WO2018216192A1 - Smell sensor - Google Patents

Smell sensor Download PDF

Info

Publication number
WO2018216192A1
WO2018216192A1 PCT/JP2017/019679 JP2017019679W WO2018216192A1 WO 2018216192 A1 WO2018216192 A1 WO 2018216192A1 JP 2017019679 W JP2017019679 W JP 2017019679W WO 2018216192 A1 WO2018216192 A1 WO 2018216192A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
receptor
protein
coupled receptor
odor sensor
Prior art date
Application number
PCT/JP2017/019679
Other languages
French (fr)
Japanese (ja)
Inventor
小川 薫
洋臣 後藤
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2017/019679 priority Critical patent/WO2018216192A1/en
Publication of WO2018216192A1 publication Critical patent/WO2018216192A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Definitions

  • the present invention relates to an odor sensor using a G protein-coupled receptor.
  • an odor sensor that detects the odorous substance by receiving the light with a sensor.
  • an olfactory sensor cell can be obtained by, for example, expressing an olfactory receptor, an olfactory receptor auxiliary protein, and a calcium sensitive protein in an insect cell.
  • an ion channel formed by the olfactory receptor and the olfactory receptor auxiliary protein opens, and calcium ions flow into the cell.
  • the calcium ions and the fluorescent protein are combined, and fluorescence is generated from the fluorescent protein.
  • An odor can be detected by detecting this fluorescence with a sensor.
  • Non-Patent Document 1 discloses a device configuration in which conductive polymer nanowires or single-walled carbon nanotubes are coated on an electrode and an olfactory receptor is bonded to the surface.
  • This technology uses a field effect transistor (FET) as the measurement principle, and detects the odor by detecting the charge that changes on the sensor when the olfactory receptor receives the odor substance. Be able to.
  • FET field effect transistor
  • Patent Document 2 discloses a biosensor including a signal conversion unit and a signal sensing unit on the surface of a solid substrate.
  • the signal conversion unit includes a nanowire and electrodes at both ends of the nanowire.
  • the signal sensing unit exists between one nanowire and another nanowire, and a receptor (receptor) that binds to a target substance is attached.
  • the receptor is not directly attached to the nanowire, but the receptor is attached to the substrate surface around the nanowire, thereby suppressing the material dependence of the nanowire and detecting the target substance with high sensitivity.
  • this type of sensor is a wet-type sensor in which a solution is always placed in a container. Therefore, there is a problem that it is always necessary to manage the state of the solution such as the concentration and pH of the culture solution, and that it is difficult for the receptors in the culture solution to stably accept odorants in the atmosphere. Further, there are many stages between the time when the receptor receives the odor substance and the time when fluorescence is detected, and there is a possibility that the response at each stage may be lost. Due to these influences, this type of sensor has a problem that the sensitivity becomes unstable or becomes low.
  • Non-Patent Document 1 is not a wet sensor as in Patent Document 1, but a dry sensor, so that it is not necessary to manage the state of the solution.
  • the FET principle since the FET principle is used, it is necessary to use a semiconductor type material, and there is a problem that the material is relatively expensive.
  • the charge that changes on the sensor when the olfactory receptor receives the odor substance may have different positive and negative and valence depending on the odor substance, so it is difficult to make the sensor response quantitative. It is.
  • the sensitivity varies depending on the ease with which the substance is charged. Such a problem may also occur in the sensor exemplified in Patent Document 2.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an odor sensor that can obtain sensitivity with more stable quantitativeness and can be manufactured even with an inexpensive material.
  • the odor sensor according to the present invention includes a G protein-coupled receptor, a detection unit, and a measurement unit.
  • the G protein coupled receptor is attached to a support.
  • the detection unit detects a change in the three-dimensional structure of the G protein-coupled receptor when the measurement target component is received.
  • the measurement unit measures the amount or concentration of the measurement target component based on the three-dimensional structure change of the G protein-coupled receptor detected by the detection unit.
  • the conductor is not limited to a semiconductor material, it can be realized by a relatively inexpensive dry sensor.
  • the odor sensor may further include at least one pair of electrodes.
  • the support may be a conductor that is bridged between the at least one pair of electrodes and energized.
  • the detection unit may detect a change in the three-dimensional structure of the G protein-coupled receptor based on a change in the energization state of the conductor.
  • the three-dimensional structure of the G protein-coupled receptor changes when the G protein-coupled receptor attached to the conductor cross-linked between at least one pair of electrodes receives the component to be measured.
  • the odor sensor may further include an insulator or a semiconductor that coats the outside of the conductor.
  • the G protein-coupled receptor may be disposed on the outside of the insulator or semiconductor, or may be disposed therebetween.
  • the G protein-coupled receptor may be an olfactory receptor.
  • the measurement target component can be detected by using the fact that the olfactory receptor accepts the odorous substance as the measurement target component and changes the three-dimensional structure of the olfactory receptor at that time.
  • the olfactory receptor accepts the odorous substance as the measurement target component and changes the three-dimensional structure of the olfactory receptor at that time.
  • the conductor may include a nanotube.
  • a very small amount of a measurement target component can be detected with high sensitivity by using an extremely thin nanotube whose three-dimensional structure is easily changed as a conductor.
  • the nanotube may be a conductive single-walled carbon nanotube to which the G protein-coupled receptor is attached.
  • the nanotube may be a multi-walled nanotube having a conductive inner tube and an insulating or semiconductive outer tube disposed outside the inner tube.
  • the G protein-coupled receptor may be attached to the outside of the outer tube.
  • the G protein conjugate attached to the outside of the outer tube by using the multi-walled nanotube in which the insulating or semiconductive outer tube is disposed outside the conductive inner tube as the conductor. It is possible to prevent charge from entering the inner tube from the substance received by the receptor. Thereby, generation
  • the present invention can be realized by a dry-type sensor, and it detects not a charge that changes in the sensor when the receptor receives the substance to be measured, but a change in the mechanical three-dimensional structure, and thus more stable sensitivity. Is obtained.
  • FIG. 1 is a schematic perspective view showing a configuration example of an odor sensor 1 according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing an electrical configuration of the odor sensor 1 of FIG.
  • the odor sensor 1 includes a pair of electrodes 2.
  • Each electrode 2 is formed of a highly conductive material such as gold, and is held by an insulating holding member 3 such as glass in a state of being separated so as not to contact each other.
  • Each electrode 2 is formed in a comb shape, for example. That is, each electrode 2 has a configuration in which a base portion 21 extending in a straight line and a plurality of comb portions 22 protruding from the base portion 21 in the same direction are integrally formed. Each electrode 2 is arranged such that the base portions 21 extend in parallel with each other, and the plurality of comb portions 22 of the other electrode 2 enter the spaces between the plurality of comb portions 22 of the one electrode 2. Thereby, the plurality of comb portions 22 provided in each electrode 2 are in close proximity so as not to contact each other. The distance between adjacent electrodes 2 (between the comb portions 22) is about several ⁇ m.
  • the conductor 4 is bridged between the pair of electrodes 2.
  • carbon nanotubes are used as the conductor 4.
  • a carbon nanotube dispersion liquid using N, N-dimethylformamide as a solvent is applied so as to straddle between a plurality of comb portions 22 provided in each electrode 2.
  • the conductor 4 made of an aggregate of a plurality of carbon nanotubes is bridged between the comb portions 22 facing each other, and electricity can be passed between the pair of electrodes 2 via the conductor 4.
  • the resistance value of the conductor 4 is adjusted to be, for example, 60 to 200 ⁇ .
  • the G protein-coupled receptor 5 (hereinafter simply referred to as “receptor 5”) is attached to the conductor 4. More specifically, a dried buffer solution containing the receptor 5 is attached to the conductor 4.
  • the receptor 5 is not limited to a configuration in which the receptor 5 is dried and attached to the conductor 4, but the receptor 5 can be attached to the conductor 4 using various chemical or biological fixing methods. .
  • an olfactory receptor is used as the receptor 5.
  • a membrane fraction dispersion of Escherichia coli in which an olfactory receptor is expressed is dropped on the surface of the conductor 4 and dried under reduced pressure.
