WO2018216662A1 - Optical member, unevenness detection device, and fingerprint authentication device - Google Patents

Optical member, unevenness detection device, and fingerprint authentication device Download PDF

Info

Publication number
WO2018216662A1
WO2018216662A1 PCT/JP2018/019546 JP2018019546W WO2018216662A1 WO 2018216662 A1 WO2018216662 A1 WO 2018216662A1 JP 2018019546 W JP2018019546 W JP 2018019546W WO 2018216662 A1 WO2018216662 A1 WO 2018216662A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical member
light
incident
optical
emitted
Prior art date
Application number
PCT/JP2018/019546
Other languages
French (fr)
Japanese (ja)
Inventor
賢嗣 平岩
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2019520247A priority Critical patent/JPWO2018216662A1/en
Publication of WO2018216662A1 publication Critical patent/WO2018216662A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/117Identification of persons
    • A61B5/1171Identification of persons based on the shapes or appearances of their bodies or parts thereof
    • A61B5/1172Identification of persons based on the shapes or appearances of their bodies or parts thereof using fingerprinting
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing

Definitions

  • the present invention relates to an optical member, an unevenness detection device, and a fingerprint authentication device.
  • Patent Document 1 discloses a technique using a fiber optics plate (FOP) instead of a lens.
  • FOP fiber optics plate
  • the bundle of optical fibers in the FOP is inclined with respect to the normal direction of the light incident surface, so that light from the concave portion of the fingerprint is eliminated as much as possible and a high-contrast uneven image is taken.
  • the present invention has been made in view of the above points, and an object thereof is to provide an optical member, a concavo-convex detection device, and a fingerprint authentication device capable of detecting a high-contrast and clear concavo-convex image.
  • the present invention for solving the above-described problems has the following configuration.
  • An optical member that is provided between an object and an image sensor and guides light from the surface of the object to the image sensor in order to detect an uneven pattern on the surface of the object, the surface of the object
  • An entrance surface on which the light from the surface of the object is incident, and an exit surface from which the light incident on the entrance surface is emitted, between the exit surface and the imaging device Includes a refracting layer, and out of the light incident on the incident surface, the light emitted into the optical member at an angle inclined with respect to a normal direction of the incident surface to the output surface.
  • the optical member is in contact with the surface of the object, the first incident surface as the incident surface on which the light from the surface of the object is incident, and the light incident on the first incident surface.
  • a first optical member having a first emission surface to be emitted, a second incident surface on which the light emitted from the first emission surface is incident, and the second incident surface.
  • a second optical member having a second emission surface as the emission surface from which the light is emitted, and the first optical member is configured to transmit the light incident on the first incident surface.
  • the light emitted into the first optical member at an angle inclined with respect to the normal direction of the first incident surface is propagated to the first outgoing surface, and the second optical member is 2.
  • the first optical member is a fiber optics plate having a plurality of optical fibers arranged in a surface direction of the first optical member, and an axial direction of the plurality of optical fibers is a normal line of the first incident surface. 3.
  • the first optical member is a louver film having a plurality of louvers arranged in one direction within the plane of the first optical member, and the plurality of louvers are in a normal direction of the first incident surface.
  • the first optical member includes a first louver film as the louver film on the object side, and a second louver film as the louver film on the second optical member side, 5.
  • the optical member according to 4 wherein the plurality of louvers in one louver film and the plurality of louvers in the second louver film are provided so as to intersect with each other. 6).
  • a fingerprint authentication device comprising: the unevenness detection device according to any one of 8 to 10; and a control unit that authenticates a fingerprint that is an uneven pattern on the surface of the object detected by the unevenness detection device.
  • a high-contrast and clear uneven image can be detected.
  • FIG. It is a perspective view showing typically the 1st optical member concerning a first embodiment of the present invention. It is a graph which shows the example of the light distribution in the 1st optical member which concerns on 1st embodiment of this invention. It is a perspective view which shows typically the 2nd optical member which concerns on 1st embodiment of this invention. It is a figure for demonstrating propagation of the light in the fingerprint authentication apparatus which concerns on 1st embodiment of this invention. It is a perspective view which shows typically the 1st optical member which concerns on 2nd embodiment of this invention.
  • a fingerprint authentication device 1A is an optical authentication device that detects a fingerprint as a concavo-convex pattern on the surface of an object.
  • a layer 3 an image sensor 4 ⁇ / b> A, a control unit 5, and a notification unit 6 are provided.
  • the optical member 2A is a member that guides light from the finger F (finger, for example, index finger), which is an object, to the image sensor 4A, and includes an incident surface 2a and an output surface 2b.
  • the incident surface 2a is a flat surface that comes into contact with the surface of the finger F and on which light from the surface of the finger F is incident.
  • the exit surface 2b is an uneven surface from which light incident on the entrance surface 2a is emitted.
  • the refractive index of the finger F which is the object, is about 1.43. Since the finger F is a scatterer with a high diffusivity, the light incident on the finger is emitted from the convex portion F1 and the concave portion F2 of the fingerprint with almost uniform intensity from all directions. The light from the convex portion F1 is refracted and emitted from the finger F (refractive index: about 1.43) into the first optical member 10A (refractive index: 1.55 to 1.8). A component having a large angle with respect to the normal line L1 (see FIG. 5) is included (see FIG. 3).
  • the light from the recess F2 enters the first optical member (refractive index: 1.55 to 1.8) from the finger F (refractive index: about 1.43) through the air (refractive index: 1). Since the light is refracted and emitted, a component having a large angle with respect to the direction of the normal L1 (see FIG. 5) of the incident surface 2a is not included (see FIG. 3).
  • the optical member 2A propagates the light emitted into the optical member 2A to the emission surface 2b at an angle inclined with respect to the direction of the normal L1 (see FIG. 5) of the incidence surface 2a out of the light incident on the incidence surface 2a. Then, by emitting the light to the image sensor 4A through the refractive layer 3, the light is refracted in the normal L2 direction (see FIG. 5) of the incident surface of the image sensor 4A.
  • the optical member 2A includes a first optical member 10A and a second optical member 20A.
  • the first optical member 10A includes a first incident surface 10a as the incident surface 2a and a first emission surface 10b.
  • the first exit surface 10b is a plane from which light incident on the first entrance surface 10a is emitted.
  • the first incident surface 10a and the first emission surface 10b are parallel to each other.
  • 10 A of 1st optical members are the said 1st optical members in the angle which inclines with respect to the normal L1 (refer FIG. 5) direction of the 1st incident surface 10a among the light which injected into the 1st incident surface 10a.
  • the light emitted into 10A propagates to the first emission surface 10b.
  • the light from the fingerprint projection F1 of the finger F includes light of a component having a large incident angle (an angle with respect to the normal L1 (see FIG. 5)) on the first incident surface 10a.
  • the light of such components suitably propagates in the first optical member 10A.
  • light having a component with a small emission angle from the first incident surface 10a does not propagate through the first optical member 10A.
  • most of the light from the concave portion F2 of the fingerprint of the finger F is light having a component with a small emission angle from the first incident surface 10a (angle with respect to the normal L1 (see FIG. 5)). It hardly propagates in the optical member 10A.
  • the first optical member 10A actively propagates the light from the convex portion F1 of the fingerprint of the finger F and eliminates the light from the concave portion F2 of the fingerprint of the finger F as much as possible.
  • the image can be propagated to the first exit surface 10b.
  • the maximum value of the emission angle ⁇ of light from the concave portion F2 from the first incident surface 10a into the first optical member 10A is ⁇ F2MAX.
  • the first optical member 10A is a fiber optics plate (FOP), and a plurality of optical fibers arranged in the surface direction of the first optical member 10A.
  • the plurality of optical fibers 11 extend from the first incident surface 10a to the first emission surface 10b, and the axial direction of the plurality of optical fibers 11 is the normal L1 of the first incident surface 10a (see FIG. 5). It is inclined with respect to the direction by an angle ⁇ (see FIG. 5).
  • the first optical member 10 ⁇ / b> A includes a core 12 and a clad 13 that constitute the optical fiber 11, and a light absorber 14.
  • the core 12 has an inclined cylindrical shape and is made of a material capable of propagating light.
  • the clad 13 has an inclined cylindrical shape that covers the outer peripheral surface of the core 12, and is formed of a light-transmitting material having a refractive index smaller than that of the core 12.
  • the light absorber 14 is provided so as to fill a space between the plurality of optical fibers 11 and is formed of a material capable of absorbing light.
  • the first optical member 10A propagates only the light totally reflected between the core 12 and the clad 13 out of the light incident on the cores 12 of the plurality of optical fibers 11 on the first incident surface 10a.
  • the light exits from the exit surface 10b.
  • the light incident on the clad 13 and the light absorber 14 on the first incident surface 10a and the light that has entered the core 12 but is not totally reflected between the core 12 and the clad 13 are incident on the light absorber 14. It is absorbed and does not exit from the first exit surface 10b.
  • Such total reflection can be realized by appropriately setting the angle in the axial direction of the optical fiber 11 with respect to the normal direction of the first incident surface 10a and the difference in refractive index between the core 12 and the clad 13.
  • the refractive index of the core 12 is about 1.55 to 1.80, and the refractive index of the clad 13 is 1.55 or less.
  • the axial direction of the optical fiber 11 with respect to the normal direction of the first incident surface 10 a can be arbitrarily set by the cut angle of the bundle of optical fibers 11.
  • the refractive index of the core 12 is about 1.55 to 1.70
  • the refractive index of the cladding 13 is 1.55 or less
  • the optical fiber 11 is in the direction of the normal L1 (see FIG. 5) of the first incident surface 10a.
  • the angle ⁇ in the axial direction is preferably set to 30 degrees or more and 60 degrees or less.
  • the second optical member 20A is provided between the first optical member 10A and the refractive layer 3, and the second incident surface 20a and the second as the exit surface 2b. And an emission surface 20b.
  • the second incident surface 20a is a plane on which light emitted from the first emission surface 10b of the first optical member 10A is incident.
  • the second entrance surface 20a is in contact (surface contact) with the first exit surface 10b of the first optical member 10A, thereby preventing total reflection on the first exit surface 10b.
  • the second emission surface 20 b is an uneven surface from which light incident on the second incidence surface is emitted to the refractive layer 3.
  • the refractive index of the second optical member 20A may be a value close to the first optical member 10A (more specifically, the refractive index of the core 12), and is preferably 1.55 to 1.80.
  • part of the totally reflected light is mainly light having an angle larger than ⁇ F2MAX . That is, light having an angle larger than ⁇ F2MAX possessed only by the convex portion F1 of the fingerprint is not extracted by the refractive layer 3 due to total reflection, and is absorbed by the light absorber 14. As a result, the difference in brightness between the convex portion F1 and the concave portion F2 of the fingerprint of the finger F that is the object is reduced.
  • the second optical member 20A prevents total reflection from occurring on the exit surface of the first optical member 10A, and takes out light having an angle larger than ⁇ F2MAX to the refractive layer 3, thereby achieving high contrast. Can be propagated to the refractive layer 3.
  • the second optical member 20A is a prism array sheet, and includes a sheet portion 21 and a plurality of prism portions 22 arranged on the imaging element 4A side of the sheet portion 21.
  • the plurality of prism portions 22 have a triangular prism shape, and one prism portion 22 extends in a direction intersecting with the inclination direction of the optical fiber 11. That is, the prism portion 22 emits the light from the first optical member 10A to the refractive layer 3 without being totally reflected on the emission surface 2b, that is, the second emission surface 20b.
  • the thickness of the second optical member 20A is desirably 200 [ ⁇ m] or less.
  • 3M BEF Bitness Enhancement Film
  • the refractive layer 3 is provided between the second optical member 20A and the image sensor 4A, and the light emitted from the exit surface 2b, that is, the second exit surface 20b, is converted into the image sensor.
  • the light is refracted in the normal direction of the incident surface of 4A.
  • the refractive index of the refractive layer 3 is set to be smaller than the refractive index of the protective substrate 80 of the image sensor 4A, and it is desirable that the difference from the refractive index of the protective substrate 80 is large.
  • the refractive layer 3 examples include silicon rubber having a refractive index of about 1.4, contact liquid (matching oil) having a refractive index of about 1.4 to 1.8, and air having a refractive index of about 1. Then, air with a low refractive index is most desirable.
  • the imaging element 4A is for detecting irregularities on the surface of the finger F, that is, fingerprints, by receiving light from the finger F that is an object through the optical member 2A and the refractive layer 3.
  • the image sensor 4A includes a support substrate 30, TFTs (Thin Film Transistor) 40, a pixel electrode 50, a photoelectric conversion layer (for example, an organic photoelectric conversion layer) 60, a counter electrode 70, and a protective substrate that are sequentially formed on the support substrate 30. 80.
  • the TFT 40, the pixel electrode 50, the photoelectric conversion layer (for example, organic photoelectric conversion layer) 60, and the counter electrode 70 constitute a sensor unit that captures light from the finger F as an optical image.
  • the fingerprint authentication device 1 ⁇ / b> A As shown in FIG. 5, in the fingerprint authentication device 1 ⁇ / b> A according to the first embodiment of the present invention, light from the surface of the finger F that is the target is incident surface 2 a (first incident surface 10 a), first Core 12 of optical member 10A, first exit surface 10b, second entrance surface 20a, sheet portion 21 and prism portion 22 of second optical member 20A, exit surface 2b (second exit surface 20b) and refraction.
  • the light enters the protective substrate 80 of the image sensor 4 ⁇ / b> A through the layer 3.
  • the protective substrate 80 is a transparent substrate formed of resin, glass or the like.
  • the entrance surface and the exit surface of the protective substrate 80 are parallel to the first entrance surface 10a and the first exit surface 10b of the first optical member 10A and the second entrance surface of the second optical member 20A, respectively. .
  • control unit 5 includes a CPU (Central Processing Unit), a ROM (Read-Only Memory), a RAM (Random Access Memory), an input / output circuit, and the like, and a fingerprint image stored in advance.
  • CPU Central Processing Unit
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • an input / output circuit and the like
  • fingerprint image stored in advance.
  • the notification unit 6 is a display unit (for example, a monitor) that displays an authentication result by the control unit 5 and / or a voice output unit (speaker) that outputs the authentication result by the control unit 5 by voice.
  • a display unit for example, a monitor
  • a voice output unit for example, a speaker
  • the light from the finger F which is the object, is emitted from the first incident surface 10a into the first optical member 10A at an angle inclined with respect to the normal L1, and the first optical member It propagates through the core 12 of the member 10A and exits from the first exit surface 10b.
  • the light emitted from the first emission surface 10b is emitted from the second incidence surface 20a into the second optical member 20A, propagates through the second optical member 20A, and is refracted from the second emission surface 20b. 3 is refracted and emitted.
  • the light emitted from the second emission surface 20b to the refractive layer 3 propagates through the refractive layer 3 and is emitted while being refracted to the protective substrate 80 of the image sensor 4A.
  • the first optical member 10A is inclined with respect to the normal L1 of the first incident surface 10a of the first optical member 10A.
  • the light emitted inward is refracted so that its traveling direction approaches the normal L2 direction of the incident surface of the protective substrate 80.
  • the optical member 2A and the fingerprint authentication device 1A propagate light out of the light from the object F at an angle inclined with respect to the incident surface 2a and extract it to the refractive layer 3, Since the light is refracted in the direction of the normal L2 of the image sensor 4A using the refraction layer 3, a high-contrast uneven image of the target finger F is obtained, and the optical path length of the light from the protective substrate 80 to the sensor unit It is possible to obtain a clear concavo-convex image by shortening.
  • optical member 2A and the fingerprint authentication device 1A include the first optical member 10A and the second optical member 20A, the degree of freedom in design is improved and the emission surface 2b is easily formed.
  • the optical member 2A and the fingerprint authentication device 1A can easily realize the function as the first optical member 10A because the first optical member 10A is an FOP.
  • the optical member 2A and the fingerprint authentication device 1A can easily realize the function as the second optical member 20A because the second optical member 20A is a prism array sheet.
  • the fingerprint authentication device 1A refracts the light using the refraction layer 3 so that the traveling direction thereof is closer to the normal L2 direction of the image sensor 4A, and the optical path length of the light is increased. It can suppress and can obtain a clear uneven image.
  • the optical member 2B of the fingerprint authentication device 1B according to the second embodiment of the present invention includes a first optical member 10B instead of the first optical member 10A.
  • the first optical member 10B is a louver film, and fills the space between the pair of louvers 15 and a plurality of louvers (light absorbers) 15 arranged in one direction within the surface of the first optical member 10B. And a light transmitting portion 16 provided in the.
  • the louver 15 has an inclined long plate shape and is made of a material that can absorb light.
  • the light transmission part 16 is formed of a material that can transmit light.
  • the first optical member 10B propagates only light incident at an angle that does not hit the louver 15 that is a light absorber, out of the light incident on the light transmitting portion 16 on the first incident surface 10a, and the first emission.
  • the light exits from the surface 10b.
  • the light incident on the louver 15 on the first incident surface 10a and the light incident on the light transmitting portion 16 but hitting the louver 15 are absorbed by the louver 15 which is a light absorber, and are emitted from the first exit surface. It does not radiate
  • the inclination angle of the louver 15 with respect to the normal direction of the first incident surface 10a eliminates light from the concave portion of the object (finger) F as much as possible, and positively emits light from the convex portion of the object (finger) F. It is desirable to set the propagation angle, for example, 30 degrees or more and 60 degrees or less.
  • the first optical member 10B can be formed of silicon resin, polycarbonate resin, polystyrene resin, acrylic resin, polyvinyl chloride resin, or the like. That is, the first optical member 10B can be made thinner and thinner than the first optical member 10A (see FIG. 2).
  • the first optical member 10B is a louver film, it can be realized at a lower cost and thinner than the FOP.
  • the optical member 2C of the fingerprint authentication device 1C according to the third embodiment of the present invention includes a first optical member 10C in addition to the first optical member 10B.
  • the first optical member 10 ⁇ / b> C is a louver film that fills a space between the pair of louvers 15 and a plurality of louvers (light absorbers) 15 arranged in one direction within the plane of the first optical member 10 ⁇ / b> C. And a light transmitting portion 16 provided in the.
  • the first optical member 10C is provided between the first optical member 10B and the second optical member 20A (see FIG. 1).
  • the extending direction X1 of the plurality of louvers 15 in the first optical member 10B and the extending direction X2 of the plurality of louvers 15 in the first optical member 10C intersect each other (in the present embodiment, they are orthogonal in a plan view). As provided).
  • the entrance surface 10a and the exit surface 10c of the first optical member 10B and the entrance surface 10d and the exit surface 10b of the first optical member 10C are parallel to each other, and the exit surface 10c and the entrance surface 10d are in surface contact. .
  • the light that is inclined in the extending direction X1 of the first optical member 10B and is incident on the first optical member 10B is normal to the incident surface 10a.
  • the light emitted into the first optical member 10B at a large angle with respect to the L1 (see FIG. 5) direction and the light emitted into the first optical member 10B at a small angle are not absorbed by the louver 15 without being absorbed by the louver 15.
  • the concave / convex image (fingerprint image) of the finger F obtained by the fingerprint authentication device 1B according to the second embodiment is also stretched because light from the concave portion F2 of the fingerprint is also extracted from the exit surface in the stretching direction X1.
  • the contrast between the convex portion F1 and the concave portion F2 of the fingerprint becomes small, resulting in low contrast.
  • the louver 15 of the first optical member 10C is in the normal direction of the incident surface 10d in the extending direction X1 (the normal line L1 in FIG. 5).
  • the light emitted into the first optical member 10C at a small angle with respect to the same direction) can be absorbed. That is, the fingerprint authentication device 1C can absorb most of the light from the concave portion F2 of the fingerprint (here, out of the light from the convex portion F1 of the fingerprint, the normal direction of the incident surfaces 10a and 10d (see FIG.
  • the incident light is emitted from the emission surface), and the difference in brightness between the convex portion F1 and the concave portion F2 of the fingerprint can be increased also in the extending direction X1, and an uneven image of the finger F with high contrast can be obtained.
  • the fingerprint authentication device 1C and the optical member 2C according to the third embodiment of the present invention have high contrast in both the stretching directions X1 and X2 by using two relatively inexpensive and thin optical members 10B and 10C. An uneven image (fingerprint image) of the finger F can be obtained.
  • the optical member 2D of the fingerprint authentication device 1 according to the fourth embodiment of the present invention includes a second optical member 20D instead of the second optical member 20A.
  • the second optical member 20D is a lens array sheet, and includes a sheet portion 21 and a plurality of hemispherical portions (lens portions) 23 two-dimensionally arranged on the image pickup element 4A (see FIG. 1) side of the sheet portion 21. .
  • the hemispherical part 23 realizes the same function as the prism part 22.
  • the second optical member 20D is a lens array sheet, the function as the second optical member 20D can be easily realized. it can.
  • the optical member 2E of the fingerprint authentication device 1E according to the fifth embodiment of the present invention includes a second optical member 20E instead of the second optical member 20A.
  • the second optical member 20E is a prism array sheet, and includes a sheet portion 21 and a plurality of quadrangular pyramid portions 24 two-dimensionally arranged on the image pickup element 4A (see FIG. 1) side of the sheet portion 21. .
  • the quadrangular pyramid portion 24 achieves the same function as the prism portion 22.
  • the second optical member 20E is a prism array sheet, the function as the second optical member 20E can be easily realized. it can.
  • the fingerprint authentication device 1F according to the sixth embodiment of the present invention includes a plurality of surface light sources 90.
  • the plurality of surface light sources 90 are, for example, organic EL panels, and are provided so as to surround the finger F that is the object from three directions in plan view, and irradiate the finger F that is the object with light.
  • a part of the configuration of the image sensor 4A is not shown.
  • the fingerprint authentication device 1F since the fingerprint authentication device 1F according to the sixth embodiment of the present invention includes the surface light source 90, it is possible to irradiate the finger F with the light amount unevenness suppressed, and to detect the uneven image without unevenness. Can do. In addition, since the fingerprint authentication device 1F can detect a concavo-convex image without unevenness, it is possible to realize quick fingerprint authentication with reduced power consumption.
  • a fingerprint authentication device according to the seventh embodiment of the present invention will be described focusing on differences from the fingerprint authentication device 1A according to the sixth embodiment.
  • the plurality of surface light sources 90 are interposed between the finger F, which is the object, and the first optical member 10A. ing.
  • the plurality of surface light sources 90 are provided at a portion where the finger F that is an object contacts.
  • a part of the configuration of the image sensor 4A is not shown.
  • the surface light source 90 is interposed between the finger F and the first optical member 10A, the surface light source 90 is interposed between the finger F and air. Therefore, light is emitted in direct contact with each other, reflection and absorption between the surface light source 90 and the air can be eliminated, and a reduction in power efficiency can be prevented.
  • a fingerprint authentication device 1H according to an eighth embodiment of the present invention includes an image sensor 4H in which a plurality of surface light sources 90 are integrated. That is, the surface light source 90 is formed between the support substrate 30 and the protective substrate 80 around the TFT (Thin Film Transistor) 40, the pixel electrode 50, the photoelectric conversion layer 60, and the counter electrode 70.
  • the counter electrode 91, the organic light emitting layer 92, and the transparent electrode 93 are provided in order.
  • the organic light emitting layer 92 emits light when voltage is applied by the counter electrode 91 and the transparent electrode 93.
  • the plurality of surface light sources 90 are integrated with the image sensor 4H, it is possible to reduce the thickness.
  • the second optical members 20A, 20D, and 20E may be omitted by changing the shape of the emission surface of the first optical members 10A, 10B, and 10C to a prism array shape or a lens array shape. .

