WO2018216760A1 - Touch controller, host device, and method - Google Patents

Touch controller, host device, and method Download PDF

Info

Publication number
WO2018216760A1
WO2018216760A1 PCT/JP2018/019961 JP2018019961W WO2018216760A1 WO 2018216760 A1 WO2018216760 A1 WO 2018216760A1 JP 2018019961 W JP2018019961 W JP 2018019961W WO 2018216760 A1 WO2018216760 A1 WO 2018216760A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
touch
data
touch detection
detection surface
Prior art date
Application number
PCT/JP2018/019961
Other languages
French (fr)
Japanese (ja)
Inventor
学雍 楊
哲夫 種村
Original Assignee
シナプティクス・ジャパン合同会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シナプティクス・ジャパン合同会社 filed Critical シナプティクス・ジャパン合同会社
Publication of WO2018216760A1 publication Critical patent/WO2018216760A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells

Definitions

  • the present disclosure relates to a touch controller, a display system, and a host device, and more particularly, to touch detection that detects contact of an object with a desired touch detection surface (for example, the surface of a touch panel).
  • a desired touch detection surface for example, the surface of a touch panel
  • a display module that combines a display panel and a touch panel is one of the most widely used user interfaces. By combining a touch panel as an input device with a display panel which is an output device, a highly convenient user interface can be realized.
  • a general touch panel is configured to detect contact of an object such as a human finger on a touch detection surface, but in recent years, not only contact of an object to the touch detection surface but also touch detection surface by contact.
  • Technology has been developed to sense the pressure acting on the surface. Sensing the pressure acting on the touch detection surface is suitable for providing an advanced user interface.
  • US Patent Application Publication No. 2016/0334917 discloses such a technique.
  • a normal force (Normal Force) acting in a direction perpendicular to the touch detection surface is detected, and an operation based on the magnitude of the detected normal force is performed. If information on the shearing force (Shear Force) acting on the touch detection surface is acquired and an operation corresponding to this information is performed, a more advanced user interface can be provided.
  • US Patent Application Publication No. 2016/0077638 discloses detection of shear force using a capacitive sensor.
  • the touch controller touches an analog front end that obtains a detection signal from a touch detection device having a touch detection surface, and the position and force point of the force point at which a force acts on the touch detection surface based on the detection signal.
  • an arithmetic unit configured to detect a force acting on the detection surface by the object.
  • the touch controller is set to the indentation detection state when the magnitude of the force acting on the touch detection surface exceeds a predetermined threshold.
  • the arithmetic device is configured to generate direction data corresponding to the direction of the shearing force acting on the touch detection surface in accordance with the change in the position of the applied force point when the touch controller is in the indentation detection state.
  • an interface for receiving touch detection data generated based on a detection signal acquired from a touch detection device having a touch detection surface, and display by user interface processing in response to the touch detection data And a processor for generating image data corresponding to an image displayed on the module.
  • the touch detection data includes action force data indicating the position of the force application point acting on the touch detection surface by the contact of the object and the magnitude of the force acting on the force application point.
  • the processor generates direction data indicating the direction of the shear force acting on the touch detection surface generated according to the change in position of the applied force point described in the applied force data, and image data according to the applied force data. Is configured to do.
  • the method obtains a detection signal from a touch detection device having a touch detection surface and, based on the detection signal, touch detection at the position of the force point on which the force acts on the touch detection surface and the force point Generate action force data indicating the force that the object acts on the surface, and push the arithmetic device into the detection state in response to the magnitude of the force that the object acts on the touch detection surface exceeds a predetermined threshold And generating direction data corresponding to the direction of the shearing force acting on the touch detection surface in accordance with a change in the position of the applied force point when the arithmetic device is in the indentation detection state.
  • FIG. 1 It is a block diagram which shows the structure of the display system in one Embodiment. It is a figure which illustrates the structure of the display panel in a display area. It is a figure which shows the structure of the touchscreen in this embodiment. It is a figure which shows notionally the touch detection in this embodiment. It is a figure explaining calculation of the x coordinate of an applied point. The state transition of the touch controller in the touch detection of this embodiment is shown. It is a figure which shows an example of operation
  • the display system 100 includes a display module 1, a touch controller built-in driver IC 2, and a host device 3.
  • the display module 1 includes a display panel 11 and a touch panel 12.
  • the display panel 11 includes a display area 13 and a scan driver circuit 14.
  • the display area 13 is an area where an image is displayed. As shown in FIG. 2, the display area 13 is provided with scanning lines 15, data lines 16, and pixel circuits 17.
  • the scan driver circuit 14 drives the scanning lines 15 provided in the display area 13.
  • the scan driver circuit 14 may be integrated on the display panel 11 using SOG (system-on-glass) technology.
  • the touch panel 12 is a touch detection device having a touch detection surface. When an object touches the touch detection surface, the touch panel 12 is configured to detect not only the fact of contact but also the force acting on the touch detection surface. . As shown in FIG. 3, the touch panel 12 includes detection capacitors 18 arranged in a matrix. The detection capacitors 18 are arranged close to the touch detection surface 12a, and each detection capacitor 18 is configured such that the capacitance changes when a force is applied to the touch detection surface 12a at a position where the detection capacitors 18 are close to each other. In one embodiment, the detection capacitor 18 has a pair of capacitor electrodes, and when a force is applied to a position close to the touch detection surface 12a, the distance between the capacitor electrodes changes. The capacity is configured to change. As will be described later, in the present embodiment, the force acting on the touch detection surface 12a is detected from the capacitance of each detection capacitor 18.
  • An xy orthogonal coordinate system is defined on the touch detection surface 12a of the touch panel 12.
  • the x axis is defined in the horizontal direction of the touch panel 12
  • the y axis is defined in the vertical direction.
  • the position on the touch detection surface 12a of the touch panel 12 can be specified by the x coordinate and the y coordinate.
  • FIG. 1 shows the display module 1 in which the display panel 11 and the touch panel 12 formed separately are combined, the display panel 11 and the touch panel 12 may be integrally formed.
  • the display module 1 in which the detection capacitor 18 is integrated on the display panel 11 may be used.
  • the touch controller built-in driver IC 2 drives the display panel 11 to display an image in the display area 13 of the display panel 11 and is based on a detection signal obtained from the detection capacitor 18 of the touch panel 12.
  • the semiconductor device is configured to perform touch detection.
  • the driver IC 2 with a built-in touch controller is simply referred to as “driver IC 2”.
  • the driver IC 2 includes a display driver 21 and a touch controller 22.
  • the display driver 21 and the touch controller 22 are monolithically integrated, that is, integrated on the same semiconductor chip.
  • the display driver 21 and the touch controller 22 may be integrated on separate semiconductor chips.
  • the display driver 21 includes a data driver circuit 23 and a panel interface circuit 24.
  • the data driver circuit 23 drives the data lines 16 of the display panel 11 in response to the image data received from the host device 3.
  • the panel interface circuit 24 generates a scan control signal for controlling the scan driver circuit 14 of the display panel 11 and supplies the scan control signal to the scan driver circuit 14.
  • the touch controller 22 includes an analog front end 25 and an arithmetic device 26.
  • the analog front end 25 acquires an analog detection signal from the detection capacitor 18 of the touch panel 12 and performs analog-digital conversion on the acquired analog detection signal to generate ADC data that is digital data.
  • the ADC data includes capacitance data indicating the capacitance of each detection capacitor 18.
  • the generated ADC data is supplied to the arithmetic unit 26.
  • the arithmetic device 26 performs arithmetic processing for touch detection on the ADC data received from the analog front end 25, and generates touch detection data indicating the result of touch detection.
  • an MCU micro control unit
  • the touch detection data generated by the arithmetic device 26 is transmitted to the host device 3.
  • the host device 3 supplies image data to the display driver 21 of the driver IC 2 and performs user interface processing based on the touch detection data received from the touch controller 22.
  • the user interface process includes, for example, a process for recognizing an operation performed by the user on the touch panel 12 and a process for generating an image to be presented to the user on the display panel 11.
  • the host device 3 includes a processor 31, a storage device 32, and an interface 33.
  • the processor 31 executes control software 34 stored in the storage device 32, and performs various operations for controlling the display system 100, for example, generation of image data supplied to the display driver 21.
  • the storage device 32 stores control software 34.
  • the control software 34 includes a UI control module 34a, and user interface processing is realized by the processor 31 executing the UI control module 34a.
  • the interface 33 transmits and receives data between the driver IC 2 and the host device 3. Specifically, the interface 33 transmits image data generated by the processor 31 to the driver IC 2 and receives touch detection data from the driver IC 2.
  • the display system 100 is configured to perform touch detection that senses contact of an object 4, for example, a human finger, with respect to the touch detection surface 12 a of the touch panel 12. .
  • touch detection the magnitude of the force that the object 4 acts by touching the touch detection surface 12a based on the capacity data included in the ADC data generated by the analog front end 25, and the touch detection surface 12a
  • force application point The coordinates of the force application point (force application point), which is the point where the force acts, are detected.
  • the coordinates of the force point may be detected by function fitting. As shown in FIG. 5, in one embodiment, the x coordinate of the force point performs function fitting on the capacitance data of a predetermined number of adjacent detection capacitors 18 including the detection capacitors 18 having the maximum capacitance data value. You may calculate by.
  • FIG. 5 shows a technique for calculating the x-coordinate of the applied force from the (n ⁇ 1) th, nth, and n + 1th detection capacitors 18 from the left in a specific row of the detection capacitors 18.
  • the value of the capacitance data of the nth detection capacitor 18 takes a maximum value.
  • A is a constant corresponding to the width of the range of the capacity data
  • w x is a constant corresponding to the peak width of f (x).
  • the number of detection capacitors 18 used for calculating the x-coordinate of the force point is not limited to 3, but may be 4 or more.
  • x coordinates x F fitting is performed force application point using function f (x) by a suitable technique is calculated.
  • the y-coordinate of the force point can be calculated by the same method.
  • the normal force acting in a direction perpendicular to the touch detection surface 12a of the touch panel 12 (Normal Force) not F N Information only
  • the shear force acting on the plane direction of the touch detection surface 12a (Shear Force ) Information about F S is acquired.
  • Analog detection signals obtained from the detection capacitor 18 of the touch panel 12 is dependent on the capacitance of each of the detection capacitor 18, the capacitance of each detection capacitor 18 is dependent on the normal force F N.
  • the touch detection is performed based on the volume data included in the ADC data generated from the analog detection signals obtained from the detection capacitor 18, basically, that the information about the normal force F N is obtained Become.
  • information on the shear force F S is acquired from the change in the coordinates of the force application point. If the coordinates of the force applied point is changed temporally, change of coordinates is generally represents the direction acting shear force F S, also the force acting on the touch detection surface 12a in this case is the shear force F S You may think that it contains.
  • a change in the coordinates of the force applied points, and the force acting on the touch detection surface 12a when the coordinates of the force applied point is changed is acquired as the information about the shear force F S.
  • the object 4 for example, the finger of a human body
  • the object 4 is touch detection surface 12a.
  • a shear force acting on the touch detection surface 12a infos (shear force) F S is obtained.
  • the touch controller 22 In a state where no object is in contact with the touch panel 12, the touch controller 22 is set to a touch non-detection state.
  • the computing device 26 monitors the contact of an object with the touch detection surface 12a of the touch panel 12 based on the ADC data received from the analog front end 25. During this time, the touch controller 22 transmits touch detection data indicating that the touch controller 22 is in a touch non-detection state to the host device 3.
  • the touch controller 22 shifts to a touch detection state.
  • the touch detection state the magnitude F of the force acting when the object 4 is in contact with the touch detection surface 12a and the coordinates (x, y) of the position of the force point where the force acts are detected based on the ADC data.
  • the arithmetic device 26 generates action force data describing the magnitude F of force and the coordinates (x, y) of the position of the force point, and transmits touch detection data including the action force data to the host device 3.
  • the touch detection data transmitted to the host device 3 at this time may include data indicating that the touch controller 22 has shifted to the touch detection state.
  • the size F is 2.86 N, and the coordinates (x, y) of the position of the applied force point at which the force acts are detected as (506, 823).
  • an operation of further pressing is detected.
  • the arithmetic device 26 detects that the magnitude F of the force acting on the touch detection surface 12a when the touch controller 22 is in the touch detection state exceeds the predetermined threshold Th1
  • the touch controller 22 Shifts to the push-in detection state.
  • the push detection state, the arithmetic unit 26, in response to changes in the coordinates of the position of the force applied points (x, y), information related to the shear force F S acting on the touch detection surface 12a, and more specifically, shear Direction data indicating the direction of the force F S is generated, and touch detection data including the generated direction data is generated.
  • touch detection is performed as follows.
  • the coordinates of the position of the force point at the current time t i are (x i , y i ), and the coordinates of the position of the force point at the time t i-1 prior to the current time t i are (x i ⁇ 1 , y i). -1 ).
  • the current time t i is a time when the touch controller 22 is in the push detection state, but if the time t i-1 is before the current time t i , the time when the touch controller 22 is in the push detection state.
  • Arithmetic unit 26 the change in position of the force applied points, more specifically, the coordinates of the position of the force applied point at the current time t i (x i, y i ) and before the current time t i the time t i-
  • the difference ( ⁇ x, ⁇ y) between the coordinates of the position of the applied force point at 1 and (x i ⁇ 1 , y i ⁇ 1 ) is calculated.
  • ⁇ x x i ⁇ x i ⁇ 1 (2a)
  • ⁇ y y i ⁇ y i ⁇ 1 (2b) It is.
  • the arithmetic unit 26 generates direction data in addition to the acting force data describing the magnitude F of force and the coordinates (x, y) of the applied point.
  • Direction data includes information corresponding to the direction of the shear force F S, is generated based on the difference ( ⁇ x, ⁇ y).
  • arctan is an arc tangent function.
  • the direction data may be generated as data describing the difference ( ⁇ x, ⁇ y) itself.
  • the computing device 26 generates touch detection data including the generated action force data and direction data, and transmits the generated touch detection data to the host device 3.
  • the touch detection data transmitted to the host device 3 at this time may include data indicating that the touch controller 22 has shifted to the push-in detection state.
  • the arithmetic unit 26 does not generate the direction data, but generates only the force data describing the magnitude F of the force and the coordinates (x, y) of the force point.
  • the arithmetic device 26 transmits touch detection data including the action force data and not including the direction data to the host device 3.
  • the touch controller 22 shifts from the touch detection state to the push detection state.
  • the threshold value Th1 is 5.00N
  • the threshold value Th2 is 15.
  • the touch controller 22 shifts to the push-in detection state.
  • the difference ( ⁇ x, ⁇ y) in the coordinates of the force points is calculated.
  • of ⁇ x is larger than the threshold Th2.
  • the direction data is generated by the arithmetic unit 26 in addition to the acting force data. Touch detection data including the generated action force data and direction data is transmitted to the host device 3.
  • the host device 3 receives touch detection data from the touch controller 22 and performs user interface processing based on the touch detection data. As described above, the user interface process is executed by the processor 31 executing the UI control module 34a.
  • touch detection data including direction data is transmitted to the host device 3, the direction data is used in user interface processing in the host device 3.
  • One useful application of the direction data included in the touch detection data is movement of a pointer displayed in the display area 13 of the display panel 11. Referring to FIG. 8 illustrating an example of the pointer 13a displayed in the display area 13, when the user performs an operation of pushing the touch detection surface 12a, the pointer 13a is moved in response to the action force data and the direction data.
  • a highly convenient user interface can be realized.
  • the moving direction in which the pointer 13a moves is determined according to the direction data, and the moving speed at which the pointer 13a moves is determined. It may be determined by the magnitude F of the force described in the applied force data.
  • the processor 31 of the host apparatus 3 determines the image element, for example, the pointer 13a in the moving direction determined according to the direction data, according to the magnitude F of the force described in the applied force data. Image data is generated so as to move at the moving speed, and is transmitted to the display driver 21 of the driver IC 2.
  • the moving speed v of the pointer 13a may be determined so as to increase monotonously with respect to the force magnitude F described in the acting force data.
  • the moving speed v of the pointer 13a may be determined as being proportional to the magnitude F of force.
  • the moving speed v may be determined according to the following formula (4).
  • v K V F (4)
  • K V is a constant.
  • the touch controller 22 detects an operation of pushing the touch detection surface 12a, and further generates touch detection data including action force data and direction data when the push operation is detected.
  • the detection of the operation of pushing the touch detection surface 12a and the generation of the subsequent direction data may be performed in the user interface process in the host device 3.
  • the state transition illustrated in FIG. 6 is performed in a user interface process executed in the host device 3. More specifically, the display system 100 operates as follows.
  • the touch controller 22 transmits touch detection data indicating that no object is in contact to the host device 3. In this case, the user interface process is set to a touch non-detected state.
  • the touch controller 22 When the touch controller 22 detects contact of an object with the touch detection surface 12a of the touch panel 12, the touch controller 22 generates action force data describing the magnitude F of force and the coordinates (x, y) of the force point, and the action force data. Is transmitted to the host device 3. In response to the touch detection data including the action force data, the user interface process is set to the touch detection state. Thereafter, as long as contact of an object with the touch detection surface 12a of the touch panel 12 is detected, the touch controller 22 continues to transmit touch detection data including action force data to the host device 3.
  • the processor 31 of the host device 3 detects an operation of pushing the touch detection surface 12a after an object, for example, a human finger 5 comes into contact with the touch detection surface 12a, based on the action force data included in the touch detection data. Specifically, when the processor 31 detects that the magnitude F of the force acting on the touch detection surface 12a when the user interface process is in the touch detection state exceeds the predetermined threshold Th1, the user interface process is , Transition to the push-in detection state.
  • the push detection state, the processor 31, in response to changes in the force applied point of coordinates (x, y), information related to the shear force F S acting on the touch detection surface 12a, and more specifically, the shearing force F S
  • the direction data indicating the direction of the is generated.
  • the indent detection state user interface processing is performed as follows.
  • the coordinates of the force point at the current time t i are (x i , y i ), and the coordinates of the force point at the time t i-1 before the current time t i are (x i-1 , y i-1 ).
  • the current time t i is the time when the user interface process is in the indentation detection state, but if the time t i-1 is before the current time t i , the time when the user interface process is in the indentation detection state
  • the time in the touch detection state may be used.
  • the processor 31 changes the coordinates (x, y) of the force point, more specifically, the coordinates of the force point at the current time t i (x i , y i ) and the time t before the current time t i. the coordinates of the force application point in i-1 to calculate the (x i-1, y i-1) and the difference ( ⁇ x, ⁇ y). As described above, the difference ( ⁇ x, ⁇ y) is calculated according to equations (2a) and (2b).
  • the processor 31 If any one of the absolute values
  • the processor 31 generates direction data based on the difference ( ⁇ x, ⁇ y).
  • the direction data may be generated as data describing ⁇ calculated according to the above equation (3) from the difference ( ⁇ x, ⁇ y).
  • the direction data may be generated as data describing the difference ( ⁇ x, ⁇ y) itself. As described above, the generated direction data may be used to move the pointer 13a displayed on the display panel 11, for example.

Abstract

A touch controller comprising an analog front end for acquiring a detection signal from a touch detection device having a touch detection surface, and a computation device configured so as to detect, on the basis of the detection signal, the position of a force application point where force acts on the touch detection surface and the force with which an object acts on the touch detection surface at the force application point. The touch controller is set to a pressing detection state when the magnitude of the force with which the object acts on the touch detection surface exceeds a prescribed threshold value. The computation device is configured such that when the touch controller is in the pressing detection state, direction data corresponding to the direction of shear force acting on the touch detection surface is generated in accordance with a change in the position of the force application point.