  • the type of olfactory receptor is not particularly limited, but mOR-M71 (acetophenone receptor) is used in this embodiment.
  • the insulator 6 is present around the conductor 4 and the receptor 5. That is, the outside of the conductor 4 is coated with the receptor 5 and the insulator 6 so that the substance to be detected does not directly contact the conductor 4. If the insulating material is mixed in the solution of the receptor 5, the entire outside of the conductor 4 can be coated with the receptor 5 and the insulator 6 when the receptor 5 is applied to the conductor 4.
  • the insulating material constituting the conductor 6 is not particularly limited, such as a polymer or a biomaterial, but is preferably a material and a thickness that do not constrain the three-dimensional structure change (strain or the like) of the receptor 5. Examples of the insulating material include general surfactants such as sodium N-lauroyl sarcosine, polymer materials such as polyethylene glycol, liposomes and nanodisks.
  • the receptor 5 may be disposed between the insulators 6.
  • the receptor 5 can be directly bonded to the conductor 4 and exposed to the surface of the odor sensor 1.
  • a portion of the conductor 4 where the receptor 5 is not bonded is covered with an insulator 6.
  • the receptor 5 is not limited to the configuration exposed on the surface of the odor sensor 1, and may be buried in a layer containing an insulating material.
  • positioned on the outer side of the insulator 6 may be sufficient.
  • a DC voltage is applied from the DC power source 7 between the pair of electrodes 2.
  • a current flows between the pair of electrodes 2 via the conductor 4, and the current is detected by the ammeter A.
  • a change in the resistance value of the conductor 4 can be measured by detecting a current with the ammeter A while applying a constant voltage by the DC power source 7.
  • the olfactory receptor which is the receptor 5
  • the olfactory receptor has a characteristic that the three-dimensional structure changes when a ligand (odor molecule) is received.
  • the change is expected to be about 1 nm, and it is difficult to measure the three-dimensional structure change itself.
  • the three-dimensional structure of the conductor 4 to which the receptor 5 is attached also changes, and the resistance value of the conductor 4 changes. Based on the current detected by the ammeter A, the change in the resistance value of the conductor 4 is detected by the detection unit 8 so that the change in the three-dimensional structure of the receptor 5 can be detected based on the change in the resistance value. it can.
  • the detection unit 8 detects the change in the three-dimensional structure of the receptor 5 when receiving the measurement target component (odor substance) based on the change in the energized state of the conductor 4.
  • the measurement unit 9 measures the amount or concentration of the measurement target component based on the three-dimensional structure change of the receptor 5 detected by the detection unit 8.
  • the three-dimensional structure of the receptor 5 changes when the receptor 5 attached to the conductor 4 cross-linked between the pair of electrodes 2 receives the component to be measured.
  • the three-dimensional structure change based on the change in the energized state of the conductor 4, it is possible to detect the measurement target component.
  • Such a configuration detects not a charge that changes in the conductor 4 when the receptor 5 receives the component to be measured, but detects a change in the three-dimensional structure of the receptor 5, so that a more stable sensitivity can be obtained.
  • the conductor 4 is not limited to a semiconductor material, it can be realized by a relatively inexpensive dry sensor.
  • the outside of the conductor 4 is coated with the receptor 5 and the insulator 6, it is possible to prevent the charge from entering the conductor 4 from the substance to be detected. Thereby, since generation
  • the outside of the conductor 4 may be coated with a semiconductor.
  • an olfactory receptor when used as a G protein-coupled receptor as in this embodiment, an odorant as a measurement target component is received by the olfactory receptor, and the three-dimensional structure of the olfactory receptor changes at that time. Can be used to detect the component to be measured.
  • the odor sensor 1 can be provided as a chemical sensor capable of detecting an odor substance, which can be obtained at lower cost and with a stable sensitivity.
  • the odor sensor 1 responds to a gas containing a measurement target component (acetophenone) and does not respond to a gas containing a component other than the measurement target component.
  • a measurement target component acetophenone
  • an odor sensor in which mOR-M71, which is an acetophenone receptor, was attached to a conductor was used.
  • the gas to be measured in addition to gases containing odorous substances such as acetophenone, eugenol, and ethyl acetate, air supplied from an air cylinder (air) was also used.
  • an odor sensor in which the receptor is not attached to the conductor was prepared by dropping a buffer solution not containing the receptor onto the conductor and drying under reduced pressure, and an experiment was performed using this odor sensor.
  • FIG. 3 is a diagram showing the experimental results of gas responsiveness using an odor sensor in which a receptor is not attached to a conductor.
  • FIG. 4 is a diagram showing an experimental result of gas responsiveness using an odor sensor in which mOR-M71 is attached to a conductor.
  • a dilution mixing device “FDL-1” manufactured by Shimadzu Corporation
  • the gas response evaluation results (waveforms) obtained as a result are shown in FIGS.
  • FIG. 5 is a diagram showing experimental results of changes in gas responsiveness of the odor sensor according to the concentration of mOR-M71. According to the experimental results of FIG. 5, the responsiveness to acetophenone decreases as the concentration of mOR-M71 decreases. From this, it is considered that the response of the olfactory receptor to the odorous substance (acetophenone) can be detected.
  • Configuration Example of Conductor As the carbon nanotube that is an example of the conductor 4, for example, a multi-layer carbon nanotube including two layers of an inner tube and an outer tube is used.
  • the inner tube and the outer tube are cylindrical tubes each composed of a six-membered ring.
  • the outer tube has a larger diameter than the inner tube, and is formed in a nested shape by being coaxially disposed outside the inner tube.
  • the inner tube and the outer tube may be formed of different materials, or may be formed of the same material.
  • the inner tube is made of conductive carbon
  • the outer tube is made of an insulating or semiconductive material.
  • the receptor 5 is attached to the outside of the outer tube, and the penetration of charge from the substance received by the receptor 5 into the inner tube is prevented. Thereby, since generation
  • the conductor 4 is not limited to a carbon nanotube using carbon as a conductive material, but may be a nanotube using another conductive material (for example, metal). By using extremely thin and flexible nanotubes as the conductor 4, a very small amount of a measurement target component can be detected with high sensitivity.
  • the conductor 4 is not limited to two layers, and may be a multi-layer nanotube of three or more layers, or may be a single-wall nanotube composed of only one layer.
  • the receptor 5 is attached to the outside of the conductive single-walled nanotube, the flexible single-walled nanotube is used as the conductor 4 as compared with the multi-walled nanotube, and a minute amount of the measurement target component is detected with high sensitivity. be able to.
  • the conductor 4 is not limited to the nanotube, and can be formed using various materials having conductivity other than the nanotube.
  • the present invention is not limited to such a configuration, and for example, a configuration in which a change in the energization state of the conductor 4 is detected by detecting a voltage with a voltmeter while passing a constant current through the conductor 4 may be used.
  • the odor sensor 1 is not limited to a configuration in which a pair of electrodes 2 is provided, but may have a configuration in which a plurality of pairs of electrodes 2 are provided.
  • the acceptor 5 is not limited to the configuration in which the acceptor 5 is attached to the conductor 4 via the insulator 6, and may be a constitution in which the acceptor 5 is directly attached to the conductor 4 without providing the insulator 6, for example.
  • the receptor 5 is not limited to the olfactory receptor, and the measurement target component is not limited to the odor substance.
  • the receptor 5 is not limited to the structure attached to the conductor 4, but may be a structure attached to another support.
  • the odor sensor 1 is not limited to the configuration in which the conductor 4 is cross-linked between at least one pair of electrodes 2 and the receptor 5 is attached to the conductor 4, but for example, an optical detection method or the like. A configuration that detects a change in the three-dimensional structure of the receptor 5 by other than the electrical detection method may be used.
  • the support for example, it is conceivable to use a composite nanostructure using gold nanoparticles.
  • the receptor 5 by attaching the receptor 5 to the composite nanostructure holding a plurality of gold nanoparticles, it is possible to detect the three-dimensional structure change of the composite nanostructure when the receptor 5 receives the odorant. There is sex. It is also conceivable to optically detect a change in the three-dimensional structure of the receptor 5 using Raman spectroscopy.

Abstract

Provided is a smell sensor that obtains sensitivity resulting in more stable quantification and can be produced with inexpensive materials. This smell sensor 1 is provided with at least one pair of electrodes 2, a conductor 4, a G protein-coupled receptor 5, and a detection unit (ammeter A). The conductor 4 bridges the at least one pair of electrodes 2 and is electrified. The G protein-coupled receptor 5 is adhered to the conductor 4. The detection unit uses a change in the electrification state of the conductor 4 to detect a change in the three-dimensional structure of the G protein-coupled receptor 5 when the G protein-coupled receptor 5 receives a component to be measured.

Description

匂いセンサOdor sensor
 本発明は、Gタンパク質共役受容体を用いた匂いセンサに関するものである。 The present invention relates to an odor sensor using a G protein-coupled receptor.
 視覚、聴覚、触覚、嗅覚及び味覚といった人間の五感のうち、視覚、聴覚及び触覚の代替となる物理センサは従来から発展してきたが、嗅覚や味覚の代替となる化学センサは今なお発展途上である。例えば、従来型の嗅覚センサとしては、酸化物半導体方式、水晶振動子方式、マイクロカンチレバー方式などの各種センサが提案されているが、いずれも特性を作製分けできるパターンが限られるため、選択性が低い。また、従来型の嗅覚センサでは、検知される主の匂いが変化しなくても、他の匂いの変化が全てのセンサ値に影響を及ぼすため、再現性が低い。これらの課題を解決できる次世代の嗅覚センサとして、嗅覚受容体を用いたセンサが開発されている(例えば、下記特許文献1,2及び非特許文献1)。 Of the five human senses such as sight, hearing, touch, smell, and taste, physical sensors that replace vision, hearing, and touch have been developed, but chemical sensors that replace smell and taste are still developing. is there. For example, as conventional olfactory sensors, various sensors such as an oxide semiconductor method, a crystal resonator method, and a micro-cantilever method have been proposed. Low. Further, in the conventional type olfactory sensor, even if the main odor to be detected does not change, the change of other odors affects all sensor values, so the reproducibility is low. Sensors using olfactory receptors have been developed as next-generation olfactory sensors that can solve these problems (for example, Patent Documents 1 and 2 and Non-Patent Document 1 below).
 特許文献1には、昆虫の嗅覚受容体タンパク質及び蛍光タンパク質を発現させた細胞を基板上に設けられた容器に保持し、この細胞に検出対象となる匂い物質を含む試料を接触させて発光させることにより、その光をセンサで受光して匂い物質を検出する匂いセンサが開示されている。この種の匂いセンサでは、例えば嗅覚受容体、嗅覚受容体補助タンパク質、カルシウム感受性タンパク質を昆虫細胞に発現させることにより、嗅覚センサ細胞を得ることができる。嗅覚受容体が匂い物質を受容すると、嗅覚受容体と嗅覚受容体補助タンパク質により形成されているイオンチャネルが開き、細胞内部にカルシウムイオンが流入する。その結果、カルシウムイオンと蛍光タンパク質とが結合し、蛍光タンパク質から蛍光が生じる。この蛍光をセンサで検出することにより、匂いを検出することができる。 In Patent Document 1, cells expressing insect olfactory receptor proteins and fluorescent proteins are held in a container provided on a substrate, and a sample containing an odorant to be detected is brought into contact with the cells to emit light. Thus, an odor sensor that detects the odorous substance by receiving the light with a sensor is disclosed. In this type of odor sensor, an olfactory sensor cell can be obtained by, for example, expressing an olfactory receptor, an olfactory receptor auxiliary protein, and a calcium sensitive protein in an insect cell. When the olfactory receptor receives an odorant substance, an ion channel formed by the olfactory receptor and the olfactory receptor auxiliary protein opens, and calcium ions flow into the cell. As a result, the calcium ions and the fluorescent protein are combined, and fluorescence is generated from the fluorescent protein. An odor can be detected by detecting this fluorescence with a sensor.
 非特許文献1には、導電性高分子ナノワイヤ又は単層カーボンナノチューブを電極にコーティングし、その表面に嗅覚受容体を結合させた素子構成が開示されている。この技術では、電界効果トランジスタ(FET:Field Effect Transistor)を計測原理として使用しており、嗅覚受容体が匂い物質を受容した際にセンサ上で変化するチャージを検出することにより、匂いを検出することができるようになっている。 Non-Patent Document 1 discloses a device configuration in which conductive polymer nanowires or single-walled carbon nanotubes are coated on an electrode and an olfactory receptor is bonded to the surface. This technology uses a field effect transistor (FET) as the measurement principle, and detects the odor by detecting the charge that changes on the sensor when the olfactory receptor receives the odor substance. Be able to.
 特許文献2には、固体基板の表面に信号変換部と信号感知部とを備えたバイオセンサが開示されている。信号変換部は、ナノワイヤと、ナノワイヤの両末端の電極とからなる。信号感知部は、1つのナノワイヤと他の1つのナノワイヤとの間に存在し、目標物質と結合する受容体(レセプタ)が付着している。このように、ナノワイヤに受容体を直接付着させるのではなく、ナノワイヤ周辺の基板表面に受容体を付着させることにより、ナノワイヤの材料依存性を抑え、目標物質を高感度で検出することができる。 Patent Document 2 discloses a biosensor including a signal conversion unit and a signal sensing unit on the surface of a solid substrate. The signal conversion unit includes a nanowire and electrodes at both ends of the nanowire. The signal sensing unit exists between one nanowire and another nanowire, and a receptor (receptor) that binds to a target substance is attached. In this way, the receptor is not directly attached to the nanowire, but the receptor is attached to the substrate surface around the nanowire, thereby suppressing the material dependence of the nanowire and detecting the target substance with high sensitivity.
特開2013-027376号公報JP 2013-027376 A 特表2009-532697号公報Special table 2009-532697
 上記特許文献1に例示されるような匂いセンサでは、細胞を利用しているため、常にセンシングするためには、細胞を生きた状態に保つための工夫が必要である。そのため、この種のセンサは、容器内に溶液を常に入れた状態であるウェット系のセンサとなる。したがって、培養液の濃度やpHといった溶液の状態管理が常に必要となる他、培養液中の受容体が大気中の匂い物質を安定して受容することは難しいという問題がある。また、受容体が匂い物質を受容してから蛍光が検出されるまでの間には多くの段階があり、各段階での応答にロスが生じる可能性もある。これらの影響により、この種のセンサでは、感度が不安定になったり、低くなったりするといった問題がある。 Since the odor sensor exemplified in Patent Document 1 uses cells, in order to always sense, it is necessary to devise to keep the cells alive. Therefore, this type of sensor is a wet-type sensor in which a solution is always placed in a container. Therefore, there is a problem that it is always necessary to manage the state of the solution such as the concentration and pH of the culture solution, and that it is difficult for the receptors in the culture solution to stably accept odorants in the atmosphere. Further, there are many stages between the time when the receptor receives the odor substance and the time when fluorescence is detected, and there is a possibility that the response at each stage may be lost. Due to these influences, this type of sensor has a problem that the sensitivity becomes unstable or becomes low.
 上記非特許文献1に例示されるような匂いセンサでは、上記特許文献1のようなウェット系のセンサではなく、ドライ系のセンサとなるため、溶液の状態管理などは不要である。しかしながら、FETの原理を使用しているため、半導体型の材料を使用する必要があり、材料が比較的高価であるという課題がある。また、嗅覚受容体が匂い物質を受容した際にセンサ上で変化するチャージは、匂い物質に応じて正負及び価数が異なる可能性があるため、センサの応答に定量性を持たせることは困難である。さらに、物質の帯電されやすさに応じて感度にばらつきが生じることも予想される。このような問題は、上記特許文献2に例示されるようなセンサにおいても生じるおそれがある。 The odor sensor exemplified in Non-Patent Document 1 is not a wet sensor as in Patent Document 1, but a dry sensor, so that it is not necessary to manage the state of the solution. However, since the FET principle is used, it is necessary to use a semiconductor type material, and there is a problem that the material is relatively expensive. In addition, the charge that changes on the sensor when the olfactory receptor receives the odor substance may have different positive and negative and valence depending on the odor substance, so it is difficult to make the sensor response quantitative. It is. Furthermore, it is expected that the sensitivity varies depending on the ease with which the substance is charged. Such a problem may also occur in the sensor exemplified in Patent Document 2.
 本発明は、上記実情に鑑みてなされたものであり、より安定した定量性を有する感度が得られ、かつ安価な材料でも作製可能な匂いセンサを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an odor sensor that can obtain sensitivity with more stable quantitativeness and can be manufactured even with an inexpensive material.
(1)本発明に係る匂いセンサは、Gタンパク質共役受容体と、検知部と、測定部とを備える。前記Gタンパク質共役受容体は、支持体に付着している。前記検知部は、測定対象成分を受容したときの前記Gタンパク質共役受容体の立体構造変化を検知する。前記測定部は、前記検知部により検知された前記Gタンパク質共役受容体の立体構造変化に基づいて、前記測定対象成分の量又は濃度を測定する。 (1) The odor sensor according to the present invention includes a G protein-coupled receptor, a detection unit, and a measurement unit. The G protein coupled receptor is attached to a support. The detection unit detects a change in the three-dimensional structure of the G protein-coupled receptor when the measurement target component is received. The measurement unit measures the amount or concentration of the measurement target component based on the three-dimensional structure change of the G protein-coupled receptor detected by the detection unit.
 このような構成によれば、支持体に付着しているGタンパク質共役受容体が測定対象成分を受容したときに、Gタンパク質共役受容体の立体構造が変化することを利用して、測定対象成分の量又は濃度を測定することができる。このような構成は、受容体が測定対象物質を受容した際にセンサにおいて変化するチャージではなく、受容体の立体構造変化を検知するため、より安定した定量的な感度が得られる。また、導電体が半導体型の材料に限られないため、比較的安価なドライ系のセンサにより実現できる。 According to such a configuration, when the G protein-coupled receptor attached to the support receives the measurement target component, the three-dimensional structure of the G protein-coupled receptor changes, and the measurement target component The amount or concentration of can be measured. Such a configuration detects a change in the three-dimensional structure of the receptor, not a charge that changes in the sensor when the receptor receives the substance to be measured, so that more stable and quantitative sensitivity can be obtained. Further, since the conductor is not limited to a semiconductor material, it can be realized by a relatively inexpensive dry sensor.
(2)前記匂いセンサは、少なくとも1対の電極をさらに備えていてもよい。この場合、前記支持体は、前記少なくとも1対の電極間に架橋されて通電される導電体であってもよい。また、前記検知部は、前記導電体における通電状態の変化に基づいて、前記Gタンパク質共役受容体の立体構造変化を検知してもよい。 (2) The odor sensor may further include at least one pair of electrodes. In this case, the support may be a conductor that is bridged between the at least one pair of electrodes and energized. The detection unit may detect a change in the three-dimensional structure of the G protein-coupled receptor based on a change in the energization state of the conductor.
 このような構成によれば、少なくとも1対の電極間に架橋された導電体に付着しているGタンパク質共役受容体が測定対象成分を受容したときに、Gタンパク質共役受容体の立体構造が変化することを利用して、その機械的な変化を導電体における通電状態の変化に基づいて検知することにより、測定対象成分を検知することができる。 According to such a configuration, the three-dimensional structure of the G protein-coupled receptor changes when the G protein-coupled receptor attached to the conductor cross-linked between at least one pair of electrodes receives the component to be measured. By utilizing this, it is possible to detect the measurement target component by detecting the mechanical change based on the change in the energization state of the conductor.
(3)前記匂いセンサは、前記導電体の外側をコーティングする絶縁体又は半導体をさらに備えていてもよい。この場合、前記Gタンパク質共役受容体は、前記絶縁体又は半導体の外側に配置されていても、間に配置されていてもよい。 (3) The odor sensor may further include an insulator or a semiconductor that coats the outside of the conductor. In this case, the G protein-coupled receptor may be disposed on the outside of the insulator or semiconductor, or may be disposed therebetween.
 このような構成によれば、導電体の外側が、Gタンパク質共役受容体、及び、絶縁体又は半導体でコーティングされているため、被検出物質から導電体へのチャージの侵入を阻止することができる。これにより、電気的なノイズの発生を防止し、機械的な受容体の立体構造変化のみに基づいて測定対象成分を検知することができるため、さらに安定した感度が得られる。 According to such a configuration, since the outside of the conductor is coated with the G protein-coupled receptor and the insulator or the semiconductor, it is possible to prevent the charge from entering the conductor from the substance to be detected. . Thereby, generation | occurrence | production of an electrical noise can be prevented, and since a measuring object component can be detected only based on the three-dimensional structure change of a mechanical receptor, the more stable sensitivity is obtained.
(4)前記Gタンパク質共役受容体は、嗅覚受容体であってもよい。 (4) The G protein-coupled receptor may be an olfactory receptor.
 このような構成によれば、測定対象成分としての匂い物質を嗅覚受容体で受容し、その際に嗅覚受容体の立体構造が変化することを利用して、測定対象成分を検知することができる。これにより、匂い物質を検出できる化学センサとして、より安価で安定した感度が得られる匂いセンサを提供することができる。 According to such a configuration, the measurement target component can be detected by using the fact that the olfactory receptor accepts the odorous substance as the measurement target component and changes the three-dimensional structure of the olfactory receptor at that time. . Thereby, as a chemical sensor capable of detecting an odor substance, it is possible to provide an odor sensor that can obtain a cheaper and more stable sensitivity.
(5)前記導電体は、ナノチューブを含んでいてもよい。 (5) The conductor may include a nanotube.
 このような構成によれば、極めて細く、かつ立体構造が変化しやすいナノチューブを導電体として用いることにより、微量の測定対象成分を高感度で検知することができる。 According to such a configuration, a very small amount of a measurement target component can be detected with high sensitivity by using an extremely thin nanotube whose three-dimensional structure is easily changed as a conductor.
(6)前記ナノチューブは、前記Gタンパク質共役受容体を付着させた導電性の単層カーボンナノチューブであってもよい。 (6) The nanotube may be a conductive single-walled carbon nanotube to which the G protein-coupled receptor is attached.
 このような構成によれば、多層カーボンナノチューブと比較して立体構造が変化しやすい単層カーボンナノチューブを導電体として用いることにより、微量の測定対象成分を高感度で検知することができる。 According to such a configuration, it is possible to detect a very small amount of a measurement target component with high sensitivity by using, as a conductor, a single-walled carbon nanotube whose steric structure is easily changed compared to a multi-walled carbon nanotube.
(7)前記ナノチューブは、導電性の内側チューブと、当該内側チューブの外側に配置された絶縁性又は半導電性の外側チューブとを有する多層ナノチューブであってもよい。この場合、前記外側チューブの外側に前記Gタンパク質共役受容体を付着させてもよい。 (7) The nanotube may be a multi-walled nanotube having a conductive inner tube and an insulating or semiconductive outer tube disposed outside the inner tube. In this case, the G protein-coupled receptor may be attached to the outside of the outer tube.
 このような構成によれば、導電性の内側チューブの外側に絶縁性又は半導電性の外側チューブが配置された多層ナノチューブを導電体として用いることにより、外側チューブの外側に付着させたGタンパク質共役受容体が受容した物質から内側チューブへのチャージの侵入を阻止することができる。これにより、電気的なノイズの発生を防止し、機械的な受容体の立体構造変化のみに基づいて測定対象成分を検知することができるため、さらに安定した感度が得られる。 According to such a configuration, the G protein conjugate attached to the outside of the outer tube by using the multi-walled nanotube in which the insulating or semiconductive outer tube is disposed outside the conductive inner tube as the conductor. It is possible to prevent charge from entering the inner tube from the substance received by the receptor. Thereby, generation | occurrence | production of an electrical noise can be prevented, and since a measuring object component can be detected only based on the three-dimensional structure change of a mechanical receptor, the more stable sensitivity is obtained.
 本発明によれば、ドライ系のセンサにより実現できる上、受容体が測定対象物質を受容した際にセンサにおいて変化するチャージではなく、機械的な立体構造の変化を検知するため、より安定した感度が得られる。 According to the present invention, it can be realized by a dry-type sensor, and it detects not a charge that changes in the sensor when the receptor receives the substance to be measured, but a change in the mechanical three-dimensional structure, and thus more stable sensitivity. Is obtained.
本発明の一実施形態に係る匂いセンサの構成例を示した概略斜視図である。It is the schematic perspective view which showed the structural example of the odor sensor which concerns on one Embodiment of this invention. 図1の匂いセンサの電気的構成を示した模式図である。It is the schematic diagram which showed the electrical structure of the odor sensor of FIG. 受容体を導電体に付着させていない匂いセンサを用いたガス応答性の実験結果を示す図である。It is a figure which shows the experimental result of the gas responsiveness using the odor sensor which has not made the receptor adhere to the conductor. mOR-M71を導電体に付着させた匂いセンサを用いたガス応答性の実験結果を示す図である。It is a figure which shows the experimental result of the gas responsiveness using the odor sensor which attached mOR-M71 to the conductor. mOR-M71の濃度に応じた匂いセンサのガス応答性の変化の実験結果を示す図である。It is a figure which shows the experimental result of the gas responsiveness change of the odor sensor according to the density | concentration of mOR-M71.
1.匂いセンサの構成
 図1は、本発明の一実施形態に係る匂いセンサ1の構成例を示した概略斜視図である。また、図2は、図1の匂いセンサ1の電気的構成を示した模式図である。この匂いセンサ1は、1対の電極2を備えている。各電極2は、金などの導電性の高い材料により形成され、互いに接触しないように離間させた状態で、ガラスなどの絶縁性の保持部材3により保持されている。
1. Configuration of Odor Sensor FIG. 1 is a schematic perspective view showing a configuration example of an odor sensor 1 according to an embodiment of the present invention. FIG. 2 is a schematic diagram showing an electrical configuration of the odor sensor 1 of FIG. The odor sensor 1 includes a pair of electrodes 2. Each electrode 2 is formed of a highly conductive material such as gold, and is held by an insulating holding member 3 such as glass in a state of being separated so as not to contact each other.
 各電極2は、例えば櫛形に形成されている。すなわち、各電極2は、一直線状に延びる基部21と、基部21から同一方向に突出する複数の櫛部22とが、一体的に形成された構成となっている。各電極2は、基部21が互いに平行に延びるように配置され、一方の電極2の複数の櫛部22間の空間に、他方の電極2の複数の櫛部22が入り込む。これにより、各電極2に備えられた複数の櫛部22同士が、互いに接触しないように交互に近接した状態となる。近接する電極2間(櫛部22間)の距離は、数μm程度である。 Each electrode 2 is formed in a comb shape, for example. That is, each electrode 2 has a configuration in which a base portion 21 extending in a straight line and a plurality of comb portions 22 protruding from the base portion 21 in the same direction are integrally formed. Each electrode 2 is arranged such that the base portions 21 extend in parallel with each other, and the plurality of comb portions 22 of the other electrode 2 enter the spaces between the plurality of comb portions 22 of the one electrode 2. Thereby, the plurality of comb portions 22 provided in each electrode 2 are in close proximity so as not to contact each other. The distance between adjacent electrodes 2 (between the comb portions 22) is about several μm.
 1対の電極2間には、導電体4が架橋される。本実施形態では、例えばカーボンナノチューブが導電体4として用いられる。一例として、N,N-ジメチルホルムアミドを溶媒とするカーボンナノチューブ分散液が、各電極2に備えられた複数の櫛部22間に跨るように塗布される。これにより、互いに対向する櫛部22間に、複数のカーボンナノチューブの集合体からなる導電体4が架橋され、この導電体4を介して1対の電極2間に通電が可能となる。導電体4の抵抗値は、例えば60~200Ωとなるように調整される。 The conductor 4 is bridged between the pair of electrodes 2. In the present embodiment, for example, carbon nanotubes are used as the conductor 4. As an example, a carbon nanotube dispersion liquid using N, N-dimethylformamide as a solvent is applied so as to straddle between a plurality of comb portions 22 provided in each electrode 2. As a result, the conductor 4 made of an aggregate of a plurality of carbon nanotubes is bridged between the comb portions 22 facing each other, and electricity can be passed between the pair of electrodes 2 via the conductor 4. The resistance value of the conductor 4 is adjusted to be, for example, 60 to 200Ω.