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

Provided is an optical member that enables the detection of a high-contrast, clear uneven image. An optical member (2A) has an incidence surface (2a), which makes contact with the surface of a finger that is a subject and through which light from the surface of the finger enters, and an emission surface (2b) from which the light entering the incidence surface (2a) is emitted, and a refractive layer (3) is formed between the emission surface (2b) and an imaging element. Of the light entering the incidence surface (2a), the light that is emitted into the optical member (2A) at an angle inclined with respect to the normal-line (L1) direction of the incidence surface (2a) propagates to the emission surface (2b), and the light is emitted to the imaging element (4A) through the refractive layer 3 provided between the emission surface (2b) and the imaging element 4A; thus, the light is refracted so as to approach the normal-line direction of the imaging element (4A).

Description

光学部材、凹凸検出装置及び指紋認証装置Optical member, unevenness detecting device and fingerprint authentication device
 本発明は、光学部材、凹凸検出装置及び指紋認証装置に関する。 The present invention relates to an optical member, an unevenness detection device, and a fingerprint authentication device.
 光学式の指紋認証装置等といった凹凸検出装置として、特許文献1には、レンズに代えてファイバーオプティクスプレート(FOP:Fiber Optics Plate)を用いる技術が開示されている。かかる技術では、FOPにおける光ファイバーの束が光の入射面の法線方向に対して傾斜していることによって、指紋の凹部からの光を極力排除し、高コントラストな凹凸像を撮像している。 As an unevenness detection device such as an optical fingerprint authentication device or the like, Patent Document 1 discloses a technique using a fiber optics plate (FOP) instead of a lens. In such a technique, the bundle of optical fibers in the FOP is inclined with respect to the normal direction of the light incident surface, so that light from the concave portion of the fingerprint is eliminated as much as possible and a high-contrast uneven image is taken.
特開平7-174947号公報JP 7-174947 A
 しかし、特許文献1に記載の技術では、撮像素子に対しても傾斜した光が入射するため、撮像素子の保護基板の法線方向に入射する光と比較すると、撮像素子の保護基板における光路長が長くなる。撮像素子の保護基板からセンサー部までの光路長が長いと、そこで光が広がってしまい、凹凸像が不鮮明になってしまう。 However, in the technique described in Patent Document 1, since inclined light is also incident on the image sensor, the optical path length in the protective substrate of the image sensor is compared with light incident in the normal direction of the protective substrate of the image sensor. Becomes longer. If the optical path length from the protection substrate of the image sensor to the sensor unit is long, the light spreads there, and the concavo-convex image becomes unclear.
 本発明は、前記の点に鑑みてなされたものであり、高コントラストかつ鮮明な凹凸像を検出することが可能な光学部材、凹凸検出装置及び指紋認証装置を提供することを課題とする。 The present invention has been made in view of the above points, and an object thereof is to provide an optical member, a concavo-convex detection device, and a fingerprint authentication device capable of detecting a high-contrast and clear concavo-convex image.
 前記課題を解決するための本発明は、以下の構成を備える。
1.対象物と撮像素子との間に設けられ、前記対象物の表面の凹凸パターンを検出するために前記対象物の表面からの光を前記撮像素子へ導く光学部材であって、前記対象物の表面と接触し、前記対象物の表面からの前記光が入射する入射面と、前記入射面に入射した前記光が出射される出射面と、を有し、前記出射面と前記撮像素子との間には、屈折層が構成されており、前記入射面に入射する前記光のうち、前記入射面の法線方向に対して傾斜する角度で前記光学部材内に出射する前記光を前記出射面まで伝搬し、前記光を前記出射面と前記撮像素子との間に設けられた屈折層を介して前記撮像素子へ出射することによって、前記光を前記撮像素子の法線方向に近づくように屈折させる光学部材。
2.前記光学部材は、前記対象物の表面と接触し、前記対象物の表面からの前記光が入射する前記入射面としての第一の入射面と、前記第一の入射面に入射した前記光が出射される第一の出射面と、を有する第一の光学部材と、前記第一の出射面から出射された前記光が入射する第二の入射面と、前記第二の入射面に入射した前記光が出射される前記出射面としての第二の出射面と、を有する第二の光学部材と、を備え、前記第一の光学部材は、前記第一の入射面に入射する前記光のうち、前記第一の入射面の法線方向に対して傾斜する角度で前記第一の光学部材内に出射する前記光を前記第一の出射面まで伝搬し、前記第二の光学部材は、前記光を前記第二の出射面から前記屈折層へ出射する前記1に記載の光学部材。
3.前記第一の光学部材は、当該第一の光学部材の面方向に配列された複数の光ファイバーを有するファイバーオプティクスプレートであり、前記複数の光ファイバーの軸線方向は、前記第一の入射面の法線方向に対して傾斜している前記2に記載の光学部材。
4.前記第一の光学部材は、当該第一の光学部材の面内の一方向に配列された複数のルーバーを有するルーバーフィルムであり、前記複数のルーバーは、前記第一の入射面の法線方向に対して傾斜している光吸収部であり、一対の前記ルーバー間には、前記光を透過可能な光透過部が形成されている前記2に記載の光学部材。
5.前記第一の光学部材は、前記対象物側の前記ルーバーフィルムとしての第一のルーバーフィルムと、前記第二の光学部材側の前記ルーバーフィルムとしての第二のルーバーフィルムと、を備え、前記第一のルーバーフィルムにおける前記複数のルーバーと前記第二のルーバーフィルムにおける前記複数のルーバーとは、交差するように設けられている前記4に記載の光学部材。
6.前記対象物の表面の凹部と前記第一の光学部材との間の領域の屈折率をn1、前記光学部材の屈折率をn2としたとき、前記第一の光学部材は、前記第一の入射面の法線方向に対して角度θ=arcsin(n1/n2)よりも大きい角度で前記第一の光学部材内に出射した光を前記第一の出射面まで伝搬する前記2から5のいずれかに記載の光学部材。
7.前記第二の光学部材は、プリズムアレイシート又はレンズアレイシートである前記2に記載の光学部材。
8.前記1から7のいずれかに記載の光学部材と、前記光学部材の前記出射面側に設けられる前記屈折層及び前記撮像素子と、を備え、前記撮像素子は、保護基板と、センサ部と、を備え、前記保護基板の屈折率は、前記屈折層の屈折率よりも大きく、前記センサ部は、前記光学部材、前記屈折層及び前記保護基板を介した光を光イメージとして撮像する凹凸検出装置。
9.前記屈折層は、前記光学部材と前記撮像素子との間の隙間に存在する空気である前記8に記載の凹凸検出装置。
10.前記対象物の表面に前記光を照射する面光源を備える前記8又は9に記載の凹凸検出装置。
11.前記8から10のいずれかに記載の凹凸検出装置と、前記凹凸検出装置によって検出された、前記対象物の表面の凹凸パターンである指紋を認証する制御部と、を備える指紋認証装置。
The present invention for solving the above-described problems has the following configuration.
1. An optical member that is provided between an object and an image sensor and guides light from the surface of the object to the image sensor in order to detect an uneven pattern on the surface of the object, the surface of the object An entrance surface on which the light from the surface of the object is incident, and an exit surface from which the light incident on the entrance surface is emitted, between the exit surface and the imaging device Includes a refracting layer, and out of the light incident on the incident surface, the light emitted into the optical member at an angle inclined with respect to a normal direction of the incident surface to the output surface. Propagates and refracts the light so as to approach the normal direction of the imaging element by emitting the light to the imaging element via a refractive layer provided between the emission surface and the imaging element. Optical member.
2. The optical member is in contact with the surface of the object, the first incident surface as the incident surface on which the light from the surface of the object is incident, and the light incident on the first incident surface. A first optical member having a first emission surface to be emitted, a second incident surface on which the light emitted from the first emission surface is incident, and the second incident surface. A second optical member having a second emission surface as the emission surface from which the light is emitted, and the first optical member is configured to transmit the light incident on the first incident surface. Among them, the light emitted into the first optical member at an angle inclined with respect to the normal direction of the first incident surface is propagated to the first outgoing surface, and the second optical member is 2. The optical member according to 1, wherein the light is emitted from the second emission surface to the refractive layer.
3. The first optical member is a fiber optics plate having a plurality of optical fibers arranged in a surface direction of the first optical member, and an axial direction of the plurality of optical fibers is a normal line of the first incident surface. 3. The optical member according to 2 above, which is inclined with respect to the direction.
4). The first optical member is a louver film having a plurality of louvers arranged in one direction within the plane of the first optical member, and the plurality of louvers are in a normal direction of the first incident surface. The optical member according to 2 above, wherein a light transmitting portion that is capable of transmitting the light is formed between the pair of louvers.
5). The first optical member includes a first louver film as the louver film on the object side, and a second louver film as the louver film on the second optical member side, 5. The optical member according to 4, wherein the plurality of louvers in one louver film and the plurality of louvers in the second louver film are provided so as to intersect with each other.
6). When the refractive index of the region between the concave portion on the surface of the object and the first optical member is n1, and the refractive index of the optical member is n2, the first optical member is the first incident member. Any one of 2 to 5 above, wherein light emitted into the first optical member at an angle larger than an angle θ = arcsin (n1 / n2) with respect to the normal direction of the surface is propagated to the first emission surface An optical member according to the above.
7). The optical member according to 2, wherein the second optical member is a prism array sheet or a lens array sheet.
8). The optical member according to any one of 1 to 7, and the refractive layer and the imaging element provided on the emission surface side of the optical member, wherein the imaging element includes a protective substrate, a sensor unit, And a refractive index of the protective substrate is larger than a refractive index of the refractive layer, and the sensor unit captures light through the optical member, the refractive layer and the protective substrate as an optical image. .
9. 9. The unevenness detection apparatus according to 8, wherein the refractive layer is air existing in a gap between the optical member and the imaging element.
10. The unevenness detection apparatus according to 8 or 9, further comprising a surface light source that irradiates the surface of the object with the light.
11. 11. A fingerprint authentication device comprising: the unevenness detection device according to any one of 8 to 10; and a control unit that authenticates a fingerprint that is an uneven pattern on the surface of the object detected by the unevenness detection device.
 本発明によると、高コントラストかつ鮮明な凹凸像を検出することができる。 According to the present invention, a high-contrast and clear uneven image can be detected.