Description

タッチコントローラ、ホスト装置及び方法Touch controller, host device and method
 本開示は、タッチコントローラ、表示システム及びホスト装置に関し、特に、所望のタッチ検出面(例えば、タッチパネルの表面)への物体の接触を検出するタッチ検出(touch sensing)に関する。 The present disclosure relates to a touch controller, a display system, and a host device, and more particularly, to touch detection that detects contact of an object with a desired touch detection surface (for example, the surface of a touch panel).
 表示パネルとタッチパネルとを組み合わせた表示モジュールは、最も広く用いられるユーザインタフェースの一つである。出力デバイスである表示パネルにタッチパネルを入力デバイスとして組み合わせることで、利便性の高いユーザインタフェースを実現することができる。 A display module that combines a display panel and a touch panel is one of the most widely used user interfaces. By combining a touch panel as an input device with a display panel which is an output device, a highly convenient user interface can be realized.
 一般的なタッチパネルは、タッチ検出面への物体、例えば、人体の指の接触を検出するように構成されるが、近年では、タッチ検出面への物体の接触のみならず、接触によりタッチ検出面に作用する圧力を感知する技術が開発されている。タッチ検出面に作用する圧力を感知することは、高度なユーザインタフェースの提供に好適である。米国特許出願公開第2016/0334917号は、このような技術を開示している。 A general touch panel is configured to detect contact of an object such as a human finger on a touch detection surface, but in recent years, not only contact of an object to the touch detection surface but also touch detection surface by contact. Technology has been developed to sense the pressure acting on the surface. Sensing the pressure acting on the touch detection surface is suitable for providing an advanced user interface. US Patent Application Publication No. 2016/0334917 discloses such a technique.
 タッチ検出の一例では、タッチ検出面に垂直な方向に作用する法線力(Normal Force)が感知され、感知した法線力の大きさに基づいた動作が行われる。タッチ検出面に作用するせん断力(Shear Force)に関する情報を取得し、この情報に応じた動作を行えば、一層に高度なユーザインタフェースを提供することができる。 In an example of touch detection, a normal force (Normal Force) acting in a direction perpendicular to the touch detection surface is detected, and an operation based on the magnitude of the detected normal force is performed. If information on the shearing force (Shear Force) acting on the touch detection surface is acquired and an operation corresponding to this information is performed, a more advanced user interface can be provided.
 米国特許出願公開第2016/0077638号は、容量センサを用いたせん断力の検出について開示している。 US Patent Application Publication No. 2016/0077638 discloses detection of shear force using a capacitive sensor.
米国特許出願公開第2016/0334917号US Patent Application Publication No. 2016/0334917 米国特許出願公開第2016/0077638号US Patent Application Publication No. 2016/0077638
 一実施形態では、タッチコントローラが、タッチ検出面を有するタッチ検出デバイスから検出信号を取得するアナログフロントエンドと、検出信号に基づいてタッチ検出面に力が作用する着力点の位置及び着力点においてタッチ検出面に物体が作用する力を検出するように構成された演算装置とを具備する。タッチコントローラは、タッチ検出面に物体が作用する力の大きさが所定の閾値を超えたことに応じて押し込み検出状態に設定される。演算装置は、タッチコントローラが押し込み検出状態にあるときに、着力点の位置の変化に応じて、タッチ検出面に作用するせん断力の方向に対応する方向データを生成するように構成されている。 In one embodiment, the touch controller touches an analog front end that obtains a detection signal from a touch detection device having a touch detection surface, and the position and force point of the force point at which a force acts on the touch detection surface based on the detection signal. And an arithmetic unit configured to detect a force acting on the detection surface by the object. The touch controller is set to the indentation detection state when the magnitude of the force acting on the touch detection surface exceeds a predetermined threshold. The arithmetic device is configured to generate direction data corresponding to the direction of the shearing force acting on the touch detection surface in accordance with the change in the position of the applied force point when the touch controller is in the indentation detection state.
 本発明の更に他の観点では、タッチ検出面を有するタッチ検出デバイスから取得した検出信号に基づいて生成されたタッチ検出データを受け取るインタフェースと、タッチ検出データに応答して応じたユーザインタフェース処理により表示モジュールに表示される画像に対応する画像データを生成するプロセッサとを具備する。タッチ検出データは、物体の接触によってタッチ検出面に作用する力の着力点の位置及び着力点に作用する力の大きさを示す作用力データを含む。プロセッサは、作用力データに記述された着力点の位置の変化に応じて生成されたタッチ検出面に作用するせん断力の方向を示す方向データと、前記作用力データとに応じて画像データを生成するように構成されている。 In still another aspect of the present invention, an interface for receiving touch detection data generated based on a detection signal acquired from a touch detection device having a touch detection surface, and display by user interface processing in response to the touch detection data And a processor for generating image data corresponding to an image displayed on the module. The touch detection data includes action force data indicating the position of the force application point acting on the touch detection surface by the contact of the object and the magnitude of the force acting on the force application point. The processor generates direction data indicating the direction of the shear force acting on the touch detection surface generated according to the change in position of the applied force point described in the applied force data, and image data according to the applied force data. Is configured to do.
 他の実施形態では、方法が、タッチ検出面を有するタッチ検出デバイスから検出信号を取得することと、検出信号に基づいて、タッチ検出面に力が作用する着力点の位置及び着力点においてタッチ検出面に物体が作用する力を示す作用力データを生成することと、タッチ検出面に物体が作用する力の大きさが所定の閾値を超えたことに応じて演算装置を押し込み検出状態に移行することと、演算装置が押し込み検出状態にあるときに、着力点の位置の変化に応じて、タッチ検出面に作用するせん断力の方向に対応する方向データを生成することとを含む。 In another embodiment, the method obtains a detection signal from a touch detection device having a touch detection surface and, based on the detection signal, touch detection at the position of the force point on which the force acts on the touch detection surface and the force point Generate action force data indicating the force that the object acts on the surface, and push the arithmetic device into the detection state in response to the magnitude of the force that the object acts on the touch detection surface exceeds a predetermined threshold And generating direction data corresponding to the direction of the shearing force acting on the touch detection surface in accordance with a change in the position of the applied force point when the arithmetic device is in the indentation detection state.
一実施形態における表示システムの構成を示すブロック図である。It is a block diagram which shows the structure of the display system in one Embodiment. 表示領域における表示パネルの構成を図示する図である。It is a figure which illustrates the structure of the display panel in a display area. 本実施形態におけるタッチパネルの構成を示す図である。It is a figure which shows the structure of the touchscreen in this embodiment. 本実施形態におけるタッチ検出を概念的に示す図である。It is a figure which shows notionally the touch detection in this embodiment. 着力点のx座標の算出について説明する図である。It is a figure explaining calculation of the x coordinate of an applied point. 本実施形態のタッチ検出におけるタッチコントローラの状態遷移を示している。The state transition of the touch controller in the touch detection of this embodiment is shown. タッチ検出状態及び押し込み検出状態におけるタッチコントローラの動作の一例を示す図である。It is a figure which shows an example of operation | movement of the touch controller in a touch detection state and a pushing detection state. 表示領域に表示されるポインタの一例を示す図である。It is a figure which shows an example of the pointer displayed on a display area.
 以下、添付図面を参照しながら、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1に示すように、一実施形態では、表示システム100が、表示モジュール1と、タッチコントローラ内蔵ドライバIC2と、ホスト装置3とを備えている。 As shown in FIG. 1, in one embodiment, the display system 100 includes a display module 1, a touch controller built-in driver IC 2, and a host device 3.
 表示モジュール1は、表示パネル11と、タッチパネル12とを備えている。 The display module 1 includes a display panel 11 and a touch panel 12.
 表示パネル11は、表示領域13とスキャンドライバ回路14とを備えている。表示領域13は、画像が表示される領域である。図2に図示されているように、表示領域13には、走査線15とデータ線16と画素回路17とが設けられている。スキャンドライバ回路14は、表示領域13に設けられた走査線15を駆動する。スキャンドライバ回路14は、SOG(system on glass)技術を用いて表示パネル11に集積化されてもよい。 The display panel 11 includes a display area 13 and a scan driver circuit 14. The display area 13 is an area where an image is displayed. As shown in FIG. 2, the display area 13 is provided with scanning lines 15, data lines 16, and pixel circuits 17. The scan driver circuit 14 drives the scanning lines 15 provided in the display area 13. The scan driver circuit 14 may be integrated on the display panel 11 using SOG (system-on-glass) technology.
 タッチパネル12は、タッチ検出面を有するタッチ検出デバイスであり、該タッチ検出面に物体が接触すると、接触した事実のみならず、タッチ検出面に作用した力が検出可能であるように構成されている。図3に示すように、タッチパネル12は、行列に配置された検出キャパシタ18を備えている。検出キャパシタ18は、タッチ検出面12aに近接して配置されており、各検出キャパシタ18は、それが近接する位置においてタッチ検出面12aに力が作用すると容量が変化するように構成されている。一実施形態では、検出キャパシタ18が、一対のキャパシタ電極を有しており、タッチ検出面12aの近接する位置に力が作用すると該キャパシタ電極の間の距離が変化し、これにより検出キャパシタ18の容量が変化するように構成される。後述されるように、本実施形態では、各検出キャパシタ18の容量から、タッチ検出面12aに作用する力が検出される。 The touch panel 12 is a touch detection device having a touch detection surface. When an object touches the touch detection surface, the touch panel 12 is configured to detect not only the fact of contact but also the force acting on the touch detection surface. . As shown in FIG. 3, the touch panel 12 includes detection capacitors 18 arranged in a matrix. The detection capacitors 18 are arranged close to the touch detection surface 12a, and each detection capacitor 18 is configured such that the capacitance changes when a force is applied to the touch detection surface 12a at a position where the detection capacitors 18 are close to each other. In one embodiment, the detection capacitor 18 has a pair of capacitor electrodes, and when a force is applied to a position close to the touch detection surface 12a, the distance between the capacitor electrodes changes. The capacity is configured to change. As will be described later, in the present embodiment, the force acting on the touch detection surface 12a is detected from the capacitance of each detection capacitor 18.
 タッチパネル12のタッチ検出面12aには、xy直交座標系が規定されている。図3では、タッチパネル12の横方向にx軸が定義され、縦方向にy軸が定義される。タッチパネル12のタッチ検出面12aにおける位置は、x座標及びy座標によって特定することができる。 An xy orthogonal coordinate system is defined on the touch detection surface 12a of the touch panel 12. In FIG. 3, the x axis is defined in the horizontal direction of the touch panel 12, and the y axis is defined in the vertical direction. The position on the touch detection surface 12a of the touch panel 12 can be specified by the x coordinate and the y coordinate.
