WO2018215471A1 - Trapezium-methacarpal prosthetic implant - Google Patents

Trapezium-methacarpal prosthetic implant Download PDF

Info

Publication number
WO2018215471A1
WO2018215471A1 PCT/EP2018/063393 EP2018063393W WO2018215471A1 WO 2018215471 A1 WO2018215471 A1 WO 2018215471A1 EP 2018063393 W EP2018063393 W EP 2018063393W WO 2018215471 A1 WO2018215471 A1 WO 2018215471A1
Authority
WO
WIPO (PCT)
Prior art keywords
metacarpal
trapezium
fixing means
ligament
methacarpal
Prior art date
Application number
PCT/EP2018/063393
Other languages
English (en)
French (fr)
Inventor
Carlo BUFALINI
Original Assignee
Bufalini Carlo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bufalini Carlo filed Critical Bufalini Carlo
Publication of WO2018215471A1 publication Critical patent/WO2018215471A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4241Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for hands, e.g. fingers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/84Fasteners therefor or fasteners being internal fixation devices
    • A61B17/842Flexible wires, bands or straps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30108Shapes
    • A61F2002/30199Three-dimensional shapes
    • A61F2002/30252Three-dimensional shapes quadric-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30721Accessories
    • A61F2002/30754Implants for interposition between two natural articular surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/42Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes
    • A61F2/4241Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for hands, e.g. fingers
    • A61F2002/4256Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for hands, e.g. fingers for carpo-metacarpal joints, i.e. CMC joints
    • A61F2002/4258Joints for wrists or ankles; for hands, e.g. fingers; for feet, e.g. toes for hands, e.g. fingers for carpo-metacarpal joints, i.e. CMC joints for trapezo-metacarpal joints of thumbs

