WO2018216311A1 - Signaling lamp monitor - Google Patents

Signaling lamp monitor Download PDF

Info

Publication number
WO2018216311A1
WO2018216311A1 PCT/JP2018/009244 JP2018009244W WO2018216311A1 WO 2018216311 A1 WO2018216311 A1 WO 2018216311A1 JP 2018009244 W JP2018009244 W JP 2018009244W WO 2018216311 A1 WO2018216311 A1 WO 2018216311A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal lamp
light
signal
monitor according
light receiving
Prior art date
Application number
PCT/JP2018/009244
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 笹原
大志 関口
郁馬 鈴木
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018002509A external-priority patent/JP6524274B2/en
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to CN201880034825.1A priority Critical patent/CN110709639A/en
Priority to US16/615,713 priority patent/US11076472B2/en
Publication of WO2018216311A1 publication Critical patent/WO2018216311A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/17Operational modes, e.g. switching from manual to automatic mode or prohibiting specific operations

Definitions

  • This disclosure relates to a signal light monitor.
  • a laminated signal lamp for informing an operator of an operating state of a production apparatus or the like.
  • the laminated signal lamp has a plurality of light emitting units.
  • the laminated signal lamp receives a signal indicating an operating state from the production apparatus, and causes the light emitting unit to emit light according to the signal.
  • the operator can know the operating state of the production apparatus based on the light emission state (lighted, blinking, off) and the light emission color.
  • An object of the present disclosure is to provide a signal lamp monitor that can easily add a communication function to a laminated signal lamp or the like in a short time and at a low cost.
  • the signal light monitor provided by one aspect of the present disclosure is used attached to a signal light that informs information by light.
  • the signal lamp monitor includes a detection unit that detects light, a control unit that generates a detection signal based on at least the detection, and a transmission unit that transmits the detection signal by wireless communication.
  • the transmission unit includes an antenna disposed vertically above the detection unit.
  • a detection signal is generated based on the light emitted from the signal lamp, and this detection signal is transmitted by wireless communication. Therefore, a communication function can be added to a conventional signal lamp without separately providing wiring for inputting a signal from the production apparatus or the signal lamp.
  • FIG. 24 It is the top view (a) and front view (b) which show a main body fixing tool. It is a perspective view which shows the whole structure of the signal lamp monitor which concerns on 9th Embodiment. It is a top view of the main body of the signal light monitor shown in FIG. It is a top view of the main body of the signal lamp monitor shown in FIG. 24, Comprising: The state which permeate
  • FIG. 1 to 7 are explanatory diagrams of the signal lamp monitor A1 according to the first embodiment.
  • FIG. 1 is a schematic diagram showing the overall configuration of the signal lamp monitor A1, and shows a state where the signal lamp monitor A1 is attached to the laminated signal lamp 900.
  • FIG. 2 is a front view of the main body of the signal light monitor A1.
  • FIG. 3 is a plan view of the main body of the signal lamp monitor A1.
  • FIG. 3 shows a state where the cover 103 (see FIG. 2) is removed.
  • FIG. 4 is an explanatory diagram of the relay block and the sensor block.
  • FIG. 5A is a front view of the sensor block
  • FIG. 5B is a rear view of the sensor block.
  • FIG. 6 is a simplified diagram showing a circuit configuration of the signal lamp monitor A1.
  • FIG. 7 is a block diagram of a management system provided with a signal lamp monitor A1.
  • the signal light monitor A1 is used by being attached to a laminated signal light 900.
  • the laminated signal lamp 900 is a signal lamp for notifying an operator of the operating state of a production apparatus in a factory.
  • the laminated signal lamp 900 is formed in a cylindrical shape by stacking a plurality of light emitting portions 901 to 903, and is provided with an attachment portion 904.
  • the laminated signal lamp 900 is mounted so that the light emitting units 901 to 903 are arranged in the vertical direction by fixing the mounting unit 904 to, for example, the top of the production apparatus.
  • the laminated signal lamp 900 receives a signal indicating an operating state (“state signal”) from the production apparatus, and causes the light emitting units 901 to 903 to emit light according to the signal.
  • Each of the light emitting units 901, 902, and 903 emits red, yellow, and blue light, for example.
  • the operator can know the operating state of the production apparatus by the light emission state (lighting, blinking, extinguishing) and light emission color of the laminated signal lamp.
  • the signal light monitor A1 includes a main body 100 and a detection unit 200.
  • the main body 100 is placed on the top of the laminated signal lamp 900.
  • the detection unit 200 extends vertically downward along the side surface of the laminated signal lamp 900 from the end of the bottom surface of the main body 100.
  • the signal lamp monitor A1 detects the light emitted from the laminated signal lamp 900 by the detection unit 200, identifies the light emission state (lighted, blinking, extinguished) and the light emission color based on the detected light, and transmits the identification result as a radio signal. .
  • the vertical direction is the y direction (y1-y2 direction)
  • the direction from the center of the main body 100 toward the detection unit 200 in the horizontal plane is the z direction (z1-z2 direction)
  • the y direction and the direction orthogonal to the z direction are x Direction (x1-x2 direction).
  • the main body 100 includes a housing 101, a circuit board 110, a wireless module 120, a switch 130, a plurality of variable resistors 140, a battery holder 150, and a connector 160. Although not shown in the figure, the main body 100 includes other circuit elements as appropriate.
  • the housing 101 houses, for example, a circuit board 110, a wireless module 120, a switch 130, a variable resistor 140, a battery holder 150, and a connector 160.
  • the housing 101 includes a case 102 and a cover 103.
  • the case 102 is made of, for example, a synthetic resin, but is not limited to this.
  • the case 102 has a bottomed cylindrical shape with a relatively small dimension measured in a direction parallel to the central axis.
  • the circuit board 110 is fitted in the opening 102 a of the case 102.
  • a cutout 102 b for attaching the detection unit 200 is provided on a part of the side wall and the bottom surface of the case 102.
  • a part of the back surface 110b of the circuit board 110 is exposed by the notch 102b.
  • the diameter of the bottom surface of the case 102 (main body 100) is made larger than the diameter of the upper surface of the stacked signal lamp 900 to be placed (FIG. 1). reference).
  • the diameter of the bottom surface of the case 102 may be smaller than the diameter of the top surface of the laminated signal lamp 900.
  • the shape of the bottom surface of the case 102 is circular according to the shape of the top surface of the laminated signal lamp 900, the present disclosure is not limited to this.
  • the bottom surface of the case 102 may have a rectangular shape or other shapes, for example.
  • the cover 103 protects the circuit board 110, the antenna 123, and the like, and is configured to cover the case 102.
  • a part of the cover 103 has a bottomed cylindrical shape with a relatively small dimension measured in a direction parallel to the central axis. Further, the cover 103 is provided with a hollow projecting portion that accommodates the antenna 123 integrally with the cylindrical portion.
  • the shape of the cover 103 is not limited to this example.
  • the cover 103 is made of a synthetic resin such as an acrylic resin, for example.
  • the cover 103 is configured to transmit light so that the solar cell 122 (described later) can receive light. When the solar cell 122 is not disposed inside, the cover 103 may be made of an opaque material.
  • the circuit board 110 has a base material made of an insulating material such as glass epoxy resin and a wiring pattern formed on the base material.
  • the circuit board 110 is circular and has a main surface 110a and a back surface 110b.
  • the main surface 110a and the back surface 110b face opposite sides in the thickness direction (y direction) of the circuit board 110.
  • the radio module 120, the switch 130, the variable resistor 140, and the battery holder 150 are mounted on the main surface 110a.
  • the wireless module 120 has a long shape along the z direction, and is arranged so that the center thereof corresponds to the center of the main surface 110a.
  • the switch 130 and the variable resistor 140 are disposed on the x2 direction side of the wireless module 120, and the battery holder 150 is disposed on the x1 direction side of the wireless module 120.
  • the diameter of the circuit board 110 can be close to the longitudinal dimension of the wireless module 120.
  • the arrangement position of each member is not limited to this example.
  • the wireless module 120 is spaced from the circuit board 110. Therefore, a circuit element or the like can be disposed between the wireless module 120 and the circuit board 110.
  • a connector 160 is mounted on the back surface 110b. In the illustrated example, the connector 160 is disposed near the edge of the circuit board 110, but the present disclosure is not limited to this.
  • the circuit board 110 is fitted into the opening 102a with the back surface 110b facing the inside of the case 102, and is fixed to the case 102 with, for example, screws. Therefore, the main surface 110 a of the circuit board 110 is exposed from the case 102, but most of the back surface 110 b is hidden by the case 102.
  • a current detection circuit 111 (see FIG. 6) and other circuit elements are also mounted. For example, a member that the operator does not need to directly operate or visually recognize is mounted on the back surface 110b.
  • the wireless module 120 performs communication conforming to the EnOcean communication standard that employs battery-less wireless transmission technology.
  • the wireless module 120 includes a module substrate 121, a solar cell 122, and an antenna 123.
  • the module substrate 121 has a base material made of an insulating material such as glass epoxy resin and a wiring pattern formed on the base material.
  • the module substrate 121 has a rectangular plate shape and has a main surface 121a and a back surface 121b.
  • the main surface 121a has the solar cell 122 and the antenna 123 mounted thereon.
  • the back surface 121b is equipped with circuit elements constituting various circuits, electronic components such as a CPU and a memory, a capacitor for charging power generated by the solar cell 122, and the like.
  • the solar cell 122 is arranged with the surface opposite to the light receiving surface 122 a facing the module substrate 121.
  • the solar cell 122 generates electric power by the light received by the light receiving surface 122a.
  • the antenna 123 is a normal mode type helical antenna in which a conductor wire is spirally wound, and is disposed on the main surface 121a of the module substrate 121 so that the central axis is parallel to the y direction. In the illustrated example, the lower end of the antenna 123 is disposed in the vicinity of the edge of the module substrate 121.
  • the antenna 123 may have another configuration such as a monopole antenna.
  • the wireless module 120 is fixed to the circuit board 110 with the back surface 121b of the module board 121 facing the circuit board 110 and being separated from the circuit board 110.
  • the wireless module 120 can perform wireless communication using the power generated by the solar battery 122 (or the power charged in the capacitor). For this reason, the wireless module 120 incorporates a wireless circuit with extremely low power consumption.
  • the communication standard of the wireless module 120 is not limited to the EnOcean communication standard.
  • communication conforms to communication standards such as Bluetooth® (registered trademark), ZigBee (registered trademark), UWB (Ultra® Wide® Band), Z-Wave, Wi-Fi (Wireless® Fidelity), and Wi-SUN (registered trademark). You may make it perform.
  • each variable resistor 140 is connected in series to the photodiode 225 and the like, and the sensitivity of the photodiode 225 and the like is individually adjusted by changing the resistance value.
  • the resistance value of the variable resistor 140 can be changed by, for example, inserting the tip of a minus driver into the adjustment groove 141 (see FIG. 2) and rotating it. By changing the resistance value, the current flowing through the photodiode 225 or the like changes, and sensitivity adjustment is performed.
  • Each variable resistor 140 is arranged such that the adjustment groove 141 faces the same direction.
  • the battery holder 150 is a holder for mounting an auxiliary battery (for example, a lithium battery).
  • auxiliary battery for example, a lithium battery.
  • the switch 130 is a switch for operating the signal light monitor A1.
  • the switch 130 is used to transmit various data and signals related to the state of the signal lamp monitor A1.
  • the switch 130 includes a cylindrical push button 131, for example.
  • the push button 131 has a shape that extends long in a direction (x2 direction) orthogonal to the longitudinal direction of the wireless module 120.
  • the switch 130 outputs an operation signal to the control circuit of the wireless module 120 when the push button 131 is pressed.
  • the control circuit generates predetermined signals by reading predetermined data or detecting the state of the signal lamp monitor A1 according to the input of the operation signal.
  • the generated signal is transmitted to the management apparatus 800 (see FIG. 7) by the communication circuit of the wireless module 120.
  • the switch 130 is pressed, the presence / absence of the battery in the battery holder 150 and the voltage are detected, and a signal corresponding to the detection result is transmitted to the management device 800.
  • the connector 160 is a connector for connecting the detection unit 200 to the main body 100.
  • the connector 160 includes, for example, five female terminals. Each female terminal is electrically connected to the wiring pattern of the circuit board 110.
  • the connector 160 is disposed at the end of the back surface 110b of the circuit board 110 in the z1 direction. A cutout 102 b is provided on the z1 direction side of the case 102. Therefore, the connector 160 is exposed without being covered by the case 102.
  • Connector 160 is arranged so that the opening for inserting the male terminal is directed in the y2 direction.
  • the detection unit 200 includes a plurality of relay blocks 210 and sensor blocks 220, 230, 240, 250 as shown in FIG.
  • each relay block 210 connects the sensor blocks 220, 230, 240, 250 to the main body 100.
  • each relay block 210 includes a case 211, a relay board 212, and connectors 213 and 214.
  • the case 211 is made of, for example, a synthetic resin.
  • the case 211 is formed of a synthetic resin (for example, ABS resin) containing an additive for reducing the amount of light transmission, and the inner surface is colored black for light shielding.
  • an additive is added and the inner surface is colored, but only one of them may be handled.
  • the cross section of the case 211 (the cross section perpendicular to the y direction) is U-shaped (that is, a shape having a relatively long base and side edges that stand up from both ends of the base).
  • the relay substrate 212 is disposed inside the case 211 having a U-shaped cross section.
  • the relay substrate 212 includes a base material made of an insulating material such as glass epoxy resin and a wiring pattern 212a formed on the base material.
  • the wiring pattern 212a includes five conductive line portions (212a), but the present disclosure is not limited to this.
  • the relay substrate 212 is fixed to the case 211 with the surface on which the wiring pattern (conductive line portion) 212a is formed facing outward.
  • the connector 213 is a connector for connecting to the connector 160 of the main body 100, the connector 214 of another relay block 210, or the connector 214 of the sensor block 220, 230, 240, 250.
  • the connector 213 includes five male terminals 213a, and each male terminal 213a is electrically connected to one of the five conductive line portions 212a.
  • the connector 214 is a connector for connecting to the connector 213 of the other relay block 210 and sensor blocks 220, 230, 240, 250.
  • the connector 214 includes five female terminals, and each female terminal is electrically connected to one of the five conductive line portions 212a. That is, each male terminal 213 a of the connector 213 is electrically connected to any one female terminal of the connector 214.
  • the sensor block 220 includes a case 211, a sensor substrate 222, and connectors 213 and 214.
  • the case 211 of the sensor block 220 has the same configuration as the case 211 of the relay block 210.
  • the sensor substrate 222 has a base material made of an insulating material such as glass epoxy resin and a wiring pattern 212a formed on the base material.
  • the other sensor blocks 230, 240, and 250 have the same configuration as the sensor block 220.
  • the sensor block 250 does not include the connector 214, and the terminal ends of the five wiring patterns are connected to each other (see FIG. 6).
  • the sensor blocks 220, 230, 240, and 250 include photodiodes 225, 235, 245, and 255, respectively.
  • the photodiodes 225, 235, 245, or 255 are mounted on the sensor substrate 222, and are electrically connected to the photodiodes so that the wiring pattern 212a forms a predetermined current path.
  • the current path formed by the wiring pattern 212a can be different for each sensor block.
  • the photodiode 225 of the sensor block 220 is connected to the current detection circuit 111 of the main body 100 via the leftmost conduction path and the rightmost conduction path, but the photodiode 235 of the sensor block 230 is The current detection circuit 111 is connected via the second conduction path from the left side and the rightmost conduction path.
  • Such a difference in current path can be realized by appropriately changing the connection state of the wiring pattern 212a in each sensor block.
  • FIGS. 5A and 5B show details of the wiring pattern 212a in the sensor block 220 (and other sensor blocks).
  • the case 211 is shown by a broken line.
  • the wiring pattern 212a shown in FIG. 5 may include a path that is not actually used (current does not flow).
  • the circuit as shown in FIG. 6 is configured.
  • the wiring pattern 212a may be appropriately modified as necessary (for each sensor block, for example, by bridging a predetermined portion with solder).
  • each conductive line portion each extending in the y direction are formed on the surface of the sensor substrate 222.
  • the two on the right side are substantially linear, but the three on the left side are partially bent (for example, due to the convenience of wiring).
  • the four on the left part partially overlap with the photodiode 225, but are electrically insulated from the photodiode 225.
  • the connectors 213 and 214 of the sensor block 220 have the same configuration as the connectors 213 and 214 of the relay block 210. That is, in the sensor block 220, each male terminal 213a of the connector 213 is electrically connected to any one female terminal of the connector 214 through a corresponding one conductive line portion.
  • the light receiving surface 225 a of the photodiode 225 faces away from the sensor substrate 222 (the side away from the sensor substrate 222).
  • the rightmost conductive line part is formed with a first extension part extending from the straight line part to the left side and a second extension part extending to the right side.
  • the first extension portion extends perpendicularly to the straight line portion of the conductive line portion
  • the second extension portion extends obliquely downward with respect to the straight line portion.
  • the first extension on the left side is connected to a first terminal (not shown) formed on the back surface of the photodiode 225.
  • the second extension portion on the right side is connected to the wiring pattern 212a formed on the back surface of the sensor substrate 222 via the first through hole 212b (the right side through hole in FIG. 5A).
  • the first through hole 212b (the left side through hole in FIG. 5B) is the protective element 212c and the second through hole 212b (the right side through hole in FIG. 5B).
  • the terminal is connected to the left terminal (not shown) formed on the back surface of the photodiode 225.
  • a bent conductive connecting portion 212d is formed between the second through-hole 212b and the photodiode 225, and the second through-hole is formed via the connecting portion.
  • the hole 212b and the photodiode 225 are electrically connected.
  • each conductive strip 212e each extending in the y direction are formed on the back surface of the sensor substrate 222.
  • the uppermost end of the rightmost conductive strip 212e is connected to the rightmost male terminal 213a.
  • the lower end of the second conductive strip 212e from the right is connected to the second female terminal from the right.
  • the upper end of the third conductive strip 212e from the right is connected to the third male terminal 213a from the right.
  • the lower end of the fourth conductive strip 212e from the right is connected to the fourth female terminal from the right.
  • the lower end portion of the rightmost conductive strip 212e and the horizontal straight portion of the wiring pattern 212a are electrically connected via a bridging portion 212f made of a conductive material (for example, solder). Yes.
  • a bridging portion 212f made of a conductive material (for example, solder).
  • the wiring pattern 212a on the back surface shown in FIG. 5B is connected to either the male terminal 213a or the female terminal. Which terminal is connected depends on the sensor blocks 220, 230, 240 and 250.
  • the circuit configuration shown in FIG. 6 can be realized by preparing a plurality of sensor blocks having the same configuration and subsequently forming the bridging portion 212f at an appropriate position.
  • the detection unit 200 has a structure in which sensor blocks 220, 230, 240, and 250 are connected by six relay blocks 210. Specifically, in order from the top, the first relay block 210, the second relay block 210, the first sensor block 220, the third relay block 210, the second sensor block 230, and the fourth relay block 210. The fifth relay block 210, the third sensor block 240, the sixth relay block 210, and the fourth sensor block 250 are connected to each other. The first relay block 210 is directly connected to the main body 100 (that is, not via another relay block or a sensor block).
  • the detection unit 200 extending downward from the bottom surface of the main body 100 is arranged along the side surface of the laminated signal lamp 900.
  • the positions of the sensor blocks 220, 230, and 240 in the y direction are positions corresponding to the light emitting units 901, 902, and 903, respectively.
  • the photodiodes (225, etc.) of each sensor block (220, etc.) have their light receiving surfaces (225a, etc.) oriented in the z2 direction. Therefore, each photodiode can receive light emitted from the light emitting unit (901, etc.).
  • a photodiode is employed as the detecting means or the light receiving means, but the present disclosure is not limited to this.
  • a phototransistor may be used instead of the photodiode.
  • the photodiodes 225, 235, 245, and 255 of the sensor blocks 220, 230, 240, and 250 have variable resistors 140 connected in series, and are connected to the current detection circuit 111 in parallel with each other.
  • the current detection circuit 111 detects the current flowing through each photodiode 225, 235, 245, 255 by detecting the voltage between the terminals of each variable resistor 140, and outputs a current signal to the wireless module 120.
  • the wireless module 120 Based on the input current signal, the wireless module 120 detects the light emission state (lit, blinking, or extinguished) of each light emitting unit of the laminated signal lamp 900.
  • the photodiode 255 since only three light emitting units are provided, the photodiode 255 does not operate, and the sensor block 250 is only used to ensure the connection of the entire signal lamp monitor A1. It is.
  • the wireless module 120 detects the light emitting state of the light emitting unit 901 based on the current flowing through the photodiode 225, detects the light emitting state of the light emitting unit 902 based on the current flowing through the photodiode 235, and the current flowing through the photodiode 245. To detect the light emission state of the light emitting unit 903.
  • the wireless module 120 generates a detection signal corresponding to these detection results, and transmits the detection signal via the antenna 123.
  • the current detection circuit 111 is provided separately from the wireless module 120, but the wireless module 120 itself may detect the current.
  • FIG. 7 is a functional block diagram illustrating a management system using the signal light monitor A1.
  • the signal lamp monitor A1 includes a power supply unit 310, a sensor unit 320, a control unit 330, and a transmission unit 340.
  • the power supply unit 310 supplies power to the control unit 330 and the transmission unit 340.
  • the solar cell 122 and capacitor of the wireless module 120, an auxiliary battery mounted on the battery holder 150, a voltage conversion circuit provided on the module substrate 121, and the like correspond to the power supply unit 310.
  • the sensor unit 320 detects light emitted from the laminated signal lamp 900 and inputs it to the control unit as a current signal.
  • the detection unit 200, the variable resistor 140, the current detection circuit 111, and the like correspond to the sensor unit 320.
  • the control unit 330 generates a detection signal based on the current signal input from the sensor unit 320 and outputs the detection signal to the transmission unit 340.
  • a control circuit or the like provided on the module substrate 121 corresponds to the control unit 330.
  • the transmission unit 340 receives the detection signal from the control unit 330 and transmits it wirelessly.
  • a communication circuit, an antenna 123, and the like provided on the module substrate 121 correspond to the transmission unit 340.
  • the control unit 330 identifies the emission color based on the current signal input from the sensor unit 320.
  • the control unit 330 identifies which light emitting unit 901, 902, or 903 (for example, the light emission color is different) emits light depending on which of the sensor blocks 220, 230, 240, and 250 the current flows. In this embodiment, when a current flows through the photodiode 225 of the sensor block 220, it is identified that the light emitting unit 901 (red) emits light.
  • the light emitting unit 902 (Yellow) is identified as emitting light
  • the light emitting unit 903 (blue) is identified as emitting light
  • the control unit 330 identifies the light emission state (lit, blinking, extinguished) based on the current signal input from the sensor unit 320.
  • the measurement for identifying the light emission state is performed a plurality of times, and the time (measurement time) required for each measurement is appropriately set.
  • the control unit 330 identifies the “lighting” state when the current continues for a measurement time (for example, 3 seconds) (when the photodiode continues to receive light).
  • the control unit 330 identifies the “light-off” state.
  • the control unit 330 identifies the “flashing” state.
  • a predetermined pause time (for example, 7 seconds) is provided after the end of the current measurement. Therefore, when there is no change in the light emission state for a relatively long time, the control unit 330 performs measurement every time a predetermined time (one measurement time + 1 pause time; for example, 10 seconds) elapses (more To be precise, start the measurement).
  • the control unit 330 generates (and transmits) a detection signal based on the light emission state identified by the measurement.
  • the detection signal can be generated in a short time (for example, about 3 to 13 seconds) after the light emission state changes.
  • the measurement start timing (“first timing”) differs depending on whether the light emission state is changed or not, but the present disclosure is not limited to this.
  • the control unit 330 when there is no change in the light emission state, the control unit 330 performs the next measurement after a predetermined pause time.
  • the control unit 330 detects the detection signal based on the light emission state identified by the last measurement. Is generated. That is, even when the light emission state does not continuously change, the control unit 330 generates a detection signal based on a predetermined condition.
  • the timing for generating the detection signal (“second timing”) is determined according to the measurement time, the pause time, and the number of state unchanged times. For example, when the measurement time is 3 seconds, the pause time is 7 seconds, and the number of state unchanged times is 3, the second timing is every 30 seconds.
  • the second timing differs depending on whether or not there is a change in the light emission state.
  • a detection signal is generated based on the measurement result immediately after the detection.
  • a detection signal is generated after a predetermined number of measurements are performed.
  • the detection signal may be generated at a constant time interval regardless of the change / no change in the light emission state.
  • the detection signal can include multiple types of information.
  • the detection signal of the present embodiment includes information for specifying the signal lamp monitor A1, information indicating the emission color, and information indicating the light emission state.
  • the information for specifying the signal lamp monitor A1 is a unique number (stored) previously assigned (stored) to the signal lamp monitor A1, for example, a MAC address of the wireless module 120, an ID number, or the like.
  • the information indicating the emission color is information indicating which color light emission state the detection signal has (that is, information indicating which sensor block 220, 230, 240, 250 has detected). ).
  • the information indicating the light emission state is information indicating whether the light emission state is “lit”, “off”, or “flashing”.
  • flashing information indicating the flashing speed (flashing frequency) may be included.
  • the information indicating the light emission state is, for example, “00” for “light off”, “04” for “light on”, and “01”, “02”, “ 03 "or the like.
  • the control unit 330 causes the transmission unit 340 to wirelessly transmit the generated detection signal. Electric power required at this time is supplied from the power supply unit 310 to the transmission unit 340 under the control of the control unit 330. After the transmission unit 340 wirelessly transmits the detection signal, the control unit 330 stops the power supply from the power supply unit 310 to the transmission unit 340.
  • FIG. 8 is a sequence diagram for explaining measurement by the control unit 330 and detection signal generation.
  • FIG. 5A shows an example of the light emission state of any one of the light emitting units of the laminated signal lamp 900.
  • FIG. 5B shows the light emission state measured and identified by the control unit 330.
  • FIG. 5C shows a comparison result performed based on the light emission state identified by the control unit 330.
  • FIG. 4D shows the transmission state of the detection signal generated based on the comparison result by the control unit 330.
  • measurement starts at time t1.
  • this measurement is referred to as a “first” measurement.
  • the measurement result of the first measurement is obtained 3 seconds after the time t1, and in the illustrated example, the light emission state is identified as the “light-off” state.
  • the identification result is compared with the identification result obtained in the previous measurement (for example, “turned off” state), and the light emission state is determined to be “no change”.
  • the first pause time for example, 7 seconds
  • the second measurement is performed, and the light emission state is identified as the “flashing” state from the measurement result.
  • a comparison is made with the identification result (“light-off” state) in the first measurement, and the light emission state is determined to be “changed”.
  • the third measurement is performed at time t3, and the light emission state is identified as the “flashing” state from the measurement result.
  • a detection signal is generated and transmitted based on this light emission state (“flashing” state).
  • the actual light emission state see FIG.
  • Time difference Td 1 is, (i) time from the actual change to the time t2, (ii) two of the measurement time (e.g., a total of six seconds), and (iii) from the end of the second measurement of the third The time until the measurement start time is added.
  • a detection signal is generated (and transmitted) in the time (for example, about 6 to 13 seconds) obtained by adding (i) and (ii) above. ing.
  • the fourth measurement is performed at time t4 after the second pause time has elapsed, and the light emission state is identified as the “flashing” state. Then, a comparison with the identification result (“flashing” state) in the third measurement is performed, and the light emission state is determined to be “no change”. After the third pause time has elapsed, the fifth measurement is performed at time t5. At this time, the same determination is made.
  • the sixth measurement is performed at time t6 after the fourth pause time has elapsed, and the light emission state is identified as the “flashing” state from the measurement result. Therefore, the light emission state is “no change” even at this stage.
  • the detection signal is generated and transmitted. Thus, when there is no change in the light emission state, the detection signal is transmitted every time a predetermined time (30 seconds in the illustrated example) elapses.
  • the seventh measurement is performed at time t7 after the fifth pause time has elapsed.
  • the measurement time overlaps with the actual change timing of the light emission state (see FIGS. 8A and 8B), and the time necessary for identifying the light emission state is not sufficient. For this reason, the light emission state cannot be identified from the measurement result, and the result is in an “unknown” state. In this case, it is determined that the light emission state is “changed” in comparison with the identification result (“flashing” state) in the sixth measurement.
  • the eighth measurement is performed at time t8, and the light emission state is identified as the “light-off” state from the measurement result.
  • a detection signal is generated and transmitted based on the identified light emission state (“light-off” state).
  • the actual light emission state of the laminated signal lamp 900 changes from the “flashing” state to the “light-off” state from time t7 to the end of the eighth measurement (see FIG. 8A).
  • the time difference Td 2 from this actual change to detection signal transmission is, for example, about 3 to 6 seconds.
  • the measurement and detection signal generation sequence by the control unit 330 is not limited to the above.
  • the measurement may be performed when the photodiode 225 or the like receives light.
  • the management system may include a plurality of signal lamp monitors A1 together with the management device 800.
  • the management system is a system that centrally manages the operating states of a plurality of production apparatuses in a factory, for example.
  • Each signal lamp monitor A1 is installed in a laminated signal lamp 900 attached to the production apparatus.
  • Each signal lamp monitor A1 wirelessly transmits the detection signal generated by the control unit 330 by the transmission unit 340.
  • the management apparatus 800 includes a receiving unit 810, a control unit 820, a storage unit 830, and a display unit 840.
  • the receiving unit 810 receives the detection signal transmitted from each signal lamp monitor A1 and outputs it to the control unit 820.
  • the control unit 820 stores information included in the input detection signal in the storage unit 830.
  • the control unit 820 causes the display unit 840 to display information stored in the storage unit 830 in accordance with a program or an operation of the operator.
  • the management device 800 may be an integrated device including a reception unit 810, a control unit 820, a storage unit 830, and a display unit 840.
  • it is a system in which a general-purpose computer that functions as a control unit 820 and a storage unit 830 by a program and a receiver that functions as a reception unit 810 that is arranged near each signal lamp monitor A1 are connected by a local area network or the Internet. May be.
  • a communication circuit may be incorporated in the laminated signal lamp itself.
  • the detection unit 200 is assembled according to each light emission position of the laminated signal lamp 900. Specifically, the same number (or at least the same number) of sensor blocks as the number of light emitting portions of the laminated signal lamp 900 are prepared. These sensor blocks and a necessary number of relay blocks are connected end-to-end to configure the detection unit 200.
  • the light emitted from the three light emitting units 901, 902, and 903 of the laminated signal lamp 900 is received by the three sensor blocks 220, 230, and 240 (three photodiodes 225, 235, and 245).
  • the detection unit 200 is assembled. As shown in FIG.
  • the sensor blocks 220, 230, 240, and 250 are connected by arranging the connector 213 on the y1 side and the connector 214 on the y2 side.
  • the detection unit 200 is assembled by adjusting the number of relay blocks 210 according to the vertical dimension of the light emitting unit 901 and the like of the laminated signal lamp 900. For example, in the example shown in FIG. 9A, two adjacent sensor blocks (220 and 230; 230 and 250) are connected by one relay block 210. Further, the uppermost sensor block 220 and the main body 100 are connected using another relay block 210. Thereby, the signal lamp monitor A1 is completed. In this example, the sensor block 240 is not used.
  • the laminated signal lamp 900 has two light emitting units 901 and 902.
  • two sensor blocks 220 and 250 are used, and the two relay blocks 210 are connected therebetween.
  • One relay block 210 is also arranged between the uppermost sensor block 220 (connector 213) and the main body 100 (connector 160).
  • the signal light monitor A1 is attached to the laminated signal light 900.
  • the main body 100 of the signal lamp monitor A1 is placed on the top of the laminated signal lamp 900. What is necessary is just to adhere
  • a recess having the same shape as the top surface of the laminated signal lamp 900 is formed on the bottom surface of the main body 100 (the bottom surface of the case 102 shown in FIG. 2), and the recess is fitted to the upper end of the laminated signal lamp 900. Also good.
  • the detection unit 200 extending in the vertical direction from the bottom surface of the main body 100 is disposed along the side surface of the laminated signal lamp 900.
  • the signal lamp monitor A1 includes a detection unit 200 that detects light emitted from the laminated signal lamp 900.
  • the signal lamp monitor A1 identifies the light emission state (lighted, blinking, extinguished) and the light emission color based on the light detected by the detection unit 200, and generates a detection signal based on the identification result.
  • the signal lamp monitor A1 transmits this detection signal by radio.
  • the signal lamp monitor A1 can be easily attached to the laminated signal lamp 900 simply by placing the main body 100 on a part of the laminated signal lamp 900 (the uppermost part in the illustrated example).
  • the signal lamp monitor A1 detects light emitted from the laminated signal lamp 900 to the outside (light indicating the operating state of the production apparatus).
  • the signal lamp monitor A1 can be easily attached to the laminated signal lamp 900 in a short time.
  • the signal lamp monitor A1 since it is attached to the conventionally used laminated signal lamp 900, it can be introduced at a lower cost than the case of newly purchasing a laminated signal lamp incorporating a communication circuit.
  • the wireless module 120 includes the solar cell 122.
  • the wireless module 120 performs communication in accordance with the EnOcean communication standard.
  • the communication standard adopts a battery-less wireless transmission technology, and can perform wireless communication with small power. Therefore, the signal light monitor A1 can perform wireless communication without using a dry battery or the like. Thereby, the labor of battery replacement can be saved.
  • the wireless module 120 includes a capacitor for charging the power generated by the solar battery 122. Therefore, even when the solar cell 122 cannot generate power, it is possible to supply electric power charged in the capacitor.
  • the main body 100 includes an auxiliary battery mounted on the battery holder 150. Therefore, even when the solar battery 122 cannot generate power and cannot supply power from the capacitor, it is possible to supply power from the auxiliary battery.
  • the detection signal generated by the control unit 330 is transmitted to the outside by the transmission unit 340.
  • the power supply unit 310 supplies power to the transmission unit 340 only while the detection signal is transmitted. Thereby, power consumption can be suppressed.
  • the control part 330 produces
  • the control unit 330 immediately generates a detection signal. Thereby, it is possible to quickly notify the management apparatus 800 of a change in state.
  • the detection unit 200 is configured by assembling a required number of sensor blocks and relay blocks. Therefore, the suitable detection part 200 can be provided efficiently according to the dimension etc. of the laminated signal lamp 900.
  • the main body 100 is mounted, for example, on the top of the laminated signal lamp 900.
  • the antenna 123 is arranged on the main body 100 so that the central axis extends in the vertical direction.
  • the antenna 123 can radiate electromagnetic waves evenly around the central axis. Thereby, the electromagnetic waves radiated from the antenna 123 can reach a wide range.
  • the orientation of the antenna 123 can be changed as appropriate, and the present disclosure is not limited to this example.
  • the light receiving surface 122a of the solar cell 122 is vertically upward. According to this configuration, the solar cell 122 easily receives light from above.
  • the direction of the light receiving surface 122a can be changed as appropriate, and the present disclosure is not limited to this example.
  • variable resistor 140 is connected to each photodiode 225 and the like. Therefore, the sensitivity of each photodiode can be individually adjusted by adjusting the resistance value of the variable resistor 140. Further, as shown in FIG. 2, each variable resistor 140 is arranged such that the arrangement surface of the adjustment groove 141 faces the horizontal direction (for example, the x2 direction). Therefore, it is easy to adjust the resistance value even when the main body 100 is placed on the top of the laminated signal lamp 900. As shown in FIG. 3, in this embodiment, the variable resistor 140 is provided at a position that does not overlap the wireless module 120 in plan view.
  • the arrangement surface of the adjustment groove 141 of the variable resistor 140 can be directed to another direction, for example, the y1 direction.
  • the weighting due to the adjustment of the resistance value acts perpendicularly (or substantially perpendicular) to the surface of the circuit board 110. Therefore, for example, the variable resistor 140 is prevented from being peeled off from the circuit board 110 during the adjustment of the resistance value.
  • the switch 130 is arranged so that the push button 131 extends in the horizontal direction (for example, the x2 direction). Therefore, it is easy to press the push button 131 even when the main body 100 is placed on the top of the laminated signal lamp 900. Further, the switch 130 may be disposed between the circuit board 110 and the wireless module 120. Unlike the present embodiment, the push button 131 may be configured to extend upward in the vertical direction, for example.
  • the laminated signal lamp 900 shown in FIG. 1 includes three light emitting units 901, 902, and 903. However, the present disclosure is not limited to this, and the number of light emitting units of the laminated signal lamp 900 can be changed as appropriate.
  • the illustrated signal lamp monitor A1 includes four sensor blocks 220, 230, 240, and 250. Therefore, the light emitting section can support up to four laminated signal lamps 900.
  • the detection unit 200 can be configured by combining an appropriate number of sensor blocks and relay blocks according to the number and dimensions of the light emitting units. For example, if the number of light emitting units is five, the relay block 210 is increased so that the current path shown in FIG.
  • the signal lamp monitor A1 has only one light-emitting unit, and can correspond to a single-color signal lamp that notifies the operating state based only on the light-emitting state (lighting, blinking, and extinguishing).
  • the module substrate 121 and the solar cell 122 are integrally configured, but the present disclosure is not limited to this.
  • the module substrate 121 and the solar cell 122 may be arranged apart from each other. The increase in the degree of freedom of member arrangement in this way contributes to making the housing 101 smaller or thinner.
  • FIG. 10 is a front view of the main body of the signal light monitor according to the second embodiment.
  • the signal lamp monitor A2 shown in FIG. 10 differs from the signal lamp monitor A1 (see FIG. 2) according to the first embodiment in the arrangement position of the wireless module 120.
  • the wireless module 120 is fixed to the side surface of the case 102 so that the light receiving surface 122a of the solar cell 122 faces in the horizontal direction (z1 direction).
  • the solar cell 122 can receive light emitted from the laminated signal lamp 900 and generate electric power.
  • the arrangement position of the wireless module 120 may be the same as that of the signal lamp monitor A1 according to the first embodiment, and only the solar battery 122 may be arranged so that the light receiving surface 122a faces the z1 direction.
  • the light receiving surface 122a of the solar cell 122 may be directed in the z2 direction.
  • Such a configuration is advantageous for receiving light from the z2 direction, for example, when the laminated signal lamp 900 is disposed near the ceiling of a room in the factory and there is little light from the y1 direction.
  • the arrangement of the solar modules 122 may be changed instead of changing the arrangement of the entire wireless module 120.
  • at least a part of the wireless module 120 may be disposed so as to be positioned in the y1 direction with respect to the case 102.
  • a plurality of solar cells 122 may be provided.
  • a solar cell 122 may be added to the signal lamp monitor A1 according to the first embodiment, and the light receiving surface 122a of the added solar cell 122 may be disposed in the z1 direction.
  • FIG. 12 is a schematic diagram showing the overall configuration of the signal light monitor according to the third embodiment.
  • the signal lamp monitor A3 shown in FIG. 12 differs from the signal lamp monitor A1 (see FIG. 1) according to the first embodiment in the configuration of the detection unit 200.
  • the sensor blocks 220, 230, 240, 250 and the main body 100 are connected not by the relay block but by the relay cable 290.
  • the relay cable 290 is formed by connecting a connector 291 and a connector 292 similar to the connector 213 and the connector 214 of the relay block 210 according to the first embodiment with a flexible cable 293.
  • the sensor blocks 220, 230, and 240 are fixed to the light emitting units 901, 902, and 903, for example, with double-sided tape.
  • connection may be made with a flexible connection member such as a flexible substrate.
  • the detection unit 200 can flexibly cope with the configuration of the laminated signal lamp 900. Furthermore, the interval between adjacent sensor blocks can be freely set within the range of the length of the relay cable 290.
  • the fixing means for the light emitting part of the sensor block is not limited to double-sided tape.
  • FIG. 13 shows a modification of the method for fixing the sensor block.
  • FIG. 13A shows a case where the sensor block 220 is fixed by two block support portions 701 extending in the y2 direction from the main body 100 (not shown).
  • the two block support portions 701 are provided with recesses 701a facing each other at predetermined intervals in the y direction.
  • the case 211 of the sensor block 220 is provided with a convex portion 211a that protrudes in the x1 direction and the x2 direction, respectively.
  • the sensor block 220 is fixed between the two block support portions 701 so that the two convex portions 211a are engaged with the concave portions 701a located in the light emitting portion 901, respectively.
  • the sensor block 220 may be configured to be slidable in the y direction along the two block support portions 701.
  • FIG. 13B shows an example in which the sensor block 220 is fixed by one block support portion 702 extending in the y2 direction.
  • a groove portion 702a extending in the y direction is provided on the surface of the block support portion 702 facing the x1 direction.
  • the case 211 of the sensor block 220 is provided with a fixing portion 211b extending in the z1 direction.
  • the sensor block 220 can be fixed to a predetermined position (for example, a position corresponding to the light emitting portion 901) of the block support portion 702 by fixing the fixing portion 211b to the groove portion 702a with a screw 211c. In addition, you may make it fix with members other than the screw
  • FIG. 14 is a front view showing the detection unit 200 of the signal light monitor according to the fourth embodiment.
  • the signal lamp monitor A4 shown in FIG. 14 differs from the signal lamp monitor A1 (see FIG. 4) in the configuration of the detection unit 200 according to the first embodiment.
  • one detection block 260 includes a plurality of photodiodes (four photodiodes 225, 235, 245, and 255 in the illustrated example).
  • the detection block 260 extends the case 211 and the sensor substrate 222 of the sensor block 220 according to the first embodiment in the y direction, and the four photodiodes 225, 235, 245, and 255 are spaced apart from each other by a predetermined interval. It corresponds to what is mounted on 222 in a line. That is, in the present embodiment, a plurality of photodiodes are mounted on a single common sensor substrate.
  • the detection block 260 is connected to the main body 100 by connecting the connector 213 to the connector 160 of the main body 100.
  • the signal lamp monitor can be configured and attached to the laminated signal lamp 900 in a shorter time.
  • a necessary number of spacers 105 are prepared, and these are arranged between the upper surface of the laminated signal lamp 900 and the lower surface of the main body 100 of the signal lamp monitor A4. I am trying to arrange it. Accordingly, the photodiodes 225, 235, and 245 can be arranged at appropriate positions so that the light emitted from the light emitting units 901, 902, and 903 can be received. As shown in FIG. 15A, the spacer 105 is not necessarily used depending on the case.
  • FIG. 16 is a schematic diagram showing an overall configuration of a signal lamp monitor according to the fifth embodiment.
  • the signal lamp monitor A5 shown in FIG. 16 differs from the signal lamp monitor A1 (see FIG. 1) according to the first embodiment in the configuration of the detection unit 200.
  • the detection unit 200 according to the fifth embodiment corresponds to, for example, a configuration in which the relay cable 290 according to the third embodiment is added to the detection block 260 according to the fourth embodiment.
  • the detection unit 200 is connected to the connector 213 of the detection block 260 and the connector 292 of the relay cable 290, and is connected to the main body 100 by connecting the connector 291 of the relay cable 290 to the connector 160 of the main body 100.
  • the detection block 260 is fixed to a position where the photodiodes 225, 235, and 245 can receive light emitted from the light emitting units 901, 902, and 903, for example, with double-sided tape, but the present disclosure is not limited to this. is not.
  • connection may be made with a flexible connection member such as a flexible substrate.
  • the detection block 260 can be displaced in the y direction within the range of the length of the relay cable 290. Therefore, compared with the fourth embodiment, the range of the laminated signal lamp 900 that can be handled is widened.
  • FIG. 17 is a diagram for explaining a modification example regarding the sensor blocks 220 and the like of the first to fifth embodiments described above. Specifically, FIG. 17A is a cross-sectional view showing a state in which the sensor block 220 according to the modification is attached to the laminated signal lamp 900. FIG. 17B is an explanatory diagram of a sensor block 220 according to a modification.
  • the two walls of the case 211 that are separated in the x direction are configured to be extended in the z2 direction, for example, compared to the example illustrated in FIG.
  • a lid 223 and a transparent plate 224 are disposed between the two walls.
  • the lid 223 and the transparent plate 224 are arranged outside the sensor substrate 222, that is, on the z2 direction side of the sensor substrate 222.
  • the lid 223 is a rectangular plate made of the same material as the case 211, for example, and has a window 223a as an opening.
  • the window portion 223 a is provided so as to be positioned in front of the photodiode 225 in a state where the lid 223 is disposed in the case 211.
  • the transparent plate 224 is, for example, a rectangular plate that transmits light, and is disposed on the z2 direction side of the lid 223. Instead, the transparent plate 224 may be disposed on the z1 direction side of the lid 223.
  • the transparent plate 224 can be made of a transparent synthetic resin or glass, but the present disclosure is not limited to this.
  • the sensor block 220 is fixed so that the front ends of the two walls are in contact with the side surface of the laminated signal lamp 900 (see FIG. 17A).
  • the length of the two walls (the length when viewed in the cross section of FIG. 17A) is such that the side surface of the laminated signal lamp 900 is transparent when the tip of each wall is brought into contact with the side surface of the laminated signal lamp 900.
  • the length is set so as not to contact the plate 224 (or the lid 223).
  • the side surface of the laminated signal lamp 900 does not contact the transparent plate 224 (or the lid 223).
  • the light emitted from the laminated signal lamp 900 is received by the photodiode 225 through the window 223a.
  • other unnecessary light can be blocked by the case 211 and the lid 223.
  • the photodiode 225 can be prevented from receiving light as noise.
  • by closing with the transparent plate 224 it is possible to prevent dust and the like from entering the inside of the case 211 from the window portion 223a.
  • the present disclosure is not limited to this, and only one of the lid 223 and the transparent plate 224 may be disposed.
  • the transparent plate 224 may be smaller than the illustrated example, and may have a size that covers the window 223a of the lid 223.
  • the transparent plate 224 in the transparent plate 224, light other than the portion corresponding to the window portion 223a may be colored so as not to pass light.
  • the (partially transparent) transparent plate 224 can function as a lid, the lid 223 is not necessarily provided. Further, if a material having flexibility and light shielding properties is disposed in the portion of the case 211 that contacts the laminated signal lamp 900, it is convenient for suppressing the intrusion of external light.
  • a groove 211d extending in the x direction is provided on the bottom outer surface of the case 211 (surface facing the z1 direction).
  • the groove 211d is disposed at the center of the bottom outer surface in the y direction, but the present disclosure is not limited thereto.
  • the groove 211d is used to fix the sensor block 220 to the laminated signal lamp 900 by the fixing band 211e. That is, by disposing a part of the fixed band 211e in the groove portion 211d, it is possible to prevent the positional displacement of the fixed band 211e with respect to the sensor block 220. As a result, the sensor block 220 and the laminated signal lamp 900 are fixed to each other. Can be stabilized.
  • FIG. 18 and 19 show a signal lamp monitor according to the sixth embodiment.
  • FIG. 18 is a front view showing the detection unit 200.
  • FIG. 19 is a schematic diagram showing the overall configuration, and shows a state viewed from the z1 direction.
  • the signal lamp monitor A6 shown in FIGS. 18 and 19 is different from the signal lamp monitor A1 according to the first embodiment (see FIGS. 1 and 4) in the configuration of the detection unit 200.
  • the detection unit 200 includes a single detection board 270.
  • the detection board 270 corresponds to the detection block 260 according to the fourth embodiment in which the sensor board 222 is the flexible printed board 226 and the case 211 is omitted. That is, the detection board 270 has four photodiodes 225, 235, 245, and 255 mounted in a line at a predetermined interval on a flexible printed board 226 that extends in the y direction, and a connector 213 at the end on the y1 direction side. Is installed.
  • the detection board 270 is connected to the main body 100 by connecting the connector 213 to the connector 160 of the main body 100.
  • the detection substrate 270 is wound around the laminated signal lamp 900 so that each photodiode 225, 235, 245 can receive light emitted from the light emitting units 901, 902, 903, for example, It is fixed with double-sided tape.
  • the method for fixing the detection substrate 270 to the laminated signal lamp 900 is not limited.
  • the flexible printed circuit board 226 is preferably transparent.
  • the detection board 270 it is possible to deal with various laminated signal lamps 900 by changing how the detection board 270 is wound. For example, when the dimension of the light emitting units 901, 902, and 903 in the y direction is shorter, the winding angle (the angle formed between the detection substrate 270 and the y direction) is increased, and when the dimension is longer, the winding angle is set. Just make it smaller. Further, in this embodiment, there is no need to assemble the detection unit 200 as in the first embodiment, the detection board 270 is connected to the connector 160, and the detection board 270 is simply wound around the laminated signal lamp 900 and fixed. It can be easily attached to the laminated signal lamp 900 in a short time.
  • FIG. 20 is a front view showing the main body 100 of the signal light monitor according to the seventh embodiment.
  • the signal lamp monitor A7 shown in the figure is different from the signal lamp monitor A1 according to the first embodiment (see FIG. 2) in that light emitted from the laminated signal lamp 900 is guided to the main body 100.
  • the signal lamp monitor A7 of the seventh embodiment includes a light guide 400, a light guide case 500, and a color sensor 600 instead of the detection unit 200 of the first embodiment.
  • the color sensor 600 is mounted on the end of the main surface 110a of the circuit board 110 in the z1 direction so that the light receiving surface 600a faces the z1 direction.
  • the light guide case 500 that houses the light guide 400 is fixed to the end of the circuit board 110 in the z1 direction so that the longitudinal direction is the y direction.
  • the light guide 400 is a member that guides light emitted from the laminated signal lamp 900 to the main body 100.
  • the light guide 400 has an elongated shape with the y direction as a longitudinal direction as a whole, and has a substantially circular cross section in the present embodiment.
  • the light guide 400 is made of a transparent material, and is made of an acrylic resin such as polymethyl methacrylate resin (abbreviated as PMMA resin).
  • the light guide 400 includes an incident surface (light detection surface) 401, reflection surfaces 402 and 403, and an emission surface 404.
  • the incident surface 401 is a surface on which light emitted from the laminated signal lamp 900 is incident.
  • the incident surface 401 extends in the y direction of the light guide 400 and continues from a position below the bottom surface of the main body 100 to the vicinity of the end in the y2 direction.
  • the incident surface 401 faces in the z2 direction, and faces the side surface of the laminated signal lamp 900 (light emitting units 901, 902, and 903) in a state where the main body 100 is placed on the top of the laminated signal lamp 900.
  • the reflective surface 402 is a surface that reflects the light incident from the incident surface 401 in the y1 direction.
  • the reflective surface 402 is in the same range as the range of the incident surface 401 in the y direction, and faces the incident surface 401.
  • the reflection surface 403 is a surface for reflecting light traveling in the y1 direction in the z2 direction.
  • the reflection surface 403 is an end surface of the light guide 400 in the y1 direction, and is inclined 45 ° with respect to the y direction.
  • the emission surface 404 is a surface that emits the light reflected by the reflection surface 403.
  • the emission surface 404 faces the light receiving surface 600a of the color sensor 600.
  • the light incident from the incident surface 401 is reflected by the reflecting surface 402 and travels in the y1 direction, is reflected by the reflecting surface 403, travels in the z2 direction, and is emitted from the emitting surface 404.
  • the light emitted from the emission surface 404 is incident on the light receiving surface 600 a of the color sensor 600, that is, received by the color sensor 600. Since the incident surface 401 is formed so as to cover all of the light emitting portions 901, 902, and 903 when the signal lamp monitor A7 is attached to the laminated signal light 900, light emitted from any of the light emitting portions 901, 902, and 903 is incident. Is done. Therefore, the light emitted from any one of the light emitting units 901, 902, and 903 or a mixed light thereof is also incident on the light receiving surface 600a of the color sensor 600.
  • the light guide case 500 is for holding the light guide 400 and preventing light from leaking from the light guide 400 or light from the outside being incident.
  • the light guide body 500 accommodates the light guide 400 while exposing the entrance surface 401 and the exit surface 404 of the light guide 400, and is made of, for example, white resin.
  • the color sensor 600 outputs information on the light received by the light receiving surface 600a to the control unit 330. Based on the input information, the controller 330 identifies which of the light emitting units 901, 902, and 903 is incident. The control unit 330 also identifies the light emission state based on the input information.
  • FIGS. 21 and 22 show a signal lamp monitor according to the eighth embodiment.
  • FIG. 21 is a front view showing the main body 100.
  • FIG. 22 is a plan view showing the main body 100.
  • the signal lamp monitor A8 shown in FIGS. 21 and 22 is different from the signal lamp monitor A1 according to the first embodiment (see FIGS. 2 and 3) in that light emitted from the laminated signal lamp 900 is guided to the main body 100.
  • the signal lamp monitor A8 of the eighth embodiment guides light emitted from the laminated signal lamp 900 to the main body 100 by the light guide.
  • the signal lamp monitor A8 the light emitted from the light emitting units 901, 902, and 903 is not guided by a single light guide, but three light guides that individually guide the light emitted from the light emitting units 901, 902, and 903. Have a body.
  • the signal light monitor A8 includes light guides 400, 410, 420, light guide cases 500, 510, 520, and photodiodes 225, 235, 245.
  • the photodiodes 225, 235, and 245 are mounted on the end in the z1 direction of the main surface 110a of the circuit board 110 so that the light receiving surfaces 225a, 235a, and 245a face the z1 direction.
  • the photodiodes 225, 235, and 245 are arranged in this order from the x2 direction to the x1 direction.
  • the longitudinal direction of the light guide case 500 containing the light guide 400, the light guide case 510 containing the light guide 410, and the light guide case 520 containing the light guide 420 is the y direction.
  • the circuit board 110 is fixed to the end of the circuit board 110 in the z1 direction in this order from the x2 direction toward the x1 direction.
  • the light guide 400 and the light guide case 500 are the same as the light guide 400 and the light guide case 500 of the seventh embodiment, but the dimension in the y direction is short, and the incident surface 401 emits light. It is provided only at a position facing the portion 901. Therefore, the light guide 400 guides only the light emitted from the light emitting unit 901 to the main body 100.
  • the light guide 410 and the light guide case 510 are the same as the light guide 400 and the light guide case 500 according to the seventh embodiment, but are provided only at a position where the incident surface 411 faces the light emitting unit 902. It has been. Therefore, the light guide 410 guides only the light emitted from the light emitting unit 902 to the main body 100.
  • the light guide 420 and the light guide case 520 are the same as the light guide 400 and the light guide case 500 according to the seventh embodiment, but are provided only at a position where the incident surface 421 faces the light emitting unit 903. It has been. Therefore, the light guide 420 guides only the light emitted from the light emitting unit 903 to the main body 100.
  • the photodiodes 225, 235, and 245 are the same as the photodiodes 225, 235, and 245 according to the first embodiment, and receive the light guided by the light guides 400, 410, and 420, respectively. Accordingly, the photodiode 225 receives light emitted from the light emitting unit 901, the photodiode 235 receives light emitted from the light emitting unit 902, and the photodiode 245 receives light emitted from the light emitting unit 903.
  • the controller 330 identifies the emission color and the issuance state based on the current flowing through the photodiodes 225, 235, and 245, as in the first embodiment.
  • FIG. 23 is a view for explaining a body fixture 750 which is an example of such a fixture.
  • FIG. 23A is a plan view of the main body fixture 750 attached to the laminated signal lamp 900.
  • FIG. 23B is a front view of the main body fixture 750 attached to the laminated signal lamp 900.
  • the main body fixture 750 is a circular plate made of, for example, synthetic resin.
  • the body fixing tool 750 includes a notch 750a extending in the z2 direction from the end in the z1 direction, a contact part 750b extending in the y1 direction from the end in the z2 direction, and closer to the z1 direction of the surface facing the y1 direction. , And two protrusions 750c arranged with the notch 750a interposed therebetween.
  • the material and shape of the main body fixture 750 are not limited.
  • the main body fixture 750 is fixed to the uppermost part of the laminated signal lamp 900 with, for example, a double-sided tape.
  • the main body fixture 750 is fixed to the laminated signal lamp 900 so that the screw for disassembling the laminated signal lamp 900 is positioned at the notch 750a (see FIG. 23A). Then, the end of the main body 100 on the z2 direction side is brought into contact with the contact portion 750b, and the projecting portion 750c is fitted into the hole 102c provided on the bottom surface of the main body 100 (case 102). It fixes to the fixing tool 750 (refer FIG.23 (b)).
  • the main body 100 can be easily attached to and detached from the laminated signal lamp 900 by using the main body fixture 750. Further, when the main body 100 is detached from the main body fixing tool 750, a screw for disassembling the laminated signal lamp 900 is located in the notch 750a of the main body fixing tool 750. By removing the screw, the laminated signal lamp 900 can be disassembled and maintained. Therefore, even after the main body 100 is attached to the laminated signal lamp 900, maintenance of the laminated signal lamp 900 can be easily performed.
  • the main body fixing tool 750 can be adapted to the laminated signal lamp 900 having various diameters because the head of the screw is exposed by the notch 750a.
  • FIGS. 24 to 29 show a signal lamp monitor according to the ninth embodiment.
  • FIG. 24 is a perspective view showing an overall configuration of a signal lamp monitor according to the ninth embodiment.
  • FIG. 25 is a plan view of the main body of the signal light monitor.
  • FIG. 26 is a plan view of the main body and shows a state in which the cover 103 is transmitted. In FIG. 26, the cover 103 is indicated by a broken line.
  • FIG. 27 is a front view of the main body of the signal light monitor. In FIG. 27, a part of the internal configuration is indicated by a broken line.
  • FIG. 28 is a front view showing the detection unit of the signal light monitor. In FIG. 28, the lid 223 is transmitted, and the internal configuration is indicated by a broken line.
  • FIG. 28 is a front view showing the detection unit of the signal light monitor. In FIG. 28, the lid 223 is transmitted, and the internal configuration is indicated by a broken line.
  • FIG. 28 is a front view showing the detection unit of the signal light monitor. In
  • FIGS. 24 to 29 is a block diagram of the signal lamp monitor.
  • the signal lamp monitor A9 shown in FIGS. 24 to 29 is different from the signal lamp monitor A1 according to the first embodiment (see FIGS. 1 to 7) in the shape of the main body 100 and the like. Below, it demonstrates centering around difference with signal lamp monitor A1.
  • the signal light monitor A9 includes a main body 100, a spacer 105, an attachment 106, and a detection unit 200.
  • the spacers 105 are stacked in a necessary number according to the laminated signal lamp 900 on which the signal lamp monitor A9 is arranged, and are fixed to the bottom surface of the main body 100 with screws.
  • the attachment 106 is attached to the spacer 105 farthest from the main body 100. Then, the attachment 106 is fixed to the upper surface of the laminated signal lamp 900, whereby the signal lamp monitor A9 is attached to the laminated signal lamp 900.
  • the casing 101 has a substantially rectangular parallelepiped shape.
  • the case 102 and the cover 103 are made of, for example, white synthetic resin, and each have a bottomed rectangular tube shape.
  • the case 102 includes a support portion 102d.
  • the support part 102d is formed upright in the y1 direction from the case 102, and supports the wireless module 120.
  • the cover 103 includes a bottom plate 103a.
  • the bottom plate 103a is a part that forms the bottom of the cover 103, and is orthogonal to the y direction.
  • the bottom plate 103a includes a protruding portion 103b.
  • the protruding portion 103b is formed so as to stand upright with respect to the bottom plate 103a and protrude in the y1 direction.
  • the protrusion 103b has a rectangular shape in plan view, and is disposed near the edge on the x1 direction side of the bottom plate 103a and near the edge on the z2 direction side.
  • the protrusion 103b includes a reflective surface 103c, a protrusion opening 103d, and a lid 103e.
  • the reflective surface 103c is a surface facing the x2 direction side among the side surfaces orthogonal to the bottom surface plate 103a of the protruding portion 103b.
  • the protrusion opening 103d is an opening formed across the surface facing the y1 direction and the surface facing the z1 direction of the protrusion 103b.
  • the lid 103e is a lid for closing the protrusion opening 103d.
  • the bottom plate 103a has an opening 103f.
  • the opening 103f is a rectangular opening formed in the bottom plate 103a, and is disposed on the x2 direction side of the protrusion 103b.
  • the opening 103f is arranged in accordance with the position of the solar cell 122 of the wireless module 120 housed in the housing 101, and the light receiving surface 122a of the solar cell 122 is exposed from the opening 103f. Therefore, the light traveling from the y1 direction side of the main body 100 enters the light receiving surface 122a of the solar cell 122.
  • the protrusion 103b is provided on the bottom plate 103a, the light traveling from the x2 direction side of the main body 100 is reflected by the reflection surface 103c of the protrusion 103b (the broken line in FIG. 27).
  • the light receiving surface 122a of the solar cell 122 is incident.
  • the cover 103 includes a partition wall 103g.
  • the partition wall 103g is formed upright on the y2 direction side from the bottom plate 103a, reaches the vicinity of the main surface 110a of the circuit board 110, and extends in the z direction.
  • the partition wall 103g divides the main surface 110a of the circuit board 110 into a region on the x1 direction side and a region on the x2 direction side.
  • the region on the x1 direction side overlaps the protruding portion 103b in plan view. Therefore, the operator can operate the members arranged in the region on the x1 direction side by opening the lid 103e and from the protruding portion opening 103d.
  • the region on the x2 direction side is separated by the partition wall 103g, the operator cannot operate the members arranged in the region on the x2 direction side.
  • the circuit board 110 fitted into the opening of the case 102 is also rectangular.
  • the main surface 110a of the circuit board 110 is divided into a region on the x1 direction side and a region on the x2 direction side by the partition wall 103g.
  • a switch 130, a reset switch 132, a variable resistor 140, a slide switch 133, an LED 134, and a battery holder 150 are arranged. These members can be operated by an operator.
  • the wireless module 120 is arranged in the region on the x2 direction side.
  • the wireless module 120 includes a connector 124 on the back surface 121 b of the module substrate 121.
  • a connector 110 c is disposed on the main surface 110 a of the circuit board 110.
  • the wireless module 120 is mounted on the circuit board 110 in a state of being separated from the circuit board 110 by connecting the connector 124 to the connector 110c.
  • the wireless module 120 is supported by a support portion 102 d provided on the case 102.
  • a member that does not need to be operated by an operator (or should not be touched by the operator) is disposed. These members are separated from the projecting portion opening 103d by the partition wall 103g, and further, disposed between the wireless module 120 and the circuit board 110, so that operation and contact by the operator can be prevented.
  • the antenna 123 of the wireless module 120 is arranged so that the central axis extends in the z1 direction. In this embodiment, it is designed so that metal parts are not arranged around the antenna 123 as much as possible so that electromagnetic waves radiated from the antenna 123 are not reflected by the surrounding metal. For example, metal parts such as the battery holder 150 are disposed on the z2 direction side, and the antenna 123 is disposed on the z1 direction side.
  • the region where the antenna 123 is located is designed so that wiring is not provided as much as possible. Therefore, although the antenna 123 does not extend in the y1 direction, communication can be performed without any problem.
  • the main body 100 includes a reset switch 132 in addition to the switch 130.
  • the reset switch 132 is a switch for resetting the state of the wireless module 120 to the initial state.
  • the reset switch 132 also includes a push button 131.
  • the switch 130 is used to transmit the ID number set in the signal light monitor A9 to the management device 800.
  • an operation signal from the switch 130 or the reset switch 132 is input to the control unit 330.
  • the control unit 330 reads the ID number from the memory and causes the transmission unit 340 to transmit the ID number.
  • the control unit 330 performs a reset process when an operation signal from the reset switch 132 is input.
  • the switch 130 and the reset switch 132 are arranged so that the push button 131 extends in the y1 direction.
  • the variable resistor 140 is arranged such that the surface on which the adjustment groove 141 is arranged faces the y1 direction.
  • the battery holder 150 is configured to mount a cylindrical lithium battery (for example, CR2).
  • the controller 330 detects the voltage in order to monitor the presence / absence of the battery in the battery holder 150 and the voltage, and periodically transmits a signal corresponding to the detection result to the management apparatus 800.
  • the main body 100 further includes a slide switch 133 and an LED 134.
  • the slide switch 133 is a switch for switching the operation mode. As illustrated in FIG. 29, the control unit 330 switches the operation mode by switching the control based on the input from the slide switch 133. As shown in FIG. 26, the slide switch 133 includes two changeover switches. One switch is a switch for switching between the normal mode and the energy saving mode. While the switch is switched to the normal mode, the measurement interval for identifying the light emission state is 10 seconds, and the periodic detection signal transmission interval is 30 seconds (similar to the first embodiment). On the other hand, while the switch is switched to the energy saving mode, the measurement interval for identifying the light emission state is 60 seconds, and the periodic detection signal transmission interval is 30 minutes.
  • the measurement interval and the transmission interval become long, so that the power consumed can be suppressed.
  • the set times of the measurement interval and the transmission interval are not limited to these examples, and can be changed as appropriate.
  • the other switch is provided as a spare switch.
  • a predetermined operation mode is set in the spare switch, for example, when a future version upgrade is performed.
  • the LED 134 is for notifying the communication state, and lights up while the signal lamp monitor A9 is transmitting a detection signal. As illustrated in FIG. 29, the control unit 330 outputs a current to the LED 134 while the transmission unit 340 transmits a detection signal. As a result, the LED 134 is lit.
  • the connector 160 is disposed at the end of the main surface 110a of the circuit board 110 on the z1 direction side, and the relay cable 290 is connected thereto.
  • the relay cable 290 passes through the gap between the case 102 and the cover 103, and the connector 292 is outside the housing 101 and is connected to the detection unit 200.
  • the detection unit 200 is configured by one detection block 260, as in the fourth embodiment.
  • the case 211 is formed of a synthetic resin (for example, ABS resin) to which an additive for reducing the amount of light transmission is added in order to improve the light shielding property, and the inner surface is for light shielding. It is colored black. Note that the material of the case 211 is not limited. In this embodiment, in order to improve the light shielding property of the case 211, an additive is added and the inner surface is colored. However, only one of them may be used.
  • the case 211 further extends in the y1 direction, and includes an attachment portion 211f at the end in the y1 direction.
  • the attachment portion 211 f is for attaching the detection block 260 to the main body 100.
  • the connector 213 is connected to the connector 292 outside the housing 101, and the attachment block 211f is fixed to the cover 103 of the main body 100 with screws as shown in FIG. Attached to.
  • the case 211 has a wall in the x1 direction side and a wall in the x2 direction side that extends in the z2 direction side as in the modified example of the sensor block 220, and the space between the two walls.
  • a lid 223 and a transparent plate 224 are disposed.
  • the lid 223 is a rectangular plate made of the same material as the case 211, and four windows 223a are provided in accordance with the positions of the photodiodes 225, 235, 245, and 255.
  • the detection block 260 includes a partition plate 227.
  • the partition plate 227 is made of the same material as the case 211, and the length of the long side is equal to the distance between the wall on the x1 direction side and the wall on the x2 direction side of the case 211, and the length of the short side is the sensor substrate 222 and the lid. It is the same as the distance to H.223.
  • the partition plate 227 is disposed between the sensor substrate 222 and the lid 223 so as to be orthogonal thereto.
  • the partition plates 227 are disposed between the photodiodes 225, 235, 245, and 255, at five locations on the y1 direction side of the photodiode 225, and on the y2 direction side of the photodiode 255.
  • each of the photodiodes 225, 235, 245, and 255 is blocked by the partition plate 227, the case 211, the substrate 222, and the lid 223, and receives only the light that passes through the window portion 223a.
  • cover 223 and the partition plate 227 is not limited.
  • the solar cell 122 similarly to the first embodiment, it is possible to easily add a communication function to the laminated signal lamp 900 in a short time and at a low cost. Furthermore, the light receiving surface 122a of the solar cell 122 is exposed from the opening 103f, and the reflecting surface 103c is disposed on the x1 direction side of the opening 103f. Therefore, the light traveling from the x2 direction side of the main body 100 is reflected by the reflecting surface 103 c and enters the light receiving surface 122 a of the solar cell 122. Thereby, the solar cell 122 can effectively use not only the light traveling from the y1 direction side but also the light traveling from the x2 direction side, and can increase the generated electric power.
  • the protrusion 103b includes a protrusion opening 103d and a lid 103e. Accordingly, the operator can open the lid 103e and operate a member disposed below the protruding portion 103b (in the y2 direction) from the protruding portion opening 103d. Further, by closing the lid 103e, it is possible to prevent dust and dirt from entering the main body 100. Further, since the cover 103 includes the partition wall 103g, an operator can be prevented from operating and contacting a member disposed in a region separated from the partition wall 103g from the protruding portion opening 103d.
  • Support portion 102d is formed in case 102 and supports wireless module 120. Therefore, the wireless module 120 can be prevented from tilting. Accordingly, a gap is generated between the light receiving surface 122a of the solar cell 122 and the opening 103f, and dust and dust can be prevented from entering the main body 100 from the gap.
  • the slide switch 133 can switch the operation mode between the normal mode and the energy saving mode.
  • the mode is switched to the energy saving mode, the measurement interval and the transmission interval become longer than when the mode is switched to the normal mode, and the consumed power is suppressed. Therefore, the operator can select the normal mode in which measurement and signal transmission are frequently performed and the energy saving mode in which power consumption can be suppressed by switching the slide switch 133.
  • the signal lamp monitor according to the present disclosure is not limited to the above-described embodiment.
  • the specific configuration of each part of the signal light monitor according to the present disclosure can be varied in design in various ways.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