 導電体4には、Gタンパク質共役受容体5(以下、単に「受容体5」という。)を付着させる。より具体的には、受容体5を含むバッファ溶液乾燥物を導電体4に付着させる。ただし、受容体5を乾燥させて導電体4に付着させるような構成に限らず、化学的又は生物学的な各種固定方法を用いて導電体4に受容体5を付着させることが可能である。 The G protein-coupled receptor 5 (hereinafter simply referred to as “receptor 5”) is attached to the conductor 4. More specifically, a dried buffer solution containing the receptor 5 is attached to the conductor 4. However, the receptor 5 is not limited to a configuration in which the receptor 5 is dried and attached to the conductor 4, but the receptor 5 can be attached to the conductor 4 using various chemical or biological fixing methods. .
 本実施形態では、受容体5として嗅覚受容体が用いられる。一例として、嗅覚受容体を発現させた大腸菌の膜画分分散液が導電体4の表面に滴下され、減圧乾燥される。嗅覚受容体の種類は、特に限定されるものではないが、本実施形態ではmOR-M71(アセトフェノン受容体)が用いられる。 In this embodiment, an olfactory receptor is used as the receptor 5. As an example, a membrane fraction dispersion of Escherichia coli in which an olfactory receptor is expressed is dropped on the surface of the conductor 4 and dried under reduced pressure. The type of olfactory receptor is not particularly limited, but mOR-M71 (acetophenone receptor) is used in this embodiment.
 また、本実施形態では、導電体4と受容体5の周辺に絶縁体6が存在している。すなわち、導電体4の外側が受容体5及び絶縁体6によりコーティングされることにより、被検出物質が導電体4に直接接触しないように形成されている。受容体5の溶液中に絶縁材料を混合させておけば、受容体5を導電体4に塗布する際に、受容体5及び絶縁体6で導電体4の外側全体をコーティングすることができる。導電体6を構成する絶縁材料は、高分子や生体材料など特に限定されるものではないが、受容体5の立体構造変化(歪みなど)を拘束しない材料及び厚みであることが好ましい。絶縁材料としては、N-ラウロイルサルコシンナトリウムのような一般的な界面活性剤や、ポリエチレングリコールなどの高分子材料、リポソームやナノディスクなどを例示することができる。 In this embodiment, the insulator 6 is present around the conductor 4 and the receptor 5. That is, the outside of the conductor 4 is coated with the receptor 5 and the insulator 6 so that the substance to be detected does not directly contact the conductor 4. If the insulating material is mixed in the solution of the receptor 5, the entire outside of the conductor 4 can be coated with the receptor 5 and the insulator 6 when the receptor 5 is applied to the conductor 4. The insulating material constituting the conductor 6 is not particularly limited, such as a polymer or a biomaterial, but is preferably a material and a thickness that do not constrain the three-dimensional structure change (strain or the like) of the receptor 5. Examples of the insulating material include general surfactants such as sodium N-lauroyl sarcosine, polymer materials such as polyethylene glycol, liposomes and nanodisks.
 このように、受容体5は、絶縁体6の間に配置されてもよい。この場合、受容体5は、導電体4に直接結合し、かつ、匂いセンサ1の表面に露出した状態にすることができる。導電体4における受容体5が結合していない箇所は、絶縁体6により覆われている。ただし、受容体5は、匂いセンサ1の表面に露出した構成に限らず、絶縁材料を含む層の中に埋もれていてもよい。また、受容体5が絶縁体6の外側に配置された構成であってもよい。 Thus, the receptor 5 may be disposed between the insulators 6. In this case, the receptor 5 can be directly bonded to the conductor 4 and exposed to the surface of the odor sensor 1. A portion of the conductor 4 where the receptor 5 is not bonded is covered with an insulator 6. However, the receptor 5 is not limited to the configuration exposed on the surface of the odor sensor 1, and may be buried in a layer containing an insulating material. Moreover, the structure by which the receiver 5 is arrange | positioned on the outer side of the insulator 6 may be sufficient.
 1対の電極2間には、直流電源7から直流電圧が印加される。これにより、導電体4を介して1対の電極2間に電流が流れることとなり、その電流が電流計Aにより検出される。直流電源7により一定の電圧を印加しつつ、電流計Aで電流を検出することにより、導電体4の抵抗値の変化を計測することができる。 A DC voltage is applied from the DC power source 7 between the pair of electrodes 2. As a result, a current flows between the pair of electrodes 2 via the conductor 4, and the current is detected by the ammeter A. A change in the resistance value of the conductor 4 can be measured by detecting a current with the ammeter A while applying a constant voltage by the DC power source 7.
 受容体5である嗅覚受容体は、リガンド(匂い分子)を受容した際に立体構造が変化するという特性がある。その変化は、1nm程度と予想され、立体構造変化自体を測定することは困難である。本実施形態では、受容体5の立体構造変化に伴い、受容体5が付着している導電体4の立体構造も変化し、導電体4の抵抗値が変化する。電流計Aで検出される電流に基づいて、導電体4の抵抗値の変化を検知部8で検知することにより、その抵抗値の変化に基づいて受容体5の立体構造変化を検知することができる。すなわち、検知部8は、測定対象成分(匂い物質)を受容したときの受容体5の立体構造変化を導電体4における通電状態の変化に基づいて検知する。測定部9は、検知部8により検知された受容体5の立体構造変化に基づいて、測定対象成分の量又は濃度を測定する。 The olfactory receptor, which is the receptor 5, has a characteristic that the three-dimensional structure changes when a ligand (odor molecule) is received. The change is expected to be about 1 nm, and it is difficult to measure the three-dimensional structure change itself. In this embodiment, with the change in the three-dimensional structure of the receptor 5, the three-dimensional structure of the conductor 4 to which the receptor 5 is attached also changes, and the resistance value of the conductor 4 changes. Based on the current detected by the ammeter A, the change in the resistance value of the conductor 4 is detected by the detection unit 8 so that the change in the three-dimensional structure of the receptor 5 can be detected based on the change in the resistance value. it can. That is, the detection unit 8 detects the change in the three-dimensional structure of the receptor 5 when receiving the measurement target component (odor substance) based on the change in the energized state of the conductor 4. The measurement unit 9 measures the amount or concentration of the measurement target component based on the three-dimensional structure change of the receptor 5 detected by the detection unit 8.
 このように、本実施形態では、1対の電極2間に架橋された導電体4に付着している受容体5が測定対象成分を受容したときに、受容体5の立体構造が変化することを利用して、その立体構造変化を導電体4における通電状態の変化に基づいて検知することにより、測定対象成分を検知することができる。このような構成は、受容体5が測定対象成分を受容した際に導電体4において変化するチャージではなく、受容体5の立体構造変化を検知するため、より安定した感度が得られる。また、導電体4が半導体型の材料に限られないため、比較的安価なドライ系のセンサにより実現できる。 Thus, in this embodiment, the three-dimensional structure of the receptor 5 changes when the receptor 5 attached to the conductor 4 cross-linked between the pair of electrodes 2 receives the component to be measured. By detecting the three-dimensional structure change based on the change in the energized state of the conductor 4, it is possible to detect the measurement target component. Such a configuration detects not a charge that changes in the conductor 4 when the receptor 5 receives the component to be measured, but detects a change in the three-dimensional structure of the receptor 5, so that a more stable sensitivity can be obtained. Further, since the conductor 4 is not limited to a semiconductor material, it can be realized by a relatively inexpensive dry sensor.
 特に、本実施形態では、導電体4の外側が受容体5及び絶縁体6でコーティングされているため、被検出物質から導電体4へのチャージの侵入を阻止することができる。これにより、電気的なノイズの発生を防止し、機械的な受容体5の立体構造変化のみに基づいて測定対象成分を検知することができるため、さらに安定した感度が得られる。ただし、絶縁体6の代わりに、半導体により導電体4の外側をコーティングしてもよい。 In particular, in this embodiment, since the outside of the conductor 4 is coated with the receptor 5 and the insulator 6, it is possible to prevent the charge from entering the conductor 4 from the substance to be detected. Thereby, since generation | occurrence | production of an electrical noise is prevented and a measuring object component can be detected only based on the three-dimensional structure change of the mechanical receptor 5, the more stable sensitivity is obtained. However, instead of the insulator 6, the outside of the conductor 4 may be coated with a semiconductor.
 また、本実施形態のように、Gタンパク質共役受容体として嗅覚受容体を用いれば、測定対象成分としての匂い物質を嗅覚受容体で受容し、その際に嗅覚受容体の立体構造が変化することを利用して、測定対象成分を検知することができる。これにより、匂い物質を検出できる化学センサとして、より安価で安定した感度が得られる匂いセンサ1を提供することができる。 In addition, when an olfactory receptor is used as a G protein-coupled receptor as in this embodiment, an odorant as a measurement target component is received by the olfactory receptor, and the three-dimensional structure of the olfactory receptor changes at that time. Can be used to detect the component to be measured. As a result, the odor sensor 1 can be provided as a chemical sensor capable of detecting an odor substance, which can be obtained at lower cost and with a stable sensitivity.
2.ガス応答性の実験結果
 以下では、本実施形態に係る匂いセンサ1が、測定対象成分(アセトフェノン)を含むガスに応答し、測定対象成分以外の成分を含むガスには応答しないことを確認するために行った実験結果について説明する。
2. In order to confirm that the odor sensor 1 according to the present embodiment responds to a gas containing a measurement target component (acetophenone) and does not respond to a gas containing a component other than the measurement target component. The results of the experiment conducted in (1) will be described.
 この実験では、アセトフェノン受容体であるmOR-M71を導電体に付着させた匂いセンサを用いた。測定するガスとしては、アセトフェノン、オイゲノール、酢酸エチルなどの匂い物質をそれぞれ含むガスの他、空気ボンベから供給する空気(エアー)も用いた。また、受容体を含まないバッファ溶液を導電体に滴下し、減圧乾燥することにより、受容体を導電体に付着させていない匂いセンサを作製し、この匂いセンサも用いて実験を行った。 In this experiment, an odor sensor in which mOR-M71, which is an acetophenone receptor, was attached to a conductor was used. As the gas to be measured, in addition to gases containing odorous substances such as acetophenone, eugenol, and ethyl acetate, air supplied from an air cylinder (air) was also used. Further, an odor sensor in which the receptor is not attached to the conductor was prepared by dropping a buffer solution not containing the receptor onto the conductor and drying under reduced pressure, and an experiment was performed using this odor sensor.
 図3は、受容体を導電体に付着させていない匂いセンサを用いたガス応答性の実験結果を示す図である。一方、図4は、mOR-M71を導電体に付着させた匂いセンサを用いたガス応答性の実験結果を示す図である。実験装置としては、におい識別装置用希釈混合装置「FDL-1」(島津製作所社製)を用い、ガス濃度を徐々に薄めながら、複数回繰り返して実験を行った。その結果得られたガス応答評価結果(波形)が、図3及び図4に示されている。 FIG. 3 is a diagram showing the experimental results of gas responsiveness using an odor sensor in which a receptor is not attached to a conductor. On the other hand, FIG. 4 is a diagram showing an experimental result of gas responsiveness using an odor sensor in which mOR-M71 is attached to a conductor. As an experimental device, a dilution mixing device “FDL-1” (manufactured by Shimadzu Corporation) for an odor discriminating device was used, and the experiment was repeated several times while gradually reducing the gas concentration. The gas response evaluation results (waveforms) obtained as a result are shown in FIGS.
 図3に示すように、受容体を導電体に付着させていない匂いセンサを用いた場合には、アセトフェノン、オイゲノール、酢酸エチルをそれぞれ含むガスのいずれに対しても応答が確認されなかった。また、匂い物質を含まないエアーに対しても応答が確認されなかった。 As shown in FIG. 3, when an odor sensor in which the receptor was not attached to the conductor was used, no response was confirmed for any of the gases containing acetophenone, eugenol, and ethyl acetate. In addition, no response was confirmed for air containing no odorous substances.
 図4に示すように、mOR-M71を導電体に付着させた匂いセンサを用いた場合には、アセトフェノンを含むガスに対して応答が確認された。一方、オイゲノールを含むガスや、酢酸エチルを含むガスに対してはエアーに対する応答と同程度であった。このように、mOR-M71を導電体に付着させることにより、アセトフェノンに特異的に応答する選択性の高い匂いセンサを提供することができることが分かる。 As shown in FIG. 4, when an odor sensor in which mOR-M71 was attached to a conductor was used, a response to a gas containing acetophenone was confirmed. On the other hand, for the gas containing eugenol and the gas containing ethyl acetate, the response to air was almost the same. Thus, it can be seen that by attaching mOR-M71 to a conductor, a highly selective odor sensor that specifically responds to acetophenone can be provided.
 次に、mOR-M71の濃度と匂い物質に対する応答性との関係を確認するために行った実験結果について説明する。この実験では、嗅覚受容体を発現させていないタンパク溶液でmOR-M71を希釈することにより、100%、75%、50%の各濃度のmOR-M71溶液を生成し、各溶液を導電体に付着させることにより匂いセンサを作製した。そして、それぞれの匂いセンサについて、アセトフェノンを含むガスに対する応答性を確認した。 Next, the results of experiments conducted to confirm the relationship between the concentration of mOR-M71 and responsiveness to odorous substances will be described. In this experiment, mOR-M71 was diluted with a protein solution that did not express olfactory receptors to produce 100%, 75%, and 50% mOR-M71 solutions, and each solution was used as a conductor. An odor sensor was fabricated by attaching it. And each odor sensor confirmed the responsiveness with respect to the gas containing acetophenone.
 図5は、mOR-M71の濃度に応じた匂いセンサのガス応答性の変化の実験結果を示す図である。この図5の実験結果によれば、mOR-M71の濃度が低下するほど、アセトフェノンに対する応答性が低下している。このことから、匂い物質(アセトフェノン)に対する嗅覚受容体の応答を検出できていると考えられる。 FIG. 5 is a diagram showing experimental results of changes in gas responsiveness of the odor sensor according to the concentration of mOR-M71. According to the experimental results of FIG. 5, the responsiveness to acetophenone decreases as the concentration of mOR-M71 decreases. From this, it is considered that the response of the olfactory receptor to the odorous substance (acetophenone) can be detected.
3.導電体の構成例
 導電体4の一例であるカーボンナノチューブとしては、例えば内側チューブ及び外側チューブの2層からなる多層のカーボンナノチューブが用いられる。
3. Configuration Example of Conductor As the carbon nanotube that is an example of the conductor 4, for example, a multi-layer carbon nanotube including two layers of an inner tube and an outer tube is used.
 内側チューブ及び外側チューブは、それぞれ六員環で構成される円筒状チューブである。外側チューブは、内側チューブよりも大径であり、内側チューブの外側に同軸上に配置されることにより入れ子状に形成されている。内側チューブ及び外側チューブは、それぞれ異なる材料により形成されていてもよいし、同じ材料により形成されていてもよい。 The inner tube and the outer tube are cylindrical tubes each composed of a six-membered ring. The outer tube has a larger diameter than the inner tube, and is formed in a nested shape by being coaxially disposed outside the inner tube. The inner tube and the outer tube may be formed of different materials, or may be formed of the same material.
 本実施形態では、内側チューブが導電性のカーボンにより形成され、外側チューブが絶縁性又は半導電性の材料により形成されている。受容体5は、外側チューブの外側に付着されることとなり、受容体5が受容した物質から内側チューブへのチャージの侵入が阻止される。これにより、電気的なノイズの発生を防止し、機械的な受容体5の立体構造変化のみに基づいて測定対象成分を検知することができるため、さらに安定した感度が得られる。 In this embodiment, the inner tube is made of conductive carbon, and the outer tube is made of an insulating or semiconductive material. The receptor 5 is attached to the outside of the outer tube, and the penetration of charge from the substance received by the receptor 5 into the inner tube is prevented. Thereby, since generation | occurrence | production of an electrical noise is prevented and a measuring object component can be detected only based on the three-dimensional structure change of the mechanical receptor 5, the more stable sensitivity is obtained.
4.導電体の変形例
 導電体4は、導電性材料としてカーボンを用いたカーボンナノチューブに限らず、他の導電性材料(例えば金属)を用いたナノチューブであってもよい。極めて細く、かつ柔軟なナノチューブを導電体4として用いることにより、微量の測定対象成分を高感度で検知することができる。
4). Modified Example of Conductor The conductor 4 is not limited to a carbon nanotube using carbon as a conductive material, but may be a nanotube using another conductive material (for example, metal). By using extremely thin and flexible nanotubes as the conductor 4, a very small amount of a measurement target component can be detected with high sensitivity.
 また、導電体4は、2層に限らず、3層以上の多層ナノチューブであってもよいし、1層のみからなる単層ナノチューブであってもよい。この場合、導電性の単層ナノチューブの外側に受容体5を付着させれば、多層ナノチューブと比較して柔軟な単層ナノチューブを導電体4として用い、微量の測定対象成分を高感度で検知することができる。 Further, the conductor 4 is not limited to two layers, and may be a multi-layer nanotube of three or more layers, or may be a single-wall nanotube composed of only one layer. In this case, if the receptor 5 is attached to the outside of the conductive single-walled nanotube, the flexible single-walled nanotube is used as the conductor 4 as compared with the multi-walled nanotube, and a minute amount of the measurement target component is detected with high sensitivity. be able to.
 ただし、導電体4は、ナノチューブに限らず、ナノチューブ以外の導電性を有する各種材料を用いて構成することができる。 However, the conductor 4 is not limited to the nanotube, and can be formed using various materials having conductivity other than the nanotube.
5.その他の変形例
 以上の実施形態では、1対の電極2間を流れる電流を電流計Aで検出することにより、導電体4における通電状態の変化を検知するような構成について説明した。しかし、このような構成に限らず、例えば導電体4に一定電流を流しつつ、電圧計で電圧を検出することにより、導電体4における通電状態の変化を検知するような構成であってもよい。また、匂いセンサ1は、1対の電極2が備えられた構成に限らず、電極2が複数対設けられた構成であってもよい。
5). Other Modifications In the embodiment described above, the configuration in which the current flowing between the pair of electrodes 2 is detected by the ammeter A to detect a change in the energization state of the conductor 4 has been described. However, the present invention is not limited to such a configuration, and for example, a configuration in which a change in the energization state of the conductor 4 is detected by detecting a voltage with a voltmeter while passing a constant current through the conductor 4 may be used. . In addition, the odor sensor 1 is not limited to a configuration in which a pair of electrodes 2 is provided, but may have a configuration in which a plurality of pairs of electrodes 2 are provided.
 受容体5は、絶縁体6を介して導電体4に付着した構成に限らず、例えば絶縁体6を設けずに、導電体4に受容体5が直接付着した構成であってもよい。また、受容体5は嗅覚受容体に限らず、測定対象成分も匂い物質に限られるものではない。 The acceptor 5 is not limited to the configuration in which the acceptor 5 is attached to the conductor 4 via the insulator 6, and may be a constitution in which the acceptor 5 is directly attached to the conductor 4 without providing the insulator 6, for example. The receptor 5 is not limited to the olfactory receptor, and the measurement target component is not limited to the odor substance.
 受容体5は、導電体4に付着させた構成に限らず、他の支持体に付着させた構成であってもよい。この場合、匂いセンサ1は、少なくとも1対の電極2間に導電体4が架橋され、その導電体4に受容体5を付着させた構成に限らず、例えば光学的な検知方法などのように、電気的な検知方法以外で受容体5の立体構造変化を検知するような構成であってもよい。 The receptor 5 is not limited to the structure attached to the conductor 4, but may be a structure attached to another support. In this case, the odor sensor 1 is not limited to the configuration in which the conductor 4 is cross-linked between at least one pair of electrodes 2 and the receptor 5 is attached to the conductor 4, but for example, an optical detection method or the like. A configuration that detects a change in the three-dimensional structure of the receptor 5 by other than the electrical detection method may be used.
 上記支持体としては、例えば金ナノ粒子を用いた複合ナノ構造を用いることが考えられる。この場合、複数の金ナノ粒子が保持された複合ナノ構造に受容体5を付着させることにより、受容体5が匂い物質を受容したときの複合ナノ構造の立体構造変化を検知することができる可能性がある。また、ラマン分光法を用いて、受容体5の立体構造変化を光学的に検知することも考えられる。 As the support, for example, it is conceivable to use a composite nanostructure using gold nanoparticles. In this case, by attaching the receptor 5 to the composite nanostructure holding a plurality of gold nanoparticles, it is possible to detect the three-dimensional structure change of the composite nanostructure when the receptor 5 receives the odorant. There is sex. It is also conceivable to optically detect a change in the three-dimensional structure of the receptor 5 using Raman spectroscopy.
1   匂いセンサ
2   電極
3   保持部材
4   導電体
5   Gタンパク質共役受容体
6   絶縁体
7   直流電源
8   検知部
21  基部
22  櫛部
A   電流計
DESCRIPTION OF SYMBOLS 1 Odor sensor 2 Electrode 3 Holding member 4 Conductor 5 G protein conjugate receptor 6 Insulator 7 DC power supply 8 Detection part 21 Base part 22 Comb part A Ammeter

Claims (7)

  1.  支持体に付着させたGタンパク質共役受容体と、
     測定対象成分を受容したときの前記Gタンパク質共役受容体の立体構造変化を検知する検知部と、
     前記検知部により検知された前記Gタンパク質共役受容体の立体構造変化に基づいて、前記測定対象成分の量又は濃度を測定する測定部とを備えることを特徴とする匂いセンサ。
    A G protein coupled receptor attached to a support;
    A detection unit that detects a change in the three-dimensional structure of the G protein-coupled receptor when receiving a component to be measured;
    An odor sensor comprising: a measurement unit that measures the amount or concentration of the measurement target component based on a three-dimensional structure change of the G protein-coupled receptor detected by the detection unit.
  2.  少なくとも1対の電極をさらに備え、
     前記支持体は、前記少なくとも1対の電極間に架橋されて通電される導電体であり、
     前記検知部は、前記導電体における通電状態の変化に基づいて、前記Gタンパク質共役受容体の立体構造変化を検知することを特徴とする請求項1に記載の匂いセンサ。
    Further comprising at least one pair of electrodes;
    The support is a conductor that is bridged between the at least one pair of electrodes and energized;
    2. The odor sensor according to claim 1, wherein the detection unit detects a three-dimensional structure change of the G protein-coupled receptor based on a change in an energized state of the conductor.
  3.  前記導電体の外側をコーティングする絶縁体又は半導体をさらに備え、
     前記Gタンパク質共役受容体は、前記絶縁体又は半導体の間もしくは外側に配置されることを特徴とする請求項1に記載の匂いセンサ。
    Further comprising an insulator or a semiconductor coating the outside of the conductor;
    The odor sensor according to claim 1, wherein the G protein-coupled receptor is disposed between or outside the insulator or the semiconductor.
  4.  前記Gタンパク質共役受容体が、嗅覚受容体であることを特徴とする請求項1に記載の匂いセンサ。 The odor sensor according to claim 1, wherein the G protein-coupled receptor is an olfactory receptor.
  5.  前記導電体が、ナノチューブを含むことを特徴とする請求項1に記載の匂いセンサ。 The odor sensor according to claim 1, wherein the conductor includes a nanotube.
  6.  前記ナノチューブは、前記Gタンパク質共役受容体を付着させた導電性の単層カーボンナノチューブであることを特徴とする請求項5に記載の匂いセンサ。 The odor sensor according to claim 5, wherein the nanotube is a conductive single-walled carbon nanotube to which the G protein-coupled receptor is attached.
  7.  前記ナノチューブは、導電性の内側チューブと、当該内側チューブの外側に配置された絶縁性又は半導電性の外側チューブとを有する多層ナノチューブであり、
     前記外側チューブの外側に前記Gタンパク質共役受容体を付着させたことを特徴とする請求項5に記載の匂いセンサ。
    The nanotube is a multi-walled nanotube having a conductive inner tube and an insulating or semi-conductive outer tube disposed outside the inner tube;
    The odor sensor according to claim 5, wherein the G protein-coupled receptor is attached to the outside of the outer tube.
PCT/JP2017/019679 2017-05-26 2017-05-26 Smell sensor WO2018216192A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/019679 WO2018216192A1 (en) 2017-05-26 2017-05-26 Smell sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/019679 WO2018216192A1 (en) 2017-05-26 2017-05-26 Smell sensor