Definitions

  • the present invention relates in general to field of joint prostheses for the fingers of the hand and more precisely it concerns a trapezium-methacarpal prosthetic implant.
  • the trapezium-methacarpal joint is located at the base of the thumb and allows all those wide movements that also allow the thumb to be opposed to other fingers.
  • the trapezium-methacarpal joint involves coupling of the articular surfaces of the first methacarpal and trapezium bone, both covered with a layer of cartilage, as well as the presence of ligaments that keep them close together and in alignment.
  • the ligaments especially the anterior ligament, "Beek ligament" may become weaker and longer, inevitably leading to a reduction in joint congruency.
  • the relative movement of the articular surfaces of the methacarpal and trapezium bone thus becomes “defective”, thus causing a creep that leads to wear of the cartilage (known as arthrosis), resulting in pain, crackling, subluxation and loss of strength.
  • the endoprosthesis completely replaces the trapezium-methacarpal joint and consists of a mechanical joint, whose two components are joined to the trapezium bone and the first methacarpal bone respectively (adapted surgically before joining).
  • the spacer consists of a disk of biocompatible material designed to be placed between the trapezium bone and the first methacarpal, in order to reduce the direct rubbing of the two articular surfaces onto one another.
  • Italian patent No. 1377916 which has the same holder as the present application, describes a trapezium-methacarpal prosthetic implant that allows the elimination of trapezium-methacarpal subluxation, i.e. it reports the first methacarpal on site with respect to the trapezium bone.
  • This implant also reduces friction forces on the first methacarpal.
  • this is an improvement on the earlier known technique, it has certain disadvantages.
  • the shape of the implant limits the movement between the thumb bones, forcing them to male an angle to each other to overcome the limitation.
  • the interposing disk is difficult to insert due to stabilizing fins required to keep the implant in position.
  • the main object of the present invention is to create a spacer type, trapezium-methacarpal prosthetic implant that eliminates, at least in part, the problems of the prior art.
  • a trapezium-methacarpal prosthetic implant including: a spacer element with a substantially bi-convex lenticular shape, adapted to be positioned between the trapezium bone (T) and the base of the first methacarpal (I) of the hand; at least first fixing means, adapted, when the implant is positioned in the prosthetic site, to connect the spacer element with the first methacarpal (I) and to keep it firmly in place, without preventing the movement of the first methacarpal, with the first fixing means comprising at least ligament adapted to pass through a first channel in the first methacarpal along a substantially longitudinal direction, the first channel being obtained between the base of the first methacarpal and the external wall of the first methacarpal; at least second fixing means, designed to connect, when the implant is fitted in the prosthetic site, the metaphysis of the first methacarpal (I) with the distal diaphysis of
  • the implant according to the present invention ensures the stability of the implant without limiting the freedom of movement of the hand bones.
  • this is achieved by a bi-convex lenticular shape of an interposition element.
  • This shape of the implant allows for a freer movement of the bones with respect to one another and with respect to the prosthesis itself.
  • the ligament is passed through the first methacarpal, through a channel obtained in the first methacarpal and extending in the longitudinal (vertical) direction and having inlet/outlet holes, one situated substantially in the centre of the base of the first methacarpal, the other situated on the side wall of the first methacarpal, proximal to the base of the methacarpal itself: the essentially vertical direction of the ligament allows for a stabilization of the implant without the need to provide additional stabilization elements, thus simplifying the installation of the prosthesis and making the implant less invasive. After vertical passage, the ligament exits the first methacarpal and re-enters more proximally, i.e.
  • ligaments can be independent of each other: they can be divided according to their specific tasks or set in continuity with each other, but with separate purposes.
  • the ligaments are passed through the channels (or tunnels) in the bones, pulling them with a looped steel wire that is introduced through a specially cannulated drill bit.
  • the prosthesis comprises two main elements: the actual prosthesis in the shape of a biconvex lens and the artificial ligament, i.e. a sort of string that holds the biconvex element in place.
  • the biconvex element is made of biocompatible material (e.g. polyethylene "peek", ceramic, titanium, possibly coated with ceramic), has a diameter of about 1 .5 cm and a maximum thickness of about 4 mm.
  • the ligament (consisting of a going thread and a return thread) has preferably a diameter of approximately 0.5-1 mm (i.e. with a single thread of between 0.25 and 0.5 mm) and is made of sterilisable and biocompatible synthetic fibres.
  • the single wire has a thickness of about 0.4 mm, so the double wire will be about 0.8 mm.
  • the ligament acts in two distinct directions and for different but complementary purposes.
  • the first segment keeps the spacer disk in place and bound to the first methacarpal;
  • the second segment keeps the first methacarpal and prosthesis aligned with the trapezium and in the original position with respect to the second methacarpal; in addition, the second segment exerts a "distracting" action with respect to the trapezium and thus lightens the functional load on the same.
  • the two segments may also be made up of a single ligament, suitably locked so that the first segment provides a tractive force independent of the second segment, for example by locking it onto a small rigid plate (e.g. metal), as shown below.
  • Figure 1 shows a schematic frontal view of a portion of the bone structure of a hand, to which a prosthetic implant is applied according to the invention
  • Figure 2 shows the spacer element, according to a preferred embodiment of the present invention, with three distinct views.
  • a trapezium-methacarpal prosthetic implant according to the invention is indicated with 100 as a whole.
  • This prosthetic implant 100 includes a spacer element 101 to be placed between the trapezium bone, indicated by T, and the base of the first methacarpal of the hand, indicated by I.
  • the spacer element 101 has the shape of a biconvex lens, with a diameter that can depend on the size of the patient's finger, usually between 1 cm and 2 cm, and a thickness between 3 mm and 5 mm. In a preferred implementation the diameter is about 1 .5 cm and the maximum thickness about 4 mm.
  • the biconvex element is made of biocompatible material. The material can be selected from a wide range of possible materials including "peek", polyethylene, ceramic, titanium possibly coated with ceramic. Those skilled in the field will understand that any material that guarantees not only strength and sterility, but also tolerance by the contacted tissues, can be used as an alternative.