(a)は、本発明の第一の実施形態に係る指紋認証装置を模式的に示す断面図であり、(b)は、本発明の第一の実施形態に係る指紋認証装置を模式的に示すブロック図である。(A) is sectional drawing which shows typically the fingerprint authentication apparatus which concerns on 1st embodiment of this invention, (b) is typically the fingerprint authentication apparatus which concerns on 1st embodiment of this invention. FIG. 本発明の第一の実施形態に係る第一の光学部材を模式的に示す斜視図である。It is a perspective view showing typically the 1st optical member concerning a first embodiment of the present invention. 本発明の第一の実施形態に係る第一の光学部材における配光の例を示すグラフである。It is a graph which shows the example of the light distribution in the 1st optical member which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る第二の光学部材を模式的に示す斜視図である。It is a perspective view which shows typically the 2nd optical member which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る指紋認証装置における光の伝搬を説明するための図である。It is a figure for demonstrating propagation of the light in the fingerprint authentication apparatus which concerns on 1st embodiment of this invention. 本発明の第二の実施形態に係る第一の光学部材を模式的に示す斜視図である。It is a perspective view which shows typically the 1st optical member which concerns on 2nd embodiment of this invention. 本発明の第二の実施形態に係る指紋認証装置における光の伝搬を説明するための図である。It is a figure for demonstrating the propagation of the light in the fingerprint authentication apparatus which concerns on 2nd embodiment of this invention. 本発明の第三の実施形態に係る第一の光学部材を模式的に示す斜視図である。It is a perspective view which shows typically the 1st optical member which concerns on 3rd embodiment of this invention. 本発明の第四の実施形態に係る第二の光学部材を模式的に示す斜視図である。It is a perspective view which shows typically the 2nd optical member which concerns on 4th embodiment of this invention. 本発明の第五の実施形態に係る第二の光学部材を模式的に示す斜視図である。It is a perspective view which shows typically the 2nd optical member which concerns on 5th embodiment of this invention. (a)は、本発明の第六の実施形態に係る指紋認証装置を模式的に示す断面図であり、(b)は、本発明の第六の実施形態に係る指紋認証装置を模式的に示す平面図である。(A) is sectional drawing which shows typically the fingerprint authentication apparatus which concerns on 6th embodiment of this invention, (b) is typically the fingerprint authentication apparatus which concerns on 6th embodiment of this invention. FIG. (a)は、本発明の第七の実施形態に係る指紋認証装置を模式的に示す断面図であり、(b)は、本発明の第七の実施形態に係る指紋認証装置を模式的に示す平面図である。(A) is sectional drawing which shows typically the fingerprint authentication apparatus which concerns on 7th embodiment of this invention, (b) is typically the fingerprint authentication apparatus which concerns on 7th embodiment of this invention. FIG. 本発明の第八の実施形態に係る指紋認証装置を模式的に示す断面図である。It is sectional drawing which shows typically the fingerprint authentication apparatus which concerns on 8th embodiment of this invention.
 本発明の実施形態について、本発明の凹凸パターン検出装置を指紋認証装置に適用した場合を例にとり、図面を参照して詳細に説明する。説明において、同一の要素には同一の符号を付し、重複する説明は省略する。 Embodiments of the present invention will be described in detail with reference to the drawings, taking as an example the case where the uneven pattern detection apparatus of the present invention is applied to a fingerprint authentication apparatus. In the description, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 図1に示すように、本発明の第一の実施形態に係る指紋認証装置1Aは、対象物の表面の凹凸パターンとして指紋を検出する光学式の認証装置であって、光学部材2Aと、屈折層3と、撮像素子4Aと、制御部5と、通知部6と、を備える。 As shown in FIG. 1, a fingerprint authentication device 1A according to a first embodiment of the present invention is an optical authentication device that detects a fingerprint as a concavo-convex pattern on the surface of an object. A layer 3, an image sensor 4 </ b> A, a control unit 5, and a notification unit 6 are provided.
<光学部材>
 光学部材2Aは、対象物である指F(手指、例えば、人差し指)からの光を撮像素子4Aへ導く部材であって、入射面2aと、出射面2bと、を備える。入射面2aは、指Fの表面と接触し、指Fの表面からの光が入射される平面である。出射面2bは、入射面2aに入射した光が出射される凹凸面である。
<Optical member>
The optical member 2A is a member that guides light from the finger F (finger, for example, index finger), which is an object, to the image sensor 4A, and includes an incident surface 2a and an output surface 2b. The incident surface 2a is a flat surface that comes into contact with the surface of the finger F and on which light from the surface of the finger F is incident. The exit surface 2b is an uneven surface from which light incident on the entrance surface 2a is emitted.
 ここで、対象物である指Fの屈折率は、約1.43である。指Fは、拡散度の大きい散乱体であるため、指に入射した光は、全方位から略均一な強度で指紋の凸部F1と凹部F2とから出射される。凸部F1からの光は、指F(屈折率:約1.43)から第一の光学部材10A(屈折率:1.55~1.8)内に屈折して出射するため、入射面2aの法線L1(図5参照)方向に対して大きい角度の成分を含んでいる(図3参照)。一方、凹部F2からの光は、指F(屈折率:約1.43)から空気(屈折率:1)を介して第一の光学部材(屈折率:1.55~1.8)内に屈折して出射するため、入射面2aの法線L1(図5参照)方向に対して大きい角度の成分を含まない(図3参照)。 Here, the refractive index of the finger F, which is the object, is about 1.43. Since the finger F is a scatterer with a high diffusivity, the light incident on the finger is emitted from the convex portion F1 and the concave portion F2 of the fingerprint with almost uniform intensity from all directions. The light from the convex portion F1 is refracted and emitted from the finger F (refractive index: about 1.43) into the first optical member 10A (refractive index: 1.55 to 1.8). A component having a large angle with respect to the normal line L1 (see FIG. 5) is included (see FIG. 3). On the other hand, the light from the recess F2 enters the first optical member (refractive index: 1.55 to 1.8) from the finger F (refractive index: about 1.43) through the air (refractive index: 1). Since the light is refracted and emitted, a component having a large angle with respect to the direction of the normal L1 (see FIG. 5) of the incident surface 2a is not included (see FIG. 3).
 光学部材2Aは、入射面2aに入射する光のうち、入射面2aの法線L1(図5参照)方向に対して傾斜する角度で当該光学部材2A内に出射する光を出射面2bまで伝搬し、かかる光を屈折層3を介して撮像素子4Aへ出射することによって、かかる光を撮像素子4Aの入射面の法線L2(図5参照)方向に屈折させる。光学部材2Aは、第一の光学部材10Aと、第二の光学部材20Aと、を備える。 The optical member 2A propagates the light emitted into the optical member 2A to the emission surface 2b at an angle inclined with respect to the direction of the normal L1 (see FIG. 5) of the incidence surface 2a out of the light incident on the incidence surface 2a. Then, by emitting the light to the image sensor 4A through the refractive layer 3, the light is refracted in the normal L2 direction (see FIG. 5) of the incident surface of the image sensor 4A. The optical member 2A includes a first optical member 10A and a second optical member 20A.
≪第一の光学部材≫
 図2に示すように、第一の光学部材10Aは、入射面2aとしての第一の入射面10aと、第一の出射面10bと、を備える。第一の出射面10bは、第一の入射面10aに入射した光が出射される平面である。本実施形態において、第一の入射面10aと第一の出射面10bとは、互いに平行である。第一の光学部材10Aは、第一の入射面10aに入射した光のうち、第一の入射面10aの法線L1(図5参照)方向に対して傾斜する角度で当該第一の光学部材10A内に出射する光を第一の出射面10bまで伝搬する。
≪First optical member≫
As shown in FIG. 2, the first optical member 10A includes a first incident surface 10a as the incident surface 2a and a first emission surface 10b. The first exit surface 10b is a plane from which light incident on the first entrance surface 10a is emitted. In the present embodiment, the first incident surface 10a and the first emission surface 10b are parallel to each other. 10 A of 1st optical members are the said 1st optical members in the angle which inclines with respect to the normal L1 (refer FIG. 5) direction of the 1st incident surface 10a among the light which injected into the 1st incident surface 10a. The light emitted into 10A propagates to the first emission surface 10b.
 図3に示すように、指Fの指紋の凸部F1からの光は、第一の入射面10aへの入射角度(法線L1(図5参照)に対する角度)が大きい成分の光を含んでおり、かかる成分の光が第一の光学部材10A内を好適に伝搬する。ここで、凸部F1からの光のうち、第一の入射面10aからの出射角度が小さい成分の光は、第一の光学部材10A内を伝搬しない。一方、指Fの指紋の凹部F2からの光の殆どは、第一の入射面10aからの出射角度(法線L1(図5参照)に対する角度)が小さい成分の光であるため、第一の光学部材10A内を殆ど伝搬しない。これにより、第一の光学部材10Aは、指Fの指紋の凸部F1からの光を積極的に伝搬するとともに指Fの指紋の凹部F2からの光を極力排除することによって、高コントラストの指紋像を第一の出射面10bまで伝搬することができる。ここで、凹部F2からの光の第一の入射面10aから第一の光学部材10A内への出射角度θ(第一の入射面10aの法線L1に対する角度)の最大値をθF2MAXとすると、このθF2MAXは、指Fの指紋の凹部F2と第一の光学部材10Aとの間の屈折率n1(すなわち、空気の屈折率)と、第一の光学部材10Aの屈折率n2とによって、以下のように決定される。
 θF2MAX=arcsin(n1/n2)
As shown in FIG. 3, the light from the fingerprint projection F1 of the finger F includes light of a component having a large incident angle (an angle with respect to the normal L1 (see FIG. 5)) on the first incident surface 10a. Thus, the light of such components suitably propagates in the first optical member 10A. Here, of the light from the convex portion F1, light having a component with a small emission angle from the first incident surface 10a does not propagate through the first optical member 10A. On the other hand, most of the light from the concave portion F2 of the fingerprint of the finger F is light having a component with a small emission angle from the first incident surface 10a (angle with respect to the normal L1 (see FIG. 5)). It hardly propagates in the optical member 10A. Thereby, the first optical member 10A actively propagates the light from the convex portion F1 of the fingerprint of the finger F and eliminates the light from the concave portion F2 of the fingerprint of the finger F as much as possible. The image can be propagated to the first exit surface 10b. Here, assuming that the maximum value of the emission angle θ of light from the concave portion F2 from the first incident surface 10a into the first optical member 10A (the angle with respect to the normal L1 of the first incident surface 10a) is θ F2MAX. The θ F2MAX is determined by the refractive index n1 between the fingerprint recess F2 of the finger F and the first optical member 10A (that is, the refractive index of air) and the refractive index n2 of the first optical member 10A. It is determined as follows.
θ F2MAX = arcsin (n1 / n2)
 図2に示すように、本実施形態において、第一の光学部材10Aは、ファイバーオプティクスプレート(FOP:Fiber Optics Plate)であって、第一の光学部材10Aの面方向に配列された複数の光ファイバー11を有する。複数の光ファイバー11は、第一の入射面10aから第一の出射面10bにわたって延設されており、複数の光ファイバー11の軸線方向は、第一の入射面10aの法線L1(図5参照)方向に対して角度α(図5参照)だけ傾斜している。第一の光学部材10Aは、光ファイバー11を構成するコア12及びクラッド13と、光吸収体14と、を備える。 As shown in FIG. 2, in the present embodiment, the first optical member 10A is a fiber optics plate (FOP), and a plurality of optical fibers arranged in the surface direction of the first optical member 10A. 11. The plurality of optical fibers 11 extend from the first incident surface 10a to the first emission surface 10b, and the axial direction of the plurality of optical fibers 11 is the normal L1 of the first incident surface 10a (see FIG. 5). It is inclined with respect to the direction by an angle α (see FIG. 5). The first optical member 10 </ b> A includes a core 12 and a clad 13 that constitute the optical fiber 11, and a light absorber 14.
 コア12は、傾斜した円柱形状を呈しており、光を伝搬可能な材料によって形成されている。クラッド13は、コア12の外周面を被覆する、傾斜した円筒形状を呈しており、コア12よりも屈折率の小さい光透過性の材料によって形成されている。光吸収体14は、複数の光ファイバー11の間を充填するように設けられており、光を吸収可能な材料によって形成されている。 The core 12 has an inclined cylindrical shape and is made of a material capable of propagating light. The clad 13 has an inclined cylindrical shape that covers the outer peripheral surface of the core 12, and is formed of a light-transmitting material having a refractive index smaller than that of the core 12. The light absorber 14 is provided so as to fill a space between the plurality of optical fibers 11 and is formed of a material capable of absorbing light.
 第一の光学部材10Aは、第一の入射面10aにおいて複数の光ファイバー11のコア12に入射した光のうち、コア12とクラッド13との間で全反射する光のみを伝搬して第一の出射面10bから出射する。換言すると、第一の入射面10aにおいてクラッド13及び光吸収体14に入射した光、並びに、コア12に入射したけれどコア12とクラッド13との間で全反射しない光は、光吸収体14に吸収され、第一の出射面10bから出射しない。 The first optical member 10A propagates only the light totally reflected between the core 12 and the clad 13 out of the light incident on the cores 12 of the plurality of optical fibers 11 on the first incident surface 10a. The light exits from the exit surface 10b. In other words, the light incident on the clad 13 and the light absorber 14 on the first incident surface 10a and the light that has entered the core 12 but is not totally reflected between the core 12 and the clad 13 are incident on the light absorber 14. It is absorbed and does not exit from the first exit surface 10b.