 なお、図1には、別体に形成された表示パネル11とタッチパネル12とが組み合わされた表示モジュール1が図示されているが、表示パネル11とタッチパネル12とが一体に形成されてもよい。例えば、検出キャパシタ18が表示パネル11に集積化された表示モジュール1が用いられてもよい。 Although FIG. 1 shows the display module 1 in which the display panel 11 and the touch panel 12 formed separately are combined, the display panel 11 and the touch panel 12 may be integrally formed. For example, the display module 1 in which the detection capacitor 18 is integrated on the display panel 11 may be used.
 図1を再度に参照して、タッチコントローラ内蔵ドライバIC2は、表示パネル11を駆動して表示パネル11の表示領域13に画像を表示すると共に、タッチパネル12の検出キャパシタ18から得られる検出信号に基づいてタッチ検出を行うように構成されている半導体装置である。なお、以下では、タッチコントローラ内蔵ドライバIC2を、単に「ドライバIC2」と記載する。 Referring to FIG. 1 again, the touch controller built-in driver IC 2 drives the display panel 11 to display an image in the display area 13 of the display panel 11 and is based on a detection signal obtained from the detection capacitor 18 of the touch panel 12. The semiconductor device is configured to perform touch detection. Hereinafter, the driver IC 2 with a built-in touch controller is simply referred to as “driver IC 2”.
 ドライバIC2は、表示ドライバ21とタッチコントローラ22とを備えている。本実施形態では、表示ドライバ21とタッチコントローラ22とが、モノリシックに、即ち、同一の半導体チップに集積化されている。ただし、表示ドライバ21とタッチコントローラ22とは、別々の半導体チップに集積化されてもよい。 The driver IC 2 includes a display driver 21 and a touch controller 22. In the present embodiment, the display driver 21 and the touch controller 22 are monolithically integrated, that is, integrated on the same semiconductor chip. However, the display driver 21 and the touch controller 22 may be integrated on separate semiconductor chips.
 表示ドライバ21は、データドライバ回路23とパネルインタフェース回路24とを備えている。データドライバ回路23は、ホスト装置3から受け取った画像データに応答して表示パネル11のデータ線16を駆動する。パネルインタフェース回路24は、表示パネル11のスキャンドライバ回路14を制御するスキャン制御信号を生成してスキャンドライバ回路14に供給する。 The display driver 21 includes a data driver circuit 23 and a panel interface circuit 24. The data driver circuit 23 drives the data lines 16 of the display panel 11 in response to the image data received from the host device 3. The panel interface circuit 24 generates a scan control signal for controlling the scan driver circuit 14 of the display panel 11 and supplies the scan control signal to the scan driver circuit 14.
 タッチコントローラ22は、アナログフロントエンド25と演算装置26とを備えている。アナログフロントエンド25は、タッチパネル12の検出キャパシタ18からアナログ検出信号を取得し、取得したアナログ検出信号に対してアナログ-デジタル変換を行ってデジタルデータであるADCデータを生成する。本実施形態では、ADCデータは、検出キャパシタ18のそれぞれの容量を示す容量データを含んでいる。生成されたADCデータは、演算装置26に供給される。演算装置26は、アナログフロントエンド25から受け取ったADCデータに対してタッチ検出のための演算処理を行い、タッチ検出の結果を示すタッチ検出データを生成する。演算装置26としては、例えば、MCU(micro control unit)が使用され得る。演算装置26によって生成されたタッチ検出データは、ホスト装置3に送信される。 The touch controller 22 includes an analog front end 25 and an arithmetic device 26. The analog front end 25 acquires an analog detection signal from the detection capacitor 18 of the touch panel 12 and performs analog-digital conversion on the acquired analog detection signal to generate ADC data that is digital data. In the present embodiment, the ADC data includes capacitance data indicating the capacitance of each detection capacitor 18. The generated ADC data is supplied to the arithmetic unit 26. The arithmetic device 26 performs arithmetic processing for touch detection on the ADC data received from the analog front end 25, and generates touch detection data indicating the result of touch detection. As the arithmetic unit 26, for example, an MCU (micro control unit) can be used. The touch detection data generated by the arithmetic device 26 is transmitted to the host device 3.
 ホスト装置3は、ドライバIC2の表示ドライバ21に画像データを供給すると共に、タッチコントローラ22から受け取ったタッチ検出データに基づいて、ユーザインタフェース処理を行う。ユーザインタフェース処理は、例えば、ユーザがタッチパネル12に対して行った操作の認識のための処理や、表示パネル11においてユーザに提示する画像の生成のための処理を含んでいる。ホスト装置3は、プロセッサ31と、記憶装置32と、インタフェース33とを備えている。 The host device 3 supplies image data to the display driver 21 of the driver IC 2 and performs user interface processing based on the touch detection data received from the touch controller 22. The user interface process includes, for example, a process for recognizing an operation performed by the user on the touch panel 12 and a process for generating an image to be presented to the user on the display panel 11. The host device 3 includes a processor 31, a storage device 32, and an interface 33.
 プロセッサ31は、記憶装置32に格納されている制御ソフトウェア34を実行し、表示システム100の制御のための様々な演算、例えば、表示ドライバ21に供給される画像データの生成を行う。 The processor 31 executes control software 34 stored in the storage device 32, and performs various operations for controlling the display system 100, for example, generation of image data supplied to the display driver 21.
 記憶装置32は、制御ソフトウェア34を格納している。制御ソフトウェア34は、UI制御モジュール34aを含んでおり、ユーザインタフェース処理は、プロセッサ31がUI制御モジュール34aを実行することによって実現される。 The storage device 32 stores control software 34. The control software 34 includes a UI control module 34a, and user interface processing is realized by the processor 31 executing the UI control module 34a.
 インタフェース33は、ドライバIC2とホスト装置3の間でデータの送受信を行う。具体的には、インタフェース33は、プロセッサ31によって生成された画像データをドライバIC2に送信すると共に、ドライバIC2からタッチ検出データを受け取る。 The interface 33 transmits and receives data between the driver IC 2 and the host device 3. Specifically, the interface 33 transmits image data generated by the processor 31 to the driver IC 2 and receives touch detection data from the driver IC 2.
 続いて、本実施形態の表示システム100の動作を説明する。本実施形態の表示システム100は、図4に図示されているように、タッチパネル12のタッチ検出面12aに対する物体4、例えば、人間の指の接触を感知するタッチ検出を行うように構成されている。本実施形態のタッチ検出では、アナログフロントエンド25によって生成されるADCデータに含まれる容量データに基づいて、物体4がタッチ検出面12aに接触して作用する力の大きさと、タッチ検出面12aにおいて当該力が作用する点である着力点(force application point)の座標とが検出される。 Subsequently, the operation of the display system 100 of the present embodiment will be described. As shown in FIG. 4, the display system 100 according to the present embodiment is configured to perform touch detection that senses contact of an object 4, for example, a human finger, with respect to the touch detection surface 12 a of the touch panel 12. . In the touch detection according to the present embodiment, the magnitude of the force that the object 4 acts by touching the touch detection surface 12a based on the capacity data included in the ADC data generated by the analog front end 25, and the touch detection surface 12a The coordinates of the force application point (force application point), which is the point where the force acts, are detected.
 着力点の座標の検出は、一実施形態では、関数フィッティングによって行ってもよい。図5に示すように、一実施形態では、着力点のx座標が、容量データの値が極大となる検出キャパシタ18を含む所定数の隣接する検出キャパシタ18の容量データに対して関数フィッティングを行うことで算出してもよい。 In one embodiment, the coordinates of the force point may be detected by function fitting. As shown in FIG. 5, in one embodiment, the x coordinate of the force point performs function fitting on the capacitance data of a predetermined number of adjacent detection capacitors 18 including the detection capacitors 18 having the maximum capacitance data value. You may calculate by.
 図5には、検出キャパシタ18の特定の行の、左からn-1番目、n番目、n+1番目の検出キャパシタ18から着力点のx座標を算出する手法が図示されている。ここで、n番目の検出キャパシタ18の容量データの値が極大値をとるものとする。n-1番目、n番目、n+1番目の検出キャパシタ18の容量データの値を、それぞれ、Zn-1、Z、Zn+1とし、n-1番目、n番目、n+1番目の検出キャパシタ18の座標が、それぞれ、xn-1、x、xn+1であるとして、着力点のx座標xは、下記の関数f(x):
Figure JPOXMLDOC01-appb-M000001
について、
 f(xn-1)=Zn-1
 f(x)=Z
 f(xn+1)=Zn+1
を成立させるようなxとして算出してもよい。ここで、Aは、容量データの値域の幅に対応する定数であり、wは、f(x)のピークの幅に対応する定数である。なお、着力点のx座標の算出に用いられる検出キャパシタ18の数は、3に限定されず、4以上であってもよい。この場合、適宜の手法により関数f(x)を用いたフィッティングが行われて着力点のx座標xが算出される。
FIG. 5 shows a technique for calculating the x-coordinate of the applied force from the (n−1) th, nth, and n + 1th detection capacitors 18 from the left in a specific row of the detection capacitors 18. Here, it is assumed that the value of the capacitance data of the nth detection capacitor 18 takes a maximum value. (n-1) th, n th, the value of the capacity data of the (n + 1) th detection capacitor 18, respectively, and Z n-1, Z n, and Z n + 1, n-1-th, n-th, (n + 1) th detection capacitor 18 Assuming that the coordinates are x n−1 , x n , and x n + 1 , respectively, the x coordinate x F of the applied point is represented by the following function f (x):
Figure JPOXMLDOC01-appb-M000001
about,
f (x n-1 ) = Z n-1
f (x n ) = Z n
f (x n + 1 ) = Z n + 1
It may be calculated as x F as to establish. Here, A is a constant corresponding to the width of the range of the capacity data, and w x is a constant corresponding to the peak width of f (x). The number of detection capacitors 18 used for calculating the x-coordinate of the force point is not limited to 3, but may be 4 or more. In this case, x coordinates x F fitting is performed force application point using function f (x) by a suitable technique is calculated.
 同様の手法により、着力点のy座標も算出可能である。 The y-coordinate of the force point can be calculated by the same method.
 本実施形態では、タッチパネル12のタッチ検出面12aに垂直な方向に作用する法線力(Normal Force)Fに関する情報のみならず、タッチ検出面12aの面内方向に作用するせん断力(Shear Force)Fに関する情報が取得される。タッチパネル12の各検出キャパシタ18から得られるアナログ検出信号は各検出キャパシタ18の容量に依存しており、各検出キャパシタ18の容量は法線力Fに依存している。よって、各検出キャパシタ18から得られたアナログ検出信号から生成されたADCデータに含まれる容量データに基づいて行われるタッチ検出では、基本的には、法線力Fに関する情報が得られることになる。加えて、本実施形態のタッチ検出では、着力点(force application point)の座標の変化から、せん断力Fに関する情報が取得される。着力点の座標が時間的に変化した場合、座標の変化は、概ね、せん断力Fが作用する方向を表しており、また、このときにタッチ検出面12aに作用する力はせん断力Fを含んでいると考えてよい。本実施形態では、着力点の座標の変化と、着力点の座標が変化したときにタッチ検出面12aに作用する力とが、せん断力Fに関する情報として取得される。このような情報に基づいたユーザインタフェース処理を行うことで、高度なユーザインタフェースを提供することができる。 In the present embodiment, the normal force acting in a direction perpendicular to the touch detection surface 12a of the touch panel 12 (Normal Force) not F N Information only, the shear force acting on the plane direction of the touch detection surface 12a (Shear Force ) Information about F S is acquired. Analog detection signals obtained from the detection capacitor 18 of the touch panel 12 is dependent on the capacitance of each of the detection capacitor 18, the capacitance of each detection capacitor 18 is dependent on the normal force F N. Thus, the touch detection is performed based on the volume data included in the ADC data generated from the analog detection signals obtained from the detection capacitor 18, basically, that the information about the normal force F N is obtained Become. In addition, in the touch detection of the present embodiment, information on the shear force F S is acquired from the change in the coordinates of the force application point. If the coordinates of the force applied point is changed temporally, change of coordinates is generally represents the direction acting shear force F S, also the force acting on the touch detection surface 12a in this case is the shear force F S You may think that it contains. In the present embodiment, a change in the coordinates of the force applied points, and the force acting on the touch detection surface 12a when the coordinates of the force applied point is changed, is acquired as the information about the shear force F S. By performing user interface processing based on such information, an advanced user interface can be provided.
 本実施形態におけるタッチ検出方法、より具体的には、タッチ検出におけるタッチコントローラ22の状態遷移を示す図6を参照して、本実施形態では、物体4、例えば、人体の指がタッチ検出面12aに接触した後、更に、タッチ検出面12aに押し込まれた場合について、タッチ検出面12aに作用するせん断力(Shear Force)Fに関する情報が取得される。 With reference to FIG. 6 which shows the touch detection method in this embodiment, and more specifically, the state transition of the touch controller 22 in touch detection, in this embodiment, the object 4, for example, the finger of a human body, is touch detection surface 12a. after contact with the further case it pushed into the touch detection surface 12a, a shear force acting on the touch detection surface 12a infos (shear force) F S is obtained.
 タッチパネル12に何らの物体も接触していない状態では、タッチコントローラ22は、タッチ非検出状態に設定される。タッチ非検出状態では、演算装置26は、アナログフロントエンド25から受け取ったADCデータに基づき、タッチパネル12のタッチ検出面12aへの物体の接触をモニタする。この間、タッチコントローラ22は、タッチコントローラ22がタッチ非検出状態にあることを示すタッチ検出データをホスト装置3に送信する。 In a state where no object is in contact with the touch panel 12, the touch controller 22 is set to a touch non-detection state. In the non-touch detection state, the computing device 26 monitors the contact of an object with the touch detection surface 12a of the touch panel 12 based on the ADC data received from the analog front end 25. During this time, the touch controller 22 transmits touch detection data indicating that the touch controller 22 is in a touch non-detection state to the host device 3.
 アナログ検出信号から生成されたADCデータに基づき、タッチパネル12に物体が接触したことが演算装置26によって検知されると、タッチコントローラ22は、タッチ検出状態に移行する。タッチ検出状態では、物体4がタッチ検出面12aに接触して作用する力の大きさFと、当該力が作用する着力点の位置の座標(x,y)とがADCデータに基づいて検出される。演算装置26は、力の大きさFと着力点の位置の座標(x,y)とを記述する作用力データを生成し、作用力データを含むタッチ検出データをホスト装置3に送信する。このときにホスト装置3に送信されるタッチ検出データは、タッチコントローラ22がタッチ検出状態に移行したことを示すデータを含んでいてもよい。 When the computing device 26 detects that an object has touched the touch panel 12 based on the ADC data generated from the analog detection signal, the touch controller 22 shifts to a touch detection state. In the touch detection state, the magnitude F of the force acting when the object 4 is in contact with the touch detection surface 12a and the coordinates (x, y) of the position of the force point where the force acts are detected based on the ADC data. The The arithmetic device 26 generates action force data describing the magnitude F of force and the coordinates (x, y) of the position of the force point, and transmits touch detection data including the action force data to the host device 3. The touch detection data transmitted to the host device 3 at this time may include data indicating that the touch controller 22 has shifted to the touch detection state.
 図7の左図に示すタッチ検出状態におけるタッチコントローラ22の動作例では、人体の指5がタッチパネル12のタッチ検出面12aに接触したことが検知されたときに、タッチ検出面12aに作用する力の大きさFが2.86Nであり、当該力が作用する着力点の位置の座標(x,y)が(506,823)であると検出されている。 In the operation example of the touch controller 22 in the touch detection state illustrated in the left diagram of FIG. 7, the force acting on the touch detection surface 12 a when it is detected that the human finger 5 has touched the touch detection surface 12 a of the touch panel 12. The size F is 2.86 N, and the coordinates (x, y) of the position of the applied force point at which the force acts are detected as (506, 823).
 本実施形態では、人体の指5がタッチ検出面12aに接触した後、更に押し込まれる操作が検出される。具体的には、タッチコントローラ22がタッチ検出状態にあるときにタッチ検出面12aに作用する力の大きさFが所定の閾値Th1を超えたことが演算装置26によって検知されると、タッチコントローラ22は、押し込み検出状態に移行する。押し込み検出状態では、演算装置26は、着力点の位置の座標(x,y)の変化に応じて、タッチ検出面12aに作用するせん断力Fに関連する情報、より具体的には、せん断力Fの方向を示す方向データを生成し、生成した方向データを含むタッチ検出データを生成する。 In this embodiment, after the human finger 5 comes into contact with the touch detection surface 12a, an operation of further pressing is detected. Specifically, when the arithmetic device 26 detects that the magnitude F of the force acting on the touch detection surface 12a when the touch controller 22 is in the touch detection state exceeds the predetermined threshold Th1, the touch controller 22 Shifts to the push-in detection state. The push detection state, the arithmetic unit 26, in response to changes in the coordinates of the position of the force applied points (x, y), information related to the shear force F S acting on the touch detection surface 12a, and more specifically, shear Direction data indicating the direction of the force F S is generated, and touch detection data including the generated direction data is generated.
 より具体的には、押し込み検出状態では、タッチ検出が下記のようにして行われる。現時刻tにおける着力点の位置の座標を(x,y)とし、現時刻tよりも前の時刻ti-1における着力点の位置の座標を(xi-1,yi-1)とする。ここで、現時刻tは、タッチコントローラ22が押し込み検出状態にある時刻であるが、時刻ti-1は、現時刻tより前であれば、タッチコントローラ22が押し込み検出状態にある時刻でもタッチ検出状態にある時刻であるもあり得ることに留意されたい。 More specifically, in the push detection state, touch detection is performed as follows. The coordinates of the position of the force point at the current time t i are (x i , y i ), and the coordinates of the position of the force point at the time t i-1 prior to the current time t i are (x i−1 , y i). -1 ). Here, the current time t i is a time when the touch controller 22 is in the push detection state, but if the time t i-1 is before the current time t i , the time when the touch controller 22 is in the push detection state. However, it should be noted that it may be a time in the touch detection state.
 演算装置26は、着力点の位置の変化、より具体的には、現時刻tにおける着力点の位置の座標を(x,y)と現時刻tよりも前の時刻ti-1における着力点の位置の座標を(xi-1,yi-1)との差分(Δx,Δy)を算出する。ここで、
 Δx=x-xi-1     ・・・(2a)
 Δy=y-yi-1     ・・・(2b)
である。
Arithmetic unit 26, the change in position of the force applied points, more specifically, the coordinates of the position of the force applied point at the current time t i (x i, y i ) and before the current time t i the time t i- The difference (Δx, Δy) between the coordinates of the position of the applied force point at 1 and (x i−1 , y i−1 ) is calculated. here,
Δx = x i −x i−1 (2a)
Δy = y i −y i−1 (2b)
It is.
 差分Δx、Δyの絶対値|Δx|、|Δy|のいずれかが、所定の閾値Th2よりも大きい場合、タッチ検出面12aにせん断力Fが作用していると考えてよい。この場合、演算装置26は、力の大きさFと着力点の座標(x,y)とを記述する作用力データに加え、方向データを生成する。方向データは、せん断力Fの方向に対応する情報を含んでおり、差分(Δx,Δy)に基づいて生成される。一実施形態では、方向データは、差分(Δx,Δy)から、下記式(3)に従って算出されたθを記述するデータとして生成してもよい:
 θ=arctan(Δy/Δx)    ・・・(3)
ここで、arctanは、逆正接関数である。他の実施形態では、方向データは、差分(Δx,Δy)そのものを記述するデータとして生成してもよい。
If any one of the absolute values | Δx | and | Δy | of the differences Δx and Δy is larger than the predetermined threshold Th2, it may be considered that the shear force F S is acting on the touch detection surface 12a. In this case, the arithmetic unit 26 generates direction data in addition to the acting force data describing the magnitude F of force and the coordinates (x, y) of the applied point. Direction data includes information corresponding to the direction of the shear force F S, is generated based on the difference (Δx, Δy). In one embodiment, the direction data may be generated as data describing θ calculated from the difference (Δx, Δy) according to the following equation (3):
θ = arctan (Δy / Δx) (3)
Here, arctan is an arc tangent function. In other embodiments, the direction data may be generated as data describing the difference (Δx, Δy) itself.
 演算装置26は、生成した作用力データと方向データとを含むタッチ検出データを生成し、生成したタッチ検出データをホスト装置3に送信する。このときにホスト装置3に送信されるタッチ検出データは、タッチコントローラ22が押し込み検出状態に移行したことを示すデータを含んでいてもよい。 The computing device 26 generates touch detection data including the generated action force data and direction data, and transmits the generated touch detection data to the host device 3. The touch detection data transmitted to the host device 3 at this time may include data indicating that the touch controller 22 has shifted to the push-in detection state.
 一方、差分Δx、Δyの絶対値|Δx|、|Δy|の両方が、所定の閾値Th2よりも小さい場合、タッチ検出面12aに作用するせん断力Fが小さいと考えてよい。この場合、演算装置26は、方向データは生成せず、力の大きさFと着力点の座標(x,y)とを記述する作用力データのみを生成する。演算装置26は、作用力データを含み、方向データを含まないタッチ検出データをホスト装置3に送信する。 On the other hand, the difference [Delta] x, the absolute value of Δy | Δx |, | Δy | both is smaller than a predetermined threshold value Th2, it may be considered that the shear force F S acting on the touch detection surface 12a is small. In this case, the arithmetic unit 26 does not generate the direction data, but generates only the force data describing the magnitude F of the force and the coordinates (x, y) of the force point. The arithmetic device 26 transmits touch detection data including the action force data and not including the direction data to the host device 3.
 図7の右図に示すタッチコントローラ22の動作例では、タッチコントローラ22がタッチ検出状態から押し込み検出状態に移行する。閾値Th1が、5.00Nであり、閾値Th2が、15である。図7に図示されているように、タッチ検出面12aに作用する力の大きさFが2.86Nから閾値Th1を超え、10.00Nに増大すると、タッチコントローラ22は、押し込み検出状態に移行する。押し込み検出状態に移行した後、着力点の座標の差分(Δx,Δy)が算出される。図7の例では、差分(Δx,Δy)は、それぞれ、下記のようにして算出される。
 Δx=492-506=-14
 Δy=825-823=2
In the operation example of the touch controller 22 shown in the right diagram of FIG. 7, the touch controller 22 shifts from the touch detection state to the push detection state. The threshold value Th1 is 5.00N, and the threshold value Th2 is 15. As shown in FIG. 7, when the magnitude F of the force acting on the touch detection surface 12a exceeds the threshold Th1 from 2.86N and increases to 10.00N, the touch controller 22 shifts to the push-in detection state. . After shifting to the indentation detection state, the difference (Δx, Δy) in the coordinates of the force points is calculated. In the example of FIG. 7, the differences (Δx, Δy) are calculated as follows.
Δx = 492-506 = -14
Δy = 825-823 = 2
 図7の例では、Δxの絶対値|Δx|が閾値Th2より大きい。このような事象は、例えば、人体の指5がタッチ検出面12aに接触した後、左側に押し込まれた場合に発生する。絶対値|Δx|が閾値Th2より大きいので、作用力データに加えて方向データが演算装置26によって生成される。生成された作用力データ及び方向データを含むタッチ検出データが、ホスト装置3に送信される。 In the example of FIG. 7, the absolute value | Δx | of Δx is larger than the threshold Th2. Such an event occurs, for example, when the human finger 5 is pressed to the left after contacting the touch detection surface 12a. Since the absolute value | Δx | is larger than the threshold Th2, the direction data is generated by the arithmetic unit 26 in addition to the acting force data. Touch detection data including the generated action force data and direction data is transmitted to the host device 3.
 ホスト装置3は、タッチコントローラ22からタッチ検出データを受け取り、タッチ検出データに基づいて、ユーザインタフェース処理を行う。上述のように、ユーザインタフェース処理は、プロセッサ31がUI制御モジュール34aを実行することによって実行される。 The host device 3 receives touch detection data from the touch controller 22 and performs user interface processing based on the touch detection data. As described above, the user interface process is executed by the processor 31 executing the UI control module 34a.
 方向データを含むタッチ検出データがホスト装置3に送信された場合、ホスト装置3におけるユーザインタフェース処理において方向データが用いられる。タッチ検出データに含まれる方向データの有用な用途の一つは、表示パネル11の表示領域13に表示されるポインタの移動である。表示領域13に表示されるポインタ13aの一例を図示する図8を参照して、ユーザがタッチ検出面12aを押し込む操作を行った場合に作用力データと方向データに応答してポインタ13aを移動させることにより、利便性が高いユーザインタフェースを実現できる。 When touch detection data including direction data is transmitted to the host device 3, the direction data is used in user interface processing in the host device 3. One useful application of the direction data included in the touch detection data is movement of a pointer displayed in the display area 13 of the display panel 11. Referring to FIG. 8 illustrating an example of the pointer 13a displayed in the display area 13, when the user performs an operation of pushing the touch detection surface 12a, the pointer 13a is moved in response to the action force data and the direction data. Thus, a highly convenient user interface can be realized.
 一実施形態では、人体の指5がタッチ検出面12aに接触した後、更に押し込まれた場合に、ポインタ13aが移動する移動方向が方向データに応じて決定され、ポインタ13aが移動する移動速度が作用力データに記述されている力の大きさFによって決定されてもよい。ホスト装置3のプロセッサ31は、画像要素(image element)、例えば、ポインタ13aが、方向データに応じて決定された移動方向に、作用力データに記述されている力の大きさFに応じて決定された移動速度で移動するように画像データを生成し、ドライバIC2の表示ドライバ21に送信する。 In one embodiment, when the human finger 5 is further pressed after contacting the touch detection surface 12a, the moving direction in which the pointer 13a moves is determined according to the direction data, and the moving speed at which the pointer 13a moves is determined. It may be determined by the magnitude F of the force described in the applied force data. The processor 31 of the host apparatus 3 determines the image element, for example, the pointer 13a in the moving direction determined according to the direction data, according to the magnitude F of the force described in the applied force data. Image data is generated so as to move at the moving speed, and is transmitted to the display driver 21 of the driver IC 2.
 一実施形態では、ポインタ13aの移動速度vは、作用力データに記述されている力の大きさFに対して単調に増加するように決定されてもよい。例えば、ポインタ13aの移動速度vが、力の大きさFに比例するとして決定されてもよい。具体的には、移動速度vは、下記式(4)に従って決定されてもよい。
 v=KF     ・・・(4)
ここで、Kは、定数である。
In one embodiment, the moving speed v of the pointer 13a may be determined so as to increase monotonously with respect to the force magnitude F described in the acting force data. For example, the moving speed v of the pointer 13a may be determined as being proportional to the magnitude F of force. Specifically, the moving speed v may be determined according to the following formula (4).
v = K V F (4)
Here, K V is a constant.
 上記には、タッチコントローラ22が、タッチ検出面12aを押し込む操作を検出し、更に、押し込む操作を検出した場合に作用力データと方向データとを含むタッチ検出データを生成する実施形態を記載しているが、タッチ検出面12aを押し込む操作の検出、及び、それに続く方向データの生成は、ホスト装置3におけるユーザインタフェース処理において行われてもよい。この場合、図6に図示されている状態遷移は、ホスト装置3において実行されるユーザインタフェース処理において行われる。より具体的には、表示システム100は、下記のように動作する。 In the above, an embodiment is described in which the touch controller 22 detects an operation of pushing the touch detection surface 12a, and further generates touch detection data including action force data and direction data when the push operation is detected. However, the detection of the operation of pushing the touch detection surface 12a and the generation of the subsequent direction data may be performed in the user interface process in the host device 3. In this case, the state transition illustrated in FIG. 6 is performed in a user interface process executed in the host device 3. More specifically, the display system 100 operates as follows.
 タッチパネル12に何らの物体も接触していない状態では、タッチコントローラ22は、何らの物体も接触していないことを示すタッチ検出データをホスト装置3に送信する。この場合、ユーザインタフェース処理がタッチ未検出状態に設定される。 In a state where no object is in contact with the touch panel 12, the touch controller 22 transmits touch detection data indicating that no object is in contact to the host device 3. In this case, the user interface process is set to a touch non-detected state.
 タッチコントローラ22は、タッチパネル12のタッチ検出面12aへの物体の接触を検出すると、力の大きさFと着力点の座標(x,y)とを記述する作用力データを生成し、作用力データを含むタッチ検出データをホスト装置3に送信する。作用力データを含むタッチ検出データに応答して、ユーザインタフェース処理がタッチ検出状態に設定される。以後、タッチパネル12のタッチ検出面12aへの物体の接触を検出している限り、タッチコントローラ22は、作用力データを含むタッチ検出データをホスト装置3に送信し続ける。 When the touch controller 22 detects contact of an object with the touch detection surface 12a of the touch panel 12, the touch controller 22 generates action force data describing the magnitude F of force and the coordinates (x, y) of the force point, and the action force data. Is transmitted to the host device 3. In response to the touch detection data including the action force data, the user interface process is set to the touch detection state. Thereafter, as long as contact of an object with the touch detection surface 12a of the touch panel 12 is detected, the touch controller 22 continues to transmit touch detection data including action force data to the host device 3.
 ホスト装置3のプロセッサ31は、タッチ検出データに含まれる作用力データに基づいて、物体、例えば、人体の指5がタッチ検出面12aに接触した後、タッチ検出面12aを押し込む操作を検出する。具体的には、ユーザインタフェース処理がタッチ検出状態にあるときにタッチ検出面12aに作用する力の大きさFが所定の閾値Th1を超えたことがプロセッサ31によって検知されると、ユーザインタフェース処理は、押し込み検出状態に移行する。押し込み検出状態では、プロセッサ31は、着力点の座標(x,y)の変化に応じて、タッチ検出面12aに作用するせん断力Fに関連する情報、より具体的には、せん断力Fの方向を示す方向データを生成する。 The processor 31 of the host device 3 detects an operation of pushing the touch detection surface 12a after an object, for example, a human finger 5 comes into contact with the touch detection surface 12a, based on the action force data included in the touch detection data. Specifically, when the processor 31 detects that the magnitude F of the force acting on the touch detection surface 12a when the user interface process is in the touch detection state exceeds the predetermined threshold Th1, the user interface process is , Transition to the push-in detection state. The push detection state, the processor 31, in response to changes in the force applied point of coordinates (x, y), information related to the shear force F S acting on the touch detection surface 12a, and more specifically, the shearing force F S The direction data indicating the direction of the is generated.
 より具体的には、押し込み検出状態では、ユーザインタフェース処理が下記のようにして行われる。現時刻tにおける着力点の座標を(x,y)とし、現時刻tよりも前の時刻ti-1における着力点の座標を(xi-1,yi-1)とする。ここで、現時刻tは、ユーザインタフェース処理が押し込み検出状態にある時刻であるが、時刻ti-1は、現時刻tより前であれば、ユーザインタフェース処理が押し込み検出状態にある時刻でもタッチ検出状態にある時刻でもよい。 More specifically, in the indent detection state, user interface processing is performed as follows. The coordinates of the force point at the current time t i are (x i , y i ), and the coordinates of the force point at the time t i-1 before the current time t i are (x i-1 , y i-1 ). To do. Here, the current time t i is the time when the user interface process is in the indentation detection state, but if the time t i-1 is before the current time t i , the time when the user interface process is in the indentation detection state However, the time in the touch detection state may be used.
 プロセッサ31は、着力点の座標(x,y)の変化、より具体的には、現時刻tにおける着力点の座標を(x,y)と現時刻tよりも前の時刻ti-1における着力点の座標を(xi-1,yi-1)との差分(Δx,Δy)を算出する。上述の通り、差分(Δx,Δy)は、式(2a)、(2b)に従って算出される。 The processor 31 changes the coordinates (x, y) of the force point, more specifically, the coordinates of the force point at the current time t i (x i , y i ) and the time t before the current time t i. the coordinates of the force application point in i-1 to calculate the (x i-1, y i-1) and the difference (Δx, Δy). As described above, the difference (Δx, Δy) is calculated according to equations (2a) and (2b).
 差分Δx、Δyの絶対値|Δx|、|Δy|のいずれかが、所定の閾値Th2よりも大きい場合、タッチ検出面12aにせん断力Fが作用していると考えてよい。この場合、プロセッサ31は、差分(Δx,Δy)に基づいて方向データを生成する。一実施形態では、方向データは、差分(Δx,Δy)から、上記の式(3)に従って算出されたθを記述するデータとして生成してもよい。他の実施形態では、方向データは、差分(Δx,Δy)そのものを記述するデータとして生成してもよい。上述のように、生成された方向データは、例えば、表示パネル11に表示されるポインタ13aの移動に用いられてもよい。 If any one of the absolute values | Δx | and | Δy | of the differences Δx and Δy is larger than the predetermined threshold Th2, it may be considered that the shear force F S is acting on the touch detection surface 12a. In this case, the processor 31 generates direction data based on the difference (Δx, Δy). In one embodiment, the direction data may be generated as data describing θ calculated according to the above equation (3) from the difference (Δx, Δy). In other embodiments, the direction data may be generated as data describing the difference (Δx, Δy) itself. As described above, the generated direction data may be used to move the pointer 13a displayed on the display panel 11, for example.
 以上には、本開示の実施形態が具体的に記述されているが、本開示に記載された技術が種々の変更と共に実施され得ることは、当業者には理解されよう。 Although the embodiment of the present disclosure has been specifically described above, those skilled in the art will understand that the technology described in the present disclosure can be implemented with various modifications.
 なお、この出願は、2017年5月25日に出願された日本特許出願2017-103450号を基礎とする優先権を主張し、その開示の全てを引用によりここに組み込む。 This application claims priority based on Japanese Patent Application No. 2017-103450 filed on May 25, 2017, the entire disclosure of which is incorporated herein by reference.