  • a biocompatible ligament 103 is attached to spacer element 101.
  • Ligament 103 is a kind of double twine with an overall diameter of 0.5-1 mm, preferably 0.8 mm (therefore each single twine has a diameter between 0.25 mm and 0.5 mm, preferably 0.4 mm), made up of sterilisable and biocompatible synthetic fibres, for example, Dynema ® , Kevlar ® , carbon fibres.
  • both the spacer element and the ligament are radioopaque, i.e. visible by X-rays.
  • the ligament can be submitted to a treatment with barium or made by weaving a metallic wire; If it is not metallic, the spacer element 101 could have, e.g, a radio-opaque ring inside the edge.
  • fastening the ligament 103 to the spacer 101 is done by passing the ligament through two holes in the biconvex prosthesis, in its center, and by fixing the ligament to the base of the methacarpal, in a direction perpendicular to the axis of the methacarpal itself (as shown in Figure 2C).
  • ligament 103 is made to pass through a hole 105 and a channel 107, obtained in the first metacarpus and extending in a substantially longitudinal, oblique direction, between the centre of the methacarpal base and the external wall of the first methacarpal; as mentioned above, the essentially vertical direction of the ligament allows for a stabilization of the implant without the need to provide additional stabilization elements, as was, for example, the case in technical solution of patent No. 1377916, which required the presence of two fins to be inserted into the bone itself, which made the procedure for installing the prosthesis heavier and increased the invasiveness of the implant.
  • the ligament exits the first methacarpal through the exit hole 109 from the cortical of the first methacarpal and is fastened hereto, so as to ensure the stability of the spacer disc 101 against the base of the first methacarpal.
  • this fastening is done by means of a small plate (1 1 1 ) of sufficiently rigid material (e.g. metal, or polyethylene) substantially elliptical in shape and having two holes through which the two ligament wires will pass and will be properly attached in order to fasten the ligament.
  • Such fastening ensures that this first segment of the ligament acts independently of the rest of the ligament; the two segments could very well be distinguished from each other.
  • Figure 1 shows the knotted ligament after passing through plate 1 1 1 , but before it is tightened to stabilize the fastening of the spacer element 101.
  • the ligament (consisting of two "going and coming" wires) is unique and continues as described below after the fastening at the exit from hole 109, but it is not excluded that two separate ligaments may be used alternatively.
  • the exit hole 109 is at a distance of about 2 cm from the base of the first methacarpal. The ligament is then inserted into the first methacarpal through the hole 1 13, which is located more proximally than the base of the methacarpal.
  • Ligament 103 passes through the first methacarpal along a longitudinal direction slightly inclined with respect to the vertical axis, in a canal 1 15 which opens outside through an exit hole 1 17. Following a direction in a substantially straight line, ligament 103 then enters the second methacarpal through an entry hole 1 19, runs along a a channel obtained in the second methacarpal and comes out at the opposite side through an exit hole 123, to be fixed on the ulnar outer side (i.e. opposite to the first methacarpal), preferably, by fastening it to a second metal plate 125, for example, by means of a knot.
  • the ligament so fastened applies an adduction action towards the second methacarpal and a lifting action from the trapezium to the methacarpal base.
  • the ligament 103 does not need to be made up of a single wire and the two segments need not be joined.
  • the same result could be achieved by means of two distinct and separate segments: a first segment holds the spacer disk 101 in place; a second segment keeps the first and second methacarpal joined, so as to carry out adduction and lifting actions as described above.
  • an additional plate can be used to block the ligament at the entrance of channel 1 15 (not shown in the figure).
  • Figure 2 shows a spacer disk according to a preferred embodiment of the present invention.
  • Figure 2A shows a top view of the spacer disk in which the preferably circular shape and the two holes 203 are shown, through which the two wires of the ligament (the "going" and “coming " ones) are made to pass.
  • Figure 2B shows a side view of the disk, in which you can see the biconvex shape of the disk itself.
  • Disc sizes may vary depending on the size of the patient's hand; preferably, the disk surface should cover about 3 ⁇ 4 of the trapezium surface, in order to keep the implant attached and prevent dislocation thereof.
  • the width (L) and maximum height (H) ratio should be between 2 and 7, according to the formula 2 ⁇ L/H ⁇ 7, in a preferred embodiment, this ratio is about 3.7.
  • Figure 2C shows a section view of the spacer disk, in which you can see the concavity (optional) at the bottom, aimed at accommodating the passage of the ligament 103.
  • the installation of the prosthetic implant of the present invention is now described. After having made appropriate surgical accesses to operate on the bones of the first and second methacarpal, the area between the trapezium T and the first methacarpal is prepared for insertion of the spacer element 101 with a lenticular biconvex shape. A channel 107 is then created between the inlet/outlet holes 109 and 105. According to a preferred embodiment, the channel 107 is obtained by means of a drill bit that enters from the side wall (creating the hole 109) and crosses the first methacarpal up to its base (hole 105).
  • the ligament that, according to a preferred embodiment of the present invention, consists of a wire that is passed through two holes made in the spacer element (see Figure 2A and 2C) and is then double, will pass through channel 107.
  • the ligament is then fastened at the exit from channel 107 using a knot and a suitable plate 1 1 1 , so as to keep the spacer element 101 in position.
  • Channels 1 15 and 121 which cross the first and second methacarpal along a lateral direction, are obtained by means of a drill and appropriate surgical guides.
  • the drill bit will be cannulated to allow the insertion of the ligament and facilitate its passage.
  • a prosthetic kit for the trapezium-methacarpal joint consisting of a spacer body, at least one ligament and means of attachment of the ligament to the spacer body, as described above, also forms the subject of this invention.
  • one or more of the following elements can be included in the kit: a cannulated drill bit, a protective sleeve for the drill bit, a sliding guide for introducing the drill and make the holes, steel wires with bend (known as Kirschner wires) to help introducing the ligament.
  • the kit may also include a rasp to prepare the site for the prosthesis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
PCT/EP2018/063393 2017-05-24 2018-05-22 Trapezium-methacarpal prosthetic implant WO2018215471A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT102017000056525A IT201700056525A1 (it) 2017-05-24 2017-05-24 Impianto Protesico Trapezio-metacarpale
IT102017000056525 2017-05-24

Publications (1)

Publication Number Publication Date
WO2018215471A1 true WO2018215471A1 (en) 2018-11-29

Family

ID=60081153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/063393 WO2018215471A1 (en) 2017-05-24 2018-05-22 Trapezium-methacarpal prosthetic implant

Country Status (2)

Country Link
IT (1) IT201700056525A1 (it)
WO (1) WO2018215471A1 (it)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023114239A1 (en) * 2021-12-13 2023-06-22 Unm Rainforest Innovations Implantable trapezium prosthetic and methodology for treatment of arthritis in the thumb cmc joint

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004093767A1 (en) * 2003-04-18 2004-11-04 Ascension Orthopedics, Inc. Interpositional biarticular disk implant
WO2006000890A1 (en) * 2004-06-23 2006-01-05 Blackbeard, Graham, Alan Digital joint arthroplasty
FR2944426A1 (fr) * 2009-04-20 2010-10-22 Xavier Renard Implant intra-articulaire
US20110054627A1 (en) * 2009-09-01 2011-03-03 Bear Brian J Biologic Soft Tissue Arthroplasty Spacer and Joint Resurfacing of Wrist and Hand

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004093767A1 (en) * 2003-04-18 2004-11-04 Ascension Orthopedics, Inc. Interpositional biarticular disk implant
WO2006000890A1 (en) * 2004-06-23 2006-01-05 Blackbeard, Graham, Alan Digital joint arthroplasty
FR2944426A1 (fr) * 2009-04-20 2010-10-22 Xavier Renard Implant intra-articulaire
US20110054627A1 (en) * 2009-09-01 2011-03-03 Bear Brian J Biologic Soft Tissue Arthroplasty Spacer and Joint Resurfacing of Wrist and Hand

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023114239A1 (en) * 2021-12-13 2023-06-22 Unm Rainforest Innovations Implantable trapezium prosthetic and methodology for treatment of arthritis in the thumb cmc joint

Also Published As

Publication number Publication date
IT201700056525A1 (it) 2018-11-24

Similar Documents

Publication Publication Date Title
US11399950B2 (en) Implant for a bone joint
DE60025532T2 (de) Fussgelenksprothese
US9119613B2 (en) System and method for trapezium bone replacement
KR101814838B1 (ko) 척추의 척추경 나사 안정화를 위한 시스템 및 방법
WO2013123515A1 (en) Tibial baseplate assembly for knee joint prosthesis
CN102438555A (zh) 用于小关节治疗的系统和方法
US20120296434A1 (en) Knee prosthesis
US20240173138A1 (en) Cruciate replacing artificial knee
US20210059829A1 (en) Motion toe systems and methods
US11246635B2 (en) Prosthesis
WO2018215471A1 (en) Trapezium-methacarpal prosthetic implant
US20200054374A1 (en) Implants and related methods for bunion correction
US20130158666A1 (en) Facet fusion system
US20220160510A1 (en) Suture hole geometry and methods for attaching tissue to orthopedic implants
Hagert et al. Roentgenographic examination of the metacarpophalangeal joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18725243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18725243

Country of ref document: EP

Kind code of ref document: A1