This signaling lamp monitor is configured to readily allow the addition of a communication function to signaling lamps such as stack lights at low costs. This signaling lamp monitor comprises a detection unit for detecting light emitted from a signaling lamp, a control unit that generates a detection signal on the basis of at least said detection, and a transmission unit for transmitting the detection signal via wireless communication. The transmission unit is equipped with an antenna disposed vertically upward from the detection unit.

Description

信号灯モニタSignal light monitor
 本開示は、信号灯モニタに関する。 This disclosure relates to a signal light monitor.
 従来、生産装置等の稼動状態を作業者に知らせるための積層信号灯が知られている。積層信号灯は、複数の発光ユニットを有する。積層信号灯は、生産装置から稼働状態を示す信号を受信し、当該信号に応じて発光ユニットを発光させる。作業者は、発光状態(点灯、点滅、消灯)や発光色に基づき、生産装置の稼動状態を知ることができる。 Conventionally, a laminated signal lamp for informing an operator of an operating state of a production apparatus or the like is known. The laminated signal lamp has a plurality of light emitting units. The laminated signal lamp receives a signal indicating an operating state from the production apparatus, and causes the light emitting unit to emit light according to the signal. The operator can know the operating state of the production apparatus based on the light emission state (lighted, blinking, off) and the light emission color.
 上述の積層信号灯による情報伝達は、可視光によって行われる。したがって、生産装置の稼働状態を知るためには、作業者は、積層信号灯が見える場所(典型的には、積層信号灯あるいは生産装置の周辺)にいる必要がある。これに対して、積層信号灯に通信回路を組み込み、管理装置に所定の信号を送信するシステムが開発されている(特許文献1参照)。この場合、管理装置によって生産装置の稼働状態を把握することができるので、作業者が積層信号灯の周辺にいる必要はない。 Information transmission by the above-mentioned laminated signal lamp is performed by visible light. Therefore, in order to know the operating state of the production apparatus, the worker needs to be in a place where the laminated signal lamp can be seen (typically, around the laminated signal lamp or the production apparatus). On the other hand, a system has been developed in which a communication circuit is incorporated in a laminated signal lamp and a predetermined signal is transmitted to a management device (see Patent Document 1). In this case, since the operation state of the production apparatus can be grasped by the management apparatus, it is not necessary for the worker to be around the laminated signal lamp.
特開2014-164598号JP 2014-164598 A
 上記の通信式管理システムにおいては、通信回路が組み込まれた積層信号灯を生産装置に取り付ける必要がある。そのため、旧式の(すなわち通信機能の無い)積層信号灯がすでに生産装置に取り付けられている場合には、これを新しい積層信号灯に取り換える手間がかかる。また、新しい積層信号灯を購入するための費用も必要である。一方、積層信号灯全体を取り換えるのではなく、旧式の積層信号灯に通信回路を組み込むことも考えられる。この場合、比較的費用を抑制することができる一方、通信回路用の新たな配線(信号配線、電力配線等)を設置するなどの煩雑な作業が必要になる。いずれにせよ、生産ラインを停止して取り換え作業(あるいは組み込み作業)を行う必要があり、生産量が低下するなどの不具合が生じうる。 In the above communication type management system, it is necessary to attach a laminated signal lamp with a built-in communication circuit to the production apparatus. Therefore, when an old-style (that is, no communication function) laminated signal lamp is already attached to the production apparatus, it takes time to replace it with a new laminated signal lamp. There is also a need to purchase new stacked signal lights. On the other hand, instead of replacing the entire laminated signal lamp, it may be possible to incorporate a communication circuit into the old laminated signal lamp. In this case, the cost can be relatively suppressed, but complicated work such as installation of new wiring (signal wiring, power wiring, etc.) for the communication circuit is required. In any case, it is necessary to stop the production line and perform replacement work (or assembly work), which may cause problems such as a decrease in production volume.
 本開示は、上記事情に鑑み、提案されたものである。本開示の一の目的は、積層信号灯等に、短時間で容易に、かつ低コストで通信機能を付加することができる信号灯モニタを提供することである。 This disclosure has been proposed in view of the above circumstances. An object of the present disclosure is to provide a signal lamp monitor that can easily add a communication function to a laminated signal lamp or the like in a short time and at a low cost.
 本開示の1つの側面によって提供される信号灯モニタは、光によって情報を知らせる信号灯に取り付けて使用される。また、当該信号灯モニタは、光を検出する検出手段と、少なくとも前記検出に基づいて検出信号を生成する制御部と、前記検出信号を無線通信により送信する送信部と、を備えている。また、前記送信部は、前記検出手段よりも鉛直上方に配置されるアンテナを備えている。 The signal light monitor provided by one aspect of the present disclosure is used attached to a signal light that informs information by light. In addition, the signal lamp monitor includes a detection unit that detects light, a control unit that generates a detection signal based on at least the detection, and a transmission unit that transmits the detection signal by wireless communication. The transmission unit includes an antenna disposed vertically above the detection unit.
 上記構成の信号灯モニタによると、信号灯が発する光に基づいて検出信号が生成され、この検出信号が無線通信により送信される。したがって、生産装置や信号灯から信号を入力するための配線を別途設けることなく、従来の信号灯に通信機能を付加することができる。 According to the signal lamp monitor configured as described above, a detection signal is generated based on the light emitted from the signal lamp, and this detection signal is transmitted by wireless communication. Therefore, a communication function can be added to a conventional signal lamp without separately providing wiring for inputting a signal from the production apparatus or the signal lamp.
第1実施形態に係る信号灯モニタを積層信号灯に取り付けた状態を示す概略図である。It is the schematic which shows the state which attached the signal lamp monitor which concerns on 1st Embodiment to the laminated signal lamp. 信号灯モニタの本体の正面図である。It is a front view of the main body of a signal light monitor. 信号灯モニタの本体の平面図である。It is a top view of the main body of a signal light monitor. 信号灯モニタの中継ブロックおよびセンサブロックの説明図である。It is explanatory drawing of the relay block and sensor block of a signal light monitor. 図4に示すセンサブロックの正面図(a)および背面図(b)である。It is the front view (a) and back view (b) of the sensor block shown in FIG. 信号灯モニタの回路構成を説明する図である。It is a figure explaining the circuit structure of a signal lamp monitor. 信号灯モニタを備えた管理システムを説明するブロック図である。It is a block diagram explaining the management system provided with the signal lamp monitor. 制御部による測定および検出信号生成を説明するためのシーケンス図である。It is a sequence diagram for demonstrating the measurement and detection signal generation by a control part. 信号灯モニタを他の態様の積層信号灯に取り付けた状態を示す概略図である。It is the schematic which shows the state which attached the signal lamp monitor to the laminated signal lamp of another aspect. 第2実施形態に係る信号灯モニタの本体を示す正面図である。It is a front view which shows the main body of the signal light monitor which concerns on 2nd Embodiment. 信号灯モニタの変形例を示す正面図である。It is a front view which shows the modification of a signal lamp monitor. 第3実施形態に係る信号灯モニタを積層信号灯に取り付けた状態を示す概略図である。It is the schematic which shows the state which attached the signal lamp monitor which concerns on 3rd Embodiment to the laminated signal lamp. 信号灯モニタのセンサブロックを固定する方法の変形例を説明する図である。It is a figure explaining the modification of the method of fixing the sensor block of a signal light monitor. 信号灯モニタの検出部を示す正面図である。It is a front view which shows the detection part of a signal lamp monitor. 信号灯モニタの取り付け例を示す概略図である。It is the schematic which shows the example of attachment of a signal light monitor. 第5実施形態に係る信号灯モニタを積層信号灯に取り付けた状態を示す概略図である。It is the schematic which shows the state which attached the signal lamp monitor which concerns on 5th Embodiment to the laminated signal lamp. 第1~第5実施形態に係るブロックの変形例を示す図であり、(a)は断面図であり、(b)は説明図である。It is a figure which shows the modification of the block which concerns on 1st-5th embodiment, (a) is sectional drawing, (b) is explanatory drawing. 第6実施形態に係る信号灯モニタの検出部を示す正面図である。It is a front view which shows the detection part of the signal lamp monitor which concerns on 6th Embodiment. 第6実施形態の信号灯モニタを積層信号灯に取り付けた状態を示す概略図である。It is the schematic which shows the state which attached the signal lamp monitor of 6th Embodiment to the laminated signal lamp. 第7実施形態に係る信号灯モニタの本体を示す正面図である。It is a front view which shows the main body of the signal light monitor which concerns on 7th Embodiment. 第8実施形態に係る信号灯モニタの本体を示す正面図である。It is a front view which shows the main body of the signal light monitor which concerns on 8th Embodiment. 第8実施形態に係る信号灯モニタの本体を示す平面図である。It is a top view which shows the main body of the signal light monitor which concerns on 8th Embodiment. 本体固定具を示す平面図(a)および正面図(b)である。It is the top view (a) and front view (b) which show a main body fixing tool. 第9実施形態に係る信号灯モニタの全体構成を示す斜視図である。It is a perspective view which shows the whole structure of the signal lamp monitor which concerns on 9th Embodiment. 図24に示す信号灯モニタの本体の平面図である。It is a top view of the main body of the signal light monitor shown in FIG. 図24に示す信号灯モニタの本体の平面図であって、ケースを透過させた状態を示す。It is a top view of the main body of the signal lamp monitor shown in FIG. 24, Comprising: The state which permeate | transmitted the case is shown. 図24に示す信号灯モニタの本体の正面図である。It is a front view of the main body of the signal light monitor shown in FIG. 図24に示す信号灯モニタの検出部を示す正面図である。It is a front view which shows the detection part of the signal lamp monitor shown in FIG. 図24に示す信号灯モニタのブロック図である。It is a block diagram of the signal lamp monitor shown in FIG.
 以下、本開示に係る信号灯モニタの種々の実施形態につき、添付図面を参照して具体的に説明する。 Hereinafter, various embodiments of a signal light monitor according to the present disclosure will be specifically described with reference to the accompanying drawings.
 図1~図7は、第1実施形態に係る信号灯モニタA1の説明図である。図1は、信号灯モニタA1の全体構成を示す概略図であり、積層信号灯900に取り付けた状態を示している。図2は、信号灯モニタA1の本体の正面図である。図3は、信号灯モニタA1の本体の平面図である。図3では、カバー103(図2に参照)を外した状態を示している。図4は、中継ブロックおよびセンサブロックの説明図である。図5(a)は、センサブロックの正面図であり、(b)は同センサブロックの背面図である。図6は、信号灯モニタA1の回路構成を示す簡略図である。図7は、信号灯モニタA1を備えた管理システムのブロック図である。 1 to 7 are explanatory diagrams of the signal lamp monitor A1 according to the first embodiment. FIG. 1 is a schematic diagram showing the overall configuration of the signal lamp monitor A1, and shows a state where the signal lamp monitor A1 is attached to the laminated signal lamp 900. FIG. 2 is a front view of the main body of the signal light monitor A1. FIG. 3 is a plan view of the main body of the signal lamp monitor A1. FIG. 3 shows a state where the cover 103 (see FIG. 2) is removed. FIG. 4 is an explanatory diagram of the relay block and the sensor block. FIG. 5A is a front view of the sensor block, and FIG. 5B is a rear view of the sensor block. FIG. 6 is a simplified diagram showing a circuit configuration of the signal lamp monitor A1. FIG. 7 is a block diagram of a management system provided with a signal lamp monitor A1.
 図1に示すように、信号灯モニタA1は、積層信号灯900に取り付けて使用される。積層信号灯900は、工場内の生産装置などの稼動状態を作業者に知らせるための信号灯である。積層信号灯900は、複数の発光部901~903を積み重ねて円柱状に構成され、取付部904が設けられている。積層信号灯900は、生産装置の例えば頂部に取付部904を固定することで、発光部901~903が鉛直方向に並ぶようにして取り付けられる。積層信号灯900は、生産装置から稼働状態を示す信号(「状態信号」)を入力され、当該信号に応じて発光部901~903を発光させる。発光部901,902,903はそれぞれ、例えば赤、黄、青の光を発する。作業者は、積層信号灯の発光状態(点灯、点滅、消灯)や発光色によって、当該生産装置の稼動状態を知ることができる。 As shown in FIG. 1, the signal light monitor A1 is used by being attached to a laminated signal light 900. The laminated signal lamp 900 is a signal lamp for notifying an operator of the operating state of a production apparatus in a factory. The laminated signal lamp 900 is formed in a cylindrical shape by stacking a plurality of light emitting portions 901 to 903, and is provided with an attachment portion 904. The laminated signal lamp 900 is mounted so that the light emitting units 901 to 903 are arranged in the vertical direction by fixing the mounting unit 904 to, for example, the top of the production apparatus. The laminated signal lamp 900 receives a signal indicating an operating state (“state signal”) from the production apparatus, and causes the light emitting units 901 to 903 to emit light according to the signal. Each of the light emitting units 901, 902, and 903 emits red, yellow, and blue light, for example. The operator can know the operating state of the production apparatus by the light emission state (lighting, blinking, extinguishing) and light emission color of the laminated signal lamp.
 信号灯モニタA1は、本体100および検出部200を備えている。本体100は、積層信号灯900の最上部に載置されている。検出部200は、本体100の底面の端部から、積層信号灯900の側面に沿って鉛直下方向に延びている。信号灯モニタA1は、積層信号灯900が発する光を検出部200で検出し、検出した光に基づいて発光状態(点灯、点滅、消灯)や発光色を識別し、識別結果を無線信号にして送信する。以下では、鉛直方向をy方向(y1-y2方向)、水平面内で本体100の中心から検出部200に向かう方向をz方向(z1-z2方向)、y方向およびz方向に直交する方向をx方向(x1-x2方向)とする。 The signal light monitor A1 includes a main body 100 and a detection unit 200. The main body 100 is placed on the top of the laminated signal lamp 900. The detection unit 200 extends vertically downward along the side surface of the laminated signal lamp 900 from the end of the bottom surface of the main body 100. The signal lamp monitor A1 detects the light emitted from the laminated signal lamp 900 by the detection unit 200, identifies the light emission state (lighted, blinking, extinguished) and the light emission color based on the detected light, and transmits the identification result as a radio signal. . In the following, the vertical direction is the y direction (y1-y2 direction), the direction from the center of the main body 100 toward the detection unit 200 in the horizontal plane is the z direction (z1-z2 direction), and the y direction and the direction orthogonal to the z direction are x Direction (x1-x2 direction).
 まず、本体100について説明する。図2および図3に示すように、本体100は、筐体101、回路基板110、無線モジュール120、スイッチ130、複数の可変抵抗器140、バッテリホルダ150、およびコネクタ160を備えている。なお、図には記載されていないが、本体100は、その他の回路素子なども適宜備えている。 First, the main body 100 will be described. As shown in FIGS. 2 and 3, the main body 100 includes a housing 101, a circuit board 110, a wireless module 120, a switch 130, a plurality of variable resistors 140, a battery holder 150, and a connector 160. Although not shown in the figure, the main body 100 includes other circuit elements as appropriate.
 筐体101は、例えば、回路基板110、無線モジュール120、スイッチ130、可変抵抗器140、バッテリホルダ150、およびコネクタ160を収容している。筐体101は、ケース102およびカバー103を含む。ケース102は、例えば合成樹脂製であるが、これに限定されるわけではない。ケース102は、中心軸に平行な方向に測った寸法が相対的に小さい有底円筒形状である。ケース102の開口102aには、回路基板110が嵌め込まれている。ケース102の側壁および底面の一部には、検出部200を取り付けるための切り欠き102bが設けられている。切り欠き102bによって、回路基板110の裏面110bの一部が露出している。本実施形態では、検出部200が本体100の底面から下方に延びるので、ケース102(本体100)の底面の直径を、載置される積層信号灯900の上面の直径より大きくしている(図1参照)。検出部200の取り付け方によっては、ケース102の底面の直径を、積層信号灯900の上面の直径より小さくしてもよい。積層信号灯900の上面の形状に合わせて、ケース102の底面の形状を円形状としているが、本開示がこれに限定されるわけではない。ケース102の底面は、例えば、矩形状やその他の形状としてもよい。 The housing 101 houses, for example, a circuit board 110, a wireless module 120, a switch 130, a variable resistor 140, a battery holder 150, and a connector 160. The housing 101 includes a case 102 and a cover 103. The case 102 is made of, for example, a synthetic resin, but is not limited to this. The case 102 has a bottomed cylindrical shape with a relatively small dimension measured in a direction parallel to the central axis. The circuit board 110 is fitted in the opening 102 a of the case 102. A cutout 102 b for attaching the detection unit 200 is provided on a part of the side wall and the bottom surface of the case 102. A part of the back surface 110b of the circuit board 110 is exposed by the notch 102b. In this embodiment, since the detection unit 200 extends downward from the bottom surface of the main body 100, the diameter of the bottom surface of the case 102 (main body 100) is made larger than the diameter of the upper surface of the stacked signal lamp 900 to be placed (FIG. 1). reference). Depending on how the detection unit 200 is attached, the diameter of the bottom surface of the case 102 may be smaller than the diameter of the top surface of the laminated signal lamp 900. Although the shape of the bottom surface of the case 102 is circular according to the shape of the top surface of the laminated signal lamp 900, the present disclosure is not limited to this. The bottom surface of the case 102 may have a rectangular shape or other shapes, for example.
 カバー103は、回路基板110およびアンテナ123などを保護するものであり、ケース102に被せられる構成とされている。カバー103の一部は、中心軸に平行な方向に測った寸法が相対的に小さい有底円筒形状である。また、カバー103には、アンテナ123を収容する中空の突出部が、上記の円筒形状部と一体的に設けられている。なお、カバー103の形状は、この例に限定されるわけではない。カバー103は、例えば、アクリル樹脂などの合成樹脂製である。カバー103は、太陽電池122(後述)が光を受光できるようにするために、光を透過させる構成とされている。太陽電池122を内部に配置しない場合は、不透明な素材によってカバー103を構成してもよい。 The cover 103 protects the circuit board 110, the antenna 123, and the like, and is configured to cover the case 102. A part of the cover 103 has a bottomed cylindrical shape with a relatively small dimension measured in a direction parallel to the central axis. Further, the cover 103 is provided with a hollow projecting portion that accommodates the antenna 123 integrally with the cylindrical portion. The shape of the cover 103 is not limited to this example. The cover 103 is made of a synthetic resin such as an acrylic resin, for example. The cover 103 is configured to transmit light so that the solar cell 122 (described later) can receive light. When the solar cell 122 is not disposed inside, the cover 103 may be made of an opaque material.
 回路基板110は、例えばガラスエポキシ樹脂などの絶縁材料からなる基材と、この基材上に形成された配線パターンを有している。回路基板110は、円形状であり、主面110aおよび裏面110bを有する。主面110aおよび裏面110bは、回路基板110の厚さ方向(y方向)において互いに反対側を向いている。主面110aには、無線モジュール120、スイッチ130、可変抵抗器140、およびバッテリホルダ150が搭載されている。図3に示すように、無線モジュール120は、z方向に沿って長状の形態を有しており、その中心が主面110aの中央に対応するように配置される。無線モジュール120のx2方向側には、スイッチ130および可変抵抗器140が配置され、無線モジュール120のx1方向側には、バッテリホルダ150が配置されている。この配置により、回路基板110の直径を無線モジュール120の長手方向の寸法に近いものとすることができる。なお、各部材の配置位置は、この例に限定されない。図2に示すように、無線モジュール120は、回路基板110から離間配置される。したがって、無線モジュール120と回路基板110との間にも、回路素子などを配置することができる。裏面110bには、コネクタ160が搭載されている。図示した例では、コネクタ160は、回路基板110の縁部近傍に配置されているが、本開示がこれに限定されるわけではない。回路基板110は、裏面110bをケース102の内側に向けて開口102aに嵌め込まれ、例えばネジなどでケース102に固定されている。したがって、回路基板110の主面110aはケース102から露出しているが、裏面110bの大部分はケース102によって隠されている。回路基板110には、電流検出回路111(図6参照)やその他の回路素子なども搭載されている。例えば、作業者が直接操作したり視認する必要がない部材は、裏面110bに搭載される。 The circuit board 110 has a base material made of an insulating material such as glass epoxy resin and a wiring pattern formed on the base material. The circuit board 110 is circular and has a main surface 110a and a back surface 110b. The main surface 110a and the back surface 110b face opposite sides in the thickness direction (y direction) of the circuit board 110. The radio module 120, the switch 130, the variable resistor 140, and the battery holder 150 are mounted on the main surface 110a. As shown in FIG. 3, the wireless module 120 has a long shape along the z direction, and is arranged so that the center thereof corresponds to the center of the main surface 110a. The switch 130 and the variable resistor 140 are disposed on the x2 direction side of the wireless module 120, and the battery holder 150 is disposed on the x1 direction side of the wireless module 120. With this arrangement, the diameter of the circuit board 110 can be close to the longitudinal dimension of the wireless module 120. In addition, the arrangement position of each member is not limited to this example. As shown in FIG. 2, the wireless module 120 is spaced from the circuit board 110. Therefore, a circuit element or the like can be disposed between the wireless module 120 and the circuit board 110. A connector 160 is mounted on the back surface 110b. In the illustrated example, the connector 160 is disposed near the edge of the circuit board 110, but the present disclosure is not limited to this. The circuit board 110 is fitted into the opening 102a with the back surface 110b facing the inside of the case 102, and is fixed to the case 102 with, for example, screws. Therefore, the main surface 110 a of the circuit board 110 is exposed from the case 102, but most of the back surface 110 b is hidden by the case 102. On the circuit board 110, a current detection circuit 111 (see FIG. 6) and other circuit elements are also mounted. For example, a member that the operator does not need to directly operate or visually recognize is mounted on the back surface 110b.
 無線モジュール120は、本実施形態では、バッテリーレス無線発信技術を採用したEnOcean通信規格に準拠した通信を行う。無線モジュール120は、モジュール基板121、太陽電池122、およびアンテナ123を備えている。モジュール基板121は、例えばガラスエポキシ樹脂などの絶縁材料からなる基材と、この基材上に形成された配線パターンを有している。モジュール基板121は、矩形状の板状であり、主面121aおよび裏面121bを有する。主面121aは、太陽電池122およびアンテナ123を搭載している。裏面121bは、各種回路を構成する回路素子やCPU、メモリなどの電子部品、および、太陽電池122が発電した電力を充電するためのキャパシタなどを搭載している。各種回路には、通信回路、制御回路および電圧変換回路などがある。太陽電池122は受光面122aとは反対側の面をモジュール基板121に向けて配置されている。太陽電池122は、受光面122aが受光した光によって電力を発生させる。アンテナ123は、導体線を螺旋状に巻回したノーマルモード型のヘリカルアンテナであり、中心軸がy方向に平行となるように、モジュール基板121の主面121aに配置されている。図示した例では、アンテナ123の下端は、モジュール基板121の縁部近傍に配置されている。アンテナ123は、モノポールアンテナなどの他の構成であってもよい。無線モジュール120は、モジュール基板121の裏面121bが回路基板110に向けられ且つ回路基板110から離間した状態で、回路基板110に固定されている。無線モジュール120は、太陽電池122が発電した電力(またはキャパシタに充電された電力)を用いて無線通信を行うことができる。このために、無線モジュール120には、消費電力の極めて低い無線回路が内蔵されている。 In this embodiment, the wireless module 120 performs communication conforming to the EnOcean communication standard that employs battery-less wireless transmission technology. The wireless module 120 includes a module substrate 121, a solar cell 122, and an antenna 123. The module substrate 121 has a base material made of an insulating material such as glass epoxy resin and a wiring pattern formed on the base material. The module substrate 121 has a rectangular plate shape and has a main surface 121a and a back surface 121b. The main surface 121a has the solar cell 122 and the antenna 123 mounted thereon. The back surface 121b is equipped with circuit elements constituting various circuits, electronic components such as a CPU and a memory, a capacitor for charging power generated by the solar cell 122, and the like. Various circuits include a communication circuit, a control circuit, a voltage conversion circuit, and the like. The solar cell 122 is arranged with the surface opposite to the light receiving surface 122 a facing the module substrate 121. The solar cell 122 generates electric power by the light received by the light receiving surface 122a. The antenna 123 is a normal mode type helical antenna in which a conductor wire is spirally wound, and is disposed on the main surface 121a of the module substrate 121 so that the central axis is parallel to the y direction. In the illustrated example, the lower end of the antenna 123 is disposed in the vicinity of the edge of the module substrate 121. The antenna 123 may have another configuration such as a monopole antenna. The wireless module 120 is fixed to the circuit board 110 with the back surface 121b of the module board 121 facing the circuit board 110 and being separated from the circuit board 110. The wireless module 120 can perform wireless communication using the power generated by the solar battery 122 (or the power charged in the capacitor). For this reason, the wireless module 120 incorporates a wireless circuit with extremely low power consumption.
 無線モジュール120の通信規格は、EnOcean通信規格に限定されない。例えば、Bluetooth (登録商標)、ZigBee(登録商標)、UWB(Ultra Wide Band)、Z-Wave、Wi-Fi(Wireless Fidelity)、Wi-SUN(登録商標)などの通信規格に準拠して通信を行うようにしてもよい。 The communication standard of the wireless module 120 is not limited to the EnOcean communication standard. For example, communication conforms to communication standards such as Bluetooth® (registered trademark), ZigBee (registered trademark), UWB (Ultra® Wide® Band), Z-Wave, Wi-Fi (Wireless® Fidelity), and Wi-SUN (registered trademark). You may make it perform.
 図6に示すように、可変抵抗器140は、それぞれフォトダイオード225等に直列接続されており、抵抗値を変えることでフォトダイオード225等の感度が個別に調整される。可変抵抗器140の抵抗値は、例えばマイナスドライバの先端を、調整溝141(図2参照)に入れて回転させることで変えることができる。抵抗値を変えることで、フォトダイオード225等を流れる電流が変わり、感度の調整が行われる。各可変抵抗器140は、調整溝141が同一の方向を向くように配置される。 As shown in FIG. 6, each variable resistor 140 is connected in series to the photodiode 225 and the like, and the sensitivity of the photodiode 225 and the like is individually adjusted by changing the resistance value. The resistance value of the variable resistor 140 can be changed by, for example, inserting the tip of a minus driver into the adjustment groove 141 (see FIG. 2) and rotating it. By changing the resistance value, the current flowing through the photodiode 225 or the like changes, and sensitivity adjustment is performed. Each variable resistor 140 is arranged such that the adjustment groove 141 faces the same direction.
 バッテリホルダ150は、補助電池(例えばリチウム電池)を搭載するホルダである。太陽電池122による発電が行われず、キャパシタからの電力供給もない場合に、補助電池が電力を供給する。したがって、通常は、補助電池から電力が供給されることはない。 The battery holder 150 is a holder for mounting an auxiliary battery (for example, a lithium battery). When power generation by the solar battery 122 is not performed and no power is supplied from the capacitor, the auxiliary battery supplies power. Therefore, normally, no power is supplied from the auxiliary battery.
 スイッチ130は、信号灯モニタA1を操作するためのスイッチである。例えば、スイッチ130は、種々のデータや信号灯モニタA1の状態に関する信号を送信するために用いられる。図3に示すように、スイッチ130は、例えば円柱形状の押圧ボタン131を備えている。同図に示す例では、押圧ボタン131は、無線モジュール120の長手方向に対して直交する方向(x2方向)に長く延びる形状である。スイッチ130は、押圧ボタン131が押圧されたときに、無線モジュール120の制御回路に操作信号を出力する。制御回路は、操作信号の入力に応じ、所定のデータを読み出したり、信号灯モニタA1の状態を検出したりして、所定の信号を生成する。生成された信号は、無線モジュール120の通信回路によって、管理装置800(図7参照)に送信される。一例として、スイッチ130が押圧されると、バッテリホルダ150の電池の有無および電圧が検出され、検出結果に対応した信号が管理装置800に送信される。 The switch 130 is a switch for operating the signal light monitor A1. For example, the switch 130 is used to transmit various data and signals related to the state of the signal lamp monitor A1. As shown in FIG. 3, the switch 130 includes a cylindrical push button 131, for example. In the example shown in the figure, the push button 131 has a shape that extends long in a direction (x2 direction) orthogonal to the longitudinal direction of the wireless module 120. The switch 130 outputs an operation signal to the control circuit of the wireless module 120 when the push button 131 is pressed. The control circuit generates predetermined signals by reading predetermined data or detecting the state of the signal lamp monitor A1 according to the input of the operation signal. The generated signal is transmitted to the management apparatus 800 (see FIG. 7) by the communication circuit of the wireless module 120. As an example, when the switch 130 is pressed, the presence / absence of the battery in the battery holder 150 and the voltage are detected, and a signal corresponding to the detection result is transmitted to the management device 800.
 コネクタ160は、検出部200を本体100に接続するためのコネクタである。コネクタ160は、例えば5つのメス型端子を備えている。各メス型端子は、回路基板110の配線パターンに電気的に接続している。コネクタ160は、回路基板110の裏面110bのz1方向側端部に配置されている。ケース102のz1方向側には、切り欠き102bが設けられている。したがって、コネクタ160は、ケース102に覆われず露出している。コネクタ160は、オス型端子を挿入するための開口をy2方向に向けるように配置されている。 The connector 160 is a connector for connecting the detection unit 200 to the main body 100. The connector 160 includes, for example, five female terminals. Each female terminal is electrically connected to the wiring pattern of the circuit board 110. The connector 160 is disposed at the end of the back surface 110b of the circuit board 110 in the z1 direction. A cutout 102 b is provided on the z1 direction side of the case 102. Therefore, the connector 160 is exposed without being covered by the case 102. Connector 160 is arranged so that the opening for inserting the male terminal is directed in the y2 direction.
 検出部200は、図1に示すように、複数の中継ブロック210およびセンサブロック220,230,240,250を備えている。 The detection unit 200 includes a plurality of relay blocks 210 and sensor blocks 220, 230, 240, 250 as shown in FIG.
 中継ブロック210は、センサブロック220,230,240,250を本体100に接続する。図4に示すように、各中継ブロック210は、ケース211、中継基板212、およびコネクタ213,214を備えている。ケース211は、例えば合成樹脂製である。本実施形態では、ケース211は、光透過量を削減するための添加剤を含有する合成樹脂(例えばABS樹脂)によって形成されており、内側の面が遮光のために黒色に着色されている。本実施形態では、ケース211の遮光性向上のために、添加剤を添加し、かつ、内側の面の着色を行っているが、いずれか一方の対応のみとしてもよい。ケース211の断面(y方向に直交する断面)は、U字状(すなわち、相対的に長い底辺と、この底辺の両端からそれぞれ起立した側辺とを有する形状)である。中継基板212は、U字状断面を有するケース211の内側に配置される。中継基板212は、例えばガラスエポキシ樹脂などの絶縁材料からなる基材と、この基材上に形成された配線パターン212aを有している。本実施形態では、配線パターン212aは、5本の導電ライン部(212a)からなるが、本開示がこれに限定されるわけではない。中継基板212は、配線パターン(導電ライン部)212aが形成された面を外側に向けてケース211に固定されている。コネクタ213は、本体100のコネクタ160、または、他の中継ブロック210のコネクタ214、または、センサブロック220,230,240,250のコネクタ214と接続するためのコネクタである。コネクタ213は5つのオス型端子213aを備えており、各オス型端子213aはそれぞれ5本の導電ライン部212aのいずれかに電気的に接続している。コネクタ214は、他の中継ブロック210、センサブロック220,230,240,250のコネクタ213と接続するためのコネクタである。コネクタ214は5つのメス型端子を備えており、各メス型端子はそれぞれ5本の導電ライン部212aのいずれかに電気的に接続している。つまり、コネクタ213の各オス型端子213aは、コネクタ214のいずれか1つのメス型端子と電気的に接続している。 The relay block 210 connects the sensor blocks 220, 230, 240, 250 to the main body 100. As shown in FIG. 4, each relay block 210 includes a case 211, a relay board 212, and connectors 213 and 214. The case 211 is made of, for example, a synthetic resin. In the present embodiment, the case 211 is formed of a synthetic resin (for example, ABS resin) containing an additive for reducing the amount of light transmission, and the inner surface is colored black for light shielding. In the present embodiment, in order to improve the light shielding property of the case 211, an additive is added and the inner surface is colored, but only one of them may be handled. The cross section of the case 211 (the cross section perpendicular to the y direction) is U-shaped (that is, a shape having a relatively long base and side edges that stand up from both ends of the base). The relay substrate 212 is disposed inside the case 211 having a U-shaped cross section. The relay substrate 212 includes a base material made of an insulating material such as glass epoxy resin and a wiring pattern 212a formed on the base material. In the present embodiment, the wiring pattern 212a includes five conductive line portions (212a), but the present disclosure is not limited to this. The relay substrate 212 is fixed to the case 211 with the surface on which the wiring pattern (conductive line portion) 212a is formed facing outward. The connector 213 is a connector for connecting to the connector 160 of the main body 100, the connector 214 of another relay block 210, or the connector 214 of the sensor block 220, 230, 240, 250. The connector 213 includes five male terminals 213a, and each male terminal 213a is electrically connected to one of the five conductive line portions 212a. The connector 214 is a connector for connecting to the connector 213 of the other relay block 210 and sensor blocks 220, 230, 240, 250. The connector 214 includes five female terminals, and each female terminal is electrically connected to one of the five conductive line portions 212a. That is, each male terminal 213 a of the connector 213 is electrically connected to any one female terminal of the connector 214.
 図4および図5に示すように、センサブロック220は、ケース211、センサ基板222、およびコネクタ213,214を備えている。センサブロック220のケース211は、中継ブロック210のケース211と同様の構成である。また、センサ基板222は、中継ブロック210の中継基板212と同様に、例えばガラスエポキシ樹脂などの絶縁材料からなる基材と、この基材上に形成された配線パターン212aを有している。これらの部材(ケース、センサ基板、コネクタ)に関しては、他のセンサブロック230,240および250も、センサブロック220と同様の構成である。ただし、センサブロック250は、コネクタ214を備えておらず、5本の配線パターンの終端が互いに接続されている(図6参照)。 4 and 5, the sensor block 220 includes a case 211, a sensor substrate 222, and connectors 213 and 214. The case 211 of the sensor block 220 has the same configuration as the case 211 of the relay block 210. Similarly to the relay substrate 212 of the relay block 210, the sensor substrate 222 has a base material made of an insulating material such as glass epoxy resin and a wiring pattern 212a formed on the base material. Regarding these members (case, sensor board, connector), the other sensor blocks 230, 240, and 250 have the same configuration as the sensor block 220. However, the sensor block 250 does not include the connector 214, and the terminal ends of the five wiring patterns are connected to each other (see FIG. 6).
 図6に示すように、センサブロック220,230,240,250は、それぞれ、フォトダイオード225,235,245および255を備えている。各センサブロックにおいて、フォトダイオード225,235,245または255は、センサ基板222に搭載されており、配線パターン212aが所定の電流路を構成するように当該フォトダイオードに電気的に接続している。図6から理解されるように、配線パターン212aが構成する電流路は、それぞれのセンサブロックごとに異なりうる。その結果、例えば、センサブロック220のフォトダイオード225は、最も左側の導通路および最も右側の導通路を介して、本体100の電流検出回路111に接続されるが、センサブロック230のフォトダイオード235は、左側から2番目の導通路および最も右側の導通路を介して、電流検出回路111に接続される。このような電流路の違いは、それぞれのセンサブロックにおける配線パターン212aの接続状態を適宜異ならせることで実現可能である。 As shown in FIG. 6, the sensor blocks 220, 230, 240, and 250 include photodiodes 225, 235, 245, and 255, respectively. In each sensor block, the photodiodes 225, 235, 245, or 255 are mounted on the sensor substrate 222, and are electrically connected to the photodiodes so that the wiring pattern 212a forms a predetermined current path. As can be understood from FIG. 6, the current path formed by the wiring pattern 212a can be different for each sensor block. As a result, for example, the photodiode 225 of the sensor block 220 is connected to the current detection circuit 111 of the main body 100 via the leftmost conduction path and the rightmost conduction path, but the photodiode 235 of the sensor block 230 is The current detection circuit 111 is connected via the second conduction path from the left side and the rightmost conduction path. Such a difference in current path can be realized by appropriately changing the connection state of the wiring pattern 212a in each sensor block.
 一例として、図5(a),(b)は、センサブロック220(延いては他のセンサブロック)における配線パターン212aの詳細を示している。図5(b)では、ケース211を透過させて破線で示している。なお、図5に示された配線パターン212aには、実際には使用されない(電流が流れない)経路が含まれていてもよく、要は、図6に示すような回路が構成されるように、配線パターン212aを必要に応じて(各センサブロックごとに、所定の部分をハンダで架橋するなどして)適宜改変すればよい。 As an example, FIGS. 5A and 5B show details of the wiring pattern 212a in the sensor block 220 (and other sensor blocks). In FIG. 5B, the case 211 is shown by a broken line. Note that the wiring pattern 212a shown in FIG. 5 may include a path that is not actually used (current does not flow). In short, the circuit as shown in FIG. 6 is configured. The wiring pattern 212a may be appropriately modified as necessary (for each sensor block, for example, by bridging a predetermined portion with solder).