 このような全反射は、第一の入射面10aの法線方向に対する光ファイバー11の軸線方向の角度と、コア12及びクラッド13の屈折率の差と、を適宜設定することによって実現可能である。 Such total reflection can be realized by appropriately setting the angle in the axial direction of the optical fiber 11 with respect to the normal direction of the first incident surface 10a and the difference in refractive index between the core 12 and the clad 13.
 一般的に、コア12の屈折率は、約1.55~1.80であり、クラッド13の屈折率は、1.55以下である。また、第一の入射面10aの法線方向に対する光ファイバー11の軸線方向は、光ファイバー11の束のカット角度により任意に設定可能である。例えば、コア12の屈折率は、約1.55~1.70、クラッド13の屈折率は、1.55以下、第一の入射面10aの法線L1(図5参照)方向に対する光ファイバー11の軸線方向の角度α(図5参照)は、30度以上60度以下に設定されることが望ましい。 Generally, the refractive index of the core 12 is about 1.55 to 1.80, and the refractive index of the clad 13 is 1.55 or less. Further, the axial direction of the optical fiber 11 with respect to the normal direction of the first incident surface 10 a can be arbitrarily set by the cut angle of the bundle of optical fibers 11. For example, the refractive index of the core 12 is about 1.55 to 1.70, the refractive index of the cladding 13 is 1.55 or less, and the optical fiber 11 is in the direction of the normal L1 (see FIG. 5) of the first incident surface 10a. The angle α in the axial direction (see FIG. 5) is preferably set to 30 degrees or more and 60 degrees or less.
≪第二の光学部材≫
 図4に示すように、第二の光学部材20Aは、第一の光学部材10Aと屈折層3との間に設けられており、第二の入射面20aと、出射面2bとしての第二の出射面20bと、を備える。第二の入射面20aは、第一の光学部材10Aの第一の出射面10bから出射された光が入射する平面である。第二の入射面20aは、第一の光学部材10Aの第一の出射面10bと当接(面接触)しており、第一の出射面10bにおける全反射の発生を防止している。第二の出射面20bは、第二の入射面に入射した光が屈折層3へ出射される凹凸面である。第二の光学部材20Aの屈折率は、第一の光学部材10A(より詳細には、コア12の屈折率)と近い値であればよく、1.55~1.80であることが望ましい。
≪Second optical member≫
As shown in FIG. 4, the second optical member 20A is provided between the first optical member 10A and the refractive layer 3, and the second incident surface 20a and the second as the exit surface 2b. And an emission surface 20b. The second incident surface 20a is a plane on which light emitted from the first emission surface 10b of the first optical member 10A is incident. The second entrance surface 20a is in contact (surface contact) with the first exit surface 10b of the first optical member 10A, thereby preventing total reflection on the first exit surface 10b. The second emission surface 20 b is an uneven surface from which light incident on the second incidence surface is emitted to the refractive layer 3. The refractive index of the second optical member 20A may be a value close to the first optical member 10A (more specifically, the refractive index of the core 12), and is preferably 1.55 to 1.80.
 もし、第二の光学部材20Aが無い場合には、第一の光学部材10Aの出射面10bと屈折層3との間で一部の光に全反射が発生する。ここで、一部の全反射する光は、主にθF2MAXよりも大きい角度の光である。すなわち、指紋の凸部F1のみが有しているθF2MAXよりも大きい角度の光は、全反射によって屈折層3には取り出されないことになり、光吸収体14に吸収される。その結果、対象物である指Fの指紋の凸部F1と凹部F2との明暗差が小さくなってしまう。換言すると、第二の光学部材20Aは、第一の光学部材10Aの出射面において全反射が発生することを防止し、θF2MAXよりも大きい角度の光を屈折層3に取り出すことによって、高コントラストの指紋像を屈折層3へ伝搬することができる。 If there is no second optical member 20A, total reflection occurs in part of the light between the exit surface 10b of the first optical member 10A and the refractive layer 3. Here, part of the totally reflected light is mainly light having an angle larger than θF2MAX . That is, light having an angle larger than θ F2MAX possessed only by the convex portion F1 of the fingerprint is not extracted by the refractive layer 3 due to total reflection, and is absorbed by the light absorber 14. As a result, the difference in brightness between the convex portion F1 and the concave portion F2 of the fingerprint of the finger F that is the object is reduced. In other words, the second optical member 20A prevents total reflection from occurring on the exit surface of the first optical member 10A, and takes out light having an angle larger than θ F2MAX to the refractive layer 3, thereby achieving high contrast. Can be propagated to the refractive layer 3.
 本実施形態において、第二の光学部材20Aは、プリズムアレイシートであり、シート部21と、シート部21の撮像素子4A側に配列された複数のプリズム部22と、を備える。複数のプリズム部22は、三角柱形状を呈しており、一のプリズム部22は、光ファイバー11の傾斜方向と交差する方向に延設されている。すなわち、かかるプリズム部22によって、第一の光学部材10Aからの光が出射面2bすなわち第二の出射面20bにおいて全反射することなく屈折層3へ出射するようになっている。第二の光学部材20Aの厚さは、200[μm]以下であることが望ましい。かかる第二の光学部材20Aとしては、例えば3M社のBEF(Brightness Enhancement Film)等が好適に利用可能である。 In the present embodiment, the second optical member 20A is a prism array sheet, and includes a sheet portion 21 and a plurality of prism portions 22 arranged on the imaging element 4A side of the sheet portion 21. The plurality of prism portions 22 have a triangular prism shape, and one prism portion 22 extends in a direction intersecting with the inclination direction of the optical fiber 11. That is, the prism portion 22 emits the light from the first optical member 10A to the refractive layer 3 without being totally reflected on the emission surface 2b, that is, the second emission surface 20b. The thickness of the second optical member 20A is desirably 200 [μm] or less. As the second optical member 20A, for example, 3M BEF (Brightness Enhancement Film) or the like can be suitably used.
<屈折層>
 図1に示すように、屈折層3は、第二の光学部材20Aと撮像素子4Aとの間に設けられており、出射面2bすなわち第二の出射面20bから出射された光を、撮像素子4Aの入射面の法線方向に屈折させる。屈折層3の屈折率は、撮像素子4Aの保護基板80の屈折率よりも小さく設定されており、保護基板80の屈折率との差が大きい方が望ましい。屈折層3としては、屈折率が約1.4のシリコンゴム、屈折率が約1.4~1.8の接触液(マッチングオイル)、屈折率が約1の空気が挙げられ、これらの中では、屈折率が小さい空気が最も望ましい。
<Refractive layer>
As shown in FIG. 1, the refractive layer 3 is provided between the second optical member 20A and the image sensor 4A, and the light emitted from the exit surface 2b, that is, the second exit surface 20b, is converted into the image sensor. The light is refracted in the normal direction of the incident surface of 4A. The refractive index of the refractive layer 3 is set to be smaller than the refractive index of the protective substrate 80 of the image sensor 4A, and it is desirable that the difference from the refractive index of the protective substrate 80 is large. Examples of the refractive layer 3 include silicon rubber having a refractive index of about 1.4, contact liquid (matching oil) having a refractive index of about 1.4 to 1.8, and air having a refractive index of about 1. Then, air with a low refractive index is most desirable.
<撮像素子>
 撮像素子4Aは、対象物である指Fからの光を光学部材2A及び屈折層3を介して受光することによって、指Fの表面の凹凸すなわち指紋を検出するためのものである。撮像素子4Aは、支持基板30と、支持基板30上に順に形成されたTFT(Thin Film Transistor)40、画素電極50、光電変換層(例えば、有機光電変換層)60、対向電極70及び保護基板80と、を備える。TFT40、画素電極50、光電変換層(例えば、有機光電変換層)60及び対向電極70は、指Fからの光を光イメージとして撮像するセンサ部を構成する。
<Image sensor>
The imaging element 4A is for detecting irregularities on the surface of the finger F, that is, fingerprints, by receiving light from the finger F that is an object through the optical member 2A and the refractive layer 3. The image sensor 4A includes a support substrate 30, TFTs (Thin Film Transistor) 40, a pixel electrode 50, a photoelectric conversion layer (for example, an organic photoelectric conversion layer) 60, a counter electrode 70, and a protective substrate that are sequentially formed on the support substrate 30. 80. The TFT 40, the pixel electrode 50, the photoelectric conversion layer (for example, organic photoelectric conversion layer) 60, and the counter electrode 70 constitute a sensor unit that captures light from the finger F as an optical image.
 図5に示すように、本発明の第一の実施形態に係る指紋認証装置1Aにおいて、対象物である指Fの表面からの光は、入射面2a(第一の入射面10a)、第一の光学部材10Aのコア12、第一の出射面10b、第二の入射面20a、第二の光学部材20Aのシート部21及びプリズム部22、出射面2b(第二の出射面20b)及び屈折層3を介して、撮像素子4Aの保護基板80に入射する。保護基板80は、樹脂、ガラス等によって形成された透明な基板である。保護基板80の入射面及び出射面は、それぞれ、第一の光学部材10Aの第一の入射面10a及び第一の出射面10b並びに第二の光学部材20Aの第二の入射面と平行である。 As shown in FIG. 5, in the fingerprint authentication device 1 </ b> A according to the first embodiment of the present invention, light from the surface of the finger F that is the target is incident surface 2 a (first incident surface 10 a), first Core 12 of optical member 10A, first exit surface 10b, second entrance surface 20a, sheet portion 21 and prism portion 22 of second optical member 20A, exit surface 2b (second exit surface 20b) and refraction. The light enters the protective substrate 80 of the image sensor 4 </ b> A through the layer 3. The protective substrate 80 is a transparent substrate formed of resin, glass or the like. The entrance surface and the exit surface of the protective substrate 80 are parallel to the first entrance surface 10a and the first exit surface 10b of the first optical member 10A and the second entrance surface of the second optical member 20A, respectively. .
<制御部>
 図1に示すように、制御部5は、CPU(Central Processing Unit)、ROM(Read-Only Memory)、RAM(Random Access Memory)、入出力回路等によって構成されており、予め記憶された指紋像を用いて、撮像素子4Aによって検出された指Fの凹凸すなわち指紋像を認証し、認証結果を通知部6へ出力する。
<Control unit>
As shown in FIG. 1, the control unit 5 includes a CPU (Central Processing Unit), a ROM (Read-Only Memory), a RAM (Random Access Memory), an input / output circuit, and the like, and a fingerprint image stored in advance. Are used to authenticate the unevenness of the finger F detected by the image sensor 4A, that is, the fingerprint image, and output the authentication result to the notification unit 6.
 通知部6は、制御部5による認証結果を画像表示する表示部(例えば、モニタ)、及び/又は、制御部5による認証結果を音声出力する音声出力部(スピーカ)である。 The notification unit 6 is a display unit (for example, a monitor) that displays an authentication result by the control unit 5 and / or a voice output unit (speaker) that outputs the authentication result by the control unit 5 by voice.
<光の伝搬>
 図5に示すように、対象物である指Fからの光は、法線L1に対して傾斜した角度で第一の入射面10aから第一の光学部材10A内に出射して第一の光学部材10Aのコア12を伝搬し、第一の出射面10bから出射する。第一の出射面10bから出射した光は、第二の入射面20aから第二の光学部材20A内に出射して第二の光学部材20Aを伝搬し、第二の出射面から20bから屈折層3へ屈折しながら出射する。第二の出射面20bから屈折層3へ出射した光は、屈折層3を伝搬し、撮像素子4Aの保護基板80へ屈折しながら出射する。ここで、保護基板80の屈折率は屈折層3の屈折率よりも大きいため、第一の光学部材10Aの第一の入射面10aの法線L1に対して傾斜して第一の光学部材10A内に出射した光は、その進行方向が保護基板80の入射面の法線L2方向に近づくように屈折する。
<Propagation of light>
As shown in FIG. 5, the light from the finger F, which is the object, is emitted from the first incident surface 10a into the first optical member 10A at an angle inclined with respect to the normal L1, and the first optical member It propagates through the core 12 of the member 10A and exits from the first exit surface 10b. The light emitted from the first emission surface 10b is emitted from the second incidence surface 20a into the second optical member 20A, propagates through the second optical member 20A, and is refracted from the second emission surface 20b. 3 is refracted and emitted. The light emitted from the second emission surface 20b to the refractive layer 3 propagates through the refractive layer 3 and is emitted while being refracted to the protective substrate 80 of the image sensor 4A. Here, since the refractive index of the protective substrate 80 is larger than the refractive index of the refractive layer 3, the first optical member 10A is inclined with respect to the normal L1 of the first incident surface 10a of the first optical member 10A. The light emitted inward is refracted so that its traveling direction approaches the normal L2 direction of the incident surface of the protective substrate 80.
 本発明の第一の実施形態に係る光学部材2A及び指紋認証装置1Aは、対象物Fからの光のうち入射面2aに対して傾斜した角度の光を伝搬して屈折層3に取り出し、当該光を屈折層3を用いて撮像素子4Aの法線L2方向に屈折させるので、対象物である指Fの高コントラストな凹凸像を得るとともに、当該光の保護基板80からセンサ部までの光路長を短くして鮮明な凹凸像を得ることができる。 The optical member 2A and the fingerprint authentication device 1A according to the first embodiment of the present invention propagate light out of the light from the object F at an angle inclined with respect to the incident surface 2a and extract it to the refractive layer 3, Since the light is refracted in the direction of the normal L2 of the image sensor 4A using the refraction layer 3, a high-contrast uneven image of the target finger F is obtained, and the optical path length of the light from the protective substrate 80 to the sensor unit It is possible to obtain a clear concavo-convex image by shortening.
 また、光学部材2A及び指紋認証装置1Aは、第一の光学部材10A及び第二の光学部材20Aを備えるので、設計の自由度が向上し、出射面2bを形成しやすくなる。 In addition, since the optical member 2A and the fingerprint authentication device 1A include the first optical member 10A and the second optical member 20A, the degree of freedom in design is improved and the emission surface 2b is easily formed.
 また、光学部材2A及び指紋認証装置1Aは、第一の光学部材10AがFOPであるので、第一の光学部材10Aとしての機能を容易に実現することができる。 Also, the optical member 2A and the fingerprint authentication device 1A can easily realize the function as the first optical member 10A because the first optical member 10A is an FOP.
 また、光学部材2A及び指紋認証装置1Aは、第一の光学部材10Aが第一の入射面10aに入射した光のうちθF2MAX=arcsin(n1/n2)よりも大きい角度で第一の入射面10aから第一の光学部材10A内に出射した光のみを伝搬するようにすることで対象物である指Fの指紋の凹部F2からの光の殆どを伝搬することができなくなるので、指紋の凸部F1と凹部F2との明暗差を大きくすることができ、対象物である指Fの高コントラストな凹凸像を得ることができる。 In addition, the optical member 2A and the fingerprint authentication device 1A are configured so that the first incident surface has an angle larger than θ F2MAX = arcsin (n1 / n2) among the light incident on the first incident surface 10a by the first optical member 10A. Since only the light emitted from 10a into the first optical member 10A is propagated, most of the light from the fingerprint recess F2 of the target finger F cannot be propagated. The difference in brightness between the part F1 and the recessed part F2 can be increased, and a high-contrast uneven image of the finger F that is the object can be obtained.
 また、光学部材2A及び指紋認証装置1Aは、第二の光学部材20Aがプリズムアレイシートであるので、第二の光学部材20Aとしての機能を容易に実現することができる。 Also, the optical member 2A and the fingerprint authentication device 1A can easily realize the function as the second optical member 20A because the second optical member 20A is a prism array sheet.
 また、指紋認証装置1Aは、屈折層3が空気であるので、光を屈折層3を用いてその進行方向が撮像素子4Aの法線L2方向により近づくように屈折させ、当該光の光路長を抑えて鮮明な凹凸像を得ることができる。 Further, since the refraction layer 3 is air, the fingerprint authentication device 1A refracts the light using the refraction layer 3 so that the traveling direction thereof is closer to the normal L2 direction of the image sensor 4A, and the optical path length of the light is increased. It can suppress and can obtain a clear uneven image.
<第二の実施形態>
 続いて、本発明の第二の実施形態に係る指紋認証装置について、第一の実施形態に係る指紋認証装置1Aとの相違点を中心に説明する。図6及び図7に示すように、本発明の第二の実施形態に係る指紋認証装置1Bの光学部材2Bは、第一の光学部材10Aに代えて、第一の光学部材10Bを備える。
<Second Embodiment>
Next, a fingerprint authentication device according to the second embodiment of the present invention will be described focusing on differences from the fingerprint authentication device 1A according to the first embodiment. As shown in FIGS. 6 and 7, the optical member 2B of the fingerprint authentication device 1B according to the second embodiment of the present invention includes a first optical member 10B instead of the first optical member 10A.
≪第一の光学部材(第一のルーバーフィルム)≫
 第一の光学部材10Bは、ルーバーフィルムであって、第一の光学部材10Bの面内の一方向に配列された複数のルーバー(光吸収体)15と、一対のルーバー15間を充填するように設けられた光透過部16と、を備える。ルーバー15は、傾斜した長板形状を呈しており、光を吸収可能な材料によって形成されている。光透過部16は、光を透過可能な材料によって形成されている。
≪First optical member (first louver film) ≫
The first optical member 10B is a louver film, and fills the space between the pair of louvers 15 and a plurality of louvers (light absorbers) 15 arranged in one direction within the surface of the first optical member 10B. And a light transmitting portion 16 provided in the. The louver 15 has an inclined long plate shape and is made of a material that can absorb light. The light transmission part 16 is formed of a material that can transmit light.
 第一の光学部材10Bは、第一の入射面10aにおいて光透過部16に入射した光のうち、光吸収体であるルーバー15に当たらない角度で入射した光のみを伝搬して第一の出射面10bから出射する。換言すると、第一の入射面10aにおいてルーバー15に入射した光、及び、光透過部16に入射したけれどルーバー15に当たった光は、光吸収体であるルーバー15に吸収され、第一の出射面10bからは出射しない。 The first optical member 10B propagates only light incident at an angle that does not hit the louver 15 that is a light absorber, out of the light incident on the light transmitting portion 16 on the first incident surface 10a, and the first emission. The light exits from the surface 10b. In other words, the light incident on the louver 15 on the first incident surface 10a and the light incident on the light transmitting portion 16 but hitting the louver 15 are absorbed by the louver 15 which is a light absorber, and are emitted from the first exit surface. It does not radiate | emit from the surface 10b.
 第一の入射面10aの法線方向に対するルーバー15の傾斜角度は、対象物(指)Fの凹部からの光を極力排除し、対象物(指)Fの凸部からの光を積極的に伝搬する角度、例えば、30度以上60度以下に設定されることが望ましい。 The inclination angle of the louver 15 with respect to the normal direction of the first incident surface 10a eliminates light from the concave portion of the object (finger) F as much as possible, and positively emits light from the convex portion of the object (finger) F. It is desirable to set the propagation angle, for example, 30 degrees or more and 60 degrees or less.
 第一の光学部材10Bは、シリコン系樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、アクリル樹脂、ポリ塩化ビニル樹脂等によって形成可能である。すなわち、第一の光学部材10Bは、第一の光学部材10A(図2参照)よりも低コストかつ薄型化が可能である。 The first optical member 10B can be formed of silicon resin, polycarbonate resin, polystyrene resin, acrylic resin, polyvinyl chloride resin, or the like. That is, the first optical member 10B can be made thinner and thinner than the first optical member 10A (see FIG. 2).
 本発明の第二の実施形態に係る指紋認証装置1B及び光学部材2Bは、第一の光学部材10Bがルーバーフィルムであるので、FOPよりも低コストかつ薄型化を実現することができる。 In the fingerprint authentication device 1B and the optical member 2B according to the second embodiment of the present invention, since the first optical member 10B is a louver film, it can be realized at a lower cost and thinner than the FOP.
<第三の実施形態>
 続いて、本発明の第三の実施形態に係る指紋認証装置について、第二の実施形態に係る指紋認証装置1Aとの相違点を中心に説明する。図8に示すように、本発明の第三の実施形態に係る指紋認証装置1Cの光学部材2Cは、第一の光学部材10Bに加えて、第一の光学部材10Cを備える。
<Third embodiment>
Next, a fingerprint authentication device according to the third embodiment of the present invention will be described focusing on differences from the fingerprint authentication device 1A according to the second embodiment. As shown in FIG. 8, the optical member 2C of the fingerprint authentication device 1C according to the third embodiment of the present invention includes a first optical member 10C in addition to the first optical member 10B.
≪第一の光学部材(第二のルーバーフィルム)≫
 第一の光学部材10Cは、ルーバーフィルムであって、第一の光学部材10Cの面内の一方向に配列された複数のルーバー(光吸収体)15と、一対のルーバー15間を充填するように設けられた光透過部16と、を備える。第一の光学部材10Cは、第一の光学部材10Bと第二の光学部材20A(図1参照)との間に設けられている。第一の光学部材10Bにおける複数のルーバー15の延伸方向X1と第一の光学部材10Cにおける複数のルーバー15の延伸方向X2とは、互いに交差するように(本実施形態では、平面視で直交するように)設けられている。第一の光学部材10Bの入射面10a及び出射面10c並びに第一の光学部材10Cの入射面10d及び出射面10bは、互いに平行であり、出射面10cと入射面10dとは面接触している。
≪First optical member (second louver film) ≫
The first optical member 10 </ b> C is a louver film that fills a space between the pair of louvers 15 and a plurality of louvers (light absorbers) 15 arranged in one direction within the plane of the first optical member 10 </ b> C. And a light transmitting portion 16 provided in the. The first optical member 10C is provided between the first optical member 10B and the second optical member 20A (see FIG. 1). The extending direction X1 of the plurality of louvers 15 in the first optical member 10B and the extending direction X2 of the plurality of louvers 15 in the first optical member 10C intersect each other (in the present embodiment, they are orthogonal in a plan view). As provided). The entrance surface 10a and the exit surface 10c of the first optical member 10B and the entrance surface 10d and the exit surface 10b of the first optical member 10C are parallel to each other, and the exit surface 10c and the entrance surface 10d are in surface contact. .
 すなわち、前記した第二の実施形態に係る指紋認証装置1Bでは、第一の光学部材10Bの延伸方向X1に傾斜して当該第一の光学部材10Bに入射する光は、入射面10aの法線L1(図5参照)方向に対して大きい角度で第一の光学部材10B内に出射する光も小さい角度で第一の光学部材10B内に出射する光もルーバー15に吸収されることなく第一の光学部材10Bの出射面10bから出射する。そのため、第二の実施形態に係る指紋認証装置1Bによって得られる指Fの凹凸像(指紋像)は、延伸方向X1においては指紋の凹部F2からの光も出射面から取り出されてしまうため、延伸方向X1では指紋の凸部F1と凹部F2との明暗差が小さくなり、低コントラストとなってしまう。 That is, in the fingerprint authentication device 1B according to the second embodiment described above, the light that is inclined in the extending direction X1 of the first optical member 10B and is incident on the first optical member 10B is normal to the incident surface 10a. The light emitted into the first optical member 10B at a large angle with respect to the L1 (see FIG. 5) direction and the light emitted into the first optical member 10B at a small angle are not absorbed by the louver 15 without being absorbed by the louver 15. The light exits from the exit surface 10b of the optical member 10B. Therefore, the concave / convex image (fingerprint image) of the finger F obtained by the fingerprint authentication device 1B according to the second embodiment is also stretched because light from the concave portion F2 of the fingerprint is also extracted from the exit surface in the stretching direction X1. In the direction X1, the contrast between the convex portion F1 and the concave portion F2 of the fingerprint becomes small, resulting in low contrast.
