WO2018216081A1 - Semiconductor storage system - Google Patents

Semiconductor storage system Download PDF

Info

Publication number
WO2018216081A1
WO2018216081A1 PCT/JP2017/019066 JP2017019066W WO2018216081A1 WO 2018216081 A1 WO2018216081 A1 WO 2018216081A1 JP 2017019066 W JP2017019066 W JP 2017019066W WO 2018216081 A1 WO2018216081 A1 WO 2018216081A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor memory
time period
memory device
data
command
Prior art date
Application number
PCT/JP2017/019066
Other languages
French (fr)
Japanese (ja)
Inventor
武史 濱本
原口 大
Original Assignee
ゼンテルジャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ゼンテルジャパン株式会社 filed Critical ゼンテルジャパン株式会社
Priority to JP2019519824A priority Critical patent/JP7130634B2/en
Priority to PCT/JP2017/019066 priority patent/WO2018216081A1/en
Publication of WO2018216081A1 publication Critical patent/WO2018216081A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures

Definitions

  • the present invention relates to a DDRx-SDRAM or LPDDRx-SDRAM semiconductor memory device and control device, and further to a semiconductor memory system including these.
  • the present invention also relates to a control method for such a semiconductor memory device.
  • DDRx-SDRAM indicates DDR-SDRAM (Double Data Rate Synchronous Dynamic Random-Access Memory), DDR2-SDRAM, DDR3-SDRAM, DDR4-SDRAM, and their derived standards and successor standards.
  • LPDDRx-SDRAM indicates LPDDR-SDRAM (Low Power DDR-SDRAM), LPDDR2-SDRAM, LPDDR3-SDRAM, LPDDR4-SDRAM, and their derived standards and successor standards.
  • a memory system including a memory such as a DRAM and a memory controller is used as an external primary storage device for a processor such as a computer (see, for example, Patent Document 1).
  • DDRx-SDRAM and LPDDRx-SDRAM are known as DRAMs capable of high-speed access.
  • the memory of the DDRx-SDRAM and the LPDDRx-SDRAM includes one or a plurality of banks in its internal memory space, and data writing and reading access can be performed independently for each bank.
  • Each bank includes a group of memory cells arranged two-dimensionally along a plurality of rows and a plurality of columns orthogonal to each other.
  • the memory and the memory controller are connected to each other via a bus including a plurality of signal lines (hereinafter referred to as “memory bus”).
  • the memory controller communicates with the memory via the memory bus, thereby writing data to the memory or reading data from the memory.
  • the memory bus has a signal line for transmitting a clock, a plurality of signal lines (command bus) for transmitting a command, a plurality of signal lines (address bus) for transmitting an address, and a data line for transmitting data
  • a plurality of signal lines (external data bus) are included.
  • the memory controller issues an activate (ACT) command, a write (WRITE) command, a read (READ) command, and a precharge (PRE) command in synchronization with the clock, and these commands are transmitted via the command bus.
  • Send command to memory activates a word line connected to a memory cell having a certain bank address and a certain row address, and a sense amplifier connected to the memory cell via a bit line.
  • the write command instructs writing of data to a memory cell having a certain bank address and a certain column address.
  • the read command instructs reading of data from a memory cell having a certain bank address and a certain column address.
  • the precharge command deactivates the bank including the word line and the sense amplifier activated by the activation command.
  • the memory controller designates the address for writing and reading access to the memory via the address bus in synchronization with the clock.
  • Each signal line of the address bus is assigned to a bank address and a row address or a column address.
  • the memory controller performs data write and read access to the memory via the data bus in synchronization with the clock.
  • the memory controller sends a command, a bank address, a row address, and a column address to the memory, thereby enabling write and read access to the memory cell at the target access position.
  • the memory controller sends an activation command, a bank address, and a row address to the memory in synchronization with the clock, so that the memory selects a word line corresponding to the row address of the target bank, Information on the memory cell group connected to the selected word line is stored in the corresponding page latch group.
  • the stored data is called “page data”.
  • the operation of storing the page data of the selected row address of the target bank in the page latch group by the activation command is referred to as “bank activation”.
  • a data write operation or read operation is performed on the memory.
  • the memory controller sends a read command and the bank address and column address of the activated bank to the memory, so that part of the page data selected by the column address of the target bank is stored in the memory. Is read out to the outside.
  • the memory controller sends a write command, the bank address and column address of the activated bank, and the write data to the memory, so that the memory corresponds to the page corresponding to the column address of the target bank. Part of the data is rewritten to write data sent from the outside of the memory.
  • the memory controller sends a precharge command and a bank address to the memory
  • the page data of the activated bank is rewritten to the memory cell group connected to the selected word line, and the selected memory cell group is selected.
  • the word line is deactivated.
  • the memory controller selects a target bank from a plurality of banks by sending a bank address to the memory together with the activation command, the write command, the read command, and the precharge command. Controls writing and reading.
  • random access indicates a case where data is written and / or read by a command sequence including a precharge command.
  • a bank is activated by an activation command, page data is accessed by one or a small number of write commands and / or read commands, and then the bank is deactivated by a precharge command. Including.
  • data cannot be written to or read from the memory without interruption, and the use efficiency of the external data bus decreases.
  • An object of the present invention is to provide a semiconductor memory device that hardly reduces the use efficiency of an external data bus even when data is written to and / or read from one or more banks by a command sequence including a precharge command. It is another object of the present invention to provide a control device and a semiconductor memory system including them. Another object of the present invention is to provide a control method for such a semiconductor memory device.
  • a control device for a semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM includes at least one bank connected to at least one internal data bus, and the bank includes a plurality of memory cells arranged along a plurality of bit lines and a plurality of word lines orthogonal to each other.
  • JEDEC Joint Electron Device Engineering Council
  • a memory array including a plurality of sense amplifiers respectively connected to the plurality of bit lines, and a plurality of column selection lines respectively connected to the plurality of sense amplifiers;
  • the control device includes a communication circuit connected to the semiconductor memory device, a control circuit that controls the semiconductor memory device by issuing a plurality of commands and transmitting the command to the semiconductor memory device via the communication circuit;
  • a timing register for storing a plurality of timing parameters related to the operation of the semiconductor memory device;
  • the plurality of commands are: An activation command for activating a word line connected to a memory cell having a certain bank address and a certain row address, and a sense amplifier connected to the memory cell via the bit line;
  • a write command for instructing writing of data to a memory cell having a certain bank address and a certain column address;
  • a read command for instructing to read data from a memory cell having a certain bank address and a certain column address,
  • the plurality of timing parameters include a first time period (tRCD (W)) indicating
  • the control circuit includes: When writing data to the semiconductor memory device, issue the write command after the moment separated by the first time period (tRCD (W)) with reference to the moment when the activation command is issued, When reading data from the semiconductor memory device, the read command is issued after the moment separated by the second time period (tRCD (R)) with reference to the moment when the activation command is issued.
  • the first time period (tRCD (W)) has a negative value;
  • the control circuit starts from the moment preceding by a time period equal to the absolute value of the first time period (tRCD (W)) with reference to the moment when the activation command is issued.
  • the write command is issued before the moment of issuing the activation command.
  • the control circuit When writing data to the semiconductor memory device, the control circuit transmits a first control signal notifying that the write command is issued before the activation command to the semiconductor memory device.
  • the bank includes a plurality of subarrays separated from each other by at least one sense amplifier row including a plurality of sense amplifiers
  • the write command includes a part of a row address of a subarray including a storage cell to which data is written.
  • a control device for a semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM includes at least one bank connected to at least one internal data bus, and the bank includes a plurality of memory cells arranged along a plurality of bit lines and a plurality of word lines orthogonal to each other.
  • JEDEC Joint Electron Device Engineering Council
  • a memory array including a plurality of sense amplifiers respectively connected to the plurality of bit lines, and a plurality of column selection lines respectively connected to the plurality of sense amplifiers;
  • the control device includes a communication circuit connected to the semiconductor memory device, a control circuit that controls the semiconductor memory device by issuing a plurality of commands and transmitting the command to the semiconductor memory device via the communication circuit;
  • a timing register for storing a plurality of timing parameters related to the operation of the semiconductor memory device;
  • the plurality of commands are: An activation command for activating a word line connected to a memory cell having a certain bank address and a certain row address, and a sense amplifier connected to the memory cell via the bit line;
  • a write command for instructing writing of data to a memory cell having a certain bank address and a certain column address;
  • a read command for instructing to read data from a memory cell having a certain bank address and a certain column address,
  • the plurality of timing parameters are a third time period (WL2) indicating a time difference from
  • the timing parameter further includes a fourth time period (WL1) equal to a write latency (WL) according to the JEDEC standard;
  • the control circuit when writing data to the semiconductor memory device, at a moment separated by the third time period (WL2) or the fourth time period (WL1) with reference to the moment when the write command is issued. Data transmission from the control device to the semiconductor memory device is started.
  • the third time period (WL2) has a negative value;
  • the control circuit when writing data to the semiconductor memory device, at the moment preceding the moment when the write command is issued by a time period equal to the absolute value of the third time period (WL2). Starts to transmit data to the semiconductor memory device.
  • the semiconductor memory device includes a plurality of banks
  • the control circuit includes: When writing data to the semiconductor memory device, the same data is written to at least two of the plurality of banks, When reading data from the semiconductor memory device, data is read from at least one of the plurality of banks in which the same data is written.
  • the timing parameter further includes a fifth time period (tRC (R)) indicating the shortest time in which the activation command for a certain bank can be issued continuously.
  • the control circuit is configured to read data from at least two banks in which the same data is written out of the plurality of banks at a time shorter than the fifth time period (tRC (R)).
  • the plurality of banks have bank addresses including a plurality of bits
  • the control circuit When the control circuit writes data to the semiconductor memory device, the control circuit stores the memory cell having the same row address in at least two banks each having a bank address including at least one same bit value. Write the same data.
  • a control device for a semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM includes a plurality of banks connected to at least one internal data bus, and each one of the plurality of banks extends along a plurality of bit lines and a plurality of word lines orthogonal to each other.
  • a memory array comprising a plurality of memory cells arranged, a plurality of sense amplifiers connected to the plurality of bit lines, respectively, and a plurality of column selection lines connected to the plurality of sense amplifiers, respectively.
  • the control device includes a communication circuit connected to the semiconductor memory device, a control circuit that controls the semiconductor memory device by issuing a plurality of commands and transmitting the command to the semiconductor memory device via the communication circuit;
  • a timing register for storing a plurality of timing parameters related to the operation of the semiconductor memory device;
  • the plurality of commands are: An activation command for activating a word line connected to a memory cell having a certain bank address and a certain row address, and a sense amplifier connected to the memory cell via the bit line;
  • a write command for instructing writing of data to a memory cell having a certain bank address and a certain column address;
  • a read command for instructing to read data from a memory cell having a certain bank address and a certain column address,
  • the plurality of timing parameters include a sixth time period (tRRD) indicating the shortest time in which the activation commands for two different banks can be issued in succession, and the write command or the read for any two banks.
  • the seventh time period (tCCD) is set equal to the sixth time period (tRRD)
  • the eighth time period (tFAW) is set equal to four times the sixth time period (tRRD).
  • the control circuit includes: When continuously writing data to the semiconductor memory device, the activation command and the write command are issued at a period equal to the sixth time period (tRRD), When data is continuously read from the semiconductor memory device, the activation command and the read command are issued with a period equal to the sixth time period (tRRD).
  • the semiconductor memory device has a first operation mode and a second operation mode, When the semiconductor memory device is in the first operation mode, the upper limit voltage of the word line has a first voltage value, and the seventh time period (tCCD) is the sixth time period (tRRD).
  • the eighth time period (tFAW) is longer than four times the sixth time period (tRRD),
  • the upper limit voltage of the word line has a second voltage value higher than the first voltage value
  • the seventh time period (tCCD) is
  • the sixth time period (tRRD) is equal to the eighth time period (tFAW) is equal to four times the sixth time period (tRRD);
  • the control circuit transmits a second control signal for selectively operating the semiconductor memory device in one of the first operation mode and the second operation mode to the semiconductor memory device.
  • the plurality of timing parameters include a plurality of sixth time periods (tRRD) having different lengths depending on different combinations of two banks.
  • a control device for a semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM includes a plurality of banks connected to at least one internal data bus, and each one of the plurality of banks extends along a plurality of bit lines and a plurality of word lines orthogonal to each other.
  • a memory array comprising a plurality of memory cells arranged, a plurality of sense amplifiers connected to the plurality of bit lines, respectively, and a plurality of column selection lines connected to the plurality of sense amplifiers, respectively.
  • the control device includes a communication circuit connected to the semiconductor memory device, a control circuit that controls the semiconductor memory device by issuing a plurality of commands and transmitting the command to the semiconductor memory device via the communication circuit;
  • a timing register for storing a plurality of timing parameters related to the operation of the semiconductor memory device;
  • the plurality of commands are: An activation command for activating a word line connected to a memory cell having a certain bank address and a certain row address, and a sense amplifier connected to the memory cell via the bit line;
  • a write command for instructing writing of data to a memory cell having a certain bank address and a certain column address;
  • a read command for instructing to read data from a memory cell having a certain bank address and a certain column address,
  • the plurality of timing parameters are transmitted from the control device to the semiconductor memory device in order to write data to a first bank of the plurality of banks, and then a second one of the plurality of banks.
  • the control circuit transmits the data to the semiconductor memory device, and then the combination of the first and second banks.
  • the read command is issued after waiting for the ninth time period (tWTR) having a length corresponding to.
  • a semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM The semiconductor memory device An internal data bus; And at least one bank connected to the internal data bus, The bank includes a plurality of memory cells arranged along a plurality of bit lines and a plurality of word lines orthogonal to each other, a plurality of sense amplifiers respectively connected to the plurality of bit lines, and the plurality of sense amplifiers.
  • JEDEC Joint Electron Device Engineering Council
  • a memory array having a plurality of column selection lines connected to each other;
  • the semiconductor memory device includes a communication circuit connected to a control device via an external bus, a control circuit that receives a plurality of commands from the control device via the communication circuit and controls operations of the semiconductor memory device.
  • the plurality of commands are: An activation command for activating a word line connected to a memory cell having a certain bank address and a certain row address, and a sense amplifier connected to the memory cell via the bit line; A write command for instructing writing of data to a memory cell having a certain bank address and a certain column address; A read command for instructing to read data from a memory cell having a certain bank address and a certain column address,
  • the control circuit precedes by a time period equal to an absolute value of a first time period (tRCD (W)) determined in advance with reference to the moment when the activation command is received.
  • the write command can be received from the control device after the moment when the activation command is received and before the moment when the activation command is received.
  • the semiconductor memory device includes a plurality of circuits respectively associated with at least a part of the plurality of commands
  • the control circuit includes: When writing data to the semiconductor memory device, a first control signal for notifying that the write command is issued before the activation command is received from the control device, When the first control signal is received, a circuit associated with the write command is activated.
  • the semiconductor memory device in the semiconductor memory device in accordance with the fifteenth or sixteenth aspect, A first voltage source for applying a first voltage to the column selection line when reading data from the semiconductor memory device; And a second voltage source for applying a second voltage higher than the first voltage to the column selection line when writing data to the semiconductor memory device.
  • the first voltage source When reading data from the semiconductor memory device, applies the first voltage to the column selection line over a first time length; When writing data to the semiconductor memory device, the second voltage source applies the second voltage to the column selection line for a second time length longer than the first time length.
  • the control circuit When writing data to the semiconductor memory device, the control circuit activates the column selection line after receiving the write command and before activating the sense amplifier.
  • the control circuit When writing data into the semiconductor memory device, the control circuit activates the column selection line after receiving the write command and before activating the sense amplifier and the word line.
  • Each one of the plurality of sense amplifiers includes at least one NMOS transistor and at least one PMOS transistor; When deactivating the sense amplifier, a voltage equal to the upper limit voltage of the bit line is applied to the source of the NMOS transistor, When the sense amplifier is activated, a voltage equal to the lower limit voltage of the bit line is applied to the source of the NMOS transistor.
  • the bank includes a plurality of subarrays separated from each other by at least one sense amplifier row including a plurality of sense amplifiers
  • the write command includes a part of a row address of a subarray including a storage cell to which data is written
  • the control circuit includes: Activate a sub-array designated by the row address of the write command; Activate the column selection line specified by the column address of the write command, The voltage of the bit line corresponding to the activated column selection line is set to the upper limit voltage.
  • the semiconductor memory device includes a plurality of banks
  • the control circuit includes: When writing data to the semiconductor memory device, the same data is written to at least two of the plurality of banks, When reading data from the semiconductor memory device, data is read from at least one of the plurality of banks in which the same data is written.
  • the control circuit includes first and second activation commands issued to read data from at least two banks in which the same data of the plurality of banks is written, and a predetermined first command
  • first and second activation commands issued at intervals shorter than the time period of 5 tRC (R)
  • tRC time period of 5
  • the plurality of banks have bank addresses including a plurality of bits
  • the control circuit When the control circuit writes data to the semiconductor memory device, the control circuit stores the memory cell having the same row address in at least two banks each having a bank address including at least one same bit value. Write the same data.
  • a semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM,
  • the semiconductor memory device An internal data bus;
  • Each one of the plurality of banks includes a plurality of memory cells arranged along a plurality of bit lines and a plurality of word lines orthogonal to each other, and a plurality of senses respectively connected to the plurality of bit lines.
  • a memory array including an amplifier and a plurality of column selection lines connected to the plurality of sense amplifiers
  • the semiconductor memory device includes a communication circuit connected to a control device via an external bus, a control circuit that receives a plurality of commands from the control device via the communication circuit and controls operations of the semiconductor memory device.
  • the plurality of commands are: An activation command for activating a word line connected to a memory cell having a certain bank address and a certain row address, and a sense amplifier connected to the memory cell via the bit line; A write command for instructing writing of data to a memory cell having a certain bank address and a certain column address; A read command for instructing to read data from a memory cell having a certain bank address and a certain column address,
  • the semiconductor memory device has a plurality of timing parameters related to the operation of the semiconductor memory device, and the plurality of timing parameters has a minimum time during which the activation commands for two different banks can be continuously received.
  • the time period (tFAW) is equal to four times the sixth time period (tRRD)
  • the control circuit includes: When continuously writing data to the semiconductor memory device, the activation command and the write command can be received from the control circuit at a period equal to the sixth time period (tRRD), respectively. When data is continuously read from the semiconductor memory device, the activation command and the read command can be received from the control circuit at a period equal to the sixth time period (tRRD).
  • the seventh time period (tCCD) is equal to the sixth time period (tRRD)
  • the eighth time period (tFAW) is equal to the sixth time period (tFAW).
  • the semiconductor memory device in the semiconductor memory device in accordance with the twenty-eighth aspect of the present invention, in the semiconductor memory device in accordance with the twenty-sixth or twenty-seventh aspect, has a first operation mode and a second operation mode, When the semiconductor memory device is in the first operation mode, the upper limit voltage of the word line has a first voltage value, and the seventh time period (tCCD) is the sixth time period (tRRD).
  • the eighth time period (tFAW) is longer than four times the sixth time period (tRRD),
  • the upper limit voltage of the word line has a second voltage value higher than the first voltage value
  • the seventh time period (tCCD) is
  • the sixth time period (tRRD) is equal to the eighth time period (tFAW) is equal to four times the sixth time period (tRRD);
  • the control circuit receives the second control signal for selectively operating the semiconductor memory device in one of the first operation mode and the second operation mode from the control device.
  • One of the first operation mode and the second operation mode is selectively operated according to a signal.
  • the plurality of timing parameters include a plurality of sixth time periods (tRRD) having different lengths depending on different combinations of two banks.
  • a control device according to a fourteenth aspect; A semiconductor memory device.
  • a control method for a semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM includes at least one bank connected to at least one internal data bus, and the bank includes a plurality of memory cells arranged along a plurality of bit lines and a plurality of word lines orthogonal to each other.
  • JEDEC Joint Electron Device Engineering Council
  • a memory array including a plurality of sense amplifiers respectively connected to the plurality of bit lines, and a plurality of column selection lines respectively connected to the plurality of sense amplifiers;
  • the control method is: Issuing an activation command for activating a word line connected to a memory cell having a certain bank address and a certain row address and a sense amplifier connected to the memory cell via the bit line; Issuing a write command instructing to write data to a memory cell having a certain bank address and a certain column address; Issuing a read command instructing to read data from a memory cell having a certain bank address and a certain column address;
  • tRCD (W) When writing data to the semiconductor memory device, issuing the write command after a moment separated by a first time period (tRCD (W)) with reference to the moment of issuing the activation command; Issuing the read command after reading a second time period (tRCD (R)) with reference to the moment when the activation command is issued when reading data from the semiconductor memory device;
  • a semiconductor memory device in which use efficiency of an external data bus is not easily lowered even when data is written to and / or read from one or a plurality of banks by a command sequence including a precharge command.
  • a control device and a semiconductor storage system including these can be provided.
  • a control method for such a semiconductor memory device can also be provided.
  • FIG. 1 is a block diagram showing a processing device including a memory system according to Embodiment 1.
  • FIG. FIG. 2 is a block diagram illustrating a configuration of a memory controller 3 in FIG. 1. It is a block diagram which shows the structure of the memory 5 of FIG.
  • FIG. 4 is a block diagram showing a detailed configuration of a chip control circuit 22 in FIG. 3.
  • FIG. 4 is a block diagram showing a configuration of a memory array 23-n, a row decoder 24-n, and a column decoder 25-n in FIG.
  • FIG. 6 is a block diagram showing a detailed configuration of a subarray 51 and a sense amplifier array 52 in FIG. 5.
  • FIG. 5 is a block diagram showing a processing device including a memory system according to Embodiment 1.
  • FIG. FIG. 2 is a block diagram illustrating a configuration of a memory controller 3 in FIG. 1. It is a block diagram which shows the structure of the memory 5 of FIG.
  • FIG. 4 is a block diagram
  • FIG. 7 is a circuit diagram illustrating a detailed configuration of sense amplifiers SA11 and SA02, an IO switch IOSW, and a memory cell C00 in FIG.
  • FIG. 8 is a circuit diagram showing a configuration of an equalize circuit connected to the bit line of FIG. 7.
  • FIG. 6 is a circuit diagram showing a configuration of a subarray selection switch SASW in FIG. 5.
  • 3 is a timing chart illustrating a data read operation according to the first embodiment.
  • 11 is a timing chart showing waveforms of signals when the read operation of FIG. 10 is performed.
  • 6 is a timing chart illustrating a data write operation according to a comparative example of the first embodiment.
  • FIG. 13 is a timing chart showing waveforms of signals when the write operation of FIG. 12 is performed.
  • FIG. 13 is a timing chart showing waveforms of signals when the write operation of FIG. 12 is performed.
  • FIG. 3 is a timing chart illustrating a data write operation according to the first embodiment.
  • FIG. 15 is a timing chart showing waveforms of signals when the write operation of FIG. 14 is performed.
  • 10 is a block diagram showing a column decoder 25-n and its periphery in a memory system according to Embodiment 2.
  • FIG. 6 is a timing chart showing waveforms of signals when a data write operation according to a comparative example of Embodiment 2 is performed.
  • 9 is a timing chart showing waveforms of signals when performing a data write operation according to the second embodiment.
  • 10 is a timing chart showing waveforms of signals when a data write operation according to the third embodiment is performed.
  • FIG. 10 is a timing chart showing waveforms of signals when a data write operation according to a modification of the third embodiment is performed.
  • FIG. 10 is a block diagram illustrating a configuration of a chip control circuit 22A of a memory system according to a fourth embodiment.
  • FIG. 10 is a circuit diagram showing a configuration of an equalize circuit connected to a bit line of a memory system according to a fourth embodiment.
  • FIG. 10 is a circuit diagram illustrating a configuration of a subarray selection switch SASW in the memory system according to the fourth embodiment.
  • 10 is a timing chart showing waveforms of signals when a data write operation according to the fourth embodiment is performed.
  • FIG. 10 is a block diagram illustrating a configuration of a memory controller 3A of a memory system according to Embodiment 5.
  • FIG. 10 is a timing chart illustrating a data write operation according to the fifth embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of a memory controller 3B of a memory system according to a sixth embodiment.
  • FIG. 16 is a block diagram for explaining an operation of writing data to the memory 5 of the memory system according to the sixth embodiment.
  • FIG. 10 is a block diagram for explaining an operation of reading data from a memory 5 of a memory system according to a sixth embodiment. It is a figure which shows the activation command used in the memory system which concerns on Embodiment 6.
  • FIG. FIG. 10 is a diagram illustrating a write command used in a memory system according to a sixth embodiment.
  • 18 is a timing chart illustrating a data write operation according to a modification of the sixth embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of a memory controller 3B of a memory system according to a sixth embodiment.
  • FIG. 16 is a block diagram for explaining an operation of writing data to the memory 5
  • FIG. 20 is a block diagram illustrating a configuration of a memory controller 3C of a memory system according to a seventh embodiment.
  • FIG. 20 is a block diagram showing a row decoder 24-n and its periphery in a memory system according to a seventh embodiment.
  • FIG. 35 is a circuit diagram showing a configuration of a VPP generation circuit 91 of FIG. 34.
  • 12 is a timing chart illustrating a data read operation according to the seventh embodiment.
  • 16 is a timing chart illustrating a data write operation according to the seventh embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of a VPP generation circuit 100 of a memory system according to an eighth embodiment.
  • FIG. 20 is a block diagram illustrating a configuration of a memory controller 3D of a memory system according to Embodiment 9.
  • FIG. 20 is a block diagram showing a configuration of a memory 5D of a memory system according to Embodiment 9.
  • 10 is a timing chart illustrating a data write operation according to a comparative example of the ninth embodiment.
  • 10 is a timing chart illustrating a data write operation according to the ninth embodiment.
  • FIG. 25 is a diagram showing a write command used in the memory system according to the ninth embodiment.
  • FIG. 22 is a block diagram illustrating a configuration of a memory controller 3E of the memory system according to the tenth embodiment.
  • FIG. 18 is a block diagram for explaining a data write / read operation to / from a memory 5 of the memory system according to the tenth embodiment.
  • 12 is a timing chart showing data write and read operations according to the first example of Embodiment 10.
  • 22 is a timing chart showing data write and read operations according to the second example of Embodiment 10.
  • FIG. 29 is a block diagram showing a configuration of a memory controller 3E of a memory system according to a modification example of Embodiment 10.
  • 22 is a timing chart showing data write and read operations according to the third example of Embodiment 10.
  • 6 is a timing chart showing the operation of the memory system according to the first comparative example.
  • FIG. 50 is a timing chart showing the operation of the memory system according to the first comparative example.
  • FIG. 50 shows clocks, commands, bank addresses, and data transmitted on the memory bus when performing write and read accesses to the memory of the DDR2-SDRAM.
  • A indicates an activation command
  • W indicates a write command
  • R indicates a read command
  • P indicates a precharge command.
  • the memory includes eight banks B0 to B7, and “0” to “7” indicate bank addresses of the banks B0 to B7, respectively.
  • the clock, command, bank address, and write data are transmitted from the controller to the memory, and read data is transmitted from the memory to the controller.
  • the memory controller performs write or read access to the memory by sending an activation command, a write command, a read command, and a precharge command for each bank to the memory.
  • the write command for the bank Bn is represented as WRITEn
  • the read command for the bank Bn is represented as READn
  • the precharge command for the bank Bn is represented as PREn.
  • the write command and the read command sent together with the column address are collectively referred to as “column command (COL)”, and the column command for the bank Bn is represented as COLn.
  • timing parameters associated with each command are defined as follows.
  • tCK The length of one cycle of the clock.
  • tCCD-ij The length of the time period from when the column command COLi for a certain bank Bi is issued until the column command COLj for the next arbitrary bank Bj can be issued.
  • tRRD-ij The length of the time period from when the activation command ACTi for a certain bank Bi is issued until the activation command ACTj for a different bank Bj can be issued.
  • tRCD-i The length of the time period from when the activation command ACTi for a certain bank Bi is issued until the column command COLi can be issued for the same bank Bi.
  • tRTPi The length of the time period from when the read command READi for a certain bank Bi is issued until the precharge command PREi for the same bank Bi can be issued.
  • tWR-i The length of the time period from when the write command WRITEi for a certain bank Bi is issued until the precharge command PREi for the same bank Bi can be issued.
  • tRAS-i The length of the time period from when the activation command ACTi for a certain bank Bi is issued until the precharge command PREi for the same bank Bi can be issued.
  • tRP-i The length of the time period from when the precharge command PREi for a certain bank Bi is issued until the activation command ACTi for the same bank Bi can be issued.
  • tWTR-ij The length of the time period from when the write data for a certain bank Bi is transmitted (that is, from the end of the burst data) until the read command READi for the next arbitrary bank Bj can be issued.
  • tRCi The length of the time period from when the activation command ACTi for a certain bank Bi is issued until the activation command ACTi for the next same bank can be issued.
  • tFAW-ijkl Time from when four activation commands are successively issued to each of the four banks Bi, Bj, Bk, B1, until the activation command can be issued to another bank Bm The length of the period.
  • CL The number of clock cycles (CAS latency) from when the read command READi is issued to a certain bank Bi until the head of the read data Qi is output to the external data bus.
  • CWL The number of clock cycles (CAS write latency) from the issuance of the write command WRITEi to a certain bank Bi until the beginning of the write data Di reaches the memory.
  • BL Number of data units (burst length) that are continuously written to or read from the memory after issuing one write command or read command.
  • timing parameters “i”, “j”, “k”, and “l” may be omitted.
  • DDRx-SDRAM and LPDDRx-SDRAM memory system interfaces are specified as JEDEC (Joint Electron Device Engineering Council) standards.
  • the timing parameters are also defined in the JEDEC standard. For example, when the clock period tCK is 1.875 nanoseconds, the minimum value of each timing parameter in the DDR2-SDRAM is as follows.
  • burst length BL 8 is used. Therefore, when one write command or read command is issued to the memory, eight consecutive data units are written to the memory or read from the memory over a time of 4 ⁇ tCK. Therefore, when a single write command or read command is issued, the write data or read data occupies the external data bus for a time of 4 ⁇ tCK.
  • the random access will be described with reference to FIG.
  • the write operation is continuously performed on the three different banks B3, B2, and B1.
  • the memory controller issues an activation command ACT3 to the bank B3, issues a write command WRITE3 to the bank B3 after the elapse of the time period tRCD-3, and after the elapse of the time period CWL-3, Write data D3 for B3 is transmitted to the memory.
  • data is written to the bank B3.
  • the memory controller starts the write operation of bank B2 after the elapse of time period tRRD-32 from the issuance of activation command ACT3.
  • the memory controller issues an activation command ACT2 to the bank B2, issues a write command WRITE2 to the bank B2 after the elapse of the time period tRCD-2, and after the elapse of the time period CWL-2, Write data D2 for B2 is transmitted to the memory. As described above, data is written to the bank B2. Further, separately from the write operations of the banks B3 and B2, the memory controller starts the write operation of the bank B1 after the elapse of the time period tRRD-21 from the issue of the activation command ACT2. First, the memory controller first issues an activation command ACT1 to the bank B1, and after the time period tRCD-1, elapses, issues a write command WRITE1 to the bank B1. After the elapse of 1, the write data D1 for the bank B1 is transmitted to the memory. As described above, data is written to the bank B1. By the above command sequence, the write operation can be sequentially performed on the bank B3, the bank B2, and the bank B1.
  • a memory system in which the use efficiency of an external data bus is unlikely to be lowered even when data is written to and / or read from one or more banks by a command sequence including a precharge command explain.
  • Embodiments 1 to 6 a memory system capable of speeding up a write operation or a read operation will be described.
  • FIG. FIG. 1 is a block diagram illustrating a processing apparatus including a memory system according to the first embodiment.
  • the processing apparatus in FIG. 1 includes a processor 1, a processor bus 2, a memory controller 3, a memory bus 4, and a memory 5.
  • the processor 1 is connected to the memory controller 3 via the processor bus 2.
  • the memory controller 3 is connected to the memory 5 via the memory bus 4.
  • the memory 5 includes a plurality of banks each including a plurality of subarrays.
  • the memory 5 has an interface conforming to the JEDEC standard of DDRx-SDRAM or LPDDRx-SDRAM.
  • the memory controller 3 and the memory 5 communicate with each other using a signal group conforming to the JEDEC standard via the memory bus 4.
  • the memory bus 4 includes signal lines of a clock bus, a command bus, an address bus, and an external data bus.
  • the memory controller 3 and the memory 5 operate as a memory system for the processor.
  • the memory controller 3 is configured as, for example, SoC (silicon chip) or FPGA (field programmable gate array).
  • the DDRx-SDRAM memory 5 is an example of a semiconductor memory device.
  • the memory controller 3 is an example of a control device for a semiconductor memory device.
  • a memory system including the memory controller 3 and the memory 5 is an example of a semiconductor storage system.
  • FIG. 2 is a block diagram showing a configuration of the memory controller 3 of FIG.
  • the memory controller 3 includes a control circuit 11, a PHY interface 12, and a timing register 13.
  • the PHY interface 12 is a communication circuit connected to the memory 5.
  • the control circuit 11 controls the memory 5 by issuing a plurality of commands and transmitting them to the memory 5 via the PHY interface 12.
  • the timing register 13 stores a plurality of timing parameters related to the operation of the memory 5.
  • the timing parameters include, for example, time periods tRCD (W), tRCD (R), tRP, and CL.
  • the time period tRCD (W) indicates a minimum value of a time difference from when an activation command for a certain bank is issued until a write command can be issued for the same bank.
  • the time period tRCD (R) indicates a minimum value of a time difference from when an activation command for a certain bank is issued until a read command can be issued for the same bank.
  • the time period tRP indicates the minimum value of the time difference from when the precharge command for a certain bank is issued until the activation command for the same bank can be issued.
  • the time period CL indicates the number of clock cycles (CAS latency) from when a read command is issued to a certain bank until the beginning of the read data is output to the external data bus.
  • the timing register 13 includes registers that store time periods tRCD (W), tRCD (R), tRP, and CL, respectively.
  • time period tRCD (W) is also referred to as a “first time period”
  • time period tRCD (R) is also referred to as a “second time period”.
  • timing register 13 actually stores other timing parameters.
  • the time period tRCD (W) and tRCD (R) are not distinguished, and the activation command for a certain bank is issued until the read command and write command for the same bank can be issued. A single value indicating the minimum time difference was stored.
  • the timing register 13 stores the time periods tRCD (W) and tRCD (R) individually in the tRCD (W) register and the tRCD (R) register. .
  • the memory controller 3 according to the first embodiment is characterized in that a value smaller than the value stored in the tRCD (R) register can be stored in the tRCD (W) register.
  • a negative value smaller than “0” can be stored in the tRCD (W) register, and a negative value is stored in the tRCD (W) register.
  • the memory controller 3 can issue a write command for the same bank before issuing an activation command for a certain bank.
  • FIG. 3 is a block diagram showing a configuration of the memory 5 of FIG.
  • the memory 5 includes an SDRAM interface 21, a chip control circuit 22, banks B1 to B4, and internal data buses DB1 and DB2.
  • the SDRAM interface 21 is a communication circuit connected to the memory controller 3 via the memory bus 4.
  • the SDRAM interface 21 communicates with the memory controller 3 and controls the operation timing of the memory 5.
  • the chip control circuit 22 is a control circuit that receives a plurality of commands from the memory controller 3 via the SDRAM interface 21 and controls the operation of the memory 5.
  • the SDRAM interface 21 and the chip control circuit 22 transmit / receive internal control signals to / from each other through a plurality of control lines (represented by one in FIG. 3).
  • Banks B1 and B2 are connected to the SDRAM interface 21 via the internal data bus DB1, and banks B3 and B4 are connected to the SDRAM interface 21 via the internal data bus DB2.
  • Bank B1 includes a memory array 23-1, a row decoder 24-1, and a column decoder 25-1.
  • the memory array 23-1 includes a plurality of memory cells arranged along a plurality of bit lines and a plurality of word lines orthogonal to each other, and a plurality of sense amplifiers respectively connected to the plurality of bit lines. And a plurality of column selection lines respectively connected to the plurality of sense amplifiers.
  • the row decoder 24-1 and the column decoder 25-1 designate a two-dimensional access position for the memory array 23-1.
  • the other banks B2 to B4 are also provided with memory arrays 23-2 to 23-4, row decoders 24-2 to 24-4, and column decoders 25-2 to 25-4, respectively, similarly to the bank B1.
  • the chip control circuit 22 includes bank control circuits 31-1 to 31-4.
  • the bank control circuits 31-1 to 31-4 are connected to the corresponding banks B1 to B4, respectively, and control is performed by transmitting control signals to the banks B1 to B4. That is, the bank control circuit 31-1 activates the row decoder 24-1 of the bank B1 by the row address activation signal RAE-1, and supplies the row address signal RA-1 to the row decoder 24-1 of the bank B1. Further, the bank control circuit 31-1 activates the column decoder 25-1 of the bank B1 by the column address activation signal CAE-1, and supplies the column address signal CA-1 to the column decoder 25-1 of the bank B1. Similarly to the bank control circuit 31-1, the other bank control circuits 31-2 to 31-4 also control the corresponding banks B2 to B4.
  • FIG. 4 is a block diagram showing a detailed configuration of the chip control circuit 22 of FIG. Specifically, the chip control circuit 22 includes a logical sum (OR) circuit 32 and an activation control circuit 33 in addition to the bank control circuits 31-1 to 31-4.
  • OR logical sum
  • the bank control circuit 31-1 includes a row address control circuit 41, a column address control circuit 42, a logical sum (OR) circuit 43, and a logical product (AND) circuit 44.
  • the row address control circuit 41 and the column address control circuit 42 receive a bank control signal including a row address and a column address as internal control signals from the SDRAM interface 21.
  • the row address control circuit 41 receives the bank control signal and generates a row address activation signal RAE-1 and a row address signal RA-1.
  • the column address control circuit 42 receives the bank control signal and generates an internal signal CAEF-1 and a column address (CA-2).
  • Internal signal CAEF-1 is an original signal for generating column address activation signal CAE-1.
  • Column address activation signal CAE-1 is activated when both row address activation signal RAE-1 and internal signal CAEF-1 are activated. That is, when the activation state is represented by a logical value “1”, when the logical product of the internal signal CAEF-1 and the row address activation signal RAE-1 becomes “1”, the column address activation signal CAE-1 is Activated.
  • An AND circuit 44 is provided for the logical product operation. This logic ensures that column access is possible only when the bank B1 is activated. In other words, the column access is prohibited when the bank B1 is inactive to prevent malfunction of the memory array 23-1.
  • a tRC (W) shortening signal is further input to the bank control circuit 31-1.
  • the tRC (W) shortening signal is a control signal (this is also referred to as a “first control signal”) for notifying that a write command is transmitted before the activation command. Is transmitted from the memory controller 3 to the memory 5 as an internal control signal of the memory 5 from the SDRAM interface 21 to the chip control circuit 22.
  • the tRC (W) shortening signal is inactive (that is, when the logical value is “0”), the column address activation signal CAE-1 is both the row address activation signal RAE-1 and the internal signal CAEF-1. It is activated only when is activated.
  • this logic ensures that column access is possible only when the bank B1 is activated.
  • the tRC (W) shortening signal when the tRC (W) shortening signal is activated (that is, when the logical value is “1”), the row address activation signal RAE-1 and the column address activation signal CAE-1 are controlled independently of each other. The That is, the restriction that the column access is enabled only when the bank B1 is activated is invalidated, and the column access is enabled before the bank B1 is activated.
  • the AND circuit 44 receives the logical sum of the row address activation signal RAE-1 and the tRC (W) shortening signal.
  • An OR circuit 43 is provided for this logical sum operation.
  • the other bank control circuits 31-2 to 31-4 are also configured similarly to the bank control circuit 31-1.
  • the row address activation signals RAE-1 to RAE-4 output from the bank control circuits 31-1 to 31-4 are input to the OR circuit 32.
  • the output signal RAOR of the OR circuit 32 has a logical value “1” when at least one row address activation signal has a logical value “1” (that is, when at least one bank is activated).
  • the activation control circuit 33 generates a control signal COLACT and a control signal IOACT when the output signal RAOR of the OR circuit 32 becomes a logical value “1”.
  • the control signal COLACT is sent to the column address control circuit 42 of each bank control circuit 31-1 to 31-4.
  • the column address control circuit 42 of each of the bank control circuits 31-1 to 31-4 receives a control signal COLACT and activates part or all of the circuit. This operation reduces the operating current of the column address control circuit 42 of each of the bank control circuits 31-1 to 31-4 when all the banks B1 to B4 are inactive.
  • the control signal IOACT is sent to the SDRAM interface 21 and other circuits (such as an internal voltage generation circuit of the memory 5).
  • the SDRAM interface 21 and other circuits receive a control signal IOACT and activate part or all of the circuits. This operation reduces the operating current of the SDRAM interface 21 and other circuits when all the banks B1 to B4 are inactive.
  • the tRC (W) shortening signal is also input to the activation control circuit 33.
  • the activation control circuit 33 When the tRC (W) shortening signal is inactive (that is, when the logical value is “0”), the activation control circuit 33 outputs the output signal RAOR of the OR circuit 32 (that is, the activation / inactivation of the banks B1 to B4). ), The control signal COLACT and the control signal IOACT are generated.
  • the tRC (W) shortening signal is activated (that is, when the logical value is “1”), the activation control circuit 33 controls the control signal COLACT and the control signal regardless of the output signal RAOR of the OR circuit 32. Generate IOACT.
  • the column address control circuit 42 of each of the bank control circuits 31-1 to 31-4 In response to the control signal COLACT, part or all of the circuit is activated.
  • the SDRAM interface 21 and other circuits (such as an internal voltage generation circuit) are controlled.
  • the signal IOACT part or all of the circuit is activated. In this way, the column address control circuit 42 of each of the bank control circuits 31-1 to 31-4 is activated, and further, the SDRAM interface 21 and other circuits are activated. Therefore, before the activation command is issued. Even so, the memory 5 is ready to receive a write command.
  • the memory 5 includes a plurality of circuits respectively associated with at least a part of the plurality of commands.
  • the chip control circuit 22 is connected to a circuit associated with the write command (the column address control circuit 42 of each bank control circuit 31-1 to 31-4, the SDRAM interface 21 and others). The circuit, etc.).
  • the memory 5 has an interface conforming to the JEDEC standard of DDRx-SDRAM or LPDDRx-SDRAM. Therefore, any of the signal lines of the memory bus 4 cannot be occupied in order to transmit a control signal notifying that the write command is transmitted before the activation command from the memory controller 3 to the memory 5. Therefore, for example, the write command is transmitted from the memory controller 3 to the memory 5 using an unused bit of an existing command such as a mode register setting or using a combination of unused bits. Notice.
  • the memory 5 may be configured to generate the tRC (W) shortening signal fixed in the activated state in the memory 5 by revising
  • FIG. 5 is a block diagram showing the configuration of the memory array 23-n, row decoder 24-n, and column decoder 25-n in FIG.
  • the symbol DB in FIG. 5 indicates the internal data bus DB1 or DB2 in FIG.
  • the memory array 23-n includes a plurality of memory cells C arranged along a plurality of rows (rows along the Y direction) and a plurality of columns (columns along the X direction) orthogonal to each other. Is provided.
  • the memory array 23-n includes a plurality of subarrays 51 that are separated from each other by at least one sense amplifier row 52 including a plurality of sense amplifiers.
  • Each sub-array 51 also includes a plurality of memory cells C arranged along a plurality of rows and a plurality of columns. In FIG. 5, only one memory cell C is shown for simplicity of illustration.
  • the row decoder 24-n is arranged over a plurality of rows (that is, along the X direction) of the memory array 23-n.
  • a plurality of word lines WDL extending in the Y direction are arranged at predetermined intervals in the X direction over the entire subarray 51. All the word lines WDL are connected to the row decoder 24-n.
  • the row decoder 24-n receives the row address signal RA-n and the row address activation signal RAE-n from the bank control circuit 31-n, and selects one word line WDL.
  • FIG. 5 shows only one activated word line WDL among a plurality of word lines WDL.
  • the subarray 51 connected to the selected word line WDL is referred to as “activated subarray” (indicated by hatching in FIG. 5).
  • the column decoder is arranged across a plurality of columns of the memory array 23-n (that is, along the Y direction).
  • a plurality of column selection lines CSL extending in the X direction are arranged at predetermined intervals in the Y direction over the entire memory array 23-n. All the column selection lines CSL are connected to the column decoder 25-n.
  • the column decoder 25-n receives the column address signal CA-n and the column address activation signal CAE-n from the bank control circuit 31-n, and selects one column selection line CSL.
  • FIG. 5 shows only one activated column selection line CSL among the plurality of column selection lines CSL.
  • Write access and read access are performed on the selected memory cell C at the intersection of the activated word line WDL and the activated column selection line CSL.
  • the internal data buses DB1 and DB2 in FIG. 3 are actually connected to the banks B1 to B4 via the input / output (IO) control circuit 26-n.
  • the internal data bus DB for transmitting a plurality of data signals is connected to the plurality of GIO buses GIOB via the IO control circuit 26-n.
  • the GIO bus GIOB is connected to the LIO bus LIOB via the subarray selection switch SASW.
  • the data on the internal data bus DB is written to the selected memory cell C via the IO control circuit 26-n, the GIO bus GIOB, the subarray selection switch SASW, and the LIO bus LIOB in this order.
  • the data stored in the selected memory cell C is read onto the internal data bus DB via the LIO bus LIOB, the subarray selection switch SASW, the GIO bus GIOB, and the IO control circuit 26-n in order. It is.
  • FIG. 6 is a block diagram showing a detailed configuration of the subarray 51 and the sense amplifier array 52 of FIG.
  • the subarray 51 includes bit lines BTL00, BTL01,... And memory cells C00, C01,... Arranged along the word line WDL0.
  • Sense amplifiers SA00, SA01,... are connected to the bit lines BTL00, BTL01,.
  • Column select lines CSL0 and CSL1 are connected to the sense amplifiers SA00, SA01,.
  • a plurality of word lines WDL extending in the Y direction are arranged at predetermined intervals in the X direction. However, in FIG. 6, only one word line WDL0 is shown for simplification of illustration.
  • a plurality of bit lines BTL00, BTL01,... Extending in the X direction are arranged at a predetermined interval in the Y direction.
  • a plurality of sense amplifiers SA00, SA01, SA10, SA11 and input / output (IO) switches are arranged at predetermined intervals in the Y direction.
  • the column selection line CSL is connected to the IO switch IOSW and controls its opening / closing.
  • the sense amplifier SA00 and the LIO bus LIOB_0 are connected, the sense amplifier SA02 and the LIO bus LIOB_2 are connected, the sense amplifier SA01 and the LIO bus LIOB_1 are connected, and the sense amplifier SA03.
  • the sense amplifier SA10 and the LIO bus LIOB_0 are connected, the sense amplifier SA12 and the LIO bus LIOB_2 are connected, and the sense amplifier SA11 and the LIO bus LIOB_1 are connected.
  • Sense amplifier SA13 and LIO bus LIOB_3 are connected.
  • Sense amplifier activation signals SAPE and SANE are input from the row decoder 24-n to each sense amplifier SA.
  • FIG. 6 shows one word line WDL0, two column selection lines CSL0 and CSL1, four LIO buses LIOB_0, LIOB_2, LIOB_1, and LIOB_3, and other components connected to them.
  • the sub-array 51 and the sense amplifier array 52 include more word lines WDL, column selection lines CSL, LIO buses LIOB, and other components connected to them.
  • FIG. 7 is a circuit diagram showing a detailed configuration of the sense amplifiers SA11 and SA02, the IO switch IOSW, and the memory cell C00 of FIG.
  • Each sense amplifier SA00, SA02 includes two pairs of PMOS transistors SAPT and NMOS transistors SANT that are cross-coupled.
  • a sense amplifier activation signal SANE is applied to the sources of the two NMOS transistors SANT, and their drains are connected to the bit line BTL00 and the inverted bit line / BTL00, respectively.
  • a sense amplifier activation signal SAPE is applied to the sources of the two PMOS transistors SAPT, and their drains are connected to the bit line BTL00 and the inverted bit line / BTL00, respectively.
  • the LIO bus LIOB_0 includes a pair of signal lines LIO_0 and / LIO_0
  • the LIO bus LIOB_2 includes a pair of signal lines LIO_2 and / LIO_2.
  • the IO switch IOSW includes an input / output (IO) transistor IOT that is a pair of NMOS transistors.
  • the source of one IO transistor IOT is connected to the bit line BTL00, its drain is connected to the signal line LIO_0 of the LIO bus, the source of the other IO transistor IOT is connected to the inverted bit line / BTL00, and its drain is connected to the LIO bus.
  • IO input / output
  • the memory cell C00 includes a cell transistor CT and a cell capacitor CS, and data (information “1” or “0”) stored in the memory cell C00 is held as voltage information in the storage node SN.
  • the cell transistor CT is, for example, an NMOS transistor.
  • Memory cell C is an example of a memory cell of a semiconductor memory device.
  • bit line BTL00 Since the bit line BTL00 has a very high resistance, a parasitic resistance RBTL is generated between a section in the vicinity of the sense amplifier SA00 and a section in the vicinity of the memory cell C00.
  • sense amplifiers SA Other sense amplifiers SA, IO switches IOSW, and memory cells C are configured in the same manner as the sense amplifiers SA11, SA02, IO switches IOSW, and memory cells C00 in FIG.
  • FIG. 8 is a circuit diagram showing a configuration of an equalize circuit connected to the bit line of FIG. Although not shown in FIG. 7, the equalize circuit (or a circuit having an equivalent function) of FIG. 8 is connected to all bit line and inverted bit line pairs for the normal operation of the memory 5. .
  • the equalize circuit of FIG. 8 includes transistors T1 to T3 controlled by a bit line equalize signal BTLEQ.
  • the pair of bit lines BTL, / BTL are fixed to the voltage VBTL by the activation of the bit line equalize signal BTLEQ.
  • the voltage VBTL is the final voltage VARY after the signal on the bit line BTL is amplified to the “H” (high level) side, and the final voltage after the signal on the bit line BTL is amplified to the “L” (low level) side. This is a voltage intermediate to the typical voltage VSS.
  • FIG. 9 is a circuit diagram showing a configuration of the subarray selection switch SASW in FIG.
  • the GIO bus GIOB includes a pair of signal lines GIO and / GIO. 9 includes transistors T11 and T12 controlled by signal lines GIO and / GIO of the GIO bus, and transistors T13 and T14 controlled by a bit line equalize signal BTLEQ, respectively.
  • the sub-array selection switch SASW is a switch for connecting a pair of signal lines GIO, / GIO of the GIO bus and a pair of signal lines LIO, / LIO of the LIO bus.
  • the subarray selection switch SASW further has a function of fixing the voltage of the pair of signal lines LIO, / LIO of the LIO bus to the voltage VBTL.
  • the subarray selection switch SASW connects the signal lines GIO and / GIO of the GIO bus and the signal lines LIO and / LIO of the LIO bus to each other when the subarray selection signal SUBASEL is activated to “H”.
  • Sub-array selection switch SASW also fixes the voltage of signal lines LIO, / LIO of the LIO bus to voltage VBTL when bit line equalize signal BTLEQ is activated to “H”.
  • the voltages of the IO bus signal lines GIO and / GIO are at the “H” level, that is, the voltage VARY or The voltage is higher than that.
  • FIG. 10 is a timing chart showing a data read operation according to the first embodiment.
  • FIG. 10 shows a case where read access is continuously made to the same bank.
  • FIG. 10 shows the clock CLK and command CMD transmitted from the memory controller 3 to the memory 5, the internal state of the memory 5, and the transmission of data on the external data bus.
  • the command CMD “A” indicates an activation command
  • “R” indicates a read command
  • “P” indicates a precharge command.
  • “QD” of the external data bus represents read data read from the memory 5.
  • the internal state iRD indicates a state in which a read operation is actually performed in the memory array 23-n in the memory 5.
  • the command is captured at the rising edge of the clock CLK.
  • the time period tRC (R) indicates the time from the activation command A to the activation command A when continuously reading from the same bank, and represents the actual cycle time of the read operation.
  • tRCD (R) 4 ⁇ tCK
  • tRP 4 ⁇ tCK
  • tRTP 2 ⁇ tCK
  • CL 5
  • BL 4
  • tRC (R) 10 ⁇ tCK.
  • the time period tD (R) indicates the time from when the read command R is received until the internal state iRD starts.
  • the time occupied by the read data on the external data bus is 2 ⁇ tCK, and the utilization rate of the external data bus is 2/10.
  • the time period tRCD (R) indicates the minimum value of the time difference from when the activation command A for a certain bank is issued until the read command R can be issued for the same bank. Accordingly, when reading data from the memory 5, the control circuit 11 of the memory controller 3 issues the read command R after the moment separated by the time period tRCD (R) with reference to the moment when the activation command A is issued. In the example of FIG. 10, the control circuit 11 of the memory controller 3 issues the read command R at the moment when the time period tRCD (R) has elapsed since the activation command A was issued.
  • FIG. 10 shows an example of a memory system compliant with the DDR2-SDRAM JEDEC standard.
  • Other SDRAMs such as DDR1 / 3 / 4-SDRAM and LPDDR2 / 3 / 4-SDRAM can operate in the same manner as in FIG.
  • FIG. 11 is a timing chart showing the waveform of each signal when the read operation of FIG. 10 is performed.
  • FIG. 11 shows the internal state of the memory 5 in the case of FIG. 10, the horizontal axis shows time, and the vertical axis shows voltage.
  • FIG. 11 is an example showing voltage waveforms of internal signals of the memory 5 shown in FIGS. 5, 6, and 7.
  • FIG. 11 shows the column selection line CSL signal, sense amplifier activation signals SAPE and SANE, the word line WDL signal, and the bit line BTL signal as internal signals of the memory 5.
  • bit line WDL is activated and cell transistor CT is turned on (that is, becomes conductive), whereby memory cell C
  • BTL A voltage waveform when data “1” is read to the bit line BTL is indicated by BTL (H), and a voltage waveform when data “0” is read to the bit line BTL is indicated by BTL (L).
  • Sense amplifier activation signals SAPE and SANE are activated after elapse of time period tDSA (A) from activation of word line WDL.
  • the sense amplifier activation signal SAPE is at the voltage VARY when activated and at the voltage VBTL when inactivated.
  • VBTL 1/2 ⁇ VARY.
  • the signal of the column selection line CSL is activated over the time period t (iRD).
  • an internal read internal state iRD
  • the IO switch IOSW is turned on by the activation of the column selection line CSL, and the pair of bit lines BTL, / BTL are connected to the pair of signal lines LIO, / LIO of the LIO bus via the IO switch IOSW.
  • the data of the bit line BTL is read to the LIO bus.
  • the voltage BTL (L) of the bit line is disturbed and rises from the voltage VSS.
  • the word line WDL is deactivated after the time period tDWL (P) has elapsed since the input of the precharge command P.
  • the cell transistor CT is turned off (that is, becomes non-conductive), and the data of the bit line BTL is confined in the storage node SN of the memory cell C. That is, data is rewritten in the memory cell C.
  • This is called a memory cell restore operation.
  • the bit line voltage BTL (L) is subjected to the above disturbance, it is necessary to deactivate the word line WDL after the voltage of the bit line BTL returns to the voltage VSS after a sufficient time. . This time determines the time period tRTP.
  • the time periods tRCD (R), tRTP, and tRP are defined by the operation of the memory array 23-n in the memory 5, particularly the operation speed of the word line WDL and the bit line BTL.
  • the operation speed of the bit line BTL is determined by the parasitic resistance RBTL of the bit line BTL.
  • the parasitic resistance RBTL increases and the operation speed of the bit line BTL decreases.
  • the time period tRCD (W) from the time when the activation command for a certain bank is issued until the time when the write command for the same bank can be issued is the activation command for a certain bank. It was the same as the time period tRCD (R) from when it was issued until it became possible to issue a read command for the same bank.
  • FIG. 12 is a timing chart showing a data write operation according to the comparative example of the first embodiment.
  • FIG. 12 shows a case where continuous write access is made to the same bank.
  • FIG. 12 also shows the clock CLK and command CMD transmitted from the memory controller 3 to the memory 5, the internal state of the memory 5, and the transmission of data on the external data bus, as in FIG.
  • the command CMD “A” indicates an activation command
  • “W” indicates a read command
  • P” indicates a precharge command.
  • “WD” in the external data bus represents write data output from the memory controller 3.
  • the internal state iWR indicates a state in which a write operation is actually performed in the memory array 23-n in the memory 5.
  • the time period tRC (W) indicates the time from the activation command A to the activation command A when writing continuously in the same bank, and represents the actual cycle time of the write operation.
  • tRCD (W) 4 ⁇ tCK
  • tRP 4 ⁇ tCK
  • tWR 4 ⁇ tCK
  • WL 4
  • BL 4
  • tRC (W) 18 ⁇ tCK.
  • the time period tRC (W) for the write operation is longer than the time period tRC (R) for the read operation.
  • the time that the write data occupies in the external data bus is 2 ⁇ tCK, the utilization rate of the external data bus is 2/18, and the utilization efficiency is lower than in the case of the read operation.
  • FIG. 12 shows an example in the case of a memory system conforming to the DDR2-SDRAM JEDEC standard.
  • Other SDRAMs such as DDR3 / 4-SDRAM and LPDDR2 / 3 / 4-SDRAM can operate in the same manner as in FIG.
  • the external data bus utilization efficiency at the time of writing is lower than that at the time of reading.
  • FIG. 13 is a timing chart showing the waveform of each signal when the write operation of FIG. 12 is performed.
  • FIG. 13 shows the internal state of the memory 5 in the case of FIG. 12, the horizontal axis shows time, and the vertical axis shows voltage.
  • FIG. 11 is an example showing voltage waveforms of internal signals of the memory 5 shown in FIGS. 5, 6, and 7.
  • a signal of the column selection line CSL, sense amplifier activation signals SAPE and SANE, a signal of the word line WDL, and a signal of the bit line BTL are shown.
  • the voltages SN (H) and SN (L) are shown.
  • the signal of the column selection line CSL is timed after the elapse of the time period tD (W). Activate over t (iWR). At this time t (iWR), internal write (internal state iWR) is actually executed for the memory array 23-n.
  • the IO switch IOSW is turned on by the activation of the column selection line CSL, and the pair of bit lines BTL, / BTL are connected to the pair of signal lines LIO, / LIO of the LIO bus via the IO switch IOSW. Connected, data of the LIO bus is written to the bit line BTL. At this time, if the data of the bit lines BTL, / BTL is different from the data of the signal lines LIO, / LIO of the LIO bus, the data of the bit line amplified by the sense amplifier SA is inverted.
  • the transition time from “L” to “H” of the bit line BTL is particularly longer than the transition time from “H” to “L”. long.
  • the cell transistor CT has a low driving capability and is constituted by an NMOS transistor, the transition time of the storage node SN from “L” to “H” becomes even longer.
  • the word line WDL is deactivated after the time period tDWL (P) has elapsed since the input of the precharge command P.
  • the cell transistor CT is turned off by deactivation of the word line WDL, and the data of the bit line BTL is confined in the storage node SN. That is, new data is written into the memory cell C. This is called an inversion write operation of the memory cell C. As described above, it takes a long time to transition the storage node SN from “L” to “H” due to the bit line parasitic resistance RBTL, the weak driving capability of the PMOS transistor SAPT of the sense amplifier SA, and the resistance of the cell transistor CT. .
  • the length of the time period tWR is determined according to the characteristics of the memory array 23-n, and a relatively long time is required.
  • the sense amplifier activation signal is deactivated, and the voltage BTL (L) or BTL (L) of the bit line returns to the voltage VBTL. . Thereafter, the next activation command A can be received again.
  • the time period tWR is particularly long.
  • the parasitic resistance RBTL increases, the driving capability of the PMOS transistor SAPT of the sense amplifier SA decreases, and the driving capability of the cell transistor CT decreases. For these reasons, the time period tWR increases.
  • FIG. 14 is a timing chart showing the data write operation according to the first embodiment.
  • FIG. 14 shows a case where continuous write access is made to the same bank.
  • the greatest feature is that the write command W is issued before the activation command A. That is, the time period tRCD (W) has a negative value.
  • tRCD (W) ⁇ 2 ⁇ tCK.
  • the time that the write data occupies in the external data bus is 2 ⁇ tCK, and the utilization rate of the external data bus is improved to 2/13.
  • the time period tRCD (W) indicates the minimum value of the time difference from when the activation command A for a certain bank is issued until the write command W can be issued for the same bank.
  • tRCD (W) has a smaller value than the time period tRCD (R). Therefore, when writing data into the memory 5, the control circuit 11 of the memory controller 3 issues the write command W after the moment separated by the time period tRCD (W) with reference to the moment when the activation command A is issued.
  • the time period tRCD (W) may have a negative value.
  • the control circuit 11 of the memory controller 3 writes data to the memory 5, after the moment preceding by the time period equal to the absolute value of the time period tRCD (W) with reference to the moment when the activation command A is issued.
  • the write command W is issued prior to the moment of issuing the activation command.
  • the chip control circuit 22 of the memory 5 operates in response to the tRC (W) shortening signal, so that when writing data into the memory 5, the absolute value of the time period tRCD (W) with reference to the moment of receiving the activation command.
  • the write command can be received from the memory controller 3 after the moment preceding by the time period equal to and before the moment of receiving the activation command.
  • control circuit 11 of the memory controller 3 issues the write command W at the moment preceding by a time period equal to the absolute value of the time period tRCD (W) with reference to the moment when the activation command A is issued. is doing.
  • FIG. 14 shows an example of a memory system compliant with the DDR2-SDRAM JEDEC standard.
  • Other SDRAMs such as DDR3 / 4-SDRAM and LPDDR2 / 3 / 4-SDRAM can operate in the same manner as in FIG.
  • FIG. 15 is a timing chart showing the waveform of each signal when the write operation of FIG. 14 is performed.
  • FIG. 15 shows the internal state of the memory 5 in the case of FIG. 14, the horizontal axis indicates time, and the vertical axis indicates voltage.
  • the sense amplifier activation signals SAPE and SANE are activated, the column selection line CSL is activated during the amplification of the bit line voltage BTL (H) or BTL (L) or immediately after the amplification, and the write operation (internal state) iWR).
  • the time period tRC (W) can be significantly shortened.
  • the time period tRC (W) when the write operation is performed can be set independently of the time period tRC (R) when the read operation is performed.
  • the use efficiency of the external data bus is improved. It can be made difficult to reduce.
  • Embodiment 2 a configuration for further speeding up the write operation as compared with the memory system according to the first embodiment will be described.
  • FIG. 16 is a block diagram showing the column decoder 25-n and its periphery in the memory system according to the second embodiment.
  • the column decoder 25-n includes individual decoders 61-0, 61-1, 61-2,... And CSL drivers 62-0, 62-1, 62-2,. ... with.
  • Each of the CSL drivers 62-0, 62-1, 62-2,... Is supplied with a voltage VCSL from an external power source.
  • the voltage when each column selection line CSL0, CSL1, CSL2,... Is activated is determined by the voltage VCSL.
  • the switch SWR When reading data from the memory 5, the switch SWR is turned on to supply the voltage VCSLR to each of the CSL drivers 62-0, 62-1, 62-2,.
  • the switch SWW When data is written to the memory 5, the switch SWW is turned on to supply the voltage VCSLW to each of the CSL drivers 62-0, 62-1, 62-2,. ..
  • FIG. 17 is a timing chart showing waveforms of signals when a data write operation according to a comparative example of the second embodiment is performed.
  • FIG. 17 shows the internal state of the memory 5 in the case of FIG. 14 as in FIG. 15, the horizontal axis shows time, and the vertical axis shows voltage.
  • FIG. 17 shows voltages SN (H) and SN (L) of the storage node SN of the memory cell C in addition to the signals of FIG.
  • bit line voltage BTL (L) is rewritten to “H” by activating the column selection line CSL and performing a write operation (internal state iWR)
  • the bit line parasitic resistance RBTL and the PMOS transistor SAPT of the sense amplifier SA Due to the weak driving capability and the resistance of the cell transistor CT, it takes a long time to transition the storage node SN from “L” to “H”. This is a problem that the time period tWR described with reference to FIG. 13 is large. If the time period tWR is not sufficiently long, insufficient writing of the voltage of the storage node SN to “H” occurs.
  • FIG. 18 is a timing chart showing waveforms of signals when performing a data write operation according to the second embodiment.
  • FIG. 18 shows an example in which the time period tRC (W) of the data write operation according to the first embodiment is further shortened.
  • FIG. 18 shows the internal state of the memory 5 in the case of FIG. 14 as in FIG. If the voltage for activating the column selection line CSL is too high at the time of reading, the operation of the sense amplifier SA becomes unstable, and there is a possibility that the data amplified in the bit line BTL is destroyed. Therefore, the voltage for activating the column selection line CSL at the time of reading is limited. On the other hand, at the time of writing, it is necessary to reliably rewrite the data on the bit line BTL with data from the outside.
  • bit line voltage BTL (L) is rewritten to “H” by activating the column selection line CSL and performing the write operation (internal state iWR)
  • the capacity of the PMOS transistor SAPT of the sense amplifier SA is insufficient. Therefore, it takes time to charge the bit line BTL to “H”.
  • by increasing the voltage of the column selection line CSL it is possible to inject current for directly writing “H” data from the pair of signal lines of the LIO bus in the “H” state to the pair of sense amplifiers SA.
  • the charging time to “H” of the bit line BTL can be shortened.
  • the time for activating the column selection line CSL and applying the voltage VCSLW when writing data to the memory 5 is longer than the time length for activating the column selection line CSL and applying the voltage VCSLR.
  • the length may be increased. This can further improve the effect of speeding up the write operation.
  • the memory system according to the second embodiment can further shorten the time period tRC (W) by shortening the time period tWR.
  • Embodiment 3 a configuration for further speeding up the write operation as compared with the memory system according to the first embodiment will be described.
  • FIG. 19 is a timing chart showing waveforms of signals when performing a data write operation according to the third embodiment.
  • FIG. 19 shows an example in which the time period tRC (W) of the data write operation according to the first embodiment is further shortened.
  • FIG. 19 shows the internal state of the memory 5 when the time period tRCD (W) is a negative value according to the first embodiment.
  • the signal BTLEQ is deactivated (transition from “H” to “L”) after the elapse of the time period tDF (A) since the activation command A is taken in, and the subarray selection signal SUBASEL is activated at the same time or almost simultaneously ( Transition from “L” to “H”).
  • the pair of signal lines LIO and / LIO of the LIO bus changes from the voltage VBTL to the voltage VARY (or higher voltage).
  • the above operation is similarly executed in the first and second embodiments, and is also executed in a normal DRAM.
  • the chip control circuit 22 when writing data to the memory 5, the chip control circuit 22 activates the column selection line after receiving the write command and before activating the sense amplifier.
  • the chip control circuit 22 when writing data to the memory 5, the chip control circuit 22 activates the column selection line after receiving the write command and before activating the sense amplifier and the word line. It is characterized by that. With this operation, the pair of bit lines BTL and / BTL corresponding to the unselected column selection line CSL performs the same operation as in the first embodiment.
  • the activation of the column selection line CSL causes the pair of bit lines BTL, / LIO from the pair of signal lines LIO, / LIO of the LIO bus.
  • a current flows into the BTL, and the pair of bit lines BTL and / BTL are both fixed to the voltage VARY.
  • the write operation is started by supplying write data to the pair of signal lines LIO and / LIO of the LIO bus via the pair of signal lines GIO and / GIO of the GIO bus (time period t (iWR)).
  • time period t (iWR) time period
  • the time period tWR becomes longer due to the time required for the transition from “L” to “H” of the bit line.
  • FIG. 19 it is possible to eliminate the transition from “L” to “H” of the bit line after the write operation, and the time period tWR is shortened.
  • the time period tRC (W) can be further shortened.
  • FIG. 20 is a timing chart showing waveforms of signals when a data write operation according to a modification of the third embodiment is performed.
  • the sense amplifier corresponding to the selected column selection line CSL.
  • the pair of SA NMOS transistors SANT starts operating before the activation of the sense amplifier SA, resulting in malfunction.
  • a voltage VARY equal to the upper limit voltage of the bit line BTL is applied to the source of the NMOS transistor of the sense amplifier SA, and when the sense amplifier SA is activated, it is equal to the lower limit voltage of the bit line BTL.
  • the voltage VSS is applied to the source of the NMOS transistor of the sense amplifier SA. By setting this voltage, malfunction of the pair of NMOS transistors SANT of the sense amplifier SA can be prevented.
  • the voltage when the pair of PMOS transistors SAPT of the sense amplifier SA is inactive may be the voltage VSS as shown in FIG. 20 or may be the voltage VBTL as in the prior art.
  • Embodiment 4 FIG. In the fourth embodiment, a configuration for further speeding up the write operation as compared with the memory system according to the first embodiment will be described.
  • FIG. 21 is a block diagram illustrating a configuration of a chip control circuit 22A of the memory system according to the fourth embodiment.
  • the memory 5 includes a chip control circuit 22A in FIG. 21 instead of the chip control circuit 22 in FIG.
  • the chip control circuit 22A includes a command decoder 34 and a bank address control circuit 35 in addition to the components of the chip control circuit 22 of FIG.
  • the column address control circuit 36 and the row address control circuit 37 provide functions similar to the column address control circuit 42 and the row address control circuit 41 of FIG. 4 and also provide functions according to the fourth embodiment.
  • FIG. 21 only the command decoder 34, the bank address control circuit 35, the column address control circuit 36, and the row address control circuit 37 are shown for simplification of illustration.
  • the memory controller 3 issues a write command before the activation command, as in the first embodiment.
  • the memory controller 3 issues a special write command (first write command FW) including a part of the row address of the subarray including the memory cell to which data is written as a write command.
  • first write command FW a special write command including a part of the row address of the subarray including the memory cell to which data is written as a write command.
  • the write command a part of the row address of the subarray activated by the subsequent activation command is given in advance, so that the memory 5 can select the subarray to be activated prior to the reception of the activation command.
  • the command decoder 34 recognizes the fast write command, thereby generating a bank address and a column address as a target of the write operation, and further generates a sub-array row address.
  • the row address of the subarray is an address that designates the subarray (FIG. 5) to be activated, and is a part of the row address.
  • the chip control circuit 22A outputs the bank address and column address used for these write operations to the address bus of the column address signal CA-n, and outputs the row address to the address bus of the row address signal RA-n.
  • the row address of the subarray activates the subarray selection signal SUBASEL corresponding to the subarray activated when the next activation command is issued (FIG.
  • the memory 5 can perform the above operation when it receives the first write command before receiving the activation command.
  • FIG. 22 is a circuit diagram showing a configuration of an equalize circuit connected to the bit line of the memory system according to the fourth embodiment.
  • the bit line equalize circuit of FIG. 8 includes a circuit for fixing a pair of bit lines BTL and / BTL to voltage VBTL by a first bit line equalize signal BTLEQ1, and a second bit line equalize The signal BTLEQ2 separates the pair of bit lines BTL and / BTL into circuits that equalize the same voltage.
  • the first bit line equalize signal BTLEQ1 signal is further separated into signals BTLEQ10 and BTLEQ11, the signal BTLEQ10 is used to fix the voltage VBTL of one bit line BTL, and the other bit line / BTL
  • the signal BTLEQ11 may be used to fix the voltage VBTL.
  • FIG. 23 is a circuit diagram showing a configuration of a sub-array selection switch SASW in the memory system according to the fourth embodiment. According to the sub-array selection switch SASW in FIG. 23, in the sub-array selection switch SASW in FIG. Done.
  • FIG. 24 is a timing chart showing waveforms of signals when a data write operation according to the fourth embodiment is performed.
  • FIG. 24 shows an example in which the time period tRC (W) of the data write operation according to the first embodiment is further shortened.
  • FIG. 24 shows the internal state of the memory 5 when the time period tRCD (W) is a negative value according to the first embodiment.
  • a special fast write command FW is used instead of the write command W.
  • the first write command FW is input prior to the activation command A of the corresponding bank. That is, the time period tRCD (W) has a negative value.
  • the first write command FW is characterized in that a part of the row address of the sub-array can be designated in addition to the normal column address and column bank address.
  • the bit line equalize signal BTLEQ1 is deactivated and the subarray selection signal SUBASEL is activated. Further, the column selection line CSL is activated almost simultaneously.
  • the pair of signal lines LIO and / LIO of the LIO bus changes from the voltage VBTL to the voltage VARY (or higher voltage). With this operation, the pair of bit lines BTL and / BTL corresponding to the unselected column selection line CSL operates in the same manner as in the first embodiment.
  • the activation of the column selection line CSL causes the pair of bit lines BTL, / LIO from the pair of signal lines LIO, / LIO of the LIO bus.
  • a current flows into the BTL, and the pair of bit lines BTL and / BTL are both fixed to the voltage VARY.
  • the change from the voltage VBTL to the voltage VARY of the pair of bit lines BTL and / BTL corresponding to the selected column selection line CSL is performed under the activation of the bit line equalization signal BTLEQ2, the pair of bit lines BTL. , / BTL voltage equalization is continued.
  • the bit line equalize signal BTLEQ2 is deactivated after the elapse of the time period tDF (A) since the activation command A was received.
  • the write operation is started by supplying write data to the pair of signal lines LIO and / LIO of the LIO bus via the pair of signal lines GIO and / GIO of the GIO bus (time period t (iWR)).
  • tDF time period since both of the pair of bit lines BTL and / BTL are at the voltage VARY in advance, only the transition from “H” to “L” occurs in the bit line.
  • the chip control circuit 22A of the memory 5 activates the subarray specified by the row address of the first write command, and sets the column selection line specified by the column address of the first write command.
  • the bit line voltage corresponding to the activated column selection line is set to an upper limit voltage.
  • the time period tWR becomes longer due to the time required for the transition from “L” to “H” of the bit line.
  • the time period tWR is shortened.
  • a stable write operation is guaranteed.
  • the time period tRC (W) can be further shortened.
  • Embodiment 5 a configuration for further speeding up the write operation by a method different from that of the first embodiment will be described.
  • FIG. 25 is a block diagram illustrating a configuration of the memory controller 3A of the memory system according to the fifth embodiment.
  • 25 includes a control circuit 11A and a timing register 13A instead of the control circuit 11 and the timing register 13 of the memory controller 3 of FIG.
  • the timing register 13 ⁇ / b> A stores a plurality of timing parameters related to the operation of the memory 5. These timing parameters include time periods tRCD, tRP, CL, WL1, and WL2.
  • the time period tRCD indicates a minimum value of a time difference from when an activation command for a certain bank is issued until a read command and a write command can be issued for the same bank.
  • the time periods tRP and CL are the same as those in the first embodiment.
  • the time period WL1 is a time difference from when the write command is issued to when data is transmitted from the memory controller 3A to the memory 5, and indicates the length of the time period equal to the write latency (WL) conforming to the JEDEC standard.
  • the time period WL2 is a time difference from when the write command is issued to when data is transmitted from the memory controller 3A to the memory 5, and indicates a length of time period shorter than the write latency (WL) based on the JEDEC standard.
  • the control circuit 11A is characterized by switching the write latency time periods WL1 and WL2 as appropriate according to the operating state.
  • the control circuit 11A uses the time period WL1 in a normal write operation in accordance with the JEDEC standard, and uses the time period WL2 in a write operation in which the time period tRC (W) is shortened.
  • time period WL2 is also referred to as a “third time period”, and the time period WL1 is also referred to as a “fourth time period”.
  • the operating state of the memory system may be set, for example, by the memory controller 3A receiving a control signal from the processor 1, or by providing a signal source fixed in the activated state inside the memory controller 3A.
  • FIG. 26 is a timing chart showing a data write operation according to the fifth embodiment.
  • the write latency can be set to a time period WL2 that is shorter than the time period WL defined in the JEDEC standard.
  • the time period WL2 may be set to 4 clock cycles.
  • FIG. 26 shows the case where a negative time period WL2 is used.
  • the control circuit 11 of the memory controller 3 transmits data from the memory controller 3 to the memory 5 at the moment separated by the time period WL 1 or the time period WL 2 with reference to the moment when the write command W is issued. Start.
  • the control circuit 11 of the memory controller 3 only writes a time period equal to the absolute value of the time period WL2 based on the moment when the write command is issued when writing data to the memory 5. At the preceding moment, data transmission from the memory controller 3 to the memory 5 is started.
  • the time period WL2 may have a positive length shorter than the write latency (WL) conforming to the JEDEC standard.
  • the time period tRC (W) can be shortened by a method different from that of the first embodiment, and the write operation can be speeded up.
  • Embodiment 6 FIG. In the sixth embodiment, a memory system capable of speeding up a read operation will be described.
  • FIG. 27 is a block diagram illustrating a configuration of the memory controller 3B of the memory system according to the sixth embodiment.
  • the memory controller 3B in FIG. 27 includes a control circuit 11B and a timing register 13B instead of the control circuit 11 and the timing register 13 of the memory controller 3 in FIG.
  • the timing register 13B stores a plurality of timing parameters related to the operation of the memory 5. These timing parameters include time periods tRC (W) and tRC (R).
  • the time period tRC (W) indicates the shortest time during which an activation command for a certain bank can be issued continuously when data is written to the memory.
  • the time period tRC (R) indicates the shortest time during which an activation command for a certain bank can be issued continuously when data is read from the memory.
  • the control circuit 11B controls the memory based on the time period tRC (R).
  • time period tRC (R) is also referred to as a “fifth time period”.
  • the memory of the memory system according to the sixth embodiment is configured similarly to the memory 5 of the memory system according to the first embodiment, for example.
  • the memory 5 may include a chip control circuit in which a circuit portion related to the tRC (W) shortening signal is removed from the chip control circuit 22 in FIG. 4 instead of the chip control circuit 22 in FIG.
  • the memory of the memory system according to the sixth embodiment is referred to as “memory 5”.
  • the chip control circuit 22 of the memory 5 When the chip control circuit 22 of the memory 5 writes data to the memory 5, it writes the same data to at least two of the plurality of banks. When reading data from the memory 5, the chip control circuit 22 of the memory 5 reads data from one of at least two banks in which the same data of the plurality of banks is written. The control circuit 11B of the memory controller 3B controls the memory 5 so as to execute such writing and reading.
  • FIG. 28 is a block diagram for explaining an operation of writing data to the memory 5 of the memory system according to the sixth embodiment.
  • FIG. 29 is a block diagram for explaining a data read operation from the memory 5 of the memory system according to the sixth embodiment.
  • the memory 5 in FIGS. 28 and 29 has the same configuration as the memory 5 in FIG.
  • a case where data is written to the banks B1 and B2 connected to the common internal data bus DB1 and data is read from the banks B1 and B2 will be described.
  • banks B1 and B2 are simultaneously activated with the same row address. That is, the row address signals RA-1 and RA-2 are the same address, and the row address activation signals RAE-1 and RAE-2 are activated simultaneously.
  • the word lines WDL having the same address in the memory array 23-n are simultaneously activated.
  • the same column addresses of these two banks B1 and B2 are simultaneously activated. That is, the column address signals CA-1 and CA-2 are the same address, and the column address activation signals CAE-1 and CAE-2 are activated simultaneously.
  • these two banks B1 and B2 are simultaneously supplied with the same write data from the internal data bus DB1.
  • the time period tRCD (W) having a value smaller than the time period tRCD (R) is set, or the time period tRCD (W) having a negative value is set.
  • the time period tRC (W) may be shortened by issuing a write command before issuing an activation command.
  • the write latency time period WL may be shortened or set to a negative value to shorten the time period tRC (W).
  • the memory controller 3B and the memory 5 operate as follows.
  • the control circuit 11B of the memory controller 3B reads the first and second activation commands at intervals shorter than the time period tRC (R) in order to read data from at least two banks in which the same data among the plurality of banks is written. Is issued, a second command including a bank address different from the bank address included in the first activation command is issued.
  • the chip control circuit 22 of the memory 5 When the chip control circuit 22 of the memory 5 receives the first and second activation commands, the chip control circuit 22 of the memory 5 responds to the first activation command and the first of the at least two banks in which the same data is written. Data is read from one bank, and data is read from a second bank of at least two banks in which the same data is written in response to a second activation command. In this way, the first and second activation commands are issued at intervals shorter than the time period tRC (R) to read data from the memory 5, thereby equivalently shortening the time period tRC (R), The read operation of the memory system can be speeded up.
  • banks B1 and B2 are activated separately.
  • the row address signal RA-1 is applied to the bank B1 and the row address activation signal RAE-1 is activated to access the bank B1, and the row address signal RA different from the row address signal RA-1 is accessed to the bank B2.
  • -2 is applied to activate the row address activation signal RAE-2.
  • the word lines WDL of the memory array 23-n are activated independently.
  • column addresses are activated independently in these two banks B1 and B2.
  • the column address signal CA-1 is supplied to the bank B1 and the column address activation signal CAE-1 is activated.
  • the column address signal CA1 is supplied to the bank B2.
  • CA-2 is applied, and the column address activation signal CAE-2 is activated. Thereafter, reading is similarly controlled.
  • the column selection lines CSL of the different column addresses of the memory array 23-n are alternately activated by the even-numbered read operation and the odd-numbered read operation.
  • Data is alternately read from the memory cells C at different addresses of B2, and the read data is read to the internal data bus DB1.
  • data is alternately read from memory cells C having different row and different column addresses in two banks having different bank addresses and having the same data written therein.
  • the time period tRC that defines the cycle of read access in the same bank using the two banks B1 and B2. (R) allows two read operations. That is, the time period tRC (R) can be equivalently reduced to 1 ⁇ 2 on average as compared with the first embodiment.
  • FIG. 28 and FIG. 29 are examples in the case where the memory 5 includes four banks B1 to B4. Even when the memory 5 includes two banks, eight banks, etc., the read operation can be similarly accelerated. Can do.
  • FIG. 28 and FIG. 29 show an example in which two banks are simultaneously written and read independently from two banks. However, even when data is simultaneously written in four banks and read independently from four banks, the read operation is similarly performed at high speed. Can be In this case, the time period tRC (R) can be equivalently shortened to 1 ⁇ 4 on average compared to the first embodiment.
  • FIG. 30 is a diagram illustrating an activation command used in the memory system according to the sixth embodiment.
  • FIG. 31 is a diagram illustrating a write command used in the memory system according to the sixth embodiment. 30 and 31, a case where the memory 5 and the memory controller 3B are LPDDR4-SDRAMs will be described.
  • FIG. 30 shows an example of an activation command for LPDDR4-SDRAM
  • FIG. 31 shows an example of a write command for LPDDR4-SDRAM.
  • Multiple banks have bank addresses that include multiple bits.
  • the chip control circuit 22 of the memory 5 writes data to the memory 5, the memory cell having the same row address in at least two banks each having a bank address including at least one same bit value among the plurality of banks. Write the same data.
  • the control circuit 11B of the memory controller 3B controls the memory 5 so as to execute such writing.
  • the memory controller 3B and the memory 5 degenerate one bit among a plurality of bits of the bank address using mode register setting or fuse trimming that is not defined in the JEDEC standard. Enter the mode.
  • the activation command in FIG. 30 is configured using four periods (four rising edges) of the clock CK_t, and the first two periods are referred to as a command part ACT-1, and the latter two periods are referred to as ACT-2. Call.
  • the activation command of FIG. 30 includes a bank address consisting of three bits BA2, BA1, and BA0, so that eight banks can be addressed.
  • the bit CA3 of the second period of the command part ACT-1 is empty.
  • the write command in FIG. 31 is configured using four periods (four rising edges) of the clock CK_t, the first two periods are referred to as a command part WR-1, and the latter two periods are referred to as a command part CAS-2. Call it.
  • the write command of FIG. 31 also includes a bank address consisting of three bits BA2, BA1, BA0, so that eight banks can be addressed.
  • the bit CA3 of the second period of the command part WR-1 is empty.
  • the bit BA0 of the bank address is degenerated, so that the same data can be simultaneously written in the banks B1 and B2.
  • time period tRC (R) can be equivalently shortened to 1 ⁇ 2 compared to the first embodiment.
  • the BD bit for determining the presence / absence of degeneration can be set as in the case of the activation command and the write command.
  • FIG. 32 is a timing chart showing a data write operation according to a modification of the sixth embodiment.
  • FIG. 32 illustrates a case where the memory 5 and the memory controller 3B are LPDDR4-SDRAMs.
  • the memory controller 3B and the memory 5 are in a mode in which at least one bit of the plurality of bits of the bank address is degenerated using mode register setting or fuse trimming that is not defined in the JEDEC standard. enter.
  • the memory controller 3B and the memory 5 operate by linking with the shortening of the time period tRC (W) according to the first to fourth embodiments. That is, in a write operation, a write command is issued before issuing an activation command.
  • W time period
  • the non-degenerate bits in the bank addresses of the write command and the activation command are the same (that is, the bank address includes bits BA1 and BA0, the bit BA0 is degenerated, and the activation command and the write command Bits BA1 have the same value).
  • the issue of the activation command and the write operation in the memory 5 are performed in a state where the bit BA0 of the bank address is degenerated. That is, word lines WDL having the same row address in a plurality of banks are simultaneously activated, column selection lines CSL having the same column address in the same plurality of banks are simultaneously selected, and the same data is simultaneously transmitted to these Written to the bank.
  • This state continues until a precharge command is issued having a bank address that includes the same non-degenerate bit.
  • a precharge command a plurality of simultaneously activated banks are precharged simultaneously.
  • the read operation is performed independently without degeneration of the bank address.
  • the time period tRC (R) when the read operation is performed can be set independently of the time period tRC (W) when the write operation is performed.
  • the use efficiency of the external data bus is improved when the column operation is successively executed for different banks.
  • FIG. 33 is a block diagram illustrating a configuration of the memory controller 3C of the memory system according to the seventh embodiment.
  • a memory controller 3C in FIG. 33 includes a control circuit 11C and a timing register 13C instead of the control circuit 11 and the timing register 13 in the memory controller 3 in FIG.
  • the timing register 13 ⁇ / b> C stores a plurality of timing parameters related to the operation of the memory 5. These timing parameters include time periods tRRD, tCCD, and tFAW.
  • the time period tRRD is the length of the time period from when an activation command for a certain bank is issued until an activation command for a different bank can be issued, that is, the activation commands for two different banks are consecutive. The shortest time that can be issued.
  • the time period tCCD is the length of the time period from when a write command or read command for a certain bank is issued until it becomes possible to issue a write command or read command for the next arbitrary bank, that is, any two banks This indicates the shortest time in which a write command or a read command can be issued continuously.
  • the time period tFAW is the length of the time period from when four activation commands are successively issued to the four banks until the activation command can be issued to another bank, ie, Indicates the shortest time in which four activation commands can be issued in succession.
  • the time period tCCD is set equal to the time period tRRD, and the time period tFAW is set equal to four times the time period.
  • the control circuit 11C controls the memory 5 based on the time periods tRCD, tCCD, and tFAW.
  • time periods tRRD, tCCD, and tFAW are also referred to as “sixth to eighth time periods”, respectively.
  • FIG. 34 is a block diagram showing the row decoder 24-n and its periphery of the memory system according to the seventh embodiment.
  • the row decoder 24-n includes, for each word line WDL0, WDL1, WDL2,..., Individual decoders 81-0, 81-1, 81-2,... And WDL drivers 82-0, 82-1, 82-2,. Is provided.
  • Each of the WDL drivers 82-0, 82-1, 82-2,... Is supplied with a voltage VPP from a VPP generation circuit 91 that is an external power source of the row decoder 24-n.
  • the voltage when each word line WDL0, WDL1, WDL2,... Is activated is determined by the voltage VPP.
  • the VPP generation circuit 91 operates in response to the operation clock, boosts the voltage VDD supplied from the outside of the memory 5, and generates and outputs a higher voltage VPP.
  • FIG. 35 is a circuit diagram showing a configuration of the VPP generation circuit 91 of FIG.
  • the VPP generation circuit 91 is a switched capacitor circuit including switches SW1 to SW19 and boost capacitors Ca1 to Ca4.
  • the VPP generation circuit 91 has the following two operation modes that can be switched in accordance with a control signal from the chip control circuit 22. In the first operation mode, the input voltage is boosted by 2.5 times. In the second operation mode, the input voltage is boosted three times. In the first operation mode, the amount of current that can be supplied is not large, but it has high power conversion efficiency and power consumption can be kept low. In the second operation mode, the power conversion efficiency is deteriorated, but the current that can be supplied can be increased. In FIG.
  • the following signals are applied to the switches SW1 to SW19 according to the operation mode.
  • the signal ⁇ 1 matches the two-phase operation clock, and the signal ⁇ 2 matches the inverted signal of the operation clock.
  • the signal ⁇ 1A is always off in the first operation mode and coincides with the operation clock in the second operation mode.
  • the signal ⁇ 1B coincides with the operation clock in the first operation mode, and is always off in the second operation mode.
  • the switches SW3, SW7, SW13, SW15 are always off.
  • FIG. 36 is a timing chart showing a data read operation according to the seventh embodiment.
  • FIG. 36 shows a case where a plurality of banks are continuously read-accessed.
  • FIG. 36 shows the clock CLK and command CMD transmitted from the memory controller 3 to the memory 5 and the transmission of data on the external data bus.
  • On the external data bus represent read data read from the banks B1, B2, B3,.
  • the command CMD is fetched at the rising edge of the clock CLK.
  • tCCD 4 ⁇ tCK
  • tRRD 4 ⁇ tCK
  • tFAW 16 ⁇ tCK
  • tRCD (R) 7 ⁇ tCK
  • tBL 1/2 ⁇ tCK
  • FIG. 37 is a timing chart showing a data write operation according to the seventh embodiment.
  • FIG. 37 shows a case where a plurality of banks are continuously accessed for writing.
  • FIG. 37 also shows the clock CLK and command CMD transmitted from the memory controller 3 to the memory 5, and the transmission of data on the external data bus.
  • On the external data bus represent write data written from the memory controller 3 to each bank B1, B2, B3,. Commands are captured on the rising edge of CLK.
  • tCCD 4 ⁇ tCK
  • tRRD 4 ⁇ tCK
  • tFAW 16 ⁇ tCK
  • tRCD (R) 7 ⁇ tCK
  • tBL 1/2 ⁇ tCK
  • FIG. 36 and FIG. 37 show an example in the case of a memory system compliant with the DDR3-SDRAM JEDEC standard.
  • Other SDRAMs such as DDR1 / 2 / 4-SDRAM and LPDDR2 / 3 / 4-SDRAM can operate in the same manner as in FIG. 36 and FIG.
  • the time period tCCD ie, the minimum value of the cycle time between write operations or read operations by successive column commands is constrained by the access timing in the memory array when continuously executed in the same bank.
  • this restriction refers to the capability of the IO switch IOSW arranged in the sense amplifier SA and the data in the bank used for data transmission between the column selection line CSL and the sense amplifier SA. It is practically defined by the parasitic resistance and parasitic capacitance of the bus (GIO bus and LIO bus).
  • the minimum cycle time of column operation defined by the JEDEC standard is about 4 to 5 nanoseconds in any of the standards of DDR1, DDR2, DDR3, and DDR4-SDRAM.
  • the minimum cycle time of time period tRRD is defined mainly depending on the supply capability of the VPP generation circuit used for activating word line WDL. Furthermore, from the viewpoint of the average consumption current of the boosted voltage, there is a restriction on the number of activation commands that may be issued within a certain time, that is, the time period tFAW. Accordingly, in the JEDEC standard, 1/4 ⁇ tFAW (min)> tRRD (min)> tCCD (min).
  • the VPP generation circuit 91 applies to the word line WDL a voltage VPP set so that the time period tCCD is equal to the time period tRRD and the time period tFAW is equal to four times the time period tRRD.
  • the memory 5 sends an activation command and a write command from the chip control circuit 22 with a period equal to the time period tRRD when writing data continuously to the memory 5. It is configured to be receivable.
  • an activation command and a read command can be received from the chip control circuit 22 with a period equal to the time period tRRD.
  • the control circuit 11 of the memory controller 3 issues an activation command and a write command at a period equal to the time period tRRD when data is continuously written to the memory 5. Similarly, when the control circuit 11 of the memory controller 3 continuously reads data from the memory 5, it issues an activation command and a read command with a period equal to the time period tRRD.
  • the upper limit voltage of the word line When the memory 5 is in the first operation mode, the upper limit voltage of the word line has a first voltage value, the time period tCCD is shorter than the time period tRRD, and the time period tFAW is more than four times the time period tRRD. long.
  • the upper limit voltage of the word line When the memory 5 is in the second operation mode, the upper limit voltage of the word line has a second voltage value higher than the first voltage value, the time period tCCD is equal to the time period tRRD, and the time period tFAW is the time Equal to four times the period tRRD.
  • the control circuit 11 of the memory controller 3 transmits a control signal (second control signal) for selectively operating the memory 5 in one of the first operation mode and the second operation mode to the memory 5.
  • the chip control circuit 22 of the memory 5 receives from the memory controller 3 a control signal for selectively operating the memory 5 in one of the first operation mode and the second operation mode, One of the operation mode and the second operation mode
  • the operation of the VPP generation circuit 91 in FIG. 35 will be specifically described.
  • the operation is performed in the mode in which the input voltage VDD is boosted three times. .
  • a current of (input voltage ⁇ 3 times-target value of boosted voltage) ⁇ Ca can be supplied, and the power conversion efficiency is (target value of boosted voltage / (3 ⁇ input voltage). )).
  • the power conversion efficiency is (target value of boosted voltage / (2. 5 ⁇ input voltage)).
  • increasing the current supply capability of the booster circuit causes an increase in the layout area of the booster circuit.
  • the step-up ratio is changed according to the control signal instructing the operation mode, and the current supply capability associated with the voltage VPP is increased without significantly increasing the layout area of the VPP generation circuit. be able to.
  • the operation of maximizing the occupancy ratio of the external data bus can be performed without significantly affecting the chip area.
  • boost ratios of 2.5 times and 3 times described above are examples, and the optimum boost ratio is set according to the relationship between the input voltage in accordance with each standard and the boost voltage required for the memory array 23-n.
  • the voltage VPP set so that the time period tCCD is equal to the time period tRRD and the time period tFAW is equal to four times the time period tRRD is applied to the word line WDL.
  • FIG. FIG. 38 is a block diagram showing a configuration of the VPP generation circuit 100 of the memory system according to the eighth embodiment.
  • the VPP generation circuit 100 includes a logical sum operation (OR) circuit 101, a logical product operation (AND) circuit 102, and VPP generation circuit portions 103 and 104.
  • the VPP generation circuit 100 includes a plurality of VPP generation circuit portions 103 and 104.
  • Each of VPP generation circuit portions 103 and 104 is configured in the same manner as VPP generation circuit 91 in FIG.
  • the VPP generation circuit portions 103 and 104 include capacitors having different capacities.
  • the VPP generation circuit 100 selectively enables the VPP generation circuit portions 103 and 104 according to the enable signal, the DDR3L signal for instructing the operation mode, and the large current mode signal.
  • the enable signal is input to the AND operation circuit 102 and the VPP generation circuit portion 103.
  • the DDR3L signal and the large current mode signal are input to the logical sum operation circuit 101, and the output signal of the logical sum operation circuit 101 is input to the VPP generation circuit portion 104.
  • the VPP generation circuit 100 is used in a memory that supports two standards that differ only in input voltage, such as DDR3-SDRAM and DDR3L-SDRAM.
  • the VPP generation circuit portion 103 includes a capacitor having a sufficient capacitance value for generating a voltage for the DDR3-SDRAM, while the VPP generation circuit portion 104 provides a voltage for generating the voltage for the DDR3L-SDRAM.
  • a capacitor with a large capacitance value is provided.
  • VPP generation circuit portion 103 When the DDR3L signal and the large current mode signal are deactivated, only the VPP generation circuit portion 103 is enabled. When one of the DDR3L signal and the large current mode signal is activated, the VPP generation circuit portion 103 is activated. , 104 are enabled.
  • the boosted voltage VPP can be supplied with a sufficiently large current to improve the utilization efficiency of the external data bus. it can.
  • FIG. 39 is a block diagram illustrating a configuration of the memory controller 3D of the memory system according to the ninth embodiment.
  • the memory controller 3D of FIG. 39 includes a control circuit 11D and a timing register 13D instead of the control circuit 11C and the timing register 13C of the memory controller 3C of FIG.
  • the timing register 13D stores a plurality of timing parameters related to the operation of the memory 5D. These timing parameters include time periods tRRD1, tRRD2, tCCD, and tFAW.
  • the time periods tRRD1 and tRRD2 are the lengths of time periods from when an activation command for a certain bank is issued until an activation command for a different bank can be issued, that is, activation commands for two different banks.
  • the plurality of time periods tRRD1, tRRD2 are characterized by having different lengths according to different combinations of the two banks.
  • Other time periods tCCD and tFAW are the same as those in the seventh embodiment.
  • the memory controller 3D is characterized by performing control so that the time periods tRRD1 and tRRD2 are properly used in accordance with the bank addresses of successive activation commands.
  • tRRD1 ⁇ tRRD2 if the lengths of the time periods tRRD1 and tCCD are set to be the same, the operation according to the first embodiment can be performed although the order of activating the banks is limited.
  • FIG. 40 is a block diagram illustrating a configuration of the memory 5D of the memory system according to the ninth embodiment.
  • the memory 5D includes a chip control circuit 22D instead of the chip control circuit 22 of the memory 5 of FIG. 3, and further includes power supply circuits 27-1 and 27-2.
  • the power supply circuits 27-1 and 27-2 include VPP generation circuits 91-1 and 91-2 and VARY generation circuits 92-1 and 92-2, respectively.
  • VPP generation circuits 91-1 and 91-2 supply voltage VPP to row decoders 24-1 to 24-4, and VARY generation circuits 92-1 and 92-2 supply voltage VARY to memory arrays 23-1 to 23-4.
  • the chip control circuit 22D controls the power supply circuits 27-1 and 27-2.
  • the power supply circuit occupies a large area in the chip, and further, it is necessary to reduce the impedance between the power supply circuit and the power consumption place (mainly the memory array and the row decoder). For this reason, there are cases where a plurality of power supply circuits are arranged and each one of the power supply circuits is shared among a plurality of banks.
  • the power supply circuit 27-1 is shared between the banks B1 and B2
  • the power supply circuit 27-2 is shared between the banks B3 and B4.
  • the power consumption of the VPP generation circuits 91-1 and 91-2 for driving the word lines WDL and the generation of VARY for driving the bit lines BTL of the memory array 23-n are examples of the power supply circuits.
  • FIG. 41 is a timing chart showing a data write operation according to the comparative example of the ninth embodiment.
  • FIG. 42 is a timing chart showing a data write operation according to the ninth embodiment. 42 shows, as internal states of the memory 5D, write operations iWR1, iWR2, iWR3,... To the memory array 23-n.
  • the command CMD “W1 (8)” indicates a command for the BL8 write operation to the bank B1
  • “W2 (4)” and “W3 (4)” indicate the BL4 write operation to the banks B2 and B3, respectively.
  • Indicates a command That is, simultaneously with the write command, burst length (BL) information is given to the memory 5D, and BL8 write or BL4 write can be selected based on the BL information.
  • BL burst length
  • the write operation (internal state iWR1) to the memory array 23-n is performed.
  • the write operation (W2 (4)) is characterized in that the write operation (internal state iWR1) is performed in the memory array 23-n after the elapse of the time period tD (W) after the input of 4 burst data.
  • unit data amount When the amount of data written in a single write operation is called “unit data amount”, the unit data amount increases especially when the burst length BL is long, and the possibility of actually writing an excessive amount of data increases. In that case, a DRAM compliant with the JEDEC standard prohibits writing of data other than necessary data by using a write mask function. However, in this case, it is necessary to wait for the burst length specified by the mode register etc. before performing the internal write operation on the external data bus even though the amount of data that needs to be written is small. This increases the time that wasteful data occupies. On the other hand, according to the memory system according to the ninth embodiment, since a burst length suitable for valid data can be designated for each write command, the effective utilization efficiency of the external data bus can be improved.
  • This operation is also applicable to the burst chop (BC4) operation of DDR3-DRAM conforming to the JEDEC standard.
  • FIG. 43 is a diagram illustrating a write command used in the memory system according to the ninth embodiment.
  • FIG. 43 shows an example in which the method of giving the burst length BL information to the memory 5D simultaneously with the write command described with reference to FIG. 42 is applied to the JEDEC standard LPDDR4-SDRAM.
  • the memory controller 3D and the memory 5D enter the variable burst length mode according to the ninth embodiment by using mode register setting or fuse trimming that is not defined in the JEDEC standard.
  • tCCD (min) 8 ⁇ tCK
  • reading and writing of data in the memory is performed in units of 16 bursts. Therefore, particularly when the LPDDR4-SDRAM is operated at a low frequency, use efficiency of the external data bus is wasted.
  • FIG. FIG. 44 is a block diagram illustrating a configuration of the memory controller 3E of the memory system according to the tenth embodiment.
  • a memory controller 3E in FIG. 44 includes a control circuit 11E and a timing register 13E instead of the control circuit 11 and the timing register 13 of the memory controller 3 in FIG.
  • the timing register 13E stores a plurality of timing parameters related to the operation of the memory 5. These timing parameters include a plurality of time periods tWRT1, tWRT2,.
  • the plurality of time periods tWTR1, tWTR,... Are transmitted from the memory controller 3 to the memory 5 in order to write data to the first bank of the plurality of banks, and then the second of the plurality of banks.
  • the plurality of time periods tWTR1, tWTR,... Have different lengths depending on different combinations of the first and second banks.
  • the control circuit 11E reads data from the second bank immediately after writing data to the first bank, the control circuit 11E transmits the data to the memory 5 and then the length corresponding to the combination of the first and second banks. After waiting for time periods tWTR1, tWTR2,..., A read command is issued.
  • time periods tWTR1, tWTR,... are also referred to as “ninth time periods”.
  • FIG. 45 is a block diagram for explaining a data write / read operation to / from the memory 5 of the memory system according to the tenth embodiment.
  • the memory 5 in FIG. 45 is actually configured in the same manner as the memory 5 in FIG. 3, but for the purpose of explanation, the components omitted in FIG. 3 are shown.
  • Internal data buses DB1 and DB2 are connected to banks B1 to B4 via input / output (IO) control circuits 26-1 to 26-4 as described with reference to FIG.
  • IO input / output
  • the internal data buses DB1 and DB2 are referred to as “interbank data buses”.
  • the in-bank data buses IO-1 to IO-6 include the GIO bus GIOB and the LIO bus LIOB in the memory array 23-n of FIG.
  • the row address signal, the column address signal, and their activation signals in FIG. 3 are omitted for the sake of simplicity of illustration.
  • write data is transmitted from the memory controller 3E to the memory 5 via the memory bus 4.
  • the inter-bank data buses IO-1 to IO-4 of the banks B1 to B4 are further connected via the interbank data bus DB1 or DB2 and the IO control circuit 26-n. Then, the data is transferred to the memory arrays 23-1 to 23-4.
  • the read data is transmitted from the memory 5 to the memory controller 3E in the reverse order of the write operation.
  • FIG. 46 is a timing chart showing data write and read operations according to the first example of the tenth embodiment.
  • FIG. 46 shows a case where data is written to a certain bank and subsequently read access is made to the same bank.
  • a write command W is issued, and then, after a write latency time period WL has elapsed, write data WD is applied to the external data bus.
  • the write data dbWR appears on the interbank data bus DB1.
  • the write data ioWR appears on the in-bank data bus IO-1.
  • a read command R is input to the external command bus after a time period tWTR representing the time from internal write to internal read, and the time period tD (R ),
  • the read data appears on the bank data bus IO-1. Due to a delay in data transfer inside the memory 5, read data dbRD appears on the inter-bank data bus DB1.
  • the read data QD is read to the external data bus after the elapse of the time period CL from the issue of the read command R.
  • the transition from the write operation to the read operation for the same bank requires at least “tWTR + CL ⁇ tCK” time.
  • a single value time period tWTR is used regardless of whether the bank into which data is written and the bank from which data is subsequently read out are the same or different.
  • FIG. 47 is a timing chart showing data write and read operations according to the second example of the tenth embodiment.
  • FIG. 47 shows a case where data is written to a certain bank and subsequently data is read from a different bank.
  • a write command W1 to the bank B1 is issued, and then the write data WD is given to the external data bus after the write latency time period WL elapses.
  • the write data dbWR appears on the interbank data bus DB1.
  • the write data ioWR appears on the bank data bus IO-1 of the bank B1.
  • a read command R2 to the bank B2 is input to the command bus after the elapse of the time period tWTR indicating the time from the internal write to the internal read after the burst time of the external data bus ends.
  • tD the time period
  • read data appears on the bank data bus IO-2 of the bank B2.
  • tWTR can be shortened until it becomes possible to avoid data collision on the interbank data bus DB1. In the present embodiment, a case where tWTR is shortened to 0 is shown.
  • FIG. 48 is a block diagram illustrating a configuration of the memory controller 3E of the memory system according to the modification of the tenth embodiment.
  • the memory controller 3E of FIG. 48 is configured in the same manner as the memory controller 3E of FIG. 44, except that the number of time periods tWTR1, tWTR2, tWTR3,... Stored in the timing register 13E is different.
  • the values of the time periods tWTR1, tWTR2, and tWTR3 are different from each other, and the time periods tWTR1, tWTR2, and tWTR3 are selectively used according to the bank address of successive activation commands.
  • the time periods tWTR1, tWTR2, and tWTR3 are selectively used as follows.
  • the time period tWTR3 can be used when writing data to the same bank and then reading the data.
  • the time period tWTR2 can be used when writing data to different banks connected to the same interbank data bus and then reading the data.
  • the time period tWTR1 can be used when writing data to different banks connected to different interbank data buses and then reading the data.
  • the control circuit 11E holds information on whether or not the interbank data buses D1 and D2 are shared for each of the banks B1 to B4.
  • the control circuit 11E selects one of the time periods tWTR1, tWTR2, and tWTR3 based on the above conditions, and issues each command according to the selected time period.
  • FIG. 49 is a timing chart showing data write and read operations according to the third example of the tenth embodiment.
  • a case where data is written to a different bank and then data is read is shown.
  • a write command W1 to the bank B1 is issued, and the write data WD is applied to the external data bus after the write latency time period WL elapses.
  • the write data dbWR appears on the interbank data bus DB1.
  • the write data ioWR appears on the in-bank data bus IO-1.
  • the read command R3 to the bank B3 is input to the command bus, and the time period starts from that.
  • the time period tWTR can be shortened until it is possible to avoid data collision between writing and reading on the SDRAM interface 21 or the external data bus.
  • the use efficiency of the external data bus can be improved when the write operation is changed to the read operation.
  • a memory and a memory controller that hardly reduce the use efficiency of an external data bus even when data is written to and / or read from one or more banks by a command sequence including a precharge command. Furthermore, a memory system including these can be provided.
  • Bank address control circuit, 36 Column address control circuit, 37 ... row address control circuit, 41 ... row address control circuit, 42 ... Column address control circuit, 43 ... logical sum operation (OR) circuit, 44 ... AND operation circuit 51 ... Subarray, 52.
  • VPP generation circuit 101: OR operation circuit (OR), 102: logical product (AND) circuit, 103, 104 ... VPP generation circuit part, B1 ⁇ B4 ... Bank, BTL, BTL00 to BTL13 ... bit lines, C, C00 to C13 ... memory cells, Ca1 to Ca4 ... boost capacitors, CSL, CSL0, CSL1, CSL2 ... column selection line, CS: Cell capacitor, CT: Cell transistor, DB, DB1, DB2 ... internal data bus, GIOB ... GIO bus, IOSW: Input / output (IO) switch, IOT: Input / output (IO) transistor, LIOB, LIOB_1 to LIOB_3 ...
  • OR OR operation circuit
  • 102 logical product (AND) circuit
  • 103, 104 ... VPP generation circuit part, B1 ⁇ B4 ... Bank, BTL, BTL00 to BTL13 ... bit lines, C, C00 to C13 ... memory cells, Ca1 to Ca4
  • LIO bus, RBTL Parasitic resistance, SA00 to SA13 ... sense amplifier, SANT ... NMOS transistor, SAPT ... PMOS transistor, SASW: Subarray selection switch, SN ... Storage node, SW1 to SW19, SWW, SWR ... switch, T1 to T14 ... transistor, WDL, WDL0... Word line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Memory System (AREA)
  • Dram (AREA)

Abstract

A memory controller (3) is provided with: an SDRAM interface (21) connected to a memory (5); a control circuit (11) which controls the memory (5) by transmitting a plurality of commands to the memory (5) through the SDRAM interface (21); and a timing register (13) in which a plurality of timing parameters related to the operation of the memory (5) are stored. The timing parameters include a first time period (tRCD(W)) and a second time period (tRCD(R)) which indicate time differences between when an activation command is issued and when it becomes possible to issue a write command and a read command, respectively. The first time period (tRCD(W)) is shorter than the second time period (tRCD(R)). When writing data to the memory (5), the control circuit (11) issues a write command after a moment following the elapse of the time period (tRCD(W)) with reference to the moment of issuance of the activation command.

Description

半導体記憶システムSemiconductor memory system
 本発明は、DDRx-SDRAM又はLPDDRx-SDRAMの半導体記憶装置及び制御装置に関し、さらに、これらを含む半導体記憶システムに関する。本発明はまた、そのような半導体記憶装置のための制御方法に関する。 The present invention relates to a DDRx-SDRAM or LPDDRx-SDRAM semiconductor memory device and control device, and further to a semiconductor memory system including these. The present invention also relates to a control method for such a semiconductor memory device.
 本明細書において、DDRx-SDRAMは、DDR-SDRAM(Double Data Rate Synchronous Dynamic Random-Access Memory)、DDR2-SDRAM、DDR3-SDRAM、DDR4-SDRAM、及びそれらの派生規格及び後継規格を示す。また、本明細書において、LPDDRx-SDRAMは、LPDDR-SDRAM(Low Power DDR-SDRAM)、LPDDR2-SDRAM、LPDDR3-SDRAM、LPDDR4-SDRAM、及びそれらの派生規格及び後継規格を示す。 In this specification, DDRx-SDRAM indicates DDR-SDRAM (Double Data Rate Synchronous Dynamic Random-Access Memory), DDR2-SDRAM, DDR3-SDRAM, DDR4-SDRAM, and their derived standards and successor standards. In this specification, LPDDRx-SDRAM indicates LPDDR-SDRAM (Low Power DDR-SDRAM), LPDDR2-SDRAM, LPDDR3-SDRAM, LPDDR4-SDRAM, and their derived standards and successor standards.
 コンピュータなどのプロセッサのための外付けの一次記憶装置として、DRAMなどのメモリと、メモリコントローラとを含むメモリシステムが用いられる(例えば、特許文献1を参照)。高速アクセスが可能なDRAMとして、DDRx-SDRAM及びLPDDRx-SDRAMが知られている。DDRx-SDRAM及びLPDDRx-SDRAMのメモリは、その内部のメモリ空間に1個もしくは複数のバンクを含み、各々のバンクに対して独立にデータの書き込み及び読み出しアクセスを行うことが可能である。各バンクは、互いに直交する複数のロウ及び複数のカラムに沿って2次元的に配列にされたメモリセル群を含む。 A memory system including a memory such as a DRAM and a memory controller is used as an external primary storage device for a processor such as a computer (see, for example, Patent Document 1). DDRx-SDRAM and LPDDRx-SDRAM are known as DRAMs capable of high-speed access. The memory of the DDRx-SDRAM and the LPDDRx-SDRAM includes one or a plurality of banks in its internal memory space, and data writing and reading access can be performed independently for each bank. Each bank includes a group of memory cells arranged two-dimensionally along a plurality of rows and a plurality of columns orthogonal to each other.
 メモリ及びメモリコントローラは、複数の信号線を含むバス(以下、「メモリバス」という)を介して互いに接続される。メモリコントローラはメモリバスを介してメモリと通信することで、メモリに対してデータを書き込み、あるいは、メモリからデータを読み出す。メモリバスは、クロックを伝送するための信号線、コマンドを伝送するための複数の信号線(コマンドバス)、アドレスを伝送するための複数の信号線(アドレスバス)、及びデータを伝送するための複数の信号線(外部データバス)を含む。 The memory and the memory controller are connected to each other via a bus including a plurality of signal lines (hereinafter referred to as “memory bus”). The memory controller communicates with the memory via the memory bus, thereby writing data to the memory or reading data from the memory. The memory bus has a signal line for transmitting a clock, a plurality of signal lines (command bus) for transmitting a command, a plurality of signal lines (address bus) for transmitting an address, and a data line for transmitting data A plurality of signal lines (external data bus) are included.
 メモリコントローラからメモリにクロックを送ることにより、メモリ及びメモリコントローラは互いに同期する。 ∙ By sending a clock from the memory controller to the memory, the memory and memory controller are synchronized with each other.
 メモリコントローラはクロックに同期して、活性化(activate:ACT)コマンド、書き込み(WRITE)コマンド、読み出し(READ)コマンド、及びプリチャージ(precharge:PRE)コマンドを発行し、コマンドバスを介してこれらのコマンドをメモリに送る。活性化コマンドは、あるバンクアドレス及びあるロウアドレスを有するメモリセルに接続されたワード線と、ビット線を介してメモリセルに接続されたセンスアンプとを活性化する。書き込みコマンドは、あるバンクアドレス及びあるカラムアドレスを有するメモリセルへのデータの書き込みを指示する。読み出しコマンドは、あるバンクアドレス及びあるカラムアドレスを有するメモリセルからのデータの読み出しを指示する。プリチャージコマンドは、活性化コマンドによって活性化されたワード線及びセンスアンプを含むバンクを非活性化する。 The memory controller issues an activate (ACT) command, a write (WRITE) command, a read (READ) command, and a precharge (PRE) command in synchronization with the clock, and these commands are transmitted via the command bus. Send command to memory. The activation command activates a word line connected to a memory cell having a certain bank address and a certain row address, and a sense amplifier connected to the memory cell via a bit line. The write command instructs writing of data to a memory cell having a certain bank address and a certain column address. The read command instructs reading of data from a memory cell having a certain bank address and a certain column address. The precharge command deactivates the bank including the word line and the sense amplifier activated by the activation command.
 メモリコントローラはクロックに同期して、アドレスバスを介してメモリへの書き込み及び読み出しアクセスする番地を指定する。アドレスバスの各信号線は、バンクアドレスと、ロウアドレス又はカラムアドレスとに割り当てられる。 The memory controller designates the address for writing and reading access to the memory via the address bus in synchronization with the clock. Each signal line of the address bus is assigned to a bank address and a row address or a column address.
 メモリコントローラはクロックに同期して、データバスを介してメモリへデータの書き込み及び読み出しアクセスを行う。 The memory controller performs data write and read access to the memory via the data bus in synchronization with the clock.
 メモリコントローラがメモリに対してコマンド、バンクアドレス、ロウアドレス、及びカラムアドレスを送ることで、目的のアクセス位置のメモリセルに対する書き込み及び読み出しアクセスを可能とする。 The memory controller sends a command, a bank address, a row address, and a column address to the memory, thereby enabling write and read access to the memory cell at the target access position.
 より具体的には、メモリコントローラがクロックに同期して活性化コマンド、バンクアドレス、及びロウアドレスをメモリに送ることで、メモリは、目標となるバンクのロウアドレスに対応するワード線を選択し、該選択したワード線に接続されるメモリセル群の情報を対応するページラッチ群に格納する。該格納されたデータを「ページデータ」と呼ぶ。また、以上のように、活性化コマンドによって目標となるバンクの選択されたロウアドレスのページデータをページラッチ群に格納する動作を、「バンク活性化」と呼ぶ。 More specifically, the memory controller sends an activation command, a bank address, and a row address to the memory in synchronization with the clock, so that the memory selects a word line corresponding to the row address of the target bank, Information on the memory cell group connected to the selected word line is stored in the corresponding page latch group. The stored data is called “page data”. Further, as described above, the operation of storing the page data of the selected row address of the target bank in the page latch group by the activation command is referred to as “bank activation”.
 バンク活性化されたバンクに対して書き込みコマンド又は読み出しコマンドを発行することで、メモリに対するデータの書き込み動作又は読み出し動作が行われる。読み出し動作では、メモリコントローラが、読み出しコマンドと、活性化されたバンクのバンクアドレス及びカラムアドレスとをメモリに送り、これにより、目標となるバンクのカラムアドレスによって選択されたページデータの一部がメモリの外部に読み出される。書き込み動作では、メモリコントローラが、書き込みコマンドと、活性化されたバンクのバンクアドレス及びカラムアドレスと、書き込みデータとをメモリに送り、これにより、メモリは、目標となるバンクのカラムアドレスに対応するページデータの一部を、メモリの外部から送られた書き込みデータに書き換える。 By issuing a write command or read command to the bank activated bank, a data write operation or read operation is performed on the memory. In a read operation, the memory controller sends a read command and the bank address and column address of the activated bank to the memory, so that part of the page data selected by the column address of the target bank is stored in the memory. Is read out to the outside. In the write operation, the memory controller sends a write command, the bank address and column address of the activated bank, and the write data to the memory, so that the memory corresponds to the page corresponding to the column address of the target bank. Part of the data is rewritten to write data sent from the outside of the memory.
 続いて、メモリコントローラがプリチャージコマンド及びバンクアドレスをメモリに送ることで、活性化されたバンクのページデータが上記選択されたワード線に接続されたメモリセル群に再書き込みされ、該選択されたワード線が非活性化する。 Subsequently, when the memory controller sends a precharge command and a bank address to the memory, the page data of the activated bank is rewritten to the memory cell group connected to the selected word line, and the selected memory cell group is selected. The word line is deactivated.
 以上の一連の活性化コマンド、読み出しコマンド、書き込みコマンド、及びプリチャージコマンドを伴う動作により、メモリへの書き込み/読み出しアクセスが完了する。 The above-described series of activation command, read command, write command, and precharge command operations complete the write / read access to the memory.
 メモリコントローラは、活性化コマンド、書き込みコマンド、読み出しコマンド、及びプリチャージコマンドの各コマンドとともにバンクアドレスをメモリに送ることで、複数のバンクのうちの目標となる1つのバンクを選択し、このバンクに対する書き込み及び読み出しを制御する。 The memory controller selects a target bank from a plurality of banks by sending a bank address to the memory together with the activation command, the write command, the read command, and the precharge command. Controls writing and reading.
 複数のバンクを活性化して、これらのバンクにデータを書き込む複数の書き込みコマンドを連続的に発行すると、データを中断なく連続的に書き込むことができ、外部データバスをほぼ100%有効に使用することができる。同様に、複数のバンクを活性化し、これらのバンクからデータを読み出す複数の読み出しコマンドを連続的に発行すると、データを中断なく連続的に読み出すことができ、外部データバスをほぼ100%有効に使用することができる。 By activating multiple banks and issuing multiple write commands to write data to these banks continuously, data can be written continuously without interruption, and the external data bus must be used almost 100% effectively Can do. Similarly, when multiple banks are activated and multiple read commands for reading data from these banks are issued continuously, the data can be read continuously without interruption, and the external data bus is used almost 100% effectively. can do.
特表2009-526323号公報Special table 2009-526323
 しかしながら、アプリケーションによっては、よりランダムなアクセスが必要とされる場合がある。本明細書で、「ランダムなアクセス」とは、プリチャージコマンドを含むコマンドシーケンスによりデータの書き込み及び/又は読み出しを行う場合を示す。このコマンドシーケンスは、活性化コマンドによりあるバンクを活性化し、1つもしくは少数の書き込みコマンド及び/又は読み出しコマンドによりページデータへアクセスし、その後、プリチャージコマンドによりバンクを非活性化する一連の動作を含む。このようなランダムアクセス動作が繰り返される場合、メモリに対してデータを中断なく書き込むこと又は読み出すことができなくなり、外部データバスの使用効率が低下する。特に、同一バンクの異なるロウアドレスのページデータに書き込み及び/又は読み出しアクセスを繰り返す場合は、1回のアクセス毎に活性化コマンド及びプリチャージコマンドの発行が必要となり、外部データバスの使用効率がさらに低下するという問題が生じる。 However, more random access may be required depending on the application. In this specification, “random access” indicates a case where data is written and / or read by a command sequence including a precharge command. In this command sequence, a bank is activated by an activation command, page data is accessed by one or a small number of write commands and / or read commands, and then the bank is deactivated by a precharge command. Including. When such a random access operation is repeated, data cannot be written to or read from the memory without interruption, and the use efficiency of the external data bus decreases. In particular, when writing and / or reading access to page data of different row addresses in the same bank is repeated, it is necessary to issue an activation command and a precharge command for each access, and the use efficiency of the external data bus is further increased. The problem of deteriorating arises.
 JEDEC標準に準拠した現状の汎用のDDRx-SDRAM又はLPDDRx-SDRAMのタイミングパラメータを用いるメモリシステムでは、ランダムな書き込み及び/又は読み出しアクセスを行う場合、該メモリシステムの外部データバスの使用効率が動作クロックに対して低下するという問題がある。 In a memory system using the current general-purpose DDRx-SDRAM or LPDDRx-SDRAM timing parameters compliant with the JEDEC standard, when random write and / or read access is performed, the use efficiency of the external data bus of the memory system is the operation clock. There is a problem that it decreases.
 本発明の目的は、プリチャージコマンドを含むコマンドシーケンスにより1つ又は複数のバンクに対してデータを書き込む及び/又は読み出す場合であっても、外部データバスの使用効率を低下させにくい半導体記憶装置及び制御装置、さらに、これらを含む半導体記憶システムを提供することにある。本発明の目的はまた、そのような半導体記憶装置のための制御方法を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor memory device that hardly reduces the use efficiency of an external data bus even when data is written to and / or read from one or more banks by a command sequence including a precharge command. It is another object of the present invention to provide a control device and a semiconductor memory system including them. Another object of the present invention is to provide a control method for such a semiconductor memory device.
 本発明の第1の態様に係る制御装置によれば、
 DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置のための制御装置であって、
 前記半導体記憶装置は、少なくとも1つの内部データバスに接続された少なくとも1つのバンクを備え、前記バンクは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルと、前記複数のビット線にそれぞれ接続された複数のセンスアンプと、前記複数のセンスアンプにそれぞれ接続された複数のカラム選択線とを備えるメモリアレイを備え、
 前記制御装置は、前記半導体記憶装置に接続される通信回路と、複数のコマンドを発行して前記通信回路を介して前記半導体記憶装置に送信することにより前記半導体記憶装置を制御する制御回路と、前記半導体記憶装置の動作に関連する複数のタイミングパラメータを格納するタイミングレジスタとを備え、
 前記複数のコマンドは、
 あるバンクアドレス及びあるロウアドレスを有する記憶セルに接続されたワード線と、前記ビット線を介して前記記憶セルに接続されたセンスアンプとを活性化する活性化コマンドと、
 あるバンクアドレス及びあるカラムアドレスを有する記憶セルへのデータの書き込みを指示する書き込みコマンドと、
 あるバンクアドレス及びあるカラムアドレスを有する記憶セルからのデータの読み出しを指示する読み出しコマンドとを含み、
 前記複数のタイミングパラメータは、前記活性化コマンドを発行してから前記書き込みコマンドを発行可能になるまで時間差を示す第1の時間期間(tRCD(W))と、前記活性化コマンドを発行してから前記読み出しコマンドを発行可能になるまで時間差を示す第2の時間期間(tRCD(R))とを含み、前記第1の時間期間は前記第2の時間期間より小さな値を有し、
 前記制御回路は、
 前記半導体記憶装置にデータを書き込むとき、前記活性化コマンドを発行する瞬間を基準として前記第1の時間期間(tRCD(W))だけ離れた瞬間以後に、前記書き込みコマンドを発行し、
 前記半導体記憶装置からデータを読み出すとき、前記活性化コマンドを発行する瞬間を基準として前記第2の時間期間(tRCD(R))だけ離れた瞬間以後に、前記読み出しコマンドを発行する。
According to the control device of the first aspect of the present invention,
A control device for a semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM,
The semiconductor memory device includes at least one bank connected to at least one internal data bus, and the bank includes a plurality of memory cells arranged along a plurality of bit lines and a plurality of word lines orthogonal to each other. A memory array including a plurality of sense amplifiers respectively connected to the plurality of bit lines, and a plurality of column selection lines respectively connected to the plurality of sense amplifiers;
The control device includes a communication circuit connected to the semiconductor memory device, a control circuit that controls the semiconductor memory device by issuing a plurality of commands and transmitting the command to the semiconductor memory device via the communication circuit; A timing register for storing a plurality of timing parameters related to the operation of the semiconductor memory device;
The plurality of commands are:
An activation command for activating a word line connected to a memory cell having a certain bank address and a certain row address, and a sense amplifier connected to the memory cell via the bit line;
A write command for instructing writing of data to a memory cell having a certain bank address and a certain column address;
A read command for instructing to read data from a memory cell having a certain bank address and a certain column address,
The plurality of timing parameters include a first time period (tRCD (W)) indicating a time difference from when the activation command is issued until the write command can be issued, and after the activation command is issued. A second time period (tRCD (R)) indicating a time difference until the read command can be issued, wherein the first time period has a smaller value than the second time period;
The control circuit includes:
When writing data to the semiconductor memory device, issue the write command after the moment separated by the first time period (tRCD (W)) with reference to the moment when the activation command is issued,
When reading data from the semiconductor memory device, the read command is issued after the moment separated by the second time period (tRCD (R)) with reference to the moment when the activation command is issued.
 本発明の第2の態様に係る制御装置によれば、第1の態様に係る制御装置において、
 前記第1の時間期間(tRCD(W))は負の値を有し、
 前記制御回路は、前記半導体記憶装置にデータを書き込むとき、前記活性化コマンドを発行する瞬間を基準として前記第1の時間期間(tRCD(W))の絶対値に等しい時間期間だけ先行する瞬間以後に、かつ、前記活性化コマンドを発行する瞬間よりも前に、前記書き込みコマンドを発行する。
According to the control device according to the second aspect of the present invention, in the control device according to the first aspect,
The first time period (tRCD (W)) has a negative value;
When writing data to the semiconductor memory device, the control circuit starts from the moment preceding by a time period equal to the absolute value of the first time period (tRCD (W)) with reference to the moment when the activation command is issued. In addition, the write command is issued before the moment of issuing the activation command.
 本発明の第3の態様に係る制御装置によれば、第2の態様に係る制御装置において、
 前記制御回路は、前記半導体記憶装置にデータを書き込むとき、前記活性化コマンドの前に前記書き込みコマンドを発行することを通知する第1の制御信号を前記半導体記憶装置に送信する。
According to the control device according to the third aspect of the present invention, in the control device according to the second aspect,
When writing data to the semiconductor memory device, the control circuit transmits a first control signal notifying that the write command is issued before the activation command to the semiconductor memory device.
 本発明の第4の態様に係る制御装置によれば、第1~第3のうちの1つの態様に係る制御装置において、
 前記バンクは、複数のセンスアンプからなる少なくとも1つのセンスアンプ列によって互いに分離された複数のサブアレイを含み、
 前記書き込みコマンドは、データを書き込む記憶セルを含むサブアレイのロウアドレスの一部を含む。
According to the control device of the fourth aspect of the present invention, in the control device according to one of the first to third aspects,
The bank includes a plurality of subarrays separated from each other by at least one sense amplifier row including a plurality of sense amplifiers,
The write command includes a part of a row address of a subarray including a storage cell to which data is written.
 本発明の第5の態様に係る制御装置によれば、
 DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置のための制御装置であって、
 前記半導体記憶装置は、少なくとも1つの内部データバスに接続された少なくとも1つのバンクを備え、前記バンクは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルと、前記複数のビット線にそれぞれ接続された複数のセンスアンプと、前記複数のセンスアンプにそれぞれ接続された複数のカラム選択線とを備えるメモリアレイを備え、
 前記制御装置は、前記半導体記憶装置に接続される通信回路と、複数のコマンドを発行して前記通信回路を介して前記半導体記憶装置に送信することにより前記半導体記憶装置を制御する制御回路と、前記半導体記憶装置の動作に関連する複数のタイミングパラメータを格納するタイミングレジスタとを備え、
 前記複数のコマンドは、
 あるバンクアドレス及びあるロウアドレスを有する記憶セルに接続されたワード線と、前記ビット線を介して前記記憶セルに接続されたセンスアンプとを活性化する活性化コマンドと、
 あるバンクアドレス及びあるカラムアドレスを有する記憶セルへのデータの書き込みを指示する書き込みコマンドと、
 あるバンクアドレス及びあるカラムアドレスを有する記憶セルからのデータの読み出しを指示する読み出しコマンドとを含み、
 前記複数のタイミングパラメータは、前記書き込みコマンドを発行してから前記制御装置から前記半導体記憶装置へデータを送信するまでの時間差を示す第3の時間期間(WL2)であって、前記JEDEC標準に準拠した書き込みレイテンシ(WL)よりも短い第3の時間期間(WL2)を含み、
 前記制御回路は、前記半導体記憶装置にデータを書き込むとき、前記書き込みコマンドを発行する瞬間を基準として前記第3の時間期間(WL2)だけ離れた瞬間に、前記制御装置から前記半導体記憶装置へデータを送信開始する。
According to the control device of the fifth aspect of the present invention,
A control device for a semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM,
The semiconductor memory device includes at least one bank connected to at least one internal data bus, and the bank includes a plurality of memory cells arranged along a plurality of bit lines and a plurality of word lines orthogonal to each other. A memory array including a plurality of sense amplifiers respectively connected to the plurality of bit lines, and a plurality of column selection lines respectively connected to the plurality of sense amplifiers;
The control device includes a communication circuit connected to the semiconductor memory device, a control circuit that controls the semiconductor memory device by issuing a plurality of commands and transmitting the command to the semiconductor memory device via the communication circuit; A timing register for storing a plurality of timing parameters related to the operation of the semiconductor memory device;
The plurality of commands are:
An activation command for activating a word line connected to a memory cell having a certain bank address and a certain row address, and a sense amplifier connected to the memory cell via the bit line;
A write command for instructing writing of data to a memory cell having a certain bank address and a certain column address;
A read command for instructing to read data from a memory cell having a certain bank address and a certain column address,
The plurality of timing parameters are a third time period (WL2) indicating a time difference from when the write command is issued to when data is transmitted from the control device to the semiconductor memory device, and conforming to the JEDEC standard A third time period (WL2) that is shorter than the write latency (WL)
When writing data to the semiconductor memory device, the control circuit transfers data from the control device to the semiconductor memory device at a moment separated by the third time period (WL2) with reference to the moment when the write command is issued. Start sending.
 本発明の第6の態様に係る制御装置によれば、第5の態様に係る制御装置において、
 前記タイミングパラメータは、前記JEDEC標準に準拠した書き込みレイテンシ(WL)に等しい第4の時間期間(WL1)をさらに含み、
 前記制御回路は、前記半導体記憶装置にデータを書き込むとき、前記書き込みコマンドを発行する瞬間を基準として前記第3の時間期間(WL2)又は前記第4の時間期間(WL1)だけ離れた瞬間に、前記制御装置から前記半導体記憶装置へデータを送信開始する。
According to the control device according to the sixth aspect of the present invention, in the control device according to the fifth aspect,
The timing parameter further includes a fourth time period (WL1) equal to a write latency (WL) according to the JEDEC standard;
The control circuit, when writing data to the semiconductor memory device, at a moment separated by the third time period (WL2) or the fourth time period (WL1) with reference to the moment when the write command is issued. Data transmission from the control device to the semiconductor memory device is started.
 本発明の第7の態様に係る制御装置によれば、第5又は第6の態様に係る制御装置において、
 前記第3の時間期間(WL2)は負の値を有し、
 前記制御回路は、前記半導体記憶装置にデータを書き込むとき、前記書き込みコマンドを発行する瞬間を基準として前記第3の時間期間(WL2)の絶対値に等しい時間期間だけ先行する瞬間に、前記制御装置から前記半導体記憶装置へデータを送信開始する。
According to the control device according to the seventh aspect of the present invention, in the control device according to the fifth or sixth aspect,
The third time period (WL2) has a negative value;
The control circuit, when writing data to the semiconductor memory device, at the moment preceding the moment when the write command is issued by a time period equal to the absolute value of the third time period (WL2). Starts to transmit data to the semiconductor memory device.
 本発明の第8の態様に係る制御装置によれば、第1~第7のうちの1つの態様に係る制御装置において、
 前記半導体記憶装置は複数のバンクを備え、
 前記制御回路は、
 前記半導体記憶装置にデータを書き込むとき、前記複数のバンクのうちの少なくとも2つのバンクに同じデータを書き込み、
 前記半導体記憶装置からデータを読み出すとき、前記複数のバンクのうちの前記同じデータが書き込まれた少なくとも2つのバンクのうちの1つからデータを読み出す。
According to the control device of the eighth aspect of the present invention, in the control device according to one of the first to seventh aspects,
The semiconductor memory device includes a plurality of banks,
The control circuit includes:
When writing data to the semiconductor memory device, the same data is written to at least two of the plurality of banks,
When reading data from the semiconductor memory device, data is read from at least one of the plurality of banks in which the same data is written.
 本発明の第9の態様に係る制御装置によれば、第8の態様に係る制御装置において、
 前記タイミングパラメータは、あるバンクに対する前記活性化コマンドを連続して発行可能な最短時間を示す第5の時間期間(tRC(R))をさらに含み、
 前記制御回路は、前記複数のバンクのうちの前記同じデータが書き込まれた少なくとも2つのバンクからデータを読み出すために前記第5の時間期間(tRC(R))より短い間隔で第1及び第2の活性化コマンドを発行するとき、前記第1の活性化コマンドに含まれるバンクアドレスとは異なるバンクアドレスを含む前記第2のコマンドを発行する。
According to the control device according to the ninth aspect of the present invention, in the control device according to the eighth aspect,
The timing parameter further includes a fifth time period (tRC (R)) indicating the shortest time in which the activation command for a certain bank can be issued continuously.
The control circuit is configured to read data from at least two banks in which the same data is written out of the plurality of banks at a time shorter than the fifth time period (tRC (R)). When the activation command is issued, the second command including a bank address different from the bank address included in the first activation command is issued.
 本発明の第10の態様に係る制御装置によれば、第8又は第9の態様に係る制御装置において、
 前記複数のバンクは、複数のビットを含むバンクアドレスを有し、
 前記制御回路は、前記半導体記憶装置にデータを書き込むとき、前記複数のバンクのうちの、少なくとも1つの同じビット値を含むバンクアドレスをそれぞれ有する少なくとも2つのバンクにおいて、同じロウアドレスの記憶セルに前記同じデータを書き込む。
According to the control device of the tenth aspect of the present invention, in the control device according to the eighth or ninth aspect,
The plurality of banks have bank addresses including a plurality of bits,
When the control circuit writes data to the semiconductor memory device, the control circuit stores the memory cell having the same row address in at least two banks each having a bank address including at least one same bit value. Write the same data.
 本発明の第11の態様に係る制御装置によれば、
 DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置のための制御装置であって、
 前記半導体記憶装置は、少なくとも1つの内部データバスに接続された複数のバンクを備え、前記複数のバンクのうちの各1つのバンクは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルと、前記複数のビット線にそれぞれ接続された複数のセンスアンプと、前記複数のセンスアンプにそれぞれ接続された複数のカラム選択線とを備えるメモリアレイを備え、
 前記制御装置は、前記半導体記憶装置に接続される通信回路と、複数のコマンドを発行して前記通信回路を介して前記半導体記憶装置に送信することにより前記半導体記憶装置を制御する制御回路と、前記半導体記憶装置の動作に関連する複数のタイミングパラメータを格納するタイミングレジスタとを備え、
 前記複数のコマンドは、
 あるバンクアドレス及びあるロウアドレスを有する記憶セルに接続されたワード線と、前記ビット線を介して前記記憶セルに接続されたセンスアンプとを活性化する活性化コマンドと、
 あるバンクアドレス及びあるカラムアドレスを有する記憶セルへのデータの書き込みを指示する書き込みコマンドと、
 あるバンクアドレス及びあるカラムアドレスを有する記憶セルからのデータの読み出しを指示する読み出しコマンドとを含み、
 前記複数のタイミングパラメータは、互いに異なる2つのバンクに対する前記活性化コマンドを連続して発行可能な最短時間を示す第6の時間期間(tRRD)と、任意の2つのバンクに対する前記書き込みコマンド又は前記読み出しコマンドを連続して発行可能な最短時間を示す第7の時間期間(tCCD)と、4つの前記活性化コマンドを連続して発行可能な最短時間を示す第8の時間期間(tFAW)とを含み、前記第7の時間期間(tCCD)は前記第6の時間期間(tRRD)に等しく設定され、前記第8の時間期間(tFAW)は前記第6の時間期間(tRRD)の4倍に等しく設定され、
 前記制御回路は、
 前記半導体記憶装置にデータを連続して書き込むとき、前記第6の時間期間(tRRD)に等しい周期で、前記活性化コマンド及び前記書き込みコマンドをそれぞれ発行し、
 前記半導体記憶装置からデータを連続して読み出すとき、前記第6の時間期間(tRRD)に等しい周期で、前記活性化コマンド及び前記読み出しコマンドをそれぞれ発行する。
According to the control device of the eleventh aspect of the present invention,
A control device for a semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM,
The semiconductor memory device includes a plurality of banks connected to at least one internal data bus, and each one of the plurality of banks extends along a plurality of bit lines and a plurality of word lines orthogonal to each other. A memory array comprising a plurality of memory cells arranged, a plurality of sense amplifiers connected to the plurality of bit lines, respectively, and a plurality of column selection lines connected to the plurality of sense amplifiers, respectively.
The control device includes a communication circuit connected to the semiconductor memory device, a control circuit that controls the semiconductor memory device by issuing a plurality of commands and transmitting the command to the semiconductor memory device via the communication circuit; A timing register for storing a plurality of timing parameters related to the operation of the semiconductor memory device;
The plurality of commands are:
An activation command for activating a word line connected to a memory cell having a certain bank address and a certain row address, and a sense amplifier connected to the memory cell via the bit line;
A write command for instructing writing of data to a memory cell having a certain bank address and a certain column address;
A read command for instructing to read data from a memory cell having a certain bank address and a certain column address,
The plurality of timing parameters include a sixth time period (tRRD) indicating the shortest time in which the activation commands for two different banks can be issued in succession, and the write command or the read for any two banks. A seventh time period (tCCD) indicating the shortest time in which commands can be issued continuously; and an eighth time period (tFAW) indicating the shortest time in which the four activation commands can be issued in succession. The seventh time period (tCCD) is set equal to the sixth time period (tRRD), and the eighth time period (tFAW) is set equal to four times the sixth time period (tRRD). And
The control circuit includes:
When continuously writing data to the semiconductor memory device, the activation command and the write command are issued at a period equal to the sixth time period (tRRD),
When data is continuously read from the semiconductor memory device, the activation command and the read command are issued with a period equal to the sixth time period (tRRD).
 本発明の第12の態様に係る制御装置によれば、第11の態様に係る制御装置において、
 前記半導体記憶装置は、第1の動作モード及び第2の動作モードを有し、
 前記半導体記憶装置が前記第1の動作モードにあるとき、前記ワード線の上限電圧は第1の電圧値を有し、前記第7の時間期間(tCCD)は前記第6の時間期間(tRRD)よりも短く、前記第8の時間期間(tFAW)は前記第6の時間期間(tRRD)の4倍よりも長く、
 前記半導体記憶装置が前記第2の動作モードにあるとき、前記ワード線の上限電圧は前記第1の電圧値よりも高い第2の電圧値を有し、前記第7の時間期間(tCCD)は前記第6の時間期間(tRRD)に等しく、前記第8の時間期間(tFAW)は前記第6の時間期間(tRRD)の4倍に等しく、
 前記制御回路は、前記半導体記憶装置を前記第1の動作モード及び前記第2の動作モードの一方で選択的に動作させる第2の制御信号を前記半導体記憶装置に送信する。
According to the control device according to the twelfth aspect of the present invention, in the control device according to the eleventh aspect,
The semiconductor memory device has a first operation mode and a second operation mode,
When the semiconductor memory device is in the first operation mode, the upper limit voltage of the word line has a first voltage value, and the seventh time period (tCCD) is the sixth time period (tRRD). The eighth time period (tFAW) is longer than four times the sixth time period (tRRD),
When the semiconductor memory device is in the second operation mode, the upper limit voltage of the word line has a second voltage value higher than the first voltage value, and the seventh time period (tCCD) is The sixth time period (tRRD) is equal to the eighth time period (tFAW) is equal to four times the sixth time period (tRRD);
The control circuit transmits a second control signal for selectively operating the semiconductor memory device in one of the first operation mode and the second operation mode to the semiconductor memory device.
 本発明の第13の態様に係る制御装置によれば、第11又は第12の態様に係る制御装置において、
 前記複数のタイミングパラメータは、2つのバンクの異なる組み合わせに応じて異なる長さを有する複数の第6の時間期間(tRRD)を含む。
According to the control device of the thirteenth aspect of the present invention, in the control device according to the eleventh or twelfth aspect,
The plurality of timing parameters include a plurality of sixth time periods (tRRD) having different lengths depending on different combinations of two banks.
 本発明の第14の態様に係る制御装置によれば、
 DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置のための制御装置であって、
 前記半導体記憶装置は、少なくとも1つの内部データバスに接続された複数のバンクを備え、前記複数のバンクのうちの各1つのバンクは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルと、前記複数のビット線にそれぞれ接続された複数のセンスアンプと、前記複数のセンスアンプにそれぞれ接続された複数のカラム選択線とを備えるメモリアレイを備え、
 前記制御装置は、前記半導体記憶装置に接続される通信回路と、複数のコマンドを発行して前記通信回路を介して前記半導体記憶装置に送信することにより前記半導体記憶装置を制御する制御回路と、前記半導体記憶装置の動作に関連する複数のタイミングパラメータを格納するタイミングレジスタとを備え、
 前記複数のコマンドは、
 あるバンクアドレス及びあるロウアドレスを有する記憶セルに接続されたワード線と、前記ビット線を介して前記記憶セルに接続されたセンスアンプとを活性化する活性化コマンドと、
 あるバンクアドレス及びあるカラムアドレスを有する記憶セルへのデータの書き込みを指示する書き込みコマンドと、
 あるバンクアドレス及びあるカラムアドレスを有する記憶セルからのデータの読み出しを指示する読み出しコマンドとを含み、
 前記複数のタイミングパラメータは、前記複数のバンクのうちの第1のバンクにデータを書き込むために前記制御装置から前記半導体記憶装置へデータを送信してから、前記複数のバンクのうちの第2のバンクからデータを読み出すために前記読み出しコマンドを発行可能になるまでの時間差を示す複数の第9の時間期間(tWTR)を含み、前記複数の第9の時間期間(tWTR)は、前記第1及び第2のバンクの異なる組み合わせに応じて異なる長さを有し、
 前記制御回路は、前記第1のバンクにデータを書き込んだ直後に前記第2のバンクからデータを読み出すとき、前記半導体記憶装置へデータを送信してから、前記第1及び第2のバンクの組み合わせに対応する長さを有する前記第9の時間期間(tWTR)にわたって待機した後、前記読み出しコマンドを発行する。
According to the control device of the fourteenth aspect of the present invention,
A control device for a semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM,
The semiconductor memory device includes a plurality of banks connected to at least one internal data bus, and each one of the plurality of banks extends along a plurality of bit lines and a plurality of word lines orthogonal to each other. A memory array comprising a plurality of memory cells arranged, a plurality of sense amplifiers connected to the plurality of bit lines, respectively, and a plurality of column selection lines connected to the plurality of sense amplifiers, respectively.
The control device includes a communication circuit connected to the semiconductor memory device, a control circuit that controls the semiconductor memory device by issuing a plurality of commands and transmitting the command to the semiconductor memory device via the communication circuit; A timing register for storing a plurality of timing parameters related to the operation of the semiconductor memory device;
The plurality of commands are:
An activation command for activating a word line connected to a memory cell having a certain bank address and a certain row address, and a sense amplifier connected to the memory cell via the bit line;
A write command for instructing writing of data to a memory cell having a certain bank address and a certain column address;
A read command for instructing to read data from a memory cell having a certain bank address and a certain column address,
The plurality of timing parameters are transmitted from the control device to the semiconductor memory device in order to write data to a first bank of the plurality of banks, and then a second one of the plurality of banks. A plurality of ninth time periods (tWTR) indicating a time difference until the read command can be issued to read data from the bank, wherein the plurality of ninth time periods (tWTR) Different lengths according to different combinations of the second bank,
When the data is read from the second bank immediately after writing the data to the first bank, the control circuit transmits the data to the semiconductor memory device, and then the combination of the first and second banks. The read command is issued after waiting for the ninth time period (tWTR) having a length corresponding to.
 本発明の第15の態様に係る半導体記憶装置によれば、
 DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置であって、
 前記半導体記憶装置は、
 内部データバスと、
 前記内部データバスに接続された少なくとも1つのバンクとを備え、
 前記バンクは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルと、前記複数のビット線にそれぞれ接続された複数のセンスアンプと、前記複数のセンスアンプにそれぞれ接続された複数のカラム選択線とを備えるメモリアレイを備え、
 前記半導体記憶装置は、外部バスを介して制御装置に接続される通信回路と、前記通信回路を介して前記制御装置から複数のコマンドを受信して前記半導体記憶装置の動作を制御する制御回路とを備え、
 前記複数のコマンドは、
 あるバンクアドレス及びあるロウアドレスを有する記憶セルに接続されたワード線と、前記ビット線を介して前記記憶セルに接続されたセンスアンプとを活性化する活性化コマンドと、
 あるバンクアドレス及びあるカラムアドレスを有する記憶セルへのデータの書き込みを指示する書き込みコマンドと、
 あるバンクアドレス及びあるカラムアドレスを有する記憶セルからのデータの読み出しを指示する読み出しコマンドとを含み、
 前記制御回路は、前記半導体記憶装置にデータを書き込むとき、前記活性化コマンドを受信する瞬間を基準として予め決められた第1の時間期間(tRCD(W))の絶対値に等しい時間期間だけ先行する瞬間以後に、かつ、前記活性化コマンドを受信する瞬間よりも前に、前記書き込みコマンドを前記制御装置から受信可能に構成される。
According to the semiconductor memory device of the fifteenth aspect of the present invention,
A semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM,
The semiconductor memory device
An internal data bus;
And at least one bank connected to the internal data bus,
The bank includes a plurality of memory cells arranged along a plurality of bit lines and a plurality of word lines orthogonal to each other, a plurality of sense amplifiers respectively connected to the plurality of bit lines, and the plurality of sense amplifiers. A memory array having a plurality of column selection lines connected to each other;
The semiconductor memory device includes a communication circuit connected to a control device via an external bus, a control circuit that receives a plurality of commands from the control device via the communication circuit and controls operations of the semiconductor memory device. With
The plurality of commands are:
An activation command for activating a word line connected to a memory cell having a certain bank address and a certain row address, and a sense amplifier connected to the memory cell via the bit line;
A write command for instructing writing of data to a memory cell having a certain bank address and a certain column address;
A read command for instructing to read data from a memory cell having a certain bank address and a certain column address,
When writing data to the semiconductor memory device, the control circuit precedes by a time period equal to an absolute value of a first time period (tRCD (W)) determined in advance with reference to the moment when the activation command is received. The write command can be received from the control device after the moment when the activation command is received and before the moment when the activation command is received.
 本発明の第16の態様に係る半導体記憶装置によれば、第15の態様に係る半導体記憶装置において、
 前記半導体記憶装置は、前記複数のコマンドのうちの少なくとも一部にそれぞれ関連付けられた複数の回路を含み、
 前記制御回路は、
 前記半導体記憶装置にデータを書き込むとき、前記活性化コマンドの前に前記書き込みコマンドを発行することを通知する第1の制御信号を前記制御装置から受信し、
 前記第1の制御信号を受信したとき、前記書き込みコマンドに関連付けられた回路を活性化する。
According to the semiconductor memory device in accordance with the sixteenth aspect of the present invention, in the semiconductor memory device in accordance with the fifteenth aspect,
The semiconductor memory device includes a plurality of circuits respectively associated with at least a part of the plurality of commands,
The control circuit includes:
When writing data to the semiconductor memory device, a first control signal for notifying that the write command is issued before the activation command is received from the control device,
When the first control signal is received, a circuit associated with the write command is activated.
 本発明の第17の態様に係る半導体記憶装置によれば、第15又は第16の態様に係る半導体記憶装置において、
 前記半導体記憶装置は、
 前記半導体記憶装置からデータを読み出すとき、前記カラム選択線に第1の電圧を印加する第1の電圧源と、
 前記半導体記憶装置にデータを書き込むとき、前記カラム選択線に前記第1の電圧より高い第2の電圧を印加する第2の電圧源とを備える。
According to the semiconductor memory device in accordance with the seventeenth aspect of the present invention, in the semiconductor memory device in accordance with the fifteenth or sixteenth aspect,
The semiconductor memory device
A first voltage source for applying a first voltage to the column selection line when reading data from the semiconductor memory device;
And a second voltage source for applying a second voltage higher than the first voltage to the column selection line when writing data to the semiconductor memory device.
 本発明の第18の態様に係る半導体記憶装置によれば、第17の態様に係る半導体記憶装置において、
 前記半導体記憶装置からデータを読み出すとき、前記第1の電圧源は第1の時間長にわたって前記カラム選択線に前記第1の電圧を印加し、
 前記半導体記憶装置にデータを書き込むとき、前記第2の電圧源は前記第1の時間長よりも長い第2の時間長にわたって前記カラム選択線に前記第2の電圧を印加する。
According to the semiconductor memory device in accordance with the eighteenth aspect of the present invention, in the semiconductor memory device in accordance with the seventeenth aspect,
When reading data from the semiconductor memory device, the first voltage source applies the first voltage to the column selection line over a first time length;
When writing data to the semiconductor memory device, the second voltage source applies the second voltage to the column selection line for a second time length longer than the first time length.
 本発明の第19の態様に係る半導体記憶装置によれば、第15~第18のうちの1つの態様に係る半導体記憶装置において、
 前記制御回路は、前記半導体記憶装置にデータを書き込むとき、前記書き込みコマンドを受信した後、かつ、前記センスアンプを活性化する前に、前記カラム選択線を活性化する。
According to a semiconductor memory device in accordance with a nineteenth aspect of the present invention, in the semiconductor memory device according to one of the fifteenth to eighteenth aspects,
When writing data to the semiconductor memory device, the control circuit activates the column selection line after receiving the write command and before activating the sense amplifier.
 本発明の第20の態様に係る半導体記憶装置によれば、第19の態様に係る半導体記憶装置において、
 前記制御回路は、前記半導体記憶装置にデータを書き込むとき、前記書き込みコマンドを受信した後、かつ、前記センスアンプ及び前記ワード線を活性化する前に、前記カラム選択線を活性化する。
According to the semiconductor memory device in accordance with the twentieth aspect of the present invention, in the semiconductor memory device in accordance with the nineteenth aspect,
When writing data into the semiconductor memory device, the control circuit activates the column selection line after receiving the write command and before activating the sense amplifier and the word line.
 本発明の第21の態様に係る半導体記憶装置によれば、第19又は第20の態様に係る半導体記憶装置において、
 前記複数のセンスアンプのうちの各1つのセンスアンプは、少なくとも1つのNMOSトランジスタと、少なくとも1つのPMOSトランジスタとを含み、
 前記センスアンプを非活性化するとき、前記ビット線の上限電圧に等しい電圧を前記NMOSトランジスタのソースに印加し、
 前記センスアンプを活性化するとき、前記ビット線の下限電圧に等しい電圧を前記NMOSトランジスタのソースに印加する。
According to the semiconductor memory device in accordance with the twenty-first aspect of the present invention, in the semiconductor memory device in accordance with the nineteenth or twentieth aspect,
Each one of the plurality of sense amplifiers includes at least one NMOS transistor and at least one PMOS transistor;
When deactivating the sense amplifier, a voltage equal to the upper limit voltage of the bit line is applied to the source of the NMOS transistor,
When the sense amplifier is activated, a voltage equal to the lower limit voltage of the bit line is applied to the source of the NMOS transistor.
 本発明の第22の態様に係る半導体記憶装置によれば、第15~第21のうちの1つの態様に係る半導体記憶装置において、
 前記バンクは、複数のセンスアンプからなる少なくとも1つのセンスアンプ列によって互いに分離された複数のサブアレイを含み、
 前記書き込みコマンドは、データを書き込む記憶セルを含むサブアレイのロウアドレスの一部を含み、
 前記制御回路は、
 前記書き込みコマンドのロウアドレスによって指定されるサブアレイを活性化し、
 前記書き込みコマンドのカラムアドレスによって指定されるカラム選択線を活性化し、
 前記活性化されたカラム選択線に対応するビット線の電圧を上限電圧に設定する。
According to the semiconductor memory device in accordance with the twenty-second aspect of the present invention, in the semiconductor memory device according to one of the fifteenth to twenty-first aspects,
The bank includes a plurality of subarrays separated from each other by at least one sense amplifier row including a plurality of sense amplifiers,
The write command includes a part of a row address of a subarray including a storage cell to which data is written,
The control circuit includes:
Activate a sub-array designated by the row address of the write command;
Activate the column selection line specified by the column address of the write command,
The voltage of the bit line corresponding to the activated column selection line is set to the upper limit voltage.
 本発明の第23の態様に係る半導体記憶装置によれば、第15~第22のうちの1つの態様に係る半導体記憶装置において、
 前記半導体記憶装置は複数のバンクを備え、
 前記制御回路は、
 前記半導体記憶装置にデータを書き込むとき、前記複数のバンクのうちの少なくとも2つのバンクに同じデータを書き込み、
 前記半導体記憶装置からデータを読み出すとき、前記複数のバンクのうちの前記同じデータが書き込まれた少なくとも2つのバンクのうちの1つからデータを読み出す。
According to a semiconductor memory device in accordance with a twenty-third aspect of the present invention, in the semiconductor memory device according to one of the fifteenth to twenty-second aspects,
The semiconductor memory device includes a plurality of banks,
The control circuit includes:
When writing data to the semiconductor memory device, the same data is written to at least two of the plurality of banks,
When reading data from the semiconductor memory device, data is read from at least one of the plurality of banks in which the same data is written.
 本発明の第24の態様に係る半導体記憶装置によれば、第23の態様に係る半導体記憶装置において、
 前記制御回路は、前記複数のバンクのうちの前記同じデータが書き込まれた少なくとも2つのバンクからデータを読み出すために発行された第1及び第2の活性化コマンドであって、予め決められた第5の時間期間(tRC(R))より短い間隔で発行された第1及び第2の活性化コマンドを受信したとき、前記第1の活性化コマンドに応じて、前記同じデータが書き込まれた少なくとも2つのバンクのうちの第1のバンクからデータを読み出し、前記第2の活性化コマンドに応じて、前記同じデータが書き込まれた少なくとも2つのバンクのうちの第2のバンクからデータを読み出す。
According to the semiconductor memory device in accordance with the twenty-fourth aspect of the present invention, in the semiconductor memory device in accordance with the twenty-third aspect,
The control circuit includes first and second activation commands issued to read data from at least two banks in which the same data of the plurality of banks is written, and a predetermined first command When the first and second activation commands issued at intervals shorter than the time period of 5 (tRC (R)) are received, at least the same data is written according to the first activation command. Data is read from a first bank of the two banks, and data is read from a second bank of at least two banks in which the same data is written in response to the second activation command.
 本発明の第25の態様に係る半導体記憶装置によれば、第23又は第24の態様に係る半導体記憶装置において、
 前記複数のバンクは、複数のビットを含むバンクアドレスを有し、
 前記制御回路は、前記半導体記憶装置にデータを書き込むとき、前記複数のバンクのうちの、少なくとも1つの同じビット値を含むバンクアドレスをそれぞれ有する少なくとも2つのバンクにおいて、同じロウアドレスの記憶セルに前記同じデータを書き込む。
According to the semiconductor memory device in the twenty-fifth aspect of the present invention, in the semiconductor memory device in the twenty-third or twenty-fourth aspect,
The plurality of banks have bank addresses including a plurality of bits,
When the control circuit writes data to the semiconductor memory device, the control circuit stores the memory cell having the same row address in at least two banks each having a bank address including at least one same bit value. Write the same data.
 本発明の第26の態様に係る半導体記憶装置によれば、
 DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置であって、
 前記半導体記憶装置は、
 内部データバスと、
 前記内部データバスに接続された複数のバンクとを備え、
 前記複数のバンクのうちの各1つのバンクは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルと、前記複数のビット線にそれぞれ接続された複数のセンスアンプと、前記複数のセンスアンプにそれぞれ接続された複数のカラム選択線とを備えるメモリアレイを備え、
 前記半導体記憶装置は、外部バスを介して制御装置に接続される通信回路と、前記通信回路を介して前記制御装置から複数のコマンドを受信して前記半導体記憶装置の動作を制御する制御回路とを備え、
 前記複数のコマンドは、
 あるバンクアドレス及びあるロウアドレスを有する記憶セルに接続されたワード線と、前記ビット線を介して前記記憶セルに接続されたセンスアンプとを活性化する活性化コマンドと、
 あるバンクアドレス及びあるカラムアドレスを有する記憶セルへのデータの書き込みを指示する書き込みコマンドと、
 あるバンクアドレス及びあるカラムアドレスを有する記憶セルからのデータの読み出しを指示する読み出しコマンドとを含み、
 前記半導体記憶装置は、前記半導体記憶装置の動作に関連する複数のタイミングパラメータを有し、前記複数のタイミングパラメータは、互いに異なる2つのバンクに対する前記活性化コマンドを連続して受信可能な最短時間を示す第6の時間期間(tRRD)と、任意の2つのバンクに対する前記書き込みコマンド又は前記読み出しコマンドを連続して受信可能な最短時間を示す第7の時間期間(tCCD)と、4つの前記活性化コマンドを連続して受信可能な最短時間を示す第8の時間期間(tFAW)とを含み、前記第7の時間期間(tCCD)は前記第6の時間期間(tRRD)に等しく、前記第8の時間期間(tFAW)は前記第6の時間期間(tRRD)の4倍に等しく、
 前記制御回路は、
 前記半導体記憶装置にデータを連続して書き込むとき、前記第6の時間期間(tRRD)に等しい周期で、前記活性化コマンド及び前記書き込みコマンドをそれぞれ前記制御回路から受信可能に構成され、
 前記半導体記憶装置からデータを連続して読み出すとき、前記第6の時間期間(tRRD)に等しい周期で、前記活性化コマンド及び前記読み出しコマンドをそれぞれ前記制御回路から受信可能に構成される。
According to the semiconductor memory device in the twenty-sixth aspect of the present invention,
A semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM,
The semiconductor memory device
An internal data bus;
A plurality of banks connected to the internal data bus,
Each one of the plurality of banks includes a plurality of memory cells arranged along a plurality of bit lines and a plurality of word lines orthogonal to each other, and a plurality of senses respectively connected to the plurality of bit lines. A memory array including an amplifier and a plurality of column selection lines connected to the plurality of sense amplifiers,
The semiconductor memory device includes a communication circuit connected to a control device via an external bus, a control circuit that receives a plurality of commands from the control device via the communication circuit and controls operations of the semiconductor memory device. With
The plurality of commands are:
An activation command for activating a word line connected to a memory cell having a certain bank address and a certain row address, and a sense amplifier connected to the memory cell via the bit line;
A write command for instructing writing of data to a memory cell having a certain bank address and a certain column address;
A read command for instructing to read data from a memory cell having a certain bank address and a certain column address,
The semiconductor memory device has a plurality of timing parameters related to the operation of the semiconductor memory device, and the plurality of timing parameters has a minimum time during which the activation commands for two different banks can be continuously received. A sixth time period (tRRD) shown, a seventh time period (tCCD) showing the shortest time in which the write command or the read command for any two banks can be continuously received, and the four activations An eighth time period (tFAW) indicating the shortest time in which commands can be continuously received, and the seventh time period (tCCD) is equal to the sixth time period (tRRD). The time period (tFAW) is equal to four times the sixth time period (tRRD),
The control circuit includes:
When continuously writing data to the semiconductor memory device, the activation command and the write command can be received from the control circuit at a period equal to the sixth time period (tRRD), respectively.
When data is continuously read from the semiconductor memory device, the activation command and the read command can be received from the control circuit at a period equal to the sixth time period (tRRD).
 本発明の第27の態様に係る半導体記憶装置によれば、第26の態様に係る半導体記憶装置において、
 前記半導体記憶装置は、前記第7の時間期間(tCCD)が前記第6の時間期間(tRRD)に等しくなるように、かつ、前記第8の時間期間(tFAW)は前記第6の時間期間(tRRD)の4倍に等しくなるように設定された電圧を前記ワード線に印加する第3の電圧源を備える。
According to the semiconductor memory device in accordance with the twenty-seventh aspect of the present invention, in the semiconductor memory device in accordance with the twenty-sixth aspect,
In the semiconductor memory device, the seventh time period (tCCD) is equal to the sixth time period (tRRD), and the eighth time period (tFAW) is equal to the sixth time period (tFAW). a third voltage source for applying a voltage set to be equal to four times tRRD) to the word line.
 本発明の第28の態様に係る半導体記憶装置によれば、第26又は第27の態様に係る半導体記憶装置において、
 前記半導体記憶装置は、第1の動作モード及び第2の動作モードを有し、
 前記半導体記憶装置が前記第1の動作モードにあるとき、前記ワード線の上限電圧は第1の電圧値を有し、前記第7の時間期間(tCCD)は前記第6の時間期間(tRRD)よりも短く、前記第8の時間期間(tFAW)は前記第6の時間期間(tRRD)の4倍よりも長く、
 前記半導体記憶装置が前記第2の動作モードにあるとき、前記ワード線の上限電圧は前記第1の電圧値よりも高い第2の電圧値を有し、前記第7の時間期間(tCCD)は前記第6の時間期間(tRRD)に等しく、前記第8の時間期間(tFAW)は前記第6の時間期間(tRRD)の4倍に等しく、
 前記制御回路は、前記半導体記憶装置を前記第1の動作モード及び前記第2の動作モードの一方で選択的に動作させる第2の制御信号を前記制御装置から受信したとき、前記第2の制御信号に従って、前記第1の動作モード及び前記第2の動作モードの一方で選択的に動作する。
According to the semiconductor memory device in accordance with the twenty-eighth aspect of the present invention, in the semiconductor memory device in accordance with the twenty-sixth or twenty-seventh aspect,
The semiconductor memory device has a first operation mode and a second operation mode,
When the semiconductor memory device is in the first operation mode, the upper limit voltage of the word line has a first voltage value, and the seventh time period (tCCD) is the sixth time period (tRRD). The eighth time period (tFAW) is longer than four times the sixth time period (tRRD),
When the semiconductor memory device is in the second operation mode, the upper limit voltage of the word line has a second voltage value higher than the first voltage value, and the seventh time period (tCCD) is The sixth time period (tRRD) is equal to the eighth time period (tFAW) is equal to four times the sixth time period (tRRD);
The control circuit receives the second control signal for selectively operating the semiconductor memory device in one of the first operation mode and the second operation mode from the control device. One of the first operation mode and the second operation mode is selectively operated according to a signal.
 本発明の第29の態様に係る半導体記憶装置によれば、第26~第28のうちの1つの態様に係る半導体記憶装置において、
 前記複数のタイミングパラメータは、2つのバンクの異なる組み合わせに応じて異なる長さを有する複数の第6の時間期間(tRRD)を含む。
According to a semiconductor memory device in accordance with a twenty-ninth aspect of the present invention, in the semiconductor memory device according to one of the twenty-sixth to twenty-eighth aspects,
The plurality of timing parameters include a plurality of sixth time periods (tRRD) having different lengths depending on different combinations of two banks.
 本発明の第30の態様に係る半導体記憶システムによれば、
 第1~第10のうちの1つの態様に係る制御装置と、
 第15~第25のうちの1つの態様に係る半導体記憶装置とを備える。
According to the semiconductor memory system of the thirtieth aspect of the present invention,
A control device according to one of the first to tenth aspects;
And a semiconductor memory device according to one of the fifteenth to twenty-fifth aspects.
 本発明の第31の態様に係る半導体記憶システムによれば、
 第11~第13のうちの1つの態様に係る制御装置と、
 第26~第29のうちの1つの態様に係る半導体記憶装置とを備える。
According to the semiconductor memory system of the thirty-first aspect of the present invention,
A control device according to one of the eleventh to thirteenth aspects;
A semiconductor memory device according to one of the twenty-sixth to twenty-ninth aspects.
 本発明の第32の態様に係る半導体記憶システムによれば、
 第14の態様に係る制御装置と、
 半導体記憶装置とを備える。
According to the semiconductor memory system of the thirty-second aspect of the present invention,
A control device according to a fourteenth aspect;
A semiconductor memory device.
 本発明の第33の態様に係る半導体記憶装置の制御方法によれば、
 DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置のための制御方法であって、
 前記半導体記憶装置は、少なくとも1つの内部データバスに接続された少なくとも1つのバンクを備え、前記バンクは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルと、前記複数のビット線にそれぞれ接続された複数のセンスアンプと、前記複数のセンスアンプにそれぞれ接続された複数のカラム選択線とを備えるメモリアレイを備え、
 前記制御方法は、
 あるバンクアドレス及びあるロウアドレスを有する記憶セルに接続されたワード線と、前記ビット線を介して前記記憶セルに接続されたセンスアンプとを活性化する活性化コマンドを発行するステップと、
 あるバンクアドレス及びあるカラムアドレスを有する記憶セルへのデータの書き込みを指示する書き込みコマンドを発行するステップと、
 あるバンクアドレス及びあるカラムアドレスを有する記憶セルからのデータの読み出しを指示する読み出しコマンドを発行するステップと、
 前記半導体記憶装置にデータを書き込むとき、前記活性化コマンドを発行する瞬間を基準として第1の時間期間(tRCD(W))だけ離れた瞬間以後に、前記書き込みコマンドを発行するステップと、
 前記半導体記憶装置からデータを読み出すとき、前記活性化コマンドを発行する瞬間を基準として第2の時間期間(tRCD(R))だけ離れた瞬間以後に、前記読み出しコマンドを発行するステップとを含み、
 前記第1の時間期間(tRCD(W))は、前記活性化コマンドを発行してから前記書き込みコマンドを発行可能になるまで時間差を示し、前記第2の時間期間(tRCD(R))は、前記活性化コマンドを発行してから前記読み出しコマンドを発行可能になるまで時間差を示し、前記第1の時間期間は前記第2の時間期間より小さな値を有する。
According to the semiconductor memory device control method of the thirty-third aspect of the present invention,
A control method for a semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM,
The semiconductor memory device includes at least one bank connected to at least one internal data bus, and the bank includes a plurality of memory cells arranged along a plurality of bit lines and a plurality of word lines orthogonal to each other. A memory array including a plurality of sense amplifiers respectively connected to the plurality of bit lines, and a plurality of column selection lines respectively connected to the plurality of sense amplifiers;
The control method is:
Issuing an activation command for activating a word line connected to a memory cell having a certain bank address and a certain row address and a sense amplifier connected to the memory cell via the bit line;
Issuing a write command instructing to write data to a memory cell having a certain bank address and a certain column address;
Issuing a read command instructing to read data from a memory cell having a certain bank address and a certain column address;
When writing data to the semiconductor memory device, issuing the write command after a moment separated by a first time period (tRCD (W)) with reference to the moment of issuing the activation command;
Issuing the read command after reading a second time period (tRCD (R)) with reference to the moment when the activation command is issued when reading data from the semiconductor memory device;
The first time period (tRCD (W)) indicates a time difference from when the activation command is issued until the write command can be issued, and the second time period (tRCD (R)) is A time difference is indicated from when the activation command is issued until the read command can be issued, and the first time period has a smaller value than the second time period.
 本発明によれば、プリチャージコマンドを含むコマンドシーケンスにより1つ又は複数のバンクに対してデータを書き込む及び/又は読み出す場合であっても、外部データバスの使用効率を低下させにくい半導体記憶装置及び制御装置、さらに、これらを含む半導体記憶システムを提供することができる。 According to the present invention, there is provided a semiconductor memory device in which use efficiency of an external data bus is not easily lowered even when data is written to and / or read from one or a plurality of banks by a command sequence including a precharge command. A control device and a semiconductor storage system including these can be provided.
 本発明によればまた、そのような半導体記憶装置のための制御方法を提供することができる。 According to the present invention, a control method for such a semiconductor memory device can also be provided.
実施形態1に係るメモリシステムを含む処理装置を示すブロック図である。1 is a block diagram showing a processing device including a memory system according to Embodiment 1. FIG. 図1のメモリコントローラ3の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of a memory controller 3 in FIG. 1. 図1のメモリ5の構成を示すブロック図である。It is a block diagram which shows the structure of the memory 5 of FIG. 図3のチップ制御回路22の詳細構成を示すブロック図である。FIG. 4 is a block diagram showing a detailed configuration of a chip control circuit 22 in FIG. 3. 図3のメモリアレイ23-n、ロウデコーダ24-n、及びカラムデコーダ25-nの構成を示すブロック図である。FIG. 4 is a block diagram showing a configuration of a memory array 23-n, a row decoder 24-n, and a column decoder 25-n in FIG. 図5のサブアレイ51及びセンスアンプ列52の詳細構成を示すブロック図である。FIG. 6 is a block diagram showing a detailed configuration of a subarray 51 and a sense amplifier array 52 in FIG. 5. 図6のセンスアンプSA11,SA02、IOスイッチIOSW、及びメモリセルC00の詳細構成を示す回路図である。FIG. 7 is a circuit diagram illustrating a detailed configuration of sense amplifiers SA11 and SA02, an IO switch IOSW, and a memory cell C00 in FIG. 図7のビット線に接続されるイコライズ回路の構成を示す回路図である。FIG. 8 is a circuit diagram showing a configuration of an equalize circuit connected to the bit line of FIG. 7. 図5のサブアレイ選択スイッチSASWの構成を示す回路図である。FIG. 6 is a circuit diagram showing a configuration of a subarray selection switch SASW in FIG. 5. 実施形態1に係るデータの読み出し動作を示すタイミングチャートである。3 is a timing chart illustrating a data read operation according to the first embodiment. 図10の読み出し動作を行うときの各信号の波形を示すタイミングチャートである。11 is a timing chart showing waveforms of signals when the read operation of FIG. 10 is performed. 実施形態1の比較例に係るデータの書き込み動作を示すタイミングチャートである。6 is a timing chart illustrating a data write operation according to a comparative example of the first embodiment. 図12の書き込み動作を行うときの各信号の波形を示すタイミングチャートである。FIG. 13 is a timing chart showing waveforms of signals when the write operation of FIG. 12 is performed. FIG. 実施形態1に係るデータの書き込み動作を示すタイミングチャートである。3 is a timing chart illustrating a data write operation according to the first embodiment. 図14の書き込み動作を行うときの各信号の波形を示すタイミングチャートである。FIG. 15 is a timing chart showing waveforms of signals when the write operation of FIG. 14 is performed. 実施形態2に係るメモリシステムのカラムデコーダ25-n及びその周辺を示すブロック図である。10 is a block diagram showing a column decoder 25-n and its periphery in a memory system according to Embodiment 2. FIG. 実施形態2の比較例に係るデータの書き込み動作を行うときの各信号の波形を示すタイミングチャートである。6 is a timing chart showing waveforms of signals when a data write operation according to a comparative example of Embodiment 2 is performed. 実施形態2に係るデータの書き込み動作を行うときの各信号の波形を示すタイミングチャートである。9 is a timing chart showing waveforms of signals when performing a data write operation according to the second embodiment. 実施形態3に係るデータの書き込み動作を行うときの各信号の波形を示すタイミングチャートである。10 is a timing chart showing waveforms of signals when a data write operation according to the third embodiment is performed. 実施形態3の変形例に係るデータの書き込み動作を行うときの各信号の波形を示すタイミングチャートである。10 is a timing chart showing waveforms of signals when a data write operation according to a modification of the third embodiment is performed. 実施形態4に係るメモリシステムのチップ制御回路22Aの構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of a chip control circuit 22A of a memory system according to a fourth embodiment. 実施形態4に係るメモリシステムのビット線に接続されるイコライズ回路の構成を示す回路図である。FIG. 10 is a circuit diagram showing a configuration of an equalize circuit connected to a bit line of a memory system according to a fourth embodiment. 実施形態4に係るメモリシステムのサブアレイ選択スイッチSASWの構成を示す回路図である。FIG. 10 is a circuit diagram illustrating a configuration of a subarray selection switch SASW in the memory system according to the fourth embodiment. 実施形態4に係るデータの書き込み動作を行うときの各信号の波形を示すタイミングチャートである。10 is a timing chart showing waveforms of signals when a data write operation according to the fourth embodiment is performed. 実施形態5に係るメモリシステムのメモリコントローラ3Aの構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of a memory controller 3A of a memory system according to Embodiment 5. 実施形態5に係るデータの書き込み動作を示すタイミングチャートである。10 is a timing chart illustrating a data write operation according to the fifth embodiment. 実施形態6に係るメモリシステムのメモリコントローラ3Bの構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of a memory controller 3B of a memory system according to a sixth embodiment. 実施形態6に係るメモリシステムのメモリ5へのデータの書き込み動作を説明するためのブロック図である。FIG. 16 is a block diagram for explaining an operation of writing data to the memory 5 of the memory system according to the sixth embodiment. 実施形態6に係るメモリシステムのメモリ5からのデータの読み出し動作を説明するためのブロック図である。FIG. 10 is a block diagram for explaining an operation of reading data from a memory 5 of a memory system according to a sixth embodiment. 実施形態6に係るメモリシステムにおいて使用される活性化コマンドを示す図である。It is a figure which shows the activation command used in the memory system which concerns on Embodiment 6. FIG. 実施形態6に係るメモリシステムにおいて使用される書き込みコマンドを示す図である。FIG. 10 is a diagram illustrating a write command used in a memory system according to a sixth embodiment. 実施形態6の変形例に係るデータの書き込み動作を示すタイミングチャートである。18 is a timing chart illustrating a data write operation according to a modification of the sixth embodiment. 実施形態7に係るメモリシステムのメモリコントローラ3Cの構成を示すブロック図である。FIG. 20 is a block diagram illustrating a configuration of a memory controller 3C of a memory system according to a seventh embodiment. 実施形態7に係るメモリシステムのロウデコーダ24-n及びその周辺を示すブロック図である。FIG. 20 is a block diagram showing a row decoder 24-n and its periphery in a memory system according to a seventh embodiment. 図34のVPP発生回路91の構成を示す回路図である。FIG. 35 is a circuit diagram showing a configuration of a VPP generation circuit 91 of FIG. 34. 実施形態7に係るデータの読み出し動作を示すタイミングチャートである。12 is a timing chart illustrating a data read operation according to the seventh embodiment. 実施形態7に係るデータの書き込み動作を示すタイミングチャートである。16 is a timing chart illustrating a data write operation according to the seventh embodiment. 実施形態8に係るメモリシステムのVPP発生回路100の構成を示すブロック図である。FIG. 10 is a block diagram illustrating a configuration of a VPP generation circuit 100 of a memory system according to an eighth embodiment. 実施形態9に係るメモリシステムのメモリコントローラ3Dの構成を示すブロック図である。FIG. 20 is a block diagram illustrating a configuration of a memory controller 3D of a memory system according to Embodiment 9. 実施形態9に係るメモリシステムのメモリ5Dの構成を示すブロック図である。FIG. 20 is a block diagram showing a configuration of a memory 5D of a memory system according to Embodiment 9. 実施形態9の比較例に係るデータの書き込み動作を示すタイミングチャートである。10 is a timing chart illustrating a data write operation according to a comparative example of the ninth embodiment. 実施形態9に係るデータの書き込み動作を示すタイミングチャートである。10 is a timing chart illustrating a data write operation according to the ninth embodiment. 実施形態9に係るメモリシステムにおいて使用される書き込みコマンドを示す図である。FIG. 25 is a diagram showing a write command used in the memory system according to the ninth embodiment. 実施形態10に係るメモリシステムのメモリコントローラ3Eの構成を示すブロック図である。FIG. 22 is a block diagram illustrating a configuration of a memory controller 3E of the memory system according to the tenth embodiment. 実施形態10に係るメモリシステムのメモリ5へのデータの書き込み動作/読み出し動作を説明するためのブロック図である。FIG. 18 is a block diagram for explaining a data write / read operation to / from a memory 5 of the memory system according to the tenth embodiment. 実施形態10の第1の実施例に係るデータの書き込み及び読み出し動作を示すタイミングチャートである。12 is a timing chart showing data write and read operations according to the first example of Embodiment 10. 実施形態10の第2の実施例に係るデータの書き込み及び読み出し動作を示すタイミングチャートである。22 is a timing chart showing data write and read operations according to the second example of Embodiment 10. 実施形態10の変形例に係るメモリシステムのメモリコントローラ3Eの構成を示すブロック図である。FIG. 29 is a block diagram showing a configuration of a memory controller 3E of a memory system according to a modification example of Embodiment 10. 実施形態10の第3の実施例に係るデータの書き込み及び読み出し動作を示すタイミングチャートである。22 is a timing chart showing data write and read operations according to the third example of Embodiment 10. 第1の比較例に係るメモリシステムの動作を示すタイミングチャートである。6 is a timing chart showing the operation of the memory system according to the first comparative example.
 本発明の実施形態について説明する前に、比較例に係るメモリシステムの動作及びその問題点について説明する。 Before describing an embodiment of the present invention, the operation of a memory system according to a comparative example and its problems will be described.
 図50は、第1の比較例に係るメモリシステムの動作を示すタイミングチャートである。図50は、DDR2-SDRAMのメモリに対する書き込み及び読み出しアクセスを行うときにメモリバスにおいて伝送されるクロック、コマンド、バンクアドレス、及びデータを示す。「A」は活性化コマンドを示し、「W」は書き込みコマンドを示し、「R」は読み出しコマンドを示し、「P」はプリチャージコマンドを示す。メモリは8個のバンクB0~B7を備え、「0」~「7」はそれぞれバンクB0~B7のバンクアドレスを示す。「Dn」(n=0~7)はバンクBnへの書き込みデータを示し、「Qn」(n=0~7)はバンクBnからの読み出しデータを示す。クロック、コマンド、バンクアドレス、及び書き込みデータは、コントローラからメモリに送信され、読み出しデータはメモリからコントローラへ送信される。メモリコントローラは、各バンクに対する活性化コマンド、書き込みコマンド、読み出しコマンド、及びプリチャージコマンドをメモリに送ることで、メモリに書き込み又は読み出しアクセスする。 FIG. 50 is a timing chart showing the operation of the memory system according to the first comparative example. FIG. 50 shows clocks, commands, bank addresses, and data transmitted on the memory bus when performing write and read accesses to the memory of the DDR2-SDRAM. “A” indicates an activation command, “W” indicates a write command, “R” indicates a read command, and “P” indicates a precharge command. The memory includes eight banks B0 to B7, and “0” to “7” indicate bank addresses of the banks B0 to B7, respectively. “Dn” (n = 0 to 7) indicates write data to the bank Bn, and “Qn” (n = 0 to 7) indicates read data from the bank Bn. The clock, command, bank address, and write data are transmitted from the controller to the memory, and read data is transmitted from the memory to the controller. The memory controller performs write or read access to the memory by sending an activation command, a write command, a read command, and a precharge command for each bank to the memory.
 バンクBn(n=0~7)に対する活性化コマンドをACTnと表し、バンクBnに対する書き込みコマンドをWRITEnと表し、バンクBnに対する読み出しコマンドをREADnと表し、バンクBnに対するプリチャージコマンドをPREnと表す。カラムアドレスとともに送られる書き込みコマンド及び読み出しコマンドをまとめて「カラムコマンド(COL)」とも呼び、バンクBnに対するカラムコマンドをCOLnと表す。 The activation command for the bank Bn (n = 0 to 7) is represented as ACTn, the write command for the bank Bn is represented as WRITEn, the read command for the bank Bn is represented as READn, and the precharge command for the bank Bn is represented as PREn. The write command and the read command sent together with the column address are collectively referred to as “column command (COL)”, and the column command for the bank Bn is represented as COLn.
 各コマンドに関連付けられたタイミングパラメータを以下のように定義する。 The timing parameters associated with each command are defined as follows.
 tCK:クロックの1周期の長さ。
 tCCD-ij:あるバンクBiに対するカラムコマンドCOLiを発行してから、次の任意のバンクBjに対するカラムコマンドCOLjを発行可能になるまでの時間期間の長さ。
 tRRD-ij:あるバンクBiに対する活性化コマンドACTiを発行してから、異なるバンクBjに対する活性化コマンドACTjを発行可能になるまでの時間期間の長さ。
 tRCD-i:あるバンクBiに対する活性化コマンドACTiを発行してから、同一バンクBiに対するカラムコマンドCOLiを発行可能になるまでの時間期間の長さ。
 tRTPi:あるバンクBiに対する読み出しコマンドREADiを発行してから、同一バンクBiに対するプリチャージコマンドPREiを発行可能になるまでの時間期間の長さ。
 tWR-i:あるバンクBiに対する書き込みコマンドWRITEiを発行してから、同一バンクBiに対するプリチャージコマンドPREiを発行可能になるまでの時間期間の長さ。
 tRAS-i:あるバンクBiに対する活性化コマンドACTiを発行してから、同一バンクBiに対するプリチャージコマンドPREiを発行可能になるまでの時間期間の長さ。
 tRP-i:あるバンクBiに対するプリチャージコマンドPREiを発行してから、同一バンクBiに対する活性化コマンドACTiを発行可能になるまでの時間期間の長さ。
 tWTR-ij:あるバンクBiに対する書き込みデータを送信してから(すなわち、バーストデータの最後から)、次の任意のバンクBjに対する読み出しコマンドREADiを発行可能になるまでの時間期間の長さ。
 tRCi:あるバンクBiに対する活性化コマンドACTiを発行してから、次の同一バンクに対する活性化コマンドACTiを発行可能になるまでの時間期間の長さ。
 tFAW-ijkl:4つのバンクBi,Bj,Bk,Blに対してそれぞれ4つの活性化コマンドを連続して発行した後、もう1つのバンクBmに対して活性化コマンドを発行可能になるまでの時間期間の長さ。
 CL:あるバンクBiに対する読み出しコマンドREADiを発行してから、読み出しデータQiの先頭が外部データバスに出力されるまでのクロックサイクル数(CASレイテンシ)。
 CWL:あるバンクBiに対する書き込みコマンドWRITEiを発行してから、書き込みデータDiの先頭がメモリに到達するまでのクロックサイクル数(CAS書き込みレイテンシ)。
 BL:1つの書き込みコマンド又は読み出しコマンドを発行した後にメモリに対して連続して書き込む又は読み出すデータ単位の個数(バースト長)。
tCK: The length of one cycle of the clock.
tCCD-ij: The length of the time period from when the column command COLi for a certain bank Bi is issued until the column command COLj for the next arbitrary bank Bj can be issued.
tRRD-ij: The length of the time period from when the activation command ACTi for a certain bank Bi is issued until the activation command ACTj for a different bank Bj can be issued.
tRCD-i: The length of the time period from when the activation command ACTi for a certain bank Bi is issued until the column command COLi can be issued for the same bank Bi.
tRTPi: The length of the time period from when the read command READi for a certain bank Bi is issued until the precharge command PREi for the same bank Bi can be issued.
tWR-i: The length of the time period from when the write command WRITEi for a certain bank Bi is issued until the precharge command PREi for the same bank Bi can be issued.
tRAS-i: The length of the time period from when the activation command ACTi for a certain bank Bi is issued until the precharge command PREi for the same bank Bi can be issued.
tRP-i: The length of the time period from when the precharge command PREi for a certain bank Bi is issued until the activation command ACTi for the same bank Bi can be issued.
tWTR-ij: The length of the time period from when the write data for a certain bank Bi is transmitted (that is, from the end of the burst data) until the read command READi for the next arbitrary bank Bj can be issued.
tRCi: The length of the time period from when the activation command ACTi for a certain bank Bi is issued until the activation command ACTi for the next same bank can be issued.
tFAW-ijkl: Time from when four activation commands are successively issued to each of the four banks Bi, Bj, Bk, B1, until the activation command can be issued to another bank Bm The length of the period.
CL: The number of clock cycles (CAS latency) from when the read command READi is issued to a certain bank Bi until the head of the read data Qi is output to the external data bus.
CWL: The number of clock cycles (CAS write latency) from the issuance of the write command WRITEi to a certain bank Bi until the beginning of the write data Di reaches the memory.
BL: Number of data units (burst length) that are continuously written to or read from the memory after issuing one write command or read command.
 以下では、説明の簡単化のため、上記のタイミングパラメータの「i」、「j」、「k」、「l」を省略することがある。 Hereinafter, for simplification of description, the timing parameters “i”, “j”, “k”, and “l” may be omitted.
 DDR-SDRAMの場合、1クロックで2回のデータアクセスを行うので、1つの書き込みコマンド又は読み出しコマンドを発行したときに書き込みデータ又は読み出しデータが外部データバスを占有する時間は、1/2×BL×tCKとなる。 In the case of a DDR-SDRAM, since data access is performed twice in one clock, the time that the write data or read data occupies the external data bus when one write command or read command is issued is 1/2 × BL XtCK.
 DDRx-SDRAM及びLPDDRx-SDRAMのメモリシステムのインターフェースは、JEDEC(Joint Electron Device Engineering Council)標準として規定される。上記タイミングパラメータもJEDEC標準で規定されている。DDR2-SDRAMにおける各タイミングパラメータの最小値は、例えばクロック周期tCKが1.875ナノ秒である場合、以下のようになる。 DDRx-SDRAM and LPDDRx-SDRAM memory system interfaces are specified as JEDEC (Joint Electron Device Engineering Council) standards. The timing parameters are also defined in the JEDEC standard. For example, when the clock period tCK is 1.875 nanoseconds, the minimum value of each timing parameter in the DDR2-SDRAM is as follows.
tCK=1.875ナノ秒
tCCD=4tCK
tRRD=6tCK
tRCD=7tCK
tRTP=4tCK
tWR=8tCK
tRP=7tCK
tRAS=20tCK
tWTR=4tCK
tFAW=27tCK
BL=8
CL=7tCK
CWL=6tCK
tCK = 1.875 nanoseconds tCCD = 4tCK
tRRD = 6tCK
tRCD = 7tCK
tRTP = 4tCK
tWR = 8tCK
tRP = 7tCK
tRAS = 20tCK
tWTR = 4tCK
tFAW = 27tCK
BL = 8
CL = 7tCK
CWL = 6tCK
 DDR2-SDRAMでは、バースト長BL=8が使用される。従って、メモリに対して1つの書き込みコマンド又は読み出しコマンドを発行したとき、連続する8個のデータ単位を4×tCKの時間にわたってメモリに書き込む、又は、メモリから読み出す。よって、1回の書き込みコマンド又は読み出しコマンドを発行したとき、書き込みデータ又は読み出しデータは外部データバスを4×tCKの時間にわたって占有する。 In DDR2-SDRAM, burst length BL = 8 is used. Therefore, when one write command or read command is issued to the memory, eight consecutive data units are written to the memory or read from the memory over a time of 4 × tCK. Therefore, when a single write command or read command is issued, the write data or read data occupies the external data bus for a time of 4 × tCK.
 以上のJEDEC標準に準拠したタイミングパラメータに基づくと、時間期間tCCDの最小値tCCD(min)は、1回の書き込み又は読み出しアクセスのデータ入出力時間、すなわち、1/2×BL×tCKに等しい。従って、複数のバンクを活性化し、これらのバンクにデータを書き込む複数の書き込みコマンドを時間期間tCCD(min)=4×tCKごとに連続的に発行した場合には、データを中断なく連続的に読み出すことができ、外部データバスをほぼ100%有効に使用することができる。同様に、複数のバンクを活性化し、これらのバンクからデータを読み出す複数の読み出しコマンドを時間期間tCCD(min)=4×tCKごとに連続的に発行した場合には、データを中断なく連続的に読み出すことができ、外部データバスをほぼ100%有効に使用することができる。 Based on the timing parameters compliant with the above JEDEC standard, the minimum value tCCD (min) of the time period tCCD is equal to the data input / output time of one write or read access, that is, 1/2 × BL × tCK. Accordingly, when a plurality of write commands for activating a plurality of banks and continuously writing data to these banks are issued every time period tCCD (min) = 4 × tCK, data is continuously read without interruption. The external data bus can be used almost 100% effectively. Similarly, when a plurality of read commands for activating a plurality of banks and reading data from these banks are issued continuously every time period tCCD (min) = 4 × tCK, the data is continuously transmitted without interruption. The external data bus can be used almost 100% effectively.
 しかしながら、前述のように、アプリケーションによっては、よりランダムなアクセスが必要とされる場合がある。このようなランダムアクセス動作が繰り返される場合、時間期間tCCD(min)=4×tCKごとに連続的に書き込みコマンド又は読み出しコマンドを発行できなくなり、外部データバスの使用効率が低下する。特に、同一バンクの異なるロウアドレスのページデータに書き込み及び/又は読み出しアクセスを繰り返す場合は、1回のアクセス毎に活性化コマンド及びプリチャージコマンドの発行が必要となり、外部データバスの使用効率がさらに低下するという問題が生じる。 However, as described above, more random access may be required depending on the application. When such a random access operation is repeated, it becomes impossible to issue a write command or a read command continuously every time period tCCD (min) = 4 × tCK, and the use efficiency of the external data bus is lowered. In particular, when writing and / or reading access to page data of different row addresses in the same bank is repeated, it is necessary to issue an activation command and a precharge command for each access, and the use efficiency of the external data bus is further increased. The problem of deteriorating arises.
 図50を参照して、ランダムアクセスについて説明する。 The random access will be described with reference to FIG.
 図50の第0~第28のクロックサイクルにおいて、3個の異なるバンクB3、B2、及びB1に対して連続して書き込み動作を行う。メモリコントローラは、まず、バンクB3に対して活性化コマンドACT3を発行し、時間期間tRCD-3の経過後、バンクB3に対して書き込みコマンドWRITE3を発行し、時間期間CWL-3の経過後、バンクB3に対する書き込みデータD3をメモリに送信する。以上により、バンクB3に対してデータが書き込まれる。バンクB3の書き込み動作とは別に、メモリコントローラは、活性化コマンドACT3の発行から時間期間tRRD-32の経過後、バンクB2の書き込み動作を開始する。メモリコントローラは、まず、バンクB2に対して活性化コマンドACT2を発行し、時間期間tRCD-2の経過後、バンクB2に対して書き込みコマンドWRITE2を発行し、時間期間CWL-2の経過後、バンクB2に対する書き込みデータD2をメモリに送信する。以上により、バンクB2に対してデータが書き込まれる。さらに、バンクB3及びバンクB2の書き込み動作とは別に、メモリコントローラは、活性化コマンドACT2の発行から時間期間tRRD-21の経過後、バンクB1の書き込み動作を開始する。メモリコントローラは、まず、メモリコントローラは、まず、バンクB1に対して活性化コマンドACT1を発行し、時間期間tRCD-1の経過後、バンクB1に対して書き込みコマンドWRITE1を発行し、時間期間CWL-1の経過後、バンクB1に対する書き込みデータD1をメモリに送信する。以上により、バンクB1に対してデータが書き込まれる。以上のコマンドシーケンスにより、バンクB3、バンクB2、及びバンクB1に対して順次に書き込み動作を実施可能である。 In the 0th to 28th clock cycles in FIG. 50, the write operation is continuously performed on the three different banks B3, B2, and B1. First, the memory controller issues an activation command ACT3 to the bank B3, issues a write command WRITE3 to the bank B3 after the elapse of the time period tRCD-3, and after the elapse of the time period CWL-3, Write data D3 for B3 is transmitted to the memory. As described above, data is written to the bank B3. Separately from the write operation of bank B3, the memory controller starts the write operation of bank B2 after the elapse of time period tRRD-32 from the issuance of activation command ACT3. First, the memory controller issues an activation command ACT2 to the bank B2, issues a write command WRITE2 to the bank B2 after the elapse of the time period tRCD-2, and after the elapse of the time period CWL-2, Write data D2 for B2 is transmitted to the memory. As described above, data is written to the bank B2. Further, separately from the write operations of the banks B3 and B2, the memory controller starts the write operation of the bank B1 after the elapse of the time period tRRD-21 from the issue of the activation command ACT2. First, the memory controller first issues an activation command ACT1 to the bank B1, and after the time period tRCD-1, elapses, issues a write command WRITE1 to the bank B1. After the elapse of 1, the write data D1 for the bank B1 is transmitted to the memory. As described above, data is written to the bank B1. By the above command sequence, the write operation can be sequentially performed on the bank B3, the bank B2, and the bank B1.
 しかしながら、JEDEC標準に準拠した上記のタイミングパラメータを用いてランダムアクセスを行う場合、時間期間tRRDの最小値tRRD(min)と、時間期間tCCDの最小値tCCD(min)とを比較すると、tCCD(min)<tRRD(min)である。従って、時間期間tRRD(min)ごとに複数のバンクを活性化し、これらのバンクに対して順次に書き込みコマンドWRITEを発行する場合、あるバンクに対する書き込みデータの送信時間と、異なるバンクに対する書き込みデータの送信時間との間に、外部データバスが空きになる時間が生じる。すなわち、図50の書き込みデータD3、D2、及びD1間のギャップが生じる。このギャップにより、外部データバスの使用効率は、データを中断なく連続的に書き込む場合の2/3に低下する。従って、使用される動作クロック周波数に対して効率的に外部データバスを使用することができないという問題を招く。 However, in the case of performing random access using the above timing parameter compliant with the JEDEC standard, when the minimum value tRRD (min) of the time period tRRD is compared with the minimum value tCCD (min) of the time period tCCD, tCCD (min ) <TRRD (min). Therefore, when a plurality of banks are activated every time period tRRD (min) and the write command WRITE is issued sequentially to these banks, the transmission time of write data for a certain bank and the transmission of write data for a different bank There will be a time when the external data bus becomes empty. That is, a gap is generated between the write data D3, D2, and D1 in FIG. Due to this gap, the efficiency of use of the external data bus is reduced to 2/3 of the case where data is continuously written without interruption. Therefore, there is a problem that the external data bus cannot be used efficiently with respect to the operation clock frequency used.
 同様の問題は読み出し動作にも生じる。図50の第44~第80のクロックサイクルにおいて、連続する4個の異なるバンクB7、B6、B5、及びB4に対する読み出し動作を行う。書き込み動作の場合と同様に、tCCD(min)<tRRD(min)の制約により、読み出しデータQ7、Q6、Q5、及びQ4の間にギャップが生じ、効率的に外部データバスを使用することができないという問題を招く。 The same problem occurs in the read operation. In the 44th to 80th clock cycles in FIG. 50, the read operation is performed on four consecutive different banks B7, B6, B5, and B4. As in the case of the write operation, a gap occurs between the read data Q7, Q6, Q5, and Q4 due to the restriction of tCCD (min) <tRRD (min), and the external data bus cannot be used efficiently. Invite the problem.
 さらに、図50の第0~第48のクロックサイクルにおいて、同一バンクB3の異なるロウアドレス、すなわち、異なる選択ワード線のページデータに対する連続的な書き込みを行う。同一バンクに対する連続した活性化コマンドACTの間には、時間期間tRC(min)以上の間隔が必要である。ここで、書き込み動作時の時間期間tRC(min)は、「tRC(min)=tRCD(min)+CWL+1/2×BL+tWR(min)+tRP(min)」で定義され、図50の場合では、「tRC-3=32×tCK」が必要となる。一方、この時間期間の間に、1つの書き込みコマンドWRITEによって書き込みデータが外部データバスを占有する時間は、高々1/2×BL=4×tCKである。従って、同一バンクの異なるロウアドレスのページデータに対する書き込みが連続する場合、外部データバスの使用効率は、データを中断なく連続的に書き込む場合の1/8に低下する。 Further, in the 0th to 48th clock cycles of FIG. 50, continuous writing is performed on different row addresses of the same bank B3, that is, page data of different selected word lines. An interval equal to or longer than the time period tRC (min) is required between successive activation commands ACT for the same bank. Here, the time period tRC (min) during the write operation is defined by “tRC (min) = tRCD (min) + CWL + 1/2 × BL + tWR (min) + tRP (min)”. In the case of FIG. −3 = 32 × tCK ”is required. On the other hand, the time during which write data occupies the external data bus by one write command WRITE during this time period is at most ½ × BL = 4 × tCK. Therefore, when writing to page data of different row addresses in the same bank continues, the use efficiency of the external data bus is reduced to 1/8 of the case where data is continuously written without interruption.
 図50には示していないが、同一バンクB3の異なるロウアドレス、すなわち、異なる選択ワード線のページデータからの連続的な読み出しを行う場合にも、連続した活性化コマンドACTの間には、時間期間tRC(min)以上の間隔が必要である。ここで、読み出し動作時の時間期間tRC(min)は、「tRC(min)=tRAS(min)+tRP(min)」で定義され、図50の場合では、「tRC(min)=27×tCK」が必要となる。従って、同一バンクの異なるロウアドレスのページデータに対する読み出しが連続する場合、外部データバスの使用効率は、データを中断なく連続的に読み出す場合の4/27に低下する。 Although not shown in FIG. 50, when continuous reading is performed from different row addresses of the same bank B3, that is, page data of different selected word lines, there is a time interval between successive activation commands ACT. An interval equal to or longer than the period tRC (min) is necessary. Here, the time period tRC (min) during the read operation is defined by “tRC (min) = tRAS (min) + tRP (min)”. In the case of FIG. 50, “tRC (min) = 27 × tCK”. Is required. Therefore, when reading for page data of different row addresses in the same bank is continued, the use efficiency of the external data bus is reduced to 4/27 when reading data continuously without interruption.
 さらに、図50の第44~第106のクロックサイクルを参照して、時間期間tFAWの制約を説明する。ここでは、順に8個のバンクB7、B6、B5、B4、B3、B2、B1、及びB0を連続的に活性化し、各バンクのページデータの一部を1回ずつ読み出す動作を示す。この場合、時間期間tFAWによって与えられる、連続したバンク活性化に対する制約が問題となる。最初の4回のバンク活性化に対しては、時間期間tRRD(min)どとに活性化コマンドを発行することが可能である。しかしながら、「4×tRRD(min)<tFAW(min)」である場合、5回目のバンク活性化は、時間期間tFAWの規定により、時間期間tRRD(min)以上にわたって待機してから行う必要が生じる。この制約により、読み出しデータQ4及びQ3の間に、時間期間tRRD(min)より大きいギャップ(図50では5×tCKのギャップ)が生じ、効率的に外部データバスを使用することができないという問題を招く。 Further, the limitation on the time period tFAW will be described with reference to the 44th to 106th clock cycles in FIG. Here, an operation of sequentially activating eight banks B7, B6, B5, B4, B3, B2, B1, and B0 in order and reading a part of the page data of each bank once is shown. In this case, the restriction on continuous bank activation given by the time period tFAW becomes a problem. For the first four bank activations, it is possible to issue an activation command every time period tRRD (min). However, when “4 × tRRD (min) <tFAW (min)”, the fifth bank activation needs to be performed after waiting for the time period tRRD (min) or more according to the definition of the time period tFAW. . Due to this restriction, a gap larger than the time period tRRD (min) is generated between the read data Q4 and Q3 (a gap of 5 × tCK in FIG. 50), and the external data bus cannot be used efficiently. Invite.
 以上に説明したように、同一バンク内で、あるいは異なるバンクにまたがって、ランダムな書き込み又は読み出しアクセスを行う場合、外部データバスの使用効率が大きく劣化するという問題がある。ランダムな書き込み又は読み出しアクセスを要求されるシステムにおいても、外部データバスの使用効率を上げ、メモリコントローラとメモリとの間のアクセスの実効的な高速化することが求められる。 As described above, when performing random write or read access within the same bank or across different banks, there is a problem that the efficiency of use of the external data bus is greatly degraded. Even in a system that requires random write or read access, it is required to increase the use efficiency of the external data bus and to effectively increase the access speed between the memory controller and the memory.
 以下の各実施形態において、プリチャージコマンドを含むコマンドシーケンスにより1つ又は複数のバンクに対してデータを書き込む及び/又は読み出す場合であっても、外部データバスの使用効率を低下させにくいメモリシステムについて説明する。 In each of the following embodiments, a memory system in which the use efficiency of an external data bus is unlikely to be lowered even when data is written to and / or read from one or more banks by a command sequence including a precharge command explain.
 以下、本発明に係る実施形態について図面を参照して説明する。 Embodiments according to the present invention will be described below with reference to the drawings.
 実施形態1~6では、書き込み動作又は読み出し動作を高速化することが可能なメモリシステムについて説明する。 In Embodiments 1 to 6, a memory system capable of speeding up a write operation or a read operation will be described.
実施形態1.
 図1は、実施形態1に係るメモリシステムを含む処理装置を示すブロック図である。図1の処理装置は、プロセッサ1、プロセッサバス2、メモリコントローラ3、メモリバス4、及びメモリ5を備える。
Embodiment 1. FIG.
FIG. 1 is a block diagram illustrating a processing apparatus including a memory system according to the first embodiment. The processing apparatus in FIG. 1 includes a processor 1, a processor bus 2, a memory controller 3, a memory bus 4, and a memory 5.
 プロセッサ1は、プロセッサバス2を介してメモリコントローラ3と接続される。メモリコントローラ3は、メモリバス4を介して及びメモリ5と接続される。メモリ5は、後述するように、複数のサブアレイをそれぞれ含む複数のバンクを備える。メモリ5は、DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC標準に準拠したインターフェースを有する。メモリコントローラ3及びメモリ5は、メモリバス4を介して、JEDEC標準に準拠した信号群を用いて互いに通信する。メモリバス4は、クロックバス、コマンドバス、アドレスバス、及び外部データバスの各信号線を含む。メモリコントローラ3及びメモリ5は、プロセッサのためのメモリシステムとして動作する。 The processor 1 is connected to the memory controller 3 via the processor bus 2. The memory controller 3 is connected to the memory 5 via the memory bus 4. As will be described later, the memory 5 includes a plurality of banks each including a plurality of subarrays. The memory 5 has an interface conforming to the JEDEC standard of DDRx-SDRAM or LPDDRx-SDRAM. The memory controller 3 and the memory 5 communicate with each other using a signal group conforming to the JEDEC standard via the memory bus 4. The memory bus 4 includes signal lines of a clock bus, a command bus, an address bus, and an external data bus. The memory controller 3 and the memory 5 operate as a memory system for the processor.
 メモリコントローラ3は、例えば、SoC(silicon on chip)又はFPGA(field programmable gate array)として構成される。 The memory controller 3 is configured as, for example, SoC (silicon chip) or FPGA (field programmable gate array).
 DDRx-SDRAMのメモリ5は半導体記憶装置の一例である。メモリコントローラ3は半導体記憶装置のための制御装置の一例である。メモリコントローラ3及びメモリ5を含むメモリシステムは半導体記憶システムの一例である。 The DDRx-SDRAM memory 5 is an example of a semiconductor memory device. The memory controller 3 is an example of a control device for a semiconductor memory device. A memory system including the memory controller 3 and the memory 5 is an example of a semiconductor storage system.
 図2は、図1のメモリコントローラ3の構成を示すブロック図である。メモリコントローラ3は、制御回路11、PHYインターフェース12、及びタイミングレジスタ13を備える。PHYインターフェース12は、メモリ5に接続される通信回路である。制御回路11は、複数のコマンドを発行してPHYインターフェース12を介してメモリ5に送信することによりメモリ5を制御する。タイミングレジスタ13は、メモリ5の動作に関連する複数のタイミングパラメータを格納する。 FIG. 2 is a block diagram showing a configuration of the memory controller 3 of FIG. The memory controller 3 includes a control circuit 11, a PHY interface 12, and a timing register 13. The PHY interface 12 is a communication circuit connected to the memory 5. The control circuit 11 controls the memory 5 by issuing a plurality of commands and transmitting them to the memory 5 via the PHY interface 12. The timing register 13 stores a plurality of timing parameters related to the operation of the memory 5.
 タイミングパラメータは、例えば、時間期間tRCD(W)、tRCD(R)、tRP、及びCLを含む。時間期間tRCD(W)は、あるバンクに対する活性化コマンドを発行してから、同一バンクに対する書き込みコマンドを発行可能になるまでの時間差の最小値を示す。時間期間tRCD(R)は、あるバンクに対する活性化コマンドを発行してから、同一バンクに対する読み出しコマンドを発行可能になるまでの時間差の最小値を示す。時間期間tRPは、あるバンクに対するプリチャージコマンドを発行してから、同一バンクに対する活性化コマンドを発行可能になるまでの時間差の最小値を示す。時間期間CLは、あるバンクに対する読み出しコマンドを発行してから、読み出しデータの先頭が外部データバスに出力されるまでのクロックサイクル数(CASレイテンシ)を示す。タイミングレジスタ13は、時間期間tRCD(W)、tRCD(R)、tRP、及びCLをそれぞれ保存するレジスタを含む。 The timing parameters include, for example, time periods tRCD (W), tRCD (R), tRP, and CL. The time period tRCD (W) indicates a minimum value of a time difference from when an activation command for a certain bank is issued until a write command can be issued for the same bank. The time period tRCD (R) indicates a minimum value of a time difference from when an activation command for a certain bank is issued until a read command can be issued for the same bank. The time period tRP indicates the minimum value of the time difference from when the precharge command for a certain bank is issued until the activation command for the same bank can be issued. The time period CL indicates the number of clock cycles (CAS latency) from when a read command is issued to a certain bank until the beginning of the read data is output to the external data bus. The timing register 13 includes registers that store time periods tRCD (W), tRCD (R), tRP, and CL, respectively.
 本明細書では、時間期間tRCD(W)を「第1の時間期間」ともいい、時間期間tRCD(R)を「第2の時間期間」ともいう。 In this specification, the time period tRCD (W) is also referred to as a “first time period”, and the time period tRCD (R) is also referred to as a “second time period”.
 図2のブロック図では、実施形態の説明に必要なタイミングパラメータのみを示すが、実際には、タイミングレジスタ13は他のタイミングパラメータも格納している。他の実施形態に係るメモリコントローラのブロック図でも同様である。 In the block diagram of FIG. 2, only the timing parameters necessary for the description of the embodiment are shown, but the timing register 13 actually stores other timing parameters. The same applies to block diagrams of memory controllers according to other embodiments.
 従来技術のメモリコントローラでは、時間期間tRCD(W)及びtRCD(R)を区別せず、あるバンクに対する活性化コマンドを発行してから、同一バンクに対する読み出しコマンド及び書き込みコマンドを発行可能になるまでの時間差の最小値を示す、単一の値を格納していた。一方、実施形態1に係るメモリコントローラ3では、タイミングレジスタ13は、時間期間tRCD(W)及びtRCD(R)をtRCD(W)レジスタ及びtRCD(R)レジスタに個別に格納することを特徴とする。さらに、実施形態1に係るメモリコントローラ3では、tRCD(W)レジスタに、tRCD(R)レジスタに格納された値より小さい値を格納可能であることを特徴とする。さらに、実施形態1に係るメモリコントローラ3では、tRCD(W)レジスタには「0」より小さい負の値を格納することが可能であり、tRCD(W)レジスタに負の値が格納されている場合、メモリコントローラ3は、あるバンクに対する活性化コマンドを発行する前に、同じバンクに対する書き込みコマンドを発行可能であることを特徴とする。 In the memory controller of the prior art, the time period tRCD (W) and tRCD (R) are not distinguished, and the activation command for a certain bank is issued until the read command and write command for the same bank can be issued. A single value indicating the minimum time difference was stored. On the other hand, in the memory controller 3 according to the first embodiment, the timing register 13 stores the time periods tRCD (W) and tRCD (R) individually in the tRCD (W) register and the tRCD (R) register. . Furthermore, the memory controller 3 according to the first embodiment is characterized in that a value smaller than the value stored in the tRCD (R) register can be stored in the tRCD (W) register. Furthermore, in the memory controller 3 according to the first embodiment, a negative value smaller than “0” can be stored in the tRCD (W) register, and a negative value is stored in the tRCD (W) register. In this case, the memory controller 3 can issue a write command for the same bank before issuing an activation command for a certain bank.
 図3は、図1のメモリ5の構成を示すブロック図である。メモリ5は、SDRAMインターフェース21、チップ制御回路22、バンクB1~B4、及び内部データバスDB1,DB2を備える。SDRAMインターフェース21は、メモリバス4を介してメモリコントローラ3に接続される通信回路である。SDRAMインターフェース21は、メモリコントローラ3と通信し、メモリ5の動作のタイミングを制御する。チップ制御回路22は、SDRAMインターフェース21を介してメモリコントローラ3から複数のコマンドを受信してメモリ5の動作を制御する制御回路である。SDRAMインターフェース21及びチップ制御回路22は、複数の制御線(図3は1つで代表させている)を介して内部制御信号を互いに送受信する。バンクB1,B2は、内部データバスDB1を介してSDRAMインターフェース21に接続され、バンクB3,B4は、内部データバスDB2を介してSDRAMインターフェース21に接続される。 FIG. 3 is a block diagram showing a configuration of the memory 5 of FIG. The memory 5 includes an SDRAM interface 21, a chip control circuit 22, banks B1 to B4, and internal data buses DB1 and DB2. The SDRAM interface 21 is a communication circuit connected to the memory controller 3 via the memory bus 4. The SDRAM interface 21 communicates with the memory controller 3 and controls the operation timing of the memory 5. The chip control circuit 22 is a control circuit that receives a plurality of commands from the memory controller 3 via the SDRAM interface 21 and controls the operation of the memory 5. The SDRAM interface 21 and the chip control circuit 22 transmit / receive internal control signals to / from each other through a plurality of control lines (represented by one in FIG. 3). Banks B1 and B2 are connected to the SDRAM interface 21 via the internal data bus DB1, and banks B3 and B4 are connected to the SDRAM interface 21 via the internal data bus DB2.
 バンクB1は、メモリアレイ23-1、ロウデコーダ24-1、及びカラムデコーダ25-1を備える。メモリアレイ23-1は、後述するように、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数のメモリセルと、複数のビット線にそれぞれ接続された複数のセンスアンプと、複数のセンスアンプにそれぞれ接続された複数のカラム選択線とを備える。ロウデコーダ24-1及びカラムデコーダ25-1は、メモリアレイ23-1に対する2次元のアクセス位置を指定する。他のバンクB2~B4もまた、バンクB1と同様に、メモリアレイ23-2~23-4、ロウデコーダ24-2~24-4、及びカラムデコーダ25-2~25-4をそれぞれ備える。 Bank B1 includes a memory array 23-1, a row decoder 24-1, and a column decoder 25-1. As will be described later, the memory array 23-1 includes a plurality of memory cells arranged along a plurality of bit lines and a plurality of word lines orthogonal to each other, and a plurality of sense amplifiers respectively connected to the plurality of bit lines. And a plurality of column selection lines respectively connected to the plurality of sense amplifiers. The row decoder 24-1 and the column decoder 25-1 designate a two-dimensional access position for the memory array 23-1. The other banks B2 to B4 are also provided with memory arrays 23-2 to 23-4, row decoders 24-2 to 24-4, and column decoders 25-2 to 25-4, respectively, similarly to the bank B1.
 チップ制御回路22は、バンク制御回路31-1~31-4を備える。各バンク制御回路31-1~31-4は、対応するバンクB1~B4にそれぞれ接続され、各バンクB1~B4に制御信号を送信して制御する。すなわち、バンク制御回路31-1は、ロウアドレス活性化信号RAE-1によってバンクB1のロウデコーダ24-1を活性化し、ロウアドレス信号RA-1をバンクB1のロウデコーダ24-1に供給する。また、バンク制御回路31-1は、カラムアドレス活性化信号CAE-1によってバンクB1のカラムデコーダ25-1を活性化し、カラムアドレス信号CA-1をバンクB1のカラムデコーダ25-1に供給する。他のバンク制御回路31-2~31-4もまた、バンク制御回路31-1と同様に、対応するバンクB2~B4を制御する。 The chip control circuit 22 includes bank control circuits 31-1 to 31-4. The bank control circuits 31-1 to 31-4 are connected to the corresponding banks B1 to B4, respectively, and control is performed by transmitting control signals to the banks B1 to B4. That is, the bank control circuit 31-1 activates the row decoder 24-1 of the bank B1 by the row address activation signal RAE-1, and supplies the row address signal RA-1 to the row decoder 24-1 of the bank B1. Further, the bank control circuit 31-1 activates the column decoder 25-1 of the bank B1 by the column address activation signal CAE-1, and supplies the column address signal CA-1 to the column decoder 25-1 of the bank B1. Similarly to the bank control circuit 31-1, the other bank control circuits 31-2 to 31-4 also control the corresponding banks B2 to B4.
 図4は、図3のチップ制御回路22の詳細構成を示すブロック図である。チップ制御回路22は、詳しくは、バンク制御回路31-1~31-4に加えて、論理和演算(OR)回路32及び活性化制御回路33を備える。 FIG. 4 is a block diagram showing a detailed configuration of the chip control circuit 22 of FIG. Specifically, the chip control circuit 22 includes a logical sum (OR) circuit 32 and an activation control circuit 33 in addition to the bank control circuits 31-1 to 31-4.
 図4を参照して、バンク制御回路31-1~31-4の構成についてさらに説明する。バンク制御回路31-1は、ロウアドレス制御回路41、カラムアドレス制御回路42、論理和演算(OR)回路43、及び論理積演算(AND)回路44を備える。ロウアドレス制御回路41及びカラムアドレス制御回路42は、SDRAMインターフェース21からの内部制御信号として、ロウアドレス及びカラムアドレスなどを含むバンク制御信号を受信する。ロウアドレス制御回路41は、バンク制御信号を受信して、ロウアドレス活性化信号RAE-1及びロウアドレス信号RA-1を発生する。カラムアドレス制御回路42は、バンク制御信号を受信して、内部信号CAEF-1及びカラムアドレス(CA-2)を発生する。内部信号CAEF-1は、カラムアドレス活性化信号CAE-1を発生するための元信号である。カラムアドレス活性化信号CAE-1は、ロウアドレス活性化信号RAE-1及び内部信号CAEF-1の両方が活性化したときに活性化する。すなわち、活性化状態を論理値「1」により表すと、内部信号CAEF-1及びロウアドレス活性化信号RAE-1の論理積が「1」になったとき、カラムアドレス活性化信号CAE-1が活性化される。この論理積演算のため、AND回路44が設けられる。この論理は、バンクB1がロウ活性化されたときのみにカラムアクセス可能とすることを保証する。すなわち、バンクB1がロウ非活性であるときにカラムアクセスを禁止することで、メモリアレイ23-1の誤動作を防ぐ目的がある。 Referring to FIG. 4, the configuration of bank control circuits 31-1 to 31-4 will be further described. The bank control circuit 31-1 includes a row address control circuit 41, a column address control circuit 42, a logical sum (OR) circuit 43, and a logical product (AND) circuit 44. The row address control circuit 41 and the column address control circuit 42 receive a bank control signal including a row address and a column address as internal control signals from the SDRAM interface 21. The row address control circuit 41 receives the bank control signal and generates a row address activation signal RAE-1 and a row address signal RA-1. The column address control circuit 42 receives the bank control signal and generates an internal signal CAEF-1 and a column address (CA-2). Internal signal CAEF-1 is an original signal for generating column address activation signal CAE-1. Column address activation signal CAE-1 is activated when both row address activation signal RAE-1 and internal signal CAEF-1 are activated. That is, when the activation state is represented by a logical value “1”, when the logical product of the internal signal CAEF-1 and the row address activation signal RAE-1 becomes “1”, the column address activation signal CAE-1 is Activated. An AND circuit 44 is provided for the logical product operation. This logic ensures that column access is possible only when the bank B1 is activated. In other words, the column access is prohibited when the bank B1 is inactive to prevent malfunction of the memory array 23-1.
 図4をさらに参照すると、バンク制御回路31-1には、tRC(W)短縮信号がさらに入力されている。tRC(W)短縮信号は、図14及び図15を参照して後述するように、活性化コマンドの前に書き込みコマンドを送信することを通知する制御信号(これを「第1の制御信号」ともいう)がメモリコントローラ3からメモリ5に送信されたとき、メモリ5の内部制御信号としてSDRAMインターフェース21からチップ制御回路22に送られる。tRC(W)短縮信号が非活性である場合(すなわち、論理値「0」の場合)、カラムアドレス活性化信号CAE-1は、ロウアドレス活性化信号RAE-1及び内部信号CAEF-1の両方が活性化したときにのみ活性化する。前述のように、この論理は、バンクB1がロウ活性化されたときのみにカラムアクセス可能とすることを保証する。一方、tRC(W)短縮信号が活性化された場合(すなわち、論理値「1」の場合)、ロウアドレス活性化信号RAE-1及びカラムアドレス活性化信号CAE-1は、互いに独立に制御される。すなわち、バンクB1がロウ活性化されたときのみにカラムアクセス可能とするという制約を無効とし、バンクB1のロウ活性化前にもカラムアクセスを可能とする。AND回路44には、ロウアドレス活性化信号RAE-1及びtRC(W)短縮信号の論理和が入力される。この論理和演算のため、OR回路43が設けられる。 Referring further to FIG. 4, a tRC (W) shortening signal is further input to the bank control circuit 31-1. As will be described later with reference to FIGS. 14 and 15, the tRC (W) shortening signal is a control signal (this is also referred to as a “first control signal”) for notifying that a write command is transmitted before the activation command. Is transmitted from the memory controller 3 to the memory 5 as an internal control signal of the memory 5 from the SDRAM interface 21 to the chip control circuit 22. When the tRC (W) shortening signal is inactive (that is, when the logical value is “0”), the column address activation signal CAE-1 is both the row address activation signal RAE-1 and the internal signal CAEF-1. It is activated only when is activated. As described above, this logic ensures that column access is possible only when the bank B1 is activated. On the other hand, when the tRC (W) shortening signal is activated (that is, when the logical value is “1”), the row address activation signal RAE-1 and the column address activation signal CAE-1 are controlled independently of each other. The That is, the restriction that the column access is enabled only when the bank B1 is activated is invalidated, and the column access is enabled before the bank B1 is activated. The AND circuit 44 receives the logical sum of the row address activation signal RAE-1 and the tRC (W) shortening signal. An OR circuit 43 is provided for this logical sum operation.
 他のバンク制御回路31-2~31-4もまた、バンク制御回路31-1と同様に構成される。 The other bank control circuits 31-2 to 31-4 are also configured similarly to the bank control circuit 31-1.
 図4をさらに参照すると、バンク制御回路31-1~31-4から出力されたロウアドレス活性化信号RAE-1~RAE-4は、OR回路32に入力される。OR回路32の出力信号RAORは、少なくとも1つのロウアドレス活性化信号が論理値「1」になるとき(すなわち、少なくとも1つのバンクが活性化されるとき)、論理値「1」になる。活性化制御回路33は、OR回路32の出力信号RAORが論理値「1」になったとき、制御信号COLACT及び制御信号IOACTを発生する。制御信号COLACTは、各バンク制御回路31-1~31-4のカラムアドレス制御回路42に送られる。各バンク制御回路31-1~31-4のカラムアドレス制御回路42は、制御信号COLACTを受けて、その回路の一部又は全部を活性化する。この動作により、全バンクB1~B4が非活性の状態において、各バンク制御回路31-1~31-4のカラムアドレス制御回路42の動作電流を削減している。一方、制御信号IOACTは、SDRAMインターフェース21及び他の回路(メモリ5の内部電圧発生回路など)に送られる。SDRAMインターフェース21及び他の回路は、制御信号IOACTを受けて、それらの回路の一部又は全部を活性化する。この動作により、全バンクB1~B4が非活性の状態において、SDRAMインターフェース21及び他の回路の動作電流を削減している。 Further referring to FIG. 4, the row address activation signals RAE-1 to RAE-4 output from the bank control circuits 31-1 to 31-4 are input to the OR circuit 32. The output signal RAOR of the OR circuit 32 has a logical value “1” when at least one row address activation signal has a logical value “1” (that is, when at least one bank is activated). The activation control circuit 33 generates a control signal COLACT and a control signal IOACT when the output signal RAOR of the OR circuit 32 becomes a logical value “1”. The control signal COLACT is sent to the column address control circuit 42 of each bank control circuit 31-1 to 31-4. The column address control circuit 42 of each of the bank control circuits 31-1 to 31-4 receives a control signal COLACT and activates part or all of the circuit. This operation reduces the operating current of the column address control circuit 42 of each of the bank control circuits 31-1 to 31-4 when all the banks B1 to B4 are inactive. On the other hand, the control signal IOACT is sent to the SDRAM interface 21 and other circuits (such as an internal voltage generation circuit of the memory 5). The SDRAM interface 21 and other circuits receive a control signal IOACT and activate part or all of the circuits. This operation reduces the operating current of the SDRAM interface 21 and other circuits when all the banks B1 to B4 are inactive.
 図4をさらに参照すると、活性化制御回路33にも、tRC(W)短縮信号が入力されている。tRC(W)短縮信号が非活性である場合(すなわち、論理値「0」の場合)、活性化制御回路33は、OR回路32の出力信号RAOR(すなわち、バンクB1~B4の活性/非活性)に応じて、制御信号COLACT及び制御信号IOACTを発生する。一方、tRC(W)短縮信号が活性化された場合(すなわち、論理値「1」の場合)、活性化制御回路33は、OR回路32の出力信号RAORに無関係に、制御信号COLACT及び制御信号IOACTを発生する。従って、活性化コマンドが発行される前であっても、活性化制御回路33がtRC(W)短縮信号を受信したとき、各バンク制御回路31-1~31-4のカラムアドレス制御回路42は、制御信号COLACTを受けて、その回路の一部又は全部を活性化する。同様に、活性化コマンドが発行される前であっても、活性化制御回路33がtRC(W)短縮信号を受信したとき、SDRAMインターフェース21及び他の回路(内部電圧発生回路など)は、制御信号IOACTを受けて、その回路の一部又は全部を活性化する。このように、各バンク制御回路31-1~31-4のカラムアドレス制御回路42が活性化され、さらに、SDRAMインターフェース21及び他の回路が活性化されるので、活性化コマンドが発行される前であっても、メモリ5は、書き込みコマンドを受信可能な状態になる。 Referring further to FIG. 4, the tRC (W) shortening signal is also input to the activation control circuit 33. When the tRC (W) shortening signal is inactive (that is, when the logical value is “0”), the activation control circuit 33 outputs the output signal RAOR of the OR circuit 32 (that is, the activation / inactivation of the banks B1 to B4). ), The control signal COLACT and the control signal IOACT are generated. On the other hand, when the tRC (W) shortening signal is activated (that is, when the logical value is “1”), the activation control circuit 33 controls the control signal COLACT and the control signal regardless of the output signal RAOR of the OR circuit 32. Generate IOACT. Therefore, even before the activation command is issued, when the activation control circuit 33 receives the tRC (W) shortening signal, the column address control circuit 42 of each of the bank control circuits 31-1 to 31-4 In response to the control signal COLACT, part or all of the circuit is activated. Similarly, even before the activation command is issued, when the activation control circuit 33 receives the tRC (W) shortening signal, the SDRAM interface 21 and other circuits (such as an internal voltage generation circuit) are controlled. In response to the signal IOACT, part or all of the circuit is activated. In this way, the column address control circuit 42 of each of the bank control circuits 31-1 to 31-4 is activated, and further, the SDRAM interface 21 and other circuits are activated. Therefore, before the activation command is issued. Even so, the memory 5 is ready to receive a write command.
 このように、メモリ5は、複数のコマンドのうちの少なくとも一部にそれぞれ関連付けられた複数の回路を含む。チップ制御回路22は、tRC(W)短縮信号が活性化されたとき、書き込みコマンドに関連付けられた回路(各バンク制御回路31-1~31-4のカラムアドレス制御回路42、SDRAMインターフェース21及び他の回路、など)を活性化する。 As described above, the memory 5 includes a plurality of circuits respectively associated with at least a part of the plurality of commands. When the tRC (W) shortening signal is activated, the chip control circuit 22 is connected to a circuit associated with the write command (the column address control circuit 42 of each bank control circuit 31-1 to 31-4, the SDRAM interface 21 and others). The circuit, etc.).
 前述のように、メモリ5は、DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC標準に準拠したインターフェースを有する。従って、活性化コマンドの前に書き込みコマンドを送信することを通知する制御信号をメモリコントローラ3からメモリ5に送信するために、メモリバス4の信号線のうちのいずれかを占有することはできない。従って、例えば、モードレジスタ設定等の既存のコマンドの未使用ビットを用いて、又は未使用ビットの組み合わせを用いて、活性化コマンドの前に書き込みコマンドを送信することをメモリコントローラ3からメモリ5に通知する。 As described above, the memory 5 has an interface conforming to the JEDEC standard of DDRx-SDRAM or LPDDRx-SDRAM. Therefore, any of the signal lines of the memory bus 4 cannot be occupied in order to transmit a control signal notifying that the write command is transmitted before the activation command from the memory controller 3 to the memory 5. Therefore, for example, the write command is transmitted from the memory controller 3 to the memory 5 using an unused bit of an existing command such as a mode register setting or using a combination of unused bits. Notice.
 活性化コマンドの前に書き込みコマンドを送信することは、必ずしもメモリコントローラ3からメモリ5に通知されなくてもよい。常に活性化コマンドの前に書き込みコマンドを送信することが予めわかっている場合には、メモリ5の出荷前に、ヒューズのレーザトリミング又は電気的なトリミングを行うこと、もしくは、メモリ5の上層メタル配線を改訂すること、などによって、活性化状態に固定されたtRC(W)短縮信号をメモリ5の内部で生成するようにメモリ5を構成してもよい。 It is not always necessary to notify the memory 5 from the memory controller 3 that the write command is transmitted before the activation command. When it is known in advance that the write command is always transmitted before the activation command, fuse trimming or electrical trimming of the fuse 5 before shipping of the memory 5 or upper metal wiring of the memory 5 is performed. The memory 5 may be configured to generate the tRC (W) shortening signal fixed in the activated state in the memory 5 by revising
 図5は、図3のメモリアレイ23-n、ロウデコーダ24-n、及びカラムデコーダ25-nの構成を示すブロック図である。以下、構成要素の符号「~n」は、バンクBn(n=1~4)に対応することを示す。また、図5の符号DBは、図3の内部データバスDB1又はDB2を示す。 FIG. 5 is a block diagram showing the configuration of the memory array 23-n, row decoder 24-n, and column decoder 25-n in FIG. Hereinafter, the reference numerals “˜n” of the constituent elements indicate that they correspond to the banks Bn (n = 1 to 4). Further, the symbol DB in FIG. 5 indicates the internal data bus DB1 or DB2 in FIG.
 図5を参照すると、メモリアレイ23-nは、互いに直交する複数のロウ(Y方向に沿った行)及び複数のカラム(X方向に沿った列)に沿って配列された複数のメモリセルCを備える。メモリアレイ23-nは、複数のセンスアンプからなる少なくとも1つのセンスアンプ列52によって互いに分離された複数のサブアレイ51を含む。各サブアレイ51もまた、複数のロウ及び複数のカラムに沿って配列された複数のメモリセルCを備える。図5では、図示の簡単化のために、1つのみのメモリセルCを示す。 Referring to FIG. 5, the memory array 23-n includes a plurality of memory cells C arranged along a plurality of rows (rows along the Y direction) and a plurality of columns (columns along the X direction) orthogonal to each other. Is provided. The memory array 23-n includes a plurality of subarrays 51 that are separated from each other by at least one sense amplifier row 52 including a plurality of sense amplifiers. Each sub-array 51 also includes a plurality of memory cells C arranged along a plurality of rows and a plurality of columns. In FIG. 5, only one memory cell C is shown for simplicity of illustration.
 図5を参照すると、ロウデコーダ24-nは、メモリアレイ23-nの複数のロウにわたって(すなわちX方向に沿って)配置される。各サブアレイ51において、Y方向に延在する複数のワード線WDLが、当該サブアレイ51の全体にわたってX方向に互いに所定間隔を有して配列されている。全てのワード線WDLはロウデコーダ24-nに接続される。ロウデコーダ24-nは、バンク制御回路31-nからロウアドレス信号RA-n及びロウアドレス活性化信号RAE-nを受信し、1つのワード線WDLを選択する。図5では、複数のワード線WDLのうち、活性化した1つのワード線WDLのみ示している。選択されたワード線WDLに接続されるサブアレイ51を、「活性化されたサブアレイ」と呼ぶ(図5ではハッチングにより示す)。 Referring to FIG. 5, the row decoder 24-n is arranged over a plurality of rows (that is, along the X direction) of the memory array 23-n. In each subarray 51, a plurality of word lines WDL extending in the Y direction are arranged at predetermined intervals in the X direction over the entire subarray 51. All the word lines WDL are connected to the row decoder 24-n. The row decoder 24-n receives the row address signal RA-n and the row address activation signal RAE-n from the bank control circuit 31-n, and selects one word line WDL. FIG. 5 shows only one activated word line WDL among a plurality of word lines WDL. The subarray 51 connected to the selected word line WDL is referred to as “activated subarray” (indicated by hatching in FIG. 5).
 図5を参照すると、カラムデコーダは、メモリアレイ23-nの複数のカラムにわたって(すなわちY方向に沿って)配置される。メモリアレイ23-nにおいて、X方向に延在する複数のカラム選択線CSLが、メモリアレイ23-nの全体にわたってY方向に互いに所定間隔を有して配列されている。全てのカラム選択線CSLはカラムデコーダ25-nに接続される。カラムデコーダ25-nは、バンク制御回路31-nからカラムアドレス信号CA-n及びカラムアドレス活性化信号CAE-nを受信し、1つのカラム選択線CSLを選択する。図5では、複数のカラム選択線CSLのうち、活性化した1つのカラム選択線CSLのみを示している。 Referring to FIG. 5, the column decoder is arranged across a plurality of columns of the memory array 23-n (that is, along the Y direction). In the memory array 23-n, a plurality of column selection lines CSL extending in the X direction are arranged at predetermined intervals in the Y direction over the entire memory array 23-n. All the column selection lines CSL are connected to the column decoder 25-n. The column decoder 25-n receives the column address signal CA-n and the column address activation signal CAE-n from the bank control circuit 31-n, and selects one column selection line CSL. FIG. 5 shows only one activated column selection line CSL among the plurality of column selection lines CSL.
 活性化されたワード線WDLと活性化されたカラム選択線CSLとの交点における選択されたメモリセルCに対して、書き込みアクセス及び読み出しアクセスが行われる。 Write access and read access are performed on the selected memory cell C at the intersection of the activated word line WDL and the activated column selection line CSL.
 図3の内部データバスDB1,DB2は、実際には、入出力(IO)制御回路26-nを介して各バンクB1~B4に接続される。図5に示すように、複数のデータ信号を伝達する内部データバスDBは、IO制御回路26-nを介して、複数のGIOバスGIOBに接続される。GIOバスGIOBは、サブアレイ選択スイッチSASWを介してLIOバスLIOBに接続される。 The internal data buses DB1 and DB2 in FIG. 3 are actually connected to the banks B1 to B4 via the input / output (IO) control circuit 26-n. As shown in FIG. 5, the internal data bus DB for transmitting a plurality of data signals is connected to the plurality of GIO buses GIOB via the IO control circuit 26-n. The GIO bus GIOB is connected to the LIO bus LIOB via the subarray selection switch SASW.
 データを書き込むとき、内部データバスDB上のデータは、IO制御回路26-n、GIOバスGIOB、サブアレイ選択スイッチSASW、LIOバスLIOBを順に経由して、選択されたメモリセルCに書き込まれる。データを読み出すとき、選択されたメモリセルCに格納されたデータは、LIOバスLIOB、サブアレイ選択スイッチSASW、GIOバスGIOB、IO制御回路26-nを順に経由して、内部データバスDB上に読み出される。 When data is written, the data on the internal data bus DB is written to the selected memory cell C via the IO control circuit 26-n, the GIO bus GIOB, the subarray selection switch SASW, and the LIO bus LIOB in this order. When reading data, the data stored in the selected memory cell C is read onto the internal data bus DB via the LIO bus LIOB, the subarray selection switch SASW, the GIO bus GIOB, and the IO control circuit 26-n in order. It is.
 図6は、図5のサブアレイ51及びセンスアンプ列52の詳細構成を示すブロック図である。サブアレイ51は、互いに直交するビット線BTL00,BTL01,…及びワード線WDL0に沿って配列されたメモリセルC00,C01,…を備える。ビット線BTL00,BTL01,…にはセンスアンプSA00,SA01,…がそれぞれ接続される。センスアンプSA00,SA01,…にはカラム選択線CSL0,CSL1がそれぞれ接続される。サブアレイ51において、Y方向に延在する複数のワード線WDLが、X方向に互いに所定間隔を有して配列されている。ただし、図6では、図示の簡単化のために、1つのワード線WDL0のみを示す。サブアレイ51において、X方向に延在する複数のビット線BTL00,BTL01,…が、Y方向に互いに所定間隔を有して配列されている。各メモリセルC00,C01,…は、各ワード線WDLと各ビット線BTLとの交点に配置される。センスアンプ列52において、複数のセンスアンプSA00、SA01、SA10、SA11及び入出力(IO)スイッチが、Y方向に互いに所定間隔を有して配列されている。さらに、センスアンプ列52には、LIOバスLIOB_0,LIOB_1,…が配線される。カラム選択線CSLはIOスイッチIOSWに接続され、その開閉を制御する。カラム選択線CSL0が活性化することで、センスアンプSA00とLIOバスLIOB_0とが接続され、センスアンプSA02とLIOバスLIOB_2とが接続され、センスアンプSA01とLIOバスLIOB_1とが接続され、センスアンプSA03とLIOバスLIOB_3とが接続される。同様に、カラム選択線CSL1が活性化することで、センスアンプSA10とLIOバスLIOB_0とが接続され、センスアンプSA12とLIOバスLIOB_2とが接続され、センスアンプSA11とLIOバスLIOB_1とが接続され、センスアンプSA13とLIOバスLIOB_3とが接続される。各センスアンプSAには、ロウデコーダ24-nからセンスアンプ活性化信号SAPE及びSANEが入力される。 FIG. 6 is a block diagram showing a detailed configuration of the subarray 51 and the sense amplifier array 52 of FIG. The subarray 51 includes bit lines BTL00, BTL01,... And memory cells C00, C01,... Arranged along the word line WDL0. Sense amplifiers SA00, SA01,... Are connected to the bit lines BTL00, BTL01,. Column select lines CSL0 and CSL1 are connected to the sense amplifiers SA00, SA01,. In the subarray 51, a plurality of word lines WDL extending in the Y direction are arranged at predetermined intervals in the X direction. However, in FIG. 6, only one word line WDL0 is shown for simplification of illustration. In the subarray 51, a plurality of bit lines BTL00, BTL01,... Extending in the X direction are arranged at a predetermined interval in the Y direction. Each of the memory cells C00, C01,... Is arranged at the intersection of each word line WDL and each bit line BTL. In the sense amplifier row 52, a plurality of sense amplifiers SA00, SA01, SA10, SA11 and input / output (IO) switches are arranged at predetermined intervals in the Y direction. Further, LIO buses LIOB_0, LIOB_1,... The column selection line CSL is connected to the IO switch IOSW and controls its opening / closing. When the column selection line CSL0 is activated, the sense amplifier SA00 and the LIO bus LIOB_0 are connected, the sense amplifier SA02 and the LIO bus LIOB_2 are connected, the sense amplifier SA01 and the LIO bus LIOB_1 are connected, and the sense amplifier SA03. Are connected to the LIO bus LIOB_3. Similarly, when the column selection line CSL1 is activated, the sense amplifier SA10 and the LIO bus LIOB_0 are connected, the sense amplifier SA12 and the LIO bus LIOB_2 are connected, and the sense amplifier SA11 and the LIO bus LIOB_1 are connected. Sense amplifier SA13 and LIO bus LIOB_3 are connected. Sense amplifier activation signals SAPE and SANE are input from the row decoder 24-n to each sense amplifier SA.
 図6では、1つのワード線WDL0、2つのカラム選択線CSL0、CSL1、4つのLIOバスLIOB_0、LIOB_2、LIOB_1、LIOB_3、及びそれらに接続される他の構成要素とを示すが、実際には、サブアレイ51及びセンスアンプ列52は、さらに多くのワード線WDL、カラム選択線CSL、LIOバスLIOB、及びそれらに接続される他の構成要素を備える。 FIG. 6 shows one word line WDL0, two column selection lines CSL0 and CSL1, four LIO buses LIOB_0, LIOB_2, LIOB_1, and LIOB_3, and other components connected to them. The sub-array 51 and the sense amplifier array 52 include more word lines WDL, column selection lines CSL, LIO buses LIOB, and other components connected to them.
 図7は、図6のセンスアンプSA11,SA02、IOスイッチIOSW、及びメモリセルC00の詳細構成を示す回路図である。 FIG. 7 is a circuit diagram showing a detailed configuration of the sense amplifiers SA11 and SA02, the IO switch IOSW, and the memory cell C00 of FIG.
 各センスアンプSA00、SA02は、クロスカップルされた2対のPMOSトランジスタSAPT及びNMOSトランジスタSANTを備える。2つのNMOSトランジスタSANTのソースには、センスアンプ活性化信号SANEが印加され、それらのドレインは、ビット線BTL00及び反転ビット線/BTL00にそれぞれ接続される。2つのPMOSトランジスタSAPTのソースには、センスアンプ活性化信号SAPEが印加され、それらのドレインは、ビット線BTL00及び反転ビット線/BTL00にそれぞれ接続される。LIOバスLIOB_0は一対の信号線LIO_0,/LIO_0を含み、LIOバスLIOB_2は一対の信号線LIO_2,/LIO_2を含む。 Each sense amplifier SA00, SA02 includes two pairs of PMOS transistors SAPT and NMOS transistors SANT that are cross-coupled. A sense amplifier activation signal SANE is applied to the sources of the two NMOS transistors SANT, and their drains are connected to the bit line BTL00 and the inverted bit line / BTL00, respectively. A sense amplifier activation signal SAPE is applied to the sources of the two PMOS transistors SAPT, and their drains are connected to the bit line BTL00 and the inverted bit line / BTL00, respectively. The LIO bus LIOB_0 includes a pair of signal lines LIO_0 and / LIO_0, and the LIO bus LIOB_2 includes a pair of signal lines LIO_2 and / LIO_2.
 IOスイッチIOSWは、一対のNMOSトランジスタである入出力(IO)トランジスタIOTを備える。一方のIOトランジスタIOTのソースはビット線BTL00に接続され、そのドレインはLIOバスの信号線LIO_0に接続され、他方のIOトランジスタIOTのソースは反転ビット線/BTL00に接続され、そのドレインはLIOバスの信号線/LIO_0に接続される。 The IO switch IOSW includes an input / output (IO) transistor IOT that is a pair of NMOS transistors. The source of one IO transistor IOT is connected to the bit line BTL00, its drain is connected to the signal line LIO_0 of the LIO bus, the source of the other IO transistor IOT is connected to the inverted bit line / BTL00, and its drain is connected to the LIO bus. To the signal line / LIO_0.
 メモリセルC00は、セルトランジスタCT及びセルキャパシタCSを備え、メモリセルC00に格納されたデータ(「1」又は「0」の情報)は、蓄積ノードSNに電圧情報として保持されている。セルトランジスタCTは、例えばNMOSトランジスタである。 The memory cell C00 includes a cell transistor CT and a cell capacitor CS, and data (information “1” or “0”) stored in the memory cell C00 is held as voltage information in the storage node SN. The cell transistor CT is, for example, an NMOS transistor.
 メモリセルCは半導体記憶装置の記憶セルの一例である。 Memory cell C is an example of a memory cell of a semiconductor memory device.
 ビット線BTL00は、非常に高抵抗であるので、センスアンプSA00の近傍の区間と、メモリセルC00の近傍の区間との間には、寄生抵抗RBTLが生じる。 Since the bit line BTL00 has a very high resistance, a parasitic resistance RBTL is generated between a section in the vicinity of the sense amplifier SA00 and a section in the vicinity of the memory cell C00.
 他のセンスアンプSA、IOスイッチIOSW、及びメモリセルCもまた、図7のセンスアンプSA11,SA02、IOスイッチIOSW、及びメモリセルC00と同様に構成される。 Other sense amplifiers SA, IO switches IOSW, and memory cells C are configured in the same manner as the sense amplifiers SA11, SA02, IO switches IOSW, and memory cells C00 in FIG.
 図8は、図7のビット線に接続されるイコライズ回路の構成を示す回路図である。図7には図示していないが、メモリ5の正常な動作のために、全てのビット線及び反転ビット線のペアに、図8のイコライズ回路(あるいは同等の機能を有する回路)が接続される。図8のイコライズ回路は、ビット線イコライズ信号BTLEQによって制御されるトランジスタT1~T3を備える。一対のビット線BTL,/BTLは、ビット線イコライズ信号BTLEQの活性化によって、電圧VBTLに固定される。電圧VBTLは、ビット線BTLの信号を「H」(ハイレベル)側に増幅した後の最終的な電圧VARYと、ビット線BTLの信号を「L」(ローレベル)側に増幅した後の最終的な電圧VSSとの中間の電圧である。 FIG. 8 is a circuit diagram showing a configuration of an equalize circuit connected to the bit line of FIG. Although not shown in FIG. 7, the equalize circuit (or a circuit having an equivalent function) of FIG. 8 is connected to all bit line and inverted bit line pairs for the normal operation of the memory 5. . The equalize circuit of FIG. 8 includes transistors T1 to T3 controlled by a bit line equalize signal BTLEQ. The pair of bit lines BTL, / BTL are fixed to the voltage VBTL by the activation of the bit line equalize signal BTLEQ. The voltage VBTL is the final voltage VARY after the signal on the bit line BTL is amplified to the “H” (high level) side, and the final voltage after the signal on the bit line BTL is amplified to the “L” (low level) side. This is a voltage intermediate to the typical voltage VSS.
 図9は、図5のサブアレイ選択スイッチSASWの構成を示す回路図である。GIOバスGIOBは一対の信号線GIO,/GIOを含む。図9のサブアレイ選択スイッチSASWは、GIOバスの信号線GIO,/GIOによってそれぞれ制御されるトランジスタT11,T12と、ビット線イコライズ信号BTLEQによって制御されるトランジスタT13,T14とを備える。サブアレイ選択スイッチSASWは、GIOバスの一対の信号線GIO,/GIOと、LIOバスの一対の信号線LIO,/LIOとを接続するスイッチである。サブアレイ選択スイッチSASWは、LIOバスの一対の信号線LIO,/LIOの電圧を電圧VBTLに固定する機能をさらに有する。サブアレイ選択スイッチSASWは、サブアレイ選択信号SUBASELが「H」に活性化されたとき、GIOバスの信号線GIO,/GIOと、LIOバスの信号線LIO,/LIOとを互いに接続する。サブアレイ選択スイッチSASWは、また、ビット線イコライズ信号BTLEQが「H」に活性化されたとき、LIOバスの信号線LIO,/LIOの電圧を電圧VBTLに固定する。ここで、カラム選択線CSLによる内部読み出し動作期間t(iRD)及び内部書き込み動作期間t(iWR)以外では、IOバスの信号線GIO,/GIOの電圧は「H」レベル、すなわち、電圧VARYもしくはそれよりも高い電圧となっている。 FIG. 9 is a circuit diagram showing a configuration of the subarray selection switch SASW in FIG. The GIO bus GIOB includes a pair of signal lines GIO and / GIO. 9 includes transistors T11 and T12 controlled by signal lines GIO and / GIO of the GIO bus, and transistors T13 and T14 controlled by a bit line equalize signal BTLEQ, respectively. The sub-array selection switch SASW is a switch for connecting a pair of signal lines GIO, / GIO of the GIO bus and a pair of signal lines LIO, / LIO of the LIO bus. The subarray selection switch SASW further has a function of fixing the voltage of the pair of signal lines LIO, / LIO of the LIO bus to the voltage VBTL. The subarray selection switch SASW connects the signal lines GIO and / GIO of the GIO bus and the signal lines LIO and / LIO of the LIO bus to each other when the subarray selection signal SUBASEL is activated to “H”. Sub-array selection switch SASW also fixes the voltage of signal lines LIO, / LIO of the LIO bus to voltage VBTL when bit line equalize signal BTLEQ is activated to “H”. Here, except for the internal read operation period t (iRD) and the internal write operation period t (iWR) by the column selection line CSL, the voltages of the IO bus signal lines GIO and / GIO are at the “H” level, that is, the voltage VARY or The voltage is higher than that.
 次に、図10~図15を参照して、実施形態1に係るメモリシステムの動作について説明する。 Next, the operation of the memory system according to the first embodiment will be described with reference to FIGS.
 図10は、実施形態1に係るデータの読み出し動作を示すタイミングチャートである。図10は、同一のバンクに連続で読み出しアクセスする場合を表す。図10は、メモリコントローラ3からメモリ5に送信されるクロックCLK及びコマンドCMDと、メモリ5の内部状態と、外部データバスにおけるデータの伝送とを示す。コマンドCMDの「A」は活性化コマンドを示し、「R」は読み出しコマンドを示し、「P」はプリチャージコマンドを示す。外部データバスの「QD」は、メモリ5から読み出される読み出しデータを表す。内部状態iRDは、メモリ5の内部のメモリアレイ23-nで実際に読み出し動作が行われている状態を示す。コマンドはクロックCLKの立ち上がりエッジで取り込まれる。時間期間tRC(R)は、同一バンクから連続して読み出す場合の活性化コマンドAから活性化コマンドAまでの時間を示し、読み出し動作の実質上のサイクル時間を表す。tRCD(R)=4×tCK、tRP=4×tCK、tRTP=2×tCK、CL=5、BL=4の場合、tRC(R)=10×tCKである。時間期間tD(R)は、読み出しコマンドRを取り込んでから内部状態iRDが開始するまでの時間を示す。図10の例では、tRC(R)=10×tCKの連続読み出しを行っている。外部データバスを読み出しデータが占める時間は2×tCKであり、外部データバスの利用率は2/10である。 FIG. 10 is a timing chart showing a data read operation according to the first embodiment. FIG. 10 shows a case where read access is continuously made to the same bank. FIG. 10 shows the clock CLK and command CMD transmitted from the memory controller 3 to the memory 5, the internal state of the memory 5, and the transmission of data on the external data bus. The command CMD “A” indicates an activation command, “R” indicates a read command, and “P” indicates a precharge command. “QD” of the external data bus represents read data read from the memory 5. The internal state iRD indicates a state in which a read operation is actually performed in the memory array 23-n in the memory 5. The command is captured at the rising edge of the clock CLK. The time period tRC (R) indicates the time from the activation command A to the activation command A when continuously reading from the same bank, and represents the actual cycle time of the read operation. When tRCD (R) = 4 × tCK, tRP = 4 × tCK, tRTP = 2 × tCK, CL = 5, and BL = 4, tRC (R) = 10 × tCK. The time period tD (R) indicates the time from when the read command R is received until the internal state iRD starts. In the example of FIG. 10, continuous reading of tRC (R) = 10 × tCK is performed. The time occupied by the read data on the external data bus is 2 × tCK, and the utilization rate of the external data bus is 2/10.
 前述のように、時間期間tRCD(R)は、あるバンクに対する活性化コマンドAを発行してから、同一バンクに対する読み出しコマンドRを発行可能になるまでの時間差の最小値を示す。従って、メモリコントローラ3の制御回路11は、メモリ5からデータを読み出すとき、活性化コマンドAを発行する瞬間を基準として時間期間tRCD(R)だけ離れた瞬間以後に、読み出しコマンドRを発行する。図10の例では、メモリコントローラ3の制御回路11は、活性化コマンドAを発行してから時間期間tRCD(R)だけ経過した瞬間に、読み出しコマンドRを発行している。 As described above, the time period tRCD (R) indicates the minimum value of the time difference from when the activation command A for a certain bank is issued until the read command R can be issued for the same bank. Accordingly, when reading data from the memory 5, the control circuit 11 of the memory controller 3 issues the read command R after the moment separated by the time period tRCD (R) with reference to the moment when the activation command A is issued. In the example of FIG. 10, the control circuit 11 of the memory controller 3 issues the read command R at the moment when the time period tRCD (R) has elapsed since the activation command A was issued.
 図10は、DDR2-SDRAMのJEDEC標準に準拠したメモリシステムの場合の例を示す。DDR1/3/4-SDRAM及びLPDDR2/3/4-SDRAM等、他のSDRAMでも図10と同様に動作可能である。 FIG. 10 shows an example of a memory system compliant with the DDR2-SDRAM JEDEC standard. Other SDRAMs such as DDR1 / 3 / 4-SDRAM and LPDDR2 / 3 / 4-SDRAM can operate in the same manner as in FIG.
 図11は、図10の読み出し動作を行うときの各信号の波形を示すタイミングチャートである。図11は、図10の場合におけるメモリ5の内部状態を示し、横軸が時間を示し、縦軸が電圧を示す。図11は、図5、図6、及び図7に示すメモリ5の内部信号の電圧波形を示す一例である。図11では、メモリ5の内部信号として、カラム選択線CSLの信号、センスアンプ活性化信号SAPE及びSANE、ワード線WDLの信号、ビット線BTLの信号について示す。 FIG. 11 is a timing chart showing the waveform of each signal when the read operation of FIG. 10 is performed. FIG. 11 shows the internal state of the memory 5 in the case of FIG. 10, the horizontal axis shows time, and the vertical axis shows voltage. FIG. 11 is an example showing voltage waveforms of internal signals of the memory 5 shown in FIGS. 5, 6, and 7. FIG. 11 shows the column selection line CSL signal, sense amplifier activation signals SAPE and SANE, the word line WDL signal, and the bit line BTL signal as internal signals of the memory 5.
 図11を参照すると、活性化コマンドAの入力から時間期間tDWL(A)の経過後に、ワード線WDLが活性化し、セルトランジスタCTがオンする(すなわち、導通状態となる)ことで、メモリセルCからビット線BTL上にデータが電位差ΔVとして読み出される。ビット線BTLにデータ「1」が読み出された場合の電圧波形をBTL(H)で示し、ビット線BTLにデータ「0」が読み出された場合の電圧波形をBTL(L)で示す。ワード線WDLの活性化から時間期間tDSA(A)の経過後に、センスアンプ活性化信号SAPE及びSANEが活性化する。センスアンプ活性化信号SAPEは、活性時は電圧VARYであり、非活性時は電圧VBTLである。センスアンプ活性化信号SANEは、活性時は電圧VSS(すなわち、接地電位=0V)、非活性時は電圧VBTLである。ここで、通常は、VBTL=1/2×VARYである。センスアンプ活性化信号SAPE及びSANEの活性化により、電圧BTL(H)は電圧VARYに増幅され、電圧BTL(L)は電圧VSS(=0V)に増幅される。 Referring to FIG. 11, after elapse of time period tDWL (A) from the input of activation command A, word line WDL is activated and cell transistor CT is turned on (that is, becomes conductive), whereby memory cell C To the bit line BTL, data is read as a potential difference ΔV. A voltage waveform when data “1” is read to the bit line BTL is indicated by BTL (H), and a voltage waveform when data “0” is read to the bit line BTL is indicated by BTL (L). Sense amplifier activation signals SAPE and SANE are activated after elapse of time period tDSA (A) from activation of word line WDL. The sense amplifier activation signal SAPE is at the voltage VARY when activated and at the voltage VBTL when inactivated. The sense amplifier activation signal SANE is at the voltage VSS (that is, the ground potential = 0 V) when activated, and at the voltage VBTL when deactivated. Here, normally, VBTL = 1/2 × VARY. By activation of the sense amplifier activation signals SAPE and SANE, the voltage BTL (H) is amplified to the voltage VARY, and the voltage BTL (L) is amplified to the voltage VSS (= 0V).
 図11を参照すると、読み出しコマンドRの入力から時間期間tD(R)の経過後に、カラム選択線CSLの信号が時間期間t(iRD)にわたって活性化する。この時間期間t(iRD)において、メモリアレイ23-nに対して実際に内部読み出し(内部状態iRD)が実行されている。時間時間t(iRD)にわたって、カラム選択線CSLの活性化によってIOスイッチIOSWがオンし、一対のビット線BTL,/BTLはIOスイッチIOSWを介してLIOバスの一対の信号線LIO,/LIOと接続され、ビット線BTLのデータがLIOバスに読み出される。この時、特に、ビット線BTLにデータ「0」が読み出された場合には、ビット線の電圧BTL(L)は擾乱を受け、電圧VSSから浮き上がる。 Referring to FIG. 11, after the elapse of the time period tD (R) from the input of the read command R, the signal of the column selection line CSL is activated over the time period t (iRD). In this time period t (iRD), an internal read (internal state iRD) is actually performed on the memory array 23-n. Over a time period t (iRD), the IO switch IOSW is turned on by the activation of the column selection line CSL, and the pair of bit lines BTL, / BTL are connected to the pair of signal lines LIO, / LIO of the LIO bus via the IO switch IOSW. Connected, the data of the bit line BTL is read to the LIO bus. At this time, in particular, when data “0” is read out to the bit line BTL, the voltage BTL (L) of the bit line is disturbed and rises from the voltage VSS.
 図11を参照すると、プリチャージコマンドPの入力から時間期間tDWL(P)の経過後に、ワード線WDLが非活性化する。ワード線WDLの非活性化によりセルトランジスタCTがオフし(すなわち、非導通状態となり)、ビット線BTLのデータがメモリセルCの蓄積ノードSNに閉じ込められる。すなわち、メモリセルCにデータが再書き込みされる。これをメモリセルリストア動作と呼ぶ。この時、ビット線の電圧BTL(L)が上記の擾乱を受けた後、充分な時間をかけてビット線BTLの電圧が電圧VSSに戻ってから、ワード線WDLを非活性化する必要がある。この時間により時間期間tRTPが決まる。ワード線WDLを非活性化した後、時間期間tDSA(P)の経過後に、センスアンプ活性化信号を非活性化し、ビット線の電圧BTL(H)又はBTL(L)が電圧VBTLに戻る。その後、再び次の活性化コマンドAを受信可能になる。 Referring to FIG. 11, the word line WDL is deactivated after the time period tDWL (P) has elapsed since the input of the precharge command P. By deactivation of the word line WDL, the cell transistor CT is turned off (that is, becomes non-conductive), and the data of the bit line BTL is confined in the storage node SN of the memory cell C. That is, data is rewritten in the memory cell C. This is called a memory cell restore operation. At this time, after the bit line voltage BTL (L) is subjected to the above disturbance, it is necessary to deactivate the word line WDL after the voltage of the bit line BTL returns to the voltage VSS after a sufficient time. . This time determines the time period tRTP. After the time period tDSA (P) elapses after the word line WDL is deactivated, the sense amplifier activation signal is deactivated, and the voltage BTL (H) or BTL (L) of the bit line returns to the voltage VBTL. Thereafter, the next activation command A can be received again.
 以上の説明で、時間期間tRCD(R)、tRTP、及びtRPは、メモリ5の内部のメモリアレイ23-nの動作、特にワード線WDL及びビット線BTLの動作速度によって規定される。特にビット線BTLの動作速度は、ビット線BTLの寄生抵抗RBTLによって決まる。一般に、メモリアレイの微細化が進むにつれ、寄生抵抗RBTLは高くなり、ビット線BTLの動作速度が低下する。 In the above description, the time periods tRCD (R), tRTP, and tRP are defined by the operation of the memory array 23-n in the memory 5, particularly the operation speed of the word line WDL and the bit line BTL. In particular, the operation speed of the bit line BTL is determined by the parasitic resistance RBTL of the bit line BTL. In general, as the memory array becomes finer, the parasitic resistance RBTL increases and the operation speed of the bit line BTL decreases.
 次に、図12及び図13を参照して、比較例に係るメモリシステムの書き込み動作について説明する。 Next, the write operation of the memory system according to the comparative example will be described with reference to FIGS.
 前述のように、従来技術のメモリコントローラでは、あるバンクに対する活性化コマンドを発行してから同一バンクに対する書き込みコマンドを発行可能になるまでの時間期間tRCD(W)は、あるバンクに対する活性化コマンドを発行してから同一バンクに対する読み出しコマンドを発行可能になるまでの時間期間tRCD(R)と同一であった。 As described above, in the prior art memory controller, the time period tRCD (W) from the time when the activation command for a certain bank is issued until the time when the write command for the same bank can be issued is the activation command for a certain bank. It was the same as the time period tRCD (R) from when it was issued until it became possible to issue a read command for the same bank.
 図12は、実施形態1の比較例に係るデータの書き込み動作を示すタイミングチャートである。図12は、同一のバンクに連続で書き込みアクセスする場合を表す。図12もまた、図10と同様に、メモリコントローラ3からメモリ5に送信されるクロックCLK及びコマンドCMDと、メモリ5の内部状態と、外部データバスにおけるデータの伝送とを示す。コマンドCMDの「A」は活性化コマンドを示し、「W」は読み出しコマンドを示し、「P」はプリチャージコマンドを示す。外部データバスの「WD」は、メモリコントローラ3から出力された書き込みデータを表す。内部状態iWRは、メモリ5の内部のメモリアレイ23-nで実際に書き込み動作が行われている状態を示す。時間期間tRC(W)は、同一バンクに連続して書き込む場合の活性化コマンドAから活性化コマンドAまでの時間を示し、書き込み動作の実質上のサイクル時間を表す。tRCD(W)=4×tCK、tRP=4×tCK、tWR=4×tCK、WL=4、BL=4の場合、tRC(W)=18×tCKである。時間期間tD(W)は、メモリコントローラ3から送信されたデータWDの全体をメモリ5が受信完了してから内部状態iWRが開始するまでの時間を示す。 図12の例では、連続してデータを書き込むためには、tRC(W)=18×tCKが必要である。一般に、書き込み動作の時間期間tRC(W)は読み出し動作の時間期間tRC(R)よりも長い。外部データバスを書き込みデータが占める時間は2×tCKであり、外部データバスの利用率は2/18であり、読み出し動作の場合よりも利用効率が低い。 FIG. 12 is a timing chart showing a data write operation according to the comparative example of the first embodiment. FIG. 12 shows a case where continuous write access is made to the same bank. FIG. 12 also shows the clock CLK and command CMD transmitted from the memory controller 3 to the memory 5, the internal state of the memory 5, and the transmission of data on the external data bus, as in FIG. The command CMD “A” indicates an activation command, “W” indicates a read command, and “P” indicates a precharge command. “WD” in the external data bus represents write data output from the memory controller 3. The internal state iWR indicates a state in which a write operation is actually performed in the memory array 23-n in the memory 5. The time period tRC (W) indicates the time from the activation command A to the activation command A when writing continuously in the same bank, and represents the actual cycle time of the write operation. When tRCD (W) = 4 × tCK, tRP = 4 × tCK, tWR = 4 × tCK, WL = 4, and BL = 4, tRC (W) = 18 × tCK. The time period tD (W) indicates a time from when the memory 5 completes reception of the entire data WD transmitted from the memory controller 3 to when the internal state iWR starts. In the example of FIG. 12, tRC (W) = 18 × tCK is necessary to write data continuously. In general, the time period tRC (W) for the write operation is longer than the time period tRC (R) for the read operation. The time that the write data occupies in the external data bus is 2 × tCK, the utilization rate of the external data bus is 2/18, and the utilization efficiency is lower than in the case of the read operation.
 図12は、DDR2-SDRAMのJEDEC標準に準拠したメモリシステムの場合の例を示す。DDR3/4-SDRAM及びLPDDR2/3/4-SDRAM等、他のSDRAMでも図12と同様に動作可能である。概して、書き込み時の外部データバス利用効率は読み出し時より低い。 FIG. 12 shows an example in the case of a memory system conforming to the DDR2-SDRAM JEDEC standard. Other SDRAMs such as DDR3 / 4-SDRAM and LPDDR2 / 3 / 4-SDRAM can operate in the same manner as in FIG. Generally, the external data bus utilization efficiency at the time of writing is lower than that at the time of reading.
 図13は、図12の書き込み動作を行うときの各信号の波形を示すタイミングチャートである。図13は、図12の場合におけるメモリ5の内部状態を表し、横軸が時間を示し、縦軸が電圧を示す。図11は、図5、図6、及び図7に示すメモリ5の内部信号の電圧波形を示す一例である。図13では、メモリ5の内部信号として、カラム選択線CSLの信号、センスアンプ活性化信号SAPE及びSANE、ワード線WDLの信号、ビット線BTLの信号について示し、さらに、メモリセルCの蓄積ノードSNの電圧SN(H),SN(L)を示す。 FIG. 13 is a timing chart showing the waveform of each signal when the write operation of FIG. 12 is performed. FIG. 13 shows the internal state of the memory 5 in the case of FIG. 12, the horizontal axis shows time, and the vertical axis shows voltage. FIG. 11 is an example showing voltage waveforms of internal signals of the memory 5 shown in FIGS. 5, 6, and 7. In FIG. 13, as internal signals of the memory 5, a signal of the column selection line CSL, sense amplifier activation signals SAPE and SANE, a signal of the word line WDL, and a signal of the bit line BTL are shown. The voltages SN (H) and SN (L) are shown.
 図13を参照すると、活性化コマンドAの入力からセンスアンプSAの活性化(すなわち、センスアンプ活性化信号SAPE及びSANEの活性化)までは、図11の読み出し動作の場合と同様である。書き込みレイテンシの時間期間WLと、書き込みデータWDをメモリ5が取り込むための時間期間BL/2×tCKとを待機した後に、時間期間tD(W)の経過後に、カラム選択線CSLの信号が時間時間t(iWR)にわたって活性化する。この時間時間t(iWR)において、メモリアレイ23-nに対して実際に内部書き込み(内部状態iWR)が実行されている。時間時間t(iWR)にわたって、カラム選択線CSLの活性化によってIOスイッチIOSWがオンし、一対のビット線BTL,/BTLはIOスイッチIOSWを介してLIOバスの一対の信号線LIO,/LIOと接続され、LIOバスのデータがビット線BTLに書き込まれる。この時、ビット線BTL,/BTLのデータがLIOバスの信号線LIO,/LIOのデータと異なる場合、センスアンプSAによって増幅されたビット線のデータは反転される。しかしながら、ビット線BTLの寄生抵抗RBTLに起因して、ビット線BTLにおいて、センスアンプSA及びIOスイッチIOSWから遠い距離にある区間におけるデータ線が完全に反転する、すなわち、ビット線の電圧BTL(H)が電圧BTL(L)=VSSになり、逆に、ビット線の電圧BTL(L)が電圧BTL(H)=VARYとなるには時間を要する。さらに、一般に、PMOSトランジスタはNMOSトランジスタに比較して駆動能力が弱いので、特にビット線BTLの「L」から「H」への遷移時間は、「H」から「L」への遷移時間よりも長い。さらに、セルトランジスタCTは駆動能力が低く、また、NMOSトランジスタで構成されるので、蓄積ノードSNの「L」から「H」への遷移時間はさらに長くなる。 Referring to FIG. 13, from the input of the activation command A to the activation of the sense amplifier SA (that is, activation of the sense amplifier activation signals SAPE and SANE) is the same as in the read operation of FIG. After waiting for the time period WL of the write latency and the time period BL / 2 × tCK for the memory 5 to capture the write data WD, the signal of the column selection line CSL is timed after the elapse of the time period tD (W). Activate over t (iWR). At this time t (iWR), internal write (internal state iWR) is actually executed for the memory array 23-n. Over a time period t (iWR), the IO switch IOSW is turned on by the activation of the column selection line CSL, and the pair of bit lines BTL, / BTL are connected to the pair of signal lines LIO, / LIO of the LIO bus via the IO switch IOSW. Connected, data of the LIO bus is written to the bit line BTL. At this time, if the data of the bit lines BTL, / BTL is different from the data of the signal lines LIO, / LIO of the LIO bus, the data of the bit line amplified by the sense amplifier SA is inverted. However, due to the parasitic resistance RBTL of the bit line BTL, in the bit line BTL, the data line in the section far from the sense amplifier SA and the IO switch IOSW is completely inverted, that is, the bit line voltage BTL (H ) Becomes voltage BTL (L) = VSS, and conversely, it takes time for the voltage BTL (L) of the bit line to become voltage BTL (H) = VARY. In general, since the PMOS transistor has a weaker driving capability than the NMOS transistor, the transition time from “L” to “H” of the bit line BTL is particularly longer than the transition time from “H” to “L”. long. Furthermore, since the cell transistor CT has a low driving capability and is constituted by an NMOS transistor, the transition time of the storage node SN from “L” to “H” becomes even longer.
 図13を参照すると、プリチャージコマンドPの入力から時間期間tDWL(P)の経過後に、ワード線WDLが非活性化する。ワード線WDLの非活性化によりセルトランジスタCTがオフし、ビット線BTLのデータが蓄積ノードSNに閉じ込められる。すなわち、メモリセルCに新規のデータが書き込まれる。これをメモリセルCの反転書き込み動作と呼ぶ。上述のように、ビット線寄生抵抗RBTL、センスアンプSAのPMOSトランジスタSAPTの弱い駆動能力、さらにセルトランジスタCTの抵抗によって、蓄積ノードSNの「L」から「H」への遷移に長い時間がかかる。このメモリアレイ23-nの特性に応じて時間期間tWRの長さが決まり、比較的長い時間を要する。ワード線WDLを非活性化した後、時間期間tDSA(P)の経過後に、センスアンプ活性化信号を非活性化し、ビット線の電圧BTL(L)又はBTL(L)の電圧が電圧VBTLに戻る。その後、再び次の活性化コマンドAを受信可能になる。 Referring to FIG. 13, the word line WDL is deactivated after the time period tDWL (P) has elapsed since the input of the precharge command P. The cell transistor CT is turned off by deactivation of the word line WDL, and the data of the bit line BTL is confined in the storage node SN. That is, new data is written into the memory cell C. This is called an inversion write operation of the memory cell C. As described above, it takes a long time to transition the storage node SN from “L” to “H” due to the bit line parasitic resistance RBTL, the weak driving capability of the PMOS transistor SAPT of the sense amplifier SA, and the resistance of the cell transistor CT. . The length of the time period tWR is determined according to the characteristics of the memory array 23-n, and a relatively long time is required. After the time period tDSA (P) elapses after the word line WDL is deactivated, the sense amplifier activation signal is deactivated, and the voltage BTL (L) or BTL (L) of the bit line returns to the voltage VBTL. . Thereafter, the next activation command A can be received again.
 図12及び図13の動作では、特に時間期間tWRが長くなる。一般に、メモリアレイの微細化が進むにつれ、寄生抵抗RBTLが高くなり、センスアンプSAのPMOSトランジスタSAPTの駆動能力が低下し、セルトランジスタCTの駆動能力が低下する。これらの理由により、時間期間tWRは増大する。 12 and 13, the time period tWR is particularly long. In general, as the memory array becomes finer, the parasitic resistance RBTL increases, the driving capability of the PMOS transistor SAPT of the sense amplifier SA decreases, and the driving capability of the cell transistor CT decreases. For these reasons, the time period tWR increases.
 これに対して、次に、図14及び図15を参照して、実施形態1に係るメモリシステムの書き込み動作について説明する。 In contrast, the write operation of the memory system according to the first embodiment will be described next with reference to FIGS. 14 and 15.
 図14は、実施形態1に係るデータの書き込み動作を示すタイミングチャートである。図14は、同一のバンクに連続で書き込みアクセスする場合を表す。図14の書き込み動作において、最大の特徴は、活性化コマンドAの前に書き込みコマンドWが発行されていることにある。すなわち、時間期間tRCD(W)が負の値を持つ。本実施例では、tRCD(W)=-2×tCKとする。メモリコントローラ3の制御回路11は、メモリ5にデータを書き込むとき、活性化コマンドAをメモリ5に送信する前に、時間期間tRCD(W)だけ先行して、書き込みコマンドWをメモリ5に送信する。図14のコマンドシーケンスを使用することで、活性化コマンドAを発行してから、メモリ5の内部のメモリアレイ23-nに実際に書き込み動作(内部状態iWR)を行うまでの時間を短縮できる。これにより、時間期間tRC(W)を短縮可能となる。実施形態1の実施例では、tRC(W)=13×tCKとなり、図12及び図13の比較例の場合におけるtRC(W)=18×tCKと比較して、5×tCKの時間だけ短縮している。外部データバスを書き込みデータが占める時間は2×tCKであり、外部データバスの利用率は2/13に改善する。 FIG. 14 is a timing chart showing the data write operation according to the first embodiment. FIG. 14 shows a case where continuous write access is made to the same bank. In the write operation of FIG. 14, the greatest feature is that the write command W is issued before the activation command A. That is, the time period tRCD (W) has a negative value. In this embodiment, tRCD (W) = − 2 × tCK. When writing data to the memory 5, the control circuit 11 of the memory controller 3 sends the write command W to the memory 5 ahead of the time period tRCD (W) before sending the activation command A to the memory 5. . By using the command sequence of FIG. 14, it is possible to shorten the time from when the activation command A is issued to when the write operation (internal state iWR) is actually performed on the memory array 23-n in the memory 5. As a result, the time period tRC (W) can be shortened. In the example of the first embodiment, tRC (W) = 13 × tCK, which is shortened by a time of 5 × tCK compared to tRC (W) = 18 × tCK in the comparative example of FIGS. ing. The time that the write data occupies in the external data bus is 2 × tCK, and the utilization rate of the external data bus is improved to 2/13.
 前述のように、時間期間tRCD(W)は、あるバンクに対する活性化コマンドAを発行してから、同一バンクに対する書き込みコマンドWを発行可能になるまでの時間差の最小値を示し、さらに、時間期間tRCD(W)は時間期間tRCD(R)より小さな値を有する。従って、メモリコントローラ3の制御回路11は、メモリ5にデータを書き込むとき、活性化コマンドAを発行する瞬間を基準として時間期間tRCD(W)だけ離れた瞬間以後に、書き込みコマンドWを発行する。 As described above, the time period tRCD (W) indicates the minimum value of the time difference from when the activation command A for a certain bank is issued until the write command W can be issued for the same bank. tRCD (W) has a smaller value than the time period tRCD (R). Therefore, when writing data into the memory 5, the control circuit 11 of the memory controller 3 issues the write command W after the moment separated by the time period tRCD (W) with reference to the moment when the activation command A is issued.
 また、時間期間tRCD(W)は負の値を有してもよい。この場合、メモリコントローラ3の制御回路11は、メモリ5にデータを書き込むとき、活性化コマンドAを発行する瞬間を基準として時間期間tRCD(W)の絶対値に等しい時間期間だけ先行する瞬間以後に、かつ、活性化コマンドを発行する瞬間よりも前に、書き込みコマンドWを発行する。メモリ5のチップ制御回路22は、tRC(W)短縮信号に応じて動作することにより、メモリ5にデータを書き込むとき、活性化コマンドを受信する瞬間を基準として時間期間tRCD(W)の絶対値に等しい時間期間だけ先行する瞬間以後に、かつ、活性化コマンドを受信する瞬間よりも前に、書き込みコマンドをメモリコントローラ3から受信可能に構成される。図14の例では、メモリコントローラ3の制御回路11は、活性化コマンドAを発行する瞬間を基準として時間期間tRCD(W)の絶対値に等しい時間期間だけ先行する瞬間に、書き込みコマンドWを発行している。 Also, the time period tRCD (W) may have a negative value. In this case, when the control circuit 11 of the memory controller 3 writes data to the memory 5, after the moment preceding by the time period equal to the absolute value of the time period tRCD (W) with reference to the moment when the activation command A is issued. The write command W is issued prior to the moment of issuing the activation command. The chip control circuit 22 of the memory 5 operates in response to the tRC (W) shortening signal, so that when writing data into the memory 5, the absolute value of the time period tRCD (W) with reference to the moment of receiving the activation command. The write command can be received from the memory controller 3 after the moment preceding by the time period equal to and before the moment of receiving the activation command. In the example of FIG. 14, the control circuit 11 of the memory controller 3 issues the write command W at the moment preceding by a time period equal to the absolute value of the time period tRCD (W) with reference to the moment when the activation command A is issued. is doing.
 図14は、DDR2-SDRAMのJEDEC標準に準拠したメモリシステムの場合の例を示す。DDR3/4-SDRAM及びLPDDR2/3/4-SDRAM等、他のSDRAMでも図14と同様に動作可能である。 FIG. 14 shows an example of a memory system compliant with the DDR2-SDRAM JEDEC standard. Other SDRAMs such as DDR3 / 4-SDRAM and LPDDR2 / 3 / 4-SDRAM can operate in the same manner as in FIG.
 図15は、図14の書き込み動作を行うときの各信号の波形を示すタイミングチャートである。図15は、図14の場合におけるメモリ5の内部状態を表し、横軸が時間を示し、縦軸が電圧を示す。センスアンプ活性化信号SAPE及びSANEを活性化しているとき、ビット線の電圧BTL(H)又はBTL(L)の増幅中もしくは増幅完了直後に、カラム選択線CSLを活性化して書き込み動作(内部状態iWR)を実行可能である。これにより、時間期間tRC(W)を大幅に短縮可能である。 FIG. 15 is a timing chart showing the waveform of each signal when the write operation of FIG. 14 is performed. FIG. 15 shows the internal state of the memory 5 in the case of FIG. 14, the horizontal axis indicates time, and the vertical axis indicates voltage. When the sense amplifier activation signals SAPE and SANE are activated, the column selection line CSL is activated during the amplification of the bit line voltage BTL (H) or BTL (L) or immediately after the amplification, and the write operation (internal state) iWR). Thereby, the time period tRC (W) can be significantly shortened.
 実施形態1に係るメモリシステムによれば、書き込み動作を行うときの時間期間tRC(W)は、読み出し動作を行うときの時間期間tRC(R)とは独立に設定可能である。 According to the memory system according to the first embodiment, the time period tRC (W) when the write operation is performed can be set independently of the time period tRC (R) when the read operation is performed.
 以上説明したように、実施形態1に係るメモリシステムによれば、プリチャージコマンドを含むコマンドシーケンスにより1つ又は複数のバンクに対してデータを書き込む場合であっても、外部データバスの使用効率を低下させにくくすることができる。 As described above, according to the memory system of the first embodiment, even when data is written to one or a plurality of banks by a command sequence including a precharge command, the use efficiency of the external data bus is improved. It can be made difficult to reduce.
 実施形態1に従ってメモリシステムを動作させることにより、JEDEC標準に開示されている現状の汎用DRAMのタイミングパラメータを用いるよりも外部データバスの使用効率を上げることが可能である。その結果、メモリシステムの動作の高速化を達成できる。 By operating the memory system according to the first embodiment, it is possible to increase the use efficiency of the external data bus rather than using the current general-purpose DRAM timing parameters disclosed in the JEDEC standard. As a result, the operation speed of the memory system can be increased.
実施形態2.
 実施形態2では、実施形態1に係るメモリシステムに比べて、書き込み動作をさらに高速化するための構成について説明する。
Embodiment 2. FIG.
In the second embodiment, a configuration for further speeding up the write operation as compared with the memory system according to the first embodiment will be described.
 図16は、実施形態2に係るメモリシステムのカラムデコーダ25-n及びその周辺を示すブロック図である。カラムデコーダ25-nは、カラム選択線CSL0,CSL1,CSL2,…ごとに、個別デコーダ61-0,61-1,61-2,…及びCSLドライバ62-0,62-1,62-2,…を備える。各CSLドライバ62-0,62-1,62-2,…には、外部の電源から電圧VCSLが供給される。各カラム選択線CSL0,CSL1,CSL2,…の活性時の電圧は、電圧VCSLによって決まる。メモリ5は、各CSLドライバ62-0,62-1,62-2,…のための電源として、電圧VCSLRを発生するVCSLR発生回路71と、電圧VCSLRより高い電圧VCSLWを発生するVCSLW発生回路72とを備える。メモリ5からデータを読み出すとき、スイッチSWRをオンし、各CSLドライバ62-0,62-1,62-2,…に電圧VCSLRを供給する。メモリ5にデータを書き込むとき、スイッチSWWをオンし、各CSLドライバ62-0,62-1,62-2,…に電圧VCSLWを供給する。カラムデコーダ25-nのCSLドライバ62-0,62-1,62-2,…に供給する電圧VCSLを読み出し期間と書き込み期間とで切り換えることにより、カラム選択線CSL0,CSL1,CSL2,…の活性時の電圧を、読み出しアクセス時と書き込みアクセス時で切り換える。 FIG. 16 is a block diagram showing the column decoder 25-n and its periphery in the memory system according to the second embodiment. The column decoder 25-n includes individual decoders 61-0, 61-1, 61-2,... And CSL drivers 62-0, 62-1, 62-2,. ... with. Each of the CSL drivers 62-0, 62-1, 62-2,... Is supplied with a voltage VCSL from an external power source. The voltage when each column selection line CSL0, CSL1, CSL2,... Is activated is determined by the voltage VCSL. As a power source for each CSL driver 62-0, 62-1, 62-2,... With. When reading data from the memory 5, the switch SWR is turned on to supply the voltage VCSLR to each of the CSL drivers 62-0, 62-1, 62-2,. When data is written to the memory 5, the switch SWW is turned on to supply the voltage VCSLW to each of the CSL drivers 62-0, 62-1, 62-2,. .. By switching the voltage VCSL supplied to the CSL drivers 62-0, 62-1, 62-2,... Of the column decoder 25-n between the read period and the write period. The voltage at the time is switched between read access and write access.
 図17は、実施形態2の比較例に係るデータの書き込み動作を行うときの各信号の波形を示すタイミングチャートである。図17を参照して、実施形態1の時間期間tRC(W)をさらに短縮するときの課題について説明する。図17は、図15と同様に、図14の場合におけるメモリ5の内部状態を表し、横軸が時間を示し、縦軸が電圧を示す。図17は、図15の各信号に加えて、メモリセルCの蓄積ノードSNの電圧SN(H),SN(L)を示す。特に、ビット線の電圧BTL(L)を、カラム選択線CSLを活性化して書き込み動作(内部状態iWR)を行って「H」に書き換える時、ビット線寄生抵抗RBTL、センスアンプSAのPMOSトランジスタSAPTの弱い駆動能力、さらにセルトランジスタCTの抵抗に起因して、蓄積ノードSNの「L」から「H」への遷移に長い時間がかかる。これは、図13を参照して説明した、時間期間tWRが大きいという問題である。時間期間tWRが充分に長くないと、蓄積ノードSNの電圧の「H」への書き込み不足が起こる。蓄積ノードSNの電圧の書き込み不足は、該当メモリセルCに次回に読み出しアクセスする際に読み出される電圧の不足を招き、それが誤動作を誘発する。以上から、時間期間tRC(W)をさらに短縮するには、時間期間tWRの短縮が必須である。 FIG. 17 is a timing chart showing waveforms of signals when a data write operation according to a comparative example of the second embodiment is performed. With reference to FIG. 17, a problem when the time period tRC (W) of the first embodiment is further shortened will be described. FIG. 17 shows the internal state of the memory 5 in the case of FIG. 14 as in FIG. 15, the horizontal axis shows time, and the vertical axis shows voltage. FIG. 17 shows voltages SN (H) and SN (L) of the storage node SN of the memory cell C in addition to the signals of FIG. In particular, when the bit line voltage BTL (L) is rewritten to “H” by activating the column selection line CSL and performing a write operation (internal state iWR), the bit line parasitic resistance RBTL and the PMOS transistor SAPT of the sense amplifier SA Due to the weak driving capability and the resistance of the cell transistor CT, it takes a long time to transition the storage node SN from “L” to “H”. This is a problem that the time period tWR described with reference to FIG. 13 is large. If the time period tWR is not sufficiently long, insufficient writing of the voltage of the storage node SN to “H” occurs. Insufficient writing of the voltage of the storage node SN causes a shortage of the voltage read when the memory cell C is next read-accessed, which causes a malfunction. From the above, in order to further shorten the time period tRC (W), it is essential to shorten the time period tWR.
 図18は、実施形態2に係るデータの書き込み動作を行うときの各信号の波形を示すタイミングチャートである。図18は、実施形態1に係るデータの書き込み動作の時間期間tRC(W)をさらに短縮した実施例を示す。図18は、図15と同様に、図14の場合におけるメモリ5の内部状態を表す。読み出し時にカラム選択線CSLを活性化する電圧を高くしすぎると、センスアンプSAの動作が不安定になり、ビット線BTLにおいて増幅したデータを破壊する可能性がある。そのため、読み出し時のカラム選択線CSLを活性化する電圧は制限される。一方、書き込み時は、ビット線BTLにおけるデータを確実に外部からのデータに書き換える必要があるので、カラム選択線CSLを活性化する電圧を高くしてセンスアンプSAの動作を不安定にした方が高速に書き換え可能である。さらに、特に、ビット線の電圧BTL(L)を、カラム選択線CSLを活性化して書き込み動作(内部状態iWR)を行って「H」に書き換える場合は、センスアンプSAのPMOSトランジスタSAPTの能力不足に起因して、ビット線BTLの「H」への充電に時間がかかる。しかし、カラム選択線CSLの電圧を高くすることで、「H」状態にあるLIOバスの一対の信号線から一対のセンスアンプSAに直接に「H」データを書き込むための電流を注入できるので、ビット線BTLの「H」への充電時間を短縮可能である。 FIG. 18 is a timing chart showing waveforms of signals when performing a data write operation according to the second embodiment. FIG. 18 shows an example in which the time period tRC (W) of the data write operation according to the first embodiment is further shortened. FIG. 18 shows the internal state of the memory 5 in the case of FIG. 14 as in FIG. If the voltage for activating the column selection line CSL is too high at the time of reading, the operation of the sense amplifier SA becomes unstable, and there is a possibility that the data amplified in the bit line BTL is destroyed. Therefore, the voltage for activating the column selection line CSL at the time of reading is limited. On the other hand, at the time of writing, it is necessary to reliably rewrite the data on the bit line BTL with data from the outside. It can be rewritten at high speed. Further, particularly when the bit line voltage BTL (L) is rewritten to “H” by activating the column selection line CSL and performing the write operation (internal state iWR), the capacity of the PMOS transistor SAPT of the sense amplifier SA is insufficient. Therefore, it takes time to charge the bit line BTL to “H”. However, by increasing the voltage of the column selection line CSL, it is possible to inject current for directly writing “H” data from the pair of signal lines of the LIO bus in the “H” state to the pair of sense amplifiers SA. The charging time to “H” of the bit line BTL can be shortened.
 また、メモリ5からデータを読み出すとき、カラム選択線CSLを活性化して電圧VCSLRを印加する時間長よりも、メモリ5にデータを書き込むとき、カラム選択線CSLを活性化して電圧VCSLWを印加する時間長を長くしてもよい。これにより、書き込み動作を高速化する効果をさらに向上することができる。 Further, when reading data from the memory 5, the time for activating the column selection line CSL and applying the voltage VCSLW when writing data to the memory 5 is longer than the time length for activating the column selection line CSL and applying the voltage VCSLR. The length may be increased. This can further improve the effect of speeding up the write operation.
 実施形態2に係るメモリシステムは、実施形態1の効果に加えて、時間期間tWRを短縮することにより、時間期間tRC(W)をさらに短縮することができる。 In addition to the effect of the first embodiment, the memory system according to the second embodiment can further shorten the time period tRC (W) by shortening the time period tWR.
実施形態3.
 実施形態3でもまた、実施形態1に係るメモリシステムに比べて、書き込み動作をさらに高速化するための構成について説明する。
Embodiment 3. FIG.
In the third embodiment, a configuration for further speeding up the write operation as compared with the memory system according to the first embodiment will be described.
 図19は、実施形態3に係るデータの書き込み動作を行うときの各信号の波形を示すタイミングチャートである。図19は、実施形態1に係るデータの書き込み動作の時間期間tRC(W)をさらに短縮した実施例を示す。図19は、実施形態1に従って時間期間tRCD(W)を負の値とした時のメモリ5の内部状態を表す。活性化コマンドAを取り込んでから時間期間tDF(A)の経過後に、信号BTLEQが非活性化し(「H」から「L」に遷移)、同時もしくはほぼ同時に、サブアレイ選択信号SUBASELが活性化する(「L」から「H」に遷移)。同時に、LIOバスの一対の信号線LIO,/LIOは、電圧VBTLから電圧VARY(もしくはそれ以上の電圧)に変化する。以上の動作は、実施形態1及び2でも同様に実行され、通常のDRAMでも同様に実行される。実施形態3では、チップ制御回路22は、メモリ5にデータを書き込むとき、書き込みコマンドを受信した後、かつ、センスアンプを活性化する前に、カラム選択線を活性化することを特徴とする。代替として、実施形態3では、チップ制御回路22は、メモリ5にデータを書き込むとき、書き込みコマンドを受信した後、かつ、センスアンプ及びワード線を活性化する前に、カラム選択線を活性化することを特徴とする。この動作により、選択されていないカラム選択線CSLに対応する一対のビット線BTL,/BTLでは、実施形態1と同様の動作となる。一方、選択されたカラム選択線CSLに対応する一対のビット線BTL,/BTLでは、カラム選択線CSLの活性化によって、LIOバスの一対の信号線LIO,/LIOから一対のビット線BTL,/BTLに電流が流れ込み、一対のビット線BTL,/BTLが共に電圧VARYに固定される。引き続き、GIOバスの一対の信号線GIO,/GIOを介して、書き込みデータをLIOバスの一対の信号線LIO,/LIOに与えることで、書き込み動作が始まる(時間期間t(iWR))。このとき、一対のビット線BTL,/BTLの双方は予め電圧VARYにあるので、ビット線には「H」から「L」への遷移のみが起こる。 FIG. 19 is a timing chart showing waveforms of signals when performing a data write operation according to the third embodiment. FIG. 19 shows an example in which the time period tRC (W) of the data write operation according to the first embodiment is further shortened. FIG. 19 shows the internal state of the memory 5 when the time period tRCD (W) is a negative value according to the first embodiment. The signal BTLEQ is deactivated (transition from “H” to “L”) after the elapse of the time period tDF (A) since the activation command A is taken in, and the subarray selection signal SUBASEL is activated at the same time or almost simultaneously ( Transition from “L” to “H”). At the same time, the pair of signal lines LIO and / LIO of the LIO bus changes from the voltage VBTL to the voltage VARY (or higher voltage). The above operation is similarly executed in the first and second embodiments, and is also executed in a normal DRAM. In the third embodiment, when writing data to the memory 5, the chip control circuit 22 activates the column selection line after receiving the write command and before activating the sense amplifier. Alternatively, in the third embodiment, when writing data to the memory 5, the chip control circuit 22 activates the column selection line after receiving the write command and before activating the sense amplifier and the word line. It is characterized by that. With this operation, the pair of bit lines BTL and / BTL corresponding to the unselected column selection line CSL performs the same operation as in the first embodiment. On the other hand, in the pair of bit lines BTL, / BTL corresponding to the selected column selection line CSL, the activation of the column selection line CSL causes the pair of bit lines BTL, / LIO from the pair of signal lines LIO, / LIO of the LIO bus. A current flows into the BTL, and the pair of bit lines BTL and / BTL are both fixed to the voltage VARY. Subsequently, the write operation is started by supplying write data to the pair of signal lines LIO and / LIO of the LIO bus via the pair of signal lines GIO and / GIO of the GIO bus (time period t (iWR)). At this time, since both of the pair of bit lines BTL and / BTL are at the voltage VARY in advance, only the transition from “H” to “L” occurs in the bit line.
 図13及び図17を参照して説明したように、時間期間tWRはビット線の「L」から「H」の遷移に必要な時間に起因して長くなる。図19の動作により、書き込み動作後のビット線の「L」から「H」の遷移を無くすことが可能であり、時間期間tWRは短縮される。時間期間tWRの短縮により、時間期間tRC(W)の更なる短縮が可能である。 As described with reference to FIGS. 13 and 17, the time period tWR becomes longer due to the time required for the transition from “L” to “H” of the bit line. By the operation of FIG. 19, it is possible to eliminate the transition from “L” to “H” of the bit line after the write operation, and the time period tWR is shortened. By shortening the time period tWR, the time period tRC (W) can be further shortened.
 図20は、実施形態3の変形例に係るデータの書き込み動作を行うときの各信号の波形を示すタイミングチャートである。図19の書き込み動作では、選択されたカラム選択線CSLに対応する一対のビット線BTL,/BTLに電圧VARYの「H」データを書き込むことで、選択されたカラム選択線CSLに対応するセンスアンプSAの一対のNMOSトランジスタSANTが、センスアンプSAの活性化前に動作を開始して、誤動作を生じる可能性がある。このような誤動作を避けるために、センスアンプ活性化信号SANEの非活性時の電圧を、電圧VBTL=1/2×VARYから電圧VARYに変更する。センスアンプSAを非活性化するとき、ビット線BTLの上限電圧に等しい電圧VARYをセンスアンプSAのNMOSトランジスタのソースに印加し、センスアンプSAを活性化するとき、ビット線BTLの下限電圧に等しい電圧VSSをセンスアンプSAのNMOSトランジスタのソースに印加する。この電圧を設定することにより、センスアンプSAの一対のNMOSトランジスタSANTの誤動作を防ぐことができる。なお、センスアンプSAの一対のPMOSトランジスタSAPTの非活性時の電圧は、図20に示すように電圧VSSとしてもよいし、また、従来の如く電圧VBTLとしてもよい。 FIG. 20 is a timing chart showing waveforms of signals when a data write operation according to a modification of the third embodiment is performed. In the write operation of FIG. 19, by writing “H” data of the voltage VARY to the pair of bit lines BTL, / BTL corresponding to the selected column selection line CSL, the sense amplifier corresponding to the selected column selection line CSL There is a possibility that the pair of SA NMOS transistors SANT starts operating before the activation of the sense amplifier SA, resulting in malfunction. In order to avoid such a malfunction, the voltage when the sense amplifier activation signal SANE is inactive is changed from the voltage VBTL = 1/2 × VARY to the voltage VARY. When the sense amplifier SA is deactivated, a voltage VARY equal to the upper limit voltage of the bit line BTL is applied to the source of the NMOS transistor of the sense amplifier SA, and when the sense amplifier SA is activated, it is equal to the lower limit voltage of the bit line BTL. The voltage VSS is applied to the source of the NMOS transistor of the sense amplifier SA. By setting this voltage, malfunction of the pair of NMOS transistors SANT of the sense amplifier SA can be prevented. It should be noted that the voltage when the pair of PMOS transistors SAPT of the sense amplifier SA is inactive may be the voltage VSS as shown in FIG. 20 or may be the voltage VBTL as in the prior art.
実施形態4.
 実施形態4でもまた、実施形態1に係るメモリシステムに比べて、書き込み動作をさらに高速化するための構成について説明する。
Embodiment 4 FIG.
In the fourth embodiment, a configuration for further speeding up the write operation as compared with the memory system according to the first embodiment will be described.
 図21は、実施形態4に係るメモリシステムのチップ制御回路22Aの構成を示すブロック図である。実施形態4に係るメモリシステムにおいて、メモリ5は、図3のチップ制御回路22に代えて図21のチップ制御回路22Aを備える。チップ制御回路22Aは、図4のチップ制御回路22の構成要素に加えて、コマンドデコーダ34及びバンクアドレス制御回路35を備える。カラムアドレス制御回路36及びロウアドレス制御回路37は、図4のカラムアドレス制御回路42及びロウアドレス制御回路41と同様の機能を提供するとともに、実施形態4に係る機能を提供する。図21では、図示の簡単化のために、コマンドデコーダ34、バンクアドレス制御回路35、カラムアドレス制御回路36、及びロウアドレス制御回路37のみを示す。 FIG. 21 is a block diagram illustrating a configuration of a chip control circuit 22A of the memory system according to the fourth embodiment. In the memory system according to the fourth embodiment, the memory 5 includes a chip control circuit 22A in FIG. 21 instead of the chip control circuit 22 in FIG. The chip control circuit 22A includes a command decoder 34 and a bank address control circuit 35 in addition to the components of the chip control circuit 22 of FIG. The column address control circuit 36 and the row address control circuit 37 provide functions similar to the column address control circuit 42 and the row address control circuit 41 of FIG. 4 and also provide functions according to the fourth embodiment. In FIG. 21, only the command decoder 34, the bank address control circuit 35, the column address control circuit 36, and the row address control circuit 37 are shown for simplification of illustration.
 実施形態4に係るメモリシステムにおいて、メモリコントローラ3は、実施形態1と同様に、活性化コマンドの前に書き込みコマンドを発行する。実施形態4に係るメモリシステムにおいて、メモリコントローラ3は、書き込みコマンドとして、データを書き込むメモリセルを含むサブアレイのロウアドレスの一部を含む特別な書き込みコマンド(ファースト書き込みコマンドFW)を発行する。書き込みコマンドにおいて、後続の活性化コマンドにより活性化されるサブアレイのロウアドレスの一部を予め与えることで、メモリ5は、活性化コマンドの受信に先行して、活性すべきサブアレイを選択できることを特徴とする。 In the memory system according to the fourth embodiment, the memory controller 3 issues a write command before the activation command, as in the first embodiment. In the memory system according to the fourth embodiment, the memory controller 3 issues a special write command (first write command FW) including a part of the row address of the subarray including the memory cell to which data is written as a write command. In the write command, a part of the row address of the subarray activated by the subsequent activation command is given in advance, so that the memory 5 can select the subarray to be activated prior to the reception of the activation command. And
 チップ制御回路22Aにおいて、コマンドデコーダ34はファースト書き込みコマンドを認識し、それによって書き込み動作の対象となるバンクアドレス及びカラムアドレスを発生し、さらに、サブアレイのロウアドレスを発生する。サブアレイのロウアドレスは、活性化すべきサブアレイ(図5)を指定するアドレスであり、ロウアドレスの一部である。チップ制御回路22Aは、これらの書き込み動作に使用されるバンクアドレス及びカラムアドレスをカラムアドレス信号CA-nのアドレスバスに出力するとともに、ロウアドレスをロウアドレス信号RA-nのアドレスバスに出力する。サブアレイのロウアドレスは、次の活性化コマンドが発行されたときに活性化されるサブアレイ(図5)に対応するサブアレイ選択信号SUBASELを活性化し、活性化されるサブアレイのサブアレイ選択スイッチSASWをオンする。サブアレイ選択スイッチSASWをオンすることによって、活性化されるサブアレイのLIOバスの一対の信号線LIO,/LIOにのみ電圧VARYを与える。メモリ5は、活性化コマンドを受信する前にファースト書き込みコマンドを受信したときに、上記動作を実行可能である。 In the chip control circuit 22A, the command decoder 34 recognizes the fast write command, thereby generating a bank address and a column address as a target of the write operation, and further generates a sub-array row address. The row address of the subarray is an address that designates the subarray (FIG. 5) to be activated, and is a part of the row address. The chip control circuit 22A outputs the bank address and column address used for these write operations to the address bus of the column address signal CA-n, and outputs the row address to the address bus of the row address signal RA-n. The row address of the subarray activates the subarray selection signal SUBASEL corresponding to the subarray activated when the next activation command is issued (FIG. 5), and turns on the subarray selection switch SASW of the activated subarray. . By turning on the subarray selection switch SASW, the voltage VARY is applied only to the pair of signal lines LIO and / LIO of the LIO bus of the activated subarray. The memory 5 can perform the above operation when it receives the first write command before receiving the activation command.
 図22は、実施形態4に係るメモリシステムのビット線に接続されるイコライズ回路の構成を示す回路図である。図22のビット線イコライズ回路では、図8のビット線イコライズ回路が、第1のビット線イコライズ信号BTLEQ1によって一対のビット線BTL,/BTLを電圧VBTLに固定する回路と、第2のビット線イコライズ信号BTLEQ2によって一対のビット線BTL,/BTLを同じ電圧にイコライズする回路に分離される。図示していないが、第1のビット線イコライズ信号BTLEQ1信号をさらに信号BTLEQ10及びBTLEQ11に分離し、一方のビット線BTLの電圧VBTLを固定するために信号BTLEQ10を使用し、他方のビット線/BTLの電圧VBTLを固定するために信号BTLEQ11を使用してもよい。 FIG. 22 is a circuit diagram showing a configuration of an equalize circuit connected to the bit line of the memory system according to the fourth embodiment. In the bit line equalize circuit of FIG. 22, the bit line equalize circuit of FIG. 8 includes a circuit for fixing a pair of bit lines BTL and / BTL to voltage VBTL by a first bit line equalize signal BTLEQ1, and a second bit line equalize The signal BTLEQ2 separates the pair of bit lines BTL and / BTL into circuits that equalize the same voltage. Although not shown, the first bit line equalize signal BTLEQ1 signal is further separated into signals BTLEQ10 and BTLEQ11, the signal BTLEQ10 is used to fix the voltage VBTL of one bit line BTL, and the other bit line / BTL The signal BTLEQ11 may be used to fix the voltage VBTL.
 図23は、実施形態4に係るメモリシステムのサブアレイ選択スイッチSASWの構成を示す回路図である。図23のサブアレイ選択スイッチSASWによれば、図9のサブアレイ選択スイッチSASWにおいて、LIOバスの一対の信号線LIO,/LIOの電圧VBTLへの固定は、図22に示したビット線イコライズ信号BTLEQ1によって行われる。 FIG. 23 is a circuit diagram showing a configuration of a sub-array selection switch SASW in the memory system according to the fourth embodiment. According to the sub-array selection switch SASW in FIG. 23, in the sub-array selection switch SASW in FIG. Done.
 図24は、実施形態4に係るデータの書き込み動作を行うときの各信号の波形を示すタイミングチャートである。図24は、実施形態1に係るデータの書き込み動作の時間期間tRC(W)をさらに短縮した実施例を示す。図24は、実施形態1に従って時間期間tRCD(W)を負の値とした時のメモリ5の内部状態を表す。実施形態4に係るデータの書き込み動作では、書き込みコマンドWに代わり、特別なファースト書き込みコマンドFWを使用する。ファースト書き込みコマンドFWは、対応するバンクの活性化コマンドAに先行して入力される。すなわち、時間期間tRCD(W)は負の値を持つ。さらに、ファースト書き込みコマンドFWでは、通常のカラムアドレスとカラムバンクアドレスに加え、サブアレイのロウアドレスの一部を指定可能であることを特徴とする。ファースト書き込みコマンドFWを取り込んでから時間期間tDF(W)の経過後に、ビット線イコライズ信号BTLEQ1が非活性化し、サブアレイ選択信号SUBASELが活性化する。また、ほぼ同時に、カラム選択線CSLが活性化することを特徴とする。同時に、LIOバスの一対の信号線LIO,/LIOは、電圧VBTLから電圧VARY(もしくはそれ以上の電圧)に変化する。この動作で、選択されていないカラム選択線CSLに対応する一対のビット線BTL,/BTLでは、実施形態1と同様の動作となる。一方、選択されたカラム選択線CSLに対応する一対のビット線BTL,/BTLでは、カラム選択線CSLの活性化によって、LIOバスの一対の信号線LIO,/LIOから一対のビット線BTL,/BTLに電流が流れ込み、一対のビット線BTL,/BTLがともに電圧VARYに固定される。ここで、選択されたカラム選択線CSLに対応する一対のビット線BTL,/BTLの電圧VBTLから電圧VARYへの変化は、ビット線イコライズ信号BTLEQ2の活性下で行われるので、一対のビット線BTL,/BTL間の電圧のイコライズは継続される。従って、選択されたカラム選択線CSLに対応する一対のビット線BTL,/BTLの近傍の選択されていないカラム選択線CSLに対応する一対のビット線BTL,/BTLへのノイズが低減され、誤動作が防止される。その後、活性化コマンドAを取り込んでから時間期間tDF(A)の経過後に、ビット線イコライズ信号BTLEQ2が非活性化する。引き続き、GIOバスの一対の信号線GIO,/GIOを介して、書き込みデータをLIOバスの一対の信号線LIO,/LIOに与えることで、書き込み動作が始まる(時間期間t(iWR))。この際、一対のビット線BTL,/BTLの双方は予め電圧VARYであるので、ビット線には「H」から「L」への遷移のみが起こる。 FIG. 24 is a timing chart showing waveforms of signals when a data write operation according to the fourth embodiment is performed. FIG. 24 shows an example in which the time period tRC (W) of the data write operation according to the first embodiment is further shortened. FIG. 24 shows the internal state of the memory 5 when the time period tRCD (W) is a negative value according to the first embodiment. In the data write operation according to the fourth embodiment, a special fast write command FW is used instead of the write command W. The first write command FW is input prior to the activation command A of the corresponding bank. That is, the time period tRCD (W) has a negative value. Further, the first write command FW is characterized in that a part of the row address of the sub-array can be designated in addition to the normal column address and column bank address. After the time period tDF (W) has elapsed since the first write command FW was received, the bit line equalize signal BTLEQ1 is deactivated and the subarray selection signal SUBASEL is activated. Further, the column selection line CSL is activated almost simultaneously. At the same time, the pair of signal lines LIO and / LIO of the LIO bus changes from the voltage VBTL to the voltage VARY (or higher voltage). With this operation, the pair of bit lines BTL and / BTL corresponding to the unselected column selection line CSL operates in the same manner as in the first embodiment. On the other hand, in the pair of bit lines BTL, / BTL corresponding to the selected column selection line CSL, the activation of the column selection line CSL causes the pair of bit lines BTL, / LIO from the pair of signal lines LIO, / LIO of the LIO bus. A current flows into the BTL, and the pair of bit lines BTL and / BTL are both fixed to the voltage VARY. Here, since the change from the voltage VBTL to the voltage VARY of the pair of bit lines BTL and / BTL corresponding to the selected column selection line CSL is performed under the activation of the bit line equalization signal BTLEQ2, the pair of bit lines BTL. , / BTL voltage equalization is continued. Therefore, noise to the pair of bit lines BTL and / BTL corresponding to the unselected column selection line CSL in the vicinity of the pair of bit lines BTL and / BTL corresponding to the selected column selection line CSL is reduced, and the malfunction is caused. Is prevented. Thereafter, the bit line equalize signal BTLEQ2 is deactivated after the elapse of the time period tDF (A) since the activation command A was received. Subsequently, the write operation is started by supplying write data to the pair of signal lines LIO and / LIO of the LIO bus via the pair of signal lines GIO and / GIO of the GIO bus (time period t (iWR)). At this time, since both of the pair of bit lines BTL and / BTL are at the voltage VARY in advance, only the transition from “H” to “L” occurs in the bit line.
 以上に説明したように、実施形態4では、メモリ5のチップ制御回路22Aが、ファースト書き込みコマンドのロウアドレスによって指定されるサブアレイを活性化し、ファースト書き込みコマンドのカラムアドレスによって指定されるカラム選択線を活性化し、活性化されたカラム選択線に対応するビット線の電圧を上限電圧に設定することを特徴とする。 As described above, in the fourth embodiment, the chip control circuit 22A of the memory 5 activates the subarray specified by the row address of the first write command, and sets the column selection line specified by the column address of the first write command. The bit line voltage corresponding to the activated column selection line is set to an upper limit voltage.
 図13及び図17を参照して説明したように、時間期間tWRはビット線の「L」から「H」の遷移に必要な時間に起因して長くなる。図24の動作により、書き込み動作後のビット線の「L」から「H」の遷移を無くすことが可能であり、時間期間tWRは短縮される。それと同時に、安定な書き込み動作が保証される。時間期間tWRの短縮により、時間期間tRC(W)の更なる短縮が可能である。 As described with reference to FIGS. 13 and 17, the time period tWR becomes longer due to the time required for the transition from “L” to “H” of the bit line. With the operation in FIG. 24, it is possible to eliminate the transition from “L” to “H” of the bit line after the write operation, and the time period tWR is shortened. At the same time, a stable write operation is guaranteed. By shortening the time period tWR, the time period tRC (W) can be further shortened.
実施形態5.
 実施形態5では、実施形態1とは異なる方法で書き込み動作をさらに高速化するための構成について説明する。
Embodiment 5. FIG.
In the fifth embodiment, a configuration for further speeding up the write operation by a method different from that of the first embodiment will be described.
 図25は、実施形態5に係るメモリシステムのメモリコントローラ3Aの構成を示すブロック図である。図25のメモリコントローラ3Aは、図2のメモリコントローラ3の制御回路11及びタイミングレジスタ13に代えて、制御回路11A及びタイミングレジスタ13Aを備える。タイミングレジスタ13Aは、メモリ5の動作に関連する複数のタイミングパラメータを格納する。これらのタイミングパラメータは、時間期間tRCD、tRP、CL、WL1、及びWL2を含む。時間期間tRCDは、あるバンクに対する活性化コマンドを発行してから、同一バンクに対する読み出しコマンド及び書き込みコマンドを発行可能になるまでの時間差の最小値を示す。時間期間tRP及びCLは、実施形態1の場合と同様である。時間期間WL1は、書き込みコマンドを発行してからメモリコントローラ3Aからメモリ5へデータを送信するまでの時間差であって、JEDEC標準に準拠した書き込みレイテンシ(WL)に等しい時間期間の長さを示す。時間期間WL2は、書き込みコマンドを発行してからメモリコントローラ3Aからメモリ5へデータを送信するまでの時間差であって、JEDEC標準に準拠した書き込みレイテンシ(WL)よりも短い時間期間の長さを示す。制御回路11Aは、動作状態に応じて適宜、書き込みレイテンシの時間期間WL1,WL2を切り換えることを特徴とする。制御回路11Aは、JEDEC標準に準拠した通常の書き込み動作では、時間期間WL1を使用し、時間期間tRC(W)を短縮した書き込み動作では、時間期間WL2を使用する。 FIG. 25 is a block diagram illustrating a configuration of the memory controller 3A of the memory system according to the fifth embodiment. 25 includes a control circuit 11A and a timing register 13A instead of the control circuit 11 and the timing register 13 of the memory controller 3 of FIG. The timing register 13 </ b> A stores a plurality of timing parameters related to the operation of the memory 5. These timing parameters include time periods tRCD, tRP, CL, WL1, and WL2. The time period tRCD indicates a minimum value of a time difference from when an activation command for a certain bank is issued until a read command and a write command can be issued for the same bank. The time periods tRP and CL are the same as those in the first embodiment. The time period WL1 is a time difference from when the write command is issued to when data is transmitted from the memory controller 3A to the memory 5, and indicates the length of the time period equal to the write latency (WL) conforming to the JEDEC standard. The time period WL2 is a time difference from when the write command is issued to when data is transmitted from the memory controller 3A to the memory 5, and indicates a length of time period shorter than the write latency (WL) based on the JEDEC standard. . The control circuit 11A is characterized by switching the write latency time periods WL1 and WL2 as appropriate according to the operating state. The control circuit 11A uses the time period WL1 in a normal write operation in accordance with the JEDEC standard, and uses the time period WL2 in a write operation in which the time period tRC (W) is shortened.
 本明細書では、時間期間WL2を「第3の時間期間」ともいい、時間期間WL1を「第4の時間期間」ともいう。 In this specification, the time period WL2 is also referred to as a “third time period”, and the time period WL1 is also referred to as a “fourth time period”.
 メモリシステムの動作状態は、例えば、メモリコントローラ3Aがプロセッサ1から制御信号を受信すること、メモリコントローラ3Aの内部に活性化状態に固定された信号源を設けること、などにより設定されてもよい。 The operating state of the memory system may be set, for example, by the memory controller 3A receiving a control signal from the processor 1, or by providing a signal source fixed in the activated state inside the memory controller 3A.
 図26は、実施形態5に係るデータの書き込み動作を示すタイミングチャートである。実施形態5では、書き込みレイテンシを、JEDEC標準に規定される時間期間WLより短い時間期間WL2に設定可能である。例えば、時間期間WL2は4クロックサイクルに設定されてもよい。特に、図26は、負の時間期間WL2を用いた場合を示す。制御回路11Aは、メモリ5にデータを書き込むとき、書き込みコマンドをメモリ5に送信する前に、時間期間WL2の絶対値に等しい時間期間だけ先行して、メモリコントローラ3Aからメモリ5へデータを送信する。負の時間期間WL2を用いることで、時間期間tRCDがJEDEC標準に規定される値であっても、書き込みコマンドWを取り込んでからメモリ5における書き込み動作(内部状態iWR)までの時間を短縮可能である。 FIG. 26 is a timing chart showing a data write operation according to the fifth embodiment. In the fifth embodiment, the write latency can be set to a time period WL2 that is shorter than the time period WL defined in the JEDEC standard. For example, the time period WL2 may be set to 4 clock cycles. In particular, FIG. 26 shows the case where a negative time period WL2 is used. When writing data to the memory 5, the control circuit 11 </ b> A transmits data from the memory controller 3 </ b> A to the memory 5 by preceding the write command to the memory 5 by a time period equal to the absolute value of the time period WL <b> 2. . By using the negative time period WL2, even when the time period tRCD is a value stipulated in the JEDEC standard, it is possible to shorten the time from the capture of the write command W to the write operation (internal state iWR) in the memory 5. is there.
 メモリコントローラ3の制御回路11は、メモリ5にデータを書き込むとき、書き込みコマンドWを発行する瞬間を基準として時間期間WL1又は時間期間WL2だけ離れた瞬間に、メモリコントローラ3からメモリ5へデータを送信開始する。時間期間WL2が負の値を有する場合には、メモリコントローラ3の制御回路11は、メモリ5にデータを書き込むとき、書き込みコマンドを発行する瞬間を基準として時間期間WL2の絶対値に等しい時間期間だけ先行する瞬間に、メモリコントローラ3からメモリ5へデータを送信開始する。 When writing data to the memory 5, the control circuit 11 of the memory controller 3 transmits data from the memory controller 3 to the memory 5 at the moment separated by the time period WL 1 or the time period WL 2 with reference to the moment when the write command W is issued. Start. When the time period WL2 has a negative value, the control circuit 11 of the memory controller 3 only writes a time period equal to the absolute value of the time period WL2 based on the moment when the write command is issued when writing data to the memory 5. At the preceding moment, data transmission from the memory controller 3 to the memory 5 is started.
 時間期間WL2は、JEDEC標準に準拠した書き込みレイテンシ(WL)よりも短い正の長さを有してもよい。 The time period WL2 may have a positive length shorter than the write latency (WL) conforming to the JEDEC standard.
 実施形態5によれば、実施形態1とは異なる方法で時間期間tRC(W)を短縮し、書き込み動作を高速化することができる。 According to the fifth embodiment, the time period tRC (W) can be shortened by a method different from that of the first embodiment, and the write operation can be speeded up.
実施形態6.
 実施形態6では、読み出し動作を高速化することが可能なメモリシステムについて説明する。
Embodiment 6. FIG.
In the sixth embodiment, a memory system capable of speeding up a read operation will be described.
 図27は、実施形態6に係るメモリシステムのメモリコントローラ3Bの構成を示すブロック図である。図27のメモリコントローラ3Bは、図2のメモリコントローラ3の制御回路11及びタイミングレジスタ13に代えて、制御回路11B及びタイミングレジスタ13Bを備える。タイミングレジスタ13Bは、メモリ5の動作に関連する複数のタイミングパラメータを格納する。これらのタイミングパラメータは、時間期間tRC(W)及びtRC(R)を含む。時間期間tRC(W)は、メモリにデータを書き込むとき、あるバンクに対する活性化コマンドを連続して発行可能な最短時間を示す。時間期間tRC(R)は、メモリからデータを読み出すとき、あるバンクに対する活性化コマンドを連続して発行可能な最短時間を示す。制御回路11Bは、時間期間tRC(R)に基づいてメモリを制御する。 FIG. 27 is a block diagram illustrating a configuration of the memory controller 3B of the memory system according to the sixth embodiment. The memory controller 3B in FIG. 27 includes a control circuit 11B and a timing register 13B instead of the control circuit 11 and the timing register 13 of the memory controller 3 in FIG. The timing register 13B stores a plurality of timing parameters related to the operation of the memory 5. These timing parameters include time periods tRC (W) and tRC (R). The time period tRC (W) indicates the shortest time during which an activation command for a certain bank can be issued continuously when data is written to the memory. The time period tRC (R) indicates the shortest time during which an activation command for a certain bank can be issued continuously when data is read from the memory. The control circuit 11B controls the memory based on the time period tRC (R).
 本明細書では、時間期間tRC(R)を「第5の時間期間」ともいう。 In this specification, the time period tRC (R) is also referred to as a “fifth time period”.
 実施形態6に係るメモリシステムのメモリは、例えば、実施形態1に係るメモリシステムのメモリ5と同様に構成される。この場合、メモリ5は、図4のチップ制御回路22に代えて、図4のチップ制御回路22からtRC(W)短縮信号に関連する回路部分を除去したチップ制御回路を備えてもよい。以下、実施形態6に係るメモリシステムのメモリを「メモリ5」と呼ぶ。 The memory of the memory system according to the sixth embodiment is configured similarly to the memory 5 of the memory system according to the first embodiment, for example. In this case, the memory 5 may include a chip control circuit in which a circuit portion related to the tRC (W) shortening signal is removed from the chip control circuit 22 in FIG. 4 instead of the chip control circuit 22 in FIG. Hereinafter, the memory of the memory system according to the sixth embodiment is referred to as “memory 5”.
 メモリ5のチップ制御回路22は、メモリ5にデータを書き込むとき、複数のバンクのうちの少なくとも2つのバンクに同じデータを書き込む。メモリ5のチップ制御回路22は、メモリ5からデータを読み出すとき、複数のバンクのうちの同じデータが書き込まれた少なくとも2つのバンクのうちの1つからデータを読み出す。メモリコントローラ3Bの制御回路11Bは、このような書き込み及び読み出しを実行するようにメモリ5を制御する。 When the chip control circuit 22 of the memory 5 writes data to the memory 5, it writes the same data to at least two of the plurality of banks. When reading data from the memory 5, the chip control circuit 22 of the memory 5 reads data from one of at least two banks in which the same data of the plurality of banks is written. The control circuit 11B of the memory controller 3B controls the memory 5 so as to execute such writing and reading.
 図28は、実施形態6に係るメモリシステムのメモリ5へのデータの書き込み動作を説明するためのブロック図である。図29は、実施形態6に係るメモリシステムのメモリ5からのデータの読み出し動作を説明するためのブロック図である。図28及び図29のメモリ5は、図3のメモリ5と同様の構成を有する。以下、共通の内部データバスDB1に接続されたバンクB1,B2にデータを書き込み、バンクB1,B2からデータを読み出す場合について説明する。 FIG. 28 is a block diagram for explaining an operation of writing data to the memory 5 of the memory system according to the sixth embodiment. FIG. 29 is a block diagram for explaining a data read operation from the memory 5 of the memory system according to the sixth embodiment. The memory 5 in FIGS. 28 and 29 has the same configuration as the memory 5 in FIG. Hereinafter, a case where data is written to the banks B1 and B2 connected to the common internal data bus DB1 and data is read from the banks B1 and B2 will be described.
 図28を参照すると、最初に、バンクB1,B2は同時に同一のロウアドレスで活性化される。すなわち、ロウアドレス信号RA-1,RA-2は同じアドレスであり、ロウアドレス活性化信号RAE-1,RAE-2は同時に活性化される。その結果、これら2つのバンクB1,B2では、メモリアレイ23-nの同一アドレスのワード線WDLが同時に活性化する。その後のメモリ5の内部における書き込み動作時には、これら2つのバンクB1,B2の同一のカラムアドレスが同時に活性化される。すなわち、カラムアドレス信号CA-1,CA-2は同じアドレスであり、カラムアドレス活性化信号CAE-1,CAE-2は同時に活性化される。それと同時に、これら2つのバンクB1,B2には、内部データバスDB1から同一の書き込みデータが同時に供給される。その結果、これら2つのバンクB1,B2では、メモリアレイ23-nの同一アドレスのカラム選択線CSLが同時に活性化し、同一アドレスのメモリセルCに同一のデータが書き込まれる。このような書き込み動作を繰り返すことで、バンクB1,B2に格納されたデータを完全に一致させることができる。 Referring to FIG. 28, first, banks B1 and B2 are simultaneously activated with the same row address. That is, the row address signals RA-1 and RA-2 are the same address, and the row address activation signals RAE-1 and RAE-2 are activated simultaneously. As a result, in these two banks B1 and B2, the word lines WDL having the same address in the memory array 23-n are simultaneously activated. During the subsequent write operation in the memory 5, the same column addresses of these two banks B1 and B2 are simultaneously activated. That is, the column address signals CA-1 and CA-2 are the same address, and the column address activation signals CAE-1 and CAE-2 are activated simultaneously. At the same time, these two banks B1 and B2 are simultaneously supplied with the same write data from the internal data bus DB1. As a result, in these two banks B1 and B2, the column selection line CSL having the same address in the memory array 23-n is simultaneously activated, and the same data is written to the memory cell C having the same address. By repeating such a write operation, the data stored in the banks B1 and B2 can be completely matched.
 書き込み動作時には、実施形態1~4に従って、時間期間tRCD(R)よりも小さな値を有する時間期間tRCD(W)を設定することにより、もしくは、負の値を有する時間期間tRCD(W)を設定し、活性化コマンドの発行前に書き込みコマンドを発行することにより、時間期間tRC(W)を短縮してもよい。また、書き込み動作時には、実施形態5に従って、書き込みレイテンシの時間期間WLを短縮又は負の値に設定し、時間期間tRC(W)を短縮してもよい。 During the write operation, according to the first to fourth embodiments, the time period tRCD (W) having a value smaller than the time period tRCD (R) is set, or the time period tRCD (W) having a negative value is set. The time period tRC (W) may be shortened by issuing a write command before issuing an activation command. In the write operation, according to the fifth embodiment, the write latency time period WL may be shortened or set to a negative value to shorten the time period tRC (W).
 前述のように、メモリ5にデータを書き込むとき又はメモリ5からデータを読み出すとき、あるバンクに対する活性化コマンドを連続して発行可能な最短時間(時間期間tRC(W)及びtRC(R))が存在する。実施形態5では、メモリ5からデータを読み出すとき、メモリコントローラ3B及びメモリ5は以下のように動作する。メモリコントローラ3Bの制御回路11Bは、複数のバンクのうちの同じデータが書き込まれた少なくとも2つのバンクからデータを読み出すために時間期間tRC(R)より短い間隔で第1及び第2の活性化コマンドを発行するとき、第1の活性化コマンドに含まれるバンクアドレスとは異なるバンクアドレスを含む第2のコマンドを発行する。メモリ5のチップ制御回路22は、このような第1及び第2の活性化コマンドを受信したとき、第1の活性化コマンドに応じて、同じデータが書き込まれた少なくとも2つのバンクのうちの第1のバンクからデータを読み出し、第2の活性化コマンドに応じて、同じデータが書き込まれた少なくとも2つのバンクのうちの第2のバンクからデータを読み出す。このように、時間期間tRC(R)より短い間隔で第1及び第2の活性化コマンドを発行してメモリ5からデータを読み出し、これにより、等価的に時間期間tRC(R)を短縮し、メモリシステムの読み出し動作を高速化することができる。 As described above, when data is written to the memory 5 or when data is read from the memory 5, the shortest time (time period tRC (W) and tRC (R)) in which an activation command for a certain bank can be issued continuously is determined. Exists. In the fifth embodiment, when reading data from the memory 5, the memory controller 3B and the memory 5 operate as follows. The control circuit 11B of the memory controller 3B reads the first and second activation commands at intervals shorter than the time period tRC (R) in order to read data from at least two banks in which the same data among the plurality of banks is written. Is issued, a second command including a bank address different from the bank address included in the first activation command is issued. When the chip control circuit 22 of the memory 5 receives the first and second activation commands, the chip control circuit 22 of the memory 5 responds to the first activation command and the first of the at least two banks in which the same data is written. Data is read from one bank, and data is read from a second bank of at least two banks in which the same data is written in response to a second activation command. In this way, the first and second activation commands are issued at intervals shorter than the time period tRC (R) to read data from the memory 5, thereby equivalently shortening the time period tRC (R), The read operation of the memory system can be speeded up.
 図29を参照すると、読み出し動作時には、最初に、バンクB1,B2は別個に活性化される。すなわち、バンクB1には、ロウアドレス信号RA-1を与えて、ロウアドレス活性化信号RAE-1を活性化してアクセスし、バンクB2には、ロウアドレス信号RA-1とは異なるロウアドレス信号RA-2を与えて、ロウアドレス活性化信号RAE-2を活性化する。その結果、これら2つのバンクB1,B2では、メモリアレイ23-nのワード線WDLは独立に活性化する。その後のメモリ5の内部における読み出し動作時には、これら2つのバンクB1,B2では独立にカラムアドレスが活性化される。例えば、偶数回目の読み出し動作では、バンクB1にカラムアドレス信号CA-1が与えられ、かつ、カラムアドレス活性化信号CAE-1が活性化され、奇数回目の読み出し動作では、バンクB2にカラムアドレス信号CA-2が与えられ、かつ、カラムアドレス活性化信号CAE-2が活性化され、以後、同様に読み出しが制御される。その結果、これら2つのバンクB1,B2では、メモリアレイ23-nの異なるカラムアドレスのカラム選択線CSLが偶数回目の読み出し動作及び奇数回目の読み出し動作で交互に活性化し、これら2つのバンクB1,B2の異なるアドレスのメモリセルCから交互にデータが読み出され、読み出しデータが内部データバスDB1に読み出される。これにより、異なるバンクアドレスを有する2つのバンクにおける異なるロウ及び異なるカラムアドレスを有するメモリセルCであって、同一のデータが書き込まれたメモリセルCから、交互にデータが読み出される。 Referring to FIG. 29, at the time of a read operation, first, banks B1 and B2 are activated separately. In other words, the row address signal RA-1 is applied to the bank B1 and the row address activation signal RAE-1 is activated to access the bank B1, and the row address signal RA different from the row address signal RA-1 is accessed to the bank B2. -2 is applied to activate the row address activation signal RAE-2. As a result, in these two banks B1 and B2, the word lines WDL of the memory array 23-n are activated independently. During the subsequent read operation in the memory 5, column addresses are activated independently in these two banks B1 and B2. For example, in the even-numbered read operation, the column address signal CA-1 is supplied to the bank B1 and the column address activation signal CAE-1 is activated. In the odd-numbered read operation, the column address signal CA1 is supplied to the bank B2. CA-2 is applied, and the column address activation signal CAE-2 is activated. Thereafter, reading is similarly controlled. As a result, in these two banks B1 and B2, the column selection lines CSL of the different column addresses of the memory array 23-n are alternately activated by the even-numbered read operation and the odd-numbered read operation. Data is alternately read from the memory cells C at different addresses of B2, and the read data is read to the internal data bus DB1. As a result, data is alternately read from memory cells C having different row and different column addresses in two banks having different bank addresses and having the same data written therein.
 これら2つのバンクB1,B2の同一アドレスのメモリセルCには同一のデータが書き込まれているので、2つのバンクB1,B2を用いて、同一バンク内の読み出しアクセスの周期を規定する時間期間tRC(R)内に2回の読み出し動作を可能とする。すなわち、実施形態1などに比較して、等価的に、時間期間tRC(R)を平均で1/2に短縮可能である。 Since the same data is written in the memory cell C at the same address in these two banks B1 and B2, the time period tRC that defines the cycle of read access in the same bank using the two banks B1 and B2. (R) allows two read operations. That is, the time period tRC (R) can be equivalently reduced to ½ on average as compared with the first embodiment.
 図28及び図29はメモリ5が4つのバンクB1~B4を備えている場合の例であるが、2つのバンク、8つのバンク、などを備えている場合でも同様に読み出し動作を高速化することができる。 FIG. 28 and FIG. 29 are examples in the case where the memory 5 includes four banks B1 to B4. Even when the memory 5 includes two banks, eight banks, etc., the read operation can be similarly accelerated. Can do.
 図28及び図29は、2つのバンクに同時に書き込み、2つのバンクから独立に読み出す場合の例であるが、4つのバンクに同時に書き込み、4つのバンクから独立に読み出す場合でも同様に読み出し動作を高速化することができる。この場合、実施形態1などに比較して、等価的に、時間期間tRC(R)を平均で1/4に短縮可能である。 FIG. 28 and FIG. 29 show an example in which two banks are simultaneously written and read independently from two banks. However, even when data is simultaneously written in four banks and read independently from four banks, the read operation is similarly performed at high speed. Can be In this case, the time period tRC (R) can be equivalently shortened to ¼ on average compared to the first embodiment.
 次に、図30及び図31を参照して、実施形態6に係る書き込み動作を実現するためのコマンドのフォーマットについて説明する。 Next, a command format for realizing the write operation according to the sixth embodiment will be described with reference to FIG. 30 and FIG.
 図30は、実施形態6に係るメモリシステムにおいて使用される活性化コマンドを示す図である。図31は、実施形態6に係るメモリシステムにおいて使用される書き込みコマンドを示す図である。図30及び図31では、メモリ5及びメモリコントローラ3BがLPDDR4-SDRAMである場合について説明する。図30はLPDDR4-SDRAMの活性化コマンドの例を示し、図31はLPDDR4-SDRAMの書き込みコマンドの例を示す。 FIG. 30 is a diagram illustrating an activation command used in the memory system according to the sixth embodiment. FIG. 31 is a diagram illustrating a write command used in the memory system according to the sixth embodiment. 30 and 31, a case where the memory 5 and the memory controller 3B are LPDDR4-SDRAMs will be described. FIG. 30 shows an example of an activation command for LPDDR4-SDRAM, and FIG. 31 shows an example of a write command for LPDDR4-SDRAM.
 複数のバンクは、複数のビットを含むバンクアドレスを有する。メモリ5のチップ制御回路22は、メモリ5にデータを書き込むとき、複数のバンクのうちの、少なくとも1つの同じビット値を含むバンクアドレスをそれぞれ有する少なくとも2つのバンクにおいて、同じロウアドレスのメモリセルに同じデータを書き込む。メモリコントローラ3Bの制御回路11Bは、このような書き込みを実行するようにメモリ5を制御する。 • Multiple banks have bank addresses that include multiple bits. When the chip control circuit 22 of the memory 5 writes data to the memory 5, the memory cell having the same row address in at least two banks each having a bank address including at least one same bit value among the plurality of banks. Write the same data. The control circuit 11B of the memory controller 3B controls the memory 5 so as to execute such writing.
 図30及び図31の例では、メモリコントローラ3B及びメモリ5が、JEDEC標準に規定されていないモードレジスタ設定又はフューズトリミング等を用いて、バンクアドレスの複数のビットのうちの1つのビットを縮退させるモードに入る。 In the example of FIGS. 30 and 31, the memory controller 3B and the memory 5 degenerate one bit among a plurality of bits of the bank address using mode register setting or fuse trimming that is not defined in the JEDEC standard. Enter the mode.
 図30の活性化コマンドは、クロックCK_tの4周期分(4つの立ち上がりエッジ)を用いて構成され、前半の2周期分をコマンド部分ACT-1と呼び、後半の2周期分をACT-2と呼ぶ。図30の活性化コマンドは、3つのビットBA2,BA1,BA0からなるバンクアドレスを含むので、8つのバンクをアドレス指定することができる。コマンド部分ACT-1の第2周期のビットCA3は空きとなっている。このビットに新たにビットBD(Bank-Degeneration)を割り付け、「BD=1」のときビットBA0を縮退させ、「BD=0」のときビットBA0の縮退なし、と決める。 The activation command in FIG. 30 is configured using four periods (four rising edges) of the clock CK_t, and the first two periods are referred to as a command part ACT-1, and the latter two periods are referred to as ACT-2. Call. The activation command of FIG. 30 includes a bank address consisting of three bits BA2, BA1, and BA0, so that eight banks can be addressed. The bit CA3 of the second period of the command part ACT-1 is empty. Bit BD (Bank-Degeneration) is newly allocated to this bit. When “BD = 1”, bit BA0 is degenerated, and when “BD = 0”, bit BA0 is not degenerated.
 図31の書き込みコマンドは、クロックCK_tの4周期分(4つの立ち上がりエッジ)を用いて構成され、前半の2周期分をコマンド部分WR-1と呼び、後半の2周期分をコマンド部分CAS-2と呼ぶ。図31の書き込みコマンドもまた、3つのビットBA2,BA1,BA0からなるバンクアドレスを含むので、8つのバンクをアドレス指定することができる。コマンド部分WR-1の第2周期のビットCA3は空きとなっている。このビットに新たにビットBD(Bank-Degeneration)を割り付け、「BD=1」のときビットBA0を縮退させ、「BD=0」のときビットBA0の縮退なし、と決める。 The write command in FIG. 31 is configured using four periods (four rising edges) of the clock CK_t, the first two periods are referred to as a command part WR-1, and the latter two periods are referred to as a command part CAS-2. Call it. The write command of FIG. 31 also includes a bank address consisting of three bits BA2, BA1, BA0, so that eight banks can be addressed. The bit CA3 of the second period of the command part WR-1 is empty. Bit BD (Bank-Degeneration) is newly allocated to this bit. When “BD = 1”, bit BA0 is degenerated, and when “BD = 0”, bit BA0 is not degenerated.
 図28の書き込み動作を行うとき、メモリコントローラ3Bの制御回路11Bは、活性化コマンドを発行するときに上記「BD=1」を設定し、また、書き込みコマンドを発行するときにも上記「BD=1」を設定する。以上のようにメモリコントローラ3B及びメモリ5を構成及び設定することで、バンクアドレスのビットBA0を縮退し、これにより、バンクB1,B2に同じデータを同時に書き込むことができる。 When the write operation of FIG. 28 is performed, the control circuit 11B of the memory controller 3B sets “BD = 1” when issuing the activation command, and also when “BD ==” is issued when issuing the write command. 1 ”is set. By configuring and setting the memory controller 3B and the memory 5 as described above, the bit BA0 of the bank address is degenerated, so that the same data can be simultaneously written in the banks B1 and B2.
 一方、図29の読み出し動作を行うとき、メモリコントローラ3Bの制御回路11Bは、活性化コマンドを発行するときに上記「BD=0」を設定し、また、書き込みコマンドを発行するときにも上記「BD=0」を設定する。以上のようにメモリコントローラ3B及びメモリ5を構成及び設定することで、読み出し動作時にはバンクアドレスのビットBA0を縮退せずに、バンクB1,B2から独立にデータを読み出すことができる。 On the other hand, when the read operation of FIG. 29 is performed, the control circuit 11B of the memory controller 3B sets “BD = 0” when issuing the activation command, and also when the write command is issued. BD = 0 "is set. By configuring and setting the memory controller 3B and the memory 5 as described above, it is possible to read data independently from the banks B1 and B2 without degenerating the bit BA0 of the bank address during the read operation.
 以上によって、活性化コマンド及び書き込みコマンドを用いた書き込み動作時には、2つのバンクに同時にデータを書き込み、活性化コマンド及び読み出しコマンドを用いた読み出し動作時には、2つのバンクから独立にデータを読み出すことが可能である。従って、実施形態1などに比較して、等価的に、時間期間tRC(R)を1/2に短縮可能である。 As described above, data can be simultaneously written to two banks during a write operation using an activation command and a write command, and data can be read independently from the two banks during a read operation using an activation command and a read command. It is. Therefore, the time period tRC (R) can be equivalently shortened to ½ compared to the first embodiment.
 尚、プリチャージコマンドについても、上記の活性化コマンド及び書き込みコマンドと同様に、縮退の有無を決定するBDビットを設定可能である。 As for the precharge command, the BD bit for determining the presence / absence of degeneration can be set as in the case of the activation command and the write command.
 図30及び図31の例に代えて、メモリコントローラ3B及びメモリ5は、JEDEC標準に規定されていないモードレジスタ設定又はフューズトリミング等を用いて、アドレスの複数のビットのうちの2つ以上のビットを縮退させるモードに入ってもよい。例えば、「BD=1」でビットBA0,BA1を縮退させ、「BD=0」でビットBA0,BA1の縮退なし、と決める。その場合、活性化コマンド及び書き込みコマンドを用いた書き込み動作時には、4つのバンクに同一のデータを同時に書き込むことが可能であり、活性化コマンド及び読み出しコマンドを用いた読み出し動作時には、4つのバンクから独立にデータを読み出すことが可能である。従って、実施形態1などに比較して、等価的に、時間期間tRC(R)を1/4に短縮可能である。この場合、読み出し時の時間期間tCCD(R)について、tCCD(R)=tRC(R)/4を実現できると、読み出し動作では、バンクの競合に無関係に外部データバスの効率を最大化することが可能である。 In place of the example of FIGS. 30 and 31, the memory controller 3B and the memory 5 may use two or more bits of a plurality of bits of the address by using mode register setting or fuse trimming not defined in the JEDEC standard. You may enter a mode to degenerate. For example, the bits BA0 and BA1 are degenerated when “BD = 1”, and the bits BA0 and BA1 are not degenerated when “BD = 0”. In this case, the same data can be simultaneously written in the four banks during the write operation using the activation command and the write command, and independent from the four banks during the read operation using the activation command and the read command. It is possible to read out data. Therefore, the time period tRC (R) can be equivalently shortened to ¼ compared to the first embodiment. In this case, if tCCD (R) = tRC (R) / 4 can be realized for the time period tCCD (R) at the time of reading, the read operation can maximize the efficiency of the external data bus regardless of bank competition. Is possible.
 図32は、実施形態6の変形例に係るデータの書き込み動作を示すタイミングチャートである。図32では、メモリ5及びメモリコントローラ3BがLPDDR4-SDRAMである場合について説明する。図32の例では、メモリコントローラ3B及びメモリ5が、JEDEC標準に規定されていないモードレジスタ設定又はフューズトリミング等を用いて、バンクアドレスの複数のビットのうちの少なくとも1つのビットを縮退させるモードに入る。この縮退したモードでは、メモリコントローラ3B及びメモリ5は、実施形態1~4に係る時間期間tRC(W)の短縮とリンクして動作する。すなわち、書き込み動作において、活性化コマンドを発行する前に書き込みコマンドが発行される。さらに、これらの書き込みコマンド及び活性化コマンドのバンクアドレスのうちの非縮退ビットが同一になる(すなわち、バンクアドレスがビットBA1,BA0を含み、ビットBA0が縮退され、かつ、活性化コマンド及び書き込みコマンドのビットBA1が同一の値を有する)。その後、活性化コマンドの発行及びメモリ5の内部における書き込み動作は、バンクアドレスのビットBA0が縮退した状態で行われる。すなわち、複数のバンクにおける同一のロウアドレスを有するワード線WDLが同時に活性化され、また、同じ複数のバンクにおける同一のカラムアドレスを有するカラム選択線CSLが同時に選択され、同一のデータが同時にこれらのバンクに書き込まれる。この状態は、次に、同一の非縮退ビットを含むバンクアドレスを有するプリチャージコマンドが発行されるまで継続する。このプリチャージコマンドにより、同時に活性化された複数のバンクが同時にプリチャージされる。一方、読み出し動作はバンクアドレスの縮退無しに独立に行われる。 FIG. 32 is a timing chart showing a data write operation according to a modification of the sixth embodiment. FIG. 32 illustrates a case where the memory 5 and the memory controller 3B are LPDDR4-SDRAMs. In the example of FIG. 32, the memory controller 3B and the memory 5 are in a mode in which at least one bit of the plurality of bits of the bank address is degenerated using mode register setting or fuse trimming that is not defined in the JEDEC standard. enter. In this degenerated mode, the memory controller 3B and the memory 5 operate by linking with the shortening of the time period tRC (W) according to the first to fourth embodiments. That is, in a write operation, a write command is issued before issuing an activation command. Further, the non-degenerate bits in the bank addresses of the write command and the activation command are the same (that is, the bank address includes bits BA1 and BA0, the bit BA0 is degenerated, and the activation command and the write command Bits BA1 have the same value). Thereafter, the issue of the activation command and the write operation in the memory 5 are performed in a state where the bit BA0 of the bank address is degenerated. That is, word lines WDL having the same row address in a plurality of banks are simultaneously activated, column selection lines CSL having the same column address in the same plurality of banks are simultaneously selected, and the same data is simultaneously transmitted to these Written to the bank. This state continues until a precharge command is issued having a bank address that includes the same non-degenerate bit. By this precharge command, a plurality of simultaneously activated banks are precharged simultaneously. On the other hand, the read operation is performed independently without degeneration of the bank address.
 実施形態6に係るメモリシステムによれば、読み出し動作を行うときの時間期間tRC(R)は、書き込み動作を行うときの時間期間tRC(W)とは独立に設定可能である。 According to the memory system according to the sixth embodiment, the time period tRC (R) when the read operation is performed can be set independently of the time period tRC (W) when the write operation is performed.
 実施形態6に係るメモリシステムによれば、実施形態1~5の構成及び動作と組み合わせることにより、書き込み動作及び読み出し動作の両方を高速化することができる。 According to the memory system according to the sixth embodiment, it is possible to speed up both the write operation and the read operation by combining with the configurations and operations of the first to fifth embodiments.
 次に、実施形態7~9では、異なるバンクに対して連続的にカラム動作を実行するときに外部データバスの使用効率を向上する。 Next, in the seventh to ninth embodiments, the use efficiency of the external data bus is improved when the column operation is successively executed for different banks.
実施形態7.
 図33は、実施形態7に係るメモリシステムのメモリコントローラ3Cの構成を示すブロック図である。図33のメモリコントローラ3Cは、図2のメモリコントローラ3の制御回路11及びタイミングレジスタ13に代えて、制御回路11C及びタイミングレジスタ13Cを備える。タイミングレジスタ13Cは、メモリ5の動作に関連する複数のタイミングパラメータを格納する。これらのタイミングパラメータは、時間期間tRRD、tCCD、及びtFAWを含む。時間期間tRRDは、あるバンクに対する活性化コマンドを発行してから、異なるバンクに対する活性化コマンドを発行可能になるまでの時間期間の長さ、すなわち、互いに異なる2つのバンクに対する活性化コマンドを連続して発行可能な最短時間を示す。時間期間tCCDは、あるバンクに対する書き込みコマンド又は読み出しコマンドを発行してから、次の任意のバンクに対する書き込みコマンド又は読み出しコマンドを発行可能になるまでの時間期間の長さ、すなわち、任意の2つのバンクに対する書き込みコマンド又は読み出しコマンドを連続して発行可能な最短時間を示す。時間期間tFAWは、4つのバンクに対してそれぞれ4つの活性化コマンドを連続して発行した後、もう1つのバンクに対して活性化コマンドを発行可能になるまでの時間期間の長さ、すなわち、4つの活性化コマンドを連続して発行可能な最短時間を示す。時間期間tCCDは時間期間tRRDに等しく設定され、時間期間tFAWは時間期間の4倍に等しく設定される。制御回路11Cは、時間期間tRCD、tCCD、及びtFAWに基づいてメモリ5を制御する。
Embodiment 7. FIG.
FIG. 33 is a block diagram illustrating a configuration of the memory controller 3C of the memory system according to the seventh embodiment. A memory controller 3C in FIG. 33 includes a control circuit 11C and a timing register 13C instead of the control circuit 11 and the timing register 13 in the memory controller 3 in FIG. The timing register 13 </ b> C stores a plurality of timing parameters related to the operation of the memory 5. These timing parameters include time periods tRRD, tCCD, and tFAW. The time period tRRD is the length of the time period from when an activation command for a certain bank is issued until an activation command for a different bank can be issued, that is, the activation commands for two different banks are consecutive. The shortest time that can be issued. The time period tCCD is the length of the time period from when a write command or read command for a certain bank is issued until it becomes possible to issue a write command or read command for the next arbitrary bank, that is, any two banks This indicates the shortest time in which a write command or a read command can be issued continuously. The time period tFAW is the length of the time period from when four activation commands are successively issued to the four banks until the activation command can be issued to another bank, ie, Indicates the shortest time in which four activation commands can be issued in succession. The time period tCCD is set equal to the time period tRRD, and the time period tFAW is set equal to four times the time period. The control circuit 11C controls the memory 5 based on the time periods tRCD, tCCD, and tFAW.
 本明細書では、時間期間tRRD、tCCD、及びtFAWをそれぞれ「第6~第8の時間期間」ともいう。 In this specification, the time periods tRRD, tCCD, and tFAW are also referred to as “sixth to eighth time periods”, respectively.
 図34は、実施形態7に係るメモリシステムのロウデコーダ24-n及びその周辺を示すブロック図である。ロウデコーダ24-nは、ワード線WDL0,WDL1,WDL2,…ごとに、個別デコーダ81-0,81-1,81-2,…及びWDLドライバ82-0,82-1,82-2,…を備える。各WDLドライバ82-0,82-1,82-2,…には、ロウデコーダ24-nの外部の電源であるVPP発生回路91から電圧VPPが供給される。各ワード線WDL0,WDL1,WDL2,…の活性時の電圧は、電圧VPPによって決まる。VPP発生回路91は、動作クロックを受けて動作し、メモリ5の外部から供給される電圧VDDを昇圧して、より高い電圧VPPを発生して出力する。 FIG. 34 is a block diagram showing the row decoder 24-n and its periphery of the memory system according to the seventh embodiment. The row decoder 24-n includes, for each word line WDL0, WDL1, WDL2,..., Individual decoders 81-0, 81-1, 81-2,... And WDL drivers 82-0, 82-1, 82-2,. Is provided. Each of the WDL drivers 82-0, 82-1, 82-2,... Is supplied with a voltage VPP from a VPP generation circuit 91 that is an external power source of the row decoder 24-n. The voltage when each word line WDL0, WDL1, WDL2,... Is activated is determined by the voltage VPP. The VPP generation circuit 91 operates in response to the operation clock, boosts the voltage VDD supplied from the outside of the memory 5, and generates and outputs a higher voltage VPP.
 図35は、図34のVPP発生回路91の構成を示す回路図である。VPP発生回路91は、VPP発生回路91は、スイッチSW1~SW19及び昇圧キャパシタCa1~Ca4を備えるスイッチトキャパシタ回路である。VPP発生回路91は、チップ制御回路22からの制御信号に応じて切り換え可能な、次の2つの動作モードを持つ。第1の動作モードでは、入力された電圧を2.5倍に昇圧する。第2の動作モードでは、入力された電圧を3倍に昇圧する。第1の動作モードでは、供給可能な電流量は多くないが、高い電力変換効率を有し、消費電力を低く抑えることができる。第2の動作モードでは、電力変換効率は悪くなるが、供給可能な電流を多くすることができる。図35において、スイッチSW1~SW19には、動作モードに応じて、以下の信号が印加される。信号Φ1は2相の動作クロックに一致し、信号Φ2は動作クロックの反転信号に一致する。さらに、信号Φ1Aは、第1の動作モードでは常時オフであり、第2の動作モードでは動作クロックに一致する。信号Φ1Bは、第1の動作モードでは動作クロックに一致し、第2の動作モードでは常時オフである。スイッチSW3,SW7,SW13,SW15は常時オフされている。 FIG. 35 is a circuit diagram showing a configuration of the VPP generation circuit 91 of FIG. The VPP generation circuit 91 is a switched capacitor circuit including switches SW1 to SW19 and boost capacitors Ca1 to Ca4. The VPP generation circuit 91 has the following two operation modes that can be switched in accordance with a control signal from the chip control circuit 22. In the first operation mode, the input voltage is boosted by 2.5 times. In the second operation mode, the input voltage is boosted three times. In the first operation mode, the amount of current that can be supplied is not large, but it has high power conversion efficiency and power consumption can be kept low. In the second operation mode, the power conversion efficiency is deteriorated, but the current that can be supplied can be increased. In FIG. 35, the following signals are applied to the switches SW1 to SW19 according to the operation mode. The signal Φ1 matches the two-phase operation clock, and the signal Φ2 matches the inverted signal of the operation clock. Furthermore, the signal Φ1A is always off in the first operation mode and coincides with the operation clock in the second operation mode. The signal Φ1B coincides with the operation clock in the first operation mode, and is always off in the second operation mode. The switches SW3, SW7, SW13, SW15 are always off.
 図36は、実施形態7に係るデータの読み出し動作を示すタイミングチャートである。図36は、複数のバンクに連続で読み出しアクセスする場合を表す。図36は、メモリコントローラ3からメモリ5に送信されるクロックCLK及びコマンドCMDと、外部データバスにおけるデータの伝送とを示す。コマンドCMDのA1,A2,A3,…はそれぞれ、バンクB1,B2,B3,…に対する活性化コマンドを表す。コマンドCMDのR1,R2,R3,…はそれぞれ、バンクB1,B2,B3,…に対する読み出しコマンドを表す。外部データバス上のQD1,QD2,QD3,…は、各バンクB1,B2,B3,…から読み出される読み出しデータを表す。コマンドCMDはクロックCLKの立ち上がりエッジで取り込まれる。tCCD=4×tCK、tRRD=4×tCK、tFAW=16×tCK、tRCD(R)=7×tCK、tBL=1/2×tCK、CL=7、BL=8である。時間期間tRRD,tCCD,tFAWが、1/2×BL×tCK=tCCD=tRRD=1/4×tFAWを満たすとき、外部データバス上に読み出しデータQDを中断なしに連続的に出力可能であり、外部データバスの利用効率100%を実現できる。 FIG. 36 is a timing chart showing a data read operation according to the seventh embodiment. FIG. 36 shows a case where a plurality of banks are continuously read-accessed. FIG. 36 shows the clock CLK and command CMD transmitted from the memory controller 3 to the memory 5 and the transmission of data on the external data bus. The commands CMD A1, A2, A3,... Represent activation commands for the banks B1, B2, B3,. The commands CMD R1, R2, R3,... Represent read commands for the banks B1, B2, B3,. QD1, QD2, QD3,... On the external data bus represent read data read from the banks B1, B2, B3,. The command CMD is fetched at the rising edge of the clock CLK. tCCD = 4 × tCK, tRRD = 4 × tCK, tFAW = 16 × tCK, tRCD (R) = 7 × tCK, tBL = 1/2 × tCK, CL = 7, BL = 8. When the time periods tRRD, tCCD, tFAW satisfy 1/2 × BL × tCK = tCCD = tRRD = 1/4 × tFAW, the read data QD can be continuously output on the external data bus without interruption, 100% utilization efficiency of external data bus can be realized.
 図37は、実施形態7に係るデータの書き込み動作を示すタイミングチャートである。図37は、複数のバンクに連続で書き込みアクセスする場合を表す。図37もまた、メモリコントローラ3からメモリ5に送信されるクロックCLK及びコマンドCMDと、外部データバスにおけるデータの伝送とを示す。コマンドCMDのA1,A2,A3,…はそれぞれ、バンクB1,B2,B3,…に対する活性化コマンドを表す。コマンドCMDのW1,W2,W3,…はそれぞれ、バンクB1,B2,B3,…に対する書き込みコマンドを表す。外部データバス上のWD1,WD2,WD3,…は、メモリコントローラ3からメモリ5の各バンクB1,B2,B3,…に書き込まれる書き込みデータを表す。コマンドはCLKの立ち上がりエッジで取り込まれる。tCCD=4×tCK、tRRD=4×tCK、tFAW=16×tCK、tRCD(R)=7×tCK、tBL=1/2×tCK、WL=6、BL=8である。時間期間tRRD,tCCD,tFAWが、1/2×BL×tCK=tCCD=tRRD=1/4×tFAWを満たすとき、外部データバス上に書き込みデータWDを中断なしに連続的に送信可能であり、外部データバスの利用効率100%を実現できる。 FIG. 37 is a timing chart showing a data write operation according to the seventh embodiment. FIG. 37 shows a case where a plurality of banks are continuously accessed for writing. FIG. 37 also shows the clock CLK and command CMD transmitted from the memory controller 3 to the memory 5, and the transmission of data on the external data bus. The commands CMD A1, A2, A3,... Represent activation commands for the banks B1, B2, B3,. The command CMD W1, W2, W3,... Represents a write command for the banks B1, B2, B3,. WD1, WD2, WD3,... On the external data bus represent write data written from the memory controller 3 to each bank B1, B2, B3,. Commands are captured on the rising edge of CLK. tCCD = 4 × tCK, tRRD = 4 × tCK, tFAW = 16 × tCK, tRCD (R) = 7 × tCK, tBL = 1/2 × tCK, WL = 6, BL = 8. When the time periods tRRD, tCCD, tFAW satisfy 1/2 × BL × tCK = tCCD = tRRD = 1/4 × tFAW, the write data WD can be continuously transmitted on the external data bus without interruption, 100% utilization efficiency of external data bus can be realized.
 図36及び図37は、DDR3-SDRAMのJEDEC標準に準拠したメモリシステムの場合の例を示す。DDR1/2/4-SDRAM及びLPDDR2/3/4-SDRAM等、他のSDRAMも図36及び図37と同様に動作可能であり、外部データバスの利用効率100%を実現できる。 FIG. 36 and FIG. 37 show an example in the case of a memory system compliant with the DDR3-SDRAM JEDEC standard. Other SDRAMs such as DDR1 / 2 / 4-SDRAM and LPDDR2 / 3 / 4-SDRAM can operate in the same manner as in FIG. 36 and FIG.
 しかしながら、JEDEC標準に準拠したタイミングパラメータでは、1/4×tFAW(min)>tRRD(min)>tCCD(min)である。DDR-SDRAMの動作において、このような制約が発生する理由を説明する。DDR-SDRAMでは、活性化コマンドに応じて活性化されたワード線につながるメモリセルのデータをセンスアンプで増幅及びストアし、書き込みコマンド又は読み出しコマンド(カラムコマンド)に応じて活性化されるカラム選択線CSLに接続されるセンスアンプに対してデータの読み出し又は書き込みを行う。時間期間tCCD、すなわち、連続するカラムコマンドによる書き込み動作又は読み出し動作の間のサイクル時間の最小値は、同一バンク内に連続的に実行される場合のメモリアレイ内のアクセスタイミングで制約される。この制約は、図5と図6を参照して、センスアンプSA内に配置されるIOスイッチIOSWの能力と、カラム選択線CSL及びセンスアンプSAとのデータの伝送に使用されるバンク内のデータバス(GIOバス及びLIOバス)の寄生抵抗及び寄生容量となどにより事実上規定される。実際、JEDEC標準で規定されるカラム動作の最小サイクル時間は、DDR1、DDR2、DDR3、DDR4-SDRAMのどの規格においても、概ね4~5ナノ秒程度である。一方、上述したようにカラム動作を行うためには、その前段階として、活性化コマンドを発行し、ワード線を活性化する必要がある。ランダムに読み出しないし書き込みアクセスが発生する場合、活性化コマンドを異なるバンクに連続的に発行する必要がある。しかしながら、主にワード線WDLの活性化に使用されるVPP発生回路の供給能力に依存して、時間期間tRRDの最小サイクル時間が規定される。さらには昇圧電圧の平均消費電流の観点から、ある時間内に発行してもよい活性化コマンドの個数、すなわち、時間期間tFAWに関する制約も発生する。これらより、JEDEC標準では、1/4×tFAW(min)>tRRD(min)>tCCD(min)となっている。 However, in the timing parameter compliant with the JEDEC standard, 1/4 × tFAW (min)> tRRD (min)> tCCD (min). The reason why such a restriction occurs in the operation of the DDR-SDRAM will be described. In the DDR-SDRAM, a column selection is performed by amplifying and storing data of a memory cell connected to a word line activated in response to an activation command by a sense amplifier, and activated in response to a write command or a read command (column command). Data is read from or written to the sense amplifier connected to the line CSL. The time period tCCD, ie, the minimum value of the cycle time between write operations or read operations by successive column commands is constrained by the access timing in the memory array when continuously executed in the same bank. With reference to FIGS. 5 and 6, this restriction refers to the capability of the IO switch IOSW arranged in the sense amplifier SA and the data in the bank used for data transmission between the column selection line CSL and the sense amplifier SA. It is practically defined by the parasitic resistance and parasitic capacitance of the bus (GIO bus and LIO bus). Actually, the minimum cycle time of column operation defined by the JEDEC standard is about 4 to 5 nanoseconds in any of the standards of DDR1, DDR2, DDR3, and DDR4-SDRAM. On the other hand, in order to perform the column operation as described above, it is necessary to issue an activation command and activate the word line as a previous step. When read or write access occurs at random, it is necessary to continuously issue activation commands to different banks. However, the minimum cycle time of time period tRRD is defined mainly depending on the supply capability of the VPP generation circuit used for activating word line WDL. Furthermore, from the viewpoint of the average consumption current of the boosted voltage, there is a restriction on the number of activation commands that may be issued within a certain time, that is, the time period tFAW. Accordingly, in the JEDEC standard, 1/4 × tFAW (min)> tRRD (min)> tCCD (min).
 1/4×tFAW(min)=tRRD(min)=tCCD(min)を達成するためには、時間期間tFAW(min)及びtRRD(min)を短縮する必要がある。時間期間tFAW(min)及びtRRD(min)を短縮するためには、VPP発生回路91の電流供給能力を増大する必要がある。 In order to achieve 1/4 × tFAW (min) = tRRD (min) = tCCD (min), it is necessary to shorten the time periods tFAW (min) and tRRD (min). In order to shorten the time periods tFAW (min) and tRRD (min), it is necessary to increase the current supply capability of the VPP generation circuit 91.
 VPP発生回路91は、時間期間tCCDが時間期間tRRDに等しくなるように、かつ、時間期間tFAWが時間期間tRRDの4倍に等しくなるように設定された電圧VPPをワード線WDLに印加する。このような電圧VPPをワード線に印加することにより、メモリ5は、メモリ5にデータを連続して書き込むとき、時間期間tRRDに等しい周期で、活性化コマンド及び書き込みコマンドをそれぞれチップ制御回路22から受信可能に構成される。同様に、メモリ5からデータを連続して読み出すとき、時間期間tRRDに等しい周期で、活性化コマンド及び読み出しコマンドをそれぞれチップ制御回路22から受信可能に構成される。メモリコントローラ3の制御回路11は、メモリ5にデータを連続して書き込むとき、時間期間tRRDに等しい周期で、活性化コマンド及び書き込みコマンドをそれぞれ発行する。同様に、メモリコントローラ3の制御回路11は、メモリ5からデータを連続して読み出すとき、時間期間tRRDに等しい周期で、活性化コマンド及び読み出しコマンドをそれぞれ発行する。 The VPP generation circuit 91 applies to the word line WDL a voltage VPP set so that the time period tCCD is equal to the time period tRRD and the time period tFAW is equal to four times the time period tRRD. By applying such a voltage VPP to the word lines, the memory 5 sends an activation command and a write command from the chip control circuit 22 with a period equal to the time period tRRD when writing data continuously to the memory 5. It is configured to be receivable. Similarly, when data is continuously read from the memory 5, an activation command and a read command can be received from the chip control circuit 22 with a period equal to the time period tRRD. The control circuit 11 of the memory controller 3 issues an activation command and a write command at a period equal to the time period tRRD when data is continuously written to the memory 5. Similarly, when the control circuit 11 of the memory controller 3 continuously reads data from the memory 5, it issues an activation command and a read command with a period equal to the time period tRRD.
 メモリ5が第1の動作モードにあるとき、ワード線の上限電圧は第1の電圧値を有し、時間期間tCCDは時間期間tRRDよりも短く、時間期間tFAWは時間期間tRRDの4倍よりも長い。メモリ5が第2の動作モードにあるとき、ワード線の上限電圧は第1の電圧値よりも高い第2の電圧値を有し、時間期間tCCDは時間期間tRRDに等しく、時間期間tFAWは時間期間tRRDの4倍に等しい。メモリコントローラ3の制御回路11は、メモリ5を第1の動作モード及び第2の動作モードの一方で選択的に動作させる制御信号(第2の制御信号)をメモリ5に送信する。メモリ5のチップ制御回路22は、メモリ5を第1の動作モード及び第2の動作モードの一方で選択的に動作させる制御信号をメモリコントローラ3から受信したとき、この制御信号に従って、第1の動作モード及び第2の動作モードの一方で選択的に動作する。 When the memory 5 is in the first operation mode, the upper limit voltage of the word line has a first voltage value, the time period tCCD is shorter than the time period tRRD, and the time period tFAW is more than four times the time period tRRD. long. When the memory 5 is in the second operation mode, the upper limit voltage of the word line has a second voltage value higher than the first voltage value, the time period tCCD is equal to the time period tRRD, and the time period tFAW is the time Equal to four times the period tRRD. The control circuit 11 of the memory controller 3 transmits a control signal (second control signal) for selectively operating the memory 5 in one of the first operation mode and the second operation mode to the memory 5. When the chip control circuit 22 of the memory 5 receives from the memory controller 3 a control signal for selectively operating the memory 5 in one of the first operation mode and the second operation mode, One of the operation mode and the second operation mode is selectively operated.
 図35のVPP発生回路91の動作を具体的に説明する。メモリ5へのアクセスが頻発し、昇圧電圧に関連付けられた電流消費が多い場合、すなわち、時間期間tRRD(min)を短縮する動作では、入力された電圧VDDを3倍に昇圧するモードで動作する。理想的な場合のこの回路構成では、(入力電圧×3倍-昇圧電圧の目標値)×Caの電流供給が可能であり、電力変換効率は、(昇圧電圧の目標値/(3×入力電圧))となる。他方、セルフリフレッシュ動作時のように消費電力を低く抑える場合には、入力電圧×2.5倍昇圧モードで動作する。理想的な場合のこの回路構成では、(入力電圧×2.5倍-昇圧電圧の目標値)×Caの電流供給が可能であり、電力変換効率は、(昇圧電圧の目標値/(2.5×入力電圧))となる。 The operation of the VPP generation circuit 91 in FIG. 35 will be specifically described. When the memory 5 is frequently accessed and the current consumption associated with the boosted voltage is large, that is, in the operation of shortening the time period tRRD (min), the operation is performed in the mode in which the input voltage VDD is boosted three times. . In this ideal circuit configuration, a current of (input voltage × 3 times-target value of boosted voltage) × Ca can be supplied, and the power conversion efficiency is (target value of boosted voltage / (3 × input voltage). )). On the other hand, when the power consumption is kept low as in the self-refresh operation, the operation is performed in the input voltage × 2.5 times boost mode. In this ideal circuit configuration, it is possible to supply a current of (input voltage × 2.5 times−target value of boosted voltage) × Ca, and the power conversion efficiency is (target value of boosted voltage / (2. 5 × input voltage)).
 一般に、昇圧回路の電流供給能力を増大することは、昇圧回路のレイアウト面積の増大を招く。図35のVPP発生回路91では、動作モードを指示する制御信号に応じて昇圧比を変更し、VPP発生回路のレイアウト面積をあまり増大することなく、電圧VPPに関連付けられた電流供給能力を増大することができる。 In general, increasing the current supply capability of the booster circuit causes an increase in the layout area of the booster circuit. In the VPP generation circuit 91 of FIG. 35, the step-up ratio is changed according to the control signal instructing the operation mode, and the current supply capability associated with the voltage VPP is increased without significantly increasing the layout area of the VPP generation circuit. be able to.
 図35に示すように、余分な昇圧キャパシタCa1~Ca4を追加配置することで、チップ面積にあまり影響をあたえることなく、外部データバスの占有率を最大とする動作が可能となる。 As shown in FIG. 35, by additionally arranging the extra boost capacitors Ca1 to Ca4, the operation of maximizing the occupancy ratio of the external data bus can be performed without significantly affecting the chip area.
 上記の2.5倍及び3倍の昇圧比は一例であり、各規格に従った入力電圧と、メモリアレイ23-nで必要とされる昇圧電圧との関係により、最適な昇圧比が設定される。 The boost ratios of 2.5 times and 3 times described above are examples, and the optimum boost ratio is set according to the relationship between the input voltage in accordance with each standard and the boost voltage required for the memory array 23-n. The
 実施形態7に係るメモリシステムによれば、時間期間tCCDが時間期間tRRDに等しくなるように、かつ、時間期間tFAWが時間期間tRRDの4倍に等しくなるように設定された電圧VPPをワード線WDLに印加することにより、異なるバンクに対して連続的にカラム動作を実行するときに外部データバスの使用効率を向上することができる。 According to the memory system of the seventh embodiment, the voltage VPP set so that the time period tCCD is equal to the time period tRRD and the time period tFAW is equal to four times the time period tRRD is applied to the word line WDL. By applying to, the use efficiency of the external data bus can be improved when column operations are successively executed for different banks.
実施形態8.
 図38は、実施形態8に係るメモリシステムのVPP発生回路100の構成を示すブロック図である。VPP発生回路100は、論理和演算(OR)回路101、論理積演算(AND)回路102、VPP発生回路部分103,104を備える。異なる出力電圧及び/又は異なる出力電流を発生するために、VPP発生回路100は、複数のVPP発生回路部分103,104を備える。VPP発生回路部分103,104のそれぞれは、図35のVPP発生回路91と同様に構成される。ただし、VPP発生回路部分103,104は、互いに異なる容量のキャパシタを備える。
Embodiment 8. FIG.
FIG. 38 is a block diagram showing a configuration of the VPP generation circuit 100 of the memory system according to the eighth embodiment. The VPP generation circuit 100 includes a logical sum operation (OR) circuit 101, a logical product operation (AND) circuit 102, and VPP generation circuit portions 103 and 104. In order to generate different output voltages and / or different output currents, the VPP generation circuit 100 includes a plurality of VPP generation circuit portions 103 and 104. Each of VPP generation circuit portions 103 and 104 is configured in the same manner as VPP generation circuit 91 in FIG. However, the VPP generation circuit portions 103 and 104 include capacitors having different capacities.
 VPP発生回路100は、イネーブル信号と、動作モードを指示するためのDDR3L信号及び大電流モード信号とに応じて、VPP発生回路部分103,104を選択的に動作可能にする。イネーブル信号は、論理積演算回路102及びVPP発生回路部分103に入力される。DDR3L信号及び大電流モード信号は論理和演算回路101に入力され、論理和演算回路101の出力信号はVPP発生回路部分104に入力される。 The VPP generation circuit 100 selectively enables the VPP generation circuit portions 103 and 104 according to the enable signal, the DDR3L signal for instructing the operation mode, and the large current mode signal. The enable signal is input to the AND operation circuit 102 and the VPP generation circuit portion 103. The DDR3L signal and the large current mode signal are input to the logical sum operation circuit 101, and the output signal of the logical sum operation circuit 101 is input to the VPP generation circuit portion 104.
 VPP発生回路100は、DDR3-SDRAM及びDDR3L-SDRAMのように、入力電圧のみが異なる二つの規格をサポートするメモリにおいて使用される。VPP発生回路部分103は、DDR3-SDRAMのための電圧を発生するための十分な容量値のキャパシタを備え、一方、VPP発生回路部分104は、DDR3L-SDRAMのための電圧を発生するためのより大きな容量値のキャパシタを備える。どちらの規格をサポートするかを指示する信号DDR3Lモード信号を活性化することによって、VPP発生回路部分103,104を選択的に動作可能にする。また、時間期間tRRD及びtFAWを短縮しようとするとき、大電流モード信号を活性化する。DDR3L信号及び大電流モード信号が非活性化されているとき、VPP発生回路部分103のみが動作可能にされ、DDR3L信号及び大電流モード信号の一方が活性化されているとき、VPP発生回路部分103,104の両方が動作可能にされる。 The VPP generation circuit 100 is used in a memory that supports two standards that differ only in input voltage, such as DDR3-SDRAM and DDR3L-SDRAM. The VPP generation circuit portion 103 includes a capacitor having a sufficient capacitance value for generating a voltage for the DDR3-SDRAM, while the VPP generation circuit portion 104 provides a voltage for generating the voltage for the DDR3L-SDRAM. A capacitor with a large capacitance value is provided. By activating the signal DDR3L mode signal indicating which standard is supported, the VPP generation circuit portions 103 and 104 are selectively made operable. Also, when the time periods tRRD and tFAW are to be shortened, the large current mode signal is activated. When the DDR3L signal and the large current mode signal are deactivated, only the VPP generation circuit portion 103 is enabled. When one of the DDR3L signal and the large current mode signal is activated, the VPP generation circuit portion 103 is activated. , 104 are enabled.
 これにより、動作するVPP発生回路部分103,104の個数を選択的に変化させることにより、昇圧された電圧VPPを十分な大きさの電流で供給し、外部データバスの利用効率を向上することができる。 Thus, by selectively changing the number of operating VPP generation circuit portions 103 and 104, the boosted voltage VPP can be supplied with a sufficiently large current to improve the utilization efficiency of the external data bus. it can.
実施形態9.
 図39は、実施形態9に係るメモリシステムのメモリコントローラ3Dの構成を示すブロック図である。図39のメモリコントローラ3Dは、図33のメモリコントローラ3Cの制御回路11C及びタイミングレジスタ13Cに代えて、制御回路11D及びタイミングレジスタ13Dを備える。タイミングレジスタ13Dは、メモリ5Dの動作に関連する複数のタイミングパラメータを格納する。これらのタイミングパラメータは、時間期間tRRD1、tRRD2、tCCD、及びtFAWを含む。時間期間tRRD1、tRRD2は、あるバンクに対する活性化コマンドを発行してから、異なるバンクに対する活性化コマンドを発行可能になるまでの時間期間の長さ、すなわち、互いに異なる2つのバンクに対する活性化コマンドを連続して発行可能な最短時間を示す。図39の実施形態において、複数の時間期間tRRD1、tRRD2は、2つのバンクの異なる組み合わせに応じて異なる長さを有することを特徴とする。他の時間期間tCCD及びtFAWは、実施形態7の場合と同様である。
Embodiment 9. FIG.
FIG. 39 is a block diagram illustrating a configuration of the memory controller 3D of the memory system according to the ninth embodiment. The memory controller 3D of FIG. 39 includes a control circuit 11D and a timing register 13D instead of the control circuit 11C and the timing register 13C of the memory controller 3C of FIG. The timing register 13D stores a plurality of timing parameters related to the operation of the memory 5D. These timing parameters include time periods tRRD1, tRRD2, tCCD, and tFAW. The time periods tRRD1 and tRRD2 are the lengths of time periods from when an activation command for a certain bank is issued until an activation command for a different bank can be issued, that is, activation commands for two different banks. Indicates the shortest time that can be issued continuously. In the embodiment of FIG. 39, the plurality of time periods tRRD1, tRRD2 are characterized by having different lengths according to different combinations of the two banks. Other time periods tCCD and tFAW are the same as those in the seventh embodiment.
 メモリコントローラ3Dは、連続する活性化コマンドのバンクアドレスに応じて、時間期間tRRD1,tRRD2を使い分けるように制御することを特徴とする。特に、tRRD1<tRRD2の場合、時間期間tRRD1及びtCCDの長さを同じに設定すると、バンクを活性化する順序に制約は受けるが、実施形態1に係る動作を実施可能となる。 The memory controller 3D is characterized by performing control so that the time periods tRRD1 and tRRD2 are properly used in accordance with the bank addresses of successive activation commands. In particular, in the case of tRRD1 <tRRD2, if the lengths of the time periods tRRD1 and tCCD are set to be the same, the operation according to the first embodiment can be performed although the order of activating the banks is limited.
 図40は、実施形態9に係るメモリシステムのメモリ5Dの構成を示すブロック図である。メモリ5Dは、図3のメモリ5のチップ制御回路22に代えてチップ制御回路22Dを備え、さらに、電源回路27-1,27-2を備える。電源回路27-1,27-2は、VPP発生回路91-1,91-2及びVARY発生回路92-1,92-2をそれぞれ備える。VPP発生回路91-1,91-2は電圧VPPをロウデコーダ24-1~24-4に供給し、VARY発生回路92-1,92-2は電圧VARYをメモリアレイ23-1~23-4に供給する。チップ制御回路22Dは、実施形態1に係る動作を行うことに加えて、電源回路27-1,27-2を制御する。 FIG. 40 is a block diagram illustrating a configuration of the memory 5D of the memory system according to the ninth embodiment. The memory 5D includes a chip control circuit 22D instead of the chip control circuit 22 of the memory 5 of FIG. 3, and further includes power supply circuits 27-1 and 27-2. The power supply circuits 27-1 and 27-2 include VPP generation circuits 91-1 and 91-2 and VARY generation circuits 92-1 and 92-2, respectively. VPP generation circuits 91-1 and 91-2 supply voltage VPP to row decoders 24-1 to 24-4, and VARY generation circuits 92-1 and 92-2 supply voltage VARY to memory arrays 23-1 to 23-4. To supply. In addition to performing the operation according to the first embodiment, the chip control circuit 22D controls the power supply circuits 27-1 and 27-2.
 電源回路はチップ内に占める面積が大きく、さらに、電源回路と電力の消費場所(主にメモリアレイ及びロウデコーダ)との間のインピーダンスを低減する必要がある。そのため、複数の電源回路を配置し、そのうちの各1つの電源回路を複数のバンク間で共用するように配置する場合がある。図40の例では、バンクB1,B2間で電源回路27-1を共用し、バンクB3,B4間で電源回路27-2を共用している。電源回路27-1,27-2の中で、特に、ワード線WDLを駆動するVPP発生回路91-1,91-2の消費電力と、メモリアレイ23-nのビット線BTLを駆動するVARY発生回路92-1,92-2の消費電力とが大きい。これらの電力はさらに、活性化動作によって消費される。従って、図40の例では、バンクB1,B2の連続した活性化動作を行うとき、さらに、バンクB3,B4の連続した活性化動作を行うときに、十分な電力供給を行うことが困難になる。従って、互いに異なる2つのバンクに対する活性化コマンドを連続して発行可能な最短の時間期間tRRD(min)として、バンクB1,B2間について時間期間tRRD1(min)が取得され、バンクB1,B3間について時間期間tRRD2(min)とすると、tRRD2(min)<tRRD1(min)となる場合がある。実施形態8に係る動作の要件であるtCCD(min)=tRRD(min)を実現する際、バンクB1とバンクB3間のtRRD2(min)を使う必要が生じる。 The power supply circuit occupies a large area in the chip, and further, it is necessary to reduce the impedance between the power supply circuit and the power consumption place (mainly the memory array and the row decoder). For this reason, there are cases where a plurality of power supply circuits are arranged and each one of the power supply circuits is shared among a plurality of banks. In the example of FIG. 40, the power supply circuit 27-1 is shared between the banks B1 and B2, and the power supply circuit 27-2 is shared between the banks B3 and B4. Among the power supply circuits 27-1 and 27-2, in particular, the power consumption of the VPP generation circuits 91-1 and 91-2 for driving the word lines WDL and the generation of VARY for driving the bit lines BTL of the memory array 23-n. The power consumption of the circuits 92-1 and 92-2 is large. These powers are further consumed by the activation operation. Therefore, in the example of FIG. 40, it is difficult to supply sufficient power when performing the continuous activation operation of the banks B1 and B2, and further when performing the continuous activation operation of the banks B3 and B4. . Accordingly, the time period tRRD1 (min) is acquired between the banks B1 and B2 as the shortest time period tRRD (min) in which activation commands for two different banks can be issued in succession, and between the banks B1 and B3. If the time period is tRRD2 (min), there may be a case where tRRD2 (min) <tRRD1 (min). When realizing tCCD (min) = tRRD (min) which is a requirement of the operation according to the eighth embodiment, it is necessary to use tRRD2 (min) between the bank B1 and the bank B3.
 図41は、実施形態9の比較例に係るデータの書き込み動作を示すタイミングチャートである。図41は、図37のタイミングチャートに、メモリ5Dの内部状態として、メモリアレイ23-nへの書き込み動作iWR1,iWR2,iWR3,…などを追加した図である。図41はBL=8の場合を示し、外部データバス上の8個の連続するバーストデータWD1、WD2、WD3,…などのメモリ5Dへの取り込みが終わった後に、これらバーストデータをメモリアレイ23-nに同時に書き込む。これをBL8書き込み動作と呼ぶこととする。 FIG. 41 is a timing chart showing a data write operation according to the comparative example of the ninth embodiment. FIG. 41 is a diagram in which write operations iWR1, iWR2, iWR3,... To the memory array 23-n are added as the internal state of the memory 5D to the timing chart of FIG. FIG. 41 shows a case where BL = 8. After the burst data WD1, WD2, WD3,..., Etc. on the external data bus are taken into the memory 5D, these burst data are stored in the memory array 23- Write to n simultaneously. This is called a BL8 write operation.
 図42は、実施形態9に係るデータの書き込み動作を示すタイミングチャートである。図42では、メモリ5Dの内部状態として、メモリアレイ23-nへの書き込み動作iWR1,iWR2,iWR3,…などを示す。図42のコマンドCMDの「W1(8)」はバンクB1へのBL8書き込み動作のコマンドを示し、「W2(4)」及び「W3(4)」はそれぞれバンクB2,B3へのBL4書き込み動作のコマンドを示す。すなわち、書き込みコマンドと同時に、メモリ5Dにバースト長(BL)情報を与えるとともに、該BL情報に基づいてBL8書き込みかBL4書き込みかを選択できるようにする。さらに、BL8書き込み動作(W1(8))では、8バーストデータの入力後、時間期間tD(W)が経過した後に、メモリアレイ23-nに書き込む動作(内部状態iWR1)が行われるが、BL4書き込み動作(W2(4))では、4バーストデータの入力後、時間期間tD(W)の経過した後に、メモリアレイ23-nに書き込む動作(内部状態iWR1)が行われることを特徴とする。 FIG. 42 is a timing chart showing a data write operation according to the ninth embodiment. 42 shows, as internal states of the memory 5D, write operations iWR1, iWR2, iWR3,... To the memory array 23-n. In FIG. 42, the command CMD “W1 (8)” indicates a command for the BL8 write operation to the bank B1, and “W2 (4)” and “W3 (4)” indicate the BL4 write operation to the banks B2 and B3, respectively. Indicates a command. That is, simultaneously with the write command, burst length (BL) information is given to the memory 5D, and BL8 write or BL4 write can be selected based on the BL information. Further, in the BL8 write operation (W1 (8)), after the time period tD (W) has elapsed after the input of 8 burst data, the write operation (internal state iWR1) to the memory array 23-n is performed. The write operation (W2 (4)) is characterized in that the write operation (internal state iWR1) is performed in the memory array 23-n after the elapse of the time period tD (W) after the input of 4 burst data.
 一回の書き込み動作で書き込むデータ量を「単位データ量」と呼ぶと、特にバースト長BLが長い場合に単位データ量が多くなり、実際に必要以上のデータ量を書き込む可能性が高まる。その場合、JEDEC標準に準拠したDRAMでは、書き込みマスク機能を用いることで、必要なデータ以外のデータ書き込みを禁止する。しかしながら、その場合は、書き込むことが必要なデータ量は少ないにも拘らず、モードレジスタ等で指定されたバースト長にわたって待機してからメモリの内部の書き込み動作を行う必要があり、外部データバス上を無駄なデータが占有する時間が増大する。一方、実施形態9に係るメモリシステムによれば、有効なデータに適したバースト長を書き込みコマンド毎に指定できるので、外部データバスの実効的な利用効率の向上が実現できる。 When the amount of data written in a single write operation is called “unit data amount”, the unit data amount increases especially when the burst length BL is long, and the possibility of actually writing an excessive amount of data increases. In that case, a DRAM compliant with the JEDEC standard prohibits writing of data other than necessary data by using a write mask function. However, in this case, it is necessary to wait for the burst length specified by the mode register etc. before performing the internal write operation on the external data bus even though the amount of data that needs to be written is small. This increases the time that wasteful data occupies. On the other hand, according to the memory system according to the ninth embodiment, since a burst length suitable for valid data can be designated for each write command, the effective utilization efficiency of the external data bus can be improved.
 本動作は、JEDEC標準に準拠したDDR3-DRAMのバーストチョップ(BC4)の動作にも適用可能である。 This operation is also applicable to the burst chop (BC4) operation of DDR3-DRAM conforming to the JEDEC standard.
 また、図42を参照して説明したものと同様の手法が読み出し動作にも適用可能である。 Also, the same technique as described with reference to FIG. 42 can be applied to the read operation.
 図43は、実施形態9に係るメモリシステムにおいて使用される書き込みコマンドを示す図である。図43は、図42を参照して説明した書き込みコマンドと同時に、メモリ5Dにバースト長BLの情報を与える方法を、JEDEC標準のLPDDR4-SDRAMに適用した例を示す。図43の例では、メモリコントローラ3D及びメモリ5Dが、JEDEC標準に規定されていないモードレジスタ設定又はフューズトリミング等を用いて、実施形態9に係る可変バースト長モードに入る。特に、LPDDR4-SDRAMのような高速動作が可能なメモリでは、バースト長BLが長くなり(例えば、BL=32もしくはBL=16)、無駄なデータの読み出し及び書き込みが生じる可能性が高い。JEDEC標準に準拠したLPDDR4-SDRAMでは、tCCD(min)=8×tCKであり、また、メモリの内部におけるデータの読み出し及び書き込みも16バーストを単位として行われる。従って、特にLPDDR4-SDRAMを低周波数で動作させた場合、外部データバスの使用効率上の無駄が生じる。低周波数の動作では、tCCD=tRRD=2×tCKが可能であり、それに応じて、BL=16からBL=8に変更することが効率的である。LPDDR4-SDRAMの書き込みコマンドは、外部クロックCK_tの4周期分を必要とするが、BL=32とBL=16の指定は、CK_tの1周期目のビットCA5(BL0)で指定する。図43の例では、さらにクロックCK_t2周期目のビットCA3(BL1)を用いることで、BL=8の指定を可能とする。 FIG. 43 is a diagram illustrating a write command used in the memory system according to the ninth embodiment. FIG. 43 shows an example in which the method of giving the burst length BL information to the memory 5D simultaneously with the write command described with reference to FIG. 42 is applied to the JEDEC standard LPDDR4-SDRAM. In the example of FIG. 43, the memory controller 3D and the memory 5D enter the variable burst length mode according to the ninth embodiment by using mode register setting or fuse trimming that is not defined in the JEDEC standard. In particular, in a memory capable of high-speed operation such as LPDDR4-SDRAM, the burst length BL becomes long (for example, BL = 32 or BL = 16), and there is a high possibility that unnecessary data reading and writing will occur. In LPDDR4-SDRAM conforming to the JEDEC standard, tCCD (min) = 8 × tCK, and reading and writing of data in the memory is performed in units of 16 bursts. Therefore, particularly when the LPDDR4-SDRAM is operated at a low frequency, use efficiency of the external data bus is wasted. In low frequency operation, tCCD = tRRD = 2 × tCK is possible, and it is efficient to change from BL = 16 to BL = 8 accordingly. The write command of the LPDDR4-SDRAM requires four cycles of the external clock CK_t, but BL = 32 and BL = 16 are specified by bit CA5 (BL0) in the first cycle of CK_t. In the example of FIG. 43, it is possible to specify BL = 8 by using the bit CA3 (BL1) in the second cycle of the clock CK_t.
 次に、実施形態10では、書き込み動作から読み出し動作に遷移する場合に外部データバスの使用効率を向上することが可能なメモリシステムについて説明する。 Next, in the tenth embodiment, a memory system capable of improving the use efficiency of the external data bus when transitioning from a write operation to a read operation will be described.
実施形態10.
 図44は、実施形態10に係るメモリシステムのメモリコントローラ3Eの構成を示すブロック図である。図44のメモリコントローラ3Eは、図1のメモリコントローラ3の制御回路11及びタイミングレジスタ13に代えて、制御回路11E及びタイミングレジスタ13Eを備える。タイミングレジスタ13Eは、メモリ5の動作に関連する複数のタイミングパラメータを格納する。これらのタイミングパラメータは、複数の時間期間tWRT1,tWRT2,…を含む。複数の時間期間tWTR1,tWTR,…は、複数のバンクのうちの第1のバンクにデータを書き込むためにメモリコントローラ3からメモリ5へデータを送信してから、複数のバンクのうちの第2のバンクからデータを読み出すために読み出しコマンドを発行可能になるまでの時間差を示す。複数の時間期間tWTR1,tWTR,…は、第1及び第2のバンクの異なる組み合わせに応じて異なる長さを有する。制御回路11Eは、第1のバンクにデータを書き込んだ直後に第2のバンクからデータを読み出すとき、メモリ5へデータを送信してから、第1及び第2のバンクの組み合わせに対応する長さを有する時間期間tWTR1,tWTR2,…にわたって待機した後、読み出しコマンドを発行する。
Embodiment 10 FIG.
FIG. 44 is a block diagram illustrating a configuration of the memory controller 3E of the memory system according to the tenth embodiment. A memory controller 3E in FIG. 44 includes a control circuit 11E and a timing register 13E instead of the control circuit 11 and the timing register 13 of the memory controller 3 in FIG. The timing register 13E stores a plurality of timing parameters related to the operation of the memory 5. These timing parameters include a plurality of time periods tWRT1, tWRT2,. The plurality of time periods tWTR1, tWTR,... Are transmitted from the memory controller 3 to the memory 5 in order to write data to the first bank of the plurality of banks, and then the second of the plurality of banks. Indicates the time difference until a read command can be issued to read data from the bank. The plurality of time periods tWTR1, tWTR,... Have different lengths depending on different combinations of the first and second banks. When the control circuit 11E reads data from the second bank immediately after writing data to the first bank, the control circuit 11E transmits the data to the memory 5 and then the length corresponding to the combination of the first and second banks. After waiting for time periods tWTR1, tWTR2,..., A read command is issued.
 本明細書では、時間期間tWTR1,tWTR,…を「第9の時間期間」ともいう。 In this specification, the time periods tWTR1, tWTR,... Are also referred to as “ninth time periods”.
 図45は、実施形態10に係るメモリシステムのメモリ5へのデータの書き込み動作/読み出し動作を説明するためのブロック図である。図45のメモリ5は、実際には図3のメモリ5と同様に構成されるが、説明の目的で、図3では省略した構成要素を示す。内部データバスDB1,DB2は、図5を参照して説明したように、入出力(IO)制御回路26-1~26-4を介して各バンクB1~B4にそれぞれ接続される。メモリ5の内部のデータバスは、図45に示すように、バンクB1~B4間で共用される内部データバスDB1及びDB2と、各バンクB1~B4のバンク内データバスIO-1~IO-4とを含む。実施形態10の説明では、内部データバスDB1及びDB2を「バンク間データバス」と呼ぶ。ここで、各バンク内データバスIO-1~IO-6は、図5のメモリアレイ23-nにおける、GIOバスGIOB及びLIOバスLIOBを包含する。図45では、図3のロウアドレス信号、カラムアドレス信号、及びそれらの活性化信号などは、図示の簡単化のために省略している。 FIG. 45 is a block diagram for explaining a data write / read operation to / from the memory 5 of the memory system according to the tenth embodiment. The memory 5 in FIG. 45 is actually configured in the same manner as the memory 5 in FIG. 3, but for the purpose of explanation, the components omitted in FIG. 3 are shown. Internal data buses DB1 and DB2 are connected to banks B1 to B4 via input / output (IO) control circuits 26-1 to 26-4 as described with reference to FIG. As shown in FIG. 45, the internal data buses DB1 and DB2 shared among the banks B1 to B4 and the in-bank data buses IO-1 to IO-4 of the banks B1 to B4 are used. Including. In the description of the tenth embodiment, the internal data buses DB1 and DB2 are referred to as “interbank data buses”. Here, the in-bank data buses IO-1 to IO-6 include the GIO bus GIOB and the LIO bus LIOB in the memory array 23-n of FIG. In FIG. 45, the row address signal, the column address signal, and their activation signals in FIG. 3 are omitted for the sake of simplicity of illustration.
 書き込み動作時には、メモリコントローラ3Eからメモリバス4を介してメモリ5へ書き込みデータを送信する。メモリ5のSDRAMインターフェース21は、書き込みデータを受信すると、バンク間データバスDB1又はDB2とIO制御回路26-nを介して、さらに各バンクB1~B4のバンク内データバスIO-1~IO-4を介して、メモリアレイ23-1~23-4にデータを転送する。一方、読み出し動作時には、書き込み動作時とは逆の順をたどって、メモリ5からメモリコントローラ3Eへ読み出しデータを送信する。 During write operation, write data is transmitted from the memory controller 3E to the memory 5 via the memory bus 4. When the SDRAM interface 21 of the memory 5 receives the write data, the inter-bank data buses IO-1 to IO-4 of the banks B1 to B4 are further connected via the interbank data bus DB1 or DB2 and the IO control circuit 26-n. Then, the data is transferred to the memory arrays 23-1 to 23-4. On the other hand, during the read operation, the read data is transmitted from the memory 5 to the memory controller 3E in the reverse order of the write operation.
 書き込み動作から読み出し動作に遷移するとき、メモリ5の内部のデータバスにおけるデータの競合がコマンド間隔を規定する。 When changing from a write operation to a read operation, data contention on the data bus inside the memory 5 defines the command interval.
 図46は、実施形態10の第1の実施例に係るデータの書き込み及び読み出し動作を示すタイミングチャートである。図46は、あるバンクに対してデータを書き込み、それに続いて、同じバンクに対して読み出しアクセスを行う場合を示す。書き込みコマンドWが発行され、その後、書き込みレイテンシの時間期間WLの経過後に、外部データバスに書き込みデータWDが与えられる。外部データバスのバースト時間(本実施例では、BL/2×tCK=2サイクル)の後、バンク間データバスDB1に書き込みデータdbWRが現れる。さらに、時間期間tD(W)の経過後、バンク内データバスIO-1に書き込みデータioWRが現れる。一方、外部データバスのバースト時間終了後、内部書き込みから内部読み出しまでの時間を表す時間期間tWTRの経過後に、外部コマンドバスに読み出しコマンドRが入力され、それを起点に、その時間期間tD(R)の経過後に、バンク内データバスIO-1に読み出しデータが現れる。メモリ5の内部におけるデータ転送の遅延により、さらに、バンク間データバスDB1に読み出しデータdbRDが現れる。読み出しコマンドRを発行してから時間期間CLの経過後に、外部データバスに読み出しデータQDが読み出される。以上のように、同一バンクに対する書き込み動作から読み出し動作への遷移は、少なくとも「tWTR+CL×tCK」の時間を要する。しかしながら、JEDEC標準の規定では、データを書き込むバンクと、その後にデータを読み出すバンクとが同一であるか、それとも異なっているかにかかわらず、単一の値の時間期間tWTRを使用する。 FIG. 46 is a timing chart showing data write and read operations according to the first example of the tenth embodiment. FIG. 46 shows a case where data is written to a certain bank and subsequently read access is made to the same bank. A write command W is issued, and then, after a write latency time period WL has elapsed, write data WD is applied to the external data bus. After the burst time of the external data bus (in this embodiment, BL / 2 × tCK = 2 cycles), the write data dbWR appears on the interbank data bus DB1. Further, after the elapse of the time period tD (W), the write data ioWR appears on the in-bank data bus IO-1. On the other hand, after the end of the burst time of the external data bus, a read command R is input to the external command bus after a time period tWTR representing the time from internal write to internal read, and the time period tD (R ), The read data appears on the bank data bus IO-1. Due to a delay in data transfer inside the memory 5, read data dbRD appears on the inter-bank data bus DB1. The read data QD is read to the external data bus after the elapse of the time period CL from the issue of the read command R. As described above, the transition from the write operation to the read operation for the same bank requires at least “tWTR + CL × tCK” time. However, according to the JEDEC standard, a single value time period tWTR is used regardless of whether the bank into which data is written and the bank from which data is subsequently read out are the same or different.
 図47は、実施形態10の第2の実施例に係るデータの書き込み及び読み出し動作を示すタイミングチャートである。図47は、あるバンクに対してデータを書き込み、それに続いて、異なるバンクからデータを読み出す場合を示す。バンクB1への書き込みコマンドW1が発行され、その後、書き込みレイテンシの時間期間WLの経過後に、外部データバスに書き込みデータWDが与えられる。外部データバスのバースト時間(本実施例ではBL/2×tCK=2サイクル)の後、バンク間データバスDB1に書き込みデータdbWRが現れる。さらに、時間期間tD(W)の経過後、バンクB1のバンク内データバスIO-1に書き込みデータioWRが現れる。一方、外部データバスのバースト時間終了後、内部書き込みから内部読み出しまでの時間を表す時間期間tWTRの経過後に、コマンドバスにバンクB2への読み出しコマンドR2が入力され、それを起点に、その時間期間tD(R)の経過後に、バンクB2のバンク内データバスIO-2に読み出しデータが現れる。しかしながら、バンクが異なるためバンク内データバスIO-1,IO-2を共用していないので、バンク内データバスIO-1,IO-2上での書き込みデータと読み出しデータとの衝突が起こらない。よって、バンク間データバスDB1でのデータ衝突を避けることが可能になるまでtWTRを短縮可能である。本実施例では、tWTR=0まで短縮した場合を示している。 FIG. 47 is a timing chart showing data write and read operations according to the second example of the tenth embodiment. FIG. 47 shows a case where data is written to a certain bank and subsequently data is read from a different bank. A write command W1 to the bank B1 is issued, and then the write data WD is given to the external data bus after the write latency time period WL elapses. After the burst time of the external data bus (BL / 2 × tCK = 2 cycles in this embodiment), the write data dbWR appears on the interbank data bus DB1. Further, after the elapse of the time period tD (W), the write data ioWR appears on the bank data bus IO-1 of the bank B1. On the other hand, a read command R2 to the bank B2 is input to the command bus after the elapse of the time period tWTR indicating the time from the internal write to the internal read after the burst time of the external data bus ends. After the elapse of tD (R), read data appears on the bank data bus IO-2 of the bank B2. However, since the banks are different and the bank data buses IO-1 and IO-2 are not shared, there is no collision between the write data and the read data on the bank data buses IO-1 and IO-2. Therefore, tWTR can be shortened until it becomes possible to avoid data collision on the interbank data bus DB1. In the present embodiment, a case where tWTR is shortened to 0 is shown.
 図48は、実施形態10の変形例に係るメモリシステムのメモリコントローラ3Eの構成を示すブロック図である。図48のメモリコントローラ3Eは、図44のメモリコントローラ3Eと同様に構成され、ただし、タイミングレジスタ13Eに格納する時間期間tWTR1,tWTR2,tWTR3,…の個数のみが異なる。時間期間tWTR1、tWTR2、及びtWTR3の値は互いに異なり、連続する活性化コマンドのバンクアドレスに応じて、時間期間tWTR1、tWTR2、及びtWTR3を使い分けることを特徴とする。tWTR1<tWTR2<tWTR3である場合、例えば、時間期間tWTR1、tWTR2、及びtWTR3を以下のように使い分ける。時間期間tWTR3は、同一のバンクに対して、データを書き込み、次いでデータを読み出す場合に使用可能である。時間期間tWTR2は、同一のバンク間データバスに接続された異なるバンクに対して、データを書き込み、次いでデータを読み出す場合に使用可能である。時間期間tWTR1は、異なるバンク間データバスに接続された異なるバンクに対して、データを書き込み、次いでデータを読み出す場合に使用可能である。このため、制御回路11Eは、バンクB1~B4毎に、バンク間データバスD1,D2を共用しているか否かの情報を保持している。制御回路11Eは、上記の条件に基づいて時間期間tWTR1、tWTR2、及びtWTR3のうちの1つを選択し、選択された時間期間に従って各コマンドを発行する。 FIG. 48 is a block diagram illustrating a configuration of the memory controller 3E of the memory system according to the modification of the tenth embodiment. The memory controller 3E of FIG. 48 is configured in the same manner as the memory controller 3E of FIG. 44, except that the number of time periods tWTR1, tWTR2, tWTR3,... Stored in the timing register 13E is different. The values of the time periods tWTR1, tWTR2, and tWTR3 are different from each other, and the time periods tWTR1, tWTR2, and tWTR3 are selectively used according to the bank address of successive activation commands. When tWTR1 <tWTR2 <tWTR3, for example, the time periods tWTR1, tWTR2, and tWTR3 are selectively used as follows. The time period tWTR3 can be used when writing data to the same bank and then reading the data. The time period tWTR2 can be used when writing data to different banks connected to the same interbank data bus and then reading the data. The time period tWTR1 can be used when writing data to different banks connected to different interbank data buses and then reading the data. For this reason, the control circuit 11E holds information on whether or not the interbank data buses D1 and D2 are shared for each of the banks B1 to B4. The control circuit 11E selects one of the time periods tWTR1, tWTR2, and tWTR3 based on the above conditions, and issues each command according to the selected time period.
 図49は、実施形態10の第3の実施例に係るデータの書き込み及び読み出し動作を示すタイミングチャートである。異なるバンクに対して、データを書き込み、次いでデータを読み出す場合を示す。バンクB1への書き込みコマンドW1が発行され、書き込みレイテンシの時間期間WLの経過後に、外部データバスに書き込みデータWDが与えられる。外部データバスのバースト時間(本実施例ではBL/2×tCK=2サイクル)の後、バンク間データバスDB1に書き込みデータdbWRが現れる。さらに、時間期間tDWの経過後、バンク内データバスIO-1に書き込みデータioWRが現れる。一方、外部データバスのバースト時間終了後、内部書き込みから内部読み出しまでの時間を示す時間期間tWTRの経過後に、コマンドバスにバンクB3への読み出しコマンドR3が入力され、それを起点に、その時間期間tD(R)の経過後に、バンクB3のバンク内データバスIO-3に読み出しデータが現れる。しかしながら、バンクB1,B3はバンク間データバスDB1,DB2を共用していないので、バンク間データバスDB1,DB2上での書き込みデータ及び読み出しデータの衝突が起こらない。よって、SDRAMインターフェース21もしくは外部データバスでの書き込みと読み出しのデータ衝突を避けることが可能になるまで、時間期間tWTRを短縮可能である。図49の例では、時間期間tWTRを負の値(tWTR=-2×tCK)としている。 FIG. 49 is a timing chart showing data write and read operations according to the third example of the tenth embodiment. A case where data is written to a different bank and then data is read is shown. A write command W1 to the bank B1 is issued, and the write data WD is applied to the external data bus after the write latency time period WL elapses. After the burst time of the external data bus (BL / 2 × tCK = 2 cycles in this embodiment), the write data dbWR appears on the interbank data bus DB1. Further, after the elapse of the time period tDW, the write data ioWR appears on the in-bank data bus IO-1. On the other hand, after the time period tWTR indicating the time from the internal write to the internal read after the burst time of the external data bus ends, the read command R3 to the bank B3 is input to the command bus, and the time period starts from that. After the elapse of tD (R), read data appears on the bank data bus IO-3 of the bank B3. However, since the banks B1 and B3 do not share the interbank data buses DB1 and DB2, there is no collision between the write data and the read data on the interbank data buses DB1 and DB2. Therefore, the time period tWTR can be shortened until it is possible to avoid data collision between writing and reading on the SDRAM interface 21 or the external data bus. In the example of FIG. 49, the time period tWTR is a negative value (tWTR = −2 × tCK).
 実施形態10に係るメモリシステムによれば、書き込み動作から読み出し動作に遷移する場合に外部データバスの使用効率を向上することができる。 According to the memory system according to the tenth embodiment, the use efficiency of the external data bus can be improved when the write operation is changed to the read operation.
 以上に説明した実施形態1~10に係る各メモリシステムの構成及び動作を互いに組み合わせてもよい。 The configurations and operations of the memory systems according to Embodiments 1 to 10 described above may be combined with each other.
 本発明によれば、プリチャージコマンドを含むコマンドシーケンスにより1つ又は複数のバンクに対してデータを書き込む及び/又は読み出す場合であっても、外部データバスの使用効率を低下させにくいメモリ及びメモリコントローラ、さらに、これらを含むメモリシステムを提供することができる。 According to the present invention, a memory and a memory controller that hardly reduce the use efficiency of an external data bus even when data is written to and / or read from one or more banks by a command sequence including a precharge command. Furthermore, a memory system including these can be provided.
1…プロセッサ、
2…プロセッサバス、
3,3A~3E…メモリコントローラ、
4…メモリバス、
5,5D…メモリ、
11,11A~11E…制御回路、
12…PHYインターフェース、
13,13A~13E…タイミングレジスタ、
21…SDRAMインターフェース、
22,22D…チップ制御回路、
23-1~23-4…メモリアレイ、
24-1~24-4…ロウデコーダ、
25-1~25-4…カラムデコーダ、
26-1~26-4…入出力(IO)制御回路、
27-1,27-2…電源回路、
31-1~31-4…バンク制御回路、
32…論理和演算(OR)回路、
33…活性化制御回路、
34…コマンドデコーダ、
35…バンクアドレス制御回路、
36…カラムアドレス制御回路、
37…ロウアドレス制御回路、
41…ロウアドレス制御回路、
42…カラムアドレス制御回路、
43…論理和演算(OR)回路、
44…論理積演算(AND)回路、
51…サブアレイ、
52…センスアンプ列、
61-0~61-2…個別デコーダ、
62-0~62-2…CSLドライバ、
71…VCSLR発生回路、
72…VCSLW発生回路、
81-0~81-2…個別デコーダ、
82-0~82-2…WDLドライバ、
91,91-1,91-2…VPP発生回路、
92-1,92-2VARY発生回路、
100…VPP発生回路、
101…論理和演算(OR)回路、
102…論理積演算(AND)回路、
103,104…VPP発生回路部分、
B1~B4…バンク、
BTL,BTL00~BTL13…ビット線、
C,C00~C13…メモリセル、
Ca1~Ca4…昇圧キャパシタ、
CSL,CSL0,CSL1,CSL2…カラム選択線、
CS…セルキャパシタ、
CT…セルトランジスタ、
DB,DB1,DB2…内部データバス、
GIOB…GIOバス、
IOSW…入出力(IO)スイッチ、
IOT…入出力(IO)トランジスタ、
LIOB、LIOB_1~LIOB_3…LIOバス、
RBTL…寄生抵抗、
SA00~SA13…センスアンプ、
SANT…NMOSトランジスタ、
SAPT…PMOSトランジスタ、
SASW…サブアレイ選択スイッチ、
SN…蓄積ノード、
SW1~SW19,SWW,SWR…スイッチ、
T1~T14…トランジスタ、
WDL,WDL0…ワード線。
1 ... Processor
2 ... Processor bus,
3, 3A-3E ... Memory controller,
4 ... Memory bus,
5,5D ... memory,
11, 11A to 11E ... control circuit,
12 ... PHY interface,
13, 13A to 13E ... timing register,
21 ... SDRAM interface,
22, 22D ... chip control circuit,
23-1 to 23-4 ... Memory array,
24-1 to 24-4 ... row decoder,
25-1 to 25-4 ... column decoder,
26-1 to 26-4. Input / output (IO) control circuit,
27-1, 27-2 ... power supply circuit,
31-1 to 31-4 ... Bank control circuit,
32 ... OR operation (OR) circuit,
33 ... Activation control circuit,
34 ... Command decoder,
35 ... Bank address control circuit,
36: Column address control circuit,
37 ... row address control circuit,
41 ... row address control circuit,
42 ... Column address control circuit,
43 ... logical sum operation (OR) circuit,
44 ... AND operation circuit
51 ... Subarray,
52. Sense amplifier array,
61-0 to 61-2 ... Individual decoder,
62-0 to 62-2 ... CSL driver,
71 ... VCSLR generation circuit,
72 ... VCSLW generating circuit,
81-0 to 81-2: Individual decoder,
82-0 to 82-2 ... WDL driver,
91, 91-1, 91-2 ... VPP generation circuit,
92-1 and 92-2 VARY generation circuit,
100 ... VPP generation circuit,
101: OR operation circuit (OR),
102: logical product (AND) circuit,
103, 104 ... VPP generation circuit part,
B1 ~ B4 ... Bank,
BTL, BTL00 to BTL13 ... bit lines,
C, C00 to C13 ... memory cells,
Ca1 to Ca4 ... boost capacitors,
CSL, CSL0, CSL1, CSL2 ... column selection line,
CS: Cell capacitor,
CT: Cell transistor,
DB, DB1, DB2 ... internal data bus,
GIOB ... GIO bus,
IOSW: Input / output (IO) switch,
IOT: Input / output (IO) transistor,
LIOB, LIOB_1 to LIOB_3 ... LIO bus,
RBTL: Parasitic resistance,
SA00 to SA13 ... sense amplifier,
SANT ... NMOS transistor,
SAPT ... PMOS transistor,
SASW: Subarray selection switch,
SN ... Storage node,
SW1 to SW19, SWW, SWR ... switch,
T1 to T14 ... transistor,
WDL, WDL0... Word line.

Claims (33)

  1.  DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置のための制御装置であって、
     前記半導体記憶装置は、少なくとも1つの内部データバスに接続された少なくとも1つのバンクを備え、前記バンクは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルと、前記複数のビット線にそれぞれ接続された複数のセンスアンプと、前記複数のセンスアンプにそれぞれ接続された複数のカラム選択線とを備えるメモリアレイを備え、
     前記制御装置は、前記半導体記憶装置に接続される通信回路と、複数のコマンドを発行して前記通信回路を介して前記半導体記憶装置に送信することにより前記半導体記憶装置を制御する制御回路と、前記半導体記憶装置の動作に関連する複数のタイミングパラメータを格納するタイミングレジスタとを備え、
     前記複数のコマンドは、
     あるバンクアドレス及びあるロウアドレスを有する記憶セルに接続されたワード線と、前記ビット線を介して前記記憶セルに接続されたセンスアンプとを活性化する活性化コマンドと、
     あるバンクアドレス及びあるカラムアドレスを有する記憶セルへのデータの書き込みを指示する書き込みコマンドと、
     あるバンクアドレス及びあるカラムアドレスを有する記憶セルからのデータの読み出しを指示する読み出しコマンドとを含み、
     前記複数のタイミングパラメータは、前記活性化コマンドを発行してから前記書き込みコマンドを発行可能になるまで時間差を示す第1の時間期間(tRCD(W))と、前記活性化コマンドを発行してから前記読み出しコマンドを発行可能になるまで時間差を示す第2の時間期間(tRCD(R))とを含み、前記第1の時間期間は前記第2の時間期間より小さな値を有し、
     前記制御回路は、
     前記半導体記憶装置にデータを書き込むとき、前記活性化コマンドを発行する瞬間を基準として前記第1の時間期間(tRCD(W))だけ離れた瞬間以後に、前記書き込みコマンドを発行し、
     前記半導体記憶装置からデータを読み出すとき、前記活性化コマンドを発行する瞬間を基準として前記第2の時間期間(tRCD(R))だけ離れた瞬間以後に、前記読み出しコマンドを発行する、
    制御装置。
    A control device for a semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM,
    The semiconductor memory device includes at least one bank connected to at least one internal data bus, and the bank includes a plurality of memory cells arranged along a plurality of bit lines and a plurality of word lines orthogonal to each other. A memory array including a plurality of sense amplifiers respectively connected to the plurality of bit lines, and a plurality of column selection lines respectively connected to the plurality of sense amplifiers;
    The control device includes a communication circuit connected to the semiconductor memory device, a control circuit that controls the semiconductor memory device by issuing a plurality of commands and transmitting the command to the semiconductor memory device via the communication circuit; A timing register for storing a plurality of timing parameters related to the operation of the semiconductor memory device;
    The plurality of commands are:
    An activation command for activating a word line connected to a memory cell having a certain bank address and a certain row address, and a sense amplifier connected to the memory cell via the bit line;
    A write command for instructing writing of data to a memory cell having a certain bank address and a certain column address;
    A read command for instructing to read data from a memory cell having a certain bank address and a certain column address,
    The plurality of timing parameters include a first time period (tRCD (W)) indicating a time difference from when the activation command is issued until the write command can be issued, and after the activation command is issued. A second time period (tRCD (R)) indicating a time difference until the read command can be issued, wherein the first time period has a smaller value than the second time period;
    The control circuit includes:
    When writing data to the semiconductor memory device, issue the write command after the moment separated by the first time period (tRCD (W)) with reference to the moment when the activation command is issued,
    When reading data from the semiconductor memory device, the read command is issued after the moment separated by the second time period (tRCD (R)) with reference to the moment when the activation command is issued.
    Control device.
  2.  前記第1の時間期間(tRCD(W))は負の値を有し、
     前記制御回路は、前記半導体記憶装置にデータを書き込むとき、前記活性化コマンドを発行する瞬間を基準として前記第1の時間期間(tRCD(W))の絶対値に等しい時間期間だけ先行する瞬間以後に、かつ、前記活性化コマンドを発行する瞬間よりも前に、前記書き込みコマンドを発行する、
    請求項1記載の制御装置。
    The first time period (tRCD (W)) has a negative value;
    When writing data to the semiconductor memory device, the control circuit starts from the moment preceding by a time period equal to the absolute value of the first time period (tRCD (W)) with reference to the moment when the activation command is issued. And before the moment of issuing the activation command, issue the write command,
    The control device according to claim 1.
  3.  前記制御回路は、前記半導体記憶装置にデータを書き込むとき、前記活性化コマンドの前に前記書き込みコマンドを発行することを通知する第1の制御信号を前記半導体記憶装置に送信する、
    請求項2記載の制御装置。
    The control circuit transmits, to the semiconductor memory device, a first control signal notifying that the write command is issued before the activation command when writing data to the semiconductor memory device.
    The control device according to claim 2.
  4.  前記バンクは、複数のセンスアンプからなる少なくとも1つのセンスアンプ列によって互いに分離された複数のサブアレイを含み、
     前記書き込みコマンドは、データを書き込む記憶セルを含むサブアレイのロウアドレスの一部を含む、
    請求項1~3のうちの1つに記載の制御装置。
    The bank includes a plurality of subarrays separated from each other by at least one sense amplifier row including a plurality of sense amplifiers,
    The write command includes a part of a row address of a subarray including a storage cell to which data is written.
    The control device according to any one of claims 1 to 3.
  5.  DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置のための制御装置であって、
     前記半導体記憶装置は、少なくとも1つの内部データバスに接続された少なくとも1つのバンクを備え、前記バンクは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルと、前記複数のビット線にそれぞれ接続された複数のセンスアンプと、前記複数のセンスアンプにそれぞれ接続された複数のカラム選択線とを備えるメモリアレイを備え、
     前記制御装置は、前記半導体記憶装置に接続される通信回路と、複数のコマンドを発行して前記通信回路を介して前記半導体記憶装置に送信することにより前記半導体記憶装置を制御する制御回路と、前記半導体記憶装置の動作に関連する複数のタイミングパラメータを格納するタイミングレジスタとを備え、
     前記複数のコマンドは、
     あるバンクアドレス及びあるロウアドレスを有する記憶セルに接続されたワード線と、前記ビット線を介して前記記憶セルに接続されたセンスアンプとを活性化する活性化コマンドと、
     あるバンクアドレス及びあるカラムアドレスを有する記憶セルへのデータの書き込みを指示する書き込みコマンドと、
     あるバンクアドレス及びあるカラムアドレスを有する記憶セルからのデータの読み出しを指示する読み出しコマンドとを含み、
     前記複数のタイミングパラメータは、前記書き込みコマンドを発行してから前記制御装置から前記半導体記憶装置へデータを送信するまでの時間差を示す第3の時間期間(WL2)であって、前記JEDEC標準に準拠した書き込みレイテンシ(WL)よりも短い第3の時間期間(WL2)を含み、
     前記制御回路は、前記半導体記憶装置にデータを書き込むとき、前記書き込みコマンドを発行する瞬間を基準として前記第3の時間期間(WL2)だけ離れた瞬間に、前記制御装置から前記半導体記憶装置へデータを送信開始する、
    制御装置。
    A control device for a semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM,
    The semiconductor memory device includes at least one bank connected to at least one internal data bus, and the bank includes a plurality of memory cells arranged along a plurality of bit lines and a plurality of word lines orthogonal to each other. A memory array including a plurality of sense amplifiers respectively connected to the plurality of bit lines, and a plurality of column selection lines respectively connected to the plurality of sense amplifiers;
    The control device includes a communication circuit connected to the semiconductor memory device, a control circuit that controls the semiconductor memory device by issuing a plurality of commands and transmitting the command to the semiconductor memory device via the communication circuit; A timing register for storing a plurality of timing parameters related to the operation of the semiconductor memory device;
    The plurality of commands are:
    An activation command for activating a word line connected to a memory cell having a certain bank address and a certain row address, and a sense amplifier connected to the memory cell via the bit line;
    A write command for instructing writing of data to a memory cell having a certain bank address and a certain column address;
    A read command for instructing to read data from a memory cell having a certain bank address and a certain column address,
    The plurality of timing parameters are a third time period (WL2) indicating a time difference from when the write command is issued to when data is transmitted from the control device to the semiconductor memory device, and conforming to the JEDEC standard A third time period (WL2) that is shorter than the write latency (WL)
    When writing data to the semiconductor memory device, the control circuit transfers data from the control device to the semiconductor memory device at a moment separated by the third time period (WL2) with reference to the moment when the write command is issued. Start sending,
    Control device.
  6.  前記タイミングパラメータは、前記JEDEC標準に準拠した書き込みレイテンシ(WL)に等しい第4の時間期間(WL1)をさらに含み、
     前記制御回路は、前記半導体記憶装置にデータを書き込むとき、前記書き込みコマンドを発行する瞬間を基準として前記第3の時間期間(WL2)又は前記第4の時間期間(WL1)だけ離れた瞬間に、前記制御装置から前記半導体記憶装置へデータを送信開始する、
    請求項5記載の制御装置。
    The timing parameter further includes a fourth time period (WL1) equal to a write latency (WL) according to the JEDEC standard;
    The control circuit, when writing data to the semiconductor memory device, at a moment separated by the third time period (WL2) or the fourth time period (WL1) with reference to the moment when the write command is issued. Start transmitting data from the control device to the semiconductor memory device;
    The control device according to claim 5.
  7.  前記第3の時間期間(WL2)は負の値を有し、
     前記制御回路は、前記半導体記憶装置にデータを書き込むとき、前記書き込みコマンドを発行する瞬間を基準として前記第3の時間期間(WL2)の絶対値に等しい時間期間だけ先行する瞬間に、前記制御装置から前記半導体記憶装置へデータを送信開始する、
    請求項5又は6記載の制御装置。
    The third time period (WL2) has a negative value;
    The control circuit, when writing data to the semiconductor memory device, at the moment preceding the moment when the write command is issued by a time period equal to the absolute value of the third time period (WL2). Starting to transmit data to the semiconductor memory device,
    The control device according to claim 5 or 6.
  8.  前記半導体記憶装置は複数のバンクを備え、
     前記制御回路は、
     前記半導体記憶装置にデータを書き込むとき、前記複数のバンクのうちの少なくとも2つのバンクに同じデータを書き込み、
     前記半導体記憶装置からデータを読み出すとき、前記複数のバンクのうちの前記同じデータが書き込まれた少なくとも2つのバンクのうちの1つからデータを読み出す、
    請求項1~7のうちの1つに記載の制御装置。
    The semiconductor memory device includes a plurality of banks,
    The control circuit includes:
    When writing data to the semiconductor memory device, the same data is written to at least two of the plurality of banks,
    When reading data from the semiconductor memory device, reading data from one of at least two banks in which the same data of the plurality of banks is written;
    The control device according to one of claims 1 to 7.
  9.  前記タイミングパラメータは、あるバンクに対する前記活性化コマンドを連続して発行可能な最短時間を示す第5の時間期間(tRC(R))をさらに含み、
     前記制御回路は、前記複数のバンクのうちの前記同じデータが書き込まれた少なくとも2つのバンクからデータを読み出すために前記第5の時間期間(tRC(R))より短い間隔で第1及び第2の活性化コマンドを発行するとき、前記第1の活性化コマンドに含まれるバンクアドレスとは異なるバンクアドレスを含む前記第2のコマンドを発行する、
    請求項8記載の制御装置。
    The timing parameter further includes a fifth time period (tRC (R)) indicating the shortest time in which the activation command for a certain bank can be issued continuously.
    The control circuit is configured to read data from at least two banks in which the same data is written out of the plurality of banks at a time shorter than the fifth time period (tRC (R)). Issuing the second command including a bank address different from the bank address included in the first activation command.
    The control device according to claim 8.
  10.  前記複数のバンクは、複数のビットを含むバンクアドレスを有し、
     前記制御回路は、前記半導体記憶装置にデータを書き込むとき、前記複数のバンクのうちの、少なくとも1つの同じビット値を含むバンクアドレスをそれぞれ有する少なくとも2つのバンクにおいて、同じロウアドレスの記憶セルに前記同じデータを書き込む、
    請求項8又は9記載の制御装置。
    The plurality of banks have bank addresses including a plurality of bits,
    When the control circuit writes data to the semiconductor memory device, the control circuit stores the memory cell having the same row address in at least two banks each having a bank address including at least one same bit value. Write the same data,
    The control device according to claim 8 or 9.
  11.  DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置のための制御装置であって、
     前記半導体記憶装置は、少なくとも1つの内部データバスに接続された複数のバンクを備え、前記複数のバンクのうちの各1つのバンクは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルと、前記複数のビット線にそれぞれ接続された複数のセンスアンプと、前記複数のセンスアンプにそれぞれ接続された複数のカラム選択線とを備えるメモリアレイを備え、
     前記制御装置は、前記半導体記憶装置に接続される通信回路と、複数のコマンドを発行して前記通信回路を介して前記半導体記憶装置に送信することにより前記半導体記憶装置を制御する制御回路と、前記半導体記憶装置の動作に関連する複数のタイミングパラメータを格納するタイミングレジスタとを備え、
     前記複数のコマンドは、
     あるバンクアドレス及びあるロウアドレスを有する記憶セルに接続されたワード線と、前記ビット線を介して前記記憶セルに接続されたセンスアンプとを活性化する活性化コマンドと、
     あるバンクアドレス及びあるカラムアドレスを有する記憶セルへのデータの書き込みを指示する書き込みコマンドと、
     あるバンクアドレス及びあるカラムアドレスを有する記憶セルからのデータの読み出しを指示する読み出しコマンドとを含み、
     前記複数のタイミングパラメータは、互いに異なる2つのバンクに対する前記活性化コマンドを連続して発行可能な最短時間を示す第6の時間期間(tRRD)と、任意の2つのバンクに対する前記書き込みコマンド又は前記読み出しコマンドを連続して発行可能な最短時間を示す第7の時間期間(tCCD)と、4つの前記活性化コマンドを連続して発行可能な最短時間を示す第8の時間期間(tFAW)とを含み、前記第7の時間期間(tCCD)は前記第6の時間期間(tRRD)に等しく設定され、前記第8の時間期間(tFAW)は前記第6の時間期間(tRRD)の4倍に等しく設定され、
     前記制御回路は、
     前記半導体記憶装置にデータを連続して書き込むとき、前記第6の時間期間(tRRD)に等しい周期で、前記活性化コマンド及び前記書き込みコマンドをそれぞれ発行し、
     前記半導体記憶装置からデータを連続して読み出すとき、前記第6の時間期間(tRRD)に等しい周期で、前記活性化コマンド及び前記読み出しコマンドをそれぞれ発行する、
    制御装置。
    A control device for a semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM,
    The semiconductor memory device includes a plurality of banks connected to at least one internal data bus, and each one of the plurality of banks extends along a plurality of bit lines and a plurality of word lines orthogonal to each other. A memory array comprising a plurality of memory cells arranged, a plurality of sense amplifiers connected to the plurality of bit lines, respectively, and a plurality of column selection lines connected to the plurality of sense amplifiers, respectively.
    The control device includes a communication circuit connected to the semiconductor memory device, a control circuit that controls the semiconductor memory device by issuing a plurality of commands and transmitting the command to the semiconductor memory device via the communication circuit; A timing register for storing a plurality of timing parameters related to the operation of the semiconductor memory device;
    The plurality of commands are:
    An activation command for activating a word line connected to a memory cell having a certain bank address and a certain row address, and a sense amplifier connected to the memory cell via the bit line;
    A write command for instructing writing of data to a memory cell having a certain bank address and a certain column address;
    A read command for instructing to read data from a memory cell having a certain bank address and a certain column address,
    The plurality of timing parameters include a sixth time period (tRRD) indicating the shortest time in which the activation commands for two different banks can be issued in succession, and the write command or the read for any two banks. A seventh time period (tCCD) indicating the shortest time in which commands can be issued continuously; and an eighth time period (tFAW) indicating the shortest time in which the four activation commands can be issued in succession. The seventh time period (tCCD) is set equal to the sixth time period (tRRD), and the eighth time period (tFAW) is set equal to four times the sixth time period (tRRD). And
    The control circuit includes:
    When continuously writing data to the semiconductor memory device, the activation command and the write command are issued at a period equal to the sixth time period (tRRD),
    When continuously reading data from the semiconductor memory device, the activation command and the read command are issued with a period equal to the sixth time period (tRRD), respectively.
    Control device.
  12.  前記半導体記憶装置は、第1の動作モード及び第2の動作モードを有し、
     前記半導体記憶装置が前記第1の動作モードにあるとき、前記ワード線の上限電圧は第1の電圧値を有し、前記第7の時間期間(tCCD)は前記第6の時間期間(tRRD)よりも短く、前記第8の時間期間(tFAW)は前記第6の時間期間(tRRD)の4倍よりも長く、
     前記半導体記憶装置が前記第2の動作モードにあるとき、前記ワード線の上限電圧は前記第1の電圧値よりも高い第2の電圧値を有し、前記第7の時間期間(tCCD)は前記第6の時間期間(tRRD)に等しく、前記第8の時間期間(tFAW)は前記第6の時間期間(tRRD)の4倍に等しく、
     前記制御回路は、前記半導体記憶装置を前記第1の動作モード及び前記第2の動作モードの一方で選択的に動作させる第2の制御信号を前記半導体記憶装置に送信する、
    請求項11記載の制御装置。
    The semiconductor memory device has a first operation mode and a second operation mode,
    When the semiconductor memory device is in the first operation mode, the upper limit voltage of the word line has a first voltage value, and the seventh time period (tCCD) is the sixth time period (tRRD). The eighth time period (tFAW) is longer than four times the sixth time period (tRRD),
    When the semiconductor memory device is in the second operation mode, the upper limit voltage of the word line has a second voltage value higher than the first voltage value, and the seventh time period (tCCD) is The sixth time period (tRRD) is equal to the eighth time period (tFAW) is equal to four times the sixth time period (tRRD);
    The control circuit transmits a second control signal for selectively operating the semiconductor memory device in one of the first operation mode and the second operation mode to the semiconductor memory device;
    The control device according to claim 11.
  13.  前記複数のタイミングパラメータは、2つのバンクの異なる組み合わせに応じて異なる長さを有する複数の第6の時間期間(tRRD)を含む、
    請求項11又は12記載の制御装置。
    The plurality of timing parameters include a plurality of sixth time periods (tRRD) having different lengths depending on different combinations of the two banks.
    The control device according to claim 11 or 12.
  14.  DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置のための制御装置であって、
     前記半導体記憶装置は、少なくとも1つの内部データバスに接続された複数のバンクを備え、前記複数のバンクのうちの各1つのバンクは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルと、前記複数のビット線にそれぞれ接続された複数のセンスアンプと、前記複数のセンスアンプにそれぞれ接続された複数のカラム選択線とを備えるメモリアレイを備え、
     前記制御装置は、前記半導体記憶装置に接続される通信回路と、複数のコマンドを発行して前記通信回路を介して前記半導体記憶装置に送信することにより前記半導体記憶装置を制御する制御回路と、前記半導体記憶装置の動作に関連する複数のタイミングパラメータを格納するタイミングレジスタとを備え、
     前記複数のコマンドは、
     あるバンクアドレス及びあるロウアドレスを有する記憶セルに接続されたワード線と、前記ビット線を介して前記記憶セルに接続されたセンスアンプとを活性化する活性化コマンドと、
     あるバンクアドレス及びあるカラムアドレスを有する記憶セルへのデータの書き込みを指示する書き込みコマンドと、
     あるバンクアドレス及びあるカラムアドレスを有する記憶セルからのデータの読み出しを指示する読み出しコマンドとを含み、
     前記複数のタイミングパラメータは、前記複数のバンクのうちの第1のバンクにデータを書き込むために前記制御装置から前記半導体記憶装置へデータを送信してから、前記複数のバンクのうちの第2のバンクからデータを読み出すために前記読み出しコマンドを発行可能になるまでの時間差を示す複数の第9の時間期間(tWTR)を含み、前記複数の第9の時間期間(tWTR)は、前記第1及び第2のバンクの異なる組み合わせに応じて異なる長さを有し、
     前記制御回路は、前記第1のバンクにデータを書き込んだ直後に前記第2のバンクからデータを読み出すとき、前記半導体記憶装置へデータを送信してから、前記第1及び第2のバンクの組み合わせに対応する長さを有する前記第9の時間期間(tWTR)にわたって待機した後、前記読み出しコマンドを発行する、
    制御装置。
    A control device for a semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM,
    The semiconductor memory device includes a plurality of banks connected to at least one internal data bus, and each one of the plurality of banks extends along a plurality of bit lines and a plurality of word lines orthogonal to each other. A memory array comprising a plurality of memory cells arranged, a plurality of sense amplifiers connected to the plurality of bit lines, respectively, and a plurality of column selection lines connected to the plurality of sense amplifiers, respectively.
    The control device includes a communication circuit connected to the semiconductor memory device, a control circuit that controls the semiconductor memory device by issuing a plurality of commands and transmitting the command to the semiconductor memory device via the communication circuit; A timing register for storing a plurality of timing parameters related to the operation of the semiconductor memory device;
    The plurality of commands are:
    An activation command for activating a word line connected to a memory cell having a certain bank address and a certain row address, and a sense amplifier connected to the memory cell via the bit line;
    A write command for instructing writing of data to a memory cell having a certain bank address and a certain column address;
    A read command for instructing to read data from a memory cell having a certain bank address and a certain column address,
    The plurality of timing parameters are transmitted from the control device to the semiconductor memory device in order to write data to a first bank of the plurality of banks, and then a second one of the plurality of banks. A plurality of ninth time periods (tWTR) indicating a time difference until the read command can be issued to read data from the bank, wherein the plurality of ninth time periods (tWTR) Different lengths according to different combinations of the second bank,
    When the data is read from the second bank immediately after writing the data to the first bank, the control circuit transmits the data to the semiconductor memory device, and then the combination of the first and second banks. Issuing the read command after waiting for the ninth time period (tWTR) having a length corresponding to
    Control device.
  15.  DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置であって、
     前記半導体記憶装置は、
     内部データバスと、
     前記内部データバスに接続された少なくとも1つのバンクとを備え、
     前記バンクは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルと、前記複数のビット線にそれぞれ接続された複数のセンスアンプと、前記複数のセンスアンプにそれぞれ接続された複数のカラム選択線とを備えるメモリアレイを備え、
     前記半導体記憶装置は、外部バスを介して制御装置に接続される通信回路と、前記通信回路を介して前記制御装置から複数のコマンドを受信して前記半導体記憶装置の動作を制御する制御回路とを備え、
     前記複数のコマンドは、
     あるバンクアドレス及びあるロウアドレスを有する記憶セルに接続されたワード線と、前記ビット線を介して前記記憶セルに接続されたセンスアンプとを活性化する活性化コマンドと、
     あるバンクアドレス及びあるカラムアドレスを有する記憶セルへのデータの書き込みを指示する書き込みコマンドと、
     あるバンクアドレス及びあるカラムアドレスを有する記憶セルからのデータの読み出しを指示する読み出しコマンドとを含み、
     前記制御回路は、前記半導体記憶装置にデータを書き込むとき、前記活性化コマンドを受信する瞬間を基準として予め決められた第1の時間期間(tRCD(W))の絶対値に等しい時間期間だけ先行する瞬間以後に、かつ、前記活性化コマンドを受信する瞬間よりも前に、前記書き込みコマンドを前記制御装置から受信可能に構成される、
    半導体記憶装置。
    A semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM,
    The semiconductor memory device
    An internal data bus;
    And at least one bank connected to the internal data bus,
    The bank includes a plurality of memory cells arranged along a plurality of bit lines and a plurality of word lines orthogonal to each other, a plurality of sense amplifiers respectively connected to the plurality of bit lines, and the plurality of sense amplifiers. A memory array having a plurality of column selection lines connected to each other;
    The semiconductor memory device includes a communication circuit connected to a control device via an external bus, a control circuit that receives a plurality of commands from the control device via the communication circuit and controls operations of the semiconductor memory device. With
    The plurality of commands are:
    An activation command for activating a word line connected to a memory cell having a certain bank address and a certain row address, and a sense amplifier connected to the memory cell via the bit line;
    A write command for instructing writing of data to a memory cell having a certain bank address and a certain column address;
    A read command for instructing to read data from a memory cell having a certain bank address and a certain column address,
    When writing data to the semiconductor memory device, the control circuit precedes by a time period equal to an absolute value of a first time period (tRCD (W)) determined in advance with reference to the moment when the activation command is received. The write command is configured to be received from the control device after the moment of performing and before the moment of receiving the activation command.
    Semiconductor memory device.
  16.  前記半導体記憶装置は、前記複数のコマンドのうちの少なくとも一部にそれぞれ関連付けられた複数の回路を含み、
     前記制御回路は、
     前記半導体記憶装置にデータを書き込むとき、前記活性化コマンドの前に前記書き込みコマンドを発行することを通知する第1の制御信号を前記制御装置から受信し、
     前記第1の制御信号を受信したとき、前記書き込みコマンドに関連付けられた回路を活性化する、
    請求項15記載の半導体記憶装置。
    The semiconductor memory device includes a plurality of circuits respectively associated with at least a part of the plurality of commands,
    The control circuit includes:
    When writing data to the semiconductor memory device, a first control signal for notifying that the write command is issued before the activation command is received from the control device,
    Activating a circuit associated with the write command when receiving the first control signal;
    The semiconductor memory device according to claim 15.
  17.  前記半導体記憶装置は、
     前記半導体記憶装置からデータを読み出すとき、前記カラム選択線に第1の電圧を印加する第1の電圧源と、
     前記半導体記憶装置にデータを書き込むとき、前記カラム選択線に前記第1の電圧より高い第2の電圧を印加する第2の電圧源とを備える、
    請求項15又は16記載の半導体記憶装置。
    The semiconductor memory device
    A first voltage source for applying a first voltage to the column selection line when reading data from the semiconductor memory device;
    A second voltage source that applies a second voltage higher than the first voltage to the column selection line when writing data to the semiconductor memory device;
    17. The semiconductor memory device according to claim 15 or 16.
  18.  前記半導体記憶装置からデータを読み出すとき、前記第1の電圧源は第1の時間長にわたって前記カラム選択線に前記第1の電圧を印加し、
     前記半導体記憶装置にデータを書き込むとき、前記第2の電圧源は前記第1の時間長よりも長い第2の時間長にわたって前記カラム選択線に前記第2の電圧を印加する、
    請求項17記載の半導体記憶装置。
    When reading data from the semiconductor memory device, the first voltage source applies the first voltage to the column selection line over a first time length;
    When writing data to the semiconductor memory device, the second voltage source applies the second voltage to the column selection line for a second time length longer than the first time length;
    The semiconductor memory device according to claim 17.
  19.  前記制御回路は、前記半導体記憶装置にデータを書き込むとき、前記書き込みコマンドを受信した後、かつ、前記センスアンプを活性化する前に、前記カラム選択線を活性化する、
    請求項15~18のうちの1つに記載の半導体記憶装置。
    The control circuit activates the column selection line after writing the write command and before activating the sense amplifier when writing data to the semiconductor memory device.
    The semiconductor memory device according to any one of claims 15 to 18.
  20.  前記制御回路は、前記半導体記憶装置にデータを書き込むとき、前記書き込みコマンドを受信した後、かつ、前記センスアンプ及び前記ワード線を活性化する前に、前記カラム選択線を活性化する、
    請求項19記載の半導体記憶装置。
    The control circuit activates the column selection line after writing the write command and before activating the sense amplifier and the word line when writing data to the semiconductor memory device.
    20. The semiconductor memory device according to claim 19.
  21.  前記複数のセンスアンプのうちの各1つのセンスアンプは、少なくとも1つのNMOSトランジスタと、少なくとも1つのPMOSトランジスタとを含み、
     前記センスアンプを非活性化するとき、前記ビット線の上限電圧に等しい電圧を前記NMOSトランジスタのソースに印加し、
     前記センスアンプを活性化するとき、前記ビット線の下限電圧に等しい電圧を前記NMOSトランジスタのソースに印加する、
    請求項19又は20記載の半導体記憶装置。
    Each one of the plurality of sense amplifiers includes at least one NMOS transistor and at least one PMOS transistor;
    When deactivating the sense amplifier, a voltage equal to the upper limit voltage of the bit line is applied to the source of the NMOS transistor,
    When activating the sense amplifier, a voltage equal to the lower limit voltage of the bit line is applied to the source of the NMOS transistor,
    21. The semiconductor memory device according to claim 19 or 20.
  22.  前記バンクは、複数のセンスアンプからなる少なくとも1つのセンスアンプ列によって互いに分離された複数のサブアレイを含み、
     前記書き込みコマンドは、データを書き込む記憶セルを含むサブアレイのロウアドレスの一部を含み、
     前記制御回路は、
     前記書き込みコマンドのロウアドレスによって指定されるサブアレイを活性化し、
     前記書き込みコマンドのカラムアドレスによって指定されるカラム選択線を活性化し、
     前記活性化されたカラム選択線に対応するビット線の電圧を上限電圧に設定する、
    請求項15~21のうちの1つに記載の半導体記憶装置。
    The bank includes a plurality of subarrays separated from each other by at least one sense amplifier row including a plurality of sense amplifiers,
    The write command includes a part of a row address of a subarray including a storage cell to which data is written,
    The control circuit includes:
    Activate a sub-array designated by the row address of the write command;
    Activate the column selection line specified by the column address of the write command,
    A bit line voltage corresponding to the activated column selection line is set to an upper limit voltage;
    The semiconductor memory device according to any one of claims 15 to 21.
  23.  前記半導体記憶装置は複数のバンクを備え、
     前記制御回路は、
     前記半導体記憶装置にデータを書き込むとき、前記複数のバンクのうちの少なくとも2つのバンクに同じデータを書き込み、
     前記半導体記憶装置からデータを読み出すとき、前記複数のバンクのうちの前記同じデータが書き込まれた少なくとも2つのバンクのうちの1つからデータを読み出す、
    請求項15~22のうちの1つに記載の半導体記憶装置。
    The semiconductor memory device includes a plurality of banks,
    The control circuit includes:
    When writing data to the semiconductor memory device, the same data is written to at least two of the plurality of banks,
    When reading data from the semiconductor memory device, reading data from one of at least two banks in which the same data of the plurality of banks is written;
    The semiconductor memory device according to any one of claims 15 to 22.
  24.  前記制御回路は、前記複数のバンクのうちの前記同じデータが書き込まれた少なくとも2つのバンクからデータを読み出すために発行された第1及び第2の活性化コマンドであって、予め決められた第5の時間期間(tRC(R))より短い間隔で発行された第1及び第2の活性化コマンドを受信したとき、前記第1の活性化コマンドに応じて、前記同じデータが書き込まれた少なくとも2つのバンクのうちの第1のバンクからデータを読み出し、前記第2の活性化コマンドに応じて、前記同じデータが書き込まれた少なくとも2つのバンクのうちの第2のバンクからデータを読み出す、
    請求項23記載の半導体記憶装置。
    The control circuit includes first and second activation commands issued to read data from at least two banks in which the same data of the plurality of banks is written, and a predetermined first command When the first and second activation commands issued at intervals shorter than the time period of 5 (tRC (R)) are received, at least the same data is written according to the first activation command. Read data from a first bank of two banks, and read data from a second bank of at least two banks to which the same data is written in response to the second activation command.
    24. The semiconductor memory device according to claim 23.
  25.  前記複数のバンクは、複数のビットを含むバンクアドレスを有し、
     前記制御回路は、前記半導体記憶装置にデータを書き込むとき、前記複数のバンクのうちの、少なくとも1つの同じビット値を含むバンクアドレスをそれぞれ有する少なくとも2つのバンクにおいて、同じロウアドレスの記憶セルに前記同じデータを書き込む、
    請求項23又は24記載の半導体記憶装置。
    The plurality of banks have bank addresses including a plurality of bits,
    When the control circuit writes data to the semiconductor memory device, the control circuit stores the memory cell having the same row address in at least two banks each having a bank address including at least one same bit value. Write the same data,
    25. The semiconductor memory device according to claim 23 or 24.
  26.  DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置であって、
     前記半導体記憶装置は、
     内部データバスと、
     前記内部データバスに接続された複数のバンクとを備え、
     前記複数のバンクのうちの各1つのバンクは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルと、前記複数のビット線にそれぞれ接続された複数のセンスアンプと、前記複数のセンスアンプにそれぞれ接続された複数のカラム選択線とを備えるメモリアレイを備え、
     前記半導体記憶装置は、外部バスを介して制御装置に接続される通信回路と、前記通信回路を介して前記制御装置から複数のコマンドを受信して前記半導体記憶装置の動作を制御する制御回路とを備え、
     前記複数のコマンドは、
     あるバンクアドレス及びあるロウアドレスを有する記憶セルに接続されたワード線と、前記ビット線を介して前記記憶セルに接続されたセンスアンプとを活性化する活性化コマンドと、
     あるバンクアドレス及びあるカラムアドレスを有する記憶セルへのデータの書き込みを指示する書き込みコマンドと、
     あるバンクアドレス及びあるカラムアドレスを有する記憶セルからのデータの読み出しを指示する読み出しコマンドとを含み、
     前記半導体記憶装置は、前記半導体記憶装置の動作に関連する複数のタイミングパラメータを有し、前記複数のタイミングパラメータは、互いに異なる2つのバンクに対する前記活性化コマンドを連続して受信可能な最短時間を示す第6の時間期間(tRRD)と、任意の2つのバンクに対する前記書き込みコマンド又は前記読み出しコマンドを連続して受信可能な最短時間を示す第7の時間期間(tCCD)と、4つの前記活性化コマンドを連続して受信可能な最短時間を示す第8の時間期間(tFAW)とを含み、前記第7の時間期間(tCCD)は前記第6の時間期間(tRRD)に等しく、前記第8の時間期間(tFAW)は前記第6の時間期間(tRRD)の4倍に等しく、
     前記制御回路は、
     前記半導体記憶装置にデータを連続して書き込むとき、前記第6の時間期間(tRRD)に等しい周期で、前記活性化コマンド及び前記書き込みコマンドをそれぞれ前記制御回路から受信可能に構成され、
     前記半導体記憶装置からデータを連続して読み出すとき、前記第6の時間期間(tRRD)に等しい周期で、前記活性化コマンド及び前記読み出しコマンドをそれぞれ前記制御回路から受信可能に構成される、
    半導体記憶装置。
    A semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM,
    The semiconductor memory device
    An internal data bus;
    A plurality of banks connected to the internal data bus,
    Each one of the plurality of banks includes a plurality of memory cells arranged along a plurality of bit lines and a plurality of word lines orthogonal to each other, and a plurality of senses respectively connected to the plurality of bit lines. A memory array including an amplifier and a plurality of column selection lines connected to the plurality of sense amplifiers,
    The semiconductor memory device includes a communication circuit connected to a control device via an external bus, a control circuit that receives a plurality of commands from the control device via the communication circuit and controls operations of the semiconductor memory device. With
    The plurality of commands are:
    An activation command for activating a word line connected to a memory cell having a certain bank address and a certain row address, and a sense amplifier connected to the memory cell via the bit line;
    A write command for instructing writing of data to a memory cell having a certain bank address and a certain column address;
    A read command for instructing to read data from a memory cell having a certain bank address and a certain column address,
    The semiconductor memory device has a plurality of timing parameters related to the operation of the semiconductor memory device, and the plurality of timing parameters has a minimum time during which the activation commands for two different banks can be continuously received. A sixth time period (tRRD) shown, a seventh time period (tCCD) showing the shortest time in which the write command or the read command for any two banks can be continuously received, and the four activations An eighth time period (tFAW) indicating the shortest time in which commands can be continuously received, and the seventh time period (tCCD) is equal to the sixth time period (tRRD). The time period (tFAW) is equal to four times the sixth time period (tRRD),
    The control circuit includes:
    When continuously writing data to the semiconductor memory device, the activation command and the write command can be received from the control circuit at a period equal to the sixth time period (tRRD), respectively.
    When continuously reading data from the semiconductor memory device, the activation command and the read command are configured to be received from the control circuit in a cycle equal to the sixth time period (tRRD), respectively.
    Semiconductor memory device.
  27.  前記半導体記憶装置は、前記第7の時間期間(tCCD)が前記第6の時間期間(tRRD)に等しくなるように、かつ、前記第8の時間期間(tFAW)は前記第6の時間期間(tRRD)の4倍に等しくなるように設定された電圧を前記ワード線に印加する第3の電圧源を備える、
    請求項26記載の半導体記憶装置。
    In the semiconductor memory device, the seventh time period (tCCD) is equal to the sixth time period (tRRD), and the eighth time period (tFAW) is equal to the sixth time period (tFAW). a third voltage source for applying to the word line a voltage set to be equal to four times tRRD).
    27. The semiconductor memory device according to claim 26.
  28.  前記半導体記憶装置は、第1の動作モード及び第2の動作モードを有し、
     前記半導体記憶装置が前記第1の動作モードにあるとき、前記ワード線の上限電圧は第1の電圧値を有し、前記第7の時間期間(tCCD)は前記第6の時間期間(tRRD)よりも短く、前記第8の時間期間(tFAW)は前記第6の時間期間(tRRD)の4倍よりも長く、
     前記半導体記憶装置が前記第2の動作モードにあるとき、前記ワード線の上限電圧は前記第1の電圧値よりも高い第2の電圧値を有し、前記第7の時間期間(tCCD)は前記第6の時間期間(tRRD)に等しく、前記第8の時間期間(tFAW)は前記第6の時間期間(tRRD)の4倍に等しく、
     前記制御回路は、前記半導体記憶装置を前記第1の動作モード及び前記第2の動作モードの一方で選択的に動作させる第2の制御信号を前記制御装置から受信したとき、前記第2の制御信号に従って、前記第1の動作モード及び前記第2の動作モードの一方で選択的に動作する、
    請求項26又は27記載の半導体記憶装置。
    The semiconductor memory device has a first operation mode and a second operation mode,
    When the semiconductor memory device is in the first operation mode, the upper limit voltage of the word line has a first voltage value, and the seventh time period (tCCD) is the sixth time period (tRRD). The eighth time period (tFAW) is longer than four times the sixth time period (tRRD),
    When the semiconductor memory device is in the second operation mode, the upper limit voltage of the word line has a second voltage value higher than the first voltage value, and the seventh time period (tCCD) is The sixth time period (tRRD) is equal to the eighth time period (tFAW) is equal to four times the sixth time period (tRRD);
    The control circuit receives the second control signal for selectively operating the semiconductor memory device in one of the first operation mode and the second operation mode from the control device. Selectively operating in one of the first operating mode and the second operating mode according to a signal;
    28. The semiconductor memory device according to claim 26 or 27.
  29.  前記複数のタイミングパラメータは、2つのバンクの異なる組み合わせに応じて異なる長さを有する複数の第6の時間期間(tRRD)を含む、
    請求項26~28のうちの1つに記載の半導体記憶装置。
    The plurality of timing parameters include a plurality of sixth time periods (tRRD) having different lengths depending on different combinations of the two banks.
    The semiconductor memory device according to any one of claims 26 to 28.
  30.  請求項1~10のうちの1つに記載の制御装置と、
     請求項15~25のうちの1つに記載の半導体記憶装置とを備える、
    半導体記憶システム。
    A control device according to one of claims 1 to 10,
    A semiconductor memory device according to one of claims 15 to 25,
    Semiconductor storage system.
  31.  請求項11~13のうちの1つに記載の制御装置と、
     請求項26~29のうちの1つに記載の半導体記憶装置とを備える、
    半導体記憶システム。
    A control device according to one of claims 11 to 13,
    A semiconductor memory device according to one of claims 26 to 29,
    Semiconductor storage system.
  32.  請求項14記載の制御装置と、
     半導体記憶装置とを備える、
    半導体記憶システム。
    A control device according to claim 14;
    A semiconductor memory device;
    Semiconductor storage system.
  33.  DDRx-SDRAM又はLPDDRx-SDRAMのJEDEC(Joint Electron Device Engineering Council)標準に準拠したインターフェースを有する半導体記憶装置のための制御方法であって、
     前記半導体記憶装置は、少なくとも1つの内部データバスに接続された少なくとも1つのバンクを備え、前記バンクは、互いに直交する複数のビット線及び複数のワード線に沿って配列された複数の記憶セルと、前記複数のビット線にそれぞれ接続された複数のセンスアンプと、前記複数のセンスアンプにそれぞれ接続された複数のカラム選択線とを備えるメモリアレイを備え、
     前記制御方法は、
     あるバンクアドレス及びあるロウアドレスを有する記憶セルに接続されたワード線と、前記ビット線を介して前記記憶セルに接続されたセンスアンプとを活性化する活性化コマンドを発行するステップと、
     あるバンクアドレス及びあるカラムアドレスを有する記憶セルへのデータの書き込みを指示する書き込みコマンドを発行するステップと、
     あるバンクアドレス及びあるカラムアドレスを有する記憶セルからのデータの読み出しを指示する読み出しコマンドを発行するステップと、
     前記半導体記憶装置にデータを書き込むとき、前記活性化コマンドを発行する瞬間を基準として第1の時間期間(tRCD(W))だけ離れた瞬間以後に、前記書き込みコマンドを発行するステップと、
     前記半導体記憶装置からデータを読み出すとき、前記活性化コマンドを発行する瞬間を基準として第2の時間期間(tRCD(R))だけ離れた瞬間以後に、前記読み出しコマンドを発行するステップとを含み、
     前記第1の時間期間(tRCD(W))は、前記活性化コマンドを発行してから前記書き込みコマンドを発行可能になるまで時間差を示し、前記第2の時間期間(tRCD(R))は、前記活性化コマンドを発行してから前記読み出しコマンドを発行可能になるまで時間差を示し、前記第1の時間期間は前記第2の時間期間より小さな値を有する、
    制御方法。
    A control method for a semiconductor memory device having an interface compliant with JEDEC (Joint Electron Device Engineering Council) standard of DDRx-SDRAM or LPDDRx-SDRAM,
    The semiconductor memory device includes at least one bank connected to at least one internal data bus, and the bank includes a plurality of memory cells arranged along a plurality of bit lines and a plurality of word lines orthogonal to each other. A memory array including a plurality of sense amplifiers respectively connected to the plurality of bit lines, and a plurality of column selection lines respectively connected to the plurality of sense amplifiers;
    The control method is:
    Issuing an activation command for activating a word line connected to a memory cell having a certain bank address and a certain row address and a sense amplifier connected to the memory cell via the bit line;
    Issuing a write command instructing to write data to a memory cell having a certain bank address and a certain column address;
    Issuing a read command instructing to read data from a memory cell having a certain bank address and a certain column address;
    When writing data to the semiconductor memory device, issuing the write command after a moment separated by a first time period (tRCD (W)) with reference to the moment of issuing the activation command;
    Issuing the read command after reading a second time period (tRCD (R)) with reference to the moment when the activation command is issued when reading data from the semiconductor memory device;
    The first time period (tRCD (W)) indicates a time difference from when the activation command is issued until the write command can be issued, and the second time period (tRCD (R)) is A time difference from when the activation command is issued until the read command can be issued, and the first time period has a smaller value than the second time period;
    Control method.
PCT/JP2017/019066 2017-05-22 2017-05-22 Semiconductor storage system WO2018216081A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019519824A JP7130634B2 (en) 2017-05-22 2017-05-22 semiconductor memory system
PCT/JP2017/019066 WO2018216081A1 (en) 2017-05-22 2017-05-22 Semiconductor storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/019066 WO2018216081A1 (en) 2017-05-22 2017-05-22 Semiconductor storage system