 具体的には、図5(a)に示すように、センサ基板222の表面には、各々がy方向に延びる5本の導電ライン部が形成されている。図に示す例では、右側の2本は略直線状であるが、左側の3本は、(例えば配線の都合により)部分的に屈曲している。また、左側の4本は、部分的にフォトダイオード225と重なっているが、フォトダイオード225とは電気的絶縁状態とされている。センサブロック220のコネクタ213,214は、中継ブロック210のコネクタ213,214と同様の構成である。すなわち、センサブロック220において、コネクタ213の各オス型端子213aは、対応する一の導電ライン部を介して、コネクタ214のいずれか1つのメス型端子と電気的に接続している。フォトダイオード225の受光面225aは、センサ基板222とは反対側(センサ基板222から遠ざかる側)を向いている。 Specifically, as shown in FIG. 5A, five conductive line portions each extending in the y direction are formed on the surface of the sensor substrate 222. In the example shown in the drawing, the two on the right side are substantially linear, but the three on the left side are partially bent (for example, due to the convenience of wiring). The four on the left part partially overlap with the photodiode 225, but are electrically insulated from the photodiode 225. The connectors 213 and 214 of the sensor block 220 have the same configuration as the connectors 213 and 214 of the relay block 210. That is, in the sensor block 220, each male terminal 213a of the connector 213 is electrically connected to any one female terminal of the connector 214 through a corresponding one conductive line portion. The light receiving surface 225 a of the photodiode 225 faces away from the sensor substrate 222 (the side away from the sensor substrate 222).
 さらに、センサブロック220において、最も右側の導電ライン部には、直線部から左側に延びる第1延出部と、右側に延びる第2延出部とが形成されている。図に示す例では、第1延出部は、導電ライン部の直線部に対して垂直に延び、第2延出部は、同直線部に対して斜め下方に延びているが、本開示がこれに限定されるわけではない。左側の第1延出部は、フォトダイオード225の裏面に形成された第1の端子(図示略)に接続されている。一方、右側の第2延出部は、第1のスルーホール212b(図5(a)における右側のスルーホール)を介して、センサ基板222の裏面に形成された配線パターン212aに接続している。 Further, in the sensor block 220, the rightmost conductive line part is formed with a first extension part extending from the straight line part to the left side and a second extension part extending to the right side. In the example shown in the figure, the first extension portion extends perpendicularly to the straight line portion of the conductive line portion, and the second extension portion extends obliquely downward with respect to the straight line portion. However, the present invention is not limited to this. The first extension on the left side is connected to a first terminal (not shown) formed on the back surface of the photodiode 225. On the other hand, the second extension portion on the right side is connected to the wiring pattern 212a formed on the back surface of the sensor substrate 222 via the first through hole 212b (the right side through hole in FIG. 5A). .
 センサ基板222の裏面において、上記第1のスルーホール212b(図5(b)における左側のスルーホール)は、保護素子212cおよび第2のスルーホール212b(図5(b)における右側のスルーホール)を介し、図5(a)に示すように、フォトダイオード225の裏面に形成された左側の端子(図示略)に接続されている。図5(a)に示す例では、第2のスルーホール212bとフォトダイオード225との間には、屈曲状の導電連結部212dが形成されており、当該連結部を介して、第2のスルーホール212bとフォトダイオード225とが電気的に接続されている。 On the back surface of the sensor substrate 222, the first through hole 212b (the left side through hole in FIG. 5B) is the protective element 212c and the second through hole 212b (the right side through hole in FIG. 5B). As shown in FIG. 5A, the terminal is connected to the left terminal (not shown) formed on the back surface of the photodiode 225. In the example shown in FIG. 5A, a bent conductive connecting portion 212d is formed between the second through-hole 212b and the photodiode 225, and the second through-hole is formed via the connecting portion. The hole 212b and the photodiode 225 are electrically connected.
 さらに、図5(b)に示すように、センサ基板222の裏面には、各々がy方向に延びる4本の導電ストリップ212eが形成されている。同図において、最も右側の導電ストリップ212eは、その上端部が、最も右側のオス型端子213aに接続されている。右から2番目の導電ストリップ212eは、その下端部が、右から2番目のメス型端子に接続されている。右から3番目の導電ストリップ212eは、その上端部が、右から3番目のオス型端子213aに接続されている。右から4番目の導電ストリップ212eは、その下端部が、右から4番目のメス型端子に接続されている。さらに、センサブロック220においては、最も右側の導電ストリップ212eの下端部と、配線パターン212aの水平直線部とが、導電性材料(例えばハンダ)からなる架橋部212fを介して電気的に接続されている。図6の回路図から理解されるように、架橋部212fが形成される位置は、センサブロック220,230,240および250ごとに異なる。 Furthermore, as shown in FIG. 5B, four conductive strips 212e each extending in the y direction are formed on the back surface of the sensor substrate 222. In the drawing, the uppermost end of the rightmost conductive strip 212e is connected to the rightmost male terminal 213a. The lower end of the second conductive strip 212e from the right is connected to the second female terminal from the right. The upper end of the third conductive strip 212e from the right is connected to the third male terminal 213a from the right. The lower end of the fourth conductive strip 212e from the right is connected to the fourth female terminal from the right. Furthermore, in the sensor block 220, the lower end portion of the rightmost conductive strip 212e and the horizontal straight portion of the wiring pattern 212a are electrically connected via a bridging portion 212f made of a conductive material (for example, solder). Yes. As understood from the circuit diagram of FIG. 6, the position where the bridging portion 212 f is formed is different for each of the sensor blocks 220, 230, 240 and 250.
 上述のとおり、図5(b)に示す裏面の配線パターン212aは、オス型端子213aまたはメス型端子のいずれか1つに接続される。どの端子に接続されるかは、センサブロック220,230,240および250によって異なる。このようにすれば、同一構成のセンサブロックを複数個準備し、事後的に架橋部212fを適当な位置に形成することにより、図6に示す回路構成を実現することができる。 As described above, the wiring pattern 212a on the back surface shown in FIG. 5B is connected to either the male terminal 213a or the female terminal. Which terminal is connected depends on the sensor blocks 220, 230, 240 and 250. In this way, the circuit configuration shown in FIG. 6 can be realized by preparing a plurality of sensor blocks having the same configuration and subsequently forming the bridging portion 212f at an appropriate position.
 図1に示すように、検出部200は、6個の中継ブロック210によって、センサブロック220,230,240,250を接続した構造となっている。具体的には、上から順に、第1の中継ブロック210、第2の中継ブロック210、第1のセンサブロック220、第3の中継ブロック210、第2のセンサブロック230、第4の中継ブロック210、第5の中継ブロック210、第3のセンサブロック240、第6の中継ブロック210、および第4のセンサブロック250が接続された構造になっている。そして、第1の中継ブロック210が本体100に直接的に(すなわち他の中継ブロックやセンサブロックを介さずに)接続されている。本体100が積層信号灯900の最上部に載置されることにより、本体100の底面から下方に延びる検出部200が、積層信号灯900の側面に沿って配置される。各センサブロック220,230,240のy方向における位置は、それぞれ発光部901,902,903に対応する位置になっている。また、図4に示すように、各センサブロック(220等)のフォトダイオード(225等)は、それぞれの受光面(225a等)をz2方向に向けている。したがって、各フォトダイオードは、発光部(901等)の発する光を受光することができる。本実施形態では、検出手段あるいは受光手段としてフォトダイオードを採用しているが、本開示はこれに限定されない。例えば、フォトダイオードに代えて、フォトトランジスタを用いてもよい。 As shown in FIG. 1, the detection unit 200 has a structure in which sensor blocks 220, 230, 240, and 250 are connected by six relay blocks 210. Specifically, in order from the top, the first relay block 210, the second relay block 210, the first sensor block 220, the third relay block 210, the second sensor block 230, and the fourth relay block 210. The fifth relay block 210, the third sensor block 240, the sixth relay block 210, and the fourth sensor block 250 are connected to each other. The first relay block 210 is directly connected to the main body 100 (that is, not via another relay block or a sensor block). When the main body 100 is placed on the top of the laminated signal lamp 900, the detection unit 200 extending downward from the bottom surface of the main body 100 is arranged along the side surface of the laminated signal lamp 900. The positions of the sensor blocks 220, 230, and 240 in the y direction are positions corresponding to the light emitting units 901, 902, and 903, respectively. As shown in FIG. 4, the photodiodes (225, etc.) of each sensor block (220, etc.) have their light receiving surfaces (225a, etc.) oriented in the z2 direction. Therefore, each photodiode can receive light emitted from the light emitting unit (901, etc.). In the present embodiment, a photodiode is employed as the detecting means or the light receiving means, but the present disclosure is not limited to this. For example, a phototransistor may be used instead of the photodiode.
 図6に示すように、センサブロック220,230,240,250のフォトダイオード225,235,245,255は、可変抵抗器140を直列接続され、互いに並列に電流検出回路111に接続されている。電流検出回路111は、各可変抵抗器140の端子間電圧を検出することで各フォトダイオード225,235,245,255を流れる電流を検出して、電流信号を無線モジュール120に出力する。無線モジュール120は、入力される電流信号に基づいて、積層信号灯900の各発光部の発光状態(点灯、点滅、消灯)を検出する。なお、図1に示す例では、発光部が3つしか設けられていないので、フォトダイオード255は作動せず、センサブロック250は、信号灯モニタA1全体の接続を確保するために用いられているだけである。 As shown in FIG. 6, the photodiodes 225, 235, 245, and 255 of the sensor blocks 220, 230, 240, and 250 have variable resistors 140 connected in series, and are connected to the current detection circuit 111 in parallel with each other. The current detection circuit 111 detects the current flowing through each photodiode 225, 235, 245, 255 by detecting the voltage between the terminals of each variable resistor 140, and outputs a current signal to the wireless module 120. Based on the input current signal, the wireless module 120 detects the light emission state (lit, blinking, or extinguished) of each light emitting unit of the laminated signal lamp 900. In the example shown in FIG. 1, since only three light emitting units are provided, the photodiode 255 does not operate, and the sensor block 250 is only used to ensure the connection of the entire signal lamp monitor A1. It is.
 具体的には、無線モジュール120は、フォトダイオード225を流れる電流によって発光部901の発光状態を検出し、フォトダイオード235を流れる電流によって発光部902の発光状態を検出し、フォトダイオード245を流れる電流によって発光部903の発光状態を検出する。無線モジュール120は、これらの検出結果に応じた検出信号を生成し、アンテナ123を介して、当該検出信号を送信する。図6に示す例では、電流検出回路111を無線モジュール120とは別に設けているが、無線モジュール120自体が電流を検出するようにしてもよい。 Specifically, the wireless module 120 detects the light emitting state of the light emitting unit 901 based on the current flowing through the photodiode 225, detects the light emitting state of the light emitting unit 902 based on the current flowing through the photodiode 235, and the current flowing through the photodiode 245. To detect the light emission state of the light emitting unit 903. The wireless module 120 generates a detection signal corresponding to these detection results, and transmits the detection signal via the antenna 123. In the example illustrated in FIG. 6, the current detection circuit 111 is provided separately from the wireless module 120, but the wireless module 120 itself may detect the current.
 図7は、信号灯モニタA1を用いた管理システムを説明する機能ブロック図である。同図では、信号灯モニタA1は、電源部310、センサ部320、制御部330、および送信部340を備えている、電源部310は、制御部330および送信部340に電力を供給する。無線モジュール120の太陽電池122およびキャパシタ、バッテリホルダ150に搭載された補助用の電池、モジュール基板121に設けられた電圧変換回路などが、電源部310に相当する。センサ部320は、積層信号灯900が発する光を検出して電流信号として制御部に入力する。検出部200、可変抵抗器140、および電流検出回路111などが、センサ部320に相当する。制御部330は、センサ部320より入力される電流信号に基づいて、検出信号を生成し、送信部340に出力する。モジュール基板121に設けられた制御回路などが、制御部330に相当する。送信部340は、制御部330より検出信号を入力され、無線により送信する。モジュール基板121に設けられた通信回路、アンテナ123などが、送信部340に相当する。 FIG. 7 is a functional block diagram illustrating a management system using the signal light monitor A1. In the figure, the signal lamp monitor A1 includes a power supply unit 310, a sensor unit 320, a control unit 330, and a transmission unit 340. The power supply unit 310 supplies power to the control unit 330 and the transmission unit 340. The solar cell 122 and capacitor of the wireless module 120, an auxiliary battery mounted on the battery holder 150, a voltage conversion circuit provided on the module substrate 121, and the like correspond to the power supply unit 310. The sensor unit 320 detects light emitted from the laminated signal lamp 900 and inputs it to the control unit as a current signal. The detection unit 200, the variable resistor 140, the current detection circuit 111, and the like correspond to the sensor unit 320. The control unit 330 generates a detection signal based on the current signal input from the sensor unit 320 and outputs the detection signal to the transmission unit 340. A control circuit or the like provided on the module substrate 121 corresponds to the control unit 330. The transmission unit 340 receives the detection signal from the control unit 330 and transmits it wirelessly. A communication circuit, an antenna 123, and the like provided on the module substrate 121 correspond to the transmission unit 340.
 制御部330は、センサ部320より入力される電流信号に基づいて、発光色を識別する。制御部330は、いずれのセンサブロック220,230,240,250のフォトダイオードに電流が流れたかによって、いずれの発光部901,902,903(例えば発光色が異なる)が発光したかを識別する。本実施形態では、センサブロック220のフォトダイオード225に電流が流れた場合、発光部901(赤色)が発光したと識別し、センサブロック230のフォトダイオード235に電流が流れた場合、発光部902(黄色)が発光したと識別し、センサブロック240のフォトダイオード245に電流が流れた場合、発光部903(青色)が発光したと識別する。 The control unit 330 identifies the emission color based on the current signal input from the sensor unit 320. The control unit 330 identifies which light emitting unit 901, 902, or 903 (for example, the light emission color is different) emits light depending on which of the sensor blocks 220, 230, 240, and 250 the current flows. In this embodiment, when a current flows through the photodiode 225 of the sensor block 220, it is identified that the light emitting unit 901 (red) emits light. When a current flows through the photodiode 235 of the sensor block 230, the light emitting unit 902 ( (Yellow) is identified as emitting light, and when a current flows through the photodiode 245 of the sensor block 240, the light emitting unit 903 (blue) is identified as emitting light.
 制御部330は、センサ部320より入力される電流信号に基づいて、発光状態(点灯、点滅、消灯)を識別する。一般に、発光状態を識別するための測定は複数回行われ、各回ごとの測定に要する時間(測定時間)は、適宜設定される。一例として、制御部330は、測定時間(例えば3秒)の間、電流が流れている状態が継続した場合(フォトダイオードが受光し続けている場合)に「点灯」状態と識別する。一方、上記測定時間の間に電流が流れていない状態が継続した場合(フォトダイオードが受光しない状態が継続する場合)には、制御部330は「消灯」状態と識別する。また、上記測定時間の間に、電流が流れている状態と流れていない状態とが交互に切り換わる場合には、制御部330は「点滅」状態と識別する。 The control unit 330 identifies the light emission state (lit, blinking, extinguished) based on the current signal input from the sensor unit 320. In general, the measurement for identifying the light emission state is performed a plurality of times, and the time (measurement time) required for each measurement is appropriately set. As an example, the control unit 330 identifies the “lighting” state when the current continues for a measurement time (for example, 3 seconds) (when the photodiode continues to receive light). On the other hand, when the state in which no current flows during the measurement time continues (when the state in which the photodiode does not receive light continues), the control unit 330 identifies the “light-off” state. In addition, when the current flowing state and the non-flowing state are alternately switched during the measurement time, the control unit 330 identifies the “flashing” state.
 前回の測定と今回の測定とで発光状態に変化が無い場合には、今回の測定の終了後に所定の休止時間(例えば7秒)が設けられる。よって、比較的長い間発光状態に変化が無い場合には、制御部330は、所定の時間(1回の測定時間+1回の休止時間;例えば10秒)が経過するごとに測定を行う(より正確には、測定を開始する)。 When there is no change in the light emission state between the previous measurement and the current measurement, a predetermined pause time (for example, 7 seconds) is provided after the end of the current measurement. Therefore, when there is no change in the light emission state for a relatively long time, the control unit 330 performs measurement every time a predetermined time (one measurement time + 1 pause time; for example, 10 seconds) elapses (more To be precise, start the measurement).
 一方、前回の測定と今回の測定とで発光状態に変化がある場合は、休止時間を設けることなく、すぐに次の測定を行う。制御部330は、当該測定によって識別された発光状態に基づいて検出信号を生成(および送信)する。このような構成によれば、発光状態が変化してから短時間(例えば3秒から13秒程度)で、検出信号を生成することができる。 On the other hand, if there is a change in the light emission state between the previous measurement and the current measurement, the next measurement is performed immediately without providing any downtime. The control unit 330 generates (and transmits) a detection signal based on the light emission state identified by the measurement. According to such a configuration, the detection signal can be generated in a short time (for example, about 3 to 13 seconds) after the light emission state changes.
 上述のとおり、本実施形態では、測定を開始するタイミング(「第1タイミング」)は、発光状態に変化がある場合と無い場合とで異なるが、本開示がこれに限定されるわけではない。 As described above, in the present embodiment, the measurement start timing (“first timing”) differs depending on whether the light emission state is changed or not, but the present disclosure is not limited to this.
 上述のとおり、発光状態に変化がない場合、制御部330は、所定の休止時間後に次の測定を行う。そして、発光状態に変化がないケースが連続して所定の回数(「状態無変化回数」)に達すると、制御部330は、このうちの最後の測定によって識別された発光状態に基づいて検出信号を生成する。つまり、継続して発光状態が変化しない場合にも、所定の条件に基づき、制御部330は検出信号を生成する。発光状態に変化がない場合において、検出信号を生成するタイミング(「第2タイミング」)は、測定時間、休止時間および状態無変化回数に応じて定まる。例えば、測定時間が3秒、休止時間が7秒、状態無変化回数が3回の場合には、第2タイミングは30秒毎である。 As described above, when there is no change in the light emission state, the control unit 330 performs the next measurement after a predetermined pause time. When the number of cases in which the light emission state does not change continuously reaches the predetermined number of times (“state unchanged number of times”), the control unit 330 detects the detection signal based on the light emission state identified by the last measurement. Is generated. That is, even when the light emission state does not continuously change, the control unit 330 generates a detection signal based on a predetermined condition. In the case where there is no change in the light emission state, the timing for generating the detection signal (“second timing”) is determined according to the measurement time, the pause time, and the number of state unchanged times. For example, when the measurement time is 3 seconds, the pause time is 7 seconds, and the number of state unchanged times is 3, the second timing is every 30 seconds.
 本実施形態では、第2タイミング(検出信号生成タイミング)は、発光状態に変化がある場合と無い場合とで異なる。上述のとおり、発光状態の変化が検出された場合には、当該検出直後の測定結果に基づき、検出信号が生成される。発光状態に変化が無い場合には、所定の複数回数の測定が行われた後に、検出信号が生成される。もちろん、本開示がこれに限定されるわけではなく、例えば、発光状態の変化/無変化に関係なく、一定の時間間隔で検出信号を生成してもよい。 In the present embodiment, the second timing (detection signal generation timing) differs depending on whether or not there is a change in the light emission state. As described above, when a change in the light emission state is detected, a detection signal is generated based on the measurement result immediately after the detection. When there is no change in the light emission state, a detection signal is generated after a predetermined number of measurements are performed. Of course, the present disclosure is not limited to this. For example, the detection signal may be generated at a constant time interval regardless of the change / no change in the light emission state.
 検出信号は、複数種の情報を含みうる。例えば、本実施形態の検出信号は、信号灯モニタA1を特定するための情報、発光色を示す情報、および発光状態を示す情報を含む。信号灯モニタA1を特定するための情報は、あらかじめ当該信号灯モニタA1に付与された(記憶された)固有の番号などであり、例えば無線モジュール120のMACアドレスや、ID番号などである。発光色を示す情報は、当該検出信号がどの色の光の発光状態であるかを示すための情報(すなわち、いずれのセンサブロック220,230,240,250が検出したものであるかを示す情報)である。発光状態を示す情報は、発光状態が「点灯」、「消灯」、「点滅」のいずれであるかを示す情報である。また、「点滅」の場合は、点滅速度(点滅周波数)を示す情報を含んでいてもよい。発光状態を示す情報は、例えば、「消灯」の場合「00」、「点灯」の場合「04」、「点滅」の場合、点滅周波数に応じて3段階で「01」,「02」,「03」などとすればよい。 The detection signal can include multiple types of information. For example, the detection signal of the present embodiment includes information for specifying the signal lamp monitor A1, information indicating the emission color, and information indicating the light emission state. The information for specifying the signal lamp monitor A1 is a unique number (stored) previously assigned (stored) to the signal lamp monitor A1, for example, a MAC address of the wireless module 120, an ID number, or the like. The information indicating the emission color is information indicating which color light emission state the detection signal has (that is, information indicating which sensor block 220, 230, 240, 250 has detected). ). The information indicating the light emission state is information indicating whether the light emission state is “lit”, “off”, or “flashing”. In the case of “flashing”, information indicating the flashing speed (flashing frequency) may be included. The information indicating the light emission state is, for example, “00” for “light off”, “04” for “light on”, and “01”, “02”, “ 03 "or the like.
 制御部330は、生成した検出信号を送信部340に無線送信させる。この際に必要な電力は、制御部330の制御の下、電源部310から送信部340に供給される。送信部340が検出信号を無線送信した後、制御部330は、電源部310から送信部340への電力供給を停止させる。 The control unit 330 causes the transmission unit 340 to wirelessly transmit the generated detection signal. Electric power required at this time is supplied from the power supply unit 310 to the transmission unit 340 under the control of the control unit 330. After the transmission unit 340 wirelessly transmits the detection signal, the control unit 330 stops the power supply from the power supply unit 310 to the transmission unit 340.
 図8は、制御部330による測定、および検出信号生成を説明するためのシーケンス図である。同図(a)は、積層信号灯900のいずれかの発光部の発光状態の一例を示している。同図(b)は、制御部330が測定かつ識別した発光状態を示している。同図(c)は、制御部330が識別した発光状態に基づいて行った比較結果を示している。同図(d)は、制御部330による比較結果に基づいて生成された検出信号の送信状態を示している。 FIG. 8 is a sequence diagram for explaining measurement by the control unit 330 and detection signal generation. FIG. 5A shows an example of the light emission state of any one of the light emitting units of the laminated signal lamp 900. FIG. FIG. 5B shows the light emission state measured and identified by the control unit 330. FIG. 5C shows a comparison result performed based on the light emission state identified by the control unit 330. FIG. 4D shows the transmission state of the detection signal generated based on the comparison result by the control unit 330.
 まず、時刻t1で測定が開始される。説明の都合上、この測定を「第1回目の」測定と称する。時刻t1の3秒後に、第1回目の測定の測定結果が得られ、図示した例では、発光状態が「消灯」状態であると識別されている。当該識別結果とこれ以前の測定での識別結果(例えば「消灯」状態とする)との比較が行われて、発光状態が「変化なし」と判断されている。 First, measurement starts at time t1. For convenience of explanation, this measurement is referred to as a “first” measurement. The measurement result of the first measurement is obtained 3 seconds after the time t1, and in the illustrated example, the light emission state is identified as the “light-off” state. The identification result is compared with the identification result obtained in the previous measurement (for example, “turned off” state), and the light emission state is determined to be “no change”.
 その後、第1回目の休止時間(例えば7秒)が経過し、時刻t2で、第2回目の測定が行われ、測定結果から発光状態が「点滅」状態であると識別されている。そして、第1回目の測定での識別結果(「消灯」状態)との比較が行われて、発光状態が「変化あり」と判断されている。当該判断の直後、時刻t3で第3回目の測定が行われ、測定結果から発光状態が「点滅」状態であると識別されている。この発光状態(「点滅」状態)に基づいて検出信号が生成されかつ送信されている。積層信号灯900の実際の発光状態(図8(a)参照)は、時刻t1から時刻t2までの間に、「消灯」状態から「点滅」状態に変化している。すなわち、この実際の変化時点から上記検出信号送信までに時間差Td1がある。時間差Td1は、(i)実際の変化から時刻t2までの時間、(ii)2回の測定時間(例えば合計6秒)、および(iii)第2回目の測定の終了時点から第3回目の測定開始時点までの時間、を加算したものである。ただし、上記(iii)の時間は非常に短いので、実質的には、上記(i)および(ii)を加算した時間(例えば6秒から13秒程度)で検出信号が生成(かつ送信)されている。 Thereafter, the first pause time (for example, 7 seconds) elapses, and at time t2, the second measurement is performed, and the light emission state is identified as the “flashing” state from the measurement result. Then, a comparison is made with the identification result (“light-off” state) in the first measurement, and the light emission state is determined to be “changed”. Immediately after the determination, the third measurement is performed at time t3, and the light emission state is identified as the “flashing” state from the measurement result. A detection signal is generated and transmitted based on this light emission state (“flashing” state). The actual light emission state (see FIG. 8A) of the laminated signal lamp 900 changes from the “light-off” state to the “flashing” state from time t1 to time t2. That is, there is a time difference Td 1 from this actual change time to the detection signal transmission. Time difference Td 1 is, (i) time from the actual change to the time t2, (ii) two of the measurement time (e.g., a total of six seconds), and (iii) from the end of the second measurement of the third The time until the measurement start time is added. However, since the time of (iii) is very short, a detection signal is generated (and transmitted) in the time (for example, about 6 to 13 seconds) obtained by adding (i) and (ii) above. ing.
 続いて、第2回目の休止時間経過後の時刻t4で第4回目の測定が行われ、発光状態が「点滅」状態であると識別されている。そして、第3回目の測定での識別結果(「点滅」状態)との比較が行われて、発光状態が「変化なし」と判断されている。第3回目の休止時間経過後、時刻t5において第5回目の測定が行われるが、このときも、同様の判断がされている。 Subsequently, the fourth measurement is performed at time t4 after the second pause time has elapsed, and the light emission state is identified as the “flashing” state. Then, a comparison with the identification result (“flashing” state) in the third measurement is performed, and the light emission state is determined to be “no change”. After the third pause time has elapsed, the fifth measurement is performed at time t5. At this time, the same determination is made.
 続いて、第4回目の休止時間経過後の時刻t6で、第6回目の測定が行われ、測定結果から発光状態が「点滅」状態であると識別されている。よってこの段階でも発光状態は「変化なし」である。時刻t4,t5,t6での測定において、3回連続で発光状態が「変化なし」と判断されたので、例えば時刻t6で開始された測定での識別結果(「点滅」状態)に基づいて、検出信号が生成されかつ送信される。このように、発光状態に変化が無い場合には、所定の時間(図示した例では30秒)が経過するごとに検出信号の送信が行われる。 Subsequently, the sixth measurement is performed at time t6 after the fourth pause time has elapsed, and the light emission state is identified as the “flashing” state from the measurement result. Therefore, the light emission state is “no change” even at this stage. In the measurement at times t4, t5, and t6, since the light emission state was determined to be “no change” three times in succession, for example, based on the identification result (“flashing” state) in the measurement started at time t6, A detection signal is generated and transmitted. Thus, when there is no change in the light emission state, the detection signal is transmitted every time a predetermined time (30 seconds in the illustrated example) elapses.
 続いて、第5回目の休止時間経過後の時刻t7で、第7回目の測定が行われる。この時、測定時間が実際の発光状態の変化のタイミングに重なっており(図8(a),(b)参照)、発光状態の識別に必要な時間がとれていない。そのため、当該測定結果からは発光状態を識別することができず、結果が「不明」状態になっている。この場合、第6回目の測定での識別結果(「点滅」状態)との比較では、発光状態が「変化あり」と判断される。当該判断の直後、時刻t8で第8回目の測定が行われ、測定結果から発光状態が「消灯」状態であると識別されている。この識別された発光状態(「消灯」状態)に基づいて検出信号が生成されかつ送信されている。積層信号灯900の実際の発光状態は、時刻t7から第8回目の測定終了までの間に、「点滅」状態から「消灯」状態に変化している(図8(a)参照)。この実際の変化から検出信号送信までの時間差Td2は、例えば3秒から6秒程度である。 Subsequently, the seventh measurement is performed at time t7 after the fifth pause time has elapsed. At this time, the measurement time overlaps with the actual change timing of the light emission state (see FIGS. 8A and 8B), and the time necessary for identifying the light emission state is not sufficient. For this reason, the light emission state cannot be identified from the measurement result, and the result is in an “unknown” state. In this case, it is determined that the light emission state is “changed” in comparison with the identification result (“flashing” state) in the sixth measurement. Immediately after the determination, the eighth measurement is performed at time t8, and the light emission state is identified as the “light-off” state from the measurement result. A detection signal is generated and transmitted based on the identified light emission state (“light-off” state). The actual light emission state of the laminated signal lamp 900 changes from the “flashing” state to the “light-off” state from time t7 to the end of the eighth measurement (see FIG. 8A). The time difference Td 2 from this actual change to detection signal transmission is, for example, about 3 to 6 seconds.
 制御部330による測定および検出信号生成のシーケンスは、上述したものに限らない。例えば、定期的に測定を行うのではなく、フォトダイオード225等が受光したときに測定を行うようにしてもよい。 The measurement and detection signal generation sequence by the control unit 330 is not limited to the above. For example, instead of periodically measuring, the measurement may be performed when the photodiode 225 or the like receives light.
 図7に示すように、管理システムは、管理装置800とともに、複数の信号灯モニタA1を含み得る。当該管理システムは、例えば工場内の複数の生産装置それぞれの稼動状態を集中管理するシステムである。各信号灯モニタA1は、生産装置に取り付けられた積層信号灯900に設置されている。各信号灯モニタA1は、制御部330が生成した検出信号を、送信部340により無線送信する。管理装置800は、受信部810、制御部820、記憶部830、および表示部840を備えている。受信部810は、それぞれの信号灯モニタA1から送信された検出信号を受信して制御部820に出力する。制御部820は、入力された検出信号に含まれる情報を記憶部830に記憶する。制御部820は、プログラムまたは操作者の操作に応じて、記憶部830に記憶された情報を表示部840に表示させる。管理装置800は、例えば、受信部810、制御部820、記憶部830、および表示部840を備えた一体の装置であってもよい。あるいは、プログラムによって制御部820および記憶部830として機能する汎用コンピュータと、各信号灯モニタA1の近くに配置されて受信部810として機能する受信機とを、ローカルエリアネットワークやインターネットによって接続したシステムであってもよい。また本実施形態と異なり、積層信号灯自体に通信回路が組み込まれていてもよい。 As shown in FIG. 7, the management system may include a plurality of signal lamp monitors A1 together with the management device 800. The management system is a system that centrally manages the operating states of a plurality of production apparatuses in a factory, for example. Each signal lamp monitor A1 is installed in a laminated signal lamp 900 attached to the production apparatus. Each signal lamp monitor A1 wirelessly transmits the detection signal generated by the control unit 330 by the transmission unit 340. The management apparatus 800 includes a receiving unit 810, a control unit 820, a storage unit 830, and a display unit 840. The receiving unit 810 receives the detection signal transmitted from each signal lamp monitor A1 and outputs it to the control unit 820. The control unit 820 stores information included in the input detection signal in the storage unit 830. The control unit 820 causes the display unit 840 to display information stored in the storage unit 830 in accordance with a program or an operation of the operator. For example, the management device 800 may be an integrated device including a reception unit 810, a control unit 820, a storage unit 830, and a display unit 840. Alternatively, it is a system in which a general-purpose computer that functions as a control unit 820 and a storage unit 830 by a program and a receiver that functions as a reception unit 810 that is arranged near each signal lamp monitor A1 are connected by a local area network or the Internet. May be. Unlike this embodiment, a communication circuit may be incorporated in the laminated signal lamp itself.
 次に、信号灯モニタA1の組み立ておよび取り付け手順について説明する。 Next, the assembly and installation procedure of the signal light monitor A1 will be described.
 まず、積層信号灯900の各発光位置に応じて、検出部200を組み立てる。具体的には、積層信号灯900の発光部の数と同数(あるいは少なくとも同数)のセンサブロックを用意する。これらセンサブロックと、必要な数の中継ブロックとをエンド・ツー・エンドで接続して、検出部200を構成する。図1に示す例では、積層信号灯900の3つの発光部901,902,903が発する光を、3つのセンサブロック220,230,240(3つのフォトダイオード225,235,245)で受光するように検出部200を組み立てている。各センサブロック220,230,240,250は、図4に示すように、コネクタ213をy1側に、コネクタ214をy2側に配置して、接続される。検出部200は、積層信号灯900の発光部901等の鉛直方向の寸法に応じて、中継ブロック210の数を調整して組み立てられる。例えば図9(a)に示す例では、隣接する2つのセンサブロック(220と230;230と250)間を1つの中継ブロック210で接続している。また、さらにもう1つの中継ブロック210を用いて、最上部のセンサブロック220と本体100とを接続する。これにより、信号灯モニタA1が完成する。なお、この例では、センサブロック240は使用されていない。 First, the detection unit 200 is assembled according to each light emission position of the laminated signal lamp 900. Specifically, the same number (or at least the same number) of sensor blocks as the number of light emitting portions of the laminated signal lamp 900 are prepared. These sensor blocks and a necessary number of relay blocks are connected end-to-end to configure the detection unit 200. In the example shown in FIG. 1, the light emitted from the three light emitting units 901, 902, and 903 of the laminated signal lamp 900 is received by the three sensor blocks 220, 230, and 240 (three photodiodes 225, 235, and 245). The detection unit 200 is assembled. As shown in FIG. 4, the sensor blocks 220, 230, 240, and 250 are connected by arranging the connector 213 on the y1 side and the connector 214 on the y2 side. The detection unit 200 is assembled by adjusting the number of relay blocks 210 according to the vertical dimension of the light emitting unit 901 and the like of the laminated signal lamp 900. For example, in the example shown in FIG. 9A, two adjacent sensor blocks (220 and 230; 230 and 250) are connected by one relay block 210. Further, the uppermost sensor block 220 and the main body 100 are connected using another relay block 210. Thereby, the signal lamp monitor A1 is completed. In this example, the sensor block 240 is not used.
 図9(b)の例では、積層信号灯900が2つの発光部901,902を有している。この場合には、例えば、2つのセンサブロック220および250を用い、この間を2つの中継ブロック210で連結している。また最上部のセンサブロック220(のコネクタ213)と本体100(のコネクタ160)との間にも、1つの中継ブロック210が配置されている。 In the example of FIG. 9B, the laminated signal lamp 900 has two light emitting units 901 and 902. In this case, for example, two sensor blocks 220 and 250 are used, and the two relay blocks 210 are connected therebetween. One relay block 210 is also arranged between the uppermost sensor block 220 (connector 213) and the main body 100 (connector 160).
 次に、信号灯モニタA1を積層信号灯900に取り付ける。具体的には、信号灯モニタA1の本体100を積層信号灯900の最上部に載置する。本体100の底面と積層信号灯900の上面とは、例えば両面テープによって接着すればよい。あるいは、本体100の底面(図2に示すケース102の底面)に、積層信号灯900の上面と同じ形状を有する凹部を形成しておき、当該凹部を積層信号灯900の上端部に嵌め合せるようにしてもよい。本体100が積層信号灯900の最上部に載置されることにより、本体100の底面から鉛直方向に延びる検出部200が積層信号灯900の側面に沿って配置される。 Next, the signal light monitor A1 is attached to the laminated signal light 900. Specifically, the main body 100 of the signal lamp monitor A1 is placed on the top of the laminated signal lamp 900. What is necessary is just to adhere | attach the bottom face of the main body 100 and the upper surface of the laminated signal lamp 900, for example with a double-sided tape. Alternatively, a recess having the same shape as the top surface of the laminated signal lamp 900 is formed on the bottom surface of the main body 100 (the bottom surface of the case 102 shown in FIG. 2), and the recess is fitted to the upper end of the laminated signal lamp 900. Also good. When the main body 100 is placed on the top of the laminated signal lamp 900, the detection unit 200 extending in the vertical direction from the bottom surface of the main body 100 is disposed along the side surface of the laminated signal lamp 900.
 次に、信号灯モニタA1の作用および効果について説明する。 Next, the operation and effect of the signal lamp monitor A1 will be described.
 信号灯モニタA1は、積層信号灯900が発する光を検出する検出部200を備えている。信号灯モニタA1は、検出部200が検出した光に基づいて、発光状態(点灯、点滅、消灯)や発光色を識別し、識別結果に基づいて検出信号を生成する。信号灯モニタA1は、この検出信号を無線により送信する。信号灯モニタA1は、本体100を積層信号灯900の一部(図示した例では最上部)に載置するだけで、容易に積層信号灯900に取り付けることができる。信号灯モニタA1は、積層信号灯900から外部に出射される光(生産装置の稼働状態を示す光)を検出する。したがって、例えば、信号灯モニタA1と積層信号灯900(あるいは生産装置)との間で信号等を送信するための配線を設ける必要がない。また、太陽電池122および電力供給用のキャパシタを備えているので、外部から電力を供給するための電力線を設ける必要もない。そのため、容易に短時間で信号灯モニタA1を積層信号灯900に取り付けることができる。また、従来から使用している積層信号灯900に取り付けられるので、通信回路が組み込まれた積層信号灯を新たに購入する場合と比べて、低コストで導入することができる。 The signal lamp monitor A1 includes a detection unit 200 that detects light emitted from the laminated signal lamp 900. The signal lamp monitor A1 identifies the light emission state (lighted, blinking, extinguished) and the light emission color based on the light detected by the detection unit 200, and generates a detection signal based on the identification result. The signal lamp monitor A1 transmits this detection signal by radio. The signal lamp monitor A1 can be easily attached to the laminated signal lamp 900 simply by placing the main body 100 on a part of the laminated signal lamp 900 (the uppermost part in the illustrated example). The signal lamp monitor A1 detects light emitted from the laminated signal lamp 900 to the outside (light indicating the operating state of the production apparatus). Therefore, for example, there is no need to provide wiring for transmitting a signal or the like between the signal lamp monitor A1 and the laminated signal lamp 900 (or production apparatus). In addition, since the solar cell 122 and the power supply capacitor are provided, there is no need to provide a power line for supplying power from the outside. Therefore, the signal lamp monitor A1 can be easily attached to the laminated signal lamp 900 in a short time. Moreover, since it is attached to the conventionally used laminated signal lamp 900, it can be introduced at a lower cost than the case of newly purchasing a laminated signal lamp incorporating a communication circuit.
 上述のとおり、無線モジュール120は、太陽電池122を備えている。また、無線モジュール120は、EnOcean通信規格に準拠して通信を行う。当該通信規格は、バッテリーレス無線発信技術を採用しており、小さな電力で無線通信を行うことができる。したがって、信号灯モニタA1では、乾電池等を用いなくても、無線通信を行うことができる。これにより、電池交換の手間を省くことができる。 As described above, the wireless module 120 includes the solar cell 122. The wireless module 120 performs communication in accordance with the EnOcean communication standard. The communication standard adopts a battery-less wireless transmission technology, and can perform wireless communication with small power. Therefore, the signal light monitor A1 can perform wireless communication without using a dry battery or the like. Thereby, the labor of battery replacement can be saved.
 無線モジュール120は、太陽電池122が発電した電力を充電するためのキャパシタを備えている。したがって、太陽電池122が発電できないときでも、キャパシタに充電された電力を供給することが可能である。また、本体100は、バッテリホルダ150に搭載された補助電池を備えている。したがって、太陽電池122が発電できず、キャパシタからも電力を供給できない場合でも、補助電池から電力を供給することが可能である。 The wireless module 120 includes a capacitor for charging the power generated by the solar battery 122. Therefore, even when the solar cell 122 cannot generate power, it is possible to supply electric power charged in the capacitor. The main body 100 includes an auxiliary battery mounted on the battery holder 150. Therefore, even when the solar battery 122 cannot generate power and cannot supply power from the capacitor, it is possible to supply power from the auxiliary battery.
 制御部330が生成した検出信号は、送信部340により外部に送信される。この際、電源部310は、検出信号が送信される間だけ、送信部340に電力を供給する。これにより、電力の消費を抑制することができる。また、制御部330は、発光状態に変化がない場合は、比較的長い時間間隔で検出信号を生成する。これにより、電力の消費を抑制することができる。一方、発光状態に変化があった場合には、制御部330は、早急に検出信号を生成する。これにより、管理装置800に状態の変化を早く知らせることができる。 The detection signal generated by the control unit 330 is transmitted to the outside by the transmission unit 340. At this time, the power supply unit 310 supplies power to the transmission unit 340 only while the detection signal is transmitted. Thereby, power consumption can be suppressed. Moreover, the control part 330 produces | generates a detection signal in a comparatively long time interval, when there is no change in a light emission state. Thereby, power consumption can be suppressed. On the other hand, when there is a change in the light emission state, the control unit 330 immediately generates a detection signal. Thereby, it is possible to quickly notify the management apparatus 800 of a change in state.
 検出部200は、必要な個数のセンサブロックおよび中継ブロックを組み立てて構成される。したがって、積層信号灯900の寸法等に応じて、適合する検出部200を効率よく提供することができる。 The detection unit 200 is configured by assembling a required number of sensor blocks and relay blocks. Therefore, the suitable detection part 200 can be provided efficiently according to the dimension etc. of the laminated signal lamp 900.
 本体100は、例えば、積層信号灯900の最上部に載置される。また、アンテナ123は、中心軸が鉛直方向に延びるようにして、本体100に配置されている。またアンテナ123は、中心軸の周りに均等に電磁波を放射しうる。これにより、アンテナ123から放射される電磁波を、広い範囲に到達させることができる。もちろん、アンテナ123の向きは、適宜変更可能であり、本開示がこの例に限定されるわけではない。 The main body 100 is mounted, for example, on the top of the laminated signal lamp 900. The antenna 123 is arranged on the main body 100 so that the central axis extends in the vertical direction. The antenna 123 can radiate electromagnetic waves evenly around the central axis. Thereby, the electromagnetic waves radiated from the antenna 123 can reach a wide range. Of course, the orientation of the antenna 123 can be changed as appropriate, and the present disclosure is not limited to this example.
 図2および図3に示すように、太陽電池122の受光面122aは、鉛直上向きである。この構成によれば、太陽電池122は、上方からの光を受光しやすい。もちろん、受光面122aの向きは、適宜変更可能であり、本開示がこの例に限定されるわけではない。 2 and 3, the light receiving surface 122a of the solar cell 122 is vertically upward. According to this configuration, the solar cell 122 easily receives light from above. Of course, the direction of the light receiving surface 122a can be changed as appropriate, and the present disclosure is not limited to this example.
 図6に示すように、各フォトダイオード225等には、可変抵抗器140が接続されている。したがって、可変抵抗器140の抵抗値を調整することで、各フォトダイオードの感度を個別に調整することができる。また、図2に示すように、各可変抵抗器140は、調整溝141の配置面が水平方向(例えばx2方向)を向くように配置されている。したがって、本体100が積層信号灯900の最上部に載置された状態のままでも、抵抗値の調整を行いやすい。また、図3に示すように、本実施形態では、可変抵抗器140は、平面視において無線モジュール120と重ならない位置に設けられている。調整溝141の配置面が水平方向を向く構成によれば、可変抵抗器140を回路基板110と無線モジュール120との間に配置した場合でも、抵抗値の調整を容易に行うことが可能である。また、図3に示す可変抵抗器140の配置位置に、他の部品を配置することも可能である。 As shown in FIG. 6, a variable resistor 140 is connected to each photodiode 225 and the like. Therefore, the sensitivity of each photodiode can be individually adjusted by adjusting the resistance value of the variable resistor 140. Further, as shown in FIG. 2, each variable resistor 140 is arranged such that the arrangement surface of the adjustment groove 141 faces the horizontal direction (for example, the x2 direction). Therefore, it is easy to adjust the resistance value even when the main body 100 is placed on the top of the laminated signal lamp 900. As shown in FIG. 3, in this embodiment, the variable resistor 140 is provided at a position that does not overlap the wireless module 120 in plan view. According to the configuration in which the arrangement surface of the adjustment groove 141 faces in the horizontal direction, even when the variable resistor 140 is arranged between the circuit board 110 and the wireless module 120, the resistance value can be easily adjusted. . Moreover, it is also possible to arrange | position another component in the arrangement position of the variable resistor 140 shown in FIG.
 本実施形態とは異なり、可変抵抗器140の調整溝141の配置面を他の方向、例えばy1方向に向けることも可能である。この場合、抵抗値の調整作業による加重は、回路基板110の面に垂直(あるいは略垂直)に作用する。したがって、抵抗値の調整作業の際に、例えば、可変抵抗器140が回路基板110から剥離することが防止される。 Unlike the present embodiment, the arrangement surface of the adjustment groove 141 of the variable resistor 140 can be directed to another direction, for example, the y1 direction. In this case, the weighting due to the adjustment of the resistance value acts perpendicularly (or substantially perpendicular) to the surface of the circuit board 110. Therefore, for example, the variable resistor 140 is prevented from being peeled off from the circuit board 110 during the adjustment of the resistance value.
 スイッチ130は、押圧ボタン131が水平方向(例えばx2方向)に延びるように配置されている。したがって、本体100が積層信号灯900の最上部に載置された状態でも、押圧ボタン131を押圧しやすい。また、回路基板110と無線モジュール120との間に、スイッチ130を配置することもできる。本実施形態とは異なり、押圧ボタン131は、例えば鉛直方向上向きに延びるように構成されてもよい。 The switch 130 is arranged so that the push button 131 extends in the horizontal direction (for example, the x2 direction). Therefore, it is easy to press the push button 131 even when the main body 100 is placed on the top of the laminated signal lamp 900. Further, the switch 130 may be disposed between the circuit board 110 and the wireless module 120. Unlike the present embodiment, the push button 131 may be configured to extend upward in the vertical direction, for example.
 図1に示す積層信号灯900は、3個の発光部901,902,903を備えている。しかしながら、本開示がこれに限定されるわけではなく、積層信号灯900の発光部の数は、適宜変更可能である。図示した信号灯モニタA1は、4個のセンサブロック220,230,240,250を備えているので、発光部が最大4個の積層信号灯900まで対応しうる。上述したように、発光部の数および寸法に応じて、適切な個数のセンサブロックおよび中継ブロックを組み合わせて、検出部200を構成することが可能である。例えば、発光部の数が5個であれば、図6に示す電流経路(例えば1つのフォトダイオードにつき、1つの電流経路が形成されていると考えられる)が1つ増えるように、中継ブロック210、センサブロック220等、および本体100を構成すればよい。また、信号灯モニタA1は、発光部が1つだけで、発光状態(点灯、点滅、消灯)のみに基づき稼働状態を知らせる単色の信号灯にも対応することができる。 The laminated signal lamp 900 shown in FIG. 1 includes three light emitting units 901, 902, and 903. However, the present disclosure is not limited to this, and the number of light emitting units of the laminated signal lamp 900 can be changed as appropriate. The illustrated signal lamp monitor A1 includes four sensor blocks 220, 230, 240, and 250. Therefore, the light emitting section can support up to four laminated signal lamps 900. As described above, the detection unit 200 can be configured by combining an appropriate number of sensor blocks and relay blocks according to the number and dimensions of the light emitting units. For example, if the number of light emitting units is five, the relay block 210 is increased so that the current path shown in FIG. 6 (for example, one current path is considered to be formed for one photodiode) is increased by one. What is necessary is just to comprise the sensor block 220 grade | etc., And the main body 100. FIG. Further, the signal lamp monitor A1 has only one light-emitting unit, and can correspond to a single-color signal lamp that notifies the operating state based only on the light-emitting state (lighting, blinking, and extinguishing).
 上述した無線モジュール120では、モジュール基板121と太陽電池122とが一体的に構成されているが、本開示がこれに限定されるわけではない。モジュール基板121と太陽電池122とが相互に離間して配置されていてもよい。このように部材配置の自由度が増すことは、筐体101を小型化あるいは薄型化することに資する。 In the wireless module 120 described above, the module substrate 121 and the solar cell 122 are integrally configured, but the present disclosure is not limited to this. The module substrate 121 and the solar cell 122 may be arranged apart from each other. The increase in the degree of freedom of member arrangement in this way contributes to making the housing 101 smaller or thinner.
 図10~図29は、他の実施形態を示している。なお、これらの図において、上記第1実施形態と同一または類似の要素には、同一の符号を付している。 10 to 29 show other embodiments. In these drawings, the same or similar elements as those in the first embodiment are denoted by the same reference numerals.
 図10は、第2実施形態に係る信号灯モニタの本体の正面図である。図10に示す信号灯モニタA2は、無線モジュール120の配置位置が、第1実施形態に係る信号灯モニタA1(図2参照)と異なっている。 FIG. 10 is a front view of the main body of the signal light monitor according to the second embodiment. The signal lamp monitor A2 shown in FIG. 10 differs from the signal lamp monitor A1 (see FIG. 2) according to the first embodiment in the arrangement position of the wireless module 120.
 信号灯モニタA2において、無線モジュール120は、太陽電池122の受光面122aを水平方向(z1方向)に向けるようにして、ケース102の側面に固定されている。この場合、太陽電池122は、積層信号灯900が発する光を受光して、電力を発生させることができる。 In the signal lamp monitor A2, the wireless module 120 is fixed to the side surface of the case 102 so that the light receiving surface 122a of the solar cell 122 faces in the horizontal direction (z1 direction). In this case, the solar cell 122 can receive light emitted from the laminated signal lamp 900 and generate electric power.
 なお、無線モジュール120全体の配置を変更するのではなく、太陽電池122の配置だけを変更するようにしてもよい。例えば、無線モジュール120の配置位置は、第1実施形態に係る信号灯モニタA1と同様とし、太陽電池122だけを受光面122aがz1方向を向くように配置するようにしてもよい。 In addition, you may make it change only arrangement | positioning of the solar cell 122 instead of changing arrangement | positioning of the whole radio | wireless module 120. FIG. For example, the arrangement position of the wireless module 120 may be the same as that of the signal lamp monitor A1 according to the first embodiment, and only the solar battery 122 may be arranged so that the light receiving surface 122a faces the z1 direction.
 また、図11(a)に示すように、太陽電池122の受光面122aがz2方向を向くようにしてもよい。このような構成は、例えば、積層信号灯900が工場内の部屋の天井付近に配置されており、y1方向からの光が少ない場合に、z2方向からの光を受光するのに有利である。この場合も、無線モジュール120全体の配置を変更するのではなく、太陽電池122の配置だけを変更するようにしてもよい。また、図11(b)に示すように、無線モジュール120の少なくとも一部が、ケース102に対してy1方向に位置するように配置してもよい。また、複数の太陽電池122を備えるようにしてもよい。例えば、第1実施形態に係る信号灯モニタA1に、太陽電池122を追加して、追加した太陽電池122の受光面122aをz1方向に向けるように配置してもよい。 Further, as shown in FIG. 11A, the light receiving surface 122a of the solar cell 122 may be directed in the z2 direction. Such a configuration is advantageous for receiving light from the z2 direction, for example, when the laminated signal lamp 900 is disposed near the ceiling of a room in the factory and there is little light from the y1 direction. Also in this case, the arrangement of the solar modules 122 may be changed instead of changing the arrangement of the entire wireless module 120. Further, as illustrated in FIG. 11B, at least a part of the wireless module 120 may be disposed so as to be positioned in the y1 direction with respect to the case 102. Further, a plurality of solar cells 122 may be provided. For example, a solar cell 122 may be added to the signal lamp monitor A1 according to the first embodiment, and the light receiving surface 122a of the added solar cell 122 may be disposed in the z1 direction.
 図12は、第3実施形態に係る信号灯モニタの全体構成を示す概略図である。図12に示す信号灯モニタA3は、検出部200の構成が、第1実施形態に係る信号灯モニタA1(図1参照)と異なっている。 FIG. 12 is a schematic diagram showing the overall configuration of the signal light monitor according to the third embodiment. The signal lamp monitor A3 shown in FIG. 12 differs from the signal lamp monitor A1 (see FIG. 1) according to the first embodiment in the configuration of the detection unit 200.
 第3実施形態の検出部200は、センサブロック220,230,240,250および本体100を、中継ブロックではなく、中継ケーブル290で接続している。中継ケーブル290は、第1実施形態に係る中継ブロック210のコネクタ213およびコネクタ214と同様のコネクタ291およびコネクタ292を、柔軟性のあるケーブル293で接続したものである。センサブロック220,230,240はそれぞれ、発光部901,902,903に対し、例えば両面テープで固定されている。中継ケーブル290に代えて、フレキシブル基板などの柔軟性を有する接続部材で接続してもよい。 In the detection unit 200 of the third embodiment, the sensor blocks 220, 230, 240, 250 and the main body 100 are connected not by the relay block but by the relay cable 290. The relay cable 290 is formed by connecting a connector 291 and a connector 292 similar to the connector 213 and the connector 214 of the relay block 210 according to the first embodiment with a flexible cable 293. The sensor blocks 220, 230, and 240 are fixed to the light emitting units 901, 902, and 903, for example, with double-sided tape. Instead of the relay cable 290, connection may be made with a flexible connection member such as a flexible substrate.
 本実施形態においても、検出部200は、積層信号灯900の構成に応じて柔軟に対応することができる。さらに、隣接するセンサブロックどうしの間隔は、中継ケーブル290の長さの範囲内で自由に設定できる。 Also in the present embodiment, the detection unit 200 can flexibly cope with the configuration of the laminated signal lamp 900. Furthermore, the interval between adjacent sensor blocks can be freely set within the range of the length of the relay cable 290.
 センサブロックの発光部に対する固定手段は、両面テープに限定されない。図13は、センサブロックを固定する方法の変形例を示している。 The fixing means for the light emitting part of the sensor block is not limited to double-sided tape. FIG. 13 shows a modification of the method for fixing the sensor block.
 図13(a)は、本体100(図示略)からy2方向に延びる2本のブロック支持部701によってセンサブロック220を固定する場合を示している。2本のブロック支持部701には、互いに対向する凹部701aが、y方向に所定間隔でそれぞれ設けられている。センサブロック220のケース211には、x1方向およびx2方向にそれぞれ突出する凸部211aが設けられている。センサブロック220は、2つの凸部211aを、発光部901に位置する凹部701aにそれぞれ係合させるようにして、2本のブロック支持部701の間で固定されている。これとは異なり、センサブロック220が、2本のブロック支持部701に沿ってy方向にスライド可能であるように構成してもよい。 FIG. 13A shows a case where the sensor block 220 is fixed by two block support portions 701 extending in the y2 direction from the main body 100 (not shown). The two block support portions 701 are provided with recesses 701a facing each other at predetermined intervals in the y direction. The case 211 of the sensor block 220 is provided with a convex portion 211a that protrudes in the x1 direction and the x2 direction, respectively. The sensor block 220 is fixed between the two block support portions 701 so that the two convex portions 211a are engaged with the concave portions 701a located in the light emitting portion 901, respectively. Alternatively, the sensor block 220 may be configured to be slidable in the y direction along the two block support portions 701.
 図13(b)は、y2方向に延びる1本のブロック支持部702によってセンサブロック220を固定する例を示している。ブロック支持部702のx1方向を向く面には、y方向に延びる溝部702aが設けられている。センサブロック220のケース211には、z1方向に延びる固定部211bが設けられている。センサブロック220は、固定部211bをネジ211cによって溝部702aに固定することで、ブロック支持部702の所定位置(例えば発光部901に対応する位置)に固定可能である。なお、ネジ211c以外の部材で固定するようにしてもよい。 FIG. 13B shows an example in which the sensor block 220 is fixed by one block support portion 702 extending in the y2 direction. A groove portion 702a extending in the y direction is provided on the surface of the block support portion 702 facing the x1 direction. The case 211 of the sensor block 220 is provided with a fixing portion 211b extending in the z1 direction. The sensor block 220 can be fixed to a predetermined position (for example, a position corresponding to the light emitting portion 901) of the block support portion 702 by fixing the fixing portion 211b to the groove portion 702a with a screw 211c. In addition, you may make it fix with members other than the screw | thread 211c.
 図14は、第4実施形態に係る信号灯モニタの検出部200を示す正面図である。図14に示す信号灯モニタA4は、検出部200の構成が、第1実施形態に係る信号灯モニタA1(図4参照)と異なっている。 FIG. 14 is a front view showing the detection unit 200 of the signal light monitor according to the fourth embodiment. The signal lamp monitor A4 shown in FIG. 14 differs from the signal lamp monitor A1 (see FIG. 4) in the configuration of the detection unit 200 according to the first embodiment.
 第4実施形態の検出部200は、1つの検出ブロック260が複数のフォトダイオード(図の例では4つフォトダイオード225,235,245,255)を備える構成とされている。検出ブロック260は、例えば、第1実施形態に係るセンサブロック220のケース211およびセンサ基板222をy方向に延長し、4つのフォトダイオード225,235,245,255を所定の間隔を空けてセンサ基板222に一列に搭載したものに相当する。すなわち、本実施形態では、複数のフォトダイオードが、単一の共通センサ基板に搭載されている。検出ブロック260は、コネクタ213を本体100のコネクタ160に接続することで、本体100に接続される。 In the detection unit 200 according to the fourth embodiment, one detection block 260 includes a plurality of photodiodes (four photodiodes 225, 235, 245, and 255 in the illustrated example). For example, the detection block 260 extends the case 211 and the sensor substrate 222 of the sensor block 220 according to the first embodiment in the y direction, and the four photodiodes 225, 235, 245, and 255 are spaced apart from each other by a predetermined interval. It corresponds to what is mounted on 222 in a line. That is, in the present embodiment, a plurality of photodiodes are mounted on a single common sensor substrate. The detection block 260 is connected to the main body 100 by connecting the connector 213 to the connector 160 of the main body 100.
 本実施形態においては、第1実施形態のように検出部200を組み立てる必要がなく、検出ブロック260を本体100のコネクタ160に接続するだけである。よって、より短時間で信号灯モニタを構成し、かつ積層信号灯900に取り付けることができる。 In this embodiment, it is not necessary to assemble the detection unit 200 as in the first embodiment, and only the detection block 260 is connected to the connector 160 of the main body 100. Therefore, the signal lamp monitor can be configured and attached to the laminated signal lamp 900 in a shorter time.
 第4実施形態においては、図15(b),(c)に示すように、必要な個数のスペーサ105を準備し、これらを積層信号灯900の上面と信号灯モニタA4の本体100の底面との間に配置するようにしている。これにより、フォトダイオード225,235,245が適切な位置に配置されて、それぞれが発光部901,902,903の発する光を受光しうるようにすることができる。なお、図15(a)に示すように、場合によっては、スペーサ105は必ずしも使用する必要はない。 In the fourth embodiment, as shown in FIGS. 15B and 15C, a necessary number of spacers 105 are prepared, and these are arranged between the upper surface of the laminated signal lamp 900 and the lower surface of the main body 100 of the signal lamp monitor A4. I am trying to arrange it. Accordingly, the photodiodes 225, 235, and 245 can be arranged at appropriate positions so that the light emitted from the light emitting units 901, 902, and 903 can be received. As shown in FIG. 15A, the spacer 105 is not necessarily used depending on the case.
 図16は、第5実施形態に係る信号灯モニタの全体構成を示す概略図である。図16に示す信号灯モニタA5は、検出部200の構成が、第1実施形態に係る信号灯モニタA1(図1参照)と異なっている。 FIG. 16 is a schematic diagram showing an overall configuration of a signal lamp monitor according to the fifth embodiment. The signal lamp monitor A5 shown in FIG. 16 differs from the signal lamp monitor A1 (see FIG. 1) according to the first embodiment in the configuration of the detection unit 200.
 第5実施形態の検出部200は、例えば、第4実施形態の検出ブロック260に第3実施形態の中継ケーブル290を追加したものに相当する。当該検出部200は、検出ブロック260のコネクタ213と中継ケーブル290のコネクタ292とが接続されており、中継ケーブル290のコネクタ291を本体100のコネクタ160に接続することで、本体100に接続される。検出ブロック260は、フォトダイオード225,235,245がそれぞれ発光部901,902,903の発する光を受光できるような位置に、例えば両面テープで固定されるが、本開示がこれに限定されるわけではない。中継ケーブル290に代えて、フレキシブル基板などの柔軟性を有する接続部材で接続してもよい。 The detection unit 200 according to the fifth embodiment corresponds to, for example, a configuration in which the relay cable 290 according to the third embodiment is added to the detection block 260 according to the fourth embodiment. The detection unit 200 is connected to the connector 213 of the detection block 260 and the connector 292 of the relay cable 290, and is connected to the main body 100 by connecting the connector 291 of the relay cable 290 to the connector 160 of the main body 100. . The detection block 260 is fixed to a position where the photodiodes 225, 235, and 245 can receive light emitted from the light emitting units 901, 902, and 903, for example, with double-sided tape, but the present disclosure is not limited to this. is not. Instead of the relay cable 290, connection may be made with a flexible connection member such as a flexible substrate.
 本実施形態においては、中継ケーブル290の長さの範囲内で検出ブロック260をy方向に変位させることができる。したがって、第4実施形態と比べて、対応できる積層信号灯900の範囲が広くなる。 In this embodiment, the detection block 260 can be displaced in the y direction within the range of the length of the relay cable 290. Therefore, compared with the fourth embodiment, the range of the laminated signal lamp 900 that can be handled is widened.
 図17は、上述した第1~第5実施形態の各センサブロック220等に関する変形例を説明する図である。具体的には、図17(a)は、変形例に係るセンサブロック220を積層信号灯900に取り付けた状態を示す断面図である。図17(b)は、変形例に係るセンサブロック220の説明図である。 FIG. 17 is a diagram for explaining a modification example regarding the sensor blocks 220 and the like of the first to fifth embodiments described above. Specifically, FIG. 17A is a cross-sectional view showing a state in which the sensor block 220 according to the modification is attached to the laminated signal lamp 900. FIG. 17B is an explanatory diagram of a sensor block 220 according to a modification.
 本変形例に係るセンサブロック220では、x方向に離間するケース211の2つの壁が、例えば図4に示す例に比べて、z2方向側に延伸された構成とされている。また、当該2つの壁の間には、蓋223および透明板224が配置されている。蓋223および透明板224は、センサ基板222よりも外側、すなわちセンサ基板222よりもz2方向側に配置されている。蓋223は、例えば、ケース211と同じ素材で形成された矩形状の板であり、開口として窓部223aが形成されている。窓部223aは、蓋223がケース211に配置された状態で、フォトダイオード225の正面に位置するように設けられている。透明板224は、例えば、光を透過する矩形状の板であり、蓋223のz2方向側に配置されている。これに代えて、透明板224を蓋223のz1方向側に配置してもよい。透明板224は、透明な合成樹脂製あるいはガラス製とすることができるが、本開示がこれに限定されるわけではない。センサブロック220は、上記2つの壁の先端部を積層信号灯900の側面に接触させるようにして固定される(図17(a)参照)。 In the sensor block 220 according to the present modification, the two walls of the case 211 that are separated in the x direction are configured to be extended in the z2 direction, for example, compared to the example illustrated in FIG. A lid 223 and a transparent plate 224 are disposed between the two walls. The lid 223 and the transparent plate 224 are arranged outside the sensor substrate 222, that is, on the z2 direction side of the sensor substrate 222. The lid 223 is a rectangular plate made of the same material as the case 211, for example, and has a window 223a as an opening. The window portion 223 a is provided so as to be positioned in front of the photodiode 225 in a state where the lid 223 is disposed in the case 211. The transparent plate 224 is, for example, a rectangular plate that transmits light, and is disposed on the z2 direction side of the lid 223. Instead, the transparent plate 224 may be disposed on the z1 direction side of the lid 223. The transparent plate 224 can be made of a transparent synthetic resin or glass, but the present disclosure is not limited to this. The sensor block 220 is fixed so that the front ends of the two walls are in contact with the side surface of the laminated signal lamp 900 (see FIG. 17A).
 上記2つの壁の長さ(図17(a)の断面で見た場合の長さ)は、各壁の先端部を積層信号灯900の側面に接触させた場合に、積層信号灯900の側面が透明板224(あるいは蓋223)に接触しない長さに設定されている。この壁の長さを適宜設定(例えば十分長く)することにより、径が異なる複数の積層信号灯900に対して用いる場合でも、積層信号灯900の側面が透明板224(あるいは蓋223)に接触しないように、かつ積層信号灯900の側面と2つの壁の先端部との間に隙間ができないようにすることができる。 The length of the two walls (the length when viewed in the cross section of FIG. 17A) is such that the side surface of the laminated signal lamp 900 is transparent when the tip of each wall is brought into contact with the side surface of the laminated signal lamp 900. The length is set so as not to contact the plate 224 (or the lid 223). By appropriately setting the length of this wall (for example, sufficiently long), even when used for a plurality of laminated signal lamps 900 having different diameters, the side surface of the laminated signal lamp 900 does not contact the transparent plate 224 (or the lid 223). In addition, it is possible to prevent a gap from being formed between the side surface of the laminated signal lamp 900 and the tip portions of the two walls.
 積層信号灯900が発する光は、窓部223aを介してフォトダイオード225に受光される。一方、その他の不要な光は、ケース211および蓋223によって遮断されうる。これにより、フォトダイオード225がノイズとしての光を受光してしまうことを抑制することができる。また、透明板224で塞ぐことにより、窓部223aからケース211の内部にほこりなどが浸入することを防止できる。もちろん、本開示がこれに限定されるわけではなく、蓋223または透明板224のいずれか一方のみが配置されていてもよい。また、図示した例よりも透明板224を小さいものとし、蓋223の窓部223aを覆う程度のサイズとしてもよい。あるいは、透明板224において、窓部223aに対応する部分以外を着色するなどして、光を通過させないようにしてもよい。この場合、(部分的に透明な)透明板224が、蓋としても機能しうるので、蓋223は、必ずしも設ける必要はない。また、積層信号灯900に接触するケース211の部分に、柔軟性および遮光性を有する素材を配置すれば、外光の侵入の抑制等にとって都合が良い。 The light emitted from the laminated signal lamp 900 is received by the photodiode 225 through the window 223a. On the other hand, other unnecessary light can be blocked by the case 211 and the lid 223. As a result, the photodiode 225 can be prevented from receiving light as noise. Further, by closing with the transparent plate 224, it is possible to prevent dust and the like from entering the inside of the case 211 from the window portion 223a. Of course, the present disclosure is not limited to this, and only one of the lid 223 and the transparent plate 224 may be disposed. Further, the transparent plate 224 may be smaller than the illustrated example, and may have a size that covers the window 223a of the lid 223. Alternatively, in the transparent plate 224, light other than the portion corresponding to the window portion 223a may be colored so as not to pass light. In this case, since the (partially transparent) transparent plate 224 can function as a lid, the lid 223 is not necessarily provided. Further, if a material having flexibility and light shielding properties is disposed in the portion of the case 211 that contacts the laminated signal lamp 900, it is convenient for suppressing the intrusion of external light.
 本変形例に係るセンサブロック220では、ケース211の底部外面(z1方向を向く面)に、x方向に延びる溝部211dが設けられている。図17(b)に示す例では、溝部211dは、上記底部外面のy方向における中央に配置されているが、本開示がこれに限定されるわけではない。溝部211dは、固定バンド211eによってセンサブロック220を積層信号灯900に固定するのに利用される。すなわち、固定バンド211eの一部を溝部211d内に配置することにより、センサブロック220に対する固定バンド211eの位置ずれを防止することができ、延いては、センサブロック220と積層信号灯900との固定状態を安定させることができる。 In the sensor block 220 according to this modification, a groove 211d extending in the x direction is provided on the bottom outer surface of the case 211 (surface facing the z1 direction). In the example illustrated in FIG. 17B, the groove 211d is disposed at the center of the bottom outer surface in the y direction, but the present disclosure is not limited thereto. The groove 211d is used to fix the sensor block 220 to the laminated signal lamp 900 by the fixing band 211e. That is, by disposing a part of the fixed band 211e in the groove portion 211d, it is possible to prevent the positional displacement of the fixed band 211e with respect to the sensor block 220. As a result, the sensor block 220 and the laminated signal lamp 900 are fixed to each other. Can be stabilized.
 図18および図19は、第6実施形態に係る信号灯モニタを示している。図18は、検出部200を示す正面図である。図19は、全体構成を示す概略図であり、z1方向から見た状態を示している。図18および図19に示す信号灯モニタA6は、検出部200の構成が、第1実施形態に係る信号灯モニタA1(図1および図4参照)と異なっている。 18 and 19 show a signal lamp monitor according to the sixth embodiment. FIG. 18 is a front view showing the detection unit 200. FIG. 19 is a schematic diagram showing the overall configuration, and shows a state viewed from the z1 direction. The signal lamp monitor A6 shown in FIGS. 18 and 19 is different from the signal lamp monitor A1 according to the first embodiment (see FIGS. 1 and 4) in the configuration of the detection unit 200.
 第6実施形態の検出部200は、1つの検出基板270で構成されている。検出基板270は、第4実施形態に係る検出ブロック260において、センサ基板222をフレキシブルプリント基板226とし、ケース211をなくしたものに相当する。つまり、検出基板270は、y方向に長く延びるフレキシブルプリント基板226に、4つのフォトダイオード225,235,245,255を所定の間隔を空けて一列に搭載し、y1方向側の端部にコネクタ213を搭載したものである。検出基板270は、コネクタ213を本体100のコネクタ160に接続することで、本体100に接続される。そして、検出基板270は、各フォトダイオード225,235,245がそれぞれ発光部901,902,903の発する光を受光できるような位置になるように、積層信号灯900に斜めに巻きつけられて、例えば両面テープで固定されている。なお、検出基板270を積層信号灯900に固定する方法は限定されない。積層信号灯900の発する光を妨げないためには、フレキシブルプリント基板226は透明であるのが望ましい。 The detection unit 200 according to the sixth embodiment includes a single detection board 270. The detection board 270 corresponds to the detection block 260 according to the fourth embodiment in which the sensor board 222 is the flexible printed board 226 and the case 211 is omitted. That is, the detection board 270 has four photodiodes 225, 235, 245, and 255 mounted in a line at a predetermined interval on a flexible printed board 226 that extends in the y direction, and a connector 213 at the end on the y1 direction side. Is installed. The detection board 270 is connected to the main body 100 by connecting the connector 213 to the connector 160 of the main body 100. The detection substrate 270 is wound around the laminated signal lamp 900 so that each photodiode 225, 235, 245 can receive light emitted from the light emitting units 901, 902, 903, for example, It is fixed with double-sided tape. The method for fixing the detection substrate 270 to the laminated signal lamp 900 is not limited. In order not to block the light emitted from the laminated signal lamp 900, the flexible printed circuit board 226 is preferably transparent.
 本実施形態においては、検出基板270の巻き付け方を変えることで、種々の積層信号灯900に対応することができる。例えば、各発光部901,902,903のy方向の寸法がより短い場合は、巻き付ける角度(検出基板270とy方向とでなす角度)を大きくし、当該寸法がより長い場合は、巻き付ける角度を小さくすればよい。また、本実施形態においては、第1実施形態のように検出部200を組み立てる必要がなく、検出基板270をコネクタ160に接続し、検出基板270を積層信号灯900に巻き付けて固定するだけなので、より容易に短時間で積層信号灯900に取り付けることができる。 In the present embodiment, it is possible to deal with various laminated signal lamps 900 by changing how the detection board 270 is wound. For example, when the dimension of the light emitting units 901, 902, and 903 in the y direction is shorter, the winding angle (the angle formed between the detection substrate 270 and the y direction) is increased, and when the dimension is longer, the winding angle is set. Just make it smaller. Further, in this embodiment, there is no need to assemble the detection unit 200 as in the first embodiment, the detection board 270 is connected to the connector 160, and the detection board 270 is simply wound around the laminated signal lamp 900 and fixed. It can be easily attached to the laminated signal lamp 900 in a short time.
 図20は、第7実施形態に係る信号灯モニタの本体100を示す正面図である。同図に示す信号灯モニタA7は、積層信号灯900が発する光を本体100まで導く点で、第1実施形態に係る信号灯モニタA1(図2参照)と異なっている。 FIG. 20 is a front view showing the main body 100 of the signal light monitor according to the seventh embodiment. The signal lamp monitor A7 shown in the figure is different from the signal lamp monitor A1 according to the first embodiment (see FIG. 2) in that light emitted from the laminated signal lamp 900 is guided to the main body 100.
 第7実施形態の信号灯モニタA7は、第1実施形態の検出部200に代えて、導光体400、導光体ケース500およびカラーセンサ600を備えている。カラーセンサ600は、回路基板110の主面110aのz1方向の端部に、受光面600aがz1方向を向くようにして搭載されている。導光体400を収容した導光体ケース500は、長手方向がy方向になるようにして、回路基板110のz1方向の端部に固定されている。 The signal lamp monitor A7 of the seventh embodiment includes a light guide 400, a light guide case 500, and a color sensor 600 instead of the detection unit 200 of the first embodiment. The color sensor 600 is mounted on the end of the main surface 110a of the circuit board 110 in the z1 direction so that the light receiving surface 600a faces the z1 direction. The light guide case 500 that houses the light guide 400 is fixed to the end of the circuit board 110 in the z1 direction so that the longitudinal direction is the y direction.
 導光体400は、積層信号灯900が発する光を本体100まで導く部材である。導光体400は、全体としてy方向を長手方向とする細長状であり、本実施形態においては、断面略円形状である。導光体400は、透明材料からなり、たとえばポリメタクリル酸メチル樹脂(Poly methyl methacrylate、略称PMMA樹脂)などのアクリル樹脂からなる。導光体400は、入射面(光検出面)401、反射面402、403および出射面404を備えている。入射面401は、積層信号灯900が発する光が入射する面である。入射面401は、導光体400のy方向に長く伸びており、本体100の底面より下の位置から、y2方向の端部付近まで続いている。また、入射面401は、z2方向に向いており、本体100を積層信号灯900の最上部に載置した状態で、積層信号灯900(発光部901,902,903)の側面に対向することになる。反射面402は、入射面401より入射された光をy1方向に反射する面である。反射面402は、y方向における入射面401の範囲と同じ範囲にあり、入射面401に対向している。反射面403は、y1方向に進行する光を、z2方向に反射するための面である。反射面403は、導光体400のy1方向の端面であり、y方向に対して45°傾いている。出射面404は、反射面403で反射された光を出射する面である。出射面404は、カラーセンサ600の受光面600aに正対している。 The light guide 400 is a member that guides light emitted from the laminated signal lamp 900 to the main body 100. The light guide 400 has an elongated shape with the y direction as a longitudinal direction as a whole, and has a substantially circular cross section in the present embodiment. The light guide 400 is made of a transparent material, and is made of an acrylic resin such as polymethyl methacrylate resin (abbreviated as PMMA resin). The light guide 400 includes an incident surface (light detection surface) 401, reflection surfaces 402 and 403, and an emission surface 404. The incident surface 401 is a surface on which light emitted from the laminated signal lamp 900 is incident. The incident surface 401 extends in the y direction of the light guide 400 and continues from a position below the bottom surface of the main body 100 to the vicinity of the end in the y2 direction. The incident surface 401 faces in the z2 direction, and faces the side surface of the laminated signal lamp 900 ( light emitting units 901, 902, and 903) in a state where the main body 100 is placed on the top of the laminated signal lamp 900. . The reflective surface 402 is a surface that reflects the light incident from the incident surface 401 in the y1 direction. The reflective surface 402 is in the same range as the range of the incident surface 401 in the y direction, and faces the incident surface 401. The reflection surface 403 is a surface for reflecting light traveling in the y1 direction in the z2 direction. The reflection surface 403 is an end surface of the light guide 400 in the y1 direction, and is inclined 45 ° with respect to the y direction. The emission surface 404 is a surface that emits the light reflected by the reflection surface 403. The emission surface 404 faces the light receiving surface 600a of the color sensor 600.
 入射面401から入射された光は、反射面402で反射されてy1方向に進行し、反射面403で反射されてz2方向に進行し、出射面404から出射される。出射面404から出射された光は、カラーセンサ600の受光面600aに入射される、すなわち、カラーセンサ600によって受光される。入射面401は、信号灯モニタA7を積層信号灯900に取り付けたときに発光部901,902,903の全てにまたがるように形成されているので、発光部901,902,903のいずれが発する光も入射される。したがって、カラーセンサ600の受光面600aにも、発光部901,902,903のいずれかが発する光、または、これらの混合された光が入射される。 The light incident from the incident surface 401 is reflected by the reflecting surface 402 and travels in the y1 direction, is reflected by the reflecting surface 403, travels in the z2 direction, and is emitted from the emitting surface 404. The light emitted from the emission surface 404 is incident on the light receiving surface 600 a of the color sensor 600, that is, received by the color sensor 600. Since the incident surface 401 is formed so as to cover all of the light emitting portions 901, 902, and 903 when the signal lamp monitor A7 is attached to the laminated signal light 900, light emitted from any of the light emitting portions 901, 902, and 903 is incident. Is done. Therefore, the light emitted from any one of the light emitting units 901, 902, and 903 or a mixed light thereof is also incident on the light receiving surface 600a of the color sensor 600.
 導光体ケース500は、導光体400を保持するとともに、導光体400から光が漏れたり、外部からの光が入射されたりしてしまうことを防止するためのものである。導光体ケース500は、導光体400の入射面401および出射面404を露出させつつ、導光体400を収容しており、たとえば白色樹脂からなる。 The light guide case 500 is for holding the light guide 400 and preventing light from leaking from the light guide 400 or light from the outside being incident. The light guide body 500 accommodates the light guide 400 while exposing the entrance surface 401 and the exit surface 404 of the light guide 400, and is made of, for example, white resin.
 カラーセンサ600は、受光面600aが受光した光の情報を制御部330に出力する。制御部330は、入力された情報に基づいて、発光部901,902,903のいずれが発する光が入射されたかを識別する。また、制御部330は、入力された情報に基づいて、発光状態も識別する。 The color sensor 600 outputs information on the light received by the light receiving surface 600a to the control unit 330. Based on the input information, the controller 330 identifies which of the light emitting units 901, 902, and 903 is incident. The control unit 330 also identifies the light emission state based on the input information.
 図21および図22は、第8実施形態に係る信号灯モニタを示している。図21は、本体100を示す正面図である。図22は、本体100を示す平面図である。図21および図22に示す信号灯モニタA8は、積層信号灯900が発する光を本体100まで導く点で、第1実施形態に係る信号灯モニタA1(図2および図3参照)と異なっている。 21 and 22 show a signal lamp monitor according to the eighth embodiment. FIG. 21 is a front view showing the main body 100. FIG. 22 is a plan view showing the main body 100. The signal lamp monitor A8 shown in FIGS. 21 and 22 is different from the signal lamp monitor A1 according to the first embodiment (see FIGS. 2 and 3) in that light emitted from the laminated signal lamp 900 is guided to the main body 100.
 第8実施形態の信号灯モニタA8は、第7実施形態と同様に、導光体によって、積層信号灯900が発する光を本体100まで導く。一方、信号灯モニタA8では、発光部901,902,903が発する光を単一の導光体で導くのではなく、各発光部901,902,903が発する光を個別に導く3個の導光体を設けている。具体的には、信号灯モニタA8は、導光体400,410,420、導光体ケース500,510,520およびフォトダイオード225,235,245を備えている。フォトダイオード225,235,245は、回路基板110の主面110aのz1方向の端部に、受光面225a,235a、245aがz1方向を向くようにして、搭載されている。フォトダイオード225,235,245は、この順に、x2方向からx1方向に向かって並んでいる。導光体400を収容した導光体ケース500、導光体410を収容した導光体ケース510、および、導光体420を収容した導光体ケース520は、長手方向がy方向になるようにして、回路基板110のz1方向の端部に、この順にx2方向からx1方向に向かって並ぶようにして固定されている。 As in the seventh embodiment, the signal lamp monitor A8 of the eighth embodiment guides light emitted from the laminated signal lamp 900 to the main body 100 by the light guide. On the other hand, in the signal lamp monitor A8, the light emitted from the light emitting units 901, 902, and 903 is not guided by a single light guide, but three light guides that individually guide the light emitted from the light emitting units 901, 902, and 903. Have a body. Specifically, the signal light monitor A8 includes light guides 400, 410, 420, light guide cases 500, 510, 520, and photodiodes 225, 235, 245. The photodiodes 225, 235, and 245 are mounted on the end in the z1 direction of the main surface 110a of the circuit board 110 so that the light receiving surfaces 225a, 235a, and 245a face the z1 direction. The photodiodes 225, 235, and 245 are arranged in this order from the x2 direction to the x1 direction. The longitudinal direction of the light guide case 500 containing the light guide 400, the light guide case 510 containing the light guide 410, and the light guide case 520 containing the light guide 420 is the y direction. Then, the circuit board 110 is fixed to the end of the circuit board 110 in the z1 direction in this order from the x2 direction toward the x1 direction.
 導光体400および導光体ケース500は、第7実施形態の導光体400および導光体ケース500と同様のものであるが、y方向の寸法が短くなっており、入射面401が発光部901に対向する位置にのみ設けられている。したがって、導光体400は、発光部901が発する光だけを本体100まで導く。導光体410および導光体ケース510も、第7実施形態に係る導光体400および導光体ケース500と同様のものであるが、入射面411が発光部902に対向する位置にのみ設けられている。したがって、導光体410は、発光部902が発する光だけを本体100まで導く。導光体420および導光体ケース520も、第7実施形態に係る導光体400および導光体ケース500と同様のものであるが、入射面421が発光部903に対向する位置にのみ設けられている。したがって、導光体420は、発光部903が発する光だけを本体100まで導く。 The light guide 400 and the light guide case 500 are the same as the light guide 400 and the light guide case 500 of the seventh embodiment, but the dimension in the y direction is short, and the incident surface 401 emits light. It is provided only at a position facing the portion 901. Therefore, the light guide 400 guides only the light emitted from the light emitting unit 901 to the main body 100. The light guide 410 and the light guide case 510 are the same as the light guide 400 and the light guide case 500 according to the seventh embodiment, but are provided only at a position where the incident surface 411 faces the light emitting unit 902. It has been. Therefore, the light guide 410 guides only the light emitted from the light emitting unit 902 to the main body 100. The light guide 420 and the light guide case 520 are the same as the light guide 400 and the light guide case 500 according to the seventh embodiment, but are provided only at a position where the incident surface 421 faces the light emitting unit 903. It has been. Therefore, the light guide 420 guides only the light emitted from the light emitting unit 903 to the main body 100.
 フォトダイオード225,235,245は、第1実施形態に係るフォトダイオード225,235,245と同様のものであり、それぞれ、導光体400,410,420が導いた光を受光する。したがって、フォトダイオード225は発光部901が発する光を受光し、フォトダイオード235は発光部902が発する光を受光し、フォトダイオード245は発光部903が発する光を受光する。制御部330が、フォトダイオード225,235,245に流れる電流に基づいて発光色や発行状態を識別するのは、第1実施形態と同様である。 The photodiodes 225, 235, and 245 are the same as the photodiodes 225, 235, and 245 according to the first embodiment, and receive the light guided by the light guides 400, 410, and 420, respectively. Accordingly, the photodiode 225 receives light emitted from the light emitting unit 901, the photodiode 235 receives light emitted from the light emitting unit 902, and the photodiode 245 receives light emitted from the light emitting unit 903. The controller 330 identifies the emission color and the issuance state based on the current flowing through the photodiodes 225, 235, and 245, as in the first embodiment.
 上述の第1~第8実施形態においては、本体100を積層信号灯900の最上部に直接載置する場合について説明したが、本開示がこれに限定されるわけではない。本体100を固定するための固定具を積層信号灯900の最上部に載置して、本体100をこの固定具に取り付けるようにしてもよい。図23は、このような固定具の一例である本体固定具750を説明するための図である。図23(a)は、積層信号灯900に取り付けられた状態の本体固定具750の平面図である。図23(b)は、積層信号灯900に取り付けられた状態の本体固定具750の正面図である。 In the first to eighth embodiments described above, the case where the main body 100 is directly placed on the top of the laminated signal lamp 900 has been described, but the present disclosure is not limited thereto. A fixing tool for fixing the main body 100 may be placed on the top of the laminated signal lamp 900, and the main body 100 may be attached to the fixing tool. FIG. 23 is a view for explaining a body fixture 750 which is an example of such a fixture. FIG. 23A is a plan view of the main body fixture 750 attached to the laminated signal lamp 900. FIG. FIG. 23B is a front view of the main body fixture 750 attached to the laminated signal lamp 900.
 本体固定具750は、例えば合成樹脂製の、円形状の板である。本体固定具750は、z1方向の端部からz2方向に長く延びる切り欠き部750aと、z2方向の端部からy1方向に延びる当接部750bと、y1方向側を向く面のz1方向寄りに、切り欠き部750aを挟んで配置された2つの突起部750cとを備えている。なお、本体固定具750の素材および形状は限定されない。本体固定具750は、積層信号灯900の最上部に、例えば両面テープなどで固定される。このとき、積層信号灯900を分解するためのネジが、切り欠き部750aに位置するようにして、本体固定具750を積層信号灯900に固定する(図23(a)参照)。そして、本体100のz2方向側の端部を当接部750bに当接させて、突起部750cを本体100(ケース102)の底面に設けられた穴102cに嵌め込むことで、本体100を本体固定具750に固定する(図23(b)参照)。 The main body fixture 750 is a circular plate made of, for example, synthetic resin. The body fixing tool 750 includes a notch 750a extending in the z2 direction from the end in the z1 direction, a contact part 750b extending in the y1 direction from the end in the z2 direction, and closer to the z1 direction of the surface facing the y1 direction. , And two protrusions 750c arranged with the notch 750a interposed therebetween. The material and shape of the main body fixture 750 are not limited. The main body fixture 750 is fixed to the uppermost part of the laminated signal lamp 900 with, for example, a double-sided tape. At this time, the main body fixture 750 is fixed to the laminated signal lamp 900 so that the screw for disassembling the laminated signal lamp 900 is positioned at the notch 750a (see FIG. 23A). Then, the end of the main body 100 on the z2 direction side is brought into contact with the contact portion 750b, and the projecting portion 750c is fitted into the hole 102c provided on the bottom surface of the main body 100 (case 102). It fixes to the fixing tool 750 (refer FIG.23 (b)).
 本体固定具750を用いることで、本体100を積層信号灯900に容易に着脱することができる。また、本体100を本体固定具750から取り外した場合、本体固定具750の切り欠き部750aに、積層信号灯900を分解するためのネジが位置する。当該ネジを取り外すことで、積層信号灯900を分解してメンテナンスすることができる。したがって、本体100を積層信号灯900に取り付けた後でも、積層信号灯900のメンテナンスを容易に行うことができる。また、本体固定具750は、切り欠き部750aによって、ネジの頭を露出させるようにしているので、様々な径の積層信号灯900に対応することができる。 The main body 100 can be easily attached to and detached from the laminated signal lamp 900 by using the main body fixture 750. Further, when the main body 100 is detached from the main body fixing tool 750, a screw for disassembling the laminated signal lamp 900 is located in the notch 750a of the main body fixing tool 750. By removing the screw, the laminated signal lamp 900 can be disassembled and maintained. Therefore, even after the main body 100 is attached to the laminated signal lamp 900, maintenance of the laminated signal lamp 900 can be easily performed. In addition, the main body fixing tool 750 can be adapted to the laminated signal lamp 900 having various diameters because the head of the screw is exposed by the notch 750a.
 図24~図29は、第9実施形態に係る信号灯モニタを示している。図24は、第9実施形態に係る信号灯モニタの全体構成を示す斜視図である。図25は、当該信号灯モニタの本体の平面図である。図26は、本体の平面図であって、カバー103を透過させた状態を示している。図26では、カバー103は、破線で示されている。図27は、当該信号灯モニタの本体の正面図である。図27では、内部の構成の一部が、破線で示されている。図28は、信号灯モニタの検出部を示す正面図である。図28では、蓋223が透過されて、内部の構成が破線で示されている。図29は、当該信号灯モニタのブロック図である。図24~図29に示す信号灯モニタA9は、本体100の形状などが、第1実施形態に係る信号灯モニタA1(図1~図7参照)と異なっている。以下では、信号灯モニタA1との相違点を中心に説明する。 FIGS. 24 to 29 show a signal lamp monitor according to the ninth embodiment. FIG. 24 is a perspective view showing an overall configuration of a signal lamp monitor according to the ninth embodiment. FIG. 25 is a plan view of the main body of the signal light monitor. FIG. 26 is a plan view of the main body and shows a state in which the cover 103 is transmitted. In FIG. 26, the cover 103 is indicated by a broken line. FIG. 27 is a front view of the main body of the signal light monitor. In FIG. 27, a part of the internal configuration is indicated by a broken line. FIG. 28 is a front view showing the detection unit of the signal light monitor. In FIG. 28, the lid 223 is transmitted, and the internal configuration is indicated by a broken line. FIG. 29 is a block diagram of the signal lamp monitor. The signal lamp monitor A9 shown in FIGS. 24 to 29 is different from the signal lamp monitor A1 according to the first embodiment (see FIGS. 1 to 7) in the shape of the main body 100 and the like. Below, it demonstrates centering around difference with signal lamp monitor A1.
 図24に示すように、信号灯モニタA9は、本体100、スペーサ105、アタッチメント106、および検出部200を備えている。スペーサ105は、信号灯モニタA9が配置される積層信号灯900に応じて、必要な枚数だけ積み重ねて、ネジで本体100の底面に固定される。アタッチメント106は、本体100から最も離れたスペーサ105に取り付けられる。そして、アタッチメント106が積層信号灯900の上面に固定されることで、信号灯モニタA9が積層信号灯900に取り付けられる。 As shown in FIG. 24, the signal light monitor A9 includes a main body 100, a spacer 105, an attachment 106, and a detection unit 200. The spacers 105 are stacked in a necessary number according to the laminated signal lamp 900 on which the signal lamp monitor A9 is arranged, and are fixed to the bottom surface of the main body 100 with screws. The attachment 106 is attached to the spacer 105 farthest from the main body 100. Then, the attachment 106 is fixed to the upper surface of the laminated signal lamp 900, whereby the signal lamp monitor A9 is attached to the laminated signal lamp 900.
 図24~図27に示すように、本実施形態において、筐体101は略直方体形状である。また、ケース102およびカバー103は、例えば白色の合成樹脂製であり、それぞれ有底矩形筒形状である。 As shown in FIGS. 24 to 27, in the present embodiment, the casing 101 has a substantially rectangular parallelepiped shape. The case 102 and the cover 103 are made of, for example, white synthetic resin, and each have a bottomed rectangular tube shape.
 図26および図27に示すように、ケース102は、支持部102dを備えている。支持部102dは、ケース102からy1方向に直立して形成されており、無線モジュール120を支持する。 As shown in FIGS. 26 and 27, the case 102 includes a support portion 102d. The support part 102d is formed upright in the y1 direction from the case 102, and supports the wireless module 120.
 図24、図25および図27に示すように、カバー103は、底面板103aを備えている。底面板103aは、カバー103の底を形成する部分であり、y方向に直交している。底面板103aは、突出部103bを備えている。突出部103bは、底面板103aに対して直立し、y1方向側に突出するように形成されている。突出部103bは、平面視矩形状で、底面板103aのx1方向側の端縁寄り、かつ、z2方向側の端縁寄りに配置されている。突出部103bは、反射面103c、突出部開口103d、および蓋103eを備えている。反射面103cは、突出部103bの、底面板103aに直交する側面のうち、x2方向側を向く面である。突出部開口103dは、突出部103bのy1方向側を向く面およびz1方向側を向く面にまたがって形成された開口である。蓋103eは、突出部開口103dを塞ぐための蓋である。また、底面板103aは、開口部103fを備えている。開口部103fは、底面板103aに形成された矩形状の開口であり、突出部103bのx2方向側に配置されている。開口部103fは、筐体101の内部に収納される無線モジュール120の太陽電池122の位置に合わせて配置されており、太陽電池122の受光面122aが、開口部103fから露出している。したがって、本体100のy1方向側から進行してきた光は、太陽電池122の受光面122aに入射する。また、本実施形態では、底面板103aに突出部103bが設けられているので、本体100のx2方向側から進行してきた光は、突出部103bの反射面103cに反射されて(図27の破線矢印参照)、太陽電池122の受光面122aに入射する。 As shown in FIGS. 24, 25, and 27, the cover 103 includes a bottom plate 103a. The bottom plate 103a is a part that forms the bottom of the cover 103, and is orthogonal to the y direction. The bottom plate 103a includes a protruding portion 103b. The protruding portion 103b is formed so as to stand upright with respect to the bottom plate 103a and protrude in the y1 direction. The protrusion 103b has a rectangular shape in plan view, and is disposed near the edge on the x1 direction side of the bottom plate 103a and near the edge on the z2 direction side. The protrusion 103b includes a reflective surface 103c, a protrusion opening 103d, and a lid 103e. The reflective surface 103c is a surface facing the x2 direction side among the side surfaces orthogonal to the bottom surface plate 103a of the protruding portion 103b. The protrusion opening 103d is an opening formed across the surface facing the y1 direction and the surface facing the z1 direction of the protrusion 103b. The lid 103e is a lid for closing the protrusion opening 103d. The bottom plate 103a has an opening 103f. The opening 103f is a rectangular opening formed in the bottom plate 103a, and is disposed on the x2 direction side of the protrusion 103b. The opening 103f is arranged in accordance with the position of the solar cell 122 of the wireless module 120 housed in the housing 101, and the light receiving surface 122a of the solar cell 122 is exposed from the opening 103f. Therefore, the light traveling from the y1 direction side of the main body 100 enters the light receiving surface 122a of the solar cell 122. In the present embodiment, since the protrusion 103b is provided on the bottom plate 103a, the light traveling from the x2 direction side of the main body 100 is reflected by the reflection surface 103c of the protrusion 103b (the broken line in FIG. 27). The light receiving surface 122a of the solar cell 122 is incident.
 図25および図26に示すように、カバー103は、隔壁103gを備えている。隔壁103gは、底面板103aからy2方向側に直立して形成されて、回路基板110の主面110a付近まで達しており、z方向に延びている。隔壁103gは、回路基板110の主面110aを、x1方向側の領域と、x2方向側の領域とに分けている。x1方向側の領域は、平面視において突出部103bに重なっている。したがって、作業者は、蓋103eを開けて突出部開口103dから、x1方向側の領域に配置された部材を操作することができる。一方、x2方向側の領域は、隔壁103gによって隔てられているので、作業者は、x2方向側の領域に配置される部材を操作することができない。 25 and 26, the cover 103 includes a partition wall 103g. The partition wall 103g is formed upright on the y2 direction side from the bottom plate 103a, reaches the vicinity of the main surface 110a of the circuit board 110, and extends in the z direction. The partition wall 103g divides the main surface 110a of the circuit board 110 into a region on the x1 direction side and a region on the x2 direction side. The region on the x1 direction side overlaps the protruding portion 103b in plan view. Therefore, the operator can operate the members arranged in the region on the x1 direction side by opening the lid 103e and from the protruding portion opening 103d. On the other hand, since the region on the x2 direction side is separated by the partition wall 103g, the operator cannot operate the members arranged in the region on the x2 direction side.
 ケース102の開口に嵌め込まれる回路基板110も矩形状である。回路基板110の主面110aは、隔壁103gによって、x1方向側の領域と、x2方向側の領域とに分けられている。x1方向側の領域には、スイッチ130、リセットスイッチ132、可変抵抗器140、スライドスイッチ133、LED134、およびバッテリホルダ150が配置されている。これらの部材は、作業者によって操作可能である。 The circuit board 110 fitted into the opening of the case 102 is also rectangular. The main surface 110a of the circuit board 110 is divided into a region on the x1 direction side and a region on the x2 direction side by the partition wall 103g. In the region on the x1 direction side, a switch 130, a reset switch 132, a variable resistor 140, a slide switch 133, an LED 134, and a battery holder 150 are arranged. These members can be operated by an operator.
 一方、x2方向側の領域には、無線モジュール120が配置されている。無線モジュール120は、モジュール基板121の裏面121bに、コネクタ124を備えている。また、回路基板110の主面110aには、コネクタ110cが配置されている。無線モジュール120は、コネクタ124がコネクタ110cに接続されることで、回路基板110から離間した状態で、回路基板110に搭載されている。また、無線モジュール120は、ケース102に設けられた支持部102dによって、支持されている。無線モジュール120と回路基板110との間には、作業者による操作の必要がない(あるいは作業者が触れるべきでない)部材が配置されている。これらの部材は、隔壁103gによって突出部開口103dから隔てられており、さらに、無線モジュール120と回路基板110との間に配置されているので、作業者による操作や接触を防ぐことができる。 On the other hand, the wireless module 120 is arranged in the region on the x2 direction side. The wireless module 120 includes a connector 124 on the back surface 121 b of the module substrate 121. A connector 110 c is disposed on the main surface 110 a of the circuit board 110. The wireless module 120 is mounted on the circuit board 110 in a state of being separated from the circuit board 110 by connecting the connector 124 to the connector 110c. The wireless module 120 is supported by a support portion 102 d provided on the case 102. Between the wireless module 120 and the circuit board 110, a member that does not need to be operated by an operator (or should not be touched by the operator) is disposed. These members are separated from the projecting portion opening 103d by the partition wall 103g, and further, disposed between the wireless module 120 and the circuit board 110, so that operation and contact by the operator can be prevented.
 本実施形態では、無線モジュール120のアンテナ123は、中心軸がz1方向に延びるようにして配置されている。本実施形態では、アンテナ123から放射される電磁波が周囲の金属によって反射されないように、アンテナ123の周囲には金属部品ができるだけ配置されないように設計されている。例えば、バッテリホルダ150などの金属部品はz2方向側に配置され、アンテナ123はz1方向側に配置されている。また、回路基板110の主面110aのうち、アンテナ123が位置する領域には、配線が極力設けられないように設計されている。したがって、アンテナ123は、y1方向に延びていないが、問題なく通信を行うことができる。 In this embodiment, the antenna 123 of the wireless module 120 is arranged so that the central axis extends in the z1 direction. In this embodiment, it is designed so that metal parts are not arranged around the antenna 123 as much as possible so that electromagnetic waves radiated from the antenna 123 are not reflected by the surrounding metal. For example, metal parts such as the battery holder 150 are disposed on the z2 direction side, and the antenna 123 is disposed on the z1 direction side. In addition, in the main surface 110a of the circuit board 110, the region where the antenna 123 is located is designed so that wiring is not provided as much as possible. Therefore, although the antenna 123 does not extend in the y1 direction, communication can be performed without any problem.
 本実施形態では、本体100は、スイッチ130に加えて、リセットスイッチ132を備えている。リセットスイッチ132は、無線モジュール120の状態を初期状態にリセットするためのスイッチである。リセットスイッチ132も、押圧ボタン131を備えている。また、本実施形態では、スイッチ130は、信号灯モニタA9に設定されているID番号を管理装置800に送信するために用いられる。図29に示すように、作業者が押圧ボタン131を押圧することにより、スイッチ130またはリセットスイッチ132からの操作信号が、制御部330に入力される。制御部330は、スイッチ130からの操作信号が入力されると、ID番号をメモリから読み出して、送信部340に送信させる。また、制御部330は、リセットスイッチ132からの操作信号が入力されると、リセット処理を行う。スイッチ130およびリセットスイッチ132は、押圧ボタン131がy1方向に延びるように配置されている。また、可変抵抗器140は、調整溝141が配置されている面がy1方向を向くように配置されている。 In the present embodiment, the main body 100 includes a reset switch 132 in addition to the switch 130. The reset switch 132 is a switch for resetting the state of the wireless module 120 to the initial state. The reset switch 132 also includes a push button 131. In the present embodiment, the switch 130 is used to transmit the ID number set in the signal light monitor A9 to the management device 800. As illustrated in FIG. 29, when the operator presses the pressing button 131, an operation signal from the switch 130 or the reset switch 132 is input to the control unit 330. When the operation signal from the switch 130 is input, the control unit 330 reads the ID number from the memory and causes the transmission unit 340 to transmit the ID number. The control unit 330 performs a reset process when an operation signal from the reset switch 132 is input. The switch 130 and the reset switch 132 are arranged so that the push button 131 extends in the y1 direction. The variable resistor 140 is arranged such that the surface on which the adjustment groove 141 is arranged faces the y1 direction.
 また、本実施形態では、バッテリホルダ150は、円筒型リチウム電池(例えばCR2)を搭載するように構成されている。制御部330は、バッテリホルダ150の電池の有無および電圧を監視するために電圧を検出しており、検出結果に対応した信号を定期的に管理装置800に送信する。 In this embodiment, the battery holder 150 is configured to mount a cylindrical lithium battery (for example, CR2). The controller 330 detects the voltage in order to monitor the presence / absence of the battery in the battery holder 150 and the voltage, and periodically transmits a signal corresponding to the detection result to the management apparatus 800.
 本実施形態において、本体100は、スライドスイッチ133およびLED134をさらに備えている。 In the present embodiment, the main body 100 further includes a slide switch 133 and an LED 134.
 スライドスイッチ133は、動作モードを切り替えるためのスイッチである。図29に示すように、制御部330は、スライドスイッチ133からの入力に基づいて制御を切り替えることで、動作モードを切り替える。図26に示すように、スライドスイッチ133は、2つの切り替えスイッチを備えている。一方のスイッチは、通常モードと省エネモードとを切り替えるためのスイッチである。当該スイッチが通常モードに切り替えられている間は、発光状態の識別のための測定間隔が10秒になり、定期的な検出信号の送信間隔が30秒になる(第1実施形態と同様)。一方、当該スイッチが省エネモードに切り替えられている間は、発光状態の識別のための測定間隔が60秒になり、定期的な検出信号の送信間隔が30分になる。省エネモードの場合、測定間隔および送信間隔が長くなるので、消費される電力を抑制することができる。なお、測定間隔および送信間隔の設定時間は、これらの例に限定されず、適宜変更可能である。他方のスイッチは、予備スイッチとして設けられている。予備スイッチには、例えば今後のバージョンアップの際に、所定の動作モードが設定される。 The slide switch 133 is a switch for switching the operation mode. As illustrated in FIG. 29, the control unit 330 switches the operation mode by switching the control based on the input from the slide switch 133. As shown in FIG. 26, the slide switch 133 includes two changeover switches. One switch is a switch for switching between the normal mode and the energy saving mode. While the switch is switched to the normal mode, the measurement interval for identifying the light emission state is 10 seconds, and the periodic detection signal transmission interval is 30 seconds (similar to the first embodiment). On the other hand, while the switch is switched to the energy saving mode, the measurement interval for identifying the light emission state is 60 seconds, and the periodic detection signal transmission interval is 30 minutes. In the case of the energy saving mode, the measurement interval and the transmission interval become long, so that the power consumed can be suppressed. Note that the set times of the measurement interval and the transmission interval are not limited to these examples, and can be changed as appropriate. The other switch is provided as a spare switch. A predetermined operation mode is set in the spare switch, for example, when a future version upgrade is performed.
 LED134は、通信状態を報知するためのものであり、信号灯モニタA9が検出信号を送信している間、点灯する。図29に示すように、制御部330は、送信部340に検出信号を送信させている間、LED134に電流を出力する。これにより、LED134は点灯する。 The LED 134 is for notifying the communication state, and lights up while the signal lamp monitor A9 is transmitting a detection signal. As illustrated in FIG. 29, the control unit 330 outputs a current to the LED 134 while the transmission unit 340 transmits a detection signal. As a result, the LED 134 is lit.
 本実施形態では、コネクタ160は、回路基板110の主面110aのz1方向側の端部に配置されており、中継ケーブル290が接続されている。中継ケーブル290は、ケース102とカバー103との隙間を通って、コネクタ292が筐体101の外部に出ており、検出部200に接続される。 In the present embodiment, the connector 160 is disposed at the end of the main surface 110a of the circuit board 110 on the z1 direction side, and the relay cable 290 is connected thereto. The relay cable 290 passes through the gap between the case 102 and the cover 103, and the connector 292 is outside the housing 101 and is connected to the detection unit 200.
 図24および図28に示すように、本実施形態において、検出部200は、第4実施形態と同様に、1つの検出ブロック260で構成されている。本実施形態では、ケース211は、遮光性を向上させるために、光透過量を削減するための添加剤を添加した合成樹脂(例えばABS樹脂)によって形成されており、内側の面が遮光のために黒色に着色されている。なお、ケース211の素材は限定されない。また、本実施形態では、ケース211の遮光性向上のために、添加剤を添加し、かつ、内側の面の着色を行っているが、いずれか一方の対応のみとしてもよい。また、ケース211は、さらにy1方向側に延びており、y1方向の端部に、取付部211fを備えている。取付部211fは、本体100に検出ブロック260を取り付けるためのものである。まず、コネクタ213を筐体101の外部に出ているコネクタ292に接続し、図24に示すように、取付部211fを本体100のカバー103にネジで固定することで、検出ブロック260は本体100に取り付けられる。 As shown in FIGS. 24 and 28, in the present embodiment, the detection unit 200 is configured by one detection block 260, as in the fourth embodiment. In this embodiment, the case 211 is formed of a synthetic resin (for example, ABS resin) to which an additive for reducing the amount of light transmission is added in order to improve the light shielding property, and the inner surface is for light shielding. It is colored black. Note that the material of the case 211 is not limited. In this embodiment, in order to improve the light shielding property of the case 211, an additive is added and the inner surface is colored. However, only one of them may be used. The case 211 further extends in the y1 direction, and includes an attachment portion 211f at the end in the y1 direction. The attachment portion 211 f is for attaching the detection block 260 to the main body 100. First, the connector 213 is connected to the connector 292 outside the housing 101, and the attachment block 211f is fixed to the cover 103 of the main body 100 with screws as shown in FIG. Attached to.
 また、図28に示すように、ケース211は、上記センサブロック220の変形例のように、x1方向側の壁とx2方向側の壁とがz2方向側に延伸され、当該2つの壁の間に、蓋223および透明板224が配置されている。蓋223は、ケース211と同じ素材で形成された矩形状の板であり、各フォトダイオード225,235,245,255の位置に合わせて、4つの窓部223aが設けられている。また、本実施形態では、検出ブロック260は、仕切板227を備えている。仕切板227は、ケース211と同じ素材であり、長辺の長さがケース211のx1方向側の壁とx2方向側の壁との距離に等しく、短辺の長さがセンサ基板222と蓋223との距離と同じである。仕切板227は、センサ基板222と蓋223との間にこれらに直交するように配置されている。仕切板227は、各フォトダイオード225,235,245,255の間と、フォトダイオード225のy1方向側、および、フォトダイオード255のy2方向側の5か所にそれぞれ配置されている。これにより、各フォトダイオード225,235,245,255は、仕切板227、ケース211、基板222、および蓋223によって光が遮断され、窓部223aを通過する光のみを受光する。なお、蓋223および仕切板227の素材は限定されない。 As shown in FIG. 28, the case 211 has a wall in the x1 direction side and a wall in the x2 direction side that extends in the z2 direction side as in the modified example of the sensor block 220, and the space between the two walls. In addition, a lid 223 and a transparent plate 224 are disposed. The lid 223 is a rectangular plate made of the same material as the case 211, and four windows 223a are provided in accordance with the positions of the photodiodes 225, 235, 245, and 255. In the present embodiment, the detection block 260 includes a partition plate 227. The partition plate 227 is made of the same material as the case 211, and the length of the long side is equal to the distance between the wall on the x1 direction side and the wall on the x2 direction side of the case 211, and the length of the short side is the sensor substrate 222 and the lid. It is the same as the distance to H.223. The partition plate 227 is disposed between the sensor substrate 222 and the lid 223 so as to be orthogonal thereto. The partition plates 227 are disposed between the photodiodes 225, 235, 245, and 255, at five locations on the y1 direction side of the photodiode 225, and on the y2 direction side of the photodiode 255. Accordingly, each of the photodiodes 225, 235, 245, and 255 is blocked by the partition plate 227, the case 211, the substrate 222, and the lid 223, and receives only the light that passes through the window portion 223a. In addition, the material of the lid | cover 223 and the partition plate 227 is not limited.
 本実施形態においても、第1実施形態と同様に、積層信号灯900に容易に短時間、低コストで通信機能を付加することができる。さらに、開口部103fから太陽電池122の受光面122aが露出しており、開口部103fのx1方向側に反射面103cが配置されている。したがって、本体100のx2方向側から進行してきた光は、反射面103cに反射されて、太陽電池122の受光面122aに入射する。これにより、太陽電池122は、y1方向側から進行してきた光だけでなく、x2方向側から進行してきた光も有効に利用することができ、生成する電力を増加させることができる。 Also in this embodiment, similarly to the first embodiment, it is possible to easily add a communication function to the laminated signal lamp 900 in a short time and at a low cost. Furthermore, the light receiving surface 122a of the solar cell 122 is exposed from the opening 103f, and the reflecting surface 103c is disposed on the x1 direction side of the opening 103f. Therefore, the light traveling from the x2 direction side of the main body 100 is reflected by the reflecting surface 103 c and enters the light receiving surface 122 a of the solar cell 122. Thereby, the solar cell 122 can effectively use not only the light traveling from the y1 direction side but also the light traveling from the x2 direction side, and can increase the generated electric power.
 また、突出部103bは、突出部開口103dおよび蓋103eを備えている。したがって、作業者は、蓋103eを開けて突出部開口103dから、突出部103bの下方(y2方向)に配置された部材を操作することができる。また、蓋103eを閉じておくことで、本体100内部にごみやほこりなどが入ることを防止できる。また、カバー103が隔壁103gを備えているので、作業者が、突出部開口103dから、隔壁103gに隔てられた領域に配置されている部材に対して、操作や接触することを防止できる。 The protrusion 103b includes a protrusion opening 103d and a lid 103e. Accordingly, the operator can open the lid 103e and operate a member disposed below the protruding portion 103b (in the y2 direction) from the protruding portion opening 103d. Further, by closing the lid 103e, it is possible to prevent dust and dirt from entering the main body 100. Further, since the cover 103 includes the partition wall 103g, an operator can be prevented from operating and contacting a member disposed in a region separated from the partition wall 103g from the protruding portion opening 103d.
 支持部102dが、ケース102に形成されており、無線モジュール120を支持している。したがって、無線モジュール120が傾くことを防止できる。これにより、太陽電池122の受光面122aと開口部103fとの間に隙間が生じて、当該隙間から本体100内部にごみやほこりなどが入ることを防止できる。 Support portion 102d is formed in case 102 and supports wireless module 120. Therefore, the wireless module 120 can be prevented from tilting. Accordingly, a gap is generated between the light receiving surface 122a of the solar cell 122 and the opening 103f, and dust and dust can be prevented from entering the main body 100 from the gap.
 スライドスイッチ133は、動作モードを、通常モードと省エネモードとで切り替えることができる。省エネモードに切り替えられている場合、通常モードに切り替えられている場合と比較して、測定間隔および送信間隔が長くなり、消費される電力が抑制される。したがって、作業者は、スライドスイッチ133を切り替えることで、測定および信号の送信を頻繁に行う通常モードと、消費電力を抑制できる省エネモードとを選択できる。 The slide switch 133 can switch the operation mode between the normal mode and the energy saving mode. When the mode is switched to the energy saving mode, the measurement interval and the transmission interval become longer than when the mode is switched to the normal mode, and the consumed power is suppressed. Therefore, the operator can select the normal mode in which measurement and signal transmission are frequently performed and the energy saving mode in which power consumption can be suppressed by switching the slide switch 133.
 本開示に係る信号灯モニタは、上述した実施形態に限定されるものではない。本開示に係る信号灯モニタの各部の具体的な構成は、種々に設計変更自在である。 The signal lamp monitor according to the present disclosure is not limited to the above-described embodiment. The specific configuration of each part of the signal light monitor according to the present disclosure can be varied in design in various ways.

Claims (32)

  1.  光によって情報を知らせる信号灯に取り付ける信号灯モニタであって、
     光を検出する検出手段と、
     少なくとも前記検出に基づいて検出信号を生成する制御部と、
     前記検出信号を無線通信により送信する送信部と、
    を備えており、
     前記送信部は、前記検出手段よりも鉛直上方に配置されるアンテナを備えている、信号灯モニタ。
    A signal lamp monitor attached to a signal lamp that informs information by light,
    Detection means for detecting light;
    A control unit that generates a detection signal based on at least the detection;
    A transmission unit for transmitting the detection signal by wireless communication;
    With
    The signal light monitor, wherein the transmission unit includes an antenna disposed vertically above the detection means.
  2.  前記アンテナは、鉛直上方に延びている、請求項1に記載の信号灯モニタ。 The signal lamp monitor according to claim 1, wherein the antenna extends vertically upward.
  3.  前記制御部および前記送信部を収容し、前記信号灯の最上部に載置される筐体をさらに備えている、請求項1または2に記載の信号灯モニタ。 The signal light monitor according to claim 1 or 2, further comprising a housing that houses the control unit and the transmission unit and is placed on the top of the signal light.
  4.  前記検出手段は、受光手段である、請求項1ないし3のいずれかに記載の信号灯モニタ。 4. The signal lamp monitor according to claim 1, wherein the detecting means is a light receiving means.
  5.  前記受光手段は、複数の受光ユニットを含む、請求項4に記載の信号灯モニタ。 The signal light monitor according to claim 4, wherein the light receiving means includes a plurality of light receiving units.
  6.  前記受光手段は、少なくとも3個の受光ユニットを含む、請求項5に記載の信号灯モニタ。 The signal light monitor according to claim 5, wherein the light receiving means includes at least three light receiving units.
  7.  前記複数の受光ユニットをそれぞれ搭載する複数のセンサ基板をさらに備えている、請求項5に記載の信号灯モニタ。 The signal lamp monitor according to claim 5, further comprising a plurality of sensor boards each mounting the plurality of light receiving units.
  8.  前記複数のセンサ基板どうしを接続する少なくとも1つの中継基板をさらに備えており、
     前記複数のセンサ基板のうちの1つのセンサ基板および前記中継基板は、それぞれコネクタを備えており、
     前記1つのセンサ基板および前記中継基板が前記コネクタで接続されて電流経路が形成されている、請求項7に記載の信号灯モニタ。
    Further comprising at least one relay board for connecting the plurality of sensor boards;
    One of the plurality of sensor boards and the relay board each include a connector,
    The signal lamp monitor according to claim 7, wherein the one sensor board and the relay board are connected by the connector to form a current path.
  9.  前記複数のセンサ基板どうしを接続する中継ケーブルをさらに備えている、請求項7に記載の信号灯モニタ。 The signal lamp monitor according to claim 7, further comprising a relay cable for connecting the plurality of sensor boards.
  10.  前記複数の受光ユニットを搭載する共通のセンサ基板をさらに備えている、請求項5に記載の信号灯モニタ。 The signal lamp monitor according to claim 5, further comprising a common sensor substrate on which the plurality of light receiving units are mounted.
  11.  前記センサ基板は、フレキシブルプリント基板である、請求項10に記載の信号灯モニタ。 The signal lamp monitor according to claim 10, wherein the sensor substrate is a flexible printed circuit board.
  12.  前記センサ基板は、前記信号灯の側面に沿って鉛直方向に移動可能に配置されている、請求項10に記載の信号灯モニタ。 The signal lamp monitor according to claim 10, wherein the sensor board is arranged to be movable in a vertical direction along a side surface of the signal lamp.
  13.  断面がU字形状であり、その内側部分に前記センサ基板が配置されるケースと、
     前記センサ基板に対向するように前記ケースに取り付けられた蓋と、
    をさらに備えており、
     前記蓋には、前記受光手段の受光面に対向する窓部が設けられており、
     前記ケースを前記信号灯に当接させた状態において、前記蓋は前記信号灯から離間している、請求項7ないし12のいずれかに記載の信号灯モニタ。
    A case in which the cross-section is U-shaped, and the sensor substrate is disposed on the inner part thereof;
    A lid attached to the case so as to face the sensor substrate;
    Further comprising
    The lid is provided with a window portion facing the light receiving surface of the light receiving means,
    The signal lamp monitor according to claim 7, wherein the lid is separated from the signal lamp in a state where the case is in contact with the signal lamp.
  14.  前記信号灯は、それぞれ異なる色を発光する複数の発光部を備えており、
     前記複数の受光ユニットは、前記複数の発光部と同じ数であり、
     前記複数の受光ユニットは、それぞれ、前記複数の発光部が発する光を受光できる位置に配置されている、請求項5ないし13のいずれかに記載の信号灯モニタ。
    The signal lamp includes a plurality of light emitting portions that emit different colors,
    The plurality of light receiving units is the same number as the plurality of light emitting units,
    The signal light monitor according to claim 5, wherein each of the plurality of light receiving units is disposed at a position where the light emitted from the plurality of light emitting units can be received.
  15.  前記信号灯の光を前記筐体に導くための導光体と、
     前記筐体内に配置され、前記導光体が導いた光を受光する受光手段と、
    をさらに備えており、
     前記検出手段は、前記導光体の入射面により構成されている、請求項3に記載の信号灯モニタ。
    A light guide for guiding the light of the signal lamp to the housing;
    A light receiving means disposed in the housing for receiving the light guided by the light guide;
    Further comprising
    The signal lamp monitor according to claim 3, wherein the detection unit is configured by an incident surface of the light guide.
  16.  前記信号灯は、それぞれ異なる色を発光する複数の発光部を備え、
     前記受光手段は、カラーセンサであり、
     前記制御部は、前記カラーセンサが出力した情報に基づいて、いずれの発光部が発する光が含まれるかを識別し、識別結果に応じて前記検出信号を生成する、請求項15に記載の信号灯モニタ。
    The signal lamp includes a plurality of light emitting units that emit different colors,
    The light receiving means is a color sensor,
    The signal lamp according to claim 15, wherein the control unit identifies which light emitting unit emits light based on information output from the color sensor, and generates the detection signal according to an identification result. monitor.
  17.  前記信号灯は、それぞれ異なる色を発光する複数の発光部を備え、
     前記受光手段は、前記複数の発光部と同じ数の複数の受光ユニットを含み、
     前記導光体は、前記複数の発光部と同じ数の複数の個別導光体を含む、請求項15に記載の信号灯モニタ。
    The signal lamp includes a plurality of light emitting units that emit different colors,
    The light receiving means includes the same number of light receiving units as the plurality of light emitting units,
    The signal light monitor according to claim 15, wherein the light guide includes the same number of individual light guides as the plurality of light emitting units.
  18.  前記送信部に電力を供給するための太陽電池をさらに備えている、請求項3に記載の信号灯モニタ。 The signal lamp monitor according to claim 3, further comprising a solar cell for supplying power to the transmitter.
  19.  前記太陽電池は、前記信号灯の発光する面に対向する受光面を有している、請求項18に記載の信号灯モニタ。 The signal lamp monitor according to claim 18, wherein the solar cell has a light receiving surface facing a light emitting surface of the signal lamp.
  20.  前記太陽電池は、前記筐体を前記信号灯に載置したときに、前記信号灯とは反対側を向く受光面を有している、請求項18に記載の信号灯モニタ。 The signal lamp monitor according to claim 18, wherein the solar cell has a light receiving surface facing a side opposite to the signal lamp when the casing is placed on the signal lamp.
  21.  前記送信部は、前記太陽電池と一体化された省電力無線モジュールである、請求項18ないし20のいずれかに記載の信号灯モニタ。 The signal light monitor according to any one of claims 18 to 20, wherein the transmitting unit is a power-saving wireless module integrated with the solar cell.
  22.  所定の操作のためのスイッチをさらに備えている、請求項3に記載の信号灯モニタ。 4. The signal light monitor according to claim 3, further comprising a switch for a predetermined operation.
  23.  前記スイッチは、前記筐体を前記信号灯に載置したときに、鉛直方向下方に押圧される押圧ボタンを備えている、請求項22に記載の信号灯モニタ。 The signal lamp monitor according to claim 22, wherein the switch includes a pressing button that is pressed downward in the vertical direction when the casing is placed on the signal lamp.
  24.  前記スイッチは、前記筐体を前記信号灯に載置したときに、水平方向に押圧される押圧ボタンを備えている、請求項22に記載の信号灯モニタ。 The signal lamp monitor according to claim 22, wherein the switch includes a pressing button that is pressed in a horizontal direction when the casing is placed on the signal lamp.
  25.  可変抵抗器をさらに備える構成において、
     前記検出手段は、受光手段であり、前記可変抵抗器は、前記受光手段に接続されている、請求項3に記載の信号灯モニタ。
    In the configuration further comprising a variable resistor,
    The signal lamp monitor according to claim 3, wherein the detection unit is a light receiving unit, and the variable resistor is connected to the light receiving unit.
  26.  前記可変抵抗器は、抵抗値調整用面を有しており、前記筐体を前記信号灯に載置したときに、前記抵抗値調整用面は鉛直方向上側を向く、請求項25に記載の信号灯モニタ。 26. The signal lamp according to claim 25, wherein the variable resistor has a resistance value adjustment surface, and the resistance value adjustment surface faces upward in a vertical direction when the casing is placed on the signal lamp. monitor.
  27.  前記可変抵抗器は、抵抗値調整用面を有しており、前記筐体を前記信号灯に載置したときに、前記抵抗値調整用面は、鉛直方向に平行で、かつ前記筐体の外側を向く、請求項25に記載の信号灯モニタ。 The variable resistor has a resistance value adjustment surface, and when the housing is placed on the signal lamp, the resistance value adjustment surface is parallel to a vertical direction and is outside the housing. 26. The signal light monitor according to claim 25, which faces toward.
  28.  前記制御部は、前記信号灯の状態に応じて、互いに異なる2種のタイミングのうちの一方のタイミングで前記検出信号を生成する、請求項1ないし27のいずれかに記載の信号灯モニタ。 The signal lamp monitor according to any one of claims 1 to 27, wherein the control unit generates the detection signal at one of two different timings according to a state of the signal lamp.
  29.  前記タイミングの間隔を切り替えるスイッチをさらに備えている、請求項28に記載の信号灯モニタ。 The signal lamp monitor according to claim 28, further comprising a switch for switching the timing interval.
  30.  前記筐体は、前記信号灯に載置される面とは反対側の面に形成される突出部を備えており、
     前記突出部は、前記筐体内部に通じる突出部開口と、前記突出部開口を塞ぐための蓋とを備えている、請求項3に記載の信号灯モニタ。
    The housing includes a protrusion formed on a surface opposite to a surface placed on the signal lamp,
    The signal lamp monitor according to claim 3, wherein the protrusion includes a protrusion opening that communicates with the inside of the housing and a lid for closing the protrusion opening.
  31.  前記筐体の内部に、受光面が前記反対側の面を向くように配置される太陽電池をさらに備えており、
     前記筐体は、前記受光面が対向する位置に形成された開口部をさらに備えており、
     前記突出部は、外部からの光を前記開口部に向けて反射する反射面をさらに備えている、請求項30に記載の信号灯モニタ。
    The solar cell further includes a solar cell disposed in the housing such that a light receiving surface faces the opposite surface,
    The housing further includes an opening formed at a position where the light receiving surface faces.
    The signal lamp monitor according to claim 30, wherein the protrusion further includes a reflection surface that reflects light from the outside toward the opening.
  32.  前記筐体は、その内部の一部を、前記突出部開口から隔てるための隔壁をさらに備えている、請求項30または31に記載の信号灯モニタ。 The signal lamp monitor according to claim 30 or 31, wherein the casing further includes a partition wall for separating a part of the housing from the protrusion opening.
PCT/JP2018/009244 2017-05-26 2018-03-09 Signaling lamp monitor WO2018216311A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880034825.1A CN110709639A (en) 2017-05-26 2018-03-09 Signal lamp monitor
US16/615,713 US11076472B2 (en) 2017-05-26 2018-03-09 Signaling lamp monitor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017104570 2017-05-26
JP2017-104570 2017-05-26
JP2018-002509 2018-01-11
JP2018002509A JP6524274B2 (en) 2017-05-26 2018-01-11 Traffic light monitor

Publications (1)

Publication Number Publication Date
WO2018216311A1 true WO2018216311A1 (en) 2018-11-29

Family

ID=64396487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009244 WO2018216311A1 (en) 2017-05-26 2018-03-09 Signaling lamp monitor

Country Status (1)

Country Link
WO (1) WO2018216311A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109640474A (en) * 2018-12-12 2019-04-16 叶红领 Internet of Things navigational lighting aid Intelligent lamp system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264507A (en) * 2002-03-07 2003-09-19 Matsushita Electric Ind Co Ltd Optoelectric converter, optical receiving module using optoelectric converter and optical receiver
JP2004006291A (en) * 2002-04-11 2004-01-08 Patoraito:Kk Signal indicating lamp and external output unit
JP2013012836A (en) * 2011-06-28 2013-01-17 Nifco Inc Data recording control device and data recording device
JP2014164598A (en) * 2013-02-26 2014-09-08 Patoraito:Kk Management system, management server and worker terminal, and computer program for management server and worker terminal
JP3202062U (en) * 2015-10-30 2016-01-14 日本パルス計測株式会社 Fixing tool and lighting detection device including the fixing tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264507A (en) * 2002-03-07 2003-09-19 Matsushita Electric Ind Co Ltd Optoelectric converter, optical receiving module using optoelectric converter and optical receiver
JP2004006291A (en) * 2002-04-11 2004-01-08 Patoraito:Kk Signal indicating lamp and external output unit
JP2013012836A (en) * 2011-06-28 2013-01-17 Nifco Inc Data recording control device and data recording device
JP2014164598A (en) * 2013-02-26 2014-09-08 Patoraito:Kk Management system, management server and worker terminal, and computer program for management server and worker terminal
JP3202062U (en) * 2015-10-30 2016-01-14 日本パルス計測株式会社 Fixing tool and lighting detection device including the fixing tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109640474A (en) * 2018-12-12 2019-04-16 叶红领 Internet of Things navigational lighting aid Intelligent lamp system

Similar Documents

Publication Publication Date Title
JP7373007B2 (en) signal light monitor
KR100733677B1 (en) High power led color bulb with infrared remote function
US10514156B2 (en) Luminaire
US10834803B2 (en) Smart trims for recessed light fixtures
US9863623B2 (en) Lighting device
JP7016056B2 (en) lighting equipment
JP6617882B2 (en) Lighting apparatus, lighting system, and lighting system setting method
WO2018216311A1 (en) Signaling lamp monitor
JP2013057452A (en) Sensor device
JP2024091976A (en) Light source unit and lighting device
JP6484886B2 (en) lighting equipment
KR20140060675A (en) Communication module and lighting apparatus comprising the same
JP2018163985A (en) Electronic circuit unit and electric apparatus
JP2853627B2 (en) Signal indicator
JP2010205424A (en) Luminaire
CN216904947U (en) Intelligent gateway
JP7513317B2 (en) LED lighting equipment
JP2020167139A (en) Lighting device
TWM470473U (en) Wireless remote control device and wireless remote control combination
CN218405125U (en) Side-in type backlight source light-emitting sign capable of automatically adjusting brightness
CN109268700B (en) Lamp device
CN217273749U (en) Lighting device and ceiling fan lamp
CN217273631U (en) Warning lamp assembly
JP2019149308A (en) Lighting device and lighting system
JP2023076943A (en) Lighting fixture, illumination device, manufacturing method of lighting fixture, and installation method of illumination device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18805552

Country of ref document: EP

Kind code of ref document: A1