민국 특허등록번호 제10-1185877호에 개시된 LDH를 이용한 3가 비소 및 5가 비소의 최대흡착량 실험결과로서, Langmuir 흡착모델식을 이용하여 비소 최대흡착량을 구한 값을 표로 나타내고 있다.[Table 1] shows the maximum adsorption amount of trivalent arsenic and pentavalent arsenic using LDH disclosed in Korean Patent Registration No. 10-1185877, which is the prior art 1, and shows the maximum adsorption amount of arsenic using Langmuir adsorption model. The calculated values are shown in a table.
종래기술 1에 따라 제조된 LDH의 비소 최대흡착량은 3가 비소의 경우 13.725(mg As/g LDH), 5가 비소의 경우 10.5(mg As/g LDH)이지만, 여전히 비소 최대흡착량을 증대시킬 수 있는 개량된 LDH가 요구되고 있는 실정이다.Arsenic maximum adsorption amount of LDH prepared according to the prior art 1 is 13.725 (mg As / g LDH) for trivalent arsenic and 10.5 (mg As / g LDH) for pentavalent arsenic, but still increases the maximum adsorption amount of arsenic. There is a need for improved LDH.
금속광산 배수에 포함된 비소를 포함한 중금속을 정화하는 방법 및 장치를 개시한 종래기술 2를 살펴본다. 대한민국 특허등록번호 제10-0968952호에서는 석탄광산 배수 슬러지(Coal Mine Drainage Sludge, 이하 CMDS)를 사용하여 금속광산 배수를 정화하는 방법을 개시한 것으로서, 구체적으로 금속광산으로부터 배출되는 수분을 석탄광산 배수 슬러지와 반응시킴에 따라 그 금속광산 유출수 내 포함된 중금속을 석탄광산 배수 슬러지에 고착시켜 금속광산 배수를 정화하는 방법이다.It looks at the prior art 2 that discloses a method and apparatus for purifying heavy metals including arsenic contained in metal mine drainage. Korean Patent Registration No. 10-0968952 discloses a method of purifying metal mine drainage using coal mine drainage sludge (CMDS), specifically, the water discharged from the metal mine is coal mine drainage. By reacting with the sludge, the heavy metal contained in the metal mine effluent is fixed to the coal mine drainage sludge to purify the metal mine drainage.
그러나 종래기술 2에서는 CMDS를 사용하여 비소를 흡착할 수 있는 방법 및 장치만을 제시하고 있을 뿐, 비소 흡착 효과가 불분명한 바, 여전히 비소 흡착량을 증가시킬 수 있는 흡착제가 요구되고 있는 실정이다.However, the prior art 2 only suggests a method and apparatus for adsorbing arsenic using CMDS, and the adsorption effect of arsenic is unclear. Therefore, an adsorbent capable of increasing arsenic adsorption is still required.
(특허문헌 1) KR10-1185877 B (Patent Document 1) KR10-1185877 B
(특허문헌 2) KR10-0968952 B (Patent Document 2) KR10-0968952 B
상술한 종래기술에 따른 LDH에 비해 월등히 효과적으로 비소를 제거할 수 있는 LDH 제조방법 및 그 제조방법으로 제조된 비소 흡착제를 제공하고자 한다. 구체적으로, 종래기술에 비해 비소흡착 효과가 월등히 뛰어난 개량된 LDH를 제조하는 방법을 제공하고자 한다.It is an object of the present invention to provide an LDH manufacturing method capable of removing arsenic much more effectively than the LDH according to the related art, and an arsenic adsorbent prepared by the method. In particular, it is an object of the present invention to provide a method for producing an improved LDH having superior arsenic adsorption effects compared to the prior art.
상술한 과제를 해결하고자 본 발명에 따른 비소 흡착제 제조방법은, (a) 마그네슘 화합물 용액과 철 화합물 용액을 혼합하는 단계를 포함하며, 상기 마그네슘 화합물은 MgSO 4.7H 2O 또는 MgCl 2 중 어느 하나이며, 그리고 상기 철 화합물은 Fe 2(SO 4) 3.5H 2O 또는 FeCl 3 중 어느 하나이다.Arsenic adsorbent manufacturing method according to the present invention to solve the above problems is, (a) comprises the step of mixing the magnesium compound solution and the solution of the iron compound, the magnesium compound is either of MgSO 4 .7H 2 O or MgCl 2 and, and the one wherein the iron compound is any one of Fe 2 (SO 4) 3 .5H 2 O , or FeCl 3.