Publications (1)

Publication Number Publication Date
WO2018216081A1 true WO2018216081A1 (en) 2018-11-29

Family

ID=64396320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019066 WO2018216081A1 (en) 2017-05-22 2017-05-22 Semiconductor storage system

Country Status (2)

Country Link
JP (1) JP7130634B2 (en)
WO (1) WO2018216081A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240126476A1 (en) * 2022-10-13 2024-04-18 Micron Technology, Inc. Activate information on preceding command

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257892A (en) * 2010-06-08 2011-12-22 Sony Corp Information processing device, memory control device, memory access method and program
JP2012522311A (en) * 2009-03-30 2012-09-20 ラムバス・インコーポレーテッド Memory systems, controllers, and devices that support the merged memory command protocol
JP2016520226A (en) * 2013-05-16 2016-07-11 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッドAdvanced Micro Devices Incorporated Memory system with region specific memory access scheduling
WO2016185879A1 (en) * 2015-05-20 2016-11-24 ソニー株式会社 Memory control circuit and memory control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2706461A1 (en) * 2006-02-09 2014-03-12 Google Inc. Memory circuit system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522311A (en) * 2009-03-30 2012-09-20 ラムバス・インコーポレーテッド Memory systems, controllers, and devices that support the merged memory command protocol
JP2011257892A (en) * 2010-06-08 2011-12-22 Sony Corp Information processing device, memory control device, memory access method and program
JP2016520226A (en) * 2013-05-16 2016-07-11 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッドAdvanced Micro Devices Incorporated Memory system with region specific memory access scheduling
WO2016185879A1 (en) * 2015-05-20 2016-11-24 ソニー株式会社 Memory control circuit and memory control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240126476A1 (en) * 2022-10-13 2024-04-18 Micron Technology, Inc. Activate information on preceding command
US12073120B2 (en) * 2022-10-13 2024-08-27 Micron Technology, Inc. Activate information on preceding command

Also Published As

Publication number Publication date
JP7130634B2 (en) 2022-09-05
JPWO2018216081A1 (en) 2020-03-26

Similar Documents

Publication Publication Date Title
US10553272B2 (en) Method of operating a semiconductor device having CAL latency function
US7102960B2 (en) Semiconductor memory device
US9741425B2 (en) Memory device and memory system including the memory device
US8605518B2 (en) Semiconductor memory device, information processing system including the same, and controller
US7599238B2 (en) Semiconductor memory device and driving method thereof
JP4191018B2 (en) Semiconductor memory device refresh control system
EP3401912B1 (en) Controller for a semiconductor device
JP2007504577A (en) Semiconductor memory device and method of operating a semiconductor memory device
CN113168863B (en) Apparatus and method for multi-bank refresh timing
KR20180049502A (en) Semiconductor memory devices and methods of operating semiconductor memory devices
JP7130634B2 (en) semiconductor memory system
JP4143287B2 (en) Semiconductor memory device and data read control method thereof
US20110069573A1 (en) Semiconductor memory device
WO2022108752A1 (en) Apparatuses and methods for faster memory access regions
US20040136250A1 (en) Semiconductor memory device with improved precharge timing
KR101697686B1 (en) Semiconductor memory device and operating method thereof
JPH1145570A (en) Semiconductor memory device
KR101708873B1 (en) Semiconductor memory device
US20230221871A1 (en) Memory device and operating method thereof
US20240192874A1 (en) Apparatuses and methods for shared row and column address buses
KR100351446B1 (en) Synchronous DRAM
CN113889165A (en) Apparatus and method for driving data lines in a memory array
KR20100030356A (en) Semiconductor memory device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911168

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019519824

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911168

Country of ref document: EP

Kind code of ref document: A1