 これに対し、本発明の第三の実施形態に係る指紋認証装置1Cでは、第一の光学部材10Cのルーバー15が、延伸方向X1において入射面10dの法線方向(図5の法線L1と同一方向)に対して小さい角度で第一の光学部材10C内に出射する光を吸収することができる。すなわち、指紋認証装置1Cは、指紋の凹部F2からの光の殆どを吸収することができるため(ここで、指紋の凸部F1からの光のうち、入射面10a,10dの法線方向(図5の法線L1と同一方向)に対して小さい角度の出射光も吸収されるが、入射面10a,10dの法線方向(図5の法線L1と同一方向)に対して大きい角度の出射光は出射面から出射する)、延伸方向X1においても指紋の凸部F1と凹部F2との明暗差を大きくすることができ、高コントラストの指Fの凹凸像を得ることができる。 On the other hand, in the fingerprint authentication device 1C according to the third embodiment of the present invention, the louver 15 of the first optical member 10C is in the normal direction of the incident surface 10d in the extending direction X1 (the normal line L1 in FIG. 5). The light emitted into the first optical member 10C at a small angle with respect to the same direction) can be absorbed. That is, the fingerprint authentication device 1C can absorb most of the light from the concave portion F2 of the fingerprint (here, out of the light from the convex portion F1 of the fingerprint, the normal direction of the incident surfaces 10a and 10d (see FIG. 5 is also absorbed, but it is emitted at a large angle with respect to the normal direction of the incident surfaces 10a and 10d (the same direction as the normal L1 in FIG. 5). The incident light is emitted from the emission surface), and the difference in brightness between the convex portion F1 and the concave portion F2 of the fingerprint can be increased also in the extending direction X1, and an uneven image of the finger F with high contrast can be obtained.
 本発明の第三の実施形態に係る指紋認証装置1C及び光学部材2Cは、比較的安価かつ薄型の2枚の光学部材10B,10Cを用いることによって、延伸方向X1,X2の双方において高コントラストの指Fの凹凸像(指紋像)を得ることができる。 The fingerprint authentication device 1C and the optical member 2C according to the third embodiment of the present invention have high contrast in both the stretching directions X1 and X2 by using two relatively inexpensive and thin optical members 10B and 10C. An uneven image (fingerprint image) of the finger F can be obtained.
<第四の実施形態>
 続いて、本発明の第四の実施形態に係る指紋認証装置について、第一の実施形態に係る指紋認証装置1Aとの相違点を中心に説明する。図9に示すように、本発明の第四の実施形態に係る指紋認証装置1の光学部材2Dは、第二の光学部材20Aに代えて、第二の光学部材20Dを備える。
<Fourth embodiment>
Next, a fingerprint authentication device according to the fourth embodiment of the present invention will be described focusing on differences from the fingerprint authentication device 1A according to the first embodiment. As shown in FIG. 9, the optical member 2D of the fingerprint authentication device 1 according to the fourth embodiment of the present invention includes a second optical member 20D instead of the second optical member 20A.
 第二の光学部材20Dは、レンズアレイシートであり、シート部21と、シート部21の撮像素子4A(図1参照)側に二次元的に配列された複数の半球部(レンズ部)23と、を備える。かかる第二の光学部材20Dにおいて、半球部23は、プリズム部22と同様の機能を実現する。 The second optical member 20D is a lens array sheet, and includes a sheet portion 21 and a plurality of hemispherical portions (lens portions) 23 two-dimensionally arranged on the image pickup element 4A (see FIG. 1) side of the sheet portion 21. . In the second optical member 20D, the hemispherical part 23 realizes the same function as the prism part 22.
 本発明の第四の実施形態に係る指紋認証装置1D及び光学部材2Dは、第二の光学部材20Dがレンズアレイシートであるので、第二の光学部材20Dとしての機能を容易に実現することができる。 In the fingerprint authentication device 1D and the optical member 2D according to the fourth embodiment of the present invention, since the second optical member 20D is a lens array sheet, the function as the second optical member 20D can be easily realized. it can.
<第五の実施形態>
 続いて、本発明の第五の実施形態に係る指紋認証装置について、第一の実施形態に係る指紋認証装置1Aとの相違点を中心に説明する。図10に示すように、本発明の第五の実施形態に係る指紋認証装置1Eの光学部材2Eは、第二の光学部材20Aに代えて、第二の光学部材20Eを備える。
<Fifth embodiment>
Next, a fingerprint authentication device according to the fifth embodiment of the present invention will be described focusing on differences from the fingerprint authentication device 1A according to the first embodiment. As shown in FIG. 10, the optical member 2E of the fingerprint authentication device 1E according to the fifth embodiment of the present invention includes a second optical member 20E instead of the second optical member 20A.
 第二の光学部材20Eは、プリズムアレイシートであり、シート部21と、シート部21の撮像素子4A(図1参照)側に二次元的に配列された複数の四角錐部24と、を備える。かかる第二の光学部材20Eにおいて、四角錐部24は、プリズム部22と同様の機能を実現する。 The second optical member 20E is a prism array sheet, and includes a sheet portion 21 and a plurality of quadrangular pyramid portions 24 two-dimensionally arranged on the image pickup element 4A (see FIG. 1) side of the sheet portion 21. . In the second optical member 20E, the quadrangular pyramid portion 24 achieves the same function as the prism portion 22.
 本発明の第五の実施形態に係る指紋認証装置1E及び光学部材2Eは、第二の光学部材20Eがプリズムアレイシートであるので、第二の光学部材20Eとしての機能を容易に実現することができる。 In the fingerprint authentication device 1E and the optical member 2E according to the fifth embodiment of the present invention, since the second optical member 20E is a prism array sheet, the function as the second optical member 20E can be easily realized. it can.
<第六の実施形態>
 続いて、本発明の第六の実施形態に係る指紋認証装置について、第一の実施形態に係る指紋認証装置1Aとの相違点を中心に説明する。図11に示すように、本発明の第六の実施形態に係る指紋認証装置1Fは、複数の面光源90を備える。複数の面光源90は、例えば有機ELパネルであり、対象物である指Fを平面視で三方から囲むように設けられており、対象物である指Fに対して光を照射する。なお、図11において、撮像素子4Aの構成の一部は図示を省略されている。
<Sixth embodiment>
Next, a fingerprint authentication device according to the sixth embodiment of the present invention will be described focusing on differences from the fingerprint authentication device 1A according to the first embodiment. As shown in FIG. 11, the fingerprint authentication device 1F according to the sixth embodiment of the present invention includes a plurality of surface light sources 90. The plurality of surface light sources 90 are, for example, organic EL panels, and are provided so as to surround the finger F that is the object from three directions in plan view, and irradiate the finger F that is the object with light. In FIG. 11, a part of the configuration of the image sensor 4A is not shown.
 本発明の第六の実施形態に係る指紋認証装置1Fは、面光源90を備えるので、光量ムラを抑えた指Fへの光照射が可能であり、ムラの無い凹凸像の検出を実現することができる。また、指紋認証装置1Fは、ムラの無い凹凸像を検出することができるので、電力消費を抑えた速やかな指紋認証を実現することができる。 Since the fingerprint authentication device 1F according to the sixth embodiment of the present invention includes the surface light source 90, it is possible to irradiate the finger F with the light amount unevenness suppressed, and to detect the uneven image without unevenness. Can do. In addition, since the fingerprint authentication device 1F can detect a concavo-convex image without unevenness, it is possible to realize quick fingerprint authentication with reduced power consumption.
<第七の実施形態>
 続いて、本発明の第七の実施形態に係る指紋認証装置について、第六の実施形態に係る指紋認証装置1Aとの相違点を中心に説明する。図12に示すように、本発明の第七の実施形態に係る指紋認証装置1Gにおいて、複数の面光源90は、対象物である指Fと第一の光学部材10Aとの間に介設されている。換言すると、複数の面光源90は、対象物である指Fが当接する部位に設けられている。なお、図12において、撮像素子4Aの構成の一部は図示を省略されている。
<Seventh embodiment>
Next, a fingerprint authentication device according to the seventh embodiment of the present invention will be described focusing on differences from the fingerprint authentication device 1A according to the sixth embodiment. As shown in FIG. 12, in the fingerprint authentication device 1G according to the seventh embodiment of the present invention, the plurality of surface light sources 90 are interposed between the finger F, which is the object, and the first optical member 10A. ing. In other words, the plurality of surface light sources 90 are provided at a portion where the finger F that is an object contacts. In FIG. 12, a part of the configuration of the image sensor 4A is not shown.
 本発明の第七の実施形態に係る指紋認証装置1Gは、面光源90が指Fと第一の光学部材10Aとの間に介設されているので、面光源90が指Fと空気を介さずに直接接触した状態で発光することとなり、面光源90と空気との間での反射及び吸収を無くすことができ、電力効率の低下を防止することができる。 In the fingerprint authentication device 1G according to the seventh embodiment of the present invention, since the surface light source 90 is interposed between the finger F and the first optical member 10A, the surface light source 90 is interposed between the finger F and air. Therefore, light is emitted in direct contact with each other, reflection and absorption between the surface light source 90 and the air can be eliminated, and a reduction in power efficiency can be prevented.
<第八の実施形態>
 続いて、本発明の第八の実施形態に係る指紋認証装置について、第六の実施形態に係る指紋認証装置1Fとの相違点を中心に説明する。図13に示すように、本発明の第八の実施形態に係る指紋認証装置1Hは、複数の面光源90が一体化された撮像素子4Hを備える。すなわち、面光源90は、TFT(Thin Film Transistor)40、画素電極50、光電変換層60及び対向電極70の周囲において支持基板30と保護基板80との間に形成されており、支持基板30側から順に、反対電極91と、有機発光層92と、透明電極93と、を備える。有機発光層92は、反対電極91及び透明電極93による電圧印加によって発光する。
<Eighth embodiment>
Next, a fingerprint authentication device according to the eighth embodiment of the present invention will be described focusing on differences from the fingerprint authentication device 1F according to the sixth embodiment. As shown in FIG. 13, a fingerprint authentication device 1H according to an eighth embodiment of the present invention includes an image sensor 4H in which a plurality of surface light sources 90 are integrated. That is, the surface light source 90 is formed between the support substrate 30 and the protective substrate 80 around the TFT (Thin Film Transistor) 40, the pixel electrode 50, the photoelectric conversion layer 60, and the counter electrode 70. The counter electrode 91, the organic light emitting layer 92, and the transparent electrode 93 are provided in order. The organic light emitting layer 92 emits light when voltage is applied by the counter electrode 91 and the transparent electrode 93.
 本発明の第八の実施形態に係る指紋認証装置1Hは、複数の面光源90が撮像素子4Hに一体化されているので、薄型化を実現することができる。 In the fingerprint authentication device 1H according to the eighth embodiment of the present invention, since the plurality of surface light sources 90 are integrated with the image sensor 4H, it is possible to reduce the thickness.
 以上、本発明の実施形態について説明したが、本発明は前記実施形態に限定されず、本発明の要旨を逸脱しない範囲で適宜変更可能である。例えば、第一の光学部材10A,10B,10Cの出射面の形状を、プリズムアレイ形状又はレンズアレイ形状とすることによって、第二の光学部材20A,20D,20Eを省略する構成であってもよい。 As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, In the range which does not deviate from the summary of this invention, it can change suitably. For example, the second optical members 20A, 20D, and 20E may be omitted by changing the shape of the emission surface of the first optical members 10A, 10B, and 10C to a prism array shape or a lens array shape. .
 1A~1H 指紋認証装置(凹凸検出装置)
 2A~2E 光学部材
 3   屈折層
 4A,4H 撮像素子
 10A 第一の光学部材
 10B 第一の光学部材(第一のルーバーフィルム)
 10C 第二のルーバーフィルム
 20A,20D,20E 第二の光学部材
 80  保護基板
 90  面光源
 F   指(対象物)
1A ~ 1H Fingerprint authentication device (Unevenness detection device)
2A to 2E Optical member 3 Refractive layer 4A, 4H Image sensor 10A First optical member 10B First optical member (first louver film)
10C Second louver film 20A, 20D, 20E Second optical member 80 Protective substrate 90 Surface light source F Finger (object)

Claims (11)

  1.  対象物と撮像素子との間に設けられ、前記対象物の表面の凹凸パターンを検出するために前記対象物の表面からの光を前記撮像素子へ導く光学部材であって、
     前記対象物の表面と接触し、前記対象物の表面からの前記光が入射する入射面と、
     前記入射面に入射した前記光が出射される出射面と、
     を有し、
     前記出射面と前記撮像素子との間には、屈折層が構成されており、
     前記入射面に入射する前記光のうち、前記入射面の法線方向に対して傾斜する角度で前記光学部材内に出射する前記光を前記出射面まで伝搬し、前記光を前記出射面と前記撮像素子との間に設けられた屈折層を介して前記撮像素子へ出射することによって、前記光を前記撮像素子の法線方向に近づくように屈折させる光学部材。
    An optical member that is provided between the object and the image sensor and guides light from the surface of the object to the image sensor in order to detect an uneven pattern on the surface of the object;
    An incident surface that is in contact with the surface of the object and on which the light from the surface of the object is incident;
    An exit surface from which the light incident on the entrance surface is emitted;
    Have
    Between the exit surface and the imaging device, a refractive layer is configured,
    Of the light incident on the incident surface, the light emitted into the optical member at an angle inclined with respect to the normal direction of the incident surface is propagated to the output surface, and the light is transmitted to the output surface and the light An optical member that refracts the light so as to approach the normal direction of the image sensor by emitting the image to the image sensor via a refractive layer provided between the image sensor and the image sensor.
  2.  前記光学部材は、
     前記対象物の表面と接触し、前記対象物の表面からの前記光が入射する前記入射面としての第一の入射面と、前記第一の入射面に入射した前記光が出射される第一の出射面と、を有する第一の光学部材と、
     前記第一の出射面から出射された前記光が入射する第二の入射面と、前記第二の入射面に入射した前記光が出射される前記出射面としての第二の出射面と、を有する第二の光学部材と、
     を備え、
     前記第一の光学部材は、前記第一の入射面に入射する前記光のうち、前記第一の入射面の法線方向に対して傾斜する角度で前記第一の光学部材内に出射する前記光を前記第一の出射面まで伝搬し、
     前記第二の光学部材は、前記光を前記第二の出射面から前記屈折層へ出射する請求項1に記載の光学部材。
    The optical member is
    A first incident surface as the incident surface on which the light from the surface of the object is incident and is in contact with the surface of the object, and the first light incident on the first incident surface is emitted. A first optical member having:
    A second incident surface on which the light emitted from the first emission surface is incident, and a second emission surface as the emission surface from which the light incident on the second incident surface is emitted. A second optical member having;
    With
    The first optical member emits light into the first optical member at an angle inclined with respect to the normal direction of the first incident surface out of the light incident on the first incident surface. Propagating light to the first exit surface;
    The optical member according to claim 1, wherein the second optical member emits the light from the second emission surface to the refractive layer.
  3.  前記第一の光学部材は、当該第一の光学部材の面方向に配列された複数の光ファイバーを有するファイバーオプティクスプレートであり、
     前記複数の光ファイバーの軸線方向は、前記第一の入射面の法線方向に対して傾斜している請求項2に記載の光学部材。
    The first optical member is a fiber optics plate having a plurality of optical fibers arranged in the surface direction of the first optical member,
    The optical member according to claim 2, wherein an axial direction of the plurality of optical fibers is inclined with respect to a normal direction of the first incident surface.
  4.  前記第一の光学部材は、当該第一の光学部材の面内の一方向に配列された複数のルーバーを有するルーバーフィルムであり、
     前記複数のルーバーは、前記第一の入射面の法線方向に対して傾斜している光吸収部であり、
     一対の前記ルーバー間には、前記光を透過可能な光透過部が形成されている請求項2に記載の光学部材。
    The first optical member is a louver film having a plurality of louvers arranged in one direction in the plane of the first optical member,
    The plurality of louvers are light absorbing portions that are inclined with respect to the normal direction of the first incident surface,
    The optical member according to claim 2, wherein a light transmission part capable of transmitting the light is formed between the pair of louvers.
  5.  前記第一の光学部材は、前記対象物側の前記ルーバーフィルムとしての第一のルーバーフィルムと、前記第二の光学部材側の前記ルーバーフィルムとしての第二のルーバーフィルムと、を備え、
     前記第一のルーバーフィルムにおける前記複数のルーバーと前記第二のルーバーフィルムにおける前記複数のルーバーとは、交差するように設けられている請求項4に記載の光学部材。
    The first optical member includes a first louver film as the louver film on the object side, and a second louver film as the louver film on the second optical member side,
    The optical member according to claim 4, wherein the plurality of louvers in the first louver film and the plurality of louvers in the second louver film are provided so as to intersect with each other.
  6.  前記対象物の表面の凹部と前記第一の光学部材との間の領域の屈折率をn1、前記光学部材の屈折率をn2としたとき、前記第一の光学部材は、前記第一の入射面の法線方向に対して角度θ=arcsin(n1/n2)よりも大きい角度で前記第一の光学部材内に出射した光を前記第一の出射面まで伝搬する請求項2から請求項5のいずれか一項に記載の光学部材。 When the refractive index of the region between the concave portion on the surface of the object and the first optical member is n1, and the refractive index of the optical member is n2, the first optical member is the first incident member. 6. The light emitted into the first optical member at an angle larger than an angle θ = arcsin (n1 / n2) with respect to the normal direction of the surface is propagated to the first emission surface. The optical member as described in any one of these.
  7.  前記第二の光学部材は、プリズムアレイシート又はレンズアレイシートである請求項2に記載の光学部材。 The optical member according to claim 2, wherein the second optical member is a prism array sheet or a lens array sheet.
  8.  請求項1から請求項7のいずれか一項に記載の光学部材と、
     前記光学部材の前記出射面側に設けられる前記屈折層及び前記撮像素子と、
     を備え、
     前記撮像素子は、保護基板と、センサ部と、を備え、
     前記保護基板の屈折率は、前記屈折層の屈折率よりも大きく、
     前記センサ部は、前記光学部材、前記屈折層及び前記保護基板を介した光を光イメージとして撮像する凹凸検出装置。
    The optical member according to any one of claims 1 to 7,
    The refractive layer and the image sensor provided on the exit surface side of the optical member;
    With
    The imaging device includes a protective substrate and a sensor unit,
    The refractive index of the protective substrate is larger than the refractive index of the refractive layer,
    The sensor unit is a concavo-convex detection device that captures light through the optical member, the refractive layer, and the protective substrate as an optical image.
  9.  前記屈折層は、前記光学部材と前記撮像素子との間の隙間に存在する空気である請求項8に記載の凹凸検出装置。 The unevenness detecting device according to claim 8, wherein the refractive layer is air existing in a gap between the optical member and the imaging device.
  10.  前記入射面に設けられており、前記対象物の表面に前記光を照射する面光源を備える請求項8又は請求項9に記載の凹凸検出装置。 The unevenness detection apparatus according to claim 8 or 9, further comprising a surface light source that is provided on the incident surface and irradiates the surface of the object with the light.
  11.  請求項8から請求項10のいずれか一項に記載の凹凸検出装置と、
     前記凹凸検出装置によって検出された、前記対象物の表面の凹凸パターンである指紋を認証する制御部と、
     を備える指紋認証装置。
    The unevenness detection device according to any one of claims 8 to 10,
    A controller that authenticates a fingerprint, which is a concavo-convex pattern on the surface of the object, detected by the concavo-convex detection device;
    A fingerprint authentication device comprising:
PCT/JP2018/019546 2017-05-23 2018-05-21 Optical member, unevenness detection device, and fingerprint authentication device WO2018216662A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019520247A JPWO2018216662A1 (en) 2017-05-23 2018-05-21 Optical member, unevenness detection device, and fingerprint authentication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017102055 2017-05-23
JP2017-102055 2017-05-23

Publications (1)

Publication Number Publication Date
WO2018216662A1 true WO2018216662A1 (en) 2018-11-29

Family

ID=64396581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019546 WO2018216662A1 (en) 2017-05-23 2018-05-21 Optical member, unevenness detection device, and fingerprint authentication device

Country Status (2)

Country Link
JP (1) JPWO2018216662A1 (en)
WO (1) WO2018216662A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020144161A (en) * 2019-03-04 2020-09-10 大日本印刷株式会社 Optical sheet, optical filter, and sensor module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032689A (en) * 1996-07-18 1998-02-03 Alps Electric Co Ltd Image reader
JP2000090248A (en) * 1998-09-14 2000-03-31 Mitsubishi Electric Corp Fingerprint image pickup device and fingerprint collating device using the same
JP2000113170A (en) * 1998-10-02 2000-04-21 Fuji Electric Co Ltd Fingerprint image input device
JP2003203223A (en) * 2001-10-02 2003-07-18 Matsushita Electric Ind Co Ltd Image detector
JP2011081666A (en) * 2009-10-08 2011-04-21 Hamamatsu Photonics Kk Concave-convex pattern detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1032689A (en) * 1996-07-18 1998-02-03 Alps Electric Co Ltd Image reader
JP2000090248A (en) * 1998-09-14 2000-03-31 Mitsubishi Electric Corp Fingerprint image pickup device and fingerprint collating device using the same
JP2000113170A (en) * 1998-10-02 2000-04-21 Fuji Electric Co Ltd Fingerprint image input device
JP2003203223A (en) * 2001-10-02 2003-07-18 Matsushita Electric Ind Co Ltd Image detector
JP2011081666A (en) * 2009-10-08 2011-04-21 Hamamatsu Photonics Kk Concave-convex pattern detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020144161A (en) * 2019-03-04 2020-09-10 大日本印刷株式会社 Optical sheet, optical filter, and sensor module
JP7322430B2 (en) 2019-03-04 2023-08-08 大日本印刷株式会社 sensor module

Also Published As

Publication number Publication date
JPWO2018216662A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
JP7234121B2 (en) Display device and its control method
KR102396365B1 (en) Direct view display device and light unit for direct view display device
JP4906781B2 (en) Light guide film
US7690820B2 (en) Optical sheet and display device including the same
JP4649553B2 (en) Light guide plate and liquid crystal display device having the same
JP2017098246A (en) Backlight module and driving method of the same, and display device having the backlight module
US10551551B2 (en) Light guide plate and backlight module having the same
US10747055B2 (en) Planar light source device and display device
KR102281937B1 (en) Display device
JP2018146525A (en) Projection light source device
JP2008041295A (en) Lighting system and display device using the same
US20180321477A1 (en) Light-emitting unit with fresnel optical system and light-emitting apparatus and display system using same
TW201024857A (en) A light guide plate having lateral optical structures and a backlight module having the light guide plate
US9030748B2 (en) Brightness enhancement film, backlight assembly, and display apparatus
US9250380B2 (en) Backlight module reflective plate having reflective units arranged along a curve
WO2018216662A1 (en) Optical member, unevenness detection device, and fingerprint authentication device
JP7128403B1 (en) Pupil module and inspection device
JP7445579B2 (en) backlight module
CN213092333U (en) Electronic device
KR102655838B1 (en) Light guide plate, backlight module and display device
US8403550B2 (en) Surface light source device
JP6542889B2 (en) Light guide plate, back light module and liquid crystal display device
US7978410B2 (en) Optical sheet
KR101686048B1 (en) Light guide plate and backlight unit including the same
TWM553821U (en) Optical film and display equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805328

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019520247

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18805328

Country of ref document: EP

Kind code of ref document: A1