바람직하게는, 상기 마그네슘 화합물은 MgSO 4.7H 2O 이며, 상기 철 화합물은 Fe 2(SO 4) 3.5H 2O이다.Preferably, the magnesium compounds are MgSO 4 and .7H 2 O, wherein the iron compound is Fe 2 (SO 4) 3 .5H 2 O.
바람직하게는, 상기 철 화합물 100 중량부에 대해서 상기 마그네슘 화합물은 240 내지 250 중량부이다.Preferably, the magnesium compound is 240 to 250 parts by weight based on 100 parts by weight of the iron compound.
바람직하게는, 상기 (a) 단계의 혼합물에서 마그네슘과 철의 몰(mole) 비율은 2.2: 1 내지 2.7: 1이다.Preferably, the mole ratio of magnesium and iron in the mixture of step (a) is 2.2: 1 to 2.7: 1.
바람직하게는, (b) 상기 (a) 단계 이후, 상기 (a) 단계에서 생성된 혼합물 용액의 pH를 9 내지 10으로 유지시키는 단계; 및 (c) 상기 (b) 단계 이후, 상기 (b) 단계에서 생성된 혼합물로부터 생성된 고형물을 90 내지 110℃에서 10 내지 24 시간 건조시키는 단계를 더 포함한다.Preferably, (b) after step (a), maintaining the pH of the mixture solution produced in step (a) at 9 to 10; And (c) after step (b), further drying the solid produced from the mixture produced in step (b) at 90 to 110 ° C. for 10 to 24 hours.
본 발명에 따른 비소 흡착제는 상술한 제조방법에 의해 제조된 비소 흡착제를 포함한다.Arsenic adsorbent according to the present invention includes an arsenic adsorbent prepared by the above-described manufacturing method.
본 발명에 따른 비소 제거방법은 상술한 비소 흡착제 제조방법으로 제조된 비소 흡착제를 비소가 함유된 물과 접촉시키는 단계를 포함한다. Arsenic removal method according to the invention comprises the step of contacting the arsenic adsorbent prepared by the above-described method for producing arsenic adsorbent with arsenic-containing water.
상술한 과제해결수단으로 수중에 포함되어 있는 비소를 종래기술에 비해 월등히 뛰어나게 효과적으로 제거할 수 있다. 즉, 마그네슘 화합물과 철 화합물이 혼합되어 생성된 개량된 LDH로 종래기술에 따른 LDH보다 더 효과적으로 많은 양의 비소를 제거할 수 있다.Arsenic contained in the water by the above-mentioned problem solving means can be effectively removed far superior to the prior art. That is, the improved LDH produced by mixing the magnesium compound and the iron compound can remove a large amount of arsenic more effectively than the LDH according to the prior art.
또한, 종래기술에 따른 비소 흡착제를 본 발명에 따른 LDH로 교체하여 효과적으로 수중의 비소를 제거할 수 있다.In addition, by replacing the arsenic adsorbent according to the prior art with the LDH according to the present invention can be effectively removed arsenic in water.
도 1은 황산염이 삽입된 층상 이중 수산화물을 개념적으로 도시한 도면이다.1 is a diagram conceptually illustrating a layered double hydroxide in which sulfate is inserted.
도 2는 본 발명에 따른 비소 흡착제인 LDH의 비소 5가에 대한 흡착 동력학 결과를 그래프로 도시한 도면이다.Figure 2 is a graph showing the adsorption kinetics results for the arsenic pentavalent of the arsenic adsorbent LDH according to the present invention.
도 3은 본 발명에 따른 비소 흡착제인 LDH의 비소 3가에 대한 흡착 동력학 결과를 그래프로 도시한 도면이다.Figure 3 is a graph showing the adsorption kinetics results for the arsenic trivalent of the arsenic adsorbent LDH according to the present invention.
도 4는 본 발명에 따른 비소 흡착제인 LDH의 비소 5가에 대한 흡착 등온 결과를 그래프로 도시한 도면이다.Figure 4 is a graph showing the adsorption isotherm results for the arsenic pentavalent of the arsenic adsorbent LDH according to the present invention.
도 5는 본 발명에 따른 비소 흡착제인 LDH의 비소 3가에 대한 흡착 등온 결과를 그래프로 도시한 도면이다.Figure 5 is a graph showing the adsorption isotherm results for the arsenic trivalent of the arsenic adsorbent LDH according to the present invention.
도 6은 본 발명에 따른 비소 흡착제인 LDH 중 MSFS와 종래기술 2인 CMDS의 비소 3가 및 5가에 대한 흡착 등온 비교 결과를 그래프로 도시한 도면이다.Figure 6 is a graph showing the results of the adsorption isotherm comparison of the arsenic trivalent and pentavalent of the MSFS in the arsenic adsorbent LDH according to the present invention and CMDS of the prior art 2.
이하, 본 발명에 따른 방법의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 이 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의성을 위해 과장되게 도시될 수 있다. 또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자 또는 운용자의 의도 또는 관례에 따라 달라질 수 있다. 그러므로 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.Hereinafter, preferred embodiments of the method according to the present invention will be described with reference to the accompanying drawings. In this process, the thickness of the lines or the size of the components shown in the drawings may be exaggerated for clarity and convenience of description. In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to the intention or convention of a user or an operator. Therefore, the definitions of these terms should be made based on the contents throughout the specification.
1. 비소 흡착제인 층상 이중 수산화물(1. a layered double hydroxide as an arsenic adsorbent ( LDHLDH ) 제조방법) Manufacturing method
Figure PCTKR2018005218-appb-img-000002
Figure PCTKR2018005218-appb-img-000002
[표 2]TABLE 2
마그네슘과 철 소스가 되는 화학물질들을 [표 2]에 나온 무게로 물 100mL에 넣어 약 30분에서 1시간 동안 150 내지 500 rpm의 조건으로 교반하여 녹인다. Magnesium and iron chemicals are added to 100 mL of water with the weight shown in [Table 2] and dissolved by stirring at 150 to 500 rpm for about 30 minutes to 1 hour.
이후, 1 내지 10M의 NaOH를 이용하여 용액의 pH를 10으로 맞춘다. pH 10으로 맞춘 후 1 내지 5시간 동안 지속적으로 교반한다. 교반 후 용액 내 고형물이 상등액에 남지 않을 때까지 정치한다. 상등액을 가만히 따른 후 고형물을 건조 오븐에서 100도 조건에서 10 내지 24시간 동안 건조한다. The pH of the solution is then adjusted to 10 using 1-10 M NaOH. After adjusting to pH 10, stirring is continued for 1 to 5 hours. After stirring, the solution is allowed to stand until no solid is left in the supernatant. After the supernatant is poured still, the solids are dried in a drying oven at 100 degrees for 10 to 24 hours.
건조 후 고형물을 체(mesh)가 있는 세척기구를 이용하여 수돗물로 세척하되, 세척수의 전기전도도가 0 내지 10 mS/cm 될 때까지 씻는다.After drying, the solids are washed with tap water using a washing mechanism with a sieve (mesh), but washed until the electrical conductivity of the washing water is 0 to 10 mS / cm.
2. 실험방법2. Experimental method
2.1. 비소 3가와 5가 흡착 동력학(kinetic) 실험2.1. Arsenic Trivalent and Pentavalent Adsorption Kinetic Experiments
비소 흡착에 대한 동력학 속도 상수를 구하기 위한 실험에서 500mL 비소 3가와 500mL 비소 5가 용액을 초기 농도 20mg/L으로 1L 삼각 플라스크에서 넣고, pH 조정없이 수행하였다. 이때 용액의 pH는 6.1 내지 6.8이며 흡착제를 넣을 경우 pH의 큰 변화가 없었다. 진탕 속도는 300rpm이었으며 5시간 동안 진행하였다. In experiments to determine the kinetics rate constant for arsenic adsorption, 500 mL arsenic trivalent and 500 mL arsenic pentavalent solutions were placed in a 1 L Erlenmeyer flask at an initial concentration of 20 mg / L and performed without pH adjustment. At this time, the pH of the solution was 6.1 to 6.8 and there was no significant change in pH when the adsorbent was added. The shaking speed was 300 rpm and proceeded for 5 hours.
미리 결정된 시간 간격으로 샘플을 얻고 비소를 유도 결합 플라즈마 발광 분광법(ICP-OES, Optima 5300V, Perkin Elmer)으로 분석하였다. 모든 동력학 데이터는 의사 2차 운동모델(pseudo-second order kinetic model)을 사용하여 각종 인자를 도출하였다.Samples were taken at predetermined time intervals and arsenic was analyzed by inductively coupled plasma emission spectroscopy (ICP-OES, Optima 5300V, Perkin Elmer). All kinetic data were derived from various factors using a pseudo-second order kinetic model.
2.2. 비소 3가와 5가 흡착 등온(isotherm) 실험2.2. Arsenic trivalent and pentavalent adsorption isotherm experiments
3가 내지 5가 비소가 1, 2, 5, 8, 12, 16 그리고 20mg/L로 용해된 용액을 각각 50mL 준비 후 본 발명에 따른 비소 흡착제인 LDH를 0.01g씩 넣고 24시간 동안 진탕하였다. 진탕 후 현탁액 10mL를 0.45μm 공극 필터를 사용하여 여과하고, 여과액의 비소 농도를 ICP-OES로 분석하였다. 데이터 분석 후, Langmuir와 Freundlich model를 이용하여 관련 매개변수(parameter) 값들을 구하였다.After preparing 50 mL of the solution dissolved in trivalent to pentavalent arsenic 1, 2, 5, 8, 12, 16 and 20 mg / L, respectively, 0.01 g of an arsenic adsorbent according to the present invention was added thereto and shaken for 24 hours. After shaking, 10 mL of the suspension was filtered using a 0.45 μm pore filter, and the arsenic concentration of the filtrate was analyzed by ICP-OES. After analyzing the data, relevant parameter values were obtained using Langmuir and Freundlich model.
3. 실험결과3. Experimental Results
3.1. 본 발명에 따른 비소 흡착제인 LDH의 비소 5가에 대한 흡착 동력학(kinetic) 결과3.1. Adsorption Kinetic Results for Arsenic Pentavalent of LDH, an Arsenic Adsorbent
Figure PCTKR2018005218-appb-img-000003
Figure PCTKR2018005218-appb-img-000003
[표 3]TABLE 3
[표 3] 및 도 2는 본 발명에 따른 비소 흡착제인 LDH의 비소 5가에 대한 흡착 동력학 결과이다.Table 3 and Figure 2 are the adsorption kinetics results of the arsenic pentavalent of the arsenic adsorbent LDH according to the present invention.
평형 흡착능력(Qeq)은 MSFS가 69.2mg/g으로 상대적으로 다른 매체(media) 보다 높다. 흡착 능력 순서는 MSFS > MCFS > MSFC > MCFC 로 나타났다. 이는 화합물 층간 음이온으로 황산염(sulfate)이 들어갈 경우, 비소 5가와의 이온 교환 속도가 높아지는 것을 알 수 있다. The equilibrium adsorption capacity (Qeq) is 69.2 mg / g MSFS, which is relatively higher than other media. The adsorption capacity sequence was found to be MSFS> MCFS> MSFC> MCFC. It can be seen that the ion exchange rate with arsenic pentavalent increases when sulfate enters the compound interlayer anion.
하지만, MSFS는 MSFC나 MCFS보다 초기흡착속도 (initial sorption rate)가 낮다. 이는 LDH 층에 존재하는 황산염(sulfate)이 비소 5가와 충분히 이온 교환하는데 필요한 확산(diffusion)에 시간이 걸리기 때문이다.However, MSFS has lower initial sorption rate than MSFC or MCFS. This is because the sulfate in the LDH layer takes time for the diffusion required to sufficiently ion exchange with arsenic pentavalent.
3.2. 본 발명에 따른 비소 흡착제인 LDH의 비소 3가에 대한 흡착 동력학(kinetic) 결과3.2. Adsorption Kinetic Results for Arsenic Trivalent of LDH, an Arsenic Adsorbent
Figure PCTKR2018005218-appb-img-000004
Figure PCTKR2018005218-appb-img-000004
[표 4]TABLE 4
[표 4] 및 도 3은 본 발명에 따른 비소 흡착제인 LDH의 비소 3가에 대한 흡착 동력학 결과이다.Table 4 and FIG. 3 are adsorption kinetics results for the arsenic trivalent of the arsenic adsorbent LDH according to the present invention.
평형 흡착능력(Qeq)은 MSFS가 52.3mg/g으로 다른 매체(media)보다 월등히 높았다. MSFS 이외에 다른 매체(media)의 흡착 속도 및 능력은 비슷하게 나타난다. 흡착 능력 순서는 MSFS > MCFS, MSFC, MCFC 로 나타난다. 따라서, 비소 5가와 비슷하게 MSFS에서 비소 3가에 대한 흡착효율이 높게 나타난다. The equilibrium adsorption capacity (Qeq) was 52.3 mg / g, which was much higher than other media. The adsorption rates and capabilities of other media besides MSFS are similar. The adsorption capacity sequence is shown as MSFS> MCFS, MSFC, MCFC. Therefore, the adsorption efficiency for arsenic trivalent is high in MSFS similar to arsenic pentavalent.
비소 5가와 달리, 비소 3가는 수중에서 이온화가 되어 있지 않기 때문에 비소 3가의 흡착 기작이 층내 존재하는 음이온의 결합력과 관련 있다. 즉, 황산염(sulfate)에 비해 염화물(chloride)이 화합물과의 결합력이 높기 때문에 비소 3가의 흡착이 지연되는 경향을 보이고 있다. Unlike arsenic pentavalent, arsenic trivalent is not ionized in water, so the adsorption mechanism of arsenic trivalent is related to the binding force of anions present in the layer. That is, since chloride has a higher binding force with a compound than sulfate, adsorption of arsenic trivalent has tended to be delayed.
3.3. 본 발명에 따른 비소 흡착제인 LDH의 비소 5가에 대한 흡착 등온(isotherm) 결과3.3. Adsorption isotherm results for arsenic pentavalent of arsenic adsorbent LDH according to the present invention
Figure PCTKR2018005218-appb-img-000005
Figure PCTKR2018005218-appb-img-000005
[표 5]TABLE 5
[표 5] 및 도 4는 본 발명에 따른 비소 흡착제인 LDH의 비소 5가에 대한 흡착 등온 결과이다.[Table 5] and Figure 4 is the adsorption isotherm results for the arsenic pentavalent of the arsenic adsorbent LDH according to the present invention.
MSFS가 다른 매체(media)보다 월등하게 흡착 능력이 높게 나타난다. 흡착능력의 순서는 MSFS > MCFS > MSFC = MCFC이며, Langmuir model을 이용한 최대 흡착량(Qmax)에서 MSFS는 44.4mg/g으로 다른 매체(media)에 비해 약 1.7배에서 2.5배 더 높았다. 특히, 최대 흡착량(Qmax)은 10.5mg/g인 종래기술 1에 따른 최대 흡착량(Qmax)과 비교하면, 4.2배 이상의 흡착능력을 나타내고 있다.MSFS has a much higher adsorption capacity than other media. The order of adsorption capacity was MSFS> MCFS> MSFC = MCFC, and MSFS was 44.4 mg / g at the maximum adsorption amount (Qmax) using the Langmuir model, about 1.7 to 2.5 times higher than other media. In particular, the maximum adsorption amount Qmax is 4.2 times higher than the maximum adsorption amount Qmax according to the prior art 1, which is 10.5 mg / g.
등온 모델(isotherm model)을 적용한 결과, MSFS는 Langmuir model이 잘 맞았는데, 이는 흡착 층내에 황산염(sulfate)만 존재하여 비소 5가가 매우 균일하게 이온교환(ion exchange)의 형태로 흡착됨을 알 수 있다. As a result of applying the isotherm model, the Langmuir model fits well with the MSFS, indicating that only sulphate is present in the adsorption layer, so that arsenic pentavalent is adsorbed in the form of ion exchange. .
하지만, 다른 매체(media)의 경우는 Langmuir와 Freundlich model 결과가 비슷하였다. 이는 흡착 층내에 황산염(sulfate)과 염화물(chloride)로 구성되어 발생된 불균질성 때문이다. However, for the other media, the Langmuir and Freundlich model results were similar. This is due to the heterogeneity caused by the formation of sulfate and chloride in the adsorption layer.
Freundlich model에서 K F는 흡착제의 흡착 능력을 나타내는 지표이며, 1/n은 흡착 용량에 대한 흡착 강도를 나타낸다. 1/n이 1보다 작을 경우 흡착이 화학적으로 진행되지만, 그 값이 낮을수록 흡착 친화력(affinity)이 증가한다. MSFS는 다른 매체(media)들에 비해 K F 값은 높고 1/n이 상대적으로 낮은 것으로 볼 때 비소 5가를 제거하는데 적합하다고 볼 수 있다.In the Freundlich model, K F is an indicator of the adsorption capacity of the adsorbent, and 1 / n is the adsorption strength for the adsorption capacity. If 1 / n is less than 1, the adsorption proceeds chemically, but the lower the value, the higher the adsorption affinity. MSFS is suitable for removing Arsenic pentavalent when the K F value is higher and 1 / n is relatively lower than other media.
3.4. 본 발명에 따른 비소 흡착제인 LDH의 비소 3가에 대한 흡착 등온(isotherm) 결과3.4. Adsorption isotherm results for arsenic trivalent of arsenic adsorbent LDH according to the present invention
Figure PCTKR2018005218-appb-img-000006
Figure PCTKR2018005218-appb-img-000006
[표 6]TABLE 6
[표 6] 및 도 5는 본 발명에 따른 비소 흡착제인 LDH의 비소 3가에 대한 흡착 등온 결과이다.[Table 6] and Figure 5 is the adsorption isotherm results for the arsenic trivalent of the arsenic adsorbent LDH according to the present invention.
매체(Media)들 중에 MSFS가 다른 매체(media)보다 흡착 능력이 높았다. 그래프 상으로 흡착능력의 순서는 MSFS > MSFC > MCFS = MCFC이다. 하지만, Langmuir model을 이용한 최대 흡착량(Qmax)에서는 4가지 매체(media) 모두 56.2 내지 61.6mg/g으로 비슷한 결과를 보였다. 그러나, 최대 흡착량은 13.725mg/g인 종래기술 1에 따른 최대 흡착량(Qmax)과 비교하면, 4.0 내지 4.5배 이상의 흡착능력을 나타내고 있다.Among the media, MSFS had higher adsorption capacity than other media. The order of adsorption capacity on the graph is MSFS> MSFC> MCFS = MCFC. However, the maximum adsorption amount (Qmax) using the Langmuir model showed similar results with 56.2 to 61.6 mg / g in all four media. However, the maximum adsorption amount shows a adsorption capacity of 4.0 to 4.5 times or more as compared with the maximum adsorption amount Qmax according to the prior art 1 which is 13.725 mg / g.
Freundlich model을 적용한 결과, MSFS는 K F가 16.23으로 다른 매체(media)에 비해 높고, 1/n은 0.55로 낮았다. MSFS가 비소 3가 제거에 속도적으로는 다른 매체(media)에 비해 빠르지만, 24시 진탕 후 흡착량 비교시에는 다른 매체(media)와 큰 차이를 보이지 않는 결과는 비소 3가의 전자전하(electronic charge)가 중성이고 LDH 층내에 결합되어 있는 음이온과의 교환이 비슷하게 발생되기 때문이다. As a result of applying the Freundlich model, MSFS had a K F of 16.23, which is higher than other media, and 1 / n was 0.55. Although MSFS is faster in arsenic trivalent removal than other media, the results show no significant difference from other media in adsorption after 24 hour shaking. This is because the charge) is neutral and similar exchange occurs with anions bound in the LDH layer.
3.5. 본 발명에 따른 비소 흡착제인 LDH 중 MSFS와 종래의 중금속 흡착제인 CMDS의 비소 3가 및 5가에 대한 흡착 등온(isotherm) 비교 결과3.5. Comparison of adsorption isotherms for arsenic trivalent and pentavalent of MSFS in LDH, an arsenic adsorbent, and CMDS, a conventional heavy metal adsorbent, according to the present invention
Figure PCTKR2018005218-appb-img-000007
Figure PCTKR2018005218-appb-img-000007
[표 7]TABLE 7
[표 7] 및 도 6은 본 발명에 따른 비소 흡착제인 LDH 중 MSFS와 CMDS의 비소 3가 및 5가에 대한 흡착 등온 비교 결과이다.[Table 7] and FIG. 6 are adsorption isotherm comparison results for arsenic trivalent and pentavalent of MSFS and CMDS in LDH, the arsenic adsorbent according to the present invention.
그 결과 MSFS는 CMDS보다 비소 5가에 대해서는 2.33배 그리고 비소 3가에 비해서는 1.6배 높은 최대 흡착량(Qmax)을 나타내고 있다. MSFS의 경우 앞서 진행했던 실험과 비슷한 모델 파라미터 값들의 결과를 보였지만, 보다 높은 비소 농도조건(1 내지 80mg/L)으로 인해 Langmuir에 비해 Freundlich 모델의 결정계수(determination coefficient, R 2) 값이 높게 나타난다. 그 이유는 비소 흡착이 층내에서 다층(multilayer) 형태로 이루어지기 때문인 것으로 보인다.. As a result, MSFS showed a maximum adsorption amount (Qmax) of 2.33 times for arsenic pentavalent and 1.6 times higher for arsenic trivalent than CMDS. In the case of MSFS, the model parameters were similar to those of the previous experiment, but the higher arsenic concentration (1 to 80 mg / L) resulted in higher Determination coefficient (R 2 ) of the Freundlich model than Langmuir. . The reason seems to be that arsenic adsorption takes place in a multilayer form in the layer.
이상, 본 명세서에는 본 발명을 당업자가 용이하게 이해하고 재현할 수 있도록 도면에 도시한 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당업자라면 본 발명의 실시예로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 보호범위는 특허청구범위에 의해서 정해져야 할 것이다.In the present specification, the present invention has been described with reference to the embodiments shown in the drawings so that those skilled in the art can easily understand and reproduce the present invention, which is merely exemplary, and those skilled in the art can make various modifications and equivalents from the embodiments of the present invention. It will be appreciated that embodiments are possible. Therefore, the protection scope of the present invention will be defined by the claims.

Claims (1)

  1. (a) 마그네슘 화합물 용액과 철 화합물 용액이 혼합되어 비소 흡착제가 제조되는 단계;(a) mixing the magnesium compound solution with the iron compound solution to produce an arsenic adsorbent;
    (b) 상기 (a) 단계에서 제조된 비소 흡착제가 비소 3가가 함유된 물에 투입되는 단계; 및(b) injecting the arsenic adsorbent prepared in step (a) into water containing arsenic trivalent; And
    (c) 상기 (b) 단계 이후, 상기 (a) 단계에서의 비소 흡착제가 상기 (b) 단계에서의 비소 3가가 함유된 물에 투입되어 23 내지 25시간 진탕되는 단계를 포함하며,(c) after step (b), the arsenic adsorbent in step (a) is introduced into water containing arsenic trivalent in step (b) and shaken for 23 to 25 hours,
    상기 마그네슘 화합물은 MgSO 4.7H 2O이고, 상기 철 화합물은 Fe 2(SO 4) 3.5H 2O이며,The magnesium compounds and MgSO 4 .7H 2 O, and the iron compound is Fe 2 (SO 4) 3 .5H 2 O,
    상기 철 화합물 100 중량부에 대해서 상기 마그네슘 화합물은 240 내지 250 중량부이며,The magnesium compound is 240 to 250 parts by weight based on 100 parts by weight of the iron compound,
    상기 (b) 단계에서, 투입되는 상기 비소 흡착제 100 중량부에 대해서 상기 비소 3가는 0.5 내지 10 중량부인 비소 제거방법.In the step (b), the arsenic trivalent is 0.5 to 10 parts by weight based on 100 parts by weight of the arsenic adsorbent is injected.
PCT/KR2018/005218 2017-05-26 2018-05-04 Method for preparing arsenic adsorbent, arsenic adsorbent prepared thereby, and method for removing arsenic using same arsenic adsorbent WO2018216925A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0065522 2017-05-26
KR1020170065522 2017-05-26

Publications (1)

Publication Number Publication Date
WO2018216925A1 true WO2018216925A1 (en) 2018-11-29

Family

ID=64396653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005218 WO2018216925A1 (en) 2017-05-26 2018-05-04 Method for preparing arsenic adsorbent, arsenic adsorbent prepared thereby, and method for removing arsenic using same arsenic adsorbent

Country Status (1)

Country Link
WO (1) WO2018216925A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013116465A (en) * 2011-10-31 2013-06-13 Jfe Steel Corp Material for reducing harmful element, and method for reducing harmful element
JP2013146660A (en) * 2012-01-18 2013-08-01 Chube Univ Cleaning agent and cleaning method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013116465A (en) * 2011-10-31 2013-06-13 Jfe Steel Corp Material for reducing harmful element, and method for reducing harmful element
JP2013146660A (en) * 2012-01-18 2013-08-01 Chube Univ Cleaning agent and cleaning method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAPORALE, ANTONIO GIANDONATO: "Mobility and Phyto-Availability of Arsenic in Soil-Plant System and Decontamination Techniques of Arsenic Polluted Areas", PH. D. DISSERTATION, UNIVERSITY OF NAPLES FEDETICO II, 2011, pages 1 - 201, XP055558050 *
KANG, DONGJUAN ET AL.: "Performance and Mechanism of Mg/Fe Layered Double Hydroxides for Fluoride and Arsenate Removal from Aqueous Solution", CHEMICAL ENGINEERING JOURNAL, vol. 228, 2013, pages 731 - 740, XP055558042 *
LI, FENG ET AL.: "Synthesis of Magnetic Nanocomposite MgO/MgFe2O4 from Mg-Fe Layered Double Hydroxides Precursors", JOURNAL OF MATERIAL SCIENCE, vol. 40, 2005, pages 1917 - 1922, XP055558044 *

Similar Documents

Publication Publication Date Title
Asere et al. Use of (modified) natural adsorbents for arsenic remediation: a review
Zhang et al. Robust phosphate capture over inorganic adsorbents derived from lanthanum metal organic frameworks
Chen et al. A novel Fe3+-stabilized magnetic polydopamine composite for enhanced selective adsorption and separation of Methylene blue from complex wastewater
Thirunavukkarasu et al. Arsenic removal from drinking water using iron oxide-coated sand
Iannicelli-Zubiani et al. Enhanced lanthanum adsorption by amine modified activated carbon
Zhang et al. A facile method to achieve dopamine polymerization in MOFs pore structure for efficient and selective removal of trace lead (II) ions from drinking water
Lenoble et al. As (V) retention and As (III) simultaneous oxidation and removal on a MnO2-loaded polystyrene resin
CN107311277B (en) Nanometer medicament for simultaneously removing arsenic, phosphorus and fluorine in water and preparation method thereof
WO2012165695A1 (en) Magnetite and birnessite aggregate-form mixture, synthesis method therefor, and water-treatment method using mixture
Darder et al. Silicate-based multifunctional nanostructured materials with magnetite and Prussian blue: application to cesium uptake
Reynier et al. Treatment of contaminated soil leachate by precipitation, adsorption and ion exchange
Peng et al. Modified nanoporous magnetic cellulose–chitosan microspheres for efficient removal of Pb (II) and methylene blue from aqueous solution
KR101890910B1 (en) A method for producing arsenic adsorbent, arsenic adsorbent prepared by the method and arsenic removal method using the arsenic adsorbent
Zhou et al. Removal of Pb (II) and Zn (II) from aqueous solutions by raw crab shell: a comparative study
JP2005028281A (en) Composite adsorbent and method for wastewater treatment by using the adsorbent
Guo et al. Facile fabrication of Fe/Zr binary MOFs for arsenic removal in water: High capacity, fast kinetics and good reusability
Wu et al. Dephosphorization using ceramsites modified by coprecipitation with FeSo4 and KMnO4 and high-temperature combustion
WO2015108347A1 (en) Heavy metal adsorption-removing method using expanded vermiculite
中平敦 et al. Synthesis of magnetic activated carbons for removal of environmental endocrine disrupter using magnetic vector
WO2018216925A1 (en) Method for preparing arsenic adsorbent, arsenic adsorbent prepared thereby, and method for removing arsenic using same arsenic adsorbent
Förstner et al. Geochemical demobilization of metallic pollutants in solid waste—implications for arsenic in waterworks sludges
Wang et al. Application and functionalization of toxic waste sludge-derived biochar for efficient phosphate separation from aqueous media: Toxicity diminution, robust adsorption, and inner mechanism
Vaishya et al. Coated sand filtration: An emerging technology for water treatment
KR20150024511A (en) A preparation method for hydrous ferric oxides/alginate composite and an adsorbent for the removal of heavy metals
Weerasekara et al. Synergistic combination of metal oxide adsorbents for enhanced fouling control and metal removal in a submerged membrane adsorber

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18805604

Country of ref document: EP

Kind code of ref document: A1