Claims (20)

  1.  タッチ検出面を有するタッチ検出デバイスから検出信号を取得するアナログフロントエンドと、
     前記検出信号に基づいて前記タッチ検出面に力が作用する着力点の位置及び前記着力点において前記タッチ検出面に物体が作用する力を検出するように構成された演算装置
    とを具備するタッチコントローラであって、
     前記タッチコントローラは、前記タッチ検出面に前記物体が作用する前記力の大きさが所定の閾値を超えたことに応じて押し込み検出状態に設定され、
     前記演算装置は、前記タッチコントローラが前記押し込み検出状態にあるときに、前記着力点の位置の変化に応じて、前記タッチ検出面に作用するせん断力の方向に対応する方向データを生成するように構成された
     タッチコントローラ。
    An analog front end for obtaining a detection signal from a touch detection device having a touch detection surface;
    A touch controller comprising: an arithmetic unit configured to detect a position of an applied force point at which a force acts on the touch detection surface based on the detection signal and a force applied by an object to the touch detection surface at the applied force point Because
    The touch controller is set to a push detection state in response to the magnitude of the force acting on the touch detection surface exceeding a predetermined threshold,
    The arithmetic unit generates direction data corresponding to a direction of a shearing force acting on the touch detection surface according to a change in the position of the applied force point when the touch controller is in the indentation detection state. Configured touch controller.
  2.  前記演算装置は、前記タッチコントローラが前記押し込み検出状態にあるときに、前記タッチコントローラが前記押し込み検出状態にある第1時刻において検出された前記着力点の位置である第1位置と前記第1時刻よりも前の第2時刻において検出された前記着力点の位置である第2位置とに基づいて、前記方向データを生成するように構成された
     請求項1に記載のタッチコントローラ。
    The computing device has a first position and a first time that are positions of the force points detected at a first time when the touch controller is in the push detection state when the touch controller is in the push detection state. The touch controller according to claim 1, configured to generate the direction data based on a second position that is a position of the applied force point detected at a second time before the second time.
  3.  前記演算装置は、前記タッチコントローラが前記押し込み検出状態にあるときに、第1方向における前記第1位置の座標と前記第2位置の座標の差分である第1差分と、前記第1方向に垂直な第2方向における前記第1位置の座標と前記第2位置の座標の差分である第2差分とに基づいて前記方向データを生成する
     請求項2に記載のタッチコントローラ。
    When the touch controller is in the indentation detection state, the arithmetic device is configured to be perpendicular to the first direction and a first difference that is a difference between the coordinates of the first position and the coordinates of the second position in the first direction. The touch controller according to claim 2, wherein the direction data is generated based on a second difference that is a difference between the coordinates of the first position and the coordinates of the second position in the second direction.
  4.  前記演算装置は、前記第1差分の絶対値と前記第2差分の絶対値とのうちの少なくとも一方が所定の閾値よりも大きい場合に前記方向データを出力し、前記第1差分の絶対値と前記第2差分の絶対値の両方が所定の閾値よりも小さい場合には前記方向データを出力しない
     請求項3に記載のタッチコントローラ。
    The arithmetic unit outputs the direction data when at least one of the absolute value of the first difference and the absolute value of the second difference is greater than a predetermined threshold, and the absolute value of the first difference The touch controller according to claim 3, wherein the direction data is not output when both of the absolute values of the second differences are smaller than a predetermined threshold.
  5.  前記演算装置は、前記着力点の位置及び前記着力点に作用する力の大きさを示す作用力データを出力するように構成された
     請求項1乃至4のいずれか1項に記載のタッチコントローラ。
    5. The touch controller according to claim 1, wherein the arithmetic device is configured to output action force data indicating a position of the force application point and a magnitude of a force acting on the force application point. 6.
  6.  前記タッチ検出面への前記物体の接触が前記演算装置によって検知されていない場合に前記タッチコントローラがタッチ非検出状態に設定され、
     前記演算装置が前記検出信号に基づいて前記タッチ検出面への前記物体の接触を検知すると、前記タッチコントローラがタッチ検出状態に移行し、
     前記タッチコントローラが前記タッチ検出状態にあるときに前記タッチ検出面に前記物体が作用する力が前記所定の閾値を超えたことに応答して、前記タッチコントローラが前記押し込み検出状態に移行する
     請求項1乃至5のいずれか1項に記載のタッチコントローラ。
    The touch controller is set to a touch non-detection state when contact of the object with the touch detection surface is not detected by the arithmetic device;
    When the arithmetic device detects the contact of the object with the touch detection surface based on the detection signal, the touch controller shifts to a touch detection state,
    The touch controller shifts to the indentation detection state in response to a force acting on the touch detection surface exceeding the predetermined threshold when the touch controller is in the touch detection state. The touch controller according to any one of 1 to 5.
  7.  タッチ検出面を有するタッチ検出デバイスから取得した検出信号に基づいて生成されたタッチ検出データを受け取るインタフェースと、
     前記タッチ検出データに応じたユーザインタフェース処理により表示モジュールに表示される画像に対応する画像データを生成するプロセッサ
    とを具備し
     前記タッチ検出データは、物体の接触によって前記タッチ検出面に作用する力の着力点の位置及び前記着力点に作用する前記力の大きさを示す作用力データを含み、
     前記プロセッサは、前記作用力データに記述された前記着力点の位置の変化に応じて生成された前記タッチ検出面に作用するせん断力の方向を示す方向データと、前記作用力データとに応じて前記画像データを生成するように構成された
     ホスト装置。
    An interface for receiving touch detection data generated based on a detection signal acquired from a touch detection device having a touch detection surface;
    A processor that generates image data corresponding to an image displayed on a display module by user interface processing in accordance with the touch detection data, and the touch detection data is a force acting on the touch detection surface by an object contact. Action force data indicating the position of the force point and the magnitude of the force acting on the force point;
    The processor is responsive to direction data indicating a direction of a shearing force acting on the touch detection surface generated according to a change in the position of the applied force point described in the acting force data, and the acting force data. A host device configured to generate the image data.
  8.  前記プロセッサは、前記表示モジュールに画像要素を表示するように前記画像データを生成し、
     前記プロセッサは、前記画像要素が移動する移動速度が、前記作用力データに記述された前記着力点に作用する力の大きさに依存し、前記画像要素が移動する移動方向が、前記方向データに依存するように前記画像データを生成するように構成された
     請求項7に記載のホスト装置。
    The processor generates the image data to display image elements on the display module;
    The processor is configured such that a moving speed at which the image element moves depends on a magnitude of a force acting on the applied force point described in the acting force data, and a moving direction in which the image element moves is included in the direction data. The host device according to claim 7, configured to generate the image data so as to depend on the host device.
  9.  前記プロセッサは、前記画像要素が移動する移動速度が、前記着力点に作用する力の大きさに対して単調に増加するように前記画像データを生成するように構成された
     請求項8に記載のホスト装置。
    The processor according to claim 8, wherein the processor is configured to generate the image data so that a moving speed at which the image element moves increases monotonically with respect to a magnitude of a force acting on the applied force point. Host device.
  10.  前記プロセッサは、前記画像要素が移動する移動速度が、前記着力点に作用する力の大きさに比例するように前記画像データを生成するように構成された
     請求項8に記載のホスト装置。
    The host device according to claim 8, wherein the processor is configured to generate the image data so that a moving speed at which the image element moves is proportional to a magnitude of a force acting on the applied force point.
  11.  前記方向データが、前記タッチ検出データに含まれている
     請求項7乃至10のいずれか1項に記載のホスト装置。
    The host device according to claim 7, wherein the direction data is included in the touch detection data.
  12.  前記ユーザインタフェース処理は、前記タッチ検出面に前記物体が作用する前記力の大きさが所定の閾値を超えたことに応じて押し込み検出状態に設定され、
     前記プロセッサは、前記ユーザインタフェース処理が前記押し込み検出状態にあるときに、前記方向データを生成するように構成された
     請求項7乃至10のいずれか1項に記載のホスト装置。
    The user interface process is set to a push detection state in response to the magnitude of the force acting on the touch detection surface exceeding a predetermined threshold,
    The host device according to claim 7, wherein the processor is configured to generate the direction data when the user interface process is in the indent detection state.
  13.  前記プロセッサは、前記ユーザインタフェース処理が前記押し込み検出状態にあるときに、前記ユーザインタフェース処理が前記押し込み検出状態にある第1時刻において検出された前記着力点の位置である第1位置と前記第1時刻よりも前の第2時刻において検出された前記着力点の位置である第2位置とに基づいて、前記方向データを生成するように構成された
     請求項12に記載のホスト装置。
    The processor includes a first position that is a position of the force point detected at a first time when the user interface process is in the indentation detection state when the user interface process is in the indentation detection state, and the first position. The host device according to claim 12, configured to generate the direction data based on a second position that is a position of the force point detected at a second time before the time.
  14.  前記プロセッサは、第1方向における前記第1位置の座標と前記第2位置の座標の差分である第1差分と、前記第1方向に垂直な第2方向における前記第1位置の座標と前記第2位置の座標の差分である第2差分とに基づいて前記方向データを生成する
     請求項13に記載のホスト装置。
    The processor includes a first difference that is a difference between the coordinates of the first position and the second position in a first direction, the coordinates of the first position in a second direction perpendicular to the first direction, and the first position. The host device according to claim 13, wherein the direction data is generated based on a second difference that is a difference between coordinates of two positions.
  15.  タッチ検出面を有するタッチ検出デバイスから検出信号を取得することと、
     前記検出信号に基づいて、前記タッチ検出面に力が作用する着力点の位置及び前記着力点において前記タッチ検出面に物体が作用する力を示す作用力データを生成することと、
     前記タッチ検出面に前記物体が作用する前記力の大きさが所定の閾値を超えたことに応じて演算装置を押し込み検出状態に移行することと、
     前記演算装置が前記押し込み検出状態にあるときに、前記着力点の位置の変化に応じて、前記タッチ検出面に作用するせん断力の方向に対応する方向データを生成すること
    とを含む
     方法。
    Obtaining a detection signal from a touch detection device having a touch detection surface;
    Generating, based on the detection signal, action force data indicating a position of an application point at which a force acts on the touch detection surface and a force at which the object acts on the touch detection surface at the application point;
    In response to the magnitude of the force that the object acts on the touch detection surface exceeding a predetermined threshold value, pushing the arithmetic device into a detection state;
    Generating direction data corresponding to a direction of a shearing force acting on the touch detection surface in response to a change in the position of the applied force point when the computing device is in the indentation detection state.
  16.  前記方向データが、前記演算装置が前記押し込み検出状態にある第1時刻において検出された前記着力点の位置である第1位置と前記第1時刻よりも前の第2時刻において検出された前記着力点の位置である第2位置とに基づいて生成される
     請求項15に記載の方法。
    The direction data includes the first position that is the position of the force point detected at the first time when the arithmetic unit is in the indentation detection state, and the force that is detected at a second time before the first time. The method according to claim 15, wherein the method is generated based on a second position that is a position of a point.
  17.  前記方向データが、第1方向における前記第1位置の座標と前記第2位置の座標の差分である第1差分と、前記第1方向に垂直な第2方向における前記第1位置の座標と前記第2位置の座標の差分である第2差分とに基づいて生成される
     請求項16に記載の方法。
    The direction data includes a first difference that is a difference between the coordinates of the first position and the second position in a first direction, the coordinates of the first position in a second direction perpendicular to the first direction, and the The method according to claim 16, wherein the method is generated based on a second difference that is a difference in coordinates of the second position.
  18.  更に、
     前記作用力データと前記方向データとに応じて表示モジュールに表示される画像に対応する画像データを生成することを含む
     請求項15に記載の方法。
    Furthermore,
    16. The method according to claim 15, comprising generating image data corresponding to an image displayed on a display module in response to the acting force data and the direction data.
  19.  前記画像データが、前記表示モジュールに表示される画像要素が移動する移動速度が、前記作用力データに記述された前記着力点に作用する力の大きさに依存し、前記画像要素が移動する移動方向が、前記方向データに依存するように生成される
     請求項18に記載の方法。
    The moving speed at which the image element displayed on the display module moves depends on the magnitude of the force acting on the applied force point described in the acting force data, and the image element moves. The method of claim 18, wherein a direction is generated to depend on the direction data.
  20.  前記画像データが、前記画像要素が移動する移動速度が、前記着力点に作用する力の大きさに対して単調に増加するように生成される
     請求項19に記載の方法。
     
    The method according to claim 19, wherein the image data is generated such that a moving speed at which the image element moves increases monotonically with respect to a magnitude of a force acting on the applied force point.
PCT/JP2018/019961 2017-05-25 2018-05-24 Touch controller, host device, and method WO2018216760A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-103450 2017-05-25
JP2017103450A JP2018200494A (en) 2017-05-25 2017-05-25 Touch controller, display system and host device

Publications (1)

Publication Number Publication Date
WO2018216760A1 true WO2018216760A1 (en) 2018-11-29

Family

ID=64396480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019961 WO2018216760A1 (en) 2017-05-25 2018-05-24 Touch controller, host device, and method

Country Status (2)

Country Link
JP (1) JP2018200494A (en)
WO (1) WO2018216760A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135648A (en) * 2014-01-20 2015-07-27 シャープ株式会社 Input operation device and digital broadcasting receiver
WO2016077414A1 (en) * 2014-11-11 2016-05-19 Qualcomm Incorporated System and methods for controlling a cursor based on finger pressure and direction
US20170083135A1 (en) * 2015-09-18 2017-03-23 Synaptics Incorporated Controlling user interface force

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015135648A (en) * 2014-01-20 2015-07-27 シャープ株式会社 Input operation device and digital broadcasting receiver
WO2016077414A1 (en) * 2014-11-11 2016-05-19 Qualcomm Incorporated System and methods for controlling a cursor based on finger pressure and direction
US20170083135A1 (en) * 2015-09-18 2017-03-23 Synaptics Incorporated Controlling user interface force

Also Published As

Publication number Publication date
JP2018200494A (en) 2018-12-20

Similar Documents

Publication Publication Date Title
CN107111400B (en) Method and apparatus for estimating touch force
CN111630480B (en) Touch panel device
JP5894957B2 (en) Electronic device, control method of electronic device
US9601085B2 (en) Device and method for synchronizing display and touch controller with host polling
US10156938B2 (en) Information processing apparatus, method for controlling the same, and storage medium
US20150193037A1 (en) Input Apparatus
CA2481396A1 (en) Gesture recognition method and touch system incorporating the same
US10409489B2 (en) Input apparatus
US11422660B2 (en) Input device, input method and program
US20100088595A1 (en) Method of Tracking Touch Inputs
JP5524937B2 (en) Input device including touchpad and portable computer
CN110799933A (en) Disambiguating gesture input types using multi-dimensional heat maps
JP2008165575A (en) Touch panel device
KR102198596B1 (en) Disambiguation of indirect input
US20130027342A1 (en) Pointed position determination apparatus of touch panel, touch panel apparatus, electronics apparatus including the same, method of determining pointed position on touch panel, and computer program storage medium
KR101714302B1 (en) 3 dimensional touch recognition apparatus and method
WO2018216760A1 (en) Touch controller, host device, and method
US20010017617A1 (en) Coordinate detection device with improved operability and method of detecting coordinates
CN109284057B (en) Handheld device and control method thereof
US9134843B2 (en) System and method for distinguishing input objects
US10802650B2 (en) Coordinate input device
US20190113999A1 (en) Touch motion tracking and reporting technique for slow touch movements
JP2020060930A (en) Input device
KR101546966B1 (en) Method for detecting gesture and sensing touch input
US20180210607A1 (en) Multiple threshold motion tolerance to filter coordinate jitter in touch sensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806865

Country of ref document: EP

Kind code of ref document: A1