Publications (1)

Publication Number Publication Date
WO2018216192A1 true WO2018216192A1 (en) 2018-11-29

Family

ID=64395428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019679 WO2018216192A1 (en) 2017-05-26 2017-05-26 Smell sensor

Country Status (1)

Country Link
WO (1) WO2018216192A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032842A (en) * 2019-08-29 2021-03-01 三洋化成工業株式会社 Resin composition for odor discrimination probe, detector for odor discrimination sensor including the same, detector array, and odor discrimination sensor
JP2022016362A (en) * 2020-07-09 2022-01-21 三洋化成工業株式会社 Resin composition for forming odor substance receptive layer, sensor element using the same, odor sensor, and odor measurement device
JP2022020576A (en) * 2020-07-20 2022-02-01 三洋化成工業株式会社 Resin composition for forming odor substance receptive layer, sensor element using the same, odor sensor, and odor measurement device
JP2022021339A (en) * 2020-07-21 2022-02-02 三洋化成工業株式会社 Resin composition for forming odor substance receptive layer, sensor element using the same, odor sensor, and odor measurement device
JP2022021340A (en) * 2020-07-21 2022-02-02 三洋化成工業株式会社 Resin composition for forming odor substance receptive layer, sensor element using the same, odor sensor, and odor measurement device
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002119A (en) * 2002-06-03 2004-01-08 National Agriculture & Bio-Oriented Research Organization Polymer coated carbon nanotube
WO2012050646A2 (en) * 2010-06-29 2012-04-19 The Trustees Of The University Of Pennsylvania Biomimetic chemical sensors using nanoelectronic readout of olfactory receptors
JP2017049078A (en) * 2015-08-31 2017-03-09 日立化成株式会社 Detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002119A (en) * 2002-06-03 2004-01-08 National Agriculture & Bio-Oriented Research Organization Polymer coated carbon nanotube
WO2012050646A2 (en) * 2010-06-29 2012-04-19 The Trustees Of The University Of Pennsylvania Biomimetic chemical sensors using nanoelectronic readout of olfactory receptors
JP2017049078A (en) * 2015-08-31 2017-03-09 日立化成株式会社 Detector

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GOLDSMITH, B.R. ET AL.: "Biomimetic Chemical Sensors Using Nanoelectronic Readout of Olfactory Receptor Proteins", ACS NANO, vol. 5, no. 7, 26 July 2011 (2011-07-26), pages 5408 - 5416, XP055185897 *
KIM, T.H. ET AL.: "Single-Carbon-Atomic- Resolution Detection of Odorant Molecules using a Human Olfactory Receptor-based Bioelectronic Nose", ADVANCED MATERIALS, vol. 21, no. 1, 5 January 2009 (2009-01-05), pages 91 - 94, XP055553991 *
MASASHI MIYANO ET AL.: "Crystal Structure of a G-Protein Coupled Receptor : Bovine Rhodopsin", SPRING-8/SACLA INFORMATION, vol. 5, no. 6, November 2000 (2000-11-01), pages 394 - 400 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021032842A (en) * 2019-08-29 2021-03-01 三洋化成工業株式会社 Resin composition for odor discrimination probe, detector for odor discrimination sensor including the same, detector array, and odor discrimination sensor
JP2022016362A (en) * 2020-07-09 2022-01-21 三洋化成工業株式会社 Resin composition for forming odor substance receptive layer, sensor element using the same, odor sensor, and odor measurement device
JP7184968B2 (en) 2020-07-09 2022-12-06 三洋化成工業株式会社 RESIN COMPOSITION FOR FORMING ODOR SUBSTANCE RECEIVING LAYER, SENSOR ELEMENT, ODOR SENSOR, AND ODOR MEASURING DEVICE USING SAME
JP7184969B2 (en) 2020-07-20 2022-12-06 三洋化成工業株式会社 RESIN COMPOSITION FOR FORMING ODOR SUBSTANCE RECEIVING LAYER, SENSOR ELEMENT, ODOR SENSOR, AND ODOR MEASURING DEVICE USING SAME
JP2022020576A (en) * 2020-07-20 2022-02-01 三洋化成工業株式会社 Resin composition for forming odor substance receptive layer, sensor element using the same, odor sensor, and odor measurement device
JP2022021340A (en) * 2020-07-21 2022-02-02 三洋化成工業株式会社 Resin composition for forming odor substance receptive layer, sensor element using the same, odor sensor, and odor measurement device
JP7184975B2 (en) 2020-07-21 2022-12-06 三洋化成工業株式会社 RESIN COMPOSITION FOR FORMING ODOR SUBSTANCE RECEIVING LAYER, SENSOR ELEMENT, ODOR SENSOR, AND ODOR MEASURING DEVICE USING SAME
JP7184974B2 (en) 2020-07-21 2022-12-06 三洋化成工業株式会社 RESIN COMPOSITION FOR FORMING ODOR SUBSTANCE RECEIVING LAYER, SENSOR ELEMENT, ODOR SENSOR, AND ODOR MEASURING DEVICE USING SAME
JP2022021339A (en) * 2020-07-21 2022-02-02 三洋化成工業株式会社 Resin composition for forming odor substance receptive layer, sensor element using the same, odor sensor, and odor measurement device
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods

Similar Documents

Publication Publication Date Title
WO2018216192A1 (en) Smell sensor
Eteya et al. Fabrication of a new electrochemical sensor based on AuPt bimetallic nanoparticles decorated multi-walled carbon nanotubes for determination of diclofenac
RoyChaudhuri A review on porous silicon based electrochemical biosensors: Beyond surface area enhancement factor
Liu Towards development of chemosensors and biosensors with metal-oxide-based nanowires or nanotubes
Paska et al. Enhanced sensing of nonpolar volatile organic compounds by silicon nanowire field effect transistors
Silva et al. Electrochemical detection of dengue virus NS1 protein with a poly (allylamine)/carbon nanotube layered immunoelectrode
Kim et al. Highly selective environmental nanosensors based on anomalous response of carbon nanotube conductance to mercury ions
Janfaza et al. A selective chemiresistive sensor for the cancer-related volatile organic compound hexanal by using molecularly imprinted polymers and multiwalled carbon nanotubes
Lee et al. Universal parameters for carbon nanotube network-based sensors: can nanotube sensors be reproducible?
Yu et al. Electrochemical immunoassay based on gold nanoparticles and reduced graphene oxide functionalized carbon ionic liquid electrode
Chiriac et al. Microwire array for giant magneto-impedance detection of magnetic particles for biosensor prototype
Sajid et al. All-printed highly sensitive 2D MoS2 based multi-reagent immunosensor for smartphone based point-of-care diagnosis
Zheng et al. Electrostatic gating in carbon nanotube aptasensors
Li et al. Non-enzymatic sensing of uric acid using a carbon nanotube ionic-liquid paste electrode modified with poly (β-cyclodextrin)
Tarasov et al. Gold-coated graphene field-effect transistors for quantitative analysis of protein–antibody interactions
Kotlowski et al. Electronic biosensing with flexible organic transistor devices
US20200093429A1 (en) Tetrahydrocannabinol sensor
Yao et al. Nanobiochar paper based electrochemical immunosensor for fast and ultrasensitive detection of microcystin-LR
Matta et al. An ultrasensitive label free nanobiosensor platform for the detection of cardiac biomarkers
Rizwan et al. Combining a gold nanoparticle-polyethylene glycol nanocomposite and carbon nanofiber electrodes to develop a highly sensitive salivary secretory immunoglobulin A immunosensor
Abe et al. Quantitative detection of protein using a top-gate carbon nanotube field effect transistor
Otto et al. Dielectrophoretic immobilisation of antibodies on microelectrode arrays
Cho et al. Fabrication and characterization of VOC sensor array based on SnO 2 and ZnO nanoparticles functionalized by metalloporphyrins
Gao et al. Ultrasensitive determination of mercury (II) using glass nanopores functionalized with macrocyclic dioxotetraamines
Siqueira Jr et al. Associating biosensing properties with the morphological structure of multilayers containing carbon nanotubes on field‐effect devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP