WO2018216605A1 - Liquid crystal composition, liquid crystal display device, and production method for liquid crystal display device - Google Patents

Liquid crystal composition, liquid crystal display device, and production method for liquid crystal display device Download PDF

Info

Publication number
WO2018216605A1
WO2018216605A1 PCT/JP2018/019223 JP2018019223W WO2018216605A1 WO 2018216605 A1 WO2018216605 A1 WO 2018216605A1 JP 2018019223 W JP2018019223 W JP 2018019223W WO 2018216605 A1 WO2018216605 A1 WO 2018216605A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
monomer
layer
display device
Prior art date
Application number
PCT/JP2018/019223
Other languages
French (fr)
Japanese (ja)
Inventor
真伸 水▲崎▼
博司 土屋
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2018216605A1 publication Critical patent/WO2018216605A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a liquid crystal composition, a liquid crystal display device, and a method for manufacturing a liquid crystal display device. More specifically, the present invention relates to a liquid crystal composition capable of forming an alignment control layer, a liquid crystal display device having the alignment control layer, and a manufacturing method thereof.
  • a liquid crystal display device is a display device that uses a liquid crystal composition for display.
  • a typical display method is to irradiate light from a backlight onto a liquid crystal panel in which the liquid crystal composition is sealed between a pair of substrates. The amount of light transmitted through the liquid crystal panel is controlled by applying a voltage to the liquid crystal composition to change the orientation of the liquid crystal material.
  • Such a liquid crystal display device has features such as thinness, light weight, and low power consumption, and thus is used in electronic devices such as smartphones, tablet PCs, and car navigation systems.
  • a horizontal electric field type display in which the orientation of the liquid crystal material is controlled mainly in a plane parallel to the substrate surface for the purpose of easily obtaining a wide viewing angle characteristic.
  • the mode is attracting attention.
  • Examples of the horizontal electric field type display mode include an in-plane switching (IPS) mode and a fringe electric field switching (FFS) mode.
  • the alignment of a liquid crystal material in a state where no voltage is applied is generally controlled by an alignment film subjected to an alignment process.
  • the alignment film is formed, for example, by applying an alignment film material such as polyamic acid on a substrate and then baking it.
  • a polymer-supported alignment technique (Polymer) that polymerizes a polymerizable monomer added in the liquid crystal layer to form a polymer layer for controlling the alignment of the liquid crystal material on the surface of the alignment film.
  • PSA technology Sustained alignment
  • it has been studied to control the alignment of the liquid crystal material by the polymer layer without forming a conventional alignment film see, for example, Patent Documents 1 and 2).
  • the contrast of the liquid crystal display device may be lowered.
  • conventional biphenyl-based or terphenyl-based monomers have no molecular structure anisotropy, and the monomers are irradiated with non-polarized ultraviolet rays for polymerization. This is probably because the film is not oriented along the orientation direction of the orientation film under the polymer layer.
  • the present invention has been made in view of the above situation, and includes a liquid crystal composition and a liquid crystal display device capable of increasing contrast, and a method of manufacturing a liquid crystal display device capable of manufacturing such a liquid crystal display device. It is intended to provide.
  • One embodiment of the present invention is a liquid crystal composition that includes a liquid crystal material and at least one monomer, and the at least one monomer includes a monomer having a photofunctional group having anisotropy in light absorption. Good.
  • Another embodiment of the present invention includes a liquid crystal material and at least one monomer, and the at least one monomer may have a cinnamate group which may have a substituent, or a substituent.
  • a liquid crystal composition comprising at least one photoreactive monomer selected from the group consisting of a monomer having a good chalcone group and a monomer having an azobenzene group which may have a substituent. Good.
  • Still another embodiment of the present invention includes a liquid crystal layer containing a liquid crystal material, a sealing material disposed so as to surround the liquid crystal layer in a plan view, a pair of substrates that sandwich the liquid crystal layer, and a plan view.
  • An alignment control layer disposed in contact with the liquid crystal layer in a region surrounded by the sealing material, wherein the alignment control layer allows the liquid crystal compound in the liquid crystal material to be perpendicular to the substrate surface or
  • the liquid crystal display device is a liquid crystal display device comprising a polymer obtained by polymerizing at least one monomer, wherein the at least one monomer includes at least one monomer represented by the following chemical formula (1). May be.
  • P ⁇ 1 > and P ⁇ 2 > are the same or different, and represent a vinyl group or an isopropenyl group.
  • Sp 1 , Sp 2 and Sp 3 are the same or different and are —O— group, —S— group, —COO— group, —OCO— group, —NHCO— group, —CONH— group, —NHCS— group, —CSNH— represents a direct bond.
  • Z 1 and Z 2 are the same or different and each represents a linear, branched or cyclic alkylene group having 1 to 12 carbon atoms or a direct bond. At least one hydrogen atom of the phenylene group may be substituted.
  • Still another embodiment of the present invention includes a step of sealing a liquid crystal composition containing a liquid crystal material and at least one monomer between a pair of substrates bonded by a sealing material to form a liquid crystal layer, and the liquid crystal Irradiating the layer with polarized ultraviolet light, and forming an alignment control layer obtained by polymerizing the at least one monomer between the pair of substrates and the liquid crystal layer, wherein the at least one monomer is
  • a liquid crystal display device comprising a monomer having a photofunctional group having anisotropy in light absorption, wherein the alignment control layer aligns a liquid crystal compound in the liquid crystal material in a vertical or horizontal direction with respect to the substrate surface. It may be a manufacturing method.
  • Patent Document 1 discloses a liquid crystal composition that contains an alignment control material that is highly compatible with other liquid crystal compositions and has excellent alignment control power, and polymerizes a polymerizable compound contained in the liquid crystal composition. By doing so, it is disclosed to form an orientation control layer.
  • Patent Document 2 discloses that a polyfunctional monomer having a symmetric structure mixed in a liquid crystal is polymerized and the liquid crystal is vertically aligned by the obtained ultraviolet cured product.
  • Patent Document 3 discloses a liquid crystal alignment composition containing a photoreactive norbornene polymer, a binder, a reactive mesogen, and a photoinitiator.
  • Patent Documents 1 to 3 disclose a specific monomer having a photofunctional group having anisotropy in light absorption such as a cinnamate group, and it is considered to irradiate the monomer with polarized ultraviolet rays. It has not been. Further, in Patent Document 2, the polyfunctional monomer is polymerized by irradiating non-polarized ultraviolet light, but the method for producing a liquid crystal display device of the present invention is different in that the monomer is irradiated with polarized ultraviolet light. Patent Document 3 described above forms the alignment film by applying the liquid crystal alignment composition on a substrate, but the present invention is different in that a monomer for forming an alignment control layer is added to the liquid crystal layer (liquid crystal material). .
  • the contrast of the liquid crystal display device can be increased.
  • FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 1.
  • FIG. 1 is a schematic plan view of a liquid crystal display device according to Embodiment 1.
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal display device according to a modification of Embodiment 1.
  • FIG. In the manufacturing method of the liquid crystal display device of Embodiment 2 it is the schematic diagram explaining the formation process of the orientation control layer, (a) represents before polymerization of a monomer, (b) represents after polymerization of a monomer.
  • the “photoreactive monomer” means a monomer containing a photofunctional group.
  • the “photofunctional group” means a functional group capable of causing a photoreaction.
  • observation surface side means a side closer to the screen (display surface) of the liquid crystal display device
  • back side means the screen (display surface) of the liquid crystal display device. Means the farther side.
  • the “retardation layer” means a retardation layer that gives an in-plane retardation of at least 10 nm to light having a wavelength of 550 nm.
  • light having a wavelength of 550 nm is light having the highest human visibility.
  • ns represents the larger one of the main refractive indexes nx and ny in the in-plane direction of the retardation layer
  • nf is the smaller one of the main refractive indexes nx and ny in the in-plane direction of the retardation layer. Represents.
  • the main refractive index indicates a value with respect to light having a wavelength of 550 nm unless otherwise specified.
  • the in-plane slow axis of the retardation layer indicates an axis in a direction corresponding to ns
  • the in-plane fast axis indicates an axis in a direction corresponding to nf.
  • d represents the thickness of the retardation layer.
  • phase difference or “retardation” means an in-plane phase difference with respect to light having a wavelength of 550 nm.
  • in-cell a space between a pair of substrates included in a pair of substrates sandwiching a liquid crystal layer
  • the outside of the pair of substrates observation surface side and back surface side
  • FIG. 1 is a schematic cross-sectional view of the liquid crystal display device according to the first embodiment.
  • FIG. 2 is a schematic plan view of the liquid crystal display device according to the first embodiment. As shown in FIGS.
  • the liquid crystal display device 100 of the present embodiment includes a liquid crystal layer 30 containing a liquid crystal material, a sealing material 40 disposed so as to surround the liquid crystal layer 30 in plan view, and a seal A pair of substrates 10 and 20 that are bonded to each other by the material 40 and sandwich the liquid crystal layer 30; and an alignment control layer 50 that is disposed so as to be in contact with the liquid crystal layer 30 in a region surrounded by the sealing material 40 in plan view. Is provided.
  • the liquid crystal display device 100 further includes a backlight 70 behind one of the pair of substrates 10 and 20.
  • liquid crystal display devices tend to widen the display area, and there is a demand for narrowing the frame area.
  • the display area is an area for displaying an image recognized by an observer, and does not include a frame area.
  • a gate driver, a source driver, a display control circuit, and the like are accommodated in the frame area.
  • the liquid crystal display device usually forms an alignment film on the surface of each substrate, and then bonds both substrates with a sealing material to form a liquid crystal layer.
  • the alignment film is formed between the sealing material and the substrate. Is intervening. And since the adhesive strength between the sealing material and the alignment film is low, peeling is likely to occur at the interface between the alignment film and the sealing material, and as a result, peeling of the substrate may occur.
  • the reason why the adhesion strength between the sealing material and the alignment film is low is that the surface of the alignment film is generally hydrophobic, while the resin contained in the sealing material is slightly hydrophilic, and these have low affinity. is there.
  • the liquid crystal display device 100 of the present embodiment does not have to have a conventional alignment film on the surface of the pair of substrates 10 and 20 on the liquid crystal layer 30 side. 20 are joined together.
  • a pair of substrates can be used even when the width of the sealing material 40 is reduced by narrowing the frame by making the substrates 10 and 20 and the sealing material 40 contact each other without using a conventional alignment film to increase the peel strength.
  • the adhesion of 10 and 20 can be maintained.
  • the alignment film does not have to be formed at a position overlapping with the sealing material 40 at least in a plan view. However, the alignment film is formed only at a position overlapping with the sealing material 40 for accuracy of a printing apparatus used for forming the alignment film.
  • the alignment film refers to a single layer film or a laminate composed of polyimide, polyamic acid, polyamide, polymaleimide, polysiloxane, polysilsesquioxane, polyphosphazene, or a copolymer thereof.
  • an alignment film material is directly applied (for example, application of polyimide or the like) or vapor deposition (for example, oblique deposition of silicon oxide (SiO)) on a substrate surface constituting a display region. Thereby, an alignment film is formed.
  • the alignment film is not limited to those subjected to alignment treatment as long as an existing alignment film material such as polyimide is applied or an existing alignment film material such as silicon oxide is obliquely deposited. .
  • FIG. 3 is a schematic cross-sectional view of a liquid crystal display device according to a modification of the first embodiment.
  • an alignment film 80 is provided between the alignment control layer 50 and at least one of the pair of substrates 10 and 20. Also good.
  • the alignment film 80 may align the liquid crystal compound in a desired direction, for example, align the liquid crystal compound uniformly in a predetermined direction, or may not align the liquid crystal compound in the desired direction, for example, The liquid crystal compound may be aligned randomly without being aligned uniformly.
  • an alignment film usually used in the field of liquid crystal display devices can be used.
  • the alignment film 80 may not be subjected to alignment treatment, but is preferably subjected to alignment treatment.
  • the alignment treatment method is not particularly limited, and a rubbing method, a photo-alignment method, or the like can be used, but a photo-alignment method is preferable. This is because the alignment treatment of the alignment film 80 and the polymerization of the monomer described later can be performed at the same time, and the manufacturing process can be simplified.
  • the alignment film 80 When the alignment film 80 has been subjected to photo-alignment treatment, the alignment film 80 preferably contains a polymer having a photofunctional group.
  • the photofunctional group of the alignment film 80 is irradiated with light (electromagnetic waves) such as ultraviolet light and visible light, for example, dimerization (dimer formation), isomerization, light fleece transition, decomposition, etc.
  • the functional group is preferably a functional group capable of causing a change and exhibiting orientation regulating power.
  • Specific examples of the photofunctional group of the alignment film 80 include an azobenzene group, a chalcone group, a cinnamate group, a coumarin group, a tolan group, and a stilbene group.
  • Examples of the pair of substrates 10 and 20 include a combination of an active matrix substrate (TFT substrate) and a color filter (CF) substrate.
  • TFT substrate active matrix substrate
  • CF color filter
  • the active matrix substrate those normally used in the field of liquid crystal display devices can be used.
  • the transparent matrix 21 has a plurality of parallel gate signal lines; a plurality of parallel gate signal lines extending in a direction perpendicular to the gate signal lines and parallel to each other.
  • TFTs thin film transistors
  • a configuration in which the pixel electrode 24 and the like are provided can be given.
  • a common wiring; a common electrode 22 connected to the common wiring, and the like are further provided.
  • the pixel electrode 24 and the common electrode 22 may be stacked via the insulating layer 23.
  • an amorphous silicon, polysilicon, or an oxide semiconductor IGZO (indium-gallium-zinc-oxygen) is preferably used.
  • VHR voltage holding ratio
  • the color filter substrate those usually used in the field of liquid crystal display devices can be used.
  • the configuration of the color filter substrate include a configuration in which a black matrix 12 formed in a lattice shape, a color filter 13 formed inside a lattice, that is, a pixel, and the like are provided on a transparent substrate 11.
  • the color filter 13 may include a red color filter 13R, a green color filter 13G, and a blue color filter 13B.
  • the thickness of the blue color filter 13B may be thicker than the thickness of the red color filter 13R and the thickness of the green color filter 13G. By increasing the thickness of the blue color filter 13B, the thickness of the liquid crystal layer can be reduced and the cell thickness can be optimized.
  • the overcoat layer 14 and the sealing material 40 are in contact with each other, but the peel strength of the sealing material does not decrease.
  • the pair of substrates 10 and 20 may be one in which both the color filter and the active matrix are formed on one substrate.
  • the sealing material 40 is disposed so as to surround the liquid crystal layer 30 in a plan view.
  • the sealing material 40 may be cured by light such as ultraviolet rays, may be cured by heat, or may be cured by both light and heat.
  • Examples of the sealing material 40 include those containing an epoxy resin, a (meth) acrylic resin, and the like.
  • the sealing material 40 may contain an inorganic filler, an organic filler, a curing agent, or the like.
  • As the sealing material 40 for example, Sekisui Chemical Co., Ltd., Photorec, etc. can be used.
  • the width of the sealing material 40 in plan view may be 0.4 mm or more and 5 mm or less.
  • a more preferable lower limit of the width of the sealing material 40 is 0.6 mm, a more preferable upper limit is 4 mm, and a further preferable upper limit is 2 mm.
  • the width of the sealing material 40 may be 1.0 mm or less.
  • the substrates 10 and 20 and the sealing material 40 can be in direct contact with each other. Even if it is below, the board
  • the liquid crystal layer 30 contains a liquid crystal material including at least one liquid crystal compound (liquid crystal molecule) 31.
  • the liquid crystal material is a thermotropic liquid crystal, and is preferably a liquid crystal material exhibiting a nematic phase (nematic liquid crystal).
  • the liquid crystal material preferably has a phase transition to an isotropic phase when the temperature rises from a nematic phase and reaches a certain critical temperature (nematic phase-isotropic phase transition point (T NI )) or higher.
  • T NI critical temperature
  • the liquid crystal layer 30 preferably exhibits a nematic phase under the usage environment of the liquid crystal display device (for example, ⁇ 40 ° C. to 90 ° C.).
  • the temperature of the nematic phase-isotropic phase transition point of the liquid crystal material is not particularly limited, but is, for example, 70 to 110 ° C.
  • the above T NI is a T NI of liquid crystal material before the monomer to be described later is added.
  • the liquid crystal material and the liquid crystal compound 31 may have negative values or negative values of dielectric anisotropy ( ⁇ ) defined by the following formula. That is, the liquid crystal material and the liquid crystal compound 31 may have a negative dielectric anisotropy or may have a positive dielectric anisotropy. Those having a dielectric anisotropy of 1 are preferred, and those having a positive dielectric anisotropy are preferred from the viewpoint of light resistance. In addition, the liquid crystal material having a positive dielectric anisotropy and the liquid crystal compound 31 have characteristics such as high T NI and high-speed response (low rotational viscosity).
  • the liquid crystal material having negative dielectric anisotropy for example, a material having ⁇ of ⁇ 1 to ⁇ 20 can be used.
  • the liquid crystal material having positive dielectric anisotropy for example, a material having ⁇ of 1 to 20 can be used.
  • the liquid crystal layer 30 and the liquid crystal material may contain a liquid crystal compound (neutral liquid crystal compound) having no polarity, that is, ⁇ is substantially zero.
  • the neutral liquid crystal compound include a liquid crystal compound having an alkene structure.
  • a liquid crystal material and a liquid crystal compound having a negative dielectric anisotropy are also referred to as a negative liquid crystal material and a negative liquid crystal compound, respectively, and a liquid crystal material and a liquid crystal compound having a positive dielectric anisotropy are respectively a positive liquid crystal material. Also called a positive liquid crystal compound.
  • (dielectric constant in the major axis direction)-(dielectric constant in the minor axis direction)
  • the liquid crystal material may contain a liquid crystal compound having an alkenyl group.
  • the liquid crystal compound having an alkenyl group is preferably a neutral liquid crystal compound.
  • the rotational viscosity of the liquid crystal material is improved, so that the response performance of the liquid crystal material can be improved and the speed can be increased.
  • a liquid crystal compound having an alkenyl group has low light resistance and may be decomposed by irradiation with ultraviolet rays or the like to cause a decrease in VHR.
  • the orientation control layer 50 contains a polymer obtained by polymerizing a specific monomer, and the monomer has a photofunctional group having anisotropy in light absorption, and is uniaxial. Since it is polymerized by polarized light that is light only in the direction and expresses the alignment regulating force, the light irradiation intensity applied to the liquid crystal layer 30 can be greatly reduced as compared with non-polarized light.
  • the liquid crystal material includes a positive liquid crystal compound
  • the positive liquid crystal compound exhibits high light resistance as described above. Therefore, even if a liquid crystal compound having an alkenyl group is introduced into the liquid crystal material, reliability problems such as a reduction in VHR are unlikely to occur.
  • the liquid crystal compound having an alkenyl group may be a compound represented by any of the following chemical formulas (4-1) to (4-4). Any of these may be used alone or in combination of two or more.
  • n are the same or different and are integers of 1 to 6)
  • liquid crystal compound having an alkenyl group examples include a compound represented by the following chemical formula (4-1-1).
  • the orientation control layer 50 is disposed in a region surrounded by the sealing material 40 in a plan view.
  • the alignment control layer 50 is disposed in contact with the liquid crystal layer 30, and aligns the liquid crystal compound 31 in the liquid crystal material included in the liquid crystal layer 30 in the horizontal direction with respect to the surfaces of the substrates 10 and 20.
  • the alignment control layer 50 controls the alignment of the liquid crystal material in a state where a voltage higher than the threshold value of the liquid crystal material is not applied to the liquid crystal layer 30.
  • aligning the liquid crystal compound 31 in the liquid crystal material in the horizontal direction with respect to the substrates 10 and 20 means that the pretilt angle of the liquid crystal material with respect to the substrates 10 and 20 is 10 ° or less.
  • the pretilt angle is more preferably 3 ° or less.
  • the pretilt angle refers to an angle formed by the major axis of the liquid crystal material (liquid crystal compound 31) with respect to the surface of the substrate when the applied voltage to the liquid crystal layer 30 is less than the threshold voltage (including no voltage applied).
  • the surface is 0 ° and the substrate normal is 90 °.
  • the alignment control layer 50 contains a polymer obtained by polymerizing at least one monomer added to the liquid crystal layer 30, and the at least one monomer is an optical functional group having anisotropy in light absorption (hereinafter, polarized light).
  • a monomer having an absorption functional group) (hereinafter also referred to as a polarization-absorbing monomer). Therefore, the orientation control layer 50 is a polymer layer containing a polymer including at least a unit derived from a polarization-absorbing monomer.
  • the at least one monomer may be a monofunctional monomer having one polymerizable group, but the polymerizable group is preferably a plurality of polyfunctional monomers, and in particular, a bifunctional monomer having two polymerizable groups. Is preferred.
  • the contrast of the liquid crystal display device 100 can be improved by forming the alignment control layer 50 containing a polymer containing a unit derived from the polarization-absorbing monomer.
  • the reason is considered as follows. Since the polarization-absorbing functional group has anisotropy in light (preferably ultraviolet light) absorption, it exhibits orientation upon irradiation with polarized light (preferably polarized ultraviolet light, more preferably linearly polarized ultraviolet light). More specifically, the polarized light-absorbing functional group oriented in a specific direction corresponding to the direction of the polarization axis undergoes a photoreaction upon irradiation with polarized light. As a result, the polarization-absorbing monomer is polymerized to form a polymer along a specific orientation direction.
  • the contrast of the liquid crystal display device 100 can be improved. Even when the alignment film 80 is formed, the polarization-absorbing monomer is polymerized along the alignment direction of the alignment film 80 by appropriately setting the polarization axis direction of the polarized light to be irradiated, so that a polymer is formed. The Therefore, also in this case, the contrast of the liquid crystal display device 100 can be improved.
  • the polarization-absorbing monomer has a polarization-absorbing functional group, and the polarization-absorbing functional group absorbs polarized light (preferably polarized ultraviolet rays, more preferably linearly polarized ultraviolet rays) and exhibits an alignment regulating force. it can. Since the irradiation with polarized light irradiates only light in the uniaxial direction, the light irradiation intensity with which the liquid crystal layer 30 is irradiated can be made lower than the irradiation with non-polarized light.
  • the alignment control layer 50 can align the liquid crystal compound 31 in the liquid crystal material in the horizontal direction with respect to the substrate surface by the polarization absorbing monomer exhibiting the alignment regulating force.
  • the polarization-absorbing monomer has at least one (preferably two or more, more preferably two) polymerizable groups and is polymerized by irradiation with light such as ultraviolet rays to form a polymer.
  • the polymer separates the phase of the liquid crystal layer 30 to form the alignment control layer 50.
  • Whether or not the light absorption of the photofunctional group of the monomer has anisotropy can be verified by measuring the polarization absorption spectrum. Specifically, first, a polarizer is set on both sides of an object to be measured (for example, a film or a solution). Then, the light absorption spectrum is measured by setting the polarizers in a crossed Nicol arrangement and a parallel Nicol arrangement, respectively, and the presence or absence of anisotropy is confirmed by comparing the absorbance at the same wavelength based on the measured light absorption spectrum. If there is a difference in absorbance between the crossed Nicol arrangement and the parallel Nicol arrangement, the photofunctional group to be measured has anisotropy in the absorption of light of that wavelength.
  • the group is at least one photofunctional group selected from the group consisting of a cinnamate group that may have a substituent, a chalcone group that may have a substituent, and an azobenzene group that may have a substituent. (Hereinafter also referred to as a functional group for horizontal alignment).
  • the at least one monomer includes a monomer having a cinnamate group which may have a substituent, a monomer having a chalcone group which may have a substituent, and an azobenzene group which may have a substituent. It is preferable to include at least one photoreactive monomer selected from the group consisting of monomers having the above, and the polarized light absorbing monomer is preferably the photoreactive monomer.
  • the substituent preferably includes at least one substituent selected from the group consisting of a halogen group, a methyl group, a methoxy group, an ethyl group, and an ethoxy group.
  • the at least one monomer may include a photoreactive monomer having a functional group for horizontal alignment having a substituent and a photoreactive monomer having a functional group for horizontal alignment having no substituent.
  • the halogen group a fluoro group and a chloro group are preferred.
  • the horizontal alignment functional group has a substituent, the substituent is usually substituted with at least one hydrogen atom of a ring structure such as a phenylene group of the horizontal alignment functional group.
  • the functional group for horizontal alignment may be a monovalent functional group, but is preferably a divalent cinnamate group represented by the following chemical formula (3-1), represented by the following chemical formula (3-2). And a divalent azobenzene group represented by the following chemical formula (3-3).
  • the polarized light absorbing functional group preferably contains a cinnamate group, and the at least one photoreactive monomer more preferably contains at least one monomer having a cinnamate group which may have the substituent.
  • the cinnamate group absorbs ultraviolet light having the shortest wavelength among the three functional groups for horizontal alignment (specifically, ultraviolet light having a wavelength range of 290 to 330 nm), and the backlight 70 when the liquid crystal display device 100 is used. This is because the possibility of absorbing the irradiation light is extremely small and the light resistance is most excellent.
  • Examples of the photoreaction of the polarized light-absorbing functional group generated by polarized light irradiation include dimerization reaction (dimer formation), isomerization reaction, photofleece transfer reaction, decomposition reaction, etc. Irradiation with (preferably linearly polarized ultraviolet rays) causes a dimerization reaction (dimer formation) and an isomerization reaction.
  • a polarized light absorbing monomer having a cinnamate group (a monomer having a cinnamate group which may have the above substituent) is: It is preferable to include at least one monomer represented by chemical formula (1) (hereinafter also referred to as monomer (1)).
  • P 1 and P 2 are the same or different and each represents a vinyl (ethenyl) group or an isopropenyl (1-methylethenyl) group.
  • Sp 1 , Sp 2 and Sp 3 are the same or different and are —O— group, —S— group, —COO— group, —OCO— group, —NHCO— group, —CONH— group, —NHCS— group, —CSNH— represents a direct bond.
  • Z 1 and Z 2 are the same or different and each represents a linear, branched or cyclic alkylene group having 1 to 12 carbon atoms or a direct bond. At least one hydrogen atom of the phenylene group may be substituted.
  • At least one hydrogen atom of the phenylene group is the same or different and is substituted with a halogen atom (preferably a fluorine atom or a chlorine atom), a methyl group, a methoxy group, an ethyl group, or an ethoxy group. May be.
  • a halogen atom preferably a fluorine atom or a chlorine atom
  • monomer (1) More specific examples of the monomer (1) include compounds represented by any one of the following chemical formulas (1-1) to (1-4). Any of these may be used alone or in combination of two or more.
  • monomer (1) More specific examples of the monomer (1) include compounds represented by any of the following chemical formulas (2-1) to (2-12). Any of these may be used alone or in combination of two or more.
  • p is 0 or 1 (preferably 0), and m is 2, 4, 6, 8, 10 or 12.
  • n 2, 4, 6, 8, 10 or 12
  • n is 2, 4, 6, 8, 10 or 12
  • m is 2, 4, 6, 8, 10 or 12. is there.
  • the monomer (1) preferably contains at least one of the monomer represented by the chemical formula (2-1) and the monomer represented by the chemical formula (2-2). This is because the monomers represented by the chemical formulas (2-1) and (2-2) do not have a spacer between the polymerizable group and the cinnamate group, and can improve the liquid crystal alignment.
  • a polarizing plate (linear polarizer) 60 may be disposed on the opposite side of the pair of substrates 10 and 20 from the liquid crystal layer 30.
  • the polarizing plate 60 typically includes a polyvinyl alcohol (PVA) film obtained by adsorbing and orienting an anisotropic material such as an iodine complex having dichroism.
  • PVA polyvinyl alcohol
  • a protective film such as a triacetyl cellulose film is laminated on both sides of the PVA film and put to practical use.
  • An optical film such as a retardation film may be disposed between the polarizing plate 60 and the pair of substrates 10 and 20.
  • the transmission axes of the pair of polarizing plates 60 are preferably orthogonal to each other. According to such a configuration, since the pair of polarizing plates 60 are arranged in crossed Nicols, a good black display state can be realized when no voltage is applied.
  • that two axes (directions) are orthogonal means that an angle (absolute value) between the two axes (direction) is within a range of 90 ⁇ 3 ° unless otherwise specified, preferably 90 ⁇ . It is within the range of 1 °, more preferably within the range of 90 ⁇ 0.5 °, and particularly preferably 90 ° (fully orthogonal).
  • a backlight 70 is disposed on the back side of the liquid crystal panel.
  • a liquid crystal display device having such a configuration is generally called a transmissive liquid crystal display device.
  • the backlight 70 is not particularly limited as long as it emits light including visible light, may emit light including only visible light, and emits light including both visible light and ultraviolet light. It may be.
  • the liquid crystal display device of the present embodiment includes an external circuit such as a TCP (tape carrier package) and a PCB (printed wiring board) in addition to the liquid crystal panel and the backlight 70; an optical film such as a viewing angle widening film and a brightness enhancement film.
  • An external circuit such as a TCP (tape carrier package) and a PCB (printed wiring board) in addition to the liquid crystal panel and the backlight 70; an optical film such as a viewing angle widening film and a brightness enhancement film.
  • a plurality of members such as a bezel (frame), and some members may be incorporated in other members.
  • Members other than those already described are not particularly limited, and those normally used in the field of liquid crystal display devices can be used, and thus description thereof is omitted.
  • the liquid crystal display device 100 may be in a horizontal electric field type display mode.
  • Examples of the horizontal electric field type display mode include an IPS mode, an FFS mode, and an electric field control birefringence (ECB) mode.
  • At least one of the substrates 10 and 20 is provided with a structure (FFS electrode structure) including a planar electrode, a slit electrode, and an insulating film disposed between the planar electrode and the slit electrode.
  • An oblique electric field is formed in the liquid crystal layer 30.
  • the slit electrode, the insulating film, and the planar electrode are arranged in this order from the liquid crystal layer 30 side.
  • the slit electrode for example, a slit having a linear opening surrounded by the electrode around the entire circumference, or a linear notch provided with a plurality of comb teeth and disposed between the comb teeth.
  • the comb-shaped thing which comprises a slit can be used.
  • a pair of comb electrodes is provided on at least one of the substrates 10 and 20, and a lateral electric field is formed in the liquid crystal layer 30.
  • the pair of comb-shaped electrodes for example, an electrode pair that includes a plurality of comb-tooth portions and is arranged so that the comb-tooth portions mesh with each other can be used.
  • a pixel electrode is provided on one of the substrates 10 and 20
  • a counter electrode is provided on the other substrate
  • a liquid crystal material having a positive dielectric anisotropy is used.
  • the retardation of the liquid crystal material is changed by the voltage applied between the pixel electrode and the counter electrode to control the transmission and non-transmission of light.
  • the liquid crystal drive mode of the liquid crystal display device 100 is the horizontal alignment mode.
  • the liquid crystal drive mode according to the present embodiment is not particularly limited and is a vertical alignment mode.
  • the alignment control layer 50 may align the liquid crystal compound 31 in the liquid crystal material in a direction substantially perpendicular to the surfaces of the substrates 10 and 20.
  • the liquid crystal display device manufacturing method of the present embodiment includes a step of sealing a liquid crystal composition containing a liquid crystal material and at least one monomer between a pair of substrates joined by a sealing material to form a liquid crystal layer; Illuminating the liquid crystal layer with polarized ultraviolet light, and forming an alignment control layer formed by polymerizing the at least one monomer between the pair of substrates and the liquid crystal layer, and the at least one monomer.
  • the alignment control layer includes a liquid crystal compound in the liquid crystal material with respect to the substrate surface.
  • the liquid crystal composition of this embodiment contains a liquid crystal material and at least one monomer, and the at least one monomer has a photofunctional group (polarized light absorption functional group) having anisotropy in light absorption ( A liquid crystal composition containing a polarization absorbing monomer) may be used.
  • the liquid crystal composition of this embodiment also contains a liquid crystal material and at least one monomer, and the at least one monomer has a cinnamate group that may have a substituent and a substituent. It may be a liquid crystal composition containing at least one photoreactive monomer selected from the group consisting of a monomer having a good chalcone group and a monomer having an azobenzene group which may have a substituent.
  • the manufacturing method of the liquid crystal display device of the present embodiment includes a step of forming a liquid crystal layer by sealing a liquid crystal composition containing a liquid crystal material and at least one monomer between a pair of substrates bonded by a sealing material. .
  • the method for manufacturing a liquid crystal display device of the present embodiment requires at least one of the pair of substrates (more preferably a pair of substrates) before the step of forming the liquid crystal layer. It is preferable not to have a step of forming an alignment film on the surface of both of the substrates). In this case, the pair of substrates are joined so as to be in direct contact with the sealing material without the alignment film interposed therebetween.
  • the manufacturing method of the liquid crystal display device of the present embodiment includes a step of forming an alignment film on at least one surface of the pair of substrates before the step of forming the liquid crystal layer from the viewpoint of long-term reliability.
  • an alignment film is interposed between at least one of the pair of substrates and the sealing material, and the pair of substrates is bonded via the alignment film.
  • the alignment film is formed, for example, by applying an alignment film material containing polyamic acid or the like on at least one surface of a pair of substrates, and volatilizing the solvent in the alignment film material by heating, followed by baking. be able to. Thereafter, the alignment film may or may not be subjected to an alignment treatment before the step of forming the liquid crystal layer.
  • Examples of the alignment treatment include photo-alignment treatment such as rubbing treatment and ultraviolet irradiation.
  • photo-alignment treatment such as rubbing treatment and ultraviolet irradiation.
  • the polymerization of the monomer and the photo-alignment treatment of the alignment film may be simultaneously performed by ultraviolet irradiation. Thereby, the manufacturing process can be simplified.
  • the liquid crystal composition may be sealed as long as the liquid crystal composition is sandwiched between the pair of substrates by the sealing material, and the sealing material may not be cured. Curing of the sealing material may be performed separately from the step of forming the orientation control layer described later, or may be performed simultaneously. As described above, the sealing material may be cured by light such as ultraviolet rays, may be cured by heat, or may be cured by both light and heat. .
  • the liquid crystal layer can be formed by, for example, filling a liquid crystal composition between a pair of substrates by a vacuum injection method or a drop injection method.
  • a liquid crystal layer is formed by applying a sealing material, bonding a pair of substrates, curing the sealing material, injecting a liquid crystal composition, and sealing the injection port in this order.
  • the dropping injection method is employed, a liquid crystal layer is formed by applying a sealing material, dropping a liquid crystal composition, bonding a pair of substrates, and curing the sealing material in this order.
  • the liquid crystal material may have a negative dielectric anisotropy or a positive dielectric anisotropy.
  • the liquid crystal material may contain a liquid crystal compound having an alkenyl group.
  • the liquid crystal material may contain one or more liquid crystal compounds.
  • the at least one monomer includes a monomer having a photofunctional group (polarized light absorbing functional group) having anisotropy in light absorption (polarized light absorbing monomer).
  • the polarization-absorbing monomer has a polarization-absorbing functional group and can absorb polarized light (preferably polarized ultraviolet rays, more preferably linearly-polarized ultraviolet rays) to exhibit an alignment regulating force. Since the irradiation with polarized light irradiates only light in the uniaxial direction, the light irradiation intensity with which the liquid crystal layer is irradiated can be made lower than the irradiation with non-polarized light.
  • the polarization-absorbing monomer content in the liquid crystal composition is preferably 0.03% by weight or more and 5% by weight or less, more preferably 0.05% by weight or more and 4.5% by weight or less, More preferably, it is 0.1 weight% or more and 3 weight% or less. If the concentration of the polarization-absorbing monomer is too low, horizontal alignment control of the liquid crystal compound by the alignment control layer may not be sufficient, and if the concentration of the polarization-absorbing monomer is too high, long-term reliability due to the remaining polarization-absorbing monomer There is a possibility of deterioration.
  • the at least one monomer may have a monomer having a cinnamate group which may have a substituent, a monomer having a chalcone group which may have a substituent, and a substituent. It is preferable to include at least one photoreactive monomer selected from the group consisting of monomers having an azobenzene group, and the polarized light absorbing monomer is preferably the photoreactive monomer.
  • the liquid crystal layer is irradiated with polarized ultraviolet light, and an alignment control layer is formed by polymerizing the at least one monomer between the pair of substrates and the liquid crystal layer.
  • the polarized ultraviolet light is preferably linearly polarized ultraviolet light.
  • the alignment control layer is formed at the interface between the pair of substrates and the liquid crystal layer when the alignment film is not formed, and when the alignment film is formed, the interface between the substrate or the alignment film and the liquid crystal layer. Formed. When the alignment film is formed on both substrates, the alignment control layer is formed at the interface between each alignment film and the liquid crystal layer.
  • the alignment control layer is It is formed at the interface between the liquid crystal layer and the interface between the substrate on which the alignment film is not formed and the liquid crystal layer.
  • the alignment film is subjected to the alignment process by this step.
  • the wavelength of the polarized ultraviolet light may be 200 nm or more and 430 nm or less. A more preferable lower limit of the wavelength is 250 nm, and a more preferable upper limit is 380 nm. Dose of the polarized ultraviolet is, 0.3 J / cm 2 or more, may be 20 J / cm 2 or less. A more preferable lower limit of the irradiation amount is 1 J / cm 2 , and a more preferable upper limit is 5 J / cm 2 .
  • the liquid crystal layer may be irradiated with polarized ultraviolet rays while being heated at a temperature not lower than the nematic phase-isotropic phase transition point of the liquid crystal material and not higher than 140 ° C.
  • FIG. 4A and 4B are schematic diagrams illustrating the formation process of the alignment control layer in the method for manufacturing the liquid crystal display device of Embodiment 1, wherein FIG. 4A shows before polymerization of the monomer, and FIG. 4B shows after polymerization of the monomer. To express. In FIG. 4A, the arrow indicates polarized ultraviolet light. As shown in FIG.
  • polarized ultraviolet rays are irradiated while heating a liquid crystal layer 30 containing a liquid crystal material containing a liquid crystal compound 31 and at least one monomer. Thereby, at least one monomer is polymerized to produce a polymer. As the polymer undergoes phase separation from the liquid crystal layer, an alignment control layer 50 is formed between the pair of substrates and the liquid crystal layer, as shown in FIG.
  • the heating temperature is preferably 3 ° C. or more higher than the nematic phase-isotropic phase transition point of the liquid crystal material.
  • the upper limit of the heating temperature is, for example, 140 ° C. from the viewpoint of suppressing deterioration of the liquid crystal material due to heat as much as possible. Conditions such as heating time and heating means are not particularly limited.
  • the method for measuring the nematic phase-isotropic phase transition point of the liquid crystal material is, for example, by differential scanning calorimetry (DSC) or by directly observing the temperature dependence by enclosing the liquid crystal material in a capillary. can do.
  • DSC differential scanning calorimetry
  • the pair of substrates sandwiching the liquid crystal layer are joined to each other by the sealant and surrounded by the sealant in plan view.
  • An orientation control layer can be formed in the region.
  • a polarization-absorbing monomer preferably the photoreactive monomer
  • the liquid crystal display device of this embodiment is completed through an attaching step of a polarizing plate and attaching a control unit, a power supply unit, a backlight, and the like.
  • a pair of polarizing plates are arranged in crossed Nicols so that the absorption axes are orthogonal to each other, and the absorption axes of the pair of polarizing plates; It arrange
  • the light from the backlight does not pass through the liquid crystal layer and is displayed in black.
  • the angle formed between the absorption axis of the pair of polarizing plates arranged in the crossed Nicols and the irradiation axis becomes, for example, 45 °, and light from the backlight transmits through the liquid crystal layer.
  • white display The irradiation axis is the vibration direction of polarized ultraviolet light.
  • the liquid crystal display device 100 is preferably in the horizontal electric field type display mode.
  • Examples of the horizontal electric field type display mode include an IPS mode, an FFS mode, and an electric field control birefringence (ECB) mode.
  • the liquid crystal display device may be used under strong external light such as outdoors. For this reason, in recent years, there has been a demand for a liquid crystal display device excellent in outdoor visibility in which reflection of external light is suppressed.
  • a method for suppressing reflection of external light in a liquid crystal display device it is conceivable to provide a circularly polarizing plate made of a combination of a retardation layer and a linearly polarizing plate.
  • two retardation layers are used in order to simultaneously realize the external light antireflection function and the liquid crystal display. In that case, the two retardation layers are provided inside and outside the liquid crystal cell.
  • the retardation layer inside the liquid crystal cell that is, the in-cell retardation layer
  • RM reactive mesogen
  • the orientation of the in-cell retardation layer is low.
  • the thermal stability is lowered, and when the firing step is performed to form the alignment film on the in-cell retardation layer, the retardation of the in-cell retardation layer is lowered. According to this embodiment, it is possible to solve such a problem.
  • FIG. 5 is a schematic cross-sectional view of the liquid crystal display device according to the second embodiment.
  • the liquid crystal display device 100B of Embodiment 2 further includes an out-cell retardation layer 61 disposed between the substrate 10 and the polarizing plate 60, and an in-cell retardation layer 90 disposed between the substrate 10 and the orientation control layer 50. Have.
  • a stretched polymer film generally used in the field of liquid crystal display devices can be used.
  • the material of the polymer film include cycloolefin polymer, polycarbonate, polysulfone, polyethersulfone, polyethylene terephthalate, polyethylene, polyvinyl alcohol, norbornene, triacetyl cellulose, diacetyl cellulose, and the like.
  • cycloolefin polymer Is preferred.
  • a retardation layer formed of a cycloolefin polymer is excellent in durability and has an advantage that a change in retardation is small when exposed to a high temperature environment or a high temperature and high humidity environment for a long period of time.
  • the in-cell retardation layer 90 is formed by laminating an alignment layer 91 and a polymer 92 of a liquid crystalline monomer.
  • the alignment layer 91 is for controlling the alignment of the liquid crystalline monomer constituting the polymer 92 to be laminated.
  • the liquid crystalline monomer can be fixed in a predetermined alignment direction, and a retardation layer having a desired retardation can be formed.
  • the in-cell retardation layer 90 in which the alignment layer 91 and the polymer 92 of the liquid crystalline monomer are laminated has low heat resistance, and retardation due to heating tends to occur.
  • the in-cell retardation layer 90 is formed by laminating the alignment layer 91 and the polymer 92 of the liquid crystalline monomer, the in-cell retardation layer 90 is not formed on the in-cell retardation layer 90. A decrease in retardation of 90 can be effectively suppressed.
  • the alignment layer 91 for example, polyimide, polyamic acid, polyamide, polymaleimide, polysiloxane, polysilsesquioxane, polyphosphazene, or a monolayer film or a laminated film made of a copolymer thereof, or And a film in which silicon oxide is formed by oblique vapor deposition.
  • the alignment layer 91 is preferably subjected to an alignment treatment.
  • the alignment treatment method is not particularly limited, and a rubbing method, a photo alignment method, or the like can be used.
  • the alignment layer 91 preferably contains a polymer having a photofunctional group.
  • the photofunctional group of the alignment layer 91 is irradiated with light (electromagnetic waves) such as ultraviolet light and visible light, for example, dimerization (dimer formation), isomerization, light fleece transition, decomposition, etc.
  • the functional group is preferably a functional group capable of causing a change and exhibiting orientation regulating power.
  • Specific examples of the photofunctional group of the alignment layer 91 include an azobenzene group, a chalcone group, a cinnamate group, a coumarin group, a tolan group, and a stilbene group.
  • the liquid crystalline monomer is a polymerizable monomer having a refractive index anisotropy (reactive mesogen).
  • the liquid crystalline monomer may be a monomer itself having a phase difference, and is a monomer capable of exhibiting a phase difference when the liquid crystalline monomer is polymerized on the alignment layer 91 subjected to the alignment treatment. May be.
  • the phase difference of the in-cell retardation layer 90 is determined by the product of the birefringence ⁇ n of the polymer 92 of the liquid crystalline monomer and the thickness d of the in-cell retardation layer 90.
  • the liquid crystalline monomer may include at least one of an acrylic monomer and a methacrylic monomer.
  • the acrylic monomer has an acrylic group as a polymerization group.
  • the methacrylic monomer has a methacryl group as a polymerization group.
  • liquid crystalline monomer examples include compounds represented by the following chemical formulas (5-1) to (5-15). Any of these may be used alone or in combination of two or more.
  • X ⁇ 1 > and X ⁇ 2 > are the same or different and represent a hydrogen atom or a methyl group.
  • g, h and i are the same or different and are an integer of 1 to 18.
  • j and k are the same or different and are integers of 1 to 12.
  • the out-cell retardation layer 61 is preferably a retardation layer ( ⁇ / 4 plate) that gives an in-plane retardation of 1 ⁇ 4 wavelength to light having a wavelength of at least 550 nm, and specifically, at least a wavelength of 550 nm. It is preferable that an in-plane retardation of 100 nm or more and 176 nm or less is imparted to the light. Since the out-cell retardation layer 61 functions as a ⁇ / 4 plate, the combination of the polarizing plate 60 on the observation surface side and the out-cell retardation layer 61 can be functioned as a circularly polarizing plate. Thereby, since internal reflection of a liquid crystal panel can be reduced, the favorable black display by which reflection (reflection) of external light was suppressed is realizable.
  • the circularly polarized FFS mode liquid crystal in which only the out-cell phase difference layer 61 is incorporated in the FFS mode liquid crystal cannot perform black display. Therefore, the performance of the circularly polarized FFS mode liquid crystal is improved by further providing the in-cell phase difference layer 90. be able to.
  • the in-plane retardation axis of the out-cell retardation layer 61 and the in-phase retardation layer 90 are orthogonal to each other, and the retardation value of the out-cell retardation layer 61 and the retardation value of the in-cell retardation layer 90 are Preferably equal.
  • the out-cell retardation layer 61 and the in-cell retardation layer 90 can cancel the phase difference with respect to light incident from the normal direction of the liquid crystal panel.
  • the in-cell retardation layer 90 is also preferably a retardation layer ( ⁇ / 4 plate) that imparts an in-plane retardation of 1 ⁇ 4 wavelength to light having a wavelength of 550 nm, specifically, It is preferable to provide an in-plane retardation of 100 nm or more and 176 nm or less with respect to light having a wavelength of 550 nm.
  • the orientation of the transmission axis of the polarizing plate 60 on the back side is defined as 0 °.
  • the orientation of the transmission axis of the polarizing plate 60 on the observation surface side is preferably 90 °.
  • the in-plane slow axis of the out-cell retardation layer 61 and the in-plane slow axis of the in-cell retardation layer 90 are 45 ° with respect to each transmission axis of the pair of polarizing plates 60 from the viewpoint of expressing the function of the retardation layer. It is preferable to make the angle. That is, it is preferable that one of the in-plane slow axis of the out-cell retardation layer 61 and the in-plane slow axis of the in-cell retardation layer 90 has an azimuth of 45 ° and the other has an azimuth of 135 °.
  • the two axes (directions) form an angle of 45 ° means that the angle (absolute value) formed by both axes is within a range of 45 ⁇ 3 ° unless otherwise specified. , Preferably within a range of 45 ⁇ 1 °, more preferably within a range of 45 ⁇ 0.5 °, and particularly preferably 45 ° (completely 45 °).
  • the preferred arrangement of the optical axis in the present embodiment is, for example, when the orientation of the transmission axis of the polarizing plate 60 on the back side is 0 °, the in-plane slow axis of the in-cell retardation layer 90 is 45 °, and the liquid crystal layer 30
  • the initial alignment direction of the liquid crystal material is 0 ° or 90 °
  • the in-plane slow axis of the out-cell retardation layer 61 is ⁇ 45 °
  • the transmission axis of the polarizing plate 60 on the observation surface side is 90 °.
  • the liquid crystal display device 100B of Embodiment 2 may include other constituent members.
  • the reflectance of the liquid crystal panel is provided. Can be further reduced.
  • the antireflection film a moth-eye film having a ridge-like surface structure is preferably used.
  • the in-cell retardation layer 90 is disposed between the out-cell retardation layer 61 and the liquid crystal layer 30, and the case where the in-cell retardation layer 90 is applied to a transverse electric field mode using a circularly polarizing plate is described in detail.
  • the use of the in-cell retardation layer according to the present embodiment is not particularly limited, and may be used for a liquid crystal display device other than the transverse electric field mode using a circularly polarizing plate.
  • an in-cell retardation layer in which the presence or absence of a retardation function is patterned may be provided in the anti-transmissive liquid crystal display device so that a phase difference is given to the reflecting part and no phase difference is given to the transmissive part.
  • the patterning of the retardation function can be realized, for example, by performing an alignment process on the alignment layer 91 in the reflective portion and not performing an alignment process on the alignment layer 91 in the transmission portion using a mask.
  • the arrangement of the in-cell retardation layer according to the present embodiment is not particularly limited as long as it is between the base materials of the pair of substrates, and may be provided on both the substrates 10 and 20, for example, depending on the application. However, it may be provided only on the substrate 120.
  • the liquid crystal drive mode of the liquid crystal display device of the present embodiment is the horizontal alignment mode.
  • the liquid crystal drive mode according to the present embodiment is not particularly limited, and is vertical.
  • the alignment mode may be used, and the alignment control layer 50 may align the liquid crystal compound 31 in the liquid crystal material in a direction substantially perpendicular to the surfaces of the substrates 10 and 20.
  • the manufacturing method of the liquid crystal display device of Embodiment 2 is the liquid crystal of Embodiment 1 except having the process of forming an in-cell retardation layer in at least one of a pair of board
  • the liquid crystal composition the same liquid crystal composition as that of the first embodiment can be used in this embodiment.
  • the in-cell retardation layer when the in-cell retardation layer is formed on a color filter substrate, for example, after forming a black matrix, a color filter, an overcoat layer, etc., the in-cell retardation layer is formed.
  • the in-cell retardation layer is formed on the active matrix substrate, for example, the in-cell retardation layer is formed after forming a common electrode, a pixel electrode, a TFT, various signal lines, and the like.
  • an alignment layer is formed on the surface of at least one substrate, a composition containing a liquid crystalline monomer is applied to the alignment layer, and the liquid crystalline monomer is polymerized.
  • the alignment layer includes, for example, an alignment layer composition containing polyimide, polyamic acid, polyamide, polymaleimide, polysiloxane, polysilsesquioxane, or polyphosphazene on at least one surface of a pair of substrates. It is formed by applying or obliquely depositing an alignment layer composition containing silicon oxide and performing firing or the like.
  • the alignment layer composition may contain a polymer having the photofunctional group described above.
  • the alignment layer is preferably subjected to an alignment treatment.
  • the alignment treatment method is not particularly limited, and a rubbing method, a photo alignment method, or the like can be used.
  • Polymerization of the liquid crystalline monomer is performed, for example, by irradiation with light such as visible light or ultraviolet light.
  • Polymerization of the liquid crystalline monomer is performed in a bulk polymerization without using a solvent (bulk polymerization) or in a state where the liquid crystalline monomer is at a high concentration, so the degree of polymerization of the liquid crystalline monomer is low, for example, a weight average molecular weight of 30,000 or less It is thought that. Therefore, when an in-cell retardation layer is formed by laminating a liquid crystalline monomer polymer on the alignment layer, the heat resistance of the in-cell retardation layer is particularly low. For example, when heating at 200 ° C. or higher, retardation is liable to decrease. .
  • the liquid crystalline monomer may include at least one of an acrylic monomer and a methacrylic monomer.
  • a step of forming a liquid crystal layer and a step of forming an alignment control layer are performed as in the first embodiment.
  • FIG. 6A and 6B are schematic diagrams illustrating the formation process of the alignment control layer in the method of manufacturing the liquid crystal display device of Embodiment 2, wherein FIG. 6A shows the state before the polymerization of the monomer, and FIG. 6B shows the state after the polymerization of the monomer.
  • FIG. 6A also in this embodiment, polarized ultraviolet rays are irradiated while heating the liquid crystal layer 30 containing a liquid crystal material containing a liquid crystal compound and at least one monomer.
  • the polarized ultraviolet light is irradiated from the substrate (for example, the substrate 20) side on which the in-cell retardation layer 90 is not formed. Is preferred.
  • the substrate for example, the substrate 20
  • the polarized ultraviolet light is irradiated from the substrate (for example, the substrate 20) side on which the in-cell retardation layer 90 is not formed.
  • the polarized ultraviolet light is irradiated from the substrate (for example, the substrate 20) side on which the in-cell retardation layer 90 is not formed.
  • the substrate for example, the substrate 20
  • the polarized ultraviolet light is irradiated from the substrate (for example, the substrate 20) side on which the in-cell retardation layer 90 is not formed.
  • the polarized ultraviolet light is irradiated from the substrate (for example, the substrate 20) side on which the in-cell retardation layer 90 is not formed.
  • polarized ultraviolet light is irradiated from the substrate (for example, the substrate 20) side on which the in-cell retard
  • the in-cell retardation layer 90 it is not necessary to form an alignment film on the in-cell retardation layer 90, and a high-temperature (for example, 200 ° C. or higher) firing step for forming the alignment film is unnecessary. It can suppress effectively that the phase difference of the in-cell phase difference layer 90 falls resulting from a process. Also in this embodiment, to heat the liquid crystal panel including a liquid crystal layer 30 upon irradiation of the polarized ultraviolet light, the temperature, because T NI more liquid crystal material, a relatively low temperature and 140 ° C. or less, cell retardation The influence on the phase difference of the layer 90 is small.
  • a high-temperature for example, 200 ° C. or higher
  • the alignment film 80 is disposed on a substrate (for example, the substrate 20) on which the in-cell retardation layer 90 is not formed.
  • the alignment film 80 is It does not have to be formed.
  • the liquid crystal composition was prepared by dissolving.
  • An FFS mode liquid crystal panel was actually produced by the following method. First, a pixel electrode having an FFS electrode structure made of indium tin oxide (ITO), an ITO substrate on which an insulating film and a common electrode were stacked, and a counter substrate having no electrode were prepared. A horizontal photo-alignment type alignment film material (horizontal photo-alignment agent) was applied to both substrates, and then baked at 200 ° C. for 40 minutes to form a horizontal photo-alignment film.
  • ITO indium tin oxide
  • a sealing material (manufactured by Sekisui Chemical Co., Ltd., Photorec) is applied to one substrate, the liquid crystal composition obtained above is dropped onto the region surrounded by the sealing material, and the other substrate is bonded. A liquid crystal panel was produced.
  • VHR measurement VHR was measured under conditions of 1 V and 70 ° C. using a 6254 type VHR measuring system manufactured by Toyo Technica.
  • Residual DC (rDC) measurement Residual DC after applying a DC offset voltage of 3 V to the liquid crystal panel for 2 hours in an environment of 25 ° C. was measured by a flicker elimination method. The results are shown in Table 1 below.
  • Example 1 using a monomer having a cinnamate group had higher contrast and VHR and smaller rDC than Comparative Example 1 using a monomer having a biphenyl group.
  • the main factor of the high contrast in Example 1 is that the monomer has a cinnamate group which is a polarization-absorbing functional group and polymerizes while being aligned by irradiation with linearly polarized ultraviolet rays, and a polymer is formed along a predetermined direction. Therefore, it is considered that the liquid crystal compound takes a highly aligned state. Further, it is considered that the orientation of the horizontal photo-alignment film also has a positive influence on the orientation of the polymer.
  • the main factor of the low contrast of Comparative Example 1 is that the monomer has a biphenyl group that is not a polarization-absorbing functional group, and polymerizes without being oriented by itself even when irradiated with linearly polarized ultraviolet light, and is polymerized along a predetermined direction. This is probably because the alignment state of the liquid crystal compound was lowered. However, also in Comparative Example 1, the polymer may be slightly oriented due to the influence of the horizontal light alignment film. The reason why the VHR is higher in Example 1 is that the monomer represented by the chemical formula (2-1) is used in the case of using the monomer represented by the chemical formula (A) than in the case where the monomer represented by the chemical formula (A) is used.
  • the liquid crystal composition was prepared by dissolving.
  • An FFS mode liquid crystal panel was actually produced by the following method. First, a pixel electrode having an FFS electrode structure made of indium tin oxide, an ITO substrate on which an insulating film and a common electrode were laminated, and a counter substrate having no electrode were prepared. Subsequently, a sealing material (manufactured by Sekisui Chemical Co., Ltd., Photorec) is applied to one substrate, the liquid crystal composition obtained above is dropped onto the region surrounded by the sealing material, and the other substrate is bonded. A liquid crystal panel was produced.
  • a sealing material manufactured by Sekisui Chemical Co., Ltd., Photorec
  • Example 2-2 was performed in the same manner as Example 2-1 except that in the step of forming the orientation control layer, linearly polarized ultraviolet light was irradiated at 1.7 mW / cm 2 for 1800 seconds (3 J / cm 2 ). A liquid crystal panel was prepared.
  • Example 2-3 was carried out in the same manner as Example 2-1 except that in the step of forming the orientation control layer, linearly polarized ultraviolet light was irradiated at 1.7 mW / cm 2 for 3000 seconds (5 J / cm 2 ). A liquid crystal panel was prepared.
  • Comparative example 2 A liquid crystal panel of Comparative Example 2 was prepared in the same manner as in Example 2-1, except that the alignment control layer was not irradiated with linearly polarized ultraviolet light (0 J / cm 2 ).
  • the irradiation amount is 3 J / cm 2 or more, there is a possibility that VHR is lowered due to deterioration of liquid crystal molecules due to the increase in irradiation amount.
  • the rDC decreased with increasing polarized UV irradiation dose. Thereby, it is considered that the adsorption of ionic impurities in the liquid crystal layer is less likely to occur because the polymer layer is formed by polymerization of the cinnamate monomer.
  • An FFS mode liquid crystal panel was actually produced by the following method. First, a pixel electrode having an FFS electrode structure made of indium tin oxide, an ITO substrate on which an insulating film and a common electrode were laminated, and a counter substrate having no electrode were prepared. Subsequently, a sealing material (manufactured by Sekisui Chemical Co., Ltd., Photorec) is applied to one substrate, the liquid crystal composition obtained above is dropped onto the region surrounded by the sealing material, and the other substrate is bonded. A liquid crystal panel was produced.
  • a sealing material manufactured by Sekisui Chemical Co., Ltd., Photorec
  • Example 3-2 was performed in the same manner as in Example 3-1, except that in the step of forming the orientation control layer, linearly polarized ultraviolet light was irradiated at 1.7 mW / cm 2 for 1800 seconds (3 J / cm 2 ). A liquid crystal panel was prepared.
  • Example 3-3 is the same as Example 3-1 except that in the step of forming the orientation control layer, linearly polarized ultraviolet light was irradiated at 1.7 mW / cm 2 for 3000 seconds (5 J / cm 2 ). A liquid crystal panel was prepared.
  • Comparative Example 3 A liquid crystal panel of Comparative Example 3 was produced in the same manner as in Example 3-1, except that the alignment control layer was not irradiated with linearly polarized ultraviolet rays (0 J / cm 2 ).
  • the contrast was improved with an increase in the irradiation amount of polarized ultraviolet rays even when a liquid crystal material having positive dielectric anisotropy was used.
  • the cinnamate monomer represented by the chemical formula (2-2) is used, the formed cinnamate polymer layer is liquid crystal because the cinnamate group exhibits polarization absorptivity simultaneously with polymerization by irradiation with polarized ultraviolet rays. It shows that the orientation direction of the compound is controlled. However, it was a lower value in the total polarized ultraviolet irradiation amount than in the case of using a liquid crystal material having negative dielectric anisotropy.
  • VHR shows a substantially constant value in the range of polarized UV irradiation dose of 0 to 5 J / cm 2 , and is higher than when a liquid crystal material having negative dielectric anisotropy is used. It is estimated that a liquid crystal material having a positive dielectric anisotropy is less likely to be deteriorated by ultraviolet irradiation. The rDC became significantly smaller as the amount of polarized ultraviolet rays increased.
  • the adsorption of ionic impurities in the liquid crystal layer is less likely to occur because the polymer layer is formed by polymerization of the cinnamate monomer.
  • the value was an order of magnitude smaller than when a liquid crystal material having negative dielectric anisotropy was used. This is presumably because the liquid crystal material having positive dielectric anisotropy is less likely to be deteriorated by ultraviolet irradiation, as in the VHR result.
  • An FFS mode liquid crystal panel was actually produced by the following method. First, a pixel electrode having an FFS electrode structure made of indium tin oxide, an ITO substrate on which an insulating film and a common electrode were laminated, and a counter substrate having no electrode were prepared. Subsequently, a sealing material (manufactured by Sekisui Chemical Co., Ltd., Photorec) is applied to one substrate, the liquid crystal composition obtained above is dropped onto the region surrounded by the sealing material, and the other substrate is bonded. A liquid crystal panel was produced.
  • a sealing material manufactured by Sekisui Chemical Co., Ltd., Photorec
  • a liquid crystal panel of Example 4-2 was produced in the same manner as Example 4-1, except for the above.
  • a liquid crystal panel of Example 4-3 was produced in the same manner as Example 4-1, except for the above.
  • a liquid crystal panel of Example 4-4 was produced in the same manner as Example 4-1, except for the above.
  • a liquid crystal panel of Example 4-5 was produced in the same manner as Example 4-1, except for the above.
  • a liquid crystal panel of Example 4-6 was produced in the same manner as Example 4-1, except for the above.
  • Example 5 (Production of liquid crystal panel) An FFS mode liquid crystal panel was actually produced by the following method. First, a TFT substrate (active matrix substrate) in which a pixel electrode having an FFS electrode structure made of indium tin oxide (ITO) made of indium tin oxide (ITO), an insulating film, and a common electrode is laminated, and having no electrode. A counter substrate in which an alignment layer and an in-cell retardation layer were laminated in this order on a color filter was prepared. The in-cell retardation layer is made of a polymer obtained by polymerizing a reactive acrylic monomer on an alignment layer subjected to rubbing treatment.
  • ITO indium tin oxide
  • ITO indium tin oxide
  • a horizontal alignment polyimide (polyamic acid) -based alignment film material (alignment agent) is applied to the TFT substrate, followed by baking in an oven at 200 ° C. for 40 minutes, and then a rubbing treatment to perform horizontal processing. An alignment film was formed.
  • a sealing material manufactured by Sekisui Chemical Co., Ltd., Photorec
  • the same liquid crystal composition as in Example 1 is dropped on the area surrounded by the sealing material, and the TFT substrate is bonded to the liquid crystal panel.
  • the ultraviolet irradiation and the rubbing treatment were performed so that the azimuth direction in which the liquid crystal molecules are aligned by the alignment control layer by linearly polarized ultraviolet irradiation is the same as the azimuth direction in which the liquid crystal molecules are aligned by the rubbing treatment of the alignment film. Thereafter, the temperature of the liquid crystal panel was returned to room temperature to produce an FFS mode liquid crystal panel having an alignment control layer (polymer layer) and an in-cell retardation layer.
  • One embodiment of the present invention contains a liquid crystal material and at least one monomer, and the at least one monomer has a photofunctional group having anisotropy in light absorption.
  • the liquid crystal composition characterized by including the monomer which has may be sufficient. Since the liquid crystal composition includes a monomer (polarization-absorbing monomer) having a photofunctional group (polarization-absorbing functional group) having anisotropy in the light absorption, a liquid crystal display device produced using the liquid-crystal composition The contrast can be improved.
  • the photofunctional group having anisotropy in light absorption includes a cinnamate group which may have a substituent, a chalcone group which may have a substituent, and a substituent. It may contain at least one photofunctional group (functional group for horizontal alignment) selected from the group consisting of azobenzene groups that may have. Thereby, the horizontal alignment (control of alignment azimuth
  • Another embodiment of the present invention contains a liquid crystal material and at least one monomer, and the at least one monomer may have a substituent. And at least one photoreactive monomer selected from the group consisting of a monomer having a chalcone group which may have a substituent, and a monomer having an azobenzene group which may have a substituent.
  • the liquid crystal composition characterized by the above may be used. Since the photofunctional group includes a photoreactive monomer that can function as a polarization-absorbing monomer, the contrast of a liquid crystal display device manufactured using the liquid crystal composition can be improved.
  • the photofunctional group having anisotropy in light absorption may include a cinnamate group which may have the substituent.
  • the at least one photoreactive monomer may include at least one monomer having a cinnamate group which may have the substituent.
  • the monomer having a cinnamate group which may have a substituent may include at least one monomer (monomer (1)) represented by the following chemical formula (1).
  • monomer (1) monomer represented by the following chemical formula (1).
  • P ⁇ 1 > and P ⁇ 2 > are the same or different, and represent a vinyl group or an isopropenyl group.
  • Sp 1 , Sp 2 and Sp 3 are the same or different and are —O— group, —S— group, —COO— group, —OCO— group, —NHCO— group, —CONH— group, —NHCS— group, —CSNH— represents a direct bond.
  • Z 1 and Z 2 are the same or different and each represents a linear, branched or cyclic alkylene group having 1 to 12 carbon atoms or a direct bond. At least one hydrogen atom of the phenylene group may be substituted.
  • the at least one monomer represented by the chemical formula (1) is represented by the monomer represented by the following chemical formula (2-1) and the following chemical formula (2-2). Or at least one of the monomers. Thereby, liquid crystal orientation can be made higher.
  • the liquid crystal material may have a positive dielectric anisotropy. Thereby, the light resistance of a liquid crystal display device can be improved.
  • the liquid crystal material may have negative dielectric anisotropy. Thereby, the contrast of the liquid crystal display device can be further improved.
  • the liquid crystal material may contain a neutral liquid crystal compound having an alkenyl group.
  • the response performance of the liquid crystal material can be improved and the speed can be increased.
  • Still another embodiment of the present invention (hereinafter also referred to as a third embodiment) includes a liquid crystal layer containing a liquid crystal material, a sealing material disposed so as to surround the liquid crystal layer in plan view, and the liquid crystal layer. And an alignment control layer disposed in contact with the liquid crystal layer in a region surrounded by the sealing material in plan view, the alignment control layer in the liquid crystal material
  • the liquid crystal compound is aligned vertically or horizontally with respect to the substrate surface, contains a polymer obtained by polymerizing at least one monomer, and the at least one monomer is represented by the following chemical formula (1). It may be a liquid crystal display device including at least one monomer (monomer (1)).
  • P ⁇ 1 > and P ⁇ 2 > are the same or different, and represent a vinyl group or an isopropenyl group.
  • Sp 1 , Sp 2 and Sp 3 are the same or different and are —O— group, —S— group, —COO— group, —OCO— group, —NHCO— group, —CONH— group, —NHCS— group, —CSNH— represents a direct bond.
  • Z 1 and Z 2 are the same or different and each represents a linear, branched or cyclic alkylene group having 1 to 12 carbon atoms or a direct bond. At least one hydrogen atom of the phenylene group may be substituted.
  • the monomer (1) has a cinnamate group that can function as a photofunctional group having anisotropy in light absorption (polarized light absorption functional group), and the orientation control layer includes at least one kind of the monomer (1). Since the polymer obtained by polymerizing the monomer is contained, the contrast of the liquid crystal display device can be improved. In the liquid crystal display device, a pair of substrates can be bonded to each other with a sealing material without using a conventional alignment film, so that the peel strength between the substrates can be increased. In addition, the monomer (1) has a cinnamate group that can function as a polarization-absorbing functional group, and can absorb polarized light and express an alignment regulating force.
  • the liquid crystal layer can be compared with irradiation with non-polarized light. It is possible to reduce the light irradiation intensity applied to the. Furthermore, since the liquid crystal display device does not have to include a conventional alignment film that requires a baking process, even if the in-cell retardation layer is provided, the retardation of the in-cell retardation layer is reduced by the baking process. This can be effectively suppressed. Moreover, since the monomer (1) has a cinnamate group, the light resistance of the liquid crystal display device can be improved. Furthermore, according to the monomer (1), the solubility of the monomer in the liquid crystal material can be improved, and the alignment controllability of the liquid crystal compound by polarized light absorption can be further improved.
  • the at least one monomer represented by the chemical formula (1) includes a monomer represented by the following chemical formula (2-1) and a monomer represented by the following chemical formula (2-2): May be included. Thereby, liquid crystal orientation can be made higher.
  • the liquid crystal material may have a positive dielectric anisotropy. Therefore, the light resistance of the liquid crystal display device can be improved.
  • the liquid crystal material may have negative dielectric anisotropy. Thereby, the contrast of the liquid crystal display device can be further improved.
  • the liquid crystal material may contain a neutral liquid crystal compound having an alkenyl group.
  • the liquid crystal display device may be in a horizontal electric field type display mode.
  • a liquid crystal composition containing a liquid crystal material and at least one monomer is sealed between a pair of substrates bonded by a sealing material.
  • the at least one monomer includes a monomer (polarization-absorbing functional group) having a photofunctional group (polarization-absorbing functional group) having anisotropy in light absorption, and the alignment control layer is formed in the liquid crystal material.
  • the liquid crystal compound may be oriented vertically or horizontally with respect to the substrate surface.
  • polarized ultraviolet rays are irradiated while heating the liquid crystal layer at a temperature of not less than the nematic phase-isotropic phase transition point of the liquid crystal material and not more than 140 ° C. It may be irradiated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention provides a liquid crystal composition and liquid crystal display device which can have increased contrast, and a liquid crystal display device production method capable of producing such a liquid crystal display device. The liquid crystal display device according to the present invention is provided with: a liquid crystal layer containing a liquid crystal material; a sealing material disposed so as to surround the liquid crystal layer as viewed from above; a pair of substrates sandwiching the liquid crystal layer; and an alignment control layer disposed in a region surrounded by the sealing material as viewed from above, and disposed in contact with the liquid crystal layer, wherein the alignment control layer allows a liquid crystal compound in the liquid crystal material to align in a direction perpendicular or parallel to the substrate surface, and contains a polymer obtained by polymerization of at least one type of monomer, and the at least one type of monomer includes at least one type of monomer having a cinnamate group.

Description

液晶組成物、液晶表示装置、及び、液晶表示装置の製造方法Liquid crystal composition, liquid crystal display device, and method of manufacturing liquid crystal display device
本発明は、液晶組成物、液晶表示装置、及び、液晶表示装置の製造方法に関する。より詳しくは、配向制御層を形成可能な液晶組成物と、配向制御層を有する液晶表示装置と、その製造方法とに関するものである。 The present invention relates to a liquid crystal composition, a liquid crystal display device, and a method for manufacturing a liquid crystal display device. More specifically, the present invention relates to a liquid crystal composition capable of forming an alignment control layer, a liquid crystal display device having the alignment control layer, and a manufacturing method thereof.
液晶表示装置は、表示のために液晶組成物を利用する表示装置であり、その代表的な表示方式は、一対の基板間に液晶組成物を封入した液晶パネルに対してバックライトから光を照射し、液晶組成物に電圧を印加して液晶材料の配向を変化させることにより、液晶パネルを透過する光の量を制御するものである。このような液晶表示装置は、薄型、軽量及び低消費電力といった特長を有することから、スマートフォン、タブレットPC、カーナビゲーション等の電子機器に利用されている。 A liquid crystal display device is a display device that uses a liquid crystal composition for display. A typical display method is to irradiate light from a backlight onto a liquid crystal panel in which the liquid crystal composition is sealed between a pair of substrates. The amount of light transmitted through the liquid crystal panel is controlled by applying a voltage to the liquid crystal composition to change the orientation of the liquid crystal material. Such a liquid crystal display device has features such as thinness, light weight, and low power consumption, and thus is used in electronic devices such as smartphones, tablet PCs, and car navigation systems.
また、液晶表示装置の表示方式として、広視野角特性を得やすい等の理由から、液晶材料の配向を基板面に対して平行な面内で主に回転させることによって制御を行う横電界型表示モードが注目を集めている。横電界型表示モードとしては、例えば、面内スイッチング(IPS:In-Plane Switching)モードや、フリンジ電界スイッチング(FFS:Fringe Field Switching)モードが挙げられる。 In addition, as a display method of a liquid crystal display device, a horizontal electric field type display in which the orientation of the liquid crystal material is controlled mainly in a plane parallel to the substrate surface for the purpose of easily obtaining a wide viewing angle characteristic. The mode is attracting attention. Examples of the horizontal electric field type display mode include an in-plane switching (IPS) mode and a fringe electric field switching (FFS) mode.
液晶表示装置において、電圧が印加されていない状態における液晶材料の配向は、配向処理が施された配向膜によって制御されるのが一般的である。上記配向膜は、例えば、基板上にポリアミック酸等の配向膜材料を塗布し、その後焼成して製膜する。液晶材料の配向を制御する他の方法としては、液晶層中に添加した重合性モノマーを重合させて、配向膜の表面に液晶材料の配向を制御するポリマー層を形成するポリマー支持配向技術(Polymer Sustained Alignment)(以下、PSA技術とも言う。)も検討されている(例えば、特許文献1~3等参照)。更に、従来の配向膜を形成せずに、上記ポリマー層により液晶材料の配向を制御することも検討されている(例えば、特許文献1及び2等参照)。 In a liquid crystal display device, the alignment of a liquid crystal material in a state where no voltage is applied is generally controlled by an alignment film subjected to an alignment process. The alignment film is formed, for example, by applying an alignment film material such as polyamic acid on a substrate and then baking it. As another method for controlling the alignment of the liquid crystal material, a polymer-supported alignment technique (Polymer) that polymerizes a polymerizable monomer added in the liquid crystal layer to form a polymer layer for controlling the alignment of the liquid crystal material on the surface of the alignment film. Sustained alignment (hereinafter also referred to as PSA technology) has been studied (see, for example, Patent Documents 1 to 3). Furthermore, it has been studied to control the alignment of the liquid crystal material by the polymer layer without forming a conventional alignment film (see, for example, Patent Documents 1 and 2).
特開2015-205982号公報Japanese Patent Laying-Open No. 2015-205982 特開2010-033093号公報JP 2010-033093 A 米国特許出願公開第2012/0021141号明細書US Patent Application Publication No. 2012/0021141
しかしながら、IPSモードやFFSモード等の水平配向モードにPSA技術を適用した場合、液晶表示装置のコントラストが低下することがあった。これは、従来のビフェニル系又はターフェニル系のモノマーは、分子構造に異方性が無く、モノマーには重合のために無偏光の紫外線が照射されるため、形成されるポリマー層中のポリマーは、ポリマー層の下層の配向膜の配向方位に沿って配向していないためと考えられる。 However, when the PSA technique is applied to the horizontal alignment mode such as the IPS mode or the FFS mode, the contrast of the liquid crystal display device may be lowered. This is because conventional biphenyl-based or terphenyl-based monomers have no molecular structure anisotropy, and the monomers are irradiated with non-polarized ultraviolet rays for polymerization. This is probably because the film is not oriented along the orientation direction of the orientation film under the polymer layer.
本発明は、上記現状に鑑みてなされたものであり、コントラストを高くすることが可能な液晶組成物及び液晶表示装置と、そのような液晶表示装置を製造可能な液晶表示装置の製造方法とを提供することを目的とするものである。 The present invention has been made in view of the above situation, and includes a liquid crystal composition and a liquid crystal display device capable of increasing contrast, and a method of manufacturing a liquid crystal display device capable of manufacturing such a liquid crystal display device. It is intended to provide.
本発明の一態様は、液晶材料と、少なくとも一種のモノマーとを含有し、上記少なくとも一種のモノマーは、光吸収に異方性がある光官能基を有するモノマーを含む液晶組成物であってもよい。 One embodiment of the present invention is a liquid crystal composition that includes a liquid crystal material and at least one monomer, and the at least one monomer includes a monomer having a photofunctional group having anisotropy in light absorption. Good.
本発明の他の一態様は、液晶材料と、少なくとも一種のモノマーとを含有し、上記少なくとも一種のモノマーは、置換基を有してもよいシンナメート基を有するモノマー、置換基を有してもよいカルコン基を有するモノマー、及び、置換基を有してもよいアゾベンゼン基を有するモノマーからなる群より選択される少なくとも一種の光反応性モノマーを含むことを特徴とする液晶組成物であってもよい。 Another embodiment of the present invention includes a liquid crystal material and at least one monomer, and the at least one monomer may have a cinnamate group which may have a substituent, or a substituent. A liquid crystal composition comprising at least one photoreactive monomer selected from the group consisting of a monomer having a good chalcone group and a monomer having an azobenzene group which may have a substituent. Good.
本発明の更に他の一態様は、液晶材料を含有する液晶層と、平面視において上記液晶層を囲むように配置されたシール材と、上記液晶層を挟持する一対の基板と、平面視において上記シール材で囲まれた領域内に、上記液晶層と接するように配置された配向制御層とを備え、上記配向制御層は、上記液晶材料中の液晶化合物を上記基板面に対して垂直又は水平方向に配向させるものであり、少なくとも一種のモノマーを重合させてなるポリマーを含有し、上記少なくとも一種のモノマーは、下記化学式(1)で表される少なくとも一種のモノマーを含む液晶表示装置であってもよい。
Figure JPOXMLDOC01-appb-C000005
(式中、P及びPは、同一又は異なって、ビニル基、又は、イソプロペニル基を表す。
Sp、Sp及びSpは、同一又は異なって、-O-基、-S-基、-COO-基、-OCO-基、-NHCO-基、-CONH-基、-NHCS-基、-CSNH-基、又は、直接結合を表す。
及びZは、同一又は異なって、炭素数1~12の、直鎖状、分岐状若しくは環状のアルキレン基、又は、直接結合を表す。
フェニレン基が有する少なくとも一つの水素原子は、置換されていてもよい。)
Still another embodiment of the present invention includes a liquid crystal layer containing a liquid crystal material, a sealing material disposed so as to surround the liquid crystal layer in a plan view, a pair of substrates that sandwich the liquid crystal layer, and a plan view. An alignment control layer disposed in contact with the liquid crystal layer in a region surrounded by the sealing material, wherein the alignment control layer allows the liquid crystal compound in the liquid crystal material to be perpendicular to the substrate surface or The liquid crystal display device is a liquid crystal display device comprising a polymer obtained by polymerizing at least one monomer, wherein the at least one monomer includes at least one monomer represented by the following chemical formula (1). May be.
Figure JPOXMLDOC01-appb-C000005
(In formula, P < 1 > and P < 2 > are the same or different, and represent a vinyl group or an isopropenyl group.
Sp 1 , Sp 2 and Sp 3 are the same or different and are —O— group, —S— group, —COO— group, —OCO— group, —NHCO— group, —CONH— group, —NHCS— group, —CSNH— represents a direct bond.
Z 1 and Z 2 are the same or different and each represents a linear, branched or cyclic alkylene group having 1 to 12 carbon atoms or a direct bond.
At least one hydrogen atom of the phenylene group may be substituted. )
本発明の更に他の一態様は、シール材によって接合した一対の基板間に、液晶材料と少なくとも一種のモノマーとを含有する液晶組成物を封止して液晶層を形成する工程と、上記液晶層に偏光紫外線を照射し、上記一対の基板と上記液晶層との間に、上記少なくとも一種のモノマーを重合させてなる配向制御層を形成する工程とを有し、上記少なくとも一種のモノマーは、光吸収に異方性がある光官能基を有するモノマーを含み、上記配向制御層は、上記液晶材料中の液晶化合物を上記基板面に対して垂直又は水平方向に配向させるものである液晶表示装置の製造方法であってもよい。 Still another embodiment of the present invention includes a step of sealing a liquid crystal composition containing a liquid crystal material and at least one monomer between a pair of substrates bonded by a sealing material to form a liquid crystal layer, and the liquid crystal Irradiating the layer with polarized ultraviolet light, and forming an alignment control layer obtained by polymerizing the at least one monomer between the pair of substrates and the liquid crystal layer, wherein the at least one monomer is A liquid crystal display device comprising a monomer having a photofunctional group having anisotropy in light absorption, wherein the alignment control layer aligns a liquid crystal compound in the liquid crystal material in a vertical or horizontal direction with respect to the substrate surface. It may be a manufacturing method.
上記特許文献1は、他の液晶組成物への相溶性が高い配向制御材料を含有し、配向規制力に優れた液晶組成物が開示されており、液晶組成物に含まれる重合性化合物を重合することで配向制御層を形成することが開示されている。上記特許文献2は、液晶に混入された対称構造を有する多官能モノマーを重合させ、得られた紫外線硬化物により液晶を垂直配向させることが開示されている。上記特許文献3は、光反応性を有するノルボルネン系重合体、バインダー、反応性メソゲン及び光開始剤を含む液晶配向用組成物が開示されている。 Patent Document 1 discloses a liquid crystal composition that contains an alignment control material that is highly compatible with other liquid crystal compositions and has excellent alignment control power, and polymerizes a polymerizable compound contained in the liquid crystal composition. By doing so, it is disclosed to form an orientation control layer. Patent Document 2 discloses that a polyfunctional monomer having a symmetric structure mixed in a liquid crystal is polymerized and the liquid crystal is vertically aligned by the obtained ultraviolet cured product. Patent Document 3 discloses a liquid crystal alignment composition containing a photoreactive norbornene polymer, a binder, a reactive mesogen, and a photoinitiator.
しかしながら、上記特許文献1~3のいずれにも、シンナメート基等の光吸収に異方性がある光官能基を有するモノマーについて具体的な開示はなく、上記モノマーに偏光紫外線を照射することは検討されていない。また、上記特許文献2では、上記多官能モノマーに無偏光の紫外線を照射して重合させるが、本発明の液晶表示装置の製造方法は、モノマーに偏光紫外線を照射する点で異なる。上記特許文献3は、上記液晶配向用組成物を基板上に塗布して配向膜を形成するが、本発明は、配向制御層形成用のモノマーを液晶層(液晶材料)に添加する点で異なる。 However, none of the above Patent Documents 1 to 3 disclose a specific monomer having a photofunctional group having anisotropy in light absorption such as a cinnamate group, and it is considered to irradiate the monomer with polarized ultraviolet rays. It has not been. Further, in Patent Document 2, the polyfunctional monomer is polymerized by irradiating non-polarized ultraviolet light, but the method for producing a liquid crystal display device of the present invention is different in that the monomer is irradiated with polarized ultraviolet light. Patent Document 3 described above forms the alignment film by applying the liquid crystal alignment composition on a substrate, but the present invention is different in that a monomer for forming an alignment control layer is added to the liquid crystal layer (liquid crystal material). .
本発明の液晶組成物、液晶表示装置、及び、液晶表示装置の製造方法によれば、液晶表示装置のコントラストを高くすることが可能である。 According to the liquid crystal composition, the liquid crystal display device, and the manufacturing method of the liquid crystal display device of the present invention, the contrast of the liquid crystal display device can be increased.
実施形態1に係る液晶表示装置の断面模式図である。1 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 1. FIG. 実施形態1に係る液晶表示装置の平面模式図である。1 is a schematic plan view of a liquid crystal display device according to Embodiment 1. FIG. 実施形態1の変形例に係る液晶表示装置の断面模式図である。6 is a schematic cross-sectional view of a liquid crystal display device according to a modification of Embodiment 1. FIG. 実施形態1の液晶表示装置の製造方法において、配向制御層の形成過程を説明した模式図であり、(a)はモノマーの重合前を表し、(b)はモノマーの重合後を表す。In the manufacturing method of the liquid crystal display device of Embodiment 1, it is the schematic diagram explaining the formation process of the orientation control layer, (a) represents before polymerization of a monomer, (b) represents after polymerization of a monomer. 実施形態2に係る液晶表示装置の断面模式図である。6 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 2. FIG. 実施形態2の液晶表示装置の製造方法において、配向制御層の形成過程を説明した模式図であり、(a)はモノマーの重合前を表し、(b)はモノマーの重合後を表す。In the manufacturing method of the liquid crystal display device of Embodiment 2, it is the schematic diagram explaining the formation process of the orientation control layer, (a) represents before polymerization of a monomer, (b) represents after polymerization of a monomer.
以下、本発明の実施形態について説明する。本発明は、以下の実施形態に記載された内容に限定されるものではなく、本発明の構成を充足する範囲内で、適宜設計変更を行うことが可能である。 Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the contents described in the following embodiments, and appropriate design changes can be made within a range that satisfies the configuration of the present invention.
本明細書中、「光反応性モノマー」とは、光官能基を含むモノマーを意味する。 In the present specification, the “photoreactive monomer” means a monomer containing a photofunctional group.
本明細書中、「光官能基」とは、光反応を生じ得る官能基を意味する。 In the present specification, the “photofunctional group” means a functional group capable of causing a photoreaction.
本明細書中、「観察面側」とは、液晶表示装置の画面(表示面)に対してより近い側を意味し、「背面側」とは、液晶表示装置の画面(表示面)に対してより遠い側を意味する。 In this specification, “observation surface side” means a side closer to the screen (display surface) of the liquid crystal display device, and “back side” means the screen (display surface) of the liquid crystal display device. Means the farther side.
本明細書中、「位相差層」とは、少なくとも波長550nmの光に対して10nm以上の面内位相差を付与する位相差層を意味する。ちなみに、波長550nmの光は、人間の視感度が最も高い波長の光である。面内位相差は、R=(ns-nf)×dで定義される。ここで、nsは、位相差層の面内方向の主屈折率nx及びnyのうちの大きい方を表し、nfは、位相差層の面内方向の主屈折率nx及びnyのうちの小さい方を表す。主屈折率は、特に断りのない限り、波長550nmの光に対する値を指している。位相差層の面内遅相軸はnsに対応する方向の軸を指し、面内進相軸はnfに対応する方向の軸を指す。dは、位相差層の厚さを表す。本明細書中、特に断りがなければ、「位相差」又は「リタデーション」は、波長550nmの光に対する面内位相差を意味している。 In the present specification, the “retardation layer” means a retardation layer that gives an in-plane retardation of at least 10 nm to light having a wavelength of 550 nm. Incidentally, light having a wavelength of 550 nm is light having the highest human visibility. The in-plane phase difference is defined by R = (ns−nf) × d. Here, ns represents the larger one of the main refractive indexes nx and ny in the in-plane direction of the retardation layer, and nf is the smaller one of the main refractive indexes nx and ny in the in-plane direction of the retardation layer. Represents. The main refractive index indicates a value with respect to light having a wavelength of 550 nm unless otherwise specified. The in-plane slow axis of the retardation layer indicates an axis in a direction corresponding to ns, and the in-plane fast axis indicates an axis in a direction corresponding to nf. d represents the thickness of the retardation layer. In this specification, unless otherwise specified, “phase difference” or “retardation” means an in-plane phase difference with respect to light having a wavelength of 550 nm.
本明細書中、液晶層を挟持する一対の基板が有する一対の基材の間を「インセル」と呼び、一対の基材の外側(観察面側及び背面側)を「アウトセル」と呼ぶ。 In this specification, a space between a pair of substrates included in a pair of substrates sandwiching a liquid crystal layer is referred to as “in-cell”, and the outside of the pair of substrates (observation surface side and back surface side) is referred to as “out-cell”.
<実施形態1>
<液晶表示装置>
まず、図1~図3を用いて、実施形態1の液晶表示装置について説明する。図1は、実施形態1に係る液晶表示装置の断面模式図である。図2は、実施形態1に係る液晶表示装置の平面模式図である。図1及び図2に示したように、本実施形態の液晶表示装置100は、液晶材料を含有する液晶層30と、平面視において液晶層30を囲むように配置されたシール材40と、シール材40によって互いに接合され、液晶層30を挟持する一対の基板10及び20と、平面視においてシール材40で囲まれた領域内に、液晶層30と接するように配置された配向制御層50とを備える。液晶表示装置100は、更に一対の基板10、20のいずれか一方の後方にバックライト70を備える。
<Embodiment 1>
<Liquid crystal display device>
First, the liquid crystal display device of Embodiment 1 will be described with reference to FIGS. FIG. 1 is a schematic cross-sectional view of the liquid crystal display device according to the first embodiment. FIG. 2 is a schematic plan view of the liquid crystal display device according to the first embodiment. As shown in FIGS. 1 and 2, the liquid crystal display device 100 of the present embodiment includes a liquid crystal layer 30 containing a liquid crystal material, a sealing material 40 disposed so as to surround the liquid crystal layer 30 in plan view, and a seal A pair of substrates 10 and 20 that are bonded to each other by the material 40 and sandwich the liquid crystal layer 30; and an alignment control layer 50 that is disposed so as to be in contact with the liquid crystal layer 30 in a region surrounded by the sealing material 40 in plan view. Is provided. The liquid crystal display device 100 further includes a backlight 70 behind one of the pair of substrates 10 and 20.
近年、液晶表示装置は、表示領域を広くする傾向にあり、額縁領域を狭くする要請がある。表示領域とは、観察者が認識する画像を表示する領域であり、額縁領域は含まれない。額縁領域には、ゲートドライバー、ソースドライバー、表示制御回路等が収容される。上記額縁領域を狭くする方法の一つとして、一対の基板を貼り合わせるシール材の面積を狭くすることが検討されているが、シール材の幅を狭くすると、基板間の剥離強度が低下し、一方の基板が他方の基板から剥離することがある。より詳細には、液晶表示装置は、通常、各基板の表面に配向膜を形成した後、両基板をシール材で貼り合わせて液晶層を形成するため、シール材と基板との間に配向膜が介在している。そして、シール材と配向膜との接着強度が低いために、配向膜とシール材との界面で剥離が起こりやすく、その結果、基板の剥離が発生し得る。シール材と配向膜との接着強度が低い理由は、配向膜の表面は一般的に疎水性であり、一方、シール材に含まれる樹脂は若干親水性であり、これらは親和性が低いためである。 In recent years, liquid crystal display devices tend to widen the display area, and there is a demand for narrowing the frame area. The display area is an area for displaying an image recognized by an observer, and does not include a frame area. A gate driver, a source driver, a display control circuit, and the like are accommodated in the frame area. As one of the methods for narrowing the frame region, it has been studied to reduce the area of the sealing material for bonding a pair of substrates, but when the width of the sealing material is reduced, the peel strength between the substrates is reduced, One substrate may peel from the other substrate. More specifically, the liquid crystal display device usually forms an alignment film on the surface of each substrate, and then bonds both substrates with a sealing material to form a liquid crystal layer. Therefore, the alignment film is formed between the sealing material and the substrate. Is intervening. And since the adhesive strength between the sealing material and the alignment film is low, peeling is likely to occur at the interface between the alignment film and the sealing material, and as a result, peeling of the substrate may occur. The reason why the adhesion strength between the sealing material and the alignment film is low is that the surface of the alignment film is generally hydrophobic, while the resin contained in the sealing material is slightly hydrophilic, and these have low affinity. is there.
それに対して、本実施形態の液晶表示装置100は、一対の基板10及び20の液晶層30側の表面に、従来の配向膜を有さなくてもよく、シール材40によって一対の基板10及び20が互いに接合されている。従来の配向膜を介さずに、基板10及び20とシール材40がそれぞれ接することで、剥離強度を高めることができ、狭額縁化によりシール材40の幅を狭くした場合にも、一対の基板10及び20の接着を保持することができる。この場合、配向膜は、少なくとも平面視においてシール材40と重なる位置に形成されていなければよいが、配向膜の成膜に用いる印刷装置の精度上、シール材40と重なる位置のみに配向膜を形成しないことは困難であるため、一対の基板10及び20の全面に配向膜が形成されていないことが好ましい。本発明において、「配向膜」とは、ポリイミド、ポリアミック酸、ポリアミド、ポリマレイミド、ポリシロキサン、ポリシルセスキオキサン、ポリフォスファゼン、若しくは、これらの共重合体で構成される単層膜若しくは積層膜、又は、シリコン酸化物が斜方蒸着により形成された膜であって、液晶材料の配向を制御できる膜を言う。一般的な液晶表示装置においては、表示領域を構成する基板面上に配向膜材料が直接塗布(例えば、ポリイミド等の塗布)又は蒸着(例えば、シリコン酸化物(SiO)の斜方蒸着)されることによって配向膜が形成される。上記配向膜は、ポリイミド等の既存の配向膜材料が塗布されたものや、シリコン酸化物等の既存の配向膜材料が斜方蒸着されたものである限り、配向処理がなされたものに限定されない。 On the other hand, the liquid crystal display device 100 of the present embodiment does not have to have a conventional alignment film on the surface of the pair of substrates 10 and 20 on the liquid crystal layer 30 side. 20 are joined together. A pair of substrates can be used even when the width of the sealing material 40 is reduced by narrowing the frame by making the substrates 10 and 20 and the sealing material 40 contact each other without using a conventional alignment film to increase the peel strength. The adhesion of 10 and 20 can be maintained. In this case, the alignment film does not have to be formed at a position overlapping with the sealing material 40 at least in a plan view. However, the alignment film is formed only at a position overlapping with the sealing material 40 for accuracy of a printing apparatus used for forming the alignment film. Since it is difficult not to form, it is preferable that the alignment film is not formed on the entire surface of the pair of substrates 10 and 20. In the present invention, the “alignment film” refers to a single layer film or a laminate composed of polyimide, polyamic acid, polyamide, polymaleimide, polysiloxane, polysilsesquioxane, polyphosphazene, or a copolymer thereof. A film or a film in which silicon oxide is formed by oblique vapor deposition and can control the orientation of a liquid crystal material. In a general liquid crystal display device, an alignment film material is directly applied (for example, application of polyimide or the like) or vapor deposition (for example, oblique deposition of silicon oxide (SiO)) on a substrate surface constituting a display region. Thereby, an alignment film is formed. The alignment film is not limited to those subjected to alignment treatment as long as an existing alignment film material such as polyimide is applied or an existing alignment film material such as silicon oxide is obliquely deposited. .
図3は、実施形態1の変形例に係る液晶表示装置の断面模式図である。図3に示したように、本実施形態においては、長期信頼性の観点からは、配向制御層50と、一対の基板10及び20の少なくとも一方との間に、配向膜80が設けられていてもよい。また、配向膜80は、液晶化合物を所望の方向に配向するもの、例えば液晶化合物を所定方向に一様に配向するものであってもよいし、液晶化合物を所望の方向に配向しないもの、例えば液晶化合物を一様に配向せずに無秩序に配向するものであってもよい。ただし、基板10及び20間の剥離強度を確実に高くする観点からは、配向制御層50と、基板10及び20の少なくとも一方(より好ましくは各基板10、20)との間に、配向膜が設けられないことが好ましい。 FIG. 3 is a schematic cross-sectional view of a liquid crystal display device according to a modification of the first embodiment. As shown in FIG. 3, in this embodiment, from the viewpoint of long-term reliability, an alignment film 80 is provided between the alignment control layer 50 and at least one of the pair of substrates 10 and 20. Also good. The alignment film 80 may align the liquid crystal compound in a desired direction, for example, align the liquid crystal compound uniformly in a predetermined direction, or may not align the liquid crystal compound in the desired direction, for example, The liquid crystal compound may be aligned randomly without being aligned uniformly. However, from the viewpoint of reliably increasing the peel strength between the substrates 10 and 20, there is an alignment film between the alignment control layer 50 and at least one of the substrates 10 and 20 (more preferably, the substrates 10 and 20). Preferably it is not provided.
配向膜80としては、液晶表示装置の分野において通常使用される配向膜を用いることができ、例えば、ポリイミド、ポリアミック酸、ポリアミド、ポリマレイミド、ポリシロキサン、ポリシルセスキオキサン、ポリフォスファゼン、若しくは、これらの共重合体の少なくとも1種で構成される単層膜若しくは積層膜、又は、シリコン酸化物が斜方蒸着により形成された膜が挙げられる。配向膜80は、配向処理がなされていなくてもよいが、配向処理されていることが好ましい。配向処理方法は、特に限定されず、ラビング法、光配向法等を用いることができるが、光配向法が好ましい。配向膜80の配向処理と、後述するモノマーの重合とを同時に行うことができ、製造プロセスの簡略化が可能であるためである。 As the alignment film 80, an alignment film usually used in the field of liquid crystal display devices can be used. For example, polyimide, polyamic acid, polyamide, polymaleimide, polysiloxane, polysilsesquioxane, polyphosphazene, or And a single layer film or a laminated film composed of at least one of these copolymers, or a film in which silicon oxide is formed by oblique deposition. The alignment film 80 may not be subjected to alignment treatment, but is preferably subjected to alignment treatment. The alignment treatment method is not particularly limited, and a rubbing method, a photo-alignment method, or the like can be used, but a photo-alignment method is preferable. This is because the alignment treatment of the alignment film 80 and the polymerization of the monomer described later can be performed at the same time, and the manufacturing process can be simplified.
配向膜80が光配向処理を施されたものである場合には、配向膜80は光官能基を有するポリマーを含有することが好ましい。配向膜80の上記光官能基は、紫外光、可視光等の光(電磁波)が照射されることによって、例えば、二量化(二量体形成)、異性化、光フリース転移、分解等の構造変化を生じ、配向規制力を発現できる官能基であることが好ましい。配向膜80の上記光官能基の具体例としては、例えば、アゾベンゼン基、カルコン基、シンナメート基、クマリン基、トラン基、スチルベン基等が挙げられる。 When the alignment film 80 has been subjected to photo-alignment treatment, the alignment film 80 preferably contains a polymer having a photofunctional group. The photofunctional group of the alignment film 80 is irradiated with light (electromagnetic waves) such as ultraviolet light and visible light, for example, dimerization (dimer formation), isomerization, light fleece transition, decomposition, etc. The functional group is preferably a functional group capable of causing a change and exhibiting orientation regulating power. Specific examples of the photofunctional group of the alignment film 80 include an azobenzene group, a chalcone group, a cinnamate group, a coumarin group, a tolan group, and a stilbene group.
一対の基板10、20としては、例えば、アクティブマトリクス基板(TFT基板)及びカラーフィルタ(CF)基板の組み合わせが挙げられる。 Examples of the pair of substrates 10 and 20 include a combination of an active matrix substrate (TFT substrate) and a color filter (CF) substrate.
上記アクティブマトリクス基板としては、液晶表示装置の分野において通常使用されるものを用いることができる。アクティブマトリクス基板を平面視したときの構成としては、透明基板21上に、複数本の平行なゲート信号線;ゲート信号線に対して直交する方向に伸び、かつ互いに平行に形成された複数本のソース信号線;ゲート信号線とソース信号線との交点に対応して配置された薄膜トランジスタ(TFT)等のアクティブ素子;ゲート信号線とソース信号線とによって区画された領域にマトリクス状に配置された画素電極24等が設けられた構成が挙げられる。横電界型表示モードの場合には、更に、共通配線;共通配線に接続された共通電極22等が設けられる。画素電極24と共通電極22とは、絶縁層23を介して積層されてもよい。上記TFTは、アモルファスシリコン、ポリシリコン、又は、酸化物半導体であるIGZO(インジウム-ガリウム-亜鉛-酸素)によって、チャネルを形成したものが好適に用いられる。 As the active matrix substrate, those normally used in the field of liquid crystal display devices can be used. When the active matrix substrate is viewed in plan, the transparent matrix 21 has a plurality of parallel gate signal lines; a plurality of parallel gate signal lines extending in a direction perpendicular to the gate signal lines and parallel to each other. Source signal lines; active elements such as thin film transistors (TFTs) arranged corresponding to the intersections of the gate signal lines and the source signal lines; arranged in a matrix in a region partitioned by the gate signal lines and the source signal lines A configuration in which the pixel electrode 24 and the like are provided can be given. In the case of the horizontal electric field display mode, a common wiring; a common electrode 22 connected to the common wiring, and the like are further provided. The pixel electrode 24 and the common electrode 22 may be stacked via the insulating layer 23. As the TFT, an amorphous silicon, polysilicon, or an oxide semiconductor IGZO (indium-gallium-zinc-oxygen) is preferably used.
アクティブマトリクス型の表示方式では、通常、各画素に設けられたTFTがオンのときに、TFTを通じて信号電圧が電極に印加され、このときに画素に充電された電荷を、TFTがオフの期間中に保持する。充電された電荷を1フレーム期間(例えば、16.7ms)中に保持した割合を示すのが電圧保持率(VHR:Voltage Holding Ratio)である。すなわち、VHRが低いということは、液晶層に印加される電圧が時間とともに減衰しやすいことを意味し、アクティブマトリクス型の表示方式においては、VHRを高くすることが求められる。 In the active matrix display method, normally, when the TFT provided in each pixel is on, a signal voltage is applied to the electrode through the TFT, and the charge charged in the pixel at this time is applied during the period when the TFT is off. Hold on. A voltage holding ratio (VHR) indicates a ratio of holding the charged charge during one frame period (for example, 16.7 ms). That is, a low VHR means that the voltage applied to the liquid crystal layer tends to decay with time. In the active matrix display method, it is required to increase the VHR.
上記カラーフィルタ基板としては、液晶表示装置の分野において通常使用されるものを用いることができる。カラーフィルタ基板の構成としては、透明基板11上に、格子状に形成されたブラックマトリクス12、格子すなわち画素の内側に形成されたカラーフィルタ13等が設けられた構成が挙げられる。カラーフィルタ13は、赤色のカラーフィルタ13R、緑色のカラーフィルタ13G及び青色のカラーフィルタ13Bを含んでもよい。青色のカラーフィルタ13Bの厚さは、赤色のカラーフィルタ13Rの厚さ、緑色のカラーフィルタ13G厚さより厚くてもよい。青色のカラーフィルタ13Bを厚くすることで、液晶層厚を薄くすることができ、セル厚の最適化を行える。カラーフィルタ13の表面は、凹凸面を平坦化するオーバーコート層14(誘電率ε=3~4)を配置してもよい。カラーフィルタ基板がオーバーコート層14を有する場合、オーバーコート層14とシール材40とが接するが、シール材の剥離強度は低下しない。 As the color filter substrate, those usually used in the field of liquid crystal display devices can be used. Examples of the configuration of the color filter substrate include a configuration in which a black matrix 12 formed in a lattice shape, a color filter 13 formed inside a lattice, that is, a pixel, and the like are provided on a transparent substrate 11. The color filter 13 may include a red color filter 13R, a green color filter 13G, and a blue color filter 13B. The thickness of the blue color filter 13B may be thicker than the thickness of the red color filter 13R and the thickness of the green color filter 13G. By increasing the thickness of the blue color filter 13B, the thickness of the liquid crystal layer can be reduced and the cell thickness can be optimized. On the surface of the color filter 13, an overcoat layer 14 (dielectric constant ε = 3 to 4) for flattening the uneven surface may be disposed. When the color filter substrate has the overcoat layer 14, the overcoat layer 14 and the sealing material 40 are in contact with each other, but the peel strength of the sealing material does not decrease.
なお、一対の基板10、20は、カラーフィルタ及びアクティブマトリクスの両方が片側の基板に形成されたものであってもよい。 The pair of substrates 10 and 20 may be one in which both the color filter and the active matrix are formed on one substrate.
シール材40は、図2に示したように、平面視において液晶層30の周囲を囲むように配置されている。シール材40は、紫外線等の光によって硬化するものであってもよいし、熱により硬化するものであってもよいし、光及び熱の両方によって硬化するものであってもよい。シール材40は、例えば、エポキシ樹脂、(メタ)アクリル樹脂等を含有するものが挙げられる。シール材40は、無機フィラー、有機フィラー又は硬化剤等を含有してもよい。シール材40としては、例えば、積水化学工業社製、フォトレック等を用いることができる。 As shown in FIG. 2, the sealing material 40 is disposed so as to surround the liquid crystal layer 30 in a plan view. The sealing material 40 may be cured by light such as ultraviolet rays, may be cured by heat, or may be cured by both light and heat. Examples of the sealing material 40 include those containing an epoxy resin, a (meth) acrylic resin, and the like. The sealing material 40 may contain an inorganic filler, an organic filler, a curing agent, or the like. As the sealing material 40, for example, Sekisui Chemical Co., Ltd., Photorec, etc. can be used.
平面視におけるシール材40の幅は、0.4mm以上、5mm以下であってもよい。上記シール材40の幅のより好ましい下限は0.6mmであり、より好ましい上限は4mmであり、更に好ましい上限は2mmである。上記シール材40の幅は、1.0mm以下であってもよく、本実施形態の液晶表示装置100は、基板10及び20とシール材40とが、それぞれ直接接することができるため、1.0mm以下であっても充分に基板10及び基板20を接合することができる。 The width of the sealing material 40 in plan view may be 0.4 mm or more and 5 mm or less. A more preferable lower limit of the width of the sealing material 40 is 0.6 mm, a more preferable upper limit is 4 mm, and a further preferable upper limit is 2 mm. The width of the sealing material 40 may be 1.0 mm or less. In the liquid crystal display device 100 of the present embodiment, the substrates 10 and 20 and the sealing material 40 can be in direct contact with each other. Even if it is below, the board | substrate 10 and the board | substrate 20 can fully be joined.
液晶層30は、少なくとも一種の液晶化合物(液晶分子)31を含む液晶材料を含有する。液晶材料は、サーモトロピック液晶であり、好適には、ネマティック相を呈する液晶材料(ネマティック液晶)であることが好ましい。上記液晶材料は、ネマティック相から温度を上げていくと、ある臨界温度(ネマティック相-等方相転移点(TNI))以上になると等方相に相転移するものが好ましい。液晶層30は、液晶表示装置の使用環境下(例えば、-40℃~90℃)で、ネマティック相を呈することが好ましい。上記液晶材料のネマティック相-等方相転移点の温度は特に限定されないが、例えば、70~110℃である。なお、上記TNIは、後述するモノマーが添加される前の液晶材料のTNIである。 The liquid crystal layer 30 contains a liquid crystal material including at least one liquid crystal compound (liquid crystal molecule) 31. The liquid crystal material is a thermotropic liquid crystal, and is preferably a liquid crystal material exhibiting a nematic phase (nematic liquid crystal). The liquid crystal material preferably has a phase transition to an isotropic phase when the temperature rises from a nematic phase and reaches a certain critical temperature (nematic phase-isotropic phase transition point (T NI )) or higher. The liquid crystal layer 30 preferably exhibits a nematic phase under the usage environment of the liquid crystal display device (for example, −40 ° C. to 90 ° C.). The temperature of the nematic phase-isotropic phase transition point of the liquid crystal material is not particularly limited, but is, for example, 70 to 110 ° C. The above T NI is a T NI of liquid crystal material before the monomer to be described later is added.
上記液晶材料及び液晶化合物31は、下記式で定義される誘電率異方性(Δε)が負の値を有するものであってもよく、正の値を有するものであってもよい。すなわち、液晶材料及び液晶化合物31は、負の誘電率異方性を有するものであってもよく、正の誘電率異方性を有するものであってもよいが、コントラストの観点からは、負の誘電率異方性を有するものが好ましく、耐光性の観点からは、正の誘電率異方性を有するものが好ましい。その他、正の誘電率異方性を有する液晶材料及び液晶化合物31は、高TNI、高速応答(低回転粘性)といった特徴を有する。負の誘電率異方性を有する液晶材料としては、例えば、Δεが-1~-20のものを用いることができる。正の誘電率異方性を有する液晶材料としては、例えば、Δεが1~20のものを用いることができる。更に、液晶層30及び液晶材料は、極性を有さない、すなわちΔεが実質的に0である液晶化合物(ニュートラル液晶化合物)を含有していてもよい。ニュートラル液晶化合物としては、アルケン構造を有する液晶化合物が挙げられる。以下、負の誘電率異方性を有する液晶材料及び液晶化合物をそれぞれネガ型液晶材料及びネガ型液晶化合物とも言い、正の誘電率異方性を有する液晶材料及び液晶化合物をそれぞれポジ型液晶材料及びポジ型液晶化合物とも言う。
Δε=(長軸方向の誘電率)-(短軸方向の誘電率)
The liquid crystal material and the liquid crystal compound 31 may have negative values or negative values of dielectric anisotropy (Δε) defined by the following formula. That is, the liquid crystal material and the liquid crystal compound 31 may have a negative dielectric anisotropy or may have a positive dielectric anisotropy. Those having a dielectric anisotropy of 1 are preferred, and those having a positive dielectric anisotropy are preferred from the viewpoint of light resistance. In addition, the liquid crystal material having a positive dielectric anisotropy and the liquid crystal compound 31 have characteristics such as high T NI and high-speed response (low rotational viscosity). As the liquid crystal material having negative dielectric anisotropy, for example, a material having Δε of −1 to −20 can be used. As the liquid crystal material having positive dielectric anisotropy, for example, a material having Δε of 1 to 20 can be used. Furthermore, the liquid crystal layer 30 and the liquid crystal material may contain a liquid crystal compound (neutral liquid crystal compound) having no polarity, that is, Δε is substantially zero. Examples of the neutral liquid crystal compound include a liquid crystal compound having an alkene structure. Hereinafter, a liquid crystal material and a liquid crystal compound having a negative dielectric anisotropy are also referred to as a negative liquid crystal material and a negative liquid crystal compound, respectively, and a liquid crystal material and a liquid crystal compound having a positive dielectric anisotropy are respectively a positive liquid crystal material. Also called a positive liquid crystal compound.
Δε = (dielectric constant in the major axis direction)-(dielectric constant in the minor axis direction)
上記液晶材料は、アルケニル基を有する液晶化合物を含有してもよい。アルケニル基を有する液晶化合物は、ニュートラル液晶化合物であることが好ましい。アルケニル基を有する液晶化合物を含有することで、液晶材料の回転粘性が改善するため、液晶材料の応答性能を向上し、高速化することができる。一方で、アルケニル基を有する液晶化合物は、耐光性が低く、紫外線等の照射により分解し、VHRの低下を引き起こすことがある。そのため、無偏光光の照射を行う、垂直配向型の配向膜レスモードや従来のPSA技術では、耐光性に課題のあるアルケニル基を有する液晶化合物を用いると、顕著なVHRの低下を引き起こす。それに対して、本実施形態では、配向制御層50は、特定のモノマーを重合させてなるポリマーを含有しており、そのモノマーは、光吸収に異方性がある光官能基を有し、一軸方向のみの光である偏光により重合して配向規制力を発現するため、液晶層30に照射される光照射強度は、無偏光光に比べて大きく低下させることができる。また、液晶材料がポジ型液晶化合物を含んだとしても、上述のようにポジ型液晶化合物は、高耐光性を示す。そのため、液晶材料にアルケニル基を有する液晶化合物を導入しても、VHRの低下等の信頼性の問題が発生し難い。 The liquid crystal material may contain a liquid crystal compound having an alkenyl group. The liquid crystal compound having an alkenyl group is preferably a neutral liquid crystal compound. By including the liquid crystal compound having an alkenyl group, the rotational viscosity of the liquid crystal material is improved, so that the response performance of the liquid crystal material can be improved and the speed can be increased. On the other hand, a liquid crystal compound having an alkenyl group has low light resistance and may be decomposed by irradiation with ultraviolet rays or the like to cause a decrease in VHR. Therefore, in the vertical alignment type alignment film-less mode that irradiates non-polarized light and the conventional PSA technique, when a liquid crystal compound having an alkenyl group that has a problem in light resistance is used, a significant decrease in VHR is caused. On the other hand, in this embodiment, the orientation control layer 50 contains a polymer obtained by polymerizing a specific monomer, and the monomer has a photofunctional group having anisotropy in light absorption, and is uniaxial. Since it is polymerized by polarized light that is light only in the direction and expresses the alignment regulating force, the light irradiation intensity applied to the liquid crystal layer 30 can be greatly reduced as compared with non-polarized light. Even if the liquid crystal material includes a positive liquid crystal compound, the positive liquid crystal compound exhibits high light resistance as described above. Therefore, even if a liquid crystal compound having an alkenyl group is introduced into the liquid crystal material, reliability problems such as a reduction in VHR are unlikely to occur.
上記アルケニル基を有する液晶化合物は、下記化学式(4-1)~(4-4)のいずれかで表される化合物であってもよい。これらは何れかを単独で用いることもでき、二種以上を併用することもできる。 The liquid crystal compound having an alkenyl group may be a compound represented by any of the following chemical formulas (4-1) to (4-4). Any of these may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000006
(式中、m及びnは、同一又は異なって、1~6の整数である。)
Figure JPOXMLDOC01-appb-C000006
(Wherein, m and n are the same or different and are integers of 1 to 6)
上記アルケニル基を有する液晶化合物の具体的な例としては、例えば、下記化学式(4-1-1)で表される化合物が挙げられる。 Specific examples of the liquid crystal compound having an alkenyl group include a compound represented by the following chemical formula (4-1-1).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
配向制御層50は、図2に示したように、平面視において上記シール材40で囲まれた領域内に配置される。配向制御層50は、液晶層30と接するように配置されており、液晶層30に含まれる液晶材料中の液晶化合物31を基板10及び20面に対して水平方向に配向させる。配向制御層50は液晶層30に液晶材料の閾値以上の電圧が印加されていない状態における液晶材料の配向は、配向制御層50により制御される。なお、液晶材料中の液晶化合物31を基板10及び20面に対して水平方向に配向させるとは、基板10及び20面に対する液晶材料のプレチルト角が、10°以下であることを言う。上記プレチルト角は、3°以下であることがより好ましい。上記プレチルト角とは、液晶層30への印加電圧が閾値電圧未満(電圧無印加を含む)における、基板の表面に対して液晶材料(液晶化合物31)の長軸が形成する角度を言い、基板面を0°、基板法線を90°とする。 As shown in FIG. 2, the orientation control layer 50 is disposed in a region surrounded by the sealing material 40 in a plan view. The alignment control layer 50 is disposed in contact with the liquid crystal layer 30, and aligns the liquid crystal compound 31 in the liquid crystal material included in the liquid crystal layer 30 in the horizontal direction with respect to the surfaces of the substrates 10 and 20. In the alignment control layer 50, the alignment control layer 50 controls the alignment of the liquid crystal material in a state where a voltage higher than the threshold value of the liquid crystal material is not applied to the liquid crystal layer 30. In addition, aligning the liquid crystal compound 31 in the liquid crystal material in the horizontal direction with respect to the substrates 10 and 20 means that the pretilt angle of the liquid crystal material with respect to the substrates 10 and 20 is 10 ° or less. The pretilt angle is more preferably 3 ° or less. The pretilt angle refers to an angle formed by the major axis of the liquid crystal material (liquid crystal compound 31) with respect to the surface of the substrate when the applied voltage to the liquid crystal layer 30 is less than the threshold voltage (including no voltage applied). The surface is 0 ° and the substrate normal is 90 °.
配向制御層50は、液晶層30中に添加された少なくとも一種のモノマーを重合させてなるポリマーを含有し、上記少なくとも一種のモノマーは、光吸収に異方性がある光官能基(以下、偏光吸収官能基とも言う。)を有するモノマー(以下、偏光吸収性モノマーとも言う。)を含む。したがって、配向制御層50は、少なくとも偏光吸収性モノマー由来のユニットを含むポリマーを含有するポリマー層である。上記少なくとも一種のモノマーは、重合性基が1つの単官能モノマーであってもよいが、重合性基が複数の多官能モノマーであることが好ましく、なかでも重合性基が2つの二官能モノマーが好適である。 The alignment control layer 50 contains a polymer obtained by polymerizing at least one monomer added to the liquid crystal layer 30, and the at least one monomer is an optical functional group having anisotropy in light absorption (hereinafter, polarized light). A monomer having an absorption functional group) (hereinafter also referred to as a polarization-absorbing monomer). Therefore, the orientation control layer 50 is a polymer layer containing a polymer including at least a unit derived from a polarization-absorbing monomer. The at least one monomer may be a monofunctional monomer having one polymerizable group, but the polymerizable group is preferably a plurality of polyfunctional monomers, and in particular, a bifunctional monomer having two polymerizable groups. Is preferred.
上記偏光吸収性モノマー由来のユニットを含むポリマーを含有する配向制御層50を形成することによって、液晶表示装置100のコントラストを向上することができる。この理由は以下のように考えられる。偏光吸収官能基は、光(好適には紫外線)吸収に異方性があるため、偏光(好適には偏光紫外線、より好適には直線偏光紫外線)の照射により配向性を示す。より詳細には、偏光の照射により、その偏光軸方向に対応する特定の方位に配向した偏光吸収官能基が光反応する。その結果、特定の配向方位に沿って、偏光吸収性モノマーが重合してポリマーが形成される。そのため、配向膜80を形成せずとも、偏光吸収性モノマー由来の配向制御層50によって所望の配向方位に液晶化合物31が配向するため、液晶表示装置100のコントラストを向上することができる。また、配向膜80を形成した場合であっても、照射する偏光の偏光軸方向を適宜設定することによって、配向膜80の配向方位に沿って、偏光吸収性モノマーが重合してポリマーが形成される。そのため、この場合も液晶表示装置100のコントラストを向上することができる。 The contrast of the liquid crystal display device 100 can be improved by forming the alignment control layer 50 containing a polymer containing a unit derived from the polarization-absorbing monomer. The reason is considered as follows. Since the polarization-absorbing functional group has anisotropy in light (preferably ultraviolet light) absorption, it exhibits orientation upon irradiation with polarized light (preferably polarized ultraviolet light, more preferably linearly polarized ultraviolet light). More specifically, the polarized light-absorbing functional group oriented in a specific direction corresponding to the direction of the polarization axis undergoes a photoreaction upon irradiation with polarized light. As a result, the polarization-absorbing monomer is polymerized to form a polymer along a specific orientation direction. Therefore, since the liquid crystal compound 31 is aligned in a desired alignment direction by the alignment control layer 50 derived from the polarization-absorbing monomer without forming the alignment film 80, the contrast of the liquid crystal display device 100 can be improved. Even when the alignment film 80 is formed, the polarization-absorbing monomer is polymerized along the alignment direction of the alignment film 80 by appropriately setting the polarization axis direction of the polarized light to be irradiated, so that a polymer is formed. The Therefore, also in this case, the contrast of the liquid crystal display device 100 can be improved.
このように、上記偏光吸収性モノマーは、偏光吸収官能基し、偏光吸収官能基は偏光(好適には偏光紫外線、より好適には直線偏光紫外線)を吸収して配向規制力を発現することができる。偏光の照射は、一軸方向の光だけを照射するため、無偏光光の照射に比べて、液晶層30に照射する光照射強度を低くすることができる。上記偏光吸収性モノマーが配向規制力を発現することで、配向制御層50は、液晶材料中の液晶化合物31を基板面に対して水平方向に配向させることができる。また、上記偏光吸収性モノマーは、少なくとの1つ(好ましくは2つ以上、より好ましくは2つ)の重合性基を有し、紫外線等の光照射により重合し、ポリマーを形成する。該ポリマーが、液晶層30の相分離することで、配向制御層50を形成する。 As described above, the polarization-absorbing monomer has a polarization-absorbing functional group, and the polarization-absorbing functional group absorbs polarized light (preferably polarized ultraviolet rays, more preferably linearly polarized ultraviolet rays) and exhibits an alignment regulating force. it can. Since the irradiation with polarized light irradiates only light in the uniaxial direction, the light irradiation intensity with which the liquid crystal layer 30 is irradiated can be made lower than the irradiation with non-polarized light. The alignment control layer 50 can align the liquid crystal compound 31 in the liquid crystal material in the horizontal direction with respect to the substrate surface by the polarization absorbing monomer exhibiting the alignment regulating force. The polarization-absorbing monomer has at least one (preferably two or more, more preferably two) polymerizable groups and is polymerized by irradiation with light such as ultraviolet rays to form a polymer. The polymer separates the phase of the liquid crystal layer 30 to form the alignment control layer 50.
なお、モノマーの光官能基の光吸収に異方性があるか否かは、偏光吸収スペクトル測定によって検証可能である。詳細には、まず、測定する対象物(例えば、フィルムや溶液)の両サイドに偏光子をセットする。そして、偏光子をクロスニコル配置及びパラレルニコル配置にしてそれぞれ光吸収スペクトルを測定し、測定した光吸収スペクトルに基づき同一波長における吸光度を比較することによって異方性の有無を確認する。クロスニコル配置とパラレルニコル配置で吸光度に差があれば、測定対象の光官能基は、その波長の光の吸収に異方性があることになる。 Whether or not the light absorption of the photofunctional group of the monomer has anisotropy can be verified by measuring the polarization absorption spectrum. Specifically, first, a polarizer is set on both sides of an object to be measured (for example, a film or a solution). Then, the light absorption spectrum is measured by setting the polarizers in a crossed Nicol arrangement and a parallel Nicol arrangement, respectively, and the presence or absence of anisotropy is confirmed by comparing the absorbance at the same wavelength based on the measured light absorption spectrum. If there is a difference in absorbance between the crossed Nicol arrangement and the parallel Nicol arrangement, the photofunctional group to be measured has anisotropy in the absorption of light of that wavelength.
上記偏光吸収官能基の具体例は、特に限定されないが、液晶化合物31を基板10及び20面に対して水平方向に配向させ、液晶化合物31の配向方位を制御する観点からは、上記偏光吸収官能基は、置換基を有してもよいシンナメート基、置換基を有してもよいカルコン基、及び、置換基を有してもよいアゾベンゼン基からなる群より選択される少なくとも一種の光官能基(以下、水平配向用官能基とも言う。)を含むことが好ましい。すなわち、上記少なくとも一種のモノマーは、置換基を有してもよいシンナメート基を有するモノマー、置換基を有してもよいカルコン基を有するモノマー、及び、置換基を有してもよいアゾベンゼン基を有するモノマーからなる群より選択される少なくとも一種の光反応性モノマーを含むことが好ましく、上記偏光吸収性モノマーは、上記光反応性モノマーであることが好ましい。 Although the specific example of the said polarization absorption functional group is not specifically limited, From the viewpoint of aligning the liquid crystal compound 31 in the horizontal direction with respect to the substrates 10 and 20 and controlling the orientation direction of the liquid crystal compound 31, the above-mentioned polarization absorption functional group. The group is at least one photofunctional group selected from the group consisting of a cinnamate group that may have a substituent, a chalcone group that may have a substituent, and an azobenzene group that may have a substituent. (Hereinafter also referred to as a functional group for horizontal alignment). That is, the at least one monomer includes a monomer having a cinnamate group which may have a substituent, a monomer having a chalcone group which may have a substituent, and an azobenzene group which may have a substituent. It is preferable to include at least one photoreactive monomer selected from the group consisting of monomers having the above, and the polarized light absorbing monomer is preferably the photoreactive monomer.
上記置換基の種類は特に限定されないが、ハロゲン基、メチル基、メトキシ基、エチル基及びエトキシ基を好適な例として挙げることができる。これらは何れかを単独で用いることもでき、二種以上を併用することもできる。すなわち、上記置換基は、ハロゲン基、メチル基、メトキシ基、エチル基及びエトキシ基からなる群より選択される少なくとも一種の置換基を含むことが好ましい。上記少なくとも一種のモノマーは、置換基を有する水平配向用官能基を有する光反応性モノマーと、置換基を有さない水平配向用官能基を有する光反応性モノマーとを含んでいてもよい。ハロゲン基としては、フルオロ基及びクロロ基が好適である。なお、上記水平配向用官能基が置換基を有する場合、置換基は、通常、上記水平配向用官能基のフェニレン基等の環構造が有する少なくとも一つの水素原子と置換される。上記水平配向用官能基は、1価の官能基であってもよいが、好適には下記化学式(3-1)で表される2価のシンナメート基、下記化学式(3-2)で表される2価のカルコン基、及び、下記化学式(3-3)で表される2価のアゾベンゼン基である。 Although the kind of said substituent is not specifically limited, A halogen group, a methyl group, a methoxy group, an ethyl group, and an ethoxy group can be mentioned as a suitable example. Any of these may be used alone or in combination of two or more. That is, the substituent preferably includes at least one substituent selected from the group consisting of a halogen group, a methyl group, a methoxy group, an ethyl group, and an ethoxy group. The at least one monomer may include a photoreactive monomer having a functional group for horizontal alignment having a substituent and a photoreactive monomer having a functional group for horizontal alignment having no substituent. As the halogen group, a fluoro group and a chloro group are preferred. When the horizontal alignment functional group has a substituent, the substituent is usually substituted with at least one hydrogen atom of a ring structure such as a phenylene group of the horizontal alignment functional group. The functional group for horizontal alignment may be a monovalent functional group, but is preferably a divalent cinnamate group represented by the following chemical formula (3-1), represented by the following chemical formula (3-2). And a divalent azobenzene group represented by the following chemical formula (3-3).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
上記偏光吸収官能基は、シンナメート基を含むことがより好ましく、上記少なくとも一種の光反応性モノマーは、上記置換基を有してもよいシンナメート基を有するモノマーを少なくとも一種含むことがより好ましい。シンナメート基は、上記3つの水平配向用官能基のなかで最も短波長側の紫外線(具体的には290~330nmの波長範囲の紫外線)を吸収し、液晶表示装置100の使用時のバックライト70の照射光を吸収する可能性が非常に小さく、耐光性の面で最も優れているためである。 The polarized light absorbing functional group preferably contains a cinnamate group, and the at least one photoreactive monomer more preferably contains at least one monomer having a cinnamate group which may have the substituent. The cinnamate group absorbs ultraviolet light having the shortest wavelength among the three functional groups for horizontal alignment (specifically, ultraviolet light having a wavelength range of 290 to 330 nm), and the backlight 70 when the liquid crystal display device 100 is used. This is because the possibility of absorbing the irradiation light is extremely small and the light resistance is most excellent.
偏光照射により生じる上記偏光吸収官能基の光反応としては、例えば、二量化反応(二量体形成)、異性化反応、光フリース転移反応、分解反応等が挙げられるが、シンナメート基は、偏光紫外線(好適には直線偏光紫外線)の照射により二量化反応(二量体形成)及び異性化反応を生じる。 Examples of the photoreaction of the polarized light-absorbing functional group generated by polarized light irradiation include dimerization reaction (dimer formation), isomerization reaction, photofleece transfer reaction, decomposition reaction, etc. Irradiation with (preferably linearly polarized ultraviolet rays) causes a dimerization reaction (dimer formation) and an isomerization reaction.
液晶材料への溶解性と、偏光吸収による液晶化合物の配向制御性との観点からは、シンナメート基を有する偏光吸収性モノマー(上記置換基を有してもよいシンナメート基を有するモノマー)は、下記化学式(1)で表される少なくとも一種のモノマー(以下、モノマー(1)とも言う。)を含むことが好ましい。 From the viewpoint of the solubility in the liquid crystal material and the orientation controllability of the liquid crystal compound by polarized light absorption, a polarized light absorbing monomer having a cinnamate group (a monomer having a cinnamate group which may have the above substituent) is: It is preferable to include at least one monomer represented by chemical formula (1) (hereinafter also referred to as monomer (1)).
Figure JPOXMLDOC01-appb-C000009
(式中、P及びPは、同一又は異なって、ビニル(エテニル)基、又は、イソプロペニル(1-メチルエテニル)基を表す。
Sp、Sp及びSpは、同一又は異なって、-O-基、-S-基、-COO-基、-OCO-基、-NHCO-基、-CONH-基、-NHCS-基、-CSNH-基、又は、直接結合を表す。
及びZは、同一又は異なって、炭素数1~12の、直鎖状、分岐状若しくは環状のアルキレン基、又は、直接結合を表す。
フェニレン基が有する少なくとも一つの水素原子は、置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000009
(Wherein P 1 and P 2 are the same or different and each represents a vinyl (ethenyl) group or an isopropenyl (1-methylethenyl) group.
Sp 1 , Sp 2 and Sp 3 are the same or different and are —O— group, —S— group, —COO— group, —OCO— group, —NHCO— group, —CONH— group, —NHCS— group, —CSNH— represents a direct bond.
Z 1 and Z 2 are the same or different and each represents a linear, branched or cyclic alkylene group having 1 to 12 carbon atoms or a direct bond.
At least one hydrogen atom of the phenylene group may be substituted. )
上記化学式(1)中、フェニレン基が有する少なくとも一つの水素原子は、同一又は異なって、ハロゲン原子(好ましくはフッ素原子若しくは塩素原子)、メチル基、メトキシ基、エチル基又はエトキシ基に置換されていてもよい。 In the chemical formula (1), at least one hydrogen atom of the phenylene group is the same or different and is substituted with a halogen atom (preferably a fluorine atom or a chlorine atom), a methyl group, a methoxy group, an ethyl group, or an ethoxy group. May be.
上記モノマー(1)のより具体的な例としては、例えば、下記化学式(1-1)~(1-4)のいずれかで表される化合物が挙げられる。これらは何れかを単独で用いることもでき、二種以上を併用することもできる。 More specific examples of the monomer (1) include compounds represented by any one of the following chemical formulas (1-1) to (1-4). Any of these may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000010
(式中、p及びqは、同一又は異なって、0又は1であり、m及びnは、同一又は異なって、0~12の整数である。)
Figure JPOXMLDOC01-appb-C000010
(In the formula, p and q are the same or different and are 0 or 1, and m and n are the same or different and are integers of 0 to 12.)
上記モノマー(1)の更に具体的な例としては、例えば、下記化学式(2-1)~(2-12)のいずれかで表される化合物が挙げられる。これらは何れかを単独で用いることもでき、二種以上を併用することもできる。 More specific examples of the monomer (1) include compounds represented by any of the following chemical formulas (2-1) to (2-12). Any of these may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
(式中、pは、0又は1(好ましくは0)であり、mは、2、4、6、8、10又は12である。)
Figure JPOXMLDOC01-appb-C000012
(In the formula, p is 0 or 1 (preferably 0), and m is 2, 4, 6, 8, 10 or 12.)
Figure JPOXMLDOC01-appb-C000013
(式中、nは、2、4、6、8、10又は12である。)
Figure JPOXMLDOC01-appb-C000013
(Wherein n is 2, 4, 6, 8, 10 or 12)
Figure JPOXMLDOC01-appb-C000014
(式中、pは、0又は1(好ましくは0)であり、nは、2、4、6、8、10又は12であり、mは、2、4、6、8、10又は12である。)
Figure JPOXMLDOC01-appb-C000014
Wherein p is 0 or 1 (preferably 0), n is 2, 4, 6, 8, 10 or 12, and m is 2, 4, 6, 8, 10 or 12. is there.)
特に上記モノマー(1)は、上記化学式(2-1)で表されるモノマーと上記化学式(2-2)で表されるモノマーとの少なくとも一方を含むことが好ましい。上記化学式(2-1)及び(2-2)で表されるモノマーは、重合性基とシンナメート基との間にスペーサーが無く、液晶配向性をより高くすることができるためである。 In particular, the monomer (1) preferably contains at least one of the monomer represented by the chemical formula (2-1) and the monomer represented by the chemical formula (2-2). This is because the monomers represented by the chemical formulas (2-1) and (2-2) do not have a spacer between the polymerizable group and the cinnamate group, and can improve the liquid crystal alignment.
一対の基板10、20の液晶層30とは反対側にはそれぞれ、偏光板(直線偏光子)60が配置されてもよい。偏光板60としては、典型的には、ポリビニルアルコール(PVA)フィルムに、二色性を有するヨウ素錯体等の異方性材料を、吸着配向させたものが挙げられる。通常は、PVAフィルムの両面にトリアセチルセルロースフィルム等の保護フィルムをラミネートして実用に供される。また、偏光板60と一対の基板10、20との間には、位相差フィルム等の光学フィルムが配置されていてもよい。 A polarizing plate (linear polarizer) 60 may be disposed on the opposite side of the pair of substrates 10 and 20 from the liquid crystal layer 30. The polarizing plate 60 typically includes a polyvinyl alcohol (PVA) film obtained by adsorbing and orienting an anisotropic material such as an iodine complex having dichroism. Usually, a protective film such as a triacetyl cellulose film is laminated on both sides of the PVA film and put to practical use. An optical film such as a retardation film may be disposed between the polarizing plate 60 and the pair of substrates 10 and 20.
一対の偏光板60の透過軸とは、互いに直交することが好ましい。このような構成によれば、一対の偏光板60がクロスニコルに配置されるため、電圧無印加時に、良好な黒表示状態を実現することができる。 The transmission axes of the pair of polarizing plates 60 are preferably orthogonal to each other. According to such a configuration, since the pair of polarizing plates 60 are arranged in crossed Nicols, a good black display state can be realized when no voltage is applied.
なお、本明細書中、2つの軸(方向)が直交するとは、特に断りがなければ、両者のなす角度(絶対値)が90±3°の範囲内であることを指し、好ましくは90±1°の範囲内であり、より好ましくは90±0.5°の範囲内であり、特に好ましくは90°(完全に直交)である。 In the present specification, that two axes (directions) are orthogonal means that an angle (absolute value) between the two axes (direction) is within a range of 90 ± 3 ° unless otherwise specified, preferably 90 ±. It is within the range of 1 °, more preferably within the range of 90 ± 0.5 °, and particularly preferably 90 ° (fully orthogonal).
図1及び図3に示したように、本実施形態の液晶表示装置においては、バックライト70が液晶パネルの背面側に配置されている。このような構成を有する液晶表示装置は、一般的に、透過型の液晶表示装置と呼ばれる。バックライト70としては、可視光を含む光を発するものであれば特に限定されず、可視光のみを含む光を発するものであってもよく、可視光及び紫外光の両方を含む光を発するものであってもよい。 As shown in FIGS. 1 and 3, in the liquid crystal display device of the present embodiment, a backlight 70 is disposed on the back side of the liquid crystal panel. A liquid crystal display device having such a configuration is generally called a transmissive liquid crystal display device. The backlight 70 is not particularly limited as long as it emits light including visible light, may emit light including only visible light, and emits light including both visible light and ultraviolet light. It may be.
本実施形態の液晶表示装置は、液晶パネル及びバックライト70の他、TCP(テープ・キャリア・パッケージ)、PCB(プリント配線基板)等の外部回路;視野角拡大フィルム、輝度向上フィルム等の光学フィルム;ベゼル(フレーム)等の複数の部材により構成されるものであり、部材によっては、他の部材に組み込まれていてもよい。既に説明した部材以外の部材については特に限定されず、液晶表示装置の分野において通常使用されるものを用いることができるので、説明を省略する。 The liquid crystal display device of the present embodiment includes an external circuit such as a TCP (tape carrier package) and a PCB (printed wiring board) in addition to the liquid crystal panel and the backlight 70; an optical film such as a viewing angle widening film and a brightness enhancement film. A plurality of members such as a bezel (frame), and some members may be incorporated in other members. Members other than those already described are not particularly limited, and those normally used in the field of liquid crystal display devices can be used, and thus description thereof is omitted.
液晶表示装置100は、横電界型表示モードであってもよい。横電界型表示モードとしては、例えば、IPSモード、FFSモード、電界制御複屈折(ECB)モードが挙げられる。 The liquid crystal display device 100 may be in a horizontal electric field type display mode. Examples of the horizontal electric field type display mode include an IPS mode, an FFS mode, and an electric field control birefringence (ECB) mode.
FFSモードでは、例えば、基板10及び20の少なくとも一方に、面状電極と、スリット電極と、面状電極及びスリット電極の間に配置された絶縁膜とを含む構造(FFS電極構造)が設けられ、液晶層30中に斜め電界(フリンジ電界)が形成される。通常では、液晶層30側から、スリット電極、絶縁膜、面状電極の順に配置される。スリット電極としては、例えば、その全周を電極に囲まれた線状の開口部をスリットとして備えるものや、複数の櫛歯部を備え、かつ櫛歯部間に配置された線状の切れ込みがスリットを構成する櫛型形状のものを用いることができる。 In the FFS mode, for example, at least one of the substrates 10 and 20 is provided with a structure (FFS electrode structure) including a planar electrode, a slit electrode, and an insulating film disposed between the planar electrode and the slit electrode. An oblique electric field (fringe electric field) is formed in the liquid crystal layer 30. Normally, the slit electrode, the insulating film, and the planar electrode are arranged in this order from the liquid crystal layer 30 side. As the slit electrode, for example, a slit having a linear opening surrounded by the electrode around the entire circumference, or a linear notch provided with a plurality of comb teeth and disposed between the comb teeth. The comb-shaped thing which comprises a slit can be used.
IPSモードでは、例えば、基板10及び20の少なくとも一方に一対の櫛形電極が設けられ、液晶層30中に横電界が形成される。一対の櫛形電極としては、例えば、それぞれ複数の櫛歯部を備え、かつ櫛歯部が互いに噛み合うように配置された電極対を用いることができる。 In the IPS mode, for example, a pair of comb electrodes is provided on at least one of the substrates 10 and 20, and a lateral electric field is formed in the liquid crystal layer 30. As the pair of comb-shaped electrodes, for example, an electrode pair that includes a plurality of comb-tooth portions and is arranged so that the comb-tooth portions mesh with each other can be used.
ECBモードでは、例えば、基板10及び20のいずれか一方に画素電極が設けられ、他方の基板に対向電極が設けられ、誘電率異方性が正である液晶材料を用いる。画素電極と対向電極との間に印加された電圧によって、液晶材料のリタデーションを変化させ、光の透過、不透過をコントロールする。 In the ECB mode, for example, a pixel electrode is provided on one of the substrates 10 and 20, a counter electrode is provided on the other substrate, and a liquid crystal material having a positive dielectric anisotropy is used. The retardation of the liquid crystal material is changed by the voltage applied between the pixel electrode and the counter electrode to control the transmission and non-transmission of light.
なお、本実施形態では、液晶表示装置100の液晶駆動モードが水平配向モードである場合について詳述しているが、本実施形態に係る液晶駆動モードは、特に限定されず、垂直配向モードであってもよく、配向制御層50は、液晶材料中の液晶化合物31を基板10及び20面に対して略垂直方向に配向させるものであってもよい。 In the present embodiment, the case where the liquid crystal drive mode of the liquid crystal display device 100 is the horizontal alignment mode is described in detail. However, the liquid crystal drive mode according to the present embodiment is not particularly limited and is a vertical alignment mode. Alternatively, the alignment control layer 50 may align the liquid crystal compound 31 in the liquid crystal material in a direction substantially perpendicular to the surfaces of the substrates 10 and 20.
<液晶組成物、及び、液晶表示装置の製造方法>
次に、本実施形態の液晶組成物、及び、液晶表示装置の製造方法について説明する。本実施形態の液晶表示装置の製造方法は、シール材によって接合した一対の基板間に、液晶材料と少なくとも一種のモノマーとを含有する液晶組成物を封止して液晶層を形成する工程と、上記液晶層に偏光紫外線を照射し、上記一対の基板と上記液晶層との間に、上記少なくとも一種のモノマーを重合させてなる配向制御層を形成する工程とを有し、上記少なくとも一種のモノマーは、光吸収に異方性がある光官能基(偏光吸収官能基)を有するモノマー(偏光吸収性モノマー)を含み、上記配向制御層は、上記液晶材料中の液晶化合物を上記基板面に対して水平方向に配向させるものである液晶表示装置の製造方法であってもよい。本実施形態の液晶組成物は、液晶材料と、少なくとも一種のモノマーとを含有し、上記少なくとも一種のモノマーは、光吸収に異方性がある光官能基(偏光吸収官能基)を有するモノマー(偏光吸収性モノマー)を含む液晶組成物であってもよい。本実施形態の液晶組成物はまた、液晶材料と、少なくとも一種のモノマーとを含有し、上記少なくとも一種のモノマーは、置換基を有してもよいシンナメート基を有するモノマー、置換基を有してもよいカルコン基を有するモノマー、及び、置換基を有してもよいアゾベンゼン基を有するモノマーからなる群より選択される少なくとも一種の光反応性モノマーを含む液晶組成物であってもよい。
<Liquid crystal composition and method for producing liquid crystal display device>
Next, the liquid crystal composition of this embodiment and the method for manufacturing the liquid crystal display device will be described. The liquid crystal display device manufacturing method of the present embodiment includes a step of sealing a liquid crystal composition containing a liquid crystal material and at least one monomer between a pair of substrates joined by a sealing material to form a liquid crystal layer; Illuminating the liquid crystal layer with polarized ultraviolet light, and forming an alignment control layer formed by polymerizing the at least one monomer between the pair of substrates and the liquid crystal layer, and the at least one monomer. Includes a monomer (polarization-absorbing monomer) having a photofunctional group (polarization-absorbing functional group) having anisotropy in light absorption, and the alignment control layer includes a liquid crystal compound in the liquid crystal material with respect to the substrate surface. In other words, it may be a method of manufacturing a liquid crystal display device that is aligned in the horizontal direction. The liquid crystal composition of this embodiment contains a liquid crystal material and at least one monomer, and the at least one monomer has a photofunctional group (polarized light absorption functional group) having anisotropy in light absorption ( A liquid crystal composition containing a polarization absorbing monomer) may be used. The liquid crystal composition of this embodiment also contains a liquid crystal material and at least one monomer, and the at least one monomer has a cinnamate group that may have a substituent and a substituent. It may be a liquid crystal composition containing at least one photoreactive monomer selected from the group consisting of a monomer having a good chalcone group and a monomer having an azobenzene group which may have a substituent.
以下、各工程及び液晶組成物について更に説明するが、各部材及びモノマーについては上述した通りであるので説明を省略する。 Hereinafter, although each process and a liquid crystal composition are further demonstrated, since each member and a monomer are as having mentioned above, description is abbreviate | omitted.
本実施形態の液晶表示装置の製造方法は、シール材によって接合した一対の基板間に、液晶材料と少なくとも一種のモノマーとを含有する液晶組成物を封止して液晶層を形成する工程を有する。本実施形態の液晶表示装置の製造方法は、一対の基板間の剥離強度を確実に高くする観点からは、上記液晶層を形成する工程の前に、一対の基板の少なくとも一方(より好ましくは一対の基板の両方)の表面に配向膜を形成する工程を有さないことが好ましく、この場合、上記一対の基板は、配向膜を介さず、それぞれシール材と直接接するように接合されている。他方、本実施形態の液晶表示装置の製造方法は、長期信頼性の観点から、上記液晶層を形成する工程の前に、一対の基板の少なくとも一方の表面に配向膜を形成する工程を有していてもよく、この場合、上記一対の基板の少なくとも一方とシール材との間には配向膜が介在し、上記一対の基板は、配向膜を介して接合されている。配向膜は、例えば、一対の基板の少なくとも一方の表面上に、ポリアミック酸等を含有する配向膜材料を塗布し、加熱により配向膜材料中の溶剤が揮発した後、焼成を行うことで形成することができる。この後、上記液晶層を形成する工程の前に、配向膜を配向処理してもよいし、しなくてもよい。配向処理としては、ラビング処理や、紫外線照射等といった光配向処理が挙げられる。光配向処理を行う場合は、配向制御層を形成する工程において、紫外線照射により、モノマーの重合と配向膜の光配向処理とを同時に実施してもよい。これにより、製造プロセスの簡略化が可能である。 The manufacturing method of the liquid crystal display device of the present embodiment includes a step of forming a liquid crystal layer by sealing a liquid crystal composition containing a liquid crystal material and at least one monomer between a pair of substrates bonded by a sealing material. . From the viewpoint of reliably increasing the peel strength between a pair of substrates, the method for manufacturing a liquid crystal display device of the present embodiment requires at least one of the pair of substrates (more preferably a pair of substrates) before the step of forming the liquid crystal layer. It is preferable not to have a step of forming an alignment film on the surface of both of the substrates). In this case, the pair of substrates are joined so as to be in direct contact with the sealing material without the alignment film interposed therebetween. On the other hand, the manufacturing method of the liquid crystal display device of the present embodiment includes a step of forming an alignment film on at least one surface of the pair of substrates before the step of forming the liquid crystal layer from the viewpoint of long-term reliability. In this case, an alignment film is interposed between at least one of the pair of substrates and the sealing material, and the pair of substrates is bonded via the alignment film. The alignment film is formed, for example, by applying an alignment film material containing polyamic acid or the like on at least one surface of a pair of substrates, and volatilizing the solvent in the alignment film material by heating, followed by baking. be able to. Thereafter, the alignment film may or may not be subjected to an alignment treatment before the step of forming the liquid crystal layer. Examples of the alignment treatment include photo-alignment treatment such as rubbing treatment and ultraviolet irradiation. When performing the photo-alignment treatment, in the step of forming the alignment control layer, the polymerization of the monomer and the photo-alignment treatment of the alignment film may be simultaneously performed by ultraviolet irradiation. Thereby, the manufacturing process can be simplified.
上記液晶層を形成する工程において、上記液晶組成物の封止は、シール材によって液晶組成物が一対の基板間に挟持されていればよく、シール材を硬化していなくてもよい。シール材の硬化は、後述する配向制御層を形成する工程と別に行ってもよいし、同時に行ってもよい。上記シール材は、上述のように、紫外線等の光によって硬化するものであってもよいし、熱により硬化ものであってもよいし、光及び熱の両方によって硬化するものであってもよい。 In the step of forming the liquid crystal layer, the liquid crystal composition may be sealed as long as the liquid crystal composition is sandwiched between the pair of substrates by the sealing material, and the sealing material may not be cured. Curing of the sealing material may be performed separately from the step of forming the orientation control layer described later, or may be performed simultaneously. As described above, the sealing material may be cured by light such as ultraviolet rays, may be cured by heat, or may be cured by both light and heat. .
上記液晶層は、例えば、真空注入法又は滴下注入法により、一対の基板間に液晶組成物を充填することで形成できる。真空注入法を採用する場合は、シール材の塗布、一対の基板の貼り合せ、シール材の硬化、液晶組成物の注入、及び、注入口の封止をこの順に行うことで、液晶層を形成する。滴下注入法を採用する場合は、シール材の塗布、液晶組成物の滴下、一対の基板の貼り合せ、及び、シール材の硬化をこの順に行うことで、液晶層を形成する。 The liquid crystal layer can be formed by, for example, filling a liquid crystal composition between a pair of substrates by a vacuum injection method or a drop injection method. When the vacuum injection method is adopted, a liquid crystal layer is formed by applying a sealing material, bonding a pair of substrates, curing the sealing material, injecting a liquid crystal composition, and sealing the injection port in this order. To do. When the dropping injection method is employed, a liquid crystal layer is formed by applying a sealing material, dropping a liquid crystal composition, bonding a pair of substrates, and curing the sealing material in this order.
上記液晶材料は、上述したように、負の誘電率異方性を有するものであってもよく、正の誘電率異方性を有するものであってもよい。液晶材料は、アルケニル基を有する液晶化合物を含有してもよい。液晶材料は、液晶化合物を1種又は2種以上含有してもよい。 As described above, the liquid crystal material may have a negative dielectric anisotropy or a positive dielectric anisotropy. The liquid crystal material may contain a liquid crystal compound having an alkenyl group. The liquid crystal material may contain one or more liquid crystal compounds.
上記少なくとも一種のモノマーは、光吸収に異方性がある光官能基(偏光吸収官能基)を有するモノマー(偏光吸収性モノマー)を含む。偏光吸収性モノマーは、偏光吸収官能基を有し、偏光(好適には偏光紫外線、より好適には直線偏光紫外線)を吸収して配向規制力を発現することができる。偏光の照射は、一軸方向の光だけの光を照射するため、無偏光光の照射に比べて、液晶層に照射する光照射強度を低くすることができる。 The at least one monomer includes a monomer having a photofunctional group (polarized light absorbing functional group) having anisotropy in light absorption (polarized light absorbing monomer). The polarization-absorbing monomer has a polarization-absorbing functional group and can absorb polarized light (preferably polarized ultraviolet rays, more preferably linearly-polarized ultraviolet rays) to exhibit an alignment regulating force. Since the irradiation with polarized light irradiates only light in the uniaxial direction, the light irradiation intensity with which the liquid crystal layer is irradiated can be made lower than the irradiation with non-polarized light.
液晶組成物に対する偏光吸収性モノマーの含有量は、0.03重量%以上、5重量%以下であることが好ましく、0.05重量%以上、4.5重量%以下であることがより好ましく、0.1重量%以上、3重量%以下であることが更に好ましい。偏光吸収性モノマーの濃度が低すぎると、配向制御層による液晶化合物の水平配向制御が充分できない可能性があり、偏光吸収性モノマーの濃度が高くなりすぎると、残存した偏光吸収性モノマーによる長期信頼性低下の可能性がある。 The polarization-absorbing monomer content in the liquid crystal composition is preferably 0.03% by weight or more and 5% by weight or less, more preferably 0.05% by weight or more and 4.5% by weight or less, More preferably, it is 0.1 weight% or more and 3 weight% or less. If the concentration of the polarization-absorbing monomer is too low, horizontal alignment control of the liquid crystal compound by the alignment control layer may not be sufficient, and if the concentration of the polarization-absorbing monomer is too high, long-term reliability due to the remaining polarization-absorbing monomer There is a possibility of deterioration.
上記少なくとも一種のモノマーは、上述のように、置換基を有してもよいシンナメート基を有するモノマー、置換基を有してもよいカルコン基を有するモノマー、及び、置換基を有してもよいアゾベンゼン基を有するモノマーからなる群より選択される少なくとも一種の光反応性モノマーを含むことが好ましく、上記偏光吸収性モノマーは、上記光反応性モノマーであることが好ましい。 As described above, the at least one monomer may have a monomer having a cinnamate group which may have a substituent, a monomer having a chalcone group which may have a substituent, and a substituent. It is preferable to include at least one photoreactive monomer selected from the group consisting of monomers having an azobenzene group, and the polarized light absorbing monomer is preferably the photoreactive monomer.
本実施形態の液晶表示装置の製造方法は、上記液晶層に偏光紫外線を照射し、上記一対の基板と上記液晶層との間に、上記少なくとも一種のモノマーを重合させてなる配向制御層を形成する工程を有する。上記偏光紫外線は、直線偏光紫外線であることが好ましい。配向制御層は、配向膜を形成する工程を有さない場合、一対の基板と液晶層との界面に形成され、配向膜を形成する工程を有する場合、基板又は配向膜と液晶層との界面に形成される。配向膜を両基板に形成した場合は、配向制御層は、各配向膜と液晶層との界面に形成され、配向膜を一方の基板のみに形成した場合は、配向制御層は、配向膜と液晶層との界面、及び、配向膜が形成されていない基板と液晶層との界面に形成される。上述のようにモノマーの重合にあわせて配向膜の光配向処理を実施する場合は、この工程により配向膜が配向処理されることになる。 In the method of manufacturing a liquid crystal display device according to this embodiment, the liquid crystal layer is irradiated with polarized ultraviolet light, and an alignment control layer is formed by polymerizing the at least one monomer between the pair of substrates and the liquid crystal layer. The process of carrying out. The polarized ultraviolet light is preferably linearly polarized ultraviolet light. The alignment control layer is formed at the interface between the pair of substrates and the liquid crystal layer when the alignment film is not formed, and when the alignment film is formed, the interface between the substrate or the alignment film and the liquid crystal layer. Formed. When the alignment film is formed on both substrates, the alignment control layer is formed at the interface between each alignment film and the liquid crystal layer. When the alignment film is formed only on one substrate, the alignment control layer is It is formed at the interface between the liquid crystal layer and the interface between the substrate on which the alignment film is not formed and the liquid crystal layer. As described above, when the photo-alignment process of the alignment film is performed in accordance with the polymerization of the monomer, the alignment film is subjected to the alignment process by this step.
上記偏光紫外線の波長は、200nm以上、430nm以下であってもよい。上記波長のより好ましい下限は250nmであり、より好ましい上限は380nmである。上記偏光紫外線の照射量は、0.3J/cm以上、20J/cm以下であってもよい。上記照射量のより好ましい下限は1J/cmであり、より好ましい上限は5J/cmである。 The wavelength of the polarized ultraviolet light may be 200 nm or more and 430 nm or less. A more preferable lower limit of the wavelength is 250 nm, and a more preferable upper limit is 380 nm. Dose of the polarized ultraviolet is, 0.3 J / cm 2 or more, may be 20 J / cm 2 or less. A more preferable lower limit of the irradiation amount is 1 J / cm 2 , and a more preferable upper limit is 5 J / cm 2 .
上記配向制御層を形成する工程では、上記液晶層を上記液晶材料のネマティック相-等方相転移点以上、140℃以下の温度で加熱しながら、偏光紫外線を照射してもよい。図4は、実施形態1の液晶表示装置の製造方法において、配向制御層の形成過程を説明した模式図であり、(a)はモノマーの重合前を表し、(b)はモノマーの重合後を表す。図4(a)中、矢印は偏光紫外線を表す。図4(a)に示したように、液晶化合物31を含む液晶材料と少なくとも一種のモノマーとを含有する液晶層30を加熱しながら偏光紫外線を照射する。これにより、少なくとも一種のモノマーが重合し、ポリマーが生成される。該ポリマーが、液晶層からの相分離することで、図4(b)に示したように、上記一対の基板と上記液晶層との間に配向制御層50が形成される。 In the step of forming the alignment control layer, the liquid crystal layer may be irradiated with polarized ultraviolet rays while being heated at a temperature not lower than the nematic phase-isotropic phase transition point of the liquid crystal material and not higher than 140 ° C. 4A and 4B are schematic diagrams illustrating the formation process of the alignment control layer in the method for manufacturing the liquid crystal display device of Embodiment 1, wherein FIG. 4A shows before polymerization of the monomer, and FIG. 4B shows after polymerization of the monomer. To express. In FIG. 4A, the arrow indicates polarized ultraviolet light. As shown in FIG. 4A, polarized ultraviolet rays are irradiated while heating a liquid crystal layer 30 containing a liquid crystal material containing a liquid crystal compound 31 and at least one monomer. Thereby, at least one monomer is polymerized to produce a polymer. As the polymer undergoes phase separation from the liquid crystal layer, an alignment control layer 50 is formed between the pair of substrates and the liquid crystal layer, as shown in FIG.
液晶層30を液晶材料のネマティック相-等方相転移点(TNI)以上の温度で加熱することで、照射した偏光紫外線の状態が、液晶層中の液晶材料により変化することを防ぐことができるので、より高配向度(高コントラスト)の液晶表示装置を製造できる。上記加熱温度は、液晶材料のネマティック相-等方相転移点よりも3℃以上高いことが好ましい。加熱温度の上限は、液晶材料の熱による劣化をできるだけ抑える観点から、例えば140℃である。加熱時間、加熱手段等の条件は、特に限定されない。液晶材料のネマティック相-等方相転移点の測定方法は、例えば、示差走査熱量測定(DSC:Differential Scanning Calorimetry)、又は、キャピラリーに液晶材料を封入し直接温度依存性を観察する方法等により測定することができる。 By heating the liquid crystal layer 30 at a temperature equal to or higher than the nematic phase-isotropic phase transition point (T NI ) of the liquid crystal material, the state of the irradiated polarized ultraviolet rays can be prevented from being changed by the liquid crystal material in the liquid crystal layer. Therefore, a liquid crystal display device having a higher degree of orientation (high contrast) can be manufactured. The heating temperature is preferably 3 ° C. or more higher than the nematic phase-isotropic phase transition point of the liquid crystal material. The upper limit of the heating temperature is, for example, 140 ° C. from the viewpoint of suppressing deterioration of the liquid crystal material due to heat as much as possible. Conditions such as heating time and heating means are not particularly limited. The method for measuring the nematic phase-isotropic phase transition point of the liquid crystal material is, for example, by differential scanning calorimetry (DSC) or by directly observing the temperature dependence by enclosing the liquid crystal material in a capillary. can do.
上記液晶層を形成する工程の後に、上記配向制御層を形成する工程を有することで、液晶層を挟持する一対の基板が、シール材によって互いに接合され、かつ、平面視においてシール材で囲まれた領域内に配向制御層を形成することができる。また、配向制御層形成用モノマーとして、偏光吸収性モノマー(好ましくは上記光反応性モノマー)を重合させることで、液晶材料を上記基板面に対して水平方向に配向させる配向制御層を形成することができる。 By having the step of forming the alignment control layer after the step of forming the liquid crystal layer, the pair of substrates sandwiching the liquid crystal layer are joined to each other by the sealant and surrounded by the sealant in plan view. An orientation control layer can be formed in the region. Further, as the alignment control layer forming monomer, a polarization-absorbing monomer (preferably the photoreactive monomer) is polymerized to form an alignment control layer that aligns the liquid crystal material in the horizontal direction with respect to the substrate surface. Can do.
上記工程の後、偏光板の貼り付け工程、及び、制御部、電源部、バックライト等の取り付け工程を経て、本実施形態の液晶表示装置が完成する。 After the above steps, the liquid crystal display device of this embodiment is completed through an attaching step of a polarizing plate and attaching a control unit, a power supply unit, a backlight, and the like.
上記液晶表示装置がノーマリーブラックモードの場合、例えば、上記一対の基板の外側に、吸収軸が互いに直交するように一対の偏光板をクロスニコルに配置し、一対の偏光板の吸収軸と、偏光紫外線の照射軸との成す角度が0°又は90°となるように配置する。液晶層に閾値以上の電圧が印加されていない状態では、バックライトからの光が液晶層を透過せずに黒表示となる。液晶層に閾値以上の電圧を印加すると、上記クロスニコルに配置した一対の偏光板の吸収軸と、上記照射軸との成す角度が、例えば45°となり、バックライトからの光が液晶層を透過し、白表示となる。上記照射軸とは、偏光紫外線の振動方向である。基板に対する偏光紫外線の照射方向を変えることで、配向分割処理を行うこともできる。 When the liquid crystal display device is in a normally black mode, for example, on the outside of the pair of substrates, a pair of polarizing plates are arranged in crossed Nicols so that the absorption axes are orthogonal to each other, and the absorption axes of the pair of polarizing plates; It arrange | positions so that the angle which the irradiation axis of polarized ultraviolet rays makes may be 0 degree or 90 degrees. In a state where a voltage equal to or higher than the threshold is not applied to the liquid crystal layer, the light from the backlight does not pass through the liquid crystal layer and is displayed in black. When a voltage higher than the threshold is applied to the liquid crystal layer, the angle formed between the absorption axis of the pair of polarizing plates arranged in the crossed Nicols and the irradiation axis becomes, for example, 45 °, and light from the backlight transmits through the liquid crystal layer. And white display. The irradiation axis is the vibration direction of polarized ultraviolet light. By changing the direction of irradiation of polarized ultraviolet light onto the substrate, the alignment division treatment can be performed.
液晶表示装置100は、横電界型表示モードが好適である。横電界型表示モードとしては、例えば、IPSモード、FFSモード、電界制御複屈折(ECB)モードが挙げられる。 The liquid crystal display device 100 is preferably in the horizontal electric field type display mode. Examples of the horizontal electric field type display mode include an IPS mode, an FFS mode, and an electric field control birefringence (ECB) mode.
<実施形態2>
本実施形態では、本実施形態に特有の特徴について主に説明し、実施形態1と重複する内容については説明を省略する。また、本実施形態と実施形態1とにおいて、同一又は同様の機能を有する部材には同一の符号を付し、本実施形態において、その部材の説明は省略する。本実施形態は、以下で説明するように、インセル位相差層及びアウトセル位相差層を有する点を除いて、実施形態1と実質的に同じである。
<Embodiment 2>
In the present embodiment, features unique to the present embodiment will be mainly described, and the description overlapping with the first embodiment will be omitted. Moreover, in this embodiment and Embodiment 1, the same code | symbol is attached | subjected to the member which has the same or the same function, and description of the member is abbreviate | omitted in this embodiment. As will be described below, the present embodiment is substantially the same as the first embodiment except that an in-cell retardation layer and an out-cell retardation layer are provided.
液晶表示装置は、屋外のような強い外光の下で使用されることがある。このため、近年、外光の反射が抑制された、屋外での視認性に優れる液晶表示装置が求められている。液晶表示装置における外光の反射を抑制する方法としては、位相差層と直線偏光板の組み合わせからなる円偏光板を設けることが考えられる。特に水平配向モードでは、外光の反射防止機能と液晶表示とを同時に成り立たせるために、位相差層が2枚用いられる。その場合、2枚の位相差層は、液晶セルの内部と外部に設けられる。液晶セルの内部の位相差層、すなわちインセル位相差層は、一般的に配向層上に反応性メソゲン(Reactive Mesogen;RM)を重合させることで形成する。ここで配向層は、インセル位相差層(RM)の一方にしか無いため、インセル位相差層の配向性は低い。インセル位相差層の配向性が低い場合、熱安定性が下がり、インセル位相差層上に配向膜を形成するために焼成工程を行うとインセル位相差層の位相差が低下してしまう。本実施形態によれば、このような課題を解決することが可能である。 The liquid crystal display device may be used under strong external light such as outdoors. For this reason, in recent years, there has been a demand for a liquid crystal display device excellent in outdoor visibility in which reflection of external light is suppressed. As a method for suppressing reflection of external light in a liquid crystal display device, it is conceivable to provide a circularly polarizing plate made of a combination of a retardation layer and a linearly polarizing plate. In particular, in the horizontal alignment mode, two retardation layers are used in order to simultaneously realize the external light antireflection function and the liquid crystal display. In that case, the two retardation layers are provided inside and outside the liquid crystal cell. The retardation layer inside the liquid crystal cell, that is, the in-cell retardation layer, is generally formed by polymerizing a reactive mesogen (RM) on the alignment layer. Here, since the alignment layer is present only in one of the in-cell retardation layers (RM), the orientation of the in-cell retardation layer is low. When the orientation of the in-cell retardation layer is low, the thermal stability is lowered, and when the firing step is performed to form the alignment film on the in-cell retardation layer, the retardation of the in-cell retardation layer is lowered. According to this embodiment, it is possible to solve such a problem.
<液晶表示装置>
図5を用いて、実施形態2の液晶表示装置について説明する。図5は、実施形態2に係る液晶表示装置の断面模式図である。実施形態2の液晶表示装置100Bは、基板10及び偏光板60の間に配置されたアウトセル位相差層61と、基板10及び配向制御層50の間に配置されたインセル位相差層90とを更に有する。
<Liquid crystal display device>
The liquid crystal display device of Embodiment 2 will be described with reference to FIG. FIG. 5 is a schematic cross-sectional view of the liquid crystal display device according to the second embodiment. The liquid crystal display device 100B of Embodiment 2 further includes an out-cell retardation layer 61 disposed between the substrate 10 and the polarizing plate 60, and an in-cell retardation layer 90 disposed between the substrate 10 and the orientation control layer 50. Have.
アウトセル位相差層61としては、液晶表示装置の分野で一般的に用いられる延伸処理された高分子フィルムを用いることができる。高分子フィルムの材料としては、例えば、シクロオレフィンポリマー、ポリカーボネート、ポリサルフォン、ポリエーテルサルフォン、ポリエチレンテレフタレート、ポリエチレン、ポリビニルアルコール、ノルボルネン、トリアセチルセルロース、ジアチルセルロース等が挙げられ、中でも、シクロオレフィンポリマーが好ましい。シクロオレフィンポリマーで形成された位相差層は、耐久性に優れ、高温環境や高温高湿環境に長期間曝したときの位相差の変化が小さいという利点がある。シクロオレフィンポリマーのフィルムとしては、日本ゼオン社製の「ゼオノアフィルム(登録商標)」、JSR社製の「ARTON(登録商標)フィルム」等が知られている。 As the out-cell retardation layer 61, a stretched polymer film generally used in the field of liquid crystal display devices can be used. Examples of the material of the polymer film include cycloolefin polymer, polycarbonate, polysulfone, polyethersulfone, polyethylene terephthalate, polyethylene, polyvinyl alcohol, norbornene, triacetyl cellulose, diacetyl cellulose, and the like. Among them, cycloolefin polymer Is preferred. A retardation layer formed of a cycloolefin polymer is excellent in durability and has an advantage that a change in retardation is small when exposed to a high temperature environment or a high temperature and high humidity environment for a long period of time. As a film of a cycloolefin polymer, “ZEONOR FILM (registered trademark)” manufactured by Nippon Zeon Co., Ltd., “ARTON (registered trademark) film” manufactured by JSR Corporation, and the like are known.
インセル位相差層90は、配向層91と液晶性モノマーの重合体92とが積層されたものである。配向層91は、積層される重合体92を構成する液晶性モノマーの配向を制御するものである。配向層91上に液晶性モノマーを積層し、重合させることで、液晶性モノマーを所定の配向方位に固定し、所望の位相差を有する位相差層を形成することができる。一方、配向層91と液晶性モノマーの重合体92とが積層されたインセル位相差層90は、耐熱性が低く、加熱によるリタデーションの低下が起こりやすい。そのため、インセル位相差層90が、配向層91と液晶性モノマーの重合体92とが積層されたものである場合に、インセル位相差層90上に配向膜を形成しないことで、インセル位相差層90のリタデーションの低下を効果的に抑制することができる。 The in-cell retardation layer 90 is formed by laminating an alignment layer 91 and a polymer 92 of a liquid crystalline monomer. The alignment layer 91 is for controlling the alignment of the liquid crystalline monomer constituting the polymer 92 to be laminated. By laminating and polymerizing a liquid crystalline monomer on the alignment layer 91, the liquid crystalline monomer can be fixed in a predetermined alignment direction, and a retardation layer having a desired retardation can be formed. On the other hand, the in-cell retardation layer 90 in which the alignment layer 91 and the polymer 92 of the liquid crystalline monomer are laminated has low heat resistance, and retardation due to heating tends to occur. Therefore, when the in-cell retardation layer 90 is formed by laminating the alignment layer 91 and the polymer 92 of the liquid crystalline monomer, the in-cell retardation layer 90 is not formed on the in-cell retardation layer 90. A decrease in retardation of 90 can be effectively suppressed.
配向層91としては、例えば、ポリイミド、ポリアミック酸、ポリアミド、ポリマレイミド、ポリシロキサン、ポリシルセスキオキサン、ポリフォスファゼン、若しくは、これらの共重合体で構成される単層膜若しくは積層膜、又は、シリコン酸化物が斜方蒸着により形成された膜が挙げられる。配向層91は、配向処理されていることが好ましい。配向処理方法は、特に限定されず、ラビング法、光配向法等を用いることができる。 As the alignment layer 91, for example, polyimide, polyamic acid, polyamide, polymaleimide, polysiloxane, polysilsesquioxane, polyphosphazene, or a monolayer film or a laminated film made of a copolymer thereof, or And a film in which silicon oxide is formed by oblique vapor deposition. The alignment layer 91 is preferably subjected to an alignment treatment. The alignment treatment method is not particularly limited, and a rubbing method, a photo alignment method, or the like can be used.
配向層91が光配向処理を施されたものである場合には、配向層91は光官能基を有するポリマーを含有することが好ましい。配向層91の上記光官能基は、紫外光、可視光等の光(電磁波)が照射されることによって、例えば、二量化(二量体形成)、異性化、光フリース転移、分解等の構造変化を生じ、配向規制力を発現できる官能基であることが好ましい。配向層91の上記光官能基の具体例としては、例えば、アゾベンゼン基、カルコン基、シンナメート基、クマリン基、トラン基、スチルベン基等が挙げられる。 In the case where the alignment layer 91 is subjected to a photo-alignment treatment, the alignment layer 91 preferably contains a polymer having a photofunctional group. The photofunctional group of the alignment layer 91 is irradiated with light (electromagnetic waves) such as ultraviolet light and visible light, for example, dimerization (dimer formation), isomerization, light fleece transition, decomposition, etc. The functional group is preferably a functional group capable of causing a change and exhibiting orientation regulating power. Specific examples of the photofunctional group of the alignment layer 91 include an azobenzene group, a chalcone group, a cinnamate group, a coumarin group, a tolan group, and a stilbene group.
上記液晶性モノマーは、屈折率異方性を有する重合性のモノマー(反応性メソゲン)である。上記液晶性モノマーは、モノマー自身が位相差を有するものであってもよく、上記配向処理を施した配向層91上に上記液晶性モノマーを重合させた場合に、位相差を発現できるモノマーであってもよい。上記液晶性モノマーを重合させることで、熱揺らぎによる位相差の低下を抑制し、温度安定性等の安定性向上ができる。インセル位相差層90の位相差は、液晶性モノマーの重合体92の複屈折率Δnと、インセル位相差層90の厚さdとの積により決まる。 The liquid crystalline monomer is a polymerizable monomer having a refractive index anisotropy (reactive mesogen). The liquid crystalline monomer may be a monomer itself having a phase difference, and is a monomer capable of exhibiting a phase difference when the liquid crystalline monomer is polymerized on the alignment layer 91 subjected to the alignment treatment. May be. By polymerizing the liquid crystalline monomer, a decrease in retardation due to thermal fluctuation can be suppressed, and stability such as temperature stability can be improved. The phase difference of the in-cell retardation layer 90 is determined by the product of the birefringence Δn of the polymer 92 of the liquid crystalline monomer and the thickness d of the in-cell retardation layer 90.
上記液晶性モノマーは、アクリル系モノマー及びメタクリル系モノマーの少なくとも一方を含むものであってもよい。上記アクリル系モノマーは、重合基としてアクリル基を有するものである。上記メタクリル系モノマーは、重合基としてメタクリル基を有するものである。液晶性モノマーがアクリル系モノマーであると、反応速度が速い点で有利である。液晶性モノマーがメタクリル系モノマーであると、ガラス転移点が高いため、位相差の温度依存性が小さくすることができる。 The liquid crystalline monomer may include at least one of an acrylic monomer and a methacrylic monomer. The acrylic monomer has an acrylic group as a polymerization group. The methacrylic monomer has a methacryl group as a polymerization group. When the liquid crystalline monomer is an acrylic monomer, it is advantageous in that the reaction rate is fast. When the liquid crystalline monomer is a methacrylic monomer, the glass transition point is high, so that the temperature dependence of the retardation can be reduced.
上記液晶性モノマーとしては、例えば、下記化学式(5-1)~(5-15)で表される化合物が挙げられる。これらは何れかを単独で用いることもでき、二種以上を併用することもできる。 Examples of the liquid crystalline monomer include compounds represented by the following chemical formulas (5-1) to (5-15). Any of these may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
(式中、X及びXは、同一又は異なって、水素原子、又は、メチル基を表す。
g、h及びiは、同一又は異なって、1~18の整数である。
j及びkは、同一又は異なって、1~12の整数である。)
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
(In formula, X < 1 > and X < 2 > are the same or different and represent a hydrogen atom or a methyl group.
g, h and i are the same or different and are an integer of 1 to 18.
j and k are the same or different and are integers of 1 to 12. )
アウトセル位相差層61は、少なくとも波長550nmの光に対して1/4波長の面内位相差を付与する位相差層(λ/4板)であることが好ましく、具体的には、少なくとも波長550nmの光に対して100nm以上、176nm以下の面内位相差を付与するものであることが好ましい。アウトセル位相差層61がλ/4板として機能することで、観察面側の偏光板60とアウトセル位相差層61の組み合わせを円偏光板として機能させることができる。これにより、液晶パネルの内部反射を低減できるので、外光の反射(映り込み)が抑制された良好な黒表示を実現できる。 The out-cell retardation layer 61 is preferably a retardation layer (λ / 4 plate) that gives an in-plane retardation of ¼ wavelength to light having a wavelength of at least 550 nm, and specifically, at least a wavelength of 550 nm. It is preferable that an in-plane retardation of 100 nm or more and 176 nm or less is imparted to the light. Since the out-cell retardation layer 61 functions as a λ / 4 plate, the combination of the polarizing plate 60 on the observation surface side and the out-cell retardation layer 61 can be functioned as a circularly polarizing plate. Thereby, since internal reflection of a liquid crystal panel can be reduced, the favorable black display by which reflection (reflection) of external light was suppressed is realizable.
また、FFSモード液晶にアウトセル位相差層61のみを組み込んだ円偏光FFSモード液晶では、黒表示ができなくなるため、更にインセル位相差層90を設けることにより、円偏光FFSモード液晶の性能を改善することができる。アウトセル位相差層61の面内遅相軸とインセル位相差層90の面内遅相軸とは直交し、かつ、アウトセル位相差層61の位相差値とインセル位相差層90の位相差値は等しいことが好ましい。これにより、液晶パネルの法線方向から入射する光に対して、アウトセル位相差層61とインセル位相差層90とが互いに位相差をキャンセルすることができ、光学的には、両者が実質的に存在しない状態が実現される。すなわち、バックライト70から液晶パネルに入射する光に対して、従来の横電界モードの液晶パネルと光学的に等価である構成が実現される。よって、円偏光板を用いた横電界モードによる表示を実現することができる。そのため、インセル位相差層90についても、少なくとも波長550nmの光に対して1/4波長の面内位相差を付与する位相差層(λ/4板)であることが好ましく、具体的には、少なくとも波長550nmの光に対して100nm以上、176nm以下の面内位相差を付与するものであることが好ましい。 In addition, the circularly polarized FFS mode liquid crystal in which only the out-cell phase difference layer 61 is incorporated in the FFS mode liquid crystal cannot perform black display. Therefore, the performance of the circularly polarized FFS mode liquid crystal is improved by further providing the in-cell phase difference layer 90. be able to. The in-plane retardation axis of the out-cell retardation layer 61 and the in-phase retardation layer 90 are orthogonal to each other, and the retardation value of the out-cell retardation layer 61 and the retardation value of the in-cell retardation layer 90 are Preferably equal. As a result, the out-cell retardation layer 61 and the in-cell retardation layer 90 can cancel the phase difference with respect to light incident from the normal direction of the liquid crystal panel. A state that does not exist is realized. That is, a configuration that is optically equivalent to a conventional lateral electric field mode liquid crystal panel with respect to light incident on the liquid crystal panel from the backlight 70 is realized. Therefore, it is possible to realize display in a transverse electric field mode using a circularly polarizing plate. Therefore, the in-cell retardation layer 90 is also preferably a retardation layer (λ / 4 plate) that imparts an in-plane retardation of ¼ wavelength to light having a wavelength of 550 nm, specifically, It is preferable to provide an in-plane retardation of 100 nm or more and 176 nm or less with respect to light having a wavelength of 550 nm.
以下では、背面側の偏光板60の透過軸の方位を0°と定義して説明を行う。このとき、観察面側の偏光板60の透過軸の方位は90°にされることが好ましい。 In the following description, the orientation of the transmission axis of the polarizing plate 60 on the back side is defined as 0 °. At this time, the orientation of the transmission axis of the polarizing plate 60 on the observation surface side is preferably 90 °.
アウトセル位相差層61の面内遅相軸とインセル位相差層90の面内遅相軸は、位相差層の機能を発現させる観点から、一対の偏光板60の各透過軸に対して45°の角度をなすことが好ましい。すなわち、アウトセル位相差層61の面内遅相軸及びインセル位相差層90の面内遅相軸は、一方が方位45°であり、他方が方位135°であることが好ましい。 The in-plane slow axis of the out-cell retardation layer 61 and the in-plane slow axis of the in-cell retardation layer 90 are 45 ° with respect to each transmission axis of the pair of polarizing plates 60 from the viewpoint of expressing the function of the retardation layer. It is preferable to make the angle. That is, it is preferable that one of the in-plane slow axis of the out-cell retardation layer 61 and the in-plane slow axis of the in-cell retardation layer 90 has an azimuth of 45 ° and the other has an azimuth of 135 °.
なお、本明細書中、2つの軸(方向)が45°の角度をなすとは、特に断りがなければ、両者のなす角度(絶対値)が45±3°の範囲内であることを指し、好ましくは45±1°の範囲内であり、より好ましくは45±0.5°の範囲内であり、特に好ましくは45°(完全に45°)である。 In the present specification, “the two axes (directions) form an angle of 45 °” means that the angle (absolute value) formed by both axes is within a range of 45 ± 3 ° unless otherwise specified. , Preferably within a range of 45 ± 1 °, more preferably within a range of 45 ± 0.5 °, and particularly preferably 45 ° (completely 45 °).
本実施形態における好ましい光学軸の配置は、例えば、背面側の偏光板60の透過軸の方位を0°とすると、インセル位相差層90の面内遅相軸は45°方位、液晶層30の液晶材料の初期配向方位は0°又は90°、アウトセル位相差層61の面内遅相軸は-45°方位、観察面側の偏光板60の透過軸の方位は90°である。 The preferred arrangement of the optical axis in the present embodiment is, for example, when the orientation of the transmission axis of the polarizing plate 60 on the back side is 0 °, the in-plane slow axis of the in-cell retardation layer 90 is 45 °, and the liquid crystal layer 30 The initial alignment direction of the liquid crystal material is 0 ° or 90 °, the in-plane slow axis of the out-cell retardation layer 61 is −45 °, and the transmission axis of the polarizing plate 60 on the observation surface side is 90 °.
なお、実施形態2の液晶表示装置100Bは、他の構成部材を含んでいてもよく、例えば、観察面側の偏光板60の観察面側に反射防止フィルムを設けることで、液晶パネルの反射率を更に低減することができる。反射防止フィルムとしては、蛾の目状の表面構造を有するモスアイフィルムが好適に用いられる。 In addition, the liquid crystal display device 100B of Embodiment 2 may include other constituent members. For example, by providing an antireflection film on the observation surface side of the polarizing plate 60 on the observation surface side, the reflectance of the liquid crystal panel is provided. Can be further reduced. As the antireflection film, a moth-eye film having a ridge-like surface structure is preferably used.
また、本実施形態では、インセル位相差層90をアウトセル位相差層61と液晶層30との間に配置し、円偏光板を用いた横電界モードに適用した場合について詳述しているが、本実施形態に係るインセル位相差層の用途は、特に限定されず、円偏光板を用いた横電界モード以外の液晶表示装置に用いられてもよい。例えば、位相差機能の有無をパターニングしたインセル位相差層を反透過型液晶表示装置に設け、反射部に位相差を付与し、透過部に位相差を付与しないようにしてもよい。位相差機能のパターニングについては、例えば、マスクを用いて、反射部の配向層91には配向処理を施し、透過部の配向層91には配向処理を施さないことによって実現可能である。また、本実施形態に係るインセル位相差層の配置も、一対の基板の基材間であれば特に限定されず、その用途に応じて、例えば、基板10及び20の両方に設けられてもよいし、基板120のみに設けられてもよい。 In this embodiment, the in-cell retardation layer 90 is disposed between the out-cell retardation layer 61 and the liquid crystal layer 30, and the case where the in-cell retardation layer 90 is applied to a transverse electric field mode using a circularly polarizing plate is described in detail. The use of the in-cell retardation layer according to the present embodiment is not particularly limited, and may be used for a liquid crystal display device other than the transverse electric field mode using a circularly polarizing plate. For example, an in-cell retardation layer in which the presence or absence of a retardation function is patterned may be provided in the anti-transmissive liquid crystal display device so that a phase difference is given to the reflecting part and no phase difference is given to the transmissive part. The patterning of the retardation function can be realized, for example, by performing an alignment process on the alignment layer 91 in the reflective portion and not performing an alignment process on the alignment layer 91 in the transmission portion using a mask. Further, the arrangement of the in-cell retardation layer according to the present embodiment is not particularly limited as long as it is between the base materials of the pair of substrates, and may be provided on both the substrates 10 and 20, for example, depending on the application. However, it may be provided only on the substrate 120.
更に、本実施形態においても、本実施形態の液晶表示装置の液晶駆動モードが水平配向モードである場合について詳述しているが、本実施形態に係る液晶駆動モードは、特に限定されず、垂直配向モードであってもよく、配向制御層50は、液晶材料中の液晶化合物31を基板10及び20面に対して略垂直方向に配向させるものであってもよい。 Further, in the present embodiment, the case where the liquid crystal drive mode of the liquid crystal display device of the present embodiment is the horizontal alignment mode is described in detail. However, the liquid crystal drive mode according to the present embodiment is not particularly limited, and is vertical. The alignment mode may be used, and the alignment control layer 50 may align the liquid crystal compound 31 in the liquid crystal material in a direction substantially perpendicular to the surfaces of the substrates 10 and 20.
<液晶組成物、及び、液晶表示装置の製造方法>
実施形態2の液晶表示装置の製造方法は、上記液晶層を形成する工程の前に、一対の基板の少なくとも一方に、インセル位相差層を形成する工程を有すること以外は、実施形態1の液晶表示装置の製造方法と同様である。また、液晶組成物については、本実施形態においても実施形態1の液晶組成物と同様のものを使用することができる。
<Liquid crystal composition and method for producing liquid crystal display device>
The manufacturing method of the liquid crystal display device of Embodiment 2 is the liquid crystal of Embodiment 1 except having the process of forming an in-cell retardation layer in at least one of a pair of board | substrates before the process of forming the said liquid crystal layer. This is the same as the manufacturing method of the display device. As for the liquid crystal composition, the same liquid crystal composition as that of the first embodiment can be used in this embodiment.
上記インセル位相差層を形成する工程において、上記インセル位相差層がカラーフィルタ基板に形成される場合は、例えば、ブラックマトリクス、カラーフィルタ、オーバーコート層等を形成した後に、上記インセル位相差層を形成する。上記インセル位相差層がアクティブマトリクス基板に形成される場合は、例えば、共通電極、画素電極、TFT、各種信号線等を形成した後に、上記インセル位相差層を形成する。 In the step of forming the in-cell retardation layer, when the in-cell retardation layer is formed on a color filter substrate, for example, after forming a black matrix, a color filter, an overcoat layer, etc., the in-cell retardation layer is formed. Form. When the in-cell retardation layer is formed on the active matrix substrate, for example, the in-cell retardation layer is formed after forming a common electrode, a pixel electrode, a TFT, various signal lines, and the like.
上記インセル位相差層を形成する工程では、少なくとも一方の基板の表面に配向層を形成し、上記配向層に液晶性モノマーを含有する組成物を塗工し、上記液晶性モノマーを重合させてもよい。上記配向層は、例えば、一対の基板の少なくとも一方の表面に、ポリイミド、ポリアミック酸、ポリアミド、ポリマレイミド、ポリシロキサン、ポリシルセスキオキサン、若しくは、ポリフォスファゼン等を含有する配向層組成物を塗布するか、又は、シリコン酸化物を含有する配向層組成物を斜方蒸着し、焼成等を行うことで形成する。上記配向層組成物は、上述の光官能基を有するポリマーを含有してもよい。 In the step of forming the in-cell retardation layer, an alignment layer is formed on the surface of at least one substrate, a composition containing a liquid crystalline monomer is applied to the alignment layer, and the liquid crystalline monomer is polymerized. Good. The alignment layer includes, for example, an alignment layer composition containing polyimide, polyamic acid, polyamide, polymaleimide, polysiloxane, polysilsesquioxane, or polyphosphazene on at least one surface of a pair of substrates. It is formed by applying or obliquely depositing an alignment layer composition containing silicon oxide and performing firing or the like. The alignment layer composition may contain a polymer having the photofunctional group described above.
上記配向層は、配向処理されることが好ましい。配向処理方法は、特に限定されず、ラビング法、光配向法等を用いることができる。 The alignment layer is preferably subjected to an alignment treatment. The alignment treatment method is not particularly limited, and a rubbing method, a photo alignment method, or the like can be used.
上記液晶性モノマーの重合は、例えば、可視、紫外線等の光照射により行う。液晶性モノマーの重合は、溶媒を用いないバルク重合(塊状重合)又は液晶性モノマーを高濃度にした状態で行われるため、液晶性モノマーの重合度は低く、例えば、重量平均分子量で3万以下であると考えられる。そのため、配向層に液晶性モノマーの重合体を積層してインセル位相差層を形成する場合は、特にインセル位相差層の耐熱性は低く、例えば、200℃以上で加熱するとリタデーションの低下が起こりやすい。 Polymerization of the liquid crystalline monomer is performed, for example, by irradiation with light such as visible light or ultraviolet light. Polymerization of the liquid crystalline monomer is performed in a bulk polymerization without using a solvent (bulk polymerization) or in a state where the liquid crystalline monomer is at a high concentration, so the degree of polymerization of the liquid crystalline monomer is low, for example, a weight average molecular weight of 30,000 or less It is thought that. Therefore, when an in-cell retardation layer is formed by laminating a liquid crystalline monomer polymer on the alignment layer, the heat resistance of the in-cell retardation layer is particularly low. For example, when heating at 200 ° C. or higher, retardation is liable to decrease. .
上記液晶性モノマーは、アクリル系モノマー及びメタクリル系モノマーの少なくとも一方を含むものであってもよい。 The liquid crystalline monomer may include at least one of an acrylic monomer and a methacrylic monomer.
上記インセル位相差層を形成する工程の後、実施形態1と同様に、液晶層を形成する工程と、配向制御層を形成する工程とを行う。 After the step of forming the in-cell retardation layer, a step of forming a liquid crystal layer and a step of forming an alignment control layer are performed as in the first embodiment.
図6は、実施形態2の液晶表示装置の製造方法において、配向制御層の形成過程を説明した模式図であり、(a)はモノマーの重合前を表し、(b)はモノマーの重合後を表す。図6(a)に示したように、本実施形態においても液晶化合物を含む液晶材料と少なくとも一種のモノマーとを含有する液晶層30を加熱しながら偏光紫外線を照射する。ただし、偏光紫外線の照射によりインセル位相差層90の位相差が変化することを抑制する観点から、偏光紫外線は、インセル位相差層90が形成されていない基板(例えば基板20)側から照射することが好ましい。偏光紫外線の照射により、少なくとも一種のモノマーが重合し、ポリマーが生成される。該ポリマーが、液晶層からの相分離することで、図6(b)に示したように、上記一対の基板と上記液晶層との間に配向制御層50が形成される。 6A and 6B are schematic diagrams illustrating the formation process of the alignment control layer in the method of manufacturing the liquid crystal display device of Embodiment 2, wherein FIG. 6A shows the state before the polymerization of the monomer, and FIG. 6B shows the state after the polymerization of the monomer. To express. As shown in FIG. 6A, also in this embodiment, polarized ultraviolet rays are irradiated while heating the liquid crystal layer 30 containing a liquid crystal material containing a liquid crystal compound and at least one monomer. However, from the viewpoint of suppressing the change in the phase difference of the in-cell retardation layer 90 due to the irradiation of the polarized ultraviolet light, the polarized ultraviolet light is irradiated from the substrate (for example, the substrate 20) side on which the in-cell retardation layer 90 is not formed. Is preferred. By irradiation with polarized ultraviolet rays, at least one monomer is polymerized to produce a polymer. As the polymer undergoes phase separation from the liquid crystal layer, as shown in FIG. 6B, an alignment control layer 50 is formed between the pair of substrates and the liquid crystal layer.
このように、本実施形態では、インセル位相差層90上に配向膜を形成する必要がなく、該配向膜形成用の高温(例えば200℃以上)の焼成工程が不要であるため、高温の加熱処理に起因してインセル位相差層90の位相差が低下することを効果的に抑制することができる。なお、本実施形態においても、偏光紫外線の照射時に液晶層30を含む液晶パネルを加熱するが、その温度は、液晶材料のTNI以上、140℃以下と比較的低温であるため、インセル位相差層90の位相差に与える影響は小さい。 Thus, in this embodiment, it is not necessary to form an alignment film on the in-cell retardation layer 90, and a high-temperature (for example, 200 ° C. or higher) firing step for forming the alignment film is unnecessary. It can suppress effectively that the phase difference of the in-cell phase difference layer 90 falls resulting from a process. Also in this embodiment, to heat the liquid crystal panel including a liquid crystal layer 30 upon irradiation of the polarized ultraviolet light, the temperature, because T NI more liquid crystal material, a relatively low temperature and 140 ° C. or less, cell retardation The influence on the phase difference of the layer 90 is small.
また、図5及び図6ではいずれも、インセル位相差層90が形成されていない基板(例えば基板20)に配向膜80が配置された場合について示したが、本実施形態において、配向膜80は形成しなくてもよい。 5 and 6 show the case where the alignment film 80 is disposed on a substrate (for example, the substrate 20) on which the in-cell retardation layer 90 is not formed. In this embodiment, the alignment film 80 is It does not have to be formed.
以上、本発明の実施形態について説明したが、説明された個々の事項は、すべて本発明全般に対して適用され得るものである。 As mentioned above, although embodiment of this invention was described, each described matter can be applied with respect to this invention altogether.
以下に実施例及び比較例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
<実施例1>
(液晶組成物の調製)
負の誘電率異方性を有する液晶化合物(ネガ型液晶化合物)と、アルケニル基を有し、誘電率異方性が実質的に0である液晶化合物(ニュートラル液晶化合物)とを含有し、誘電率異方性が負(Δε=-3.0)で、液晶相-等方相転移点(TNI)が80℃であるネガ型液晶材料に、偏光吸収性モノマー及び上記光反応性モノマー(配向制御層形成用モノマー)として下記化学式(2-1)で表されるモノマーを0.3重量%添加した後、25℃環境下で24時間放置することで、液晶材料中にモノマーを完全に溶解させて液晶組成物を調整した。
<Example 1>
(Preparation of liquid crystal composition)
A liquid crystal compound having a negative dielectric anisotropy (negative liquid crystal compound) and a liquid crystal compound having an alkenyl group and having a dielectric anisotropy of substantially 0 (neutral liquid crystal compound); A negative absorptive monomer having a negative anisotropy (Δε = −3.0) and a liquid crystal phase-isotropic phase transition point (T NI ) of 80 ° C. is combined with a polarization-absorbing monomer and the photoreactive monomer ( After adding 0.3% by weight of a monomer represented by the following chemical formula (2-1) as a monomer for forming an orientation control layer), the monomer is completely contained in the liquid crystal material by leaving it at 25 ° C. for 24 hours. The liquid crystal composition was prepared by dissolving.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(液晶パネルの作製)
FFSモードの液晶パネルを以下の方法により実際に作製した。まず、酸化インジウム錫(Indium Tin Oxide:ITO)製のFFS電極構造を有する画素電極と絶縁膜と共通電極が積層されたITO基板と、電極を有さない対向基板とを用意した。両基板に水平光配向タイプの配向膜材料(水平光配向剤)を塗布した後、200℃で40分間焼成を行い、水平光配向膜を形成した。続いて、一方の基板にシール材(積水化学工業社製、フォトレック)を塗布し、上記シール材で囲まれた領域に上記で得られた液晶組成物を滴下し、他方の基板を貼り合せ液晶パネルを作製した。
(Production of liquid crystal panel)
An FFS mode liquid crystal panel was actually produced by the following method. First, a pixel electrode having an FFS electrode structure made of indium tin oxide (ITO), an ITO substrate on which an insulating film and a common electrode were stacked, and a counter substrate having no electrode were prepared. A horizontal photo-alignment type alignment film material (horizontal photo-alignment agent) was applied to both substrates, and then baked at 200 ° C. for 40 minutes to form a horizontal photo-alignment film. Subsequently, a sealing material (manufactured by Sekisui Chemical Co., Ltd., Photorec) is applied to one substrate, the liquid crystal composition obtained above is dropped onto the region surrounded by the sealing material, and the other substrate is bonded. A liquid crystal panel was produced.
続いて、25℃にて、ブラックライト(東芝ライテック社製、FHF32BLB-T)を用いて、液晶パネルに対して電圧無印加状態で法線方向から直線偏光紫外線(波長300~340nm)を1.7mW/cmで1200秒(2J/cm)間照射し、配向制御層の形成、水平光配向膜の配向及びシール材の硬化を行った。その後、液晶パネルを120℃に加熱後急冷させることで液晶化合物の再配向処理を行い、配向膜及び配向制御層(ポリマー層)を有するFFSモードの液晶パネルを作製した。 Subsequently, at 25 ° C., using a black light (FHF32BLB-T manufactured by Toshiba Lighting & Technology Co., Ltd.), linearly polarized ultraviolet light (wavelength: 300 to 340 nm) from the normal direction is applied to the liquid crystal panel without applying voltage. Irradiation was performed at 7 mW / cm 2 for 1200 seconds ( 2 J / cm 2 ) to form an alignment control layer, align the horizontal photo alignment film, and cure the sealing material. Thereafter, the liquid crystal panel was heated to 120 ° C. and then rapidly cooled to realign the liquid crystal compound, and an FFS mode liquid crystal panel having an alignment film and an alignment control layer (polymer layer) was produced.
<比較例1>
以下の点を除いて、実施例1と同様にして比較例1のFFSモードの液晶パネルを作製した。本比較例では、上記化学式(2-1)で表されるモノマーの代わりに下記化学式(A)で表されるモノマーを上記ネガ型液晶材料に添加した。また、本比較例では、液晶層中のモノマーが完全に無くなるまでに、直線偏光紫外線を1.7mW/cmで4120秒(7J/cm)間照射する必要であった。
<Comparative Example 1>
An FFS mode liquid crystal panel of Comparative Example 1 was produced in the same manner as Example 1 except for the following points. In this comparative example, a monomer represented by the following chemical formula (A) was added to the negative liquid crystal material instead of the monomer represented by the chemical formula (2-1). Further, in this comparative example, it was necessary to irradiate the linearly polarized ultraviolet ray at 1.7 mW / cm 2 for 4120 seconds (7 J / cm 2 ) until the monomer in the liquid crystal layer disappeared completely.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
<特性評価1>
実施例1及び比較例1で作製したFFSモードの液晶パネルについて、下記特性評価を行った。
<Characteristic evaluation 1>
The following characteristic evaluation was performed on the FFS mode liquid crystal panels manufactured in Example 1 and Comparative Example 1.
(コントラスト測定)
トプコンテクノハウス社製の分光放射計SR-1を用いて、25℃、暗室で測定した。
(Contrast measurement)
The measurement was performed in a dark room at 25 ° C. using a spectroradiometer SR-1 manufactured by Topcon Technohouse.
(VHR測定)
VHRは、東陽テクニカ社製の6254型VHR測定システムを用いて、1V、70℃の条件で測定した。
(VHR measurement)
VHR was measured under conditions of 1 V and 70 ° C. using a 6254 type VHR measuring system manufactured by Toyo Technica.
(残留DC(rDC)測定)
25℃環境下で3VのDCオフセット電圧を液晶パネルに2時間印加した後の残留DCをフリッカ消去法により測定した。結果を下記表1に示した。
(Residual DC (rDC) measurement)
Residual DC after applying a DC offset voltage of 3 V to the liquid crystal panel for 2 hours in an environment of 25 ° C. was measured by a flicker elimination method. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
表1に示す結果より、シンナメート基を有するモノマーを用いた実施例1が、ビフェニル基を有するモノマーを用いた比較例1よりも、コントラスト及びVHRは高く、rDCが小さい結果となった。実施例1のコントラストが高い主な要因としては、モノマーが偏光吸収官能基であるシンナメート基を有し、直線偏光紫外線の照射により自ら配向しつつ重合し、所定の方位に沿ってポリマーが形成されたため、液晶化合物が高配向状態を取るためと考えられる。また、水平光配向膜の配向もポリマーの配向に好ましい影響を与えたものと考えられる。他方、比較例1のコントラストが低い主な要因としては、モノマーが偏光吸収官能基ではないビフェニル基を有し、直線偏光紫外線の照射によっても自ら配向せず重合し、所定の方位に沿ってポリマーが形成されないため、液晶化合物の配向状態が低下したためと考えられる。ただし、比較例1においても、水平光配向膜の影響によりポリマーは少しは配向している可能性はある。実施例1の方がVHRが高い理由については、上記化学式(2-1)で表されるモノマーを用いた方が上記化学式(A)で表されるモノマーを用いた場合より、紫外線照射におけるモノマー消費速度が速く、結果として紫外線照射量を少なくできたためと考えられる。またrDCについて、上記化学式(2-1)で表されるモノマーを用いた方が上記化学式(A)で表されるモノマーを用いた場合より小さくできた要因は、同じく紫外線照射量を少なくできたことによる不純物、特にイオン性不純物の量が少なかったこと、及び、シンナメート基を有するポリマー層の方が、ビフェニル基を有するポリマー層よりイオン性不純物の吸着が起こりにくかったことが推測される。 From the results shown in Table 1, Example 1 using a monomer having a cinnamate group had higher contrast and VHR and smaller rDC than Comparative Example 1 using a monomer having a biphenyl group. The main factor of the high contrast in Example 1 is that the monomer has a cinnamate group which is a polarization-absorbing functional group and polymerizes while being aligned by irradiation with linearly polarized ultraviolet rays, and a polymer is formed along a predetermined direction. Therefore, it is considered that the liquid crystal compound takes a highly aligned state. Further, it is considered that the orientation of the horizontal photo-alignment film also has a positive influence on the orientation of the polymer. On the other hand, the main factor of the low contrast of Comparative Example 1 is that the monomer has a biphenyl group that is not a polarization-absorbing functional group, and polymerizes without being oriented by itself even when irradiated with linearly polarized ultraviolet light, and is polymerized along a predetermined direction. This is probably because the alignment state of the liquid crystal compound was lowered. However, also in Comparative Example 1, the polymer may be slightly oriented due to the influence of the horizontal light alignment film. The reason why the VHR is higher in Example 1 is that the monomer represented by the chemical formula (2-1) is used in the case of using the monomer represented by the chemical formula (A) than in the case where the monomer represented by the chemical formula (A) is used. This is thought to be because the consumption speed was high, and as a result, the amount of UV irradiation was reduced. In addition, with regard to rDC, the factor that was able to be smaller when the monomer represented by the chemical formula (2-1) was used than when the monomer represented by the chemical formula (A) was used. It is presumed that the amount of impurities, particularly ionic impurities, was small, and that the polymer layer having a cinnamate group was less likely to adsorb ionic impurities than the polymer layer having a biphenyl group.
<実施例2-1>
(液晶組成物の調製)
負の誘電率異方性を有する液晶化合物(ネガ型液晶化合物)と、アルケニル基を有し、誘電率異方性が実質的に0である液晶化合物(ニュートラル液晶化合物)とを含有し、誘電率異方性が負(Δε=-2.8)で、液晶相-等方相転移点(TNI)が75℃であるネガ型液晶材料に、偏光吸収性モノマー及び上記光反応性モノマー(配向制御層形成用モノマー)として下記化学式(2-2)で表されるモノマーを1.0重量%添加した後、25℃環境下で24時間放置することで、液晶材料中にモノマーを完全に溶解させて液晶組成物を調整した。
<Example 2-1>
(Preparation of liquid crystal composition)
A liquid crystal compound having a negative dielectric anisotropy (negative liquid crystal compound) and a liquid crystal compound having an alkenyl group and having a dielectric anisotropy of substantially 0 (neutral liquid crystal compound); A negative absorptive monomer having a negative anisotropy (Δε = −2.8) and a liquid crystal phase-isotropic phase transition point (T NI ) of 75 ° C. is combined with a polarization-absorbing monomer and the photoreactive monomer ( After adding 1.0% by weight of a monomer represented by the following chemical formula (2-2) as a monomer for forming an alignment control layer), the monomer is completely contained in the liquid crystal material by leaving it to stand at 25 ° C. for 24 hours. The liquid crystal composition was prepared by dissolving.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(液晶パネルの作製)
FFSモードの液晶パネルを以下の方法により実際に作製した。まず、酸化インジウム錫製のFFS電極構造を有する画素電極と絶縁膜と共通電極が積層されたITO基板と、電極を有さない対向基板とを用意した。続いて、一方の基板にシール材(積水化学工業社製、フォトレック)を塗布し、上記シール材で囲まれた領域に上記で得られた液晶組成物を滴下し、他方の基板を貼り合せ液晶パネルを作製した。
(Production of liquid crystal panel)
An FFS mode liquid crystal panel was actually produced by the following method. First, a pixel electrode having an FFS electrode structure made of indium tin oxide, an ITO substrate on which an insulating film and a common electrode were laminated, and a counter substrate having no electrode were prepared. Subsequently, a sealing material (manufactured by Sekisui Chemical Co., Ltd., Photorec) is applied to one substrate, the liquid crystal composition obtained above is dropped onto the region surrounded by the sealing material, and the other substrate is bonded. A liquid crystal panel was produced.
続いて、液晶パネルの温度をTNI以上(100℃)に加熱しながら、超高圧水銀ランプ(ウシオ電機社製)を用いて、液晶パネルに対して電圧無印加状態で法線方向から直線偏光紫外線(波長300~340nm)を1.7mW/cmで600秒(1J/cm)間照射し、配向制御層の形成及びシール材の硬化を行った。硬化後のシール材の幅は0.5mmであった。その後、液晶パネルの温度を室温に戻すことで、実質的な配向膜を有さず、配向制御層(ポリマー層)を有するFFSモードの液晶パネルを作製した。 Subsequently, while heating the temperature of the liquid crystal panel to T NI or higher (100 ° C.), using an ultra-high pressure mercury lamp (manufactured by USHIO INC.), Linear polarization from the normal direction to the liquid crystal panel without applying voltage. Ultraviolet rays (wavelength 300 to 340 nm) were irradiated at 1.7 mW / cm 2 for 600 seconds (1 J / cm 2 ) to form the orientation control layer and cure the sealing material. The width of the sealing material after curing was 0.5 mm. Thereafter, the temperature of the liquid crystal panel was returned to room temperature, thereby producing an FFS mode liquid crystal panel having no alignment film and having an alignment control layer (polymer layer).
<実施例2-2>
上記配向制御層を形成する工程において、直線偏光紫外線を1.7mW/cmで1800秒(3J/cm)間照射した点以外は、実施例2-1と同様にして実施例2-2の液晶パネルを作製した。
<Example 2-2>
Example 2-2 was performed in the same manner as Example 2-1 except that in the step of forming the orientation control layer, linearly polarized ultraviolet light was irradiated at 1.7 mW / cm 2 for 1800 seconds (3 J / cm 2 ). A liquid crystal panel was prepared.
<実施例2-3>
上記配向制御層を形成する工程において、直線偏光紫外線を1.7mW/cmで3000秒(5J/cm)間照射した点以外は、実施例2-1と同様にして実施例2-3の液晶パネルを作製した。
<Example 2-3>
Example 2-3 was carried out in the same manner as Example 2-1 except that in the step of forming the orientation control layer, linearly polarized ultraviolet light was irradiated at 1.7 mW / cm 2 for 3000 seconds (5 J / cm 2 ). A liquid crystal panel was prepared.
<比較例2>
上記配向制御層を形成する工程において、直線偏光紫外線を照射しなかった(0J/cm)点以外は、実施例2-1と同様にして比較例2の液晶パネルを作製した。
<Comparative example 2>
A liquid crystal panel of Comparative Example 2 was prepared in the same manner as in Example 2-1, except that the alignment control layer was not irradiated with linearly polarized ultraviolet light (0 J / cm 2 ).
<特性評価2>
実施例2-1~2-3及び比較例2で作製したFFSモードの液晶パネルについて、実施例1及び比較例1と同様に、上記特性評価を行った。結果を下記表2に示した。
<Characteristic evaluation 2>
The FFS mode liquid crystal panels produced in Examples 2-1 to 2-3 and Comparative Example 2 were evaluated for the above characteristics in the same manner as in Example 1 and Comparative Example 1. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
表2に示す結果より、コントラストは、偏光紫外線照射量の増加とともに向上した。このことは、上記化学式(2-2)で表されるシンナメート系モノマーを用いた場合、偏光紫外線照射により重合すると同時にシンナメート基が偏光吸収性を示すことより、形成されたシンナメート系ポリマー層が液晶化合物の配向方位を制御していることを示す。VHRは、偏光紫外線照射量0~5J/cmの範囲でほぼ一定値を示しているが、3J/cmから5J/cm2への照射量増加でVHRが若干低下した。したがって照射量が3J/cm以上となると、照射量増加による液晶分子の劣化によりVHRが低下している可能性がある。rDCは偏光紫外線照射量の増加とともに小さくなった。これにより、シンナメート系モノマーの重合によりポリマー層が形成されることで、液晶層中のイオン性不純物の吸着が起こりにくくなっていると考えられる。 From the results shown in Table 2, the contrast improved with an increase in the amount of polarized ultraviolet light irradiation. This is because when the cinnamate monomer represented by the chemical formula (2-2) is used, the formed cinnamate polymer layer is liquid crystal because the cinnamate group exhibits polarization absorptivity simultaneously with polymerization by irradiation with polarized ultraviolet rays. It shows that the orientation direction of the compound is controlled. VHR showed a substantially constant value in the range of polarized UV irradiation dose of 0 to 5 J / cm 2 , but VHR slightly decreased with increasing dose from 3 J / cm 2 to 5 J / cm 2 . Therefore, when the irradiation amount is 3 J / cm 2 or more, there is a possibility that VHR is lowered due to deterioration of liquid crystal molecules due to the increase in irradiation amount. The rDC decreased with increasing polarized UV irradiation dose. Thereby, it is considered that the adsorption of ionic impurities in the liquid crystal layer is less likely to occur because the polymer layer is formed by polymerization of the cinnamate monomer.
<実施例3-1>
(液晶組成物の調製)
正の誘電率異方性を有する液晶化合物(ポジ型液晶化合物)と、アルケニル基を有し、誘電率異方性が実質的に0である液晶化合物(ニュートラル液晶化合物)とを含有し、誘電率異方性が正(Δε=7.0)で、液晶相-等方相転移点(TNI)が85℃であるポジ型液晶材料に、偏光吸収性モノマー及び上記光反応性モノマー(配向制御層形成用モノマー)として上記化学式(2-2)で表されるモノマーを1.0重量%添加した後、25℃環境下で24時間放置することで、液晶材料中にモノマーを完全に溶解させて液晶組成物を調整した。
<Example 3-1>
(Preparation of liquid crystal composition)
A liquid crystal compound having a positive dielectric anisotropy (positive liquid crystal compound) and a liquid crystal compound having an alkenyl group and having a dielectric anisotropy of substantially 0 (neutral liquid crystal compound); A positive-type liquid crystal material having a positive rate anisotropy (Δε = 7.0) and a liquid crystal phase-isotropic phase transition point (T NI ) of 85 ° C., a polarization-absorbing monomer and the photoreactive monomer (alignment) After adding 1.0% by weight of the monomer represented by the chemical formula (2-2) as the control layer forming monomer), the monomer is completely dissolved in the liquid crystal material by leaving it to stand at 25 ° C. for 24 hours. To prepare a liquid crystal composition.
(液晶パネルの作製)
FFSモードの液晶パネルを以下の方法により実際に作製した。まず、酸化インジウム錫製のFFS電極構造を有する画素電極と絶縁膜と共通電極が積層されたITO基板と、電極を有さない対向基板とを用意した。続いて、一方の基板にシール材(積水化学工業社製、フォトレック)を塗布し、上記シール材で囲まれた領域に上記で得られた液晶組成物を滴下し、他方の基板を貼り合せ液晶パネルを作製した。
(Production of liquid crystal panel)
An FFS mode liquid crystal panel was actually produced by the following method. First, a pixel electrode having an FFS electrode structure made of indium tin oxide, an ITO substrate on which an insulating film and a common electrode were laminated, and a counter substrate having no electrode were prepared. Subsequently, a sealing material (manufactured by Sekisui Chemical Co., Ltd., Photorec) is applied to one substrate, the liquid crystal composition obtained above is dropped onto the region surrounded by the sealing material, and the other substrate is bonded. A liquid crystal panel was produced.
続いて、液晶パネルの温度をTNI以上(100℃)に加熱しながら、超高圧水銀ランプ(ウシオ電機社製)を用いて、液晶パネルに対して電圧無印加状態で法線方向から直線偏光紫外線(波長300~340nm)を1.7mW/cmで600秒(1J/cm)間照射し、配向制御層の形成及びシール材の硬化を行った。硬化後のシール材の幅は0.5mmであった。その後、液晶パネルの温度を室温に戻すことで、実質的な配向膜を有さず、配向制御層(ポリマー層)を有するFFSモードの液晶パネルを作製した。 Subsequently, while heating the temperature of the liquid crystal panel to T NI or higher (100 ° C.), using an ultra-high pressure mercury lamp (manufactured by USHIO INC.), Linear polarization from the normal direction to the liquid crystal panel without applying voltage. Ultraviolet rays (wavelength 300 to 340 nm) were irradiated at 1.7 mW / cm 2 for 600 seconds (1 J / cm 2 ) to form the orientation control layer and cure the sealing material. The width of the sealing material after curing was 0.5 mm. Thereafter, the temperature of the liquid crystal panel was returned to room temperature, thereby producing an FFS mode liquid crystal panel having no alignment film and having an alignment control layer (polymer layer).
<実施例3-2>
上記配向制御層を形成する工程において、直線偏光紫外線を1.7mW/cmで1800秒(3J/cm)間照射した点以外は、実施例3-1と同様にして実施例3-2の液晶パネルを作製した。
<Example 3-2>
Example 3-2 was performed in the same manner as in Example 3-1, except that in the step of forming the orientation control layer, linearly polarized ultraviolet light was irradiated at 1.7 mW / cm 2 for 1800 seconds (3 J / cm 2 ). A liquid crystal panel was prepared.
<実施例3-3>
上記配向制御層を形成する工程において、直線偏光紫外線を1.7mW/cmで3000秒(5J/cm)間照射した点以外は、実施例3-1と同様にして実施例3-3の液晶パネルを作製した。
<Example 3-3>
Example 3-3 is the same as Example 3-1 except that in the step of forming the orientation control layer, linearly polarized ultraviolet light was irradiated at 1.7 mW / cm 2 for 3000 seconds (5 J / cm 2 ). A liquid crystal panel was prepared.
<比較例3>
上記配向制御層を形成する工程において、直線偏光紫外線を照射しなかった(0J/cm)点以外は、実施例3-1と同様にして比較例3の液晶パネルを作製した。
<Comparative Example 3>
A liquid crystal panel of Comparative Example 3 was produced in the same manner as in Example 3-1, except that the alignment control layer was not irradiated with linearly polarized ultraviolet rays (0 J / cm 2 ).
<特性評価3>
実施例3-1~3-3及び比較例3で作製したFFSモードの液晶パネルについて、実施例1及び比較例1と同様に、上記特性評価を行った。結果を下記表3に示した。
<Characteristic evaluation 3>
For the FFS mode liquid crystal panels produced in Examples 3-1 to 3-3 and Comparative Example 3, the characteristics were evaluated in the same manner as in Example 1 and Comparative Example 1. The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
表3に示す結果より、コントラストは、正の誘電率異方性を有する液晶材料を用いた場合でも、偏光紫外線照射量の増加とともに向上した。このことは、上記化学式(2-2)で表されるシンナメート系モノマーを用いた場合、偏光紫外線照射により重合すると同時にシンナメート基が偏光吸収性を示すことより、形成されたシンナメート系ポリマー層が液晶化合物の配向方位を制御していることを示す。しかしながら、負の誘電率異方性を有する液晶材料を用いた場合より、全偏光紫外線照射量において低い値であった。これは、正の誘電率異方性を有する液晶材料は、電圧印加により基板に対して液晶化合物が立ち上がる方向にも若干動くため、透過率が負の誘電率異方性を有する液晶材料よりも低いためである。VHRは、偏光紫外線照射量0~5J/cmの範囲でほぼ一定値を示しており、また、負の誘電率異方性を有する液晶材料を用いた場合よりも高い値である。正の誘電率異方性を有する液晶材料の方が、紫外線照射による劣化が起こりにくいことが推定される。rDCは偏光紫外線照射量の増加とともに大幅に小さくなった。これにより、シンナメート系モノマーの重合によりポリマー層が形成されることで、液晶層中のイオン性不純物の吸着が起こりにくくなっていると考えられる。また、負の誘電率異方性を有する液晶材料を用いた場合よりも一桁小さい値となった。これは、VHRの結果と同様に、正の誘電率異方性を有する液晶材料の方が、紫外線照射による劣化が起こりにくいためと考えられる。 From the results shown in Table 3, the contrast was improved with an increase in the irradiation amount of polarized ultraviolet rays even when a liquid crystal material having positive dielectric anisotropy was used. This is because when the cinnamate monomer represented by the chemical formula (2-2) is used, the formed cinnamate polymer layer is liquid crystal because the cinnamate group exhibits polarization absorptivity simultaneously with polymerization by irradiation with polarized ultraviolet rays. It shows that the orientation direction of the compound is controlled. However, it was a lower value in the total polarized ultraviolet irradiation amount than in the case of using a liquid crystal material having negative dielectric anisotropy. This is because a liquid crystal material having a positive dielectric anisotropy moves slightly in the direction in which the liquid crystal compound rises with respect to the substrate when a voltage is applied, so that the transmittance is lower than a liquid crystal material having a negative dielectric anisotropy. This is because it is low. VHR shows a substantially constant value in the range of polarized UV irradiation dose of 0 to 5 J / cm 2 , and is higher than when a liquid crystal material having negative dielectric anisotropy is used. It is estimated that a liquid crystal material having a positive dielectric anisotropy is less likely to be deteriorated by ultraviolet irradiation. The rDC became significantly smaller as the amount of polarized ultraviolet rays increased. Thereby, it is considered that the adsorption of ionic impurities in the liquid crystal layer is less likely to occur because the polymer layer is formed by polymerization of the cinnamate monomer. In addition, the value was an order of magnitude smaller than when a liquid crystal material having negative dielectric anisotropy was used. This is presumably because the liquid crystal material having positive dielectric anisotropy is less likely to be deteriorated by ultraviolet irradiation, as in the VHR result.
<実施例4-1>
(液晶組成物の調製)
正の誘電率異方性を有する液晶化合物(ポジ型液晶化合物)と、アルケニル基を有し、誘電率異方性が実質的に0である液晶化合物(ニュートラル液晶化合物)とを含有し、誘電率異方性が正(Δε=7.0)で、液晶相-等方相転移点(TNI)が85℃であるポジ型液晶材料に、偏光吸収性モノマー及び上記光反応性モノマー(配向制御層形成用モノマー)として下記化学式(2-3-1)で表されるモノマー(m=2)を1.0重量%添加した後、25℃環境下で24時間放置することで、液晶材料中にモノマーを完全に溶解させて液晶組成物を調製した。
<Example 4-1>
(Preparation of liquid crystal composition)
A liquid crystal compound having a positive dielectric anisotropy (positive liquid crystal compound) and a liquid crystal compound having an alkenyl group and having a dielectric anisotropy of substantially 0 (neutral liquid crystal compound); A positive-type liquid crystal material having a positive rate anisotropy (Δε = 7.0) and a liquid crystal phase-isotropic phase transition point (T NI ) of 85 ° C., a polarization-absorbing monomer and the photoreactive monomer (alignment) A monomer (m = 2) represented by the following chemical formula (2-3-1) is added as a control layer-forming monomer (1.0% by weight), and then allowed to stand in a 25 ° C. environment for 24 hours. A monomer was completely dissolved therein to prepare a liquid crystal composition.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
(液晶パネルの作製)
FFSモードの液晶パネルを以下の方法により実際に作製した。まず、酸化インジウム錫製のFFS電極構造を有する画素電極と絶縁膜と共通電極が積層されたITO基板と、電極を有さない対向基板とを用意した。続いて、一方の基板にシール材(積水化学工業社製、フォトレック)を塗布し、上記シール材で囲まれた領域に上記で得られた液晶組成物を滴下し、他方の基板を貼り合せ液晶パネルを作製した。
(Production of liquid crystal panel)
An FFS mode liquid crystal panel was actually produced by the following method. First, a pixel electrode having an FFS electrode structure made of indium tin oxide, an ITO substrate on which an insulating film and a common electrode were laminated, and a counter substrate having no electrode were prepared. Subsequently, a sealing material (manufactured by Sekisui Chemical Co., Ltd., Photorec) is applied to one substrate, the liquid crystal composition obtained above is dropped onto the region surrounded by the sealing material, and the other substrate is bonded. A liquid crystal panel was produced.
続いて、液晶パネルの温度をTNI以上(100℃)に加熱しながら、超高圧水銀ランプ(ウシオ電機社製)を用いて、液晶パネルに対して電圧無印加状態で法線方向から直線偏光紫外線(波長300~340nm)を1.7mW/cmで3000秒(5J/cm)間照射し、配向制御層の形成及びシール材の硬化を行った。硬化後のシール材の幅は0.5mmであった。その後、液晶パネルの温度を室温に戻すことで、実質的な配向膜を有さず、配向制御層(ポリマー層)を有するFFSモードの液晶パネルを作製した。 Subsequently, while heating the temperature of the liquid crystal panel to T NI or higher (100 ° C.), using an ultra-high pressure mercury lamp (manufactured by USHIO INC.), Linear polarization from the normal direction to the liquid crystal panel without applying voltage. Ultraviolet rays (wavelength 300 to 340 nm) were irradiated at 1.7 mW / cm 2 for 3000 seconds (5 J / cm 2 ) to form the orientation control layer and cure the sealing material. The width of the sealing material after curing was 0.5 mm. Thereafter, the temperature of the liquid crystal panel was returned to room temperature, thereby producing an FFS mode liquid crystal panel having no alignment film and having an alignment control layer (polymer layer).
<実施例4-2>
上記化学式(2-3-1)で表されるモノマー(m=2)の代わりに上記化学式(2-3-1)で表されるモノマー(m=4)を上記ポジ型液晶材料に添加した点以外は、実施例4-1と同様にして実施例4-2の液晶パネルを作製した。
<Example 4-2>
The monomer (m = 4) represented by the chemical formula (2-3-1) was added to the positive liquid crystal material instead of the monomer (m = 2) represented by the chemical formula (2-3-1). A liquid crystal panel of Example 4-2 was produced in the same manner as Example 4-1, except for the above.
<実施例4-3>
上記化学式(2-3-1)で表されるモノマー(m=2)の代わりに上記化学式(2-3-1)で表されるモノマー(m=6)を上記ポジ型液晶材料に添加した点以外は、実施例4-1と同様にして実施例4-3の液晶パネルを作製した。
<Example 4-3>
A monomer (m = 6) represented by the chemical formula (2-3-1) was added to the positive liquid crystal material instead of the monomer (m = 2) represented by the chemical formula (2-3-1). A liquid crystal panel of Example 4-3 was produced in the same manner as Example 4-1, except for the above.
<実施例4-4>
上記化学式(2-3-1)で表されるモノマー(m=2)の代わりに上記化学式(2-3-1)で表されるモノマー(m=8)を上記ポジ型液晶材料に添加した点以外は、実施例4-1と同様にして実施例4-4の液晶パネルを作製した。
<Example 4-4>
A monomer (m = 8) represented by the chemical formula (2-3-1) was added to the positive liquid crystal material instead of the monomer (m = 2) represented by the chemical formula (2-3-1). A liquid crystal panel of Example 4-4 was produced in the same manner as Example 4-1, except for the above.
<実施例4-5>
上記化学式(2-3-1)で表されるモノマー(m=2)の代わりに上記化学式(2-3-1)で表されるモノマー(m=10)を上記ポジ型液晶材料に添加した点以外は、実施例4-1と同様にして実施例4-5の液晶パネルを作製した。
<Example 4-5>
Instead of the monomer (m = 2) represented by the chemical formula (2-3-1), the monomer (m = 10) represented by the chemical formula (2-3-1) was added to the positive liquid crystal material. A liquid crystal panel of Example 4-5 was produced in the same manner as Example 4-1, except for the above.
<実施例4-6>
上記化学式(2-3-1)で表されるモノマー(m=2)の代わりに上記化学式(2-3-1)で表されるモノマー(m=12)を上記ポジ型液晶材料に添加した点以外は、実施例4-1と同様にして実施例4-6の液晶パネルを作製した。
<Example 4-6>
A monomer (m = 12) represented by the chemical formula (2-3-1) was added to the positive liquid crystal material instead of the monomer (m = 2) represented by the chemical formula (2-3-1). A liquid crystal panel of Example 4-6 was produced in the same manner as Example 4-1, except for the above.
<特性評価4>
実施例4-1~4-6で作製したFFSモードの液晶パネルについて、実施例1及び比較例1と同様に、上記特性評価を行った。結果を下記表4に示した。
<Characteristic evaluation 4>
For the FFS mode liquid crystal panels fabricated in Examples 4-1 to 4-6, the above-described characteristic evaluation was performed in the same manner as in Example 1 and Comparative Example 1. The results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
表4に示す結果より、VHR及びrDCについてはいずれの上記化学式(2-3-1)中のmの値でも良好な結果であり、高VHR、低rDCを示した。一方、mの値が増加するほど、コントラストが若干増加傾向を示した。アルキル鎖長の増加とともに、モノマーの柔軟性が向上し、特にmが8以上で若干液晶化合物の配向方位の制御性が向上したと考えられる。 From the results shown in Table 4, VHR and rDC were good results at any value of m in the above chemical formula (2-3-1), indicating high VHR and low rDC. On the other hand, as the value of m increases, the contrast tends to increase slightly. As the alkyl chain length increases, the flexibility of the monomer is improved. Particularly, when m is 8 or more, the controllability of the orientation direction of the liquid crystal compound is considered to be slightly improved.
<実施例5>
(液晶パネルの作製)
FFSモードの液晶パネルを以下の方法により実際に作製した。まず、TFTが形成され、酸化インジウム錫(Indium Tin Oxide:ITO)製のFFS電極構造を有する画素電極と絶縁膜と共通電極が積層されたTFT基板(アクティブマトリクス基板)と、電極を有さず、カラーフィルタ上に配向層及びインセル位相差層がこの順に積層された対向基板とを用意した。なお、インセル位相差層は、ラビング処理を施した配向層上で、反応性のアクリル系モノマーを重合させたポリマーから構成されている。続いて、TFT基板に水平配向用のポリイミド(ポリアミック酸)系の配向膜材料(配向剤)を塗布した後、200℃で40分間、オーブン中で焼成を行い、その後、ラビング処理を施して水平配向膜を形成した。続いて、対向基板にシール材(積水化学工業社製、フォトレック)を塗布し、上記シール材で囲まれた領域に実施例1と同じ液晶組成物を滴下し、TFT基板を貼り合せ液晶パネルを作製した。
<Example 5>
(Production of liquid crystal panel)
An FFS mode liquid crystal panel was actually produced by the following method. First, a TFT substrate (active matrix substrate) in which a pixel electrode having an FFS electrode structure made of indium tin oxide (ITO) made of indium tin oxide (ITO), an insulating film, and a common electrode is laminated, and having no electrode. A counter substrate in which an alignment layer and an in-cell retardation layer were laminated in this order on a color filter was prepared. The in-cell retardation layer is made of a polymer obtained by polymerizing a reactive acrylic monomer on an alignment layer subjected to rubbing treatment. Subsequently, a horizontal alignment polyimide (polyamic acid) -based alignment film material (alignment agent) is applied to the TFT substrate, followed by baking in an oven at 200 ° C. for 40 minutes, and then a rubbing treatment to perform horizontal processing. An alignment film was formed. Subsequently, a sealing material (manufactured by Sekisui Chemical Co., Ltd., Photorec) is applied to the counter substrate, the same liquid crystal composition as in Example 1 is dropped on the area surrounded by the sealing material, and the TFT substrate is bonded to the liquid crystal panel. Was made.
続いて、液晶パネルの温度をTNI以上(100℃)に加熱しながら、ブラックライト(東芝ライテック社製、FHF32BLB-T)を用いて、液晶パネルに対して電圧無印加状態でTFT基板側の法線方向から直線偏光紫外線(波長300~340nm)を1.7mW/cmで3000秒(5J/cm)間照射し、配向制御層の形成及びシール材の硬化を行った。なお、直線偏光紫外線照射による配向制御層により液晶分子が並ぶ方位方向と、配向膜のラビング処理により液晶分子が並ぶ方位方向とは同じになるように、紫外線照射及びラビング処理は行った。その後、液晶パネルの温度を室温に戻すことで、配向制御層(ポリマー層)及びインセル位相差層を有するFFSモードの液晶パネルを作製した。 Subsequently, while heating the temperature of the liquid crystal panel than T NI (100 ° C.), a black light (Toshiba Lighting & Technology Corp., FHF32BLB-T) using, the TFT substrate side when no voltage is applied to the liquid crystal panel From the normal direction, linearly polarized ultraviolet light (wavelength 300 to 340 nm) was irradiated at 1.7 mW / cm 2 for 3000 seconds (5 J / cm 2 ) to form the orientation control layer and cure the sealing material. In addition, the ultraviolet irradiation and the rubbing treatment were performed so that the azimuth direction in which the liquid crystal molecules are aligned by the alignment control layer by linearly polarized ultraviolet irradiation is the same as the azimuth direction in which the liquid crystal molecules are aligned by the rubbing treatment of the alignment film. Thereafter, the temperature of the liquid crystal panel was returned to room temperature to produce an FFS mode liquid crystal panel having an alignment control layer (polymer layer) and an in-cell retardation layer.
本実施例の液晶パネルの屋外で視認性を確認したところ、良好であった。 When the visibility of the liquid crystal panel of this example was confirmed outdoors, it was good.
[付記]
本発明の一態様(以下、第一の態様とも言う。)は、液晶材料と、少なくとも一種のモノマーとを含有し、上記少なくとも一種のモノマーは、光吸収に異方性がある光官能基を有するモノマーを含むことを特徴とする液晶組成物であってもよい。上記液晶組成物は、上記光吸収に異方性がある光官能基(偏光吸収官能基)を有するモノマー(偏光吸収性モノマー)を含むため、上記液晶組成物を用いて作製される液晶表示装置のコントラストを向上することができる。
[Appendix]
One embodiment of the present invention (hereinafter also referred to as a first embodiment) contains a liquid crystal material and at least one monomer, and the at least one monomer has a photofunctional group having anisotropy in light absorption. The liquid crystal composition characterized by including the monomer which has may be sufficient. Since the liquid crystal composition includes a monomer (polarization-absorbing monomer) having a photofunctional group (polarization-absorbing functional group) having anisotropy in the light absorption, a liquid crystal display device produced using the liquid-crystal composition The contrast can be improved.
本発明の第一の態様において、上記光吸収に異方性がある光官能基は、置換基を有してもよいシンナメート基、置換基を有してもよいカルコン基、及び、置換基を有してもよいアゾベンゼン基からなる群より選択される少なくとも一種の光官能基(水平配向用官能基)を含んでもよい。これにより、液晶化合物の水平配向(配向方位の制御)が可能となる。 In the first aspect of the present invention, the photofunctional group having anisotropy in light absorption includes a cinnamate group which may have a substituent, a chalcone group which may have a substituent, and a substituent. It may contain at least one photofunctional group (functional group for horizontal alignment) selected from the group consisting of azobenzene groups that may have. Thereby, the horizontal alignment (control of alignment azimuth | direction) of a liquid crystal compound is attained.
本発明の他の一態様(以下、第二の態様とも言う。)は、液晶材料と、少なくとも一種のモノマーとを含有し、上記少なくとも一種のモノマーは、置換基を有してもよいシンナメート基を有するモノマー、置換基を有してもよいカルコン基を有するモノマー、及び、置換基を有してもよいアゾベンゼン基を有するモノマーからなる群より選択される少なくとも一種の光反応性モノマーを含むことを特徴とする液晶組成物であってもよい。上記光官能基は、偏光吸収性モノマーとして機能可能な光反応性モノマーを含むため、上記液晶組成物を用いて作製される液晶表示装置のコントラストを向上することができる。 Another embodiment of the present invention (hereinafter also referred to as a second embodiment) contains a liquid crystal material and at least one monomer, and the at least one monomer may have a substituent. And at least one photoreactive monomer selected from the group consisting of a monomer having a chalcone group which may have a substituent, and a monomer having an azobenzene group which may have a substituent. The liquid crystal composition characterized by the above may be used. Since the photofunctional group includes a photoreactive monomer that can function as a polarization-absorbing monomer, the contrast of a liquid crystal display device manufactured using the liquid crystal composition can be improved.
本発明の第一の態様において、上記光吸収に異方性がある光官能基は、上記置換基を有してもよいシンナメート基を含んでもよい。本発明の第二の態様において、上記少なくとも一種の光反応性モノマーは、上記置換基を有してもよいシンナメート基を有するモノマーを少なくとも一種を含んでもよい。これらにより、液晶表示装置の耐光性を向上することができる。 In the first aspect of the present invention, the photofunctional group having anisotropy in light absorption may include a cinnamate group which may have the substituent. In the second embodiment of the present invention, the at least one photoreactive monomer may include at least one monomer having a cinnamate group which may have the substituent. As a result, the light resistance of the liquid crystal display device can be improved.
本発明の第一及び第二の態様において、上記置換基を有してもよいシンナメート基を有するモノマーは、下記化学式(1)で表される少なくとも一種のモノマー(モノマー(1))を含んでもよい。これにより、液晶材料へのモノマーの溶解性を向上できるとともに、偏光吸収による液晶化合物の配向制御性をより優れたものとすることができる。
Figure JPOXMLDOC01-appb-C000025
(式中、P及びPは、同一又は異なって、ビニル基、又は、イソプロペニル基を表す。
Sp、Sp及びSpは、同一又は異なって、-O-基、-S-基、-COO-基、-OCO-基、-NHCO-基、-CONH-基、-NHCS-基、-CSNH-基、又は、直接結合を表す。
及びZは、同一又は異なって、炭素数1~12の、直鎖状、分岐状若しくは環状のアルキレン基、又は、直接結合を表す。
フェニレン基が有する少なくとも一つの水素原子は、置換されていてもよい。)
In the first and second embodiments of the present invention, the monomer having a cinnamate group which may have a substituent may include at least one monomer (monomer (1)) represented by the following chemical formula (1). Good. Thereby, the solubility of the monomer in the liquid crystal material can be improved, and the alignment controllability of the liquid crystal compound by polarized light absorption can be further improved.
Figure JPOXMLDOC01-appb-C000025
(In formula, P < 1 > and P < 2 > are the same or different, and represent a vinyl group or an isopropenyl group.
Sp 1 , Sp 2 and Sp 3 are the same or different and are —O— group, —S— group, —COO— group, —OCO— group, —NHCO— group, —CONH— group, —NHCS— group, —CSNH— represents a direct bond.
Z 1 and Z 2 are the same or different and each represents a linear, branched or cyclic alkylene group having 1 to 12 carbon atoms or a direct bond.
At least one hydrogen atom of the phenylene group may be substituted. )
本発明の第一及び第二の態様において、上記化学式(1)で表される少なくとも一種のモノマーは、下記化学式(2-1)で表されるモノマーと下記化学式(2-2)で表されるモノマーとの少なくとも一方を含んでもよい。これにより、液晶配向性をより高くすることができる。
Figure JPOXMLDOC01-appb-C000026
In the first and second embodiments of the present invention, the at least one monomer represented by the chemical formula (1) is represented by the monomer represented by the following chemical formula (2-1) and the following chemical formula (2-2). Or at least one of the monomers. Thereby, liquid crystal orientation can be made higher.
Figure JPOXMLDOC01-appb-C000026
本発明の第一及び第二の態様において、上記液晶材料は、正の誘電率異方性を有してもよい。これにより、液晶表示装置の耐光性を向上することができる。 In the first and second aspects of the present invention, the liquid crystal material may have a positive dielectric anisotropy. Thereby, the light resistance of a liquid crystal display device can be improved.
本発明の第一及び第二の態様において、上記液晶材料は、負の誘電率異方性を有してもよい。これにより、液晶表示装置のコントラストを更に向上することができる。 In the first and second aspects of the present invention, the liquid crystal material may have negative dielectric anisotropy. Thereby, the contrast of the liquid crystal display device can be further improved.
本発明の第一及び第二の態様において、上記液晶材料は、アルケニル基を有するニュートラル液晶化合物を含有してもよい。これにより、液晶材料の応答性能を向上し、高速化することができる。 In the first and second embodiments of the present invention, the liquid crystal material may contain a neutral liquid crystal compound having an alkenyl group. Thereby, the response performance of the liquid crystal material can be improved and the speed can be increased.
本発明の更に他の一態様(以下、第三の態様とも言う。)は、液晶材料を含有する液晶層と、平面視において上記液晶層を囲むように配置されたシール材と、上記液晶層を挟持する一対の基板と、平面視において上記シール材で囲まれた領域内に、上記液晶層と接するように配置された配向制御層とを備え、上記配向制御層は、上記液晶材料中の液晶化合物を上記基板面に対して垂直又は水平方向に配向させるものであり、少なくとも一種のモノマーを重合させてなるポリマーを含有し、上記少なくとも一種のモノマーは、下記化学式(1)で表される少なくとも一種のモノマー(モノマー(1))を含むことを特徴とする液晶表示装置であってもよい。
Figure JPOXMLDOC01-appb-C000027
(式中、P及びPは、同一又は異なって、ビニル基、又は、イソプロペニル基を表す。
Sp、Sp及びSpは、同一又は異なって、-O-基、-S-基、-COO-基、-OCO-基、-NHCO-基、-CONH-基、-NHCS-基、-CSNH-基、又は、直接結合を表す。
及びZは、同一又は異なって、炭素数1~12の、直鎖状、分岐状若しくは環状のアルキレン基、又は、直接結合を表す。
フェニレン基が有する少なくとも一つの水素原子は、置換されていてもよい。)
Still another embodiment of the present invention (hereinafter also referred to as a third embodiment) includes a liquid crystal layer containing a liquid crystal material, a sealing material disposed so as to surround the liquid crystal layer in plan view, and the liquid crystal layer. And an alignment control layer disposed in contact with the liquid crystal layer in a region surrounded by the sealing material in plan view, the alignment control layer in the liquid crystal material The liquid crystal compound is aligned vertically or horizontally with respect to the substrate surface, contains a polymer obtained by polymerizing at least one monomer, and the at least one monomer is represented by the following chemical formula (1). It may be a liquid crystal display device including at least one monomer (monomer (1)).
Figure JPOXMLDOC01-appb-C000027
(In formula, P < 1 > and P < 2 > are the same or different, and represent a vinyl group or an isopropenyl group.
Sp 1 , Sp 2 and Sp 3 are the same or different and are —O— group, —S— group, —COO— group, —OCO— group, —NHCO— group, —CONH— group, —NHCS— group, —CSNH— represents a direct bond.
Z 1 and Z 2 are the same or different and each represents a linear, branched or cyclic alkylene group having 1 to 12 carbon atoms or a direct bond.
At least one hydrogen atom of the phenylene group may be substituted. )
上記モノマー(1)は、光吸収に異方性がある光官能基(偏光吸収官能基)として機能し得るシンナメート基を有し、上記配向制御層は、上記モノマー(1)を含む少なくとも一種のモノマーを重合させてなるポリマーを含有するため、上記液晶表示装置のコントラストを向上することができる。また、上記液晶表示装置は、従来の配向膜を介さず、シール材によって一対の基板が互いに接合可能であるため、基板間の剥離強度が高くすることができる。また、上記モノマー(1)は、偏光吸収官能基として機能し得るシンナメート基を有し、偏光を吸収して配向規制力を発現することができため、無偏光光の照射に比べて、液晶層に照射する光照射強度を低くすることができる。更に、上記液晶表示装置は、焼成工程が必要な従来の配向膜を備えなくてもよいため、インセル位相差層を備えたとしても、焼成工程によってインセル位相差層の位相差が低下してしまうことを効果的に抑制することができる。また、上記モノマー(1)は、シンナメート基を有することから、上記液晶表示装置の耐光性を向上することができる。更に、上記モノマー(1)によれば、液晶材料へのモノマーの溶解性を向上できるとともに、偏光吸収による液晶化合物の配向制御性をより優れたものとすることができる。 The monomer (1) has a cinnamate group that can function as a photofunctional group having anisotropy in light absorption (polarized light absorption functional group), and the orientation control layer includes at least one kind of the monomer (1). Since the polymer obtained by polymerizing the monomer is contained, the contrast of the liquid crystal display device can be improved. In the liquid crystal display device, a pair of substrates can be bonded to each other with a sealing material without using a conventional alignment film, so that the peel strength between the substrates can be increased. In addition, the monomer (1) has a cinnamate group that can function as a polarization-absorbing functional group, and can absorb polarized light and express an alignment regulating force. Therefore, the liquid crystal layer can be compared with irradiation with non-polarized light. It is possible to reduce the light irradiation intensity applied to the. Furthermore, since the liquid crystal display device does not have to include a conventional alignment film that requires a baking process, even if the in-cell retardation layer is provided, the retardation of the in-cell retardation layer is reduced by the baking process. This can be effectively suppressed. Moreover, since the monomer (1) has a cinnamate group, the light resistance of the liquid crystal display device can be improved. Furthermore, according to the monomer (1), the solubility of the monomer in the liquid crystal material can be improved, and the alignment controllability of the liquid crystal compound by polarized light absorption can be further improved.
本発明の第三の態様において、上記化学式(1)で表される少なくとも一種のモノマーは、下記化学式(2-1)で表されるモノマーと下記化学式(2-2)で表されるモノマーとの少なくとも一方を含んでもよい。これにより、液晶配向性をより高くすることができる。
Figure JPOXMLDOC01-appb-C000028
In the third embodiment of the present invention, the at least one monomer represented by the chemical formula (1) includes a monomer represented by the following chemical formula (2-1) and a monomer represented by the following chemical formula (2-2): May be included. Thereby, liquid crystal orientation can be made higher.
Figure JPOXMLDOC01-appb-C000028
本発明の第三の態様において、上記液晶材料は、正の誘電率異方性を有してもよい。これにより、上記液晶表示装置の耐光性を向上することができる。 In the third aspect of the present invention, the liquid crystal material may have a positive dielectric anisotropy. Thereby, the light resistance of the liquid crystal display device can be improved.
本発明の第三の態様において、上記液晶材料は、負の誘電率異方性を有してもよい。これにより、上記液晶表示装置のコントラストを更に向上することができる。 In the third aspect of the present invention, the liquid crystal material may have negative dielectric anisotropy. Thereby, the contrast of the liquid crystal display device can be further improved.
本発明の第三の態様において、上記液晶材料は、アルケニル基を有するニュートラル液晶化合物を含有してもよい。これにより、液晶材料の応答性能を向上し、高速化することができる。 In the third aspect of the present invention, the liquid crystal material may contain a neutral liquid crystal compound having an alkenyl group. Thereby, the response performance of the liquid crystal material can be improved and the speed can be increased.
本発明の第三の態様において、上記液晶表示装置は、横電界型表示モードであってもよい。 In the third aspect of the present invention, the liquid crystal display device may be in a horizontal electric field type display mode.
本発明の更に他の一態様(以下、第四の態様とも言う。)は、シール材によって接合した一対の基板間に、液晶材料と少なくとも一種のモノマーとを含有する液晶組成物を封止して液晶層を形成する工程と、上記液晶層に偏光紫外線を照射し、上記一対の基板と上記液晶層との間に、上記少なくとも一種のモノマーを重合させてなる配向制御層を形成する工程とを有し、上記少なくとも一種のモノマーは、光吸収に異方性がある光官能基(偏光吸収官能基)を有するモノマー(偏光吸収性モノマー)を含み、上記配向制御層は、上記液晶材料中の液晶化合物を上記基板面に対して垂直又は水平方向に配向させるものであることを特徴とする液晶表示装置の製造方法であってもよい。 In still another embodiment of the present invention (hereinafter, also referred to as a fourth embodiment), a liquid crystal composition containing a liquid crystal material and at least one monomer is sealed between a pair of substrates bonded by a sealing material. Forming a liquid crystal layer, irradiating the liquid crystal layer with polarized ultraviolet light, and forming an alignment control layer obtained by polymerizing the at least one monomer between the pair of substrates and the liquid crystal layer; And the at least one monomer includes a monomer (polarization-absorbing functional group) having a photofunctional group (polarization-absorbing functional group) having anisotropy in light absorption, and the alignment control layer is formed in the liquid crystal material. The liquid crystal compound may be oriented vertically or horizontally with respect to the substrate surface.
本発明の第四の態様において、上記配向制御層を形成する工程では、上記液晶層を上記液晶材料のネマティック相-等方相転移点以上、140℃以下の温度で加熱しながら、偏光紫外線を照射してもよい。 In the fourth aspect of the present invention, in the step of forming the alignment control layer, polarized ultraviolet rays are irradiated while heating the liquid crystal layer at a temperature of not less than the nematic phase-isotropic phase transition point of the liquid crystal material and not more than 140 ° C. It may be irradiated.
以上に示した本発明の各態様は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。 Each aspect of the present invention described above may be appropriately combined without departing from the scope of the present invention.
10、20:基板
11、21:透明基板
12:ブラックマトリクス
13:カラーフィルタ
14:オーバーコート層
22:共通電極
23:絶縁層
24:画素電極
30:液晶層
31:液晶化合物(液晶分子)
40:シール材
50:配向制御層
60:偏光板
61:アウトセル位相差層
70:バックライト
80:配向膜
90:インセル位相差層
91:配向層
92:液晶性モノマーの重合体
100、100B:液晶表示装置
10, 20: Substrate 11, 21: Transparent substrate 12: Black matrix 13: Color filter 14: Overcoat layer 22: Common electrode 23: Insulating layer 24: Pixel electrode 30: Liquid crystal layer 31: Liquid crystal compound (liquid crystal molecule)
40: Sealing material 50: Alignment control layer 60: Polarizing plate 61: Out-cell retardation layer 70: Backlight 80: Alignment film 90: In-cell retardation layer 91: Alignment layer 92: Liquid crystalline monomer polymer 100, 100B: Liquid crystal Display device

Claims (15)

  1. 液晶材料と、少なくとも一種のモノマーとを含有し、
    前記少なくとも一種のモノマーは、置換基を有してもよいシンナメート基を有するモノマー、置換基を有してもよいカルコン基を有するモノマー、及び、置換基を有してもよいアゾベンゼン基を有するモノマーからなる群より選択される少なくとも一種の光反応性モノマーを含むことを特徴とする液晶組成物。
    Containing a liquid crystal material and at least one monomer,
    The at least one monomer is a monomer having a cinnamate group which may have a substituent, a monomer having a chalcone group which may have a substituent, and a monomer having an azobenzene group which may have a substituent. A liquid crystal composition comprising at least one photoreactive monomer selected from the group consisting of:
  2. 前記少なくとも一種の光反応性モノマーは、前記置換基を有してもよいシンナメート基を有するモノマーを少なくとも一種含むことを特徴とする請求項1記載の液晶組成物。 2. The liquid crystal composition according to claim 1, wherein the at least one photoreactive monomer contains at least one monomer having a cinnamate group which may have the substituent.
  3. 前記置換基を有してもよいシンナメート基を有するモノマーは、下記化学式(1)で表される少なくとも一種のモノマーを含むことを特徴とする請求項2記載の液晶組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、P及びPは、同一又は異なって、ビニル基、又は、イソプロペニル基を表す。
    Sp、Sp及びSpは、同一又は異なって、-O-基、-S-基、-COO-基、-OCO-基、-NHCO-基、-CONH-基、-NHCS-基、-CSNH-基、又は、直接結合を表す。
    及びZは、同一又は異なって、炭素数1~12の、直鎖状、分岐状若しくは環状のアルキレン基、又は、直接結合を表す。
    フェニレン基が有する少なくとも一つの水素原子は、置換されていてもよい。)
    The liquid crystal composition according to claim 2, wherein the monomer having a cinnamate group which may have a substituent includes at least one monomer represented by the following chemical formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In formula, P < 1 > and P < 2 > are the same or different, and represent a vinyl group or an isopropenyl group.
    Sp 1 , Sp 2 and Sp 3 are the same or different and are —O— group, —S— group, —COO— group, —OCO— group, —NHCO— group, —CONH— group, —NHCS— group, —CSNH— represents a direct bond.
    Z 1 and Z 2 are the same or different and each represents a linear, branched or cyclic alkylene group having 1 to 12 carbon atoms or a direct bond.
    At least one hydrogen atom of the phenylene group may be substituted. )
  4. 前記化学式(1)で表される少なくとも一種のモノマーは、下記化学式(2-1)で表されるモノマーと下記化学式(2-2)で表されるモノマーとの少なくとも一方を含むことを特徴とする請求項3記載の液晶組成物。
    Figure JPOXMLDOC01-appb-C000002
    The at least one monomer represented by the chemical formula (1) includes at least one of a monomer represented by the following chemical formula (2-1) and a monomer represented by the following chemical formula (2-2). The liquid crystal composition according to claim 3.
    Figure JPOXMLDOC01-appb-C000002
  5. 前記液晶材料は、正の誘電率異方性を有することを特徴とする請求項1~4記載の液晶組成物。 5. The liquid crystal composition according to claim 1, wherein the liquid crystal material has a positive dielectric anisotropy.
  6. 前記液晶材料は、負の誘電率異方性を有することを特徴とする請求項1~4記載の液晶組成物。 5. The liquid crystal composition according to claim 1, wherein the liquid crystal material has negative dielectric anisotropy.
  7. 前記液晶材料は、アルケニル基を有するニュートラル液晶化合物を含有することを特徴とする請求項1~6のいずれかに記載の液晶組成物。 The liquid crystal composition according to any one of claims 1 to 6, wherein the liquid crystal material contains a neutral liquid crystal compound having an alkenyl group.
  8. 液晶材料を含有する液晶層と、
    平面視において前記液晶層を囲むように配置されたシール材と、
    前記液晶層を挟持する一対の基板と、
    平面視において前記シール材で囲まれた領域内に、前記液晶層と接するように配置された配向制御層とを備え、
    前記配向制御層は、前記液晶材料中の液晶化合物を前記基板面に対して垂直又は水平方向に配向させるものであり、少なくとも一種のモノマーを重合させてなるポリマーを含有し、
    前記少なくとも一種のモノマーは、下記化学式(1)で表される少なくとも一種のモノマーを含むことを特徴とする液晶表示装置。
    Figure JPOXMLDOC01-appb-C000003
    (式中、P及びPは、同一又は異なって、ビニル基、又は、イソプロペニル基を表す。
    Sp、Sp及びSpは、同一又は異なって、-O-基、-S-基、-COO-基、-OCO-基、-NHCO-基、-CONH-基、-NHCS-基、-CSNH-基、又は、直接結合を表す。
    及びZは、同一又は異なって、炭素数1~12の、直鎖状、分岐状若しくは環状のアルキレン基、又は、直接結合を表す。
    フェニレン基が有する少なくとも一つの水素原子は、置換されていてもよい。)
    A liquid crystal layer containing a liquid crystal material;
    A sealing material disposed so as to surround the liquid crystal layer in plan view;
    A pair of substrates sandwiching the liquid crystal layer;
    In a region surrounded by the sealing material in plan view, an alignment control layer disposed so as to be in contact with the liquid crystal layer,
    The alignment control layer is for aligning the liquid crystal compound in the liquid crystal material in the vertical or horizontal direction with respect to the substrate surface, and contains a polymer obtained by polymerizing at least one monomer,
    The liquid crystal display device, wherein the at least one monomer includes at least one monomer represented by the following chemical formula (1).
    Figure JPOXMLDOC01-appb-C000003
    (In formula, P < 1 > and P < 2 > are the same or different, and represent a vinyl group or an isopropenyl group.
    Sp 1 , Sp 2 and Sp 3 are the same or different and are —O— group, —S— group, —COO— group, —OCO— group, —NHCO— group, —CONH— group, —NHCS— group, —CSNH— represents a direct bond.
    Z 1 and Z 2 are the same or different and each represents a linear, branched or cyclic alkylene group having 1 to 12 carbon atoms or a direct bond.
    At least one hydrogen atom of the phenylene group may be substituted. )
  9. 前記化学式(1)で表される少なくとも一種のモノマーは、下記化学式(2-1)で表されるモノマーと下記化学式(2-2)で表されるモノマーとの少なくとも一方を含むことを特徴とする請求項8記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-C000004
    The at least one monomer represented by the chemical formula (1) includes at least one of a monomer represented by the following chemical formula (2-1) and a monomer represented by the following chemical formula (2-2). The liquid crystal display device according to claim 8.
    Figure JPOXMLDOC01-appb-C000004
  10. 前記液晶材料は、正の誘電率異方性を有することを特徴とする請求項8又は9記載の液晶表示装置。 The liquid crystal display device according to claim 8, wherein the liquid crystal material has a positive dielectric anisotropy.
  11. 前記液晶材料は、負の誘電率異方性を有することを特徴とする請求項8又は9記載の液晶表示装置。 10. The liquid crystal display device according to claim 8, wherein the liquid crystal material has negative dielectric anisotropy.
  12. 前記液晶材料は、アルケニル基を有するニュートラル液晶化合物を含有することを特徴とする請求項8~11のいずれかに記載の液晶表示装置。 12. The liquid crystal display device according to claim 8, wherein the liquid crystal material contains a neutral liquid crystal compound having an alkenyl group.
  13. 横電界型表示モードであることを特徴とする請求項8~12のいずれかに記載の液晶表示装置。 13. The liquid crystal display device according to claim 8, wherein the liquid crystal display device is in a horizontal electric field type display mode.
  14. シール材によって接合した一対の基板間に、液晶材料と少なくとも一種のモノマーとを含有する液晶組成物を封止して液晶層を形成する工程と、
    前記液晶層に偏光紫外線を照射し、前記一対の基板と前記液晶層との間に、前記少なくとも一種のモノマーを重合させてなる配向制御層を形成する工程とを有し、
    前記少なくとも一種のモノマーは、光吸収に異方性がある光官能基を有するモノマーを含み、
    前記配向制御層は、前記液晶材料中の液晶化合物を前記基板面に対して垂直又は水平方向に配向させるものであることを特徴とする液晶表示装置の製造方法。
    A step of sealing a liquid crystal composition containing a liquid crystal material and at least one monomer between a pair of substrates bonded by a sealing material to form a liquid crystal layer;
    Illuminating the liquid crystal layer with polarized ultraviolet light, and forming an alignment control layer formed by polymerizing the at least one monomer between the pair of substrates and the liquid crystal layer,
    The at least one monomer includes a monomer having a photofunctional group having anisotropy in light absorption,
    The method of manufacturing a liquid crystal display device, wherein the alignment control layer aligns a liquid crystal compound in the liquid crystal material in a vertical or horizontal direction with respect to the substrate surface.
  15. 前記配向制御層を形成する工程では、前記液晶層を前記液晶材料のネマティック相-等方相転移点以上、140℃以下の温度で加熱しながら、偏光紫外線を照射することを特徴とする請求項14記載の液晶表示装置の製造方法。 The step of forming the alignment control layer irradiates polarized ultraviolet rays while heating the liquid crystal layer at a temperature not lower than the nematic phase-isotropic phase transition point of the liquid crystal material and not higher than 140 ° C. 14. A method for producing a liquid crystal display device according to 14.
PCT/JP2018/019223 2017-05-25 2018-05-18 Liquid crystal composition, liquid crystal display device, and production method for liquid crystal display device WO2018216605A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017103650 2017-05-25
JP2017-103650 2017-05-25

Publications (1)

Publication Number Publication Date
WO2018216605A1 true WO2018216605A1 (en) 2018-11-29

Family

ID=64396404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019223 WO2018216605A1 (en) 2017-05-25 2018-05-18 Liquid crystal composition, liquid crystal display device, and production method for liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2018216605A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017622A1 (en) * 2018-07-20 2020-01-23 公立大学法人兵庫県立大学 Photoreactive composition, liquid crystal cell using photoreactive composition, and method for producing liquid crystal cell
CN111752048A (en) * 2019-03-29 2020-10-09 夏普株式会社 Liquid crystal display device having a plurality of pixel electrodes
WO2023243291A1 (en) * 2022-06-16 2023-12-21 スタンレー電気株式会社 Liquid crystal element, and method for producing liquid crystal element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131534A (en) * 2000-10-19 2002-05-09 Fuji Photo Film Co Ltd Optical compensation sheet, polarizer and liquid crystal display device
JP2010285499A (en) * 2009-06-10 2010-12-24 Dic Corp Liquid crystal composition containing polymerizable compound and liquid crystal display element using the same
WO2013088980A1 (en) * 2011-12-14 2013-06-20 Jnc株式会社 Liquid crystal composition and liquid crystal display element
JP2014097938A (en) * 2012-11-13 2014-05-29 Jnc Corp Polymerizable compound, polymerizable composition and liquid crystal display element
JP2015067821A (en) * 2013-10-01 2015-04-13 Jsr株式会社 Liquid crystal composition, liquid crystal display element and method of manufacturing liquid crystal display element
WO2015102076A1 (en) * 2014-01-06 2015-07-09 Dic株式会社 Nematic liquid crystal composition and liquid crystal display device using same
WO2017026272A1 (en) * 2015-08-11 2017-02-16 Dic株式会社 Liquid crystal display element
WO2017082230A1 (en) * 2015-11-11 2017-05-18 Dic株式会社 Composition, and liquid crystal display element using same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131534A (en) * 2000-10-19 2002-05-09 Fuji Photo Film Co Ltd Optical compensation sheet, polarizer and liquid crystal display device
JP2010285499A (en) * 2009-06-10 2010-12-24 Dic Corp Liquid crystal composition containing polymerizable compound and liquid crystal display element using the same
WO2013088980A1 (en) * 2011-12-14 2013-06-20 Jnc株式会社 Liquid crystal composition and liquid crystal display element
JP2014097938A (en) * 2012-11-13 2014-05-29 Jnc Corp Polymerizable compound, polymerizable composition and liquid crystal display element
JP2015067821A (en) * 2013-10-01 2015-04-13 Jsr株式会社 Liquid crystal composition, liquid crystal display element and method of manufacturing liquid crystal display element
WO2015102076A1 (en) * 2014-01-06 2015-07-09 Dic株式会社 Nematic liquid crystal composition and liquid crystal display device using same
WO2017026272A1 (en) * 2015-08-11 2017-02-16 Dic株式会社 Liquid crystal display element
WO2017082230A1 (en) * 2015-11-11 2017-05-18 Dic株式会社 Composition, and liquid crystal display element using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020017622A1 (en) * 2018-07-20 2020-01-23 公立大学法人兵庫県立大学 Photoreactive composition, liquid crystal cell using photoreactive composition, and method for producing liquid crystal cell
JPWO2020017622A1 (en) * 2018-07-20 2021-08-05 公立大学法人兵庫県立大学 A photoreactive composition, a liquid crystal cell using the photoreactive composition, and a method for producing a liquid crystal cell.
JP7471577B2 (en) 2018-07-20 2024-04-22 兵庫県公立大学法人 Photoreactive composition, liquid crystal cell using photoreactive composition, and method for manufacturing liquid crystal cell
CN111752048A (en) * 2019-03-29 2020-10-09 夏普株式会社 Liquid crystal display device having a plurality of pixel electrodes
CN111752048B (en) * 2019-03-29 2023-07-04 夏普株式会社 Liquid crystal display device having a light shielding layer
WO2023243291A1 (en) * 2022-06-16 2023-12-21 スタンレー電気株式会社 Liquid crystal element, and method for producing liquid crystal element

Similar Documents

Publication Publication Date Title
CN109416486B (en) Liquid crystal display device and method for manufacturing the same
WO2015146369A1 (en) Liquid crystal display device and production method for liquid crystal display device
CN109541854B (en) Liquid crystal diffraction grating, liquid crystal composition, method for producing liquid crystal diffraction grating, and wire grid polarizing plate
US11168254B2 (en) Liquid crystal display device and production method for liquid crystal display device
WO2018216605A1 (en) Liquid crystal composition, liquid crystal display device, and production method for liquid crystal display device
WO2018221360A1 (en) Liquid crystal display device and method for manufacturing liquid crystal display device
CN109416484B (en) Liquid crystal display device and method for manufacturing liquid crystal display device
WO2017208914A1 (en) Liquid crystal panel, switchable mirror panel and switchable mirror display
WO2019009222A1 (en) Liquid crystal composition, liquid crystal display device, and production method for liquid crystal display device
KR20140070478A (en) Film Patterned Retard with periodically micro patterned structure
WO2018021521A1 (en) Liquid crystal display panel and liquid crystal display device
CN110244494B (en) Liquid crystal display device, method for producing same, and monomer material for retardation layer
CN111373319B (en) Liquid crystal display device having a light shielding layer
US10824014B2 (en) Liquid crystal display device, method for producing liquid crystal display device, and monomer material for retardation layer
CN110678807B (en) Liquid crystal display device and method for manufacturing liquid crystal display device
WO2018180853A1 (en) Liquid crystal display device, production method for liquid crystal display device, and retardation layer-forming monomer
US20190212616A1 (en) Liquid crystal display device and method for producing liquid crystal display device
WO2019009166A1 (en) Liquid crystal display device and method for manufacturing liquid crystal display device
JP6568640B2 (en) Liquid crystal display
JP2019159102A (en) Liquid crystal display device
KR20200050750A (en) Polarizing plates and liquid crystal display devices
US20200026128A1 (en) Liquid crystal display device and method for manufacturing liquid crystal display device
JP2024077955A (en) Optical element and display device
KR20200050751A (en) Polarizing plates and liquid crystal display devices
KR20200050752A (en) Polarizing plates and liquid crystal display devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806362

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP