WO2018214531A1 - 用于可穿戴装置的数据传输方法及设备 - Google Patents

用于可穿戴装置的数据传输方法及设备 Download PDF

Info

Publication number
WO2018214531A1
WO2018214531A1 PCT/CN2018/072339 CN2018072339W WO2018214531A1 WO 2018214531 A1 WO2018214531 A1 WO 2018214531A1 CN 2018072339 W CN2018072339 W CN 2018072339W WO 2018214531 A1 WO2018214531 A1 WO 2018214531A1
Authority
WO
WIPO (PCT)
Prior art keywords
conduction
data packet
myoelectric
signal
amplitude
Prior art date
Application number
PCT/CN2018/072339
Other languages
English (en)
French (fr)
Inventor
包磊
Original Assignee
深圳市前海未来无限投资管理有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市前海未来无限投资管理有限公司 filed Critical 深圳市前海未来无限投资管理有限公司
Publication of WO2018214531A1 publication Critical patent/WO2018214531A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/385Transceivers carried on the body, e.g. in helmets
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/08Measuring physiological parameters of the user other bio-electrical signals
    • A63B2230/085Measuring physiological parameters of the user other bio-electrical signals used as a control parameter for the apparatus

Definitions

  • the present invention belongs to the field of wearable electronic devices, and in particular, to a data transmission method and device for a wearable device.
  • the intelligent sportswear can monitor and record various physical and/or physiological parameters of specific parts of the human body, thereby providing a physical basis for subsequent motion effect analysis, and providing relevant users based on the analysis results. Feedback on athletic performance.
  • the collecting electrodes and the feedback electrodes have to be disposed at different positions of the smart sportswear at the same time. Therefore, a large number of wires are required to respectively connect the respective collecting electrodes and the feedback electrodes to the main control module. Excessive connection wires on smart sportswear. The intertwining of a large number of wires greatly reduces the stretch performance of smart sportswear during use.
  • the embodiment of the invention provides a data transmission method and device for a wearable device, which aims to solve the problem of excessive connection wires on the smart sportswear in the prior art, thereby reducing the stretch performance of the smart sportswear during use. problem.
  • a data transmission method for a wearable device includes:
  • the conduction parameter includes a conduction duration and a conduction mode
  • the control conduction module gates the first circuit inside thereof to enable the patch electrode to collect the electromyogram signal of the preset human body position during the conduction time, and collects the The EMG signal is uplinked through the wire, and the chip electrode is connected to the port of the conduction module through the wire;
  • the conduction module is controlled to gate a second circuit therein to enable the patch electrode to output an electrical stimulation signal to the preset human body position during the conduction time period.
  • the electrical stimulation signal is transmitted to the patch electrode through the wire.
  • Another object of the embodiments of the present invention is to provide a data transmission device for a wearable device, including:
  • a first acquiring unit configured to acquire a data packet, and parse out a conduction parameter carried in the data packet, where the conduction parameter includes a conduction duration and a conduction mode;
  • the collecting unit is configured to: if the conducting mode is the collecting mode, the control conducting module gates the first circuit therein to enable the patch electrode to collect the electromyogram signal of the preset human body position during the conducting time And collecting the collected myoelectric signal through the wire for uplink transmission, and the patch electrode is connected to the port of the conduction module through the wire;
  • a feedback unit configured to: if the conduction mode is a feedback mode, control the conduction module to gate a second circuit therein to enable the patch electrode to be within the conduction duration to the preset human body The position outputs an electrical stimulation signal that is transmitted through the lead to the patch electrode.
  • a conductive module is disposed on the wearable device, and the parsing process is performed on the data packet, so that the continuity of the conduction module can be accurately controlled based on the conduction parameter carried in the data packet.
  • the circuit ensures that the patch electrode can be used to collect the myoelectric signal when the first circuit is gated, and the patch electrode can be used to output the electrical stimulation signal when the second circuit is gated. Since the patch electrodes transmit the myoelectric signal and the electrical stimulation signal through the same wire, the multifunctional multiplexing of the wire and the patch electrode is realized. Therefore, it is not necessary to arrange the collecting electrode and the feedback electrode at each position of the smart sportswear, which reduces the number of connecting wires on the smart sportswear, and ensures that the smart sportswear can achieve better stretching effect during use.
  • FIG. 1 is a flowchart of an implementation of a data transmission method for a wearable device according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram of a logical connection relationship between a control module, a conduction module, and a patch electrode according to Embodiment 1 of the present invention
  • FIG. 3 is a flowchart of an implementation of a data transmission method for a wearable device according to Embodiment 2 of the present invention.
  • FIG. 4 is a flowchart of an implementation of a data transmission method for a wearable device according to Embodiment 3 of the present invention.
  • FIG. 5 is a flowchart of an implementation of a data transmission method for a wearable device according to Embodiment 4 of the present invention.
  • FIG. 6 is a flowchart of an implementation of a data transmission method for a wearable device according to Embodiment 5 of the present invention.
  • FIG. 7 is a structural block diagram of a data transmission device for a wearable device according to Embodiment 7 of the present invention.
  • the wearable device can be a wearable smart fitness garment, which can be a garment or a pants made of a flexible fabric, and a plurality of patch electrodes are embedded in the side of the flexible fabric close to the human skin.
  • the patch electrodes are distributed at different locations so that after the user wears the smart fitness suit, each patch electrode can be attached to each of the moving muscle groups of the user's body.
  • a control module and one or more conduction modules are also embedded, and each of the patch electrodes is respectively connected to a conduction module through a wire.
  • the conduction module is communicatively connected to the main control module, and the conduction module is also integrated into the control module.
  • the above-described patch electrodes include, but are not limited to, a fabric electrode, a rubber electrode, a gel electrode, and the like.
  • FIG. 1 is a flowchart showing an implementation process of an electromyogram signal collection method according to an embodiment of the present invention. As shown in FIG. 1 , the method includes steps S101 to S103, which are described in detail as follows:
  • S101 Acquire a data packet and parse out a conduction parameter carried in the data packet, where the conduction parameter includes a conduction duration and a conduction mode.
  • control module can perform data interaction with the remote terminal device.
  • the terminal device internally runs an application client for use with the wearable device, which can send the pre-generated data packet to the control module on the wearable device. Therefore, the control module can acquire one or more data packets at any one time, and each data packet corresponds to a different conduction module.
  • the control module parses and processes each received data packet, and extracts the conduction parameters carried in the data packet.
  • the conduction parameter is used to control the specific gating mode of each circuit in the conduction module from the current time.
  • the conduction parameters include the conduction duration and the conduction mode.
  • the conduction mode is one of an acquisition mode and a feedback mode.
  • the control conduction module gates the first circuit inside thereof to enable the patch electrode to collect the EMG signal of the preset human body position during the conduction time, and The acquired myoelectric signal is transmitted upstream through a wire through which the patch electrode is connected to a port of the conduction module.
  • the control module is in the plurality of conduction modules of the communication connection.
  • the conduction module A is determined, and the electronic contacts of the single-pole double-throw analog switch in the conduction module A are connected to the electronic contacts of the first circuit in the conduction module A.
  • the first circuit is a circuit having an electromyography signal acquisition function. At this time, the output port of the conduction module A is connected to the first circuit and the control module in the conduction module A.
  • the chip electrode Since the output port of the conduction module A is fixedly connected to a chip electrode on the wearable device through a wire, the chip electrode will be electrically connected to the first circuit and the control module.
  • the patch electrode can continuously collect the myoelectric signal derived from the preset human body position, and the acquired myoelectric signal is transmitted in the uplink through the above-mentioned wire in real time, so that the collected myoelectric signal can be transmitted to the control module.
  • the control module triggers the timing function to obtain the timing values at subsequent times. If the timing value reaches a conduction time at a certain time, the control module controls the electronic contact of the single-pole double-throw analog switch in the conduction module A to remain disconnected from the electronic contact on the first circuit, thereby ensuring the conduction time. After that, the conduction module A no longer strobes the first circuit inside it.
  • the conduction control of the circuit in the conduction module is achieved by using a single-pole double-throw analog switch to strobe different circuits in the conduction module.
  • the embodiment of the present invention can also use an analog discrete component, a triode, a field effect transistor, and an analog switch integrated circuit based on a high voltage and low impedance to strobe the internal circuit of the conduction module. It is not limited here.
  • the conduction module is controlled to gate a second circuit therein to enable the patch electrode to output power to the preset human body position during the conduction duration.
  • a stimulation signal that is transmitted through the wire to the patch electrode.
  • the conduction module corresponding to the data packet is the conduction module A, and the control module determines the conduction module A in the plurality of conduction modules of the communication connection, and is turned on.
  • the electronic contact of the single-pole double-throw analog switch in module A is connected to the electronic contact of the second circuit in the conduction module A.
  • the second circuit is a feedback circuit with an electrical stimulation function.
  • the output port of the conduction module A is connected to the second circuit in the conduction module A and the control module. Since the output port of the pass module A is connected to a chip electrode on the wearable device via a wire, the chip electrode will be electrically connected to the second circuit and the control module.
  • the patch electrode can receive an electrical stimulation signal generated by the control module based on the wire connected to the conduction module A, so that the patch electrode can continuously power the body position attached thereto according to the electrical stimulation signal. Stimulation simulation.
  • the control module triggers the timing function to obtain the timing values at subsequent times. If the timing value at a certain time reaches the on-time, the control module controls the electronic contact of the single-pole double-throw analog switch in the conduction module A to remain disconnected from the electronic contact on the second circuit, so that the conduction time is longer, The pass module A no longer strobes its internal second circuit.
  • Figure 2 illustrates the logical connection relationship between the control module, the conduction module, and the patch electrodes on the wearable device.
  • the number of the conductive modules on the wearable device is two, and the plurality of conductive modules are integrated in one microchip.
  • the control module selects one or two conduction modules to be connected based on the data packets it obtains.
  • a first circuit for controlling the patch electrode for collecting myoelectric signals and a second circuit for controlling the patch electrodes for electrical stimulation feedback are disposed inside each of the conduction modules.
  • the control module determines that the electronic contact of the single-pole double-throw analog switch needs to be in contact with the electronic contact of the circuit, thereby passing the conduction module and the patch electrode. Between the same wire, the control module can output an electrical stimulation signal or receive an EMG signal from the patch electrode.
  • a conductive module is disposed on the wearable device, and the parsing process is performed on the data packet, so that the continuity of the conduction module can be accurately controlled based on the conduction parameter carried in the data packet.
  • the circuit ensures that the patch electrode can be used to collect the myoelectric signal when the first circuit is gated, and the patch electrode can be used to output the electrical stimulation signal when the second circuit is gated. Since the patch electrodes transmit the myoelectric signal and the electrical stimulation signal through the same wire, the multifunctional multiplexing of the wire and the patch electrode is realized. Therefore, it is not necessary to arrange the collecting electrode and the feedback electrode at each position of the smart sportswear, which reduces the number of connecting wires on the smart sportswear, and ensures that the smart sportswear can achieve better stretching effect during use.
  • the processing procedure when the control module receives the myoelectric signal transmitted by the patch electrode is further limited, as shown in FIG. 3, in the above 102. After that, it also includes:
  • S104 Analyze the myoelectric signal collected during the conduction duration to obtain a muscle strength level corresponding to the myoelectric signal.
  • the patch electrode will continuously collect the myoelectric signal of the preset human body position, and transmit the collected myoelectric signal to the control module through the wire, so the control module will obtain the guide.
  • the control module Since the electromyographic signals received by the control module during the on-time are respectively derived from different patch electrodes on the wearable device, the control module turns on the patch based on the source identifier of the patch electrode carried by the myoelectric signal.
  • the myoelectric signal obtained in the duration is divided into N signals, and N is the number of patch electrodes in the state of collecting myoelectric signals during the conduction time. Since the moving muscle group corresponding to the position of the human body attached to each patch electrode is also preset in the control module, the control module can determine the moving muscle group corresponding to each of the EMG signals.
  • the control module analyzes the average myoelectric amplitude of each myoelectric signal during the on-time, and reads the maximum value of the myoelectric amplitude of the moving muscle group corresponding to the myoelectric signal. After calculating the ratio of the average myoelectric amplitude to the maximum value of the myoelectric amplitude, the ratio is output as the percentage of the myoelectric amplitude corresponding to the myoelectric signal.
  • the muscle strength level corresponding to each EMG signal is determined according to the percentage of the moving muscle group and the myoelectric amplitude corresponding to each EMG signal.
  • the muscle strength rating table contains multiple muscle strength levels, each of which corresponds to a percentage of myoelectric amplitude.
  • the control module After determining the percentage of the myoelectric amplitude corresponding to each EMG signal, the control module reads the muscle force level relationship table to determine which percentage of the EMG amplitude percentage belongs to the myoelectric amplitude percentage interval, and the muscle The muscle strength level corresponding to the electrical amplitude percentage interval is judged as the muscle strength level of the myoelectric signal.
  • Table 1 is a comparison table of muscle strength levels preset in the terminal device, as follows:
  • the control module can determine from Table 1 that 25% belongs to the second myoelectric amplitude percentage interval, so that the muscle strength level II corresponding to the myoelectric amplitude percentage interval is determined as the muscle strength level corresponding to the myoelectric signal.
  • S105 Determine whether the muscle strength level is lower than a preset standard muscle strength level.
  • the control module when the control module confirms the moving muscle groups corresponding to each EMG signal through S104, the moving muscle groups are input into the data analysis model to obtain the optimal power level of the sports muscle group, and
  • the optimal power level output is the standard muscle strength level of the EMG signal.
  • the control module compares the muscle strength level of each EMG signal with the standard muscle strength level corresponding to the EMG signal, and determines whether the muscle strength level is lower than the standard muscle strength level.
  • S106 If the muscle strength level is lower than a preset standard muscle strength level, acquiring a data packet carrying the electrical stimulation frequency, the conduction duration, and the feedback mode, and the data packet matches the muscle strength level.
  • the control module sends a data packet acquisition request to the application client on the terminal device, and the data packet acquisition request carries the road
  • the electrophoresis signal corresponds to the conduction module identification and carries parameters such as muscle strength level and standard muscle strength level.
  • the terminal device determines, according to the data packet acquisition request, that the current user's muscle strength level is too low, and therefore generates a data packet including a conduction parameter such as an electrical stimulation frequency, a conduction duration, a feedback mode, and a conduction module identifier, and the data
  • the various conduction parameters in the packet correspond to the muscle strength levels in the packet acquisition request. Among them, when the difference between the muscle strength level and the standard muscle strength level is larger, the electric stimulation frequency is higher and the conduction time is longer.
  • the terminal device transmits the generated data packet to the control module, so that the control module receives the data packet carrying the electrical stimulation frequency, the conduction duration, and the feedback mode.
  • S107 Control, according to the data packet, the conduction module to gate a second circuit therein to enable the patch electrode to output to the preset human body position at the electrical stimulation frequency during the conduction duration Electrical stimulation signal.
  • the control module parses the received data packet, and extracts the conduction parameter carried in the data packet, so as to determine the conduction module A corresponding to the continuity module identifier in the conduction parameter and determine the conduction mode as The feedback mode, therefore, the control module determines the conduction module A in the plurality of conduction modules of the communication connection, and connects the electronic contact of the single-pole double-throw analog switch in the conduction module A with the second circuit of the conduction module A The electronic contacts are switched on.
  • the control module can control the patch electrode A connected to the conduction module A to output an electrical stimulation signal to the human body position attached thereto according to the electrical stimulation frequency carried by the data packet.
  • the output duration of the electrical stimulation signal is the duration of the conduction carried by the data packet.
  • the control module may receive different data packets at any time after the conduction time, so that the corresponding data packet is enabled.
  • the patch electrode can output different electrical stimulation signals or acquire myoelectric signals from this moment.
  • the embodiment of the present invention is suitable for a scene in which a user performs a rehabilitation training exercise using a wearable device.
  • the muscle electrical signal generated during the lifting process of the arm is collected and analyzed, and can be determined. Whether the muscle strength level corresponding to the arm lifting action reaches the preset standard muscle strength level. If the muscle strength level is not up to standard, the control module can control the conduction module to gate the second circuit inside according to the obtained data packet, so that the patch electrode can electrically stimulate the user's arm, thereby improving The exertion effect of the user's arm can promote the blood circulation of the user and play a certain health care role.
  • S101 includes step S201; after S102, step S202 to step S206 are further included, and the implementation principles of each step are as follows:
  • S201 Acquire a first data packet carrying an initialization tag, and parse the first conduction parameter carried in the first data packet, where the first conduction parameter includes a first conduction duration and the collection mode.
  • the control module will receive a plurality of data packets during the entire rehabilitation training movement of the user, and each time receiving the data packet carrying the acquisition mode, the electromyogram signal uploaded by the patch electrode during the conduction time period will be received. As time passes, more and more EMG signals are collected, so it is difficult for the control module to store all acquired EMG signals.
  • the control module stores the myoelectric signal collected by the patch electrode within the conduction duration corresponding to the first data packet.
  • the terminal device In order to accurately identify which data packet is the first data packet, when the user issues a rehabilitation training motion execution instruction in the application client, the terminal device generates a first data packet carrying the initialization token, and the first data packet The conduction mode is the acquisition mode.
  • the terminal device transmits the first data packet to the control module, so that the control module parses the received first data packet.
  • the control module determines that the first data packet is the first data packet received during a rehabilitation training motion, and identifies that the conduction time is the first conduction duration, and the conduction mode is the acquisition mode. Therefore, the control module executes the above S102.
  • the voice prompt information is sent to prompt the user to perform a warm-up action according to the video data displayed by the application client.
  • S202 Store the first myoelectric signal collected in the first conduction duration.
  • the control module receives the myoelectric signal uploaded by the patch electrode within the first conduction time period, and stores the myoelectric signal as a reference signal.
  • S203 At the end of the rehabilitation training, acquiring a second data packet carrying the termination marker, and parsing a second conduction parameter carried in the second data packet, where the second conduction parameter includes a second conduction duration And the acquisition mode.
  • control module does not receive any data packet within the preset duration, it is determined that the rehabilitation training session ends, and a second data packet acquisition request carrying the termination flag is sent to the application client.
  • the application client After receiving the second data packet acquisition request, the application client generates a second data packet carrying the second conduction parameter, where the second data packet has a second conduction time and the conduction mode is an acquisition mode. The application client returns the second packet carrying the termination tag to the control module.
  • S204 Send a relaxation prompt message according to the second data packet carrying the termination mark, and control the conduction module to gate the first circuit therein to enable the patch electrode to be collected during the second conduction time period.
  • the myoelectric signal of the human body position is preset, and the collected myoelectric signal is transmitted through the wire for uplink transmission.
  • the control module determines that the second data packet it receives is the last data packet received during a rehabilitation training motion, and identifies that the conduction time is the second conduction duration, and the conduction mode is the acquisition mode. Therefore, the control module executes the above S102.
  • control module executes the above S102, the voice prompt information is issued to prompt the user to perform the muscle relaxation action. Then the control module will get the EMG signal generated by the user under resting conditions.
  • S205 Store the second myoelectric signal collected in the second conduction duration.
  • the control module receives the myoelectric signal uploaded by the patch electrode within the second conduction time period, and stores the myoelectric signal as a comparison signal.
  • the control module reads the first electromyogram signal and the second electromyogram signal stored during the rehabilitation training exercise to process the first electromyogram signal and the second electromyogram signal by a preset algorithm to obtain a rehabilitation
  • the physiological parameters of the user before and after the training are trained, and then the changes of the physiological parameters are analyzed to determine the rehabilitation and health effects of the user.
  • the muscle strength level and the muscle tendon degree of the user before performing the rehabilitation training exercise can be obtained by a preset algorithm; according to the second electromyography signal, the user can perform the rehabilitation through a preset algorithm. Train muscle strength and muscle spasm after exercise. Based on the level of muscle strength and the degree of muscle spasm, it can be confirmed whether the user has a better rehabilitation and health care effect during the rehabilitation training.
  • the training effect evaluation report is used for characterization, and the physiological index parameters obtained after the completion of the rehabilitation training exercise are compared with the physiological index parameters in the initial state, which aspects are improved, and which aspects are not improved. For example, when the muscle strength level is changed from the I level to the third level, the training effect evaluation report shows that the muscle strength level is restored from the first level to the third level, and there is a significant improvement.
  • control module can distinguish the start and end time of the rehabilitation training motion process according to the mark carried by the data packet, thereby determining the myoelectric signal to be stored.
  • the process of transmitting the myoelectric signal on the patch electrode is further limited.
  • the method further includes:
  • S301 Acquire the myoelectric signal collected during the on-time and the motion video data of the user within the on-time.
  • the control module when the control module receives the myoelectric signal uploaded by the patch electrode, the control module sends the myoelectric signal to the application client of the terminal device to trigger the terminal device to start the camera and start executing the video. Recording. If the application client continues to receive the myoelectric signal during the on-time, the terminal device will continue to perform video recording, and thus the motion video data when the user performs the rehabilitation training action within the conduction time period can be obtained.
  • the terminal device transmits the motion video data to a control module of the wearable device.
  • S302 Perform parsing processing on the myoelectric signal and the motion video data to determine whether an action amplitude of an action performed by the user is the same as a preset standard motion amplitude, and determine an average myoelectric amplitude of the user. Whether it is a preset standard EMG amplitude range.
  • control module performs image recognition processing on the multi-frame video image in the motion video data collected during the on-time to identify the action amplitude of the action performed by the user during the on-time and determine the video image.
  • the control module inputs the action into the data analysis model to derive the standard action range and the standard myoelectric amplitude range that the action should achieve.
  • the standard motion amplitude represents a reference value corresponding to the maximum distance of the limb's active distance when the user performs the rehabilitation training action;
  • the standard myoelectric amplitude interval indicates the corresponding electromyographic signal generated by the user when performing the rehabilitation training action Refer to the range of myoelectric amplitude.
  • the control module analyzes the myoelectric signals collected during the on-time to determine the average myoelectric amplitude and the myoelectricity of the myoelectric signal during the on-time.
  • the motor muscle group corresponding to the signal.
  • the control module reads a standard myoelectric amplitude interval corresponding to the athletic muscle group.
  • the control module determines whether the motion amplitude corresponding to the motion video data is the same as the standard motion amplitude and determines whether the average myoelectric amplitude of the myoelectric signal belongs to a preset standard myoelectric amplitude interval.
  • the control module requests the application client to generate a third data packet whose conduction mode is the feedback mode, and receives the third data packet.
  • the conduction parameter of the third data packet further includes an electrical stimulation frequency, a shock intensity, and a conduction module identifier.
  • the control module parses the third data packet received by the control module, and extracts the conduction parameter carried in the third data packet, so that the conduction mode can be determined as the feedback mode. Therefore, step S103 is repeatedly performed.
  • the control module requests the application client to generate a fourth data packet whose conduction mode is the acquisition mode, and receives the fourth data packet.
  • the conduction parameter of the fourth data packet includes an acquisition mode, an acquisition frequency, and a continuity module identifier.
  • the control module parses the fourth data packet received by the control module, and extracts the conduction parameter carried in the fourth data packet, so that the conduction mode can be determined as the acquisition mode.
  • the control module repeatedly performs step S102, the user is prompted to perform the same rehabilitation training action to collect the electromyogram signal generated by the user during the rehabilitation training.
  • control module Each time the control module receives the myoelectric signal transmitted upstream of the patch electrode, it returns to steps S301 and S302. According to the myoelectric signal collected during the last on-time, if the control module determines that the action amplitude of the action performed by the user is still different from the preset standard action amplitude, or the average myoelectric amplitude of the user is still not pre-
  • the standard myoelectric amplitude interval is set, and the application client is again requested to generate a third data packet whose conduction mode is the feedback mode, and receives the third data packet.
  • the control module requests the application client to generate again.
  • the conduction mode is the fourth data packet of the acquisition mode. While performing step S102, the control module prompts the user to perform the same rehabilitation training action to collect the electromyogram signals generated by the user during the rehabilitation training again.
  • the control module each time the control module receives the EMG signal transmitted by the patch electrode, it will return to steps S301 and S302. According to the myoelectric signal collected during the last on-time, if the control module determines that the action amplitude of the action performed by the user is still different from the preset standard action amplitude, or the average myoelectric amplitude of the user is still not pre-
  • the set of the standard myoelectric amplitude interval continues to acquire a set of third data packets and a fourth data packet, that is, alternately acquiring the third data packet carrying the feedback mode and the fourth data packet until the action amplitude of the action performed by the user Still, the same as the preset standard motion amplitude, and the user's average myoelectric amplitude belongs to the preset standard myoelectric amplitude interval, the third data packet and the fourth data packet are stopped.
  • the electric shock intensity carried by the third data packet acquired by the control module is different from the electric shock intensity carried by the third data packet acquired last time.
  • S305 Determine, according to the shock intensity carried by the last acquired third data packet, a muscle strength level evaluation value corresponding to the shock intensity, and output the muscle strength level evaluation value.
  • the control module reads the shock intensity carried by the third data packet acquired last time. Determining the muscle strength level corresponding to the shock intensity carried by the third data packet according to the correspondence between the electric shock intensity and the muscle strength level evaluation value, and sending the muscle strength level evaluation value to the application client, Enables the application client to display the muscle strength level assessment value for reference to the medical staff.
  • the user can promptly complete the rehabilitation training action when the shock intensity reaches a certain value, thereby determining the user's motion,
  • the strength is up to standard
  • the process of acquiring the third data packet and the fourth data packet is further limited.
  • the foregoing S303 includes:
  • S402 Based on the last acquired electromyogram signal, if the action amplitude of the action performed by the user reaches a preset first percentage threshold, or the average myoelectric amplitude of the user reaches a preset second The percentage threshold is obtained according to the historical shock intensity carried by the third data packet obtained in the previous time, and the third data packet whose electric shock intensity is less than the historical electric shock intensity is obtained, wherein the conduction parameter carried by the third data packet includes And a feedback mode; and after the end of the conduction time carried by the third data packet, acquiring the fourth data packet carrying the collection mode.
  • the control module determines that the action amplitude of the action performed by the user is still different from the preset standard action amplitude, or the average myoelectric amplitude of the user is still not pre-
  • the standard myoelectric amplitude interval is set, before the control module requests the application client to generate the third data packet, it is also determined whether the action amplitude of the action performed by the user reaches the preset first percentage threshold and judges Whether the average myoelectric amplitude of the user reaches a preset second percentage threshold.
  • the control module If the action amplitude of the action performed by the user does not reach the preset first percentage threshold, or the average myoelectric amplitude of the user does not reach the preset second percentage threshold, then according to the result of the determination, the control module It is determined that the last shock intensity is too small and the preset rehabilitation effect is not achieved. Therefore, the control module first reads the shock intensity carried by the third packet obtained last time to generate a third data packet in the requesting application client. The shock intensity and the judgment result are sent to the application client together.
  • the application client When the application client generates the third data packet whose conduction mode is the feedback mode, according to the electric shock intensity and the judgment result uploaded by the control module, the electric shock intensity is increased by a preset step size, and the increased electric shock intensity is increased. After being set as an electrical stimulation parameter in the third data packet, it is sent to the control module.
  • the control module If the action amplitude of the action performed by the user reaches a preset first percentage threshold, or the average myoelectric amplitude of the user reaches a preset second percentage threshold, according to the result of the determination, the control module It is determined that the last electrical stimulation feedback to the human body position has achieved the preset rehabilitation effect, and the user's muscle strength is gradually recovered. At this time, the control module first reads the shock intensity carried by the third data packet obtained last time, When the requesting application client generates the third data packet, the shock intensity and the determination result are sent to the application client.
  • the application client When the application client generates the third data packet whose conduction mode is the feedback mode, according to the electric shock intensity and the judgment result uploaded by the control module, the electric shock intensity is reduced by a preset step size, and the reduced electric shock intensity is reduced. After being set as an electrical stimulation parameter in the third data packet, it is sent to the control module.
  • S403 Acquire a fourth data packet carrying the collection mode after the end of the conduction time carried by the third data packet.
  • the control module when the action amplitude of the action performed by the user is different from the preset standard action amplitude, or the average myoelectric amplitude of the user does not belong to the preset standard myoelectric amplitude range, the control module needs The third data packet is acquired multiple times, in order to avoid the problem that the user still cannot accurately complete the rehabilitation training action by acquiring the third data packet with the same electric shock intensity every time and acquiring the third data packet with the electric shock intensity being too large or too small. Uploading the shock intensity in the third data packet obtained last time to the application client, so that the application client can purposefully gradually increase or decrease the third data generated according to the user's muscle strength recovery situation.
  • the shock intensity of the package ensures that the actions performed by the user can gradually reach the standard, and the evaluation efficiency of the evaluation value of the muscle strength level is improved.
  • the size of the sequence numbers of the foregoing processes does not mean the order of execution sequence, and the execution order of each process should be determined by its function and internal logic, and should not be implemented in the embodiment of the present invention. Form any limit.
  • FIG. 7 is a structural block diagram of a data transmission device for a wearable device provided by an embodiment of the present invention. For the convenience of explanation, only the parts related to the present embodiment are shown.
  • the data transmission device includes:
  • the first obtaining unit 71 is configured to acquire a data packet and parse the conduction parameter carried in the data packet, where the conduction parameter includes a conduction duration and a conduction mode.
  • the collecting unit 72 is configured to: if the conductive mode is the acquisition mode, control the conduction module to gate the first circuit therein to enable the patch electrode to collect the preset human body position during the conduction time And transmitting the collected EMG signal through the wire, and the chip electrode is connected to the port of the conduction module through the wire.
  • the feedback unit 73 is configured to: if the conductive mode is a feedback mode, control the conduction module to gate a second circuit therein to enable the patch electrode to be in the preset duration
  • the body position outputs an electrical stimulation signal that is transmitted through the wire to the patch electrode.
  • the data transmission device further includes:
  • the first analyzing unit is configured to perform an analytical process on the myoelectric signal collected during the conduction duration to obtain a muscle strength level corresponding to the myoelectric signal.
  • the judging unit is configured to judge whether the muscle strength level is lower than a preset standard muscle strength level.
  • a second acquiring unit configured to acquire a data packet carrying an electrical stimulation frequency, a conduction duration, and the feedback mode, if the muscle strength level is lower than a preset standard muscle strength level, and the data packet is Muscle strength levels match.
  • control unit configured to control, according to the data packet, the conduction module to gate a second circuit therein to enable the patch electrode to be preset to the preset frequency during the conduction duration
  • the human body position outputs an electrical stimulation signal.
  • the first obtaining unit 71 includes:
  • a first acquiring sub-unit configured to acquire a first data packet carrying an initialization tag, and parse a first conduction parameter carried in the first data packet, where the first conduction parameter includes a first conduction time And the acquisition mode.
  • the data transmission device further includes:
  • the first storage unit is configured to store the first myoelectric signal collected during the first conduction duration.
  • a third acquiring unit configured to acquire a second data packet carrying the termination flag at the end of the rehabilitation training, and parse the second conduction parameter carried in the second data packet, where the second conduction parameter includes The second conduction time and the acquisition mode.
  • a prompting unit configured to issue a relaxation prompt message according to the second data packet carrying the termination mark, and control the conduction module to gate the first circuit therein to enable the patch electrode to be in the second conduction
  • the myoelectric signal of the preset human body position is collected within the duration, and the collected myoelectric signal is transmitted through the wire for uplink transmission.
  • the second storage unit is configured to store the second myoelectric signal collected during the second conduction duration.
  • An output unit configured to read the first electromyogram signal and the second electromyogram signal, and perform a training effect evaluation on the user according to the first electromyogram signal and the second electromyogram signal to output Training effectiveness assessment report.
  • the data transmission device further includes:
  • a fourth acquiring unit configured to acquire the myoelectric signal collected during the on-time and the motion video data of the user within the on-time.
  • a second parsing unit configured to perform parsing processing on the myoelectric signal and the motion video data to determine whether an action amplitude of an action performed by the user is the same as a preset standard motion amplitude, and determining the user's Whether the average myoelectric amplitude belongs to the preset standard myoelectric amplitude range.
  • a fifth obtaining unit configured to: if the action amplitude of the action performed by the user is different from a preset standard action amplitude, or the average myoelectric amplitude of the user does not belong to a preset standard myoelectric amplitude range, And acquiring, in sequence, the third data packet carrying the feedback mode and the fourth data packet carrying the collection mode, and returning to performing the obtaining the duration of the conduction after the end of the conduction time carried by the fourth data packet
  • the stopping unit is configured to: if the action performed by the user is performed in the same magnitude as the preset standard action amplitude, and the average myoelectric amplitude of the user belongs to a preset standard myoelectric amplitude interval.
  • the evaluation unit is configured to determine an evaluation value of the muscle strength level corresponding to the shock intensity according to the shock intensity carried by the third data packet acquired last time, and output the muscle strength level evaluation value.
  • the fifth obtaining unit includes:
  • a second obtaining subunit configured to: based on the most recently acquired electromyogram signal, if the action amplitude of the action performed by the user does not reach a preset first percentage threshold, or the average myoelectric amplitude of the user is not When the preset second percentage threshold is reached, the third data packet whose electric shock intensity is greater than the historical electric shock intensity is obtained according to the historical electric shock intensity carried by the third data packet obtained in the previous time, wherein the third data packet is obtained.
  • the conduction parameters carried include the conduction duration and the feedback mode.
  • a third obtaining subunit configured to: based on the most recently acquired electromyographic signal, if the action amplitude of the action performed by the user reaches a preset first percentage threshold, or the average myoelectric amplitude of the user reaches The preset second percentage threshold is obtained according to the historical shock intensity carried by the third data packet obtained in the previous time, and the third data packet whose electric shock intensity is less than the historical electric shock intensity is obtained, wherein the third data packet is The conduction parameter carried includes the on-time and the feedback mode; after the end of the conduction period carried in the third data packet, the fourth data packet carrying the acquisition mode is acquired.
  • a fourth acquiring subunit configured to acquire a fourth data packet carrying the collection mode after the end of the conduction time carried by the third data packet ends.
  • each functional unit and module described above is exemplified. In practical applications, the above functions may be assigned to different functional units as needed.
  • the module is completed by dividing the internal structure of the device into different functional units or modules to perform all or part of the functions described above.
  • Each functional unit and module in the embodiment may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit, and the integrated unit may be hardware.
  • Formal implementation can also be implemented in the form of software functional units.
  • the specific names of the respective functional units and modules are only for the purpose of facilitating mutual differentiation, and are not intended to limit the scope of protection of the present application.
  • For the specific working process of the unit and the module in the foregoing system reference may be made to the corresponding process in the foregoing method embodiment, and details are not described herein again.
  • the disclosed apparatus/terminal device and method may be implemented in other manners.
  • the device/terminal device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units.
  • components may be combined or integrated into another system, or some features may be omitted or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated modules/units if implemented in the form of software functional units and sold or used as separate products, may be stored in a computer readable storage medium. Based on such understanding, the present invention implements all or part of the processes in the foregoing embodiments, and may also be completed by a computer program to instruct related hardware.
  • the computer program may be stored in a computer readable storage medium. The steps of the various method embodiments described above may be implemented when the program is executed by the processor. .
  • the computer program comprises computer program code, which may be in the form of source code, object code form, executable file or some intermediate form.
  • the computer readable medium may include any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, a read-only memory (ROM). , random access memory (RAM, Random Access Memory), electrical carrier signals, telecommunications signals, and software distribution media. It should be noted that the content contained in the computer readable medium may be appropriately increased or decreased according to the requirements of legislation and patent practice in a jurisdiction, for example, in some jurisdictions, according to legislation and patent practice, computer readable media Does not include electrical carrier signals and telecommunication signals.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Human Computer Interaction (AREA)
  • Physiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Electrotherapy Devices (AREA)

Abstract

本发明适用于可穿戴电子设备技术领域,提供了一种用于可穿戴装置的数据传输方法及设备,包括:获取数据包并解析出导通参数;若导通模式为采集模式,控制导通模块选通其内部的第一电路,以使能贴片电极在导通时长内采集人体的肌电信号,并将肌电信号通过导线进行上行传输,贴片电极通过导线与导通模块的端口连接;若导通模式为反馈模式,控制导通模块选通其内部的第二电路,以使能贴片电极在导通时长内向人体输出电刺激信号,电刺激信号通过所述导线传输至贴片电极。本发明中,贴片电极通过一根导线来传输肌电信号以及电刺激信号,实现了导线以及贴片电极的多功能复用,降低了智能运动服上的连接导线数量,保证了智能运动服能达到更好的舒展效果。

Description

用于可穿戴装置的数据传输方法及设备 技术领域
本发明属于可穿戴电子设备领域,尤其涉及一种用于可穿戴装置的数据传输方法及设备。
背景技术
随着人们生活水平的提高以及智能化运动产品的飞速发展,人们的运动健身意识也日益增强。为了让运动变得更为科学和高效,智能运动服成为了智能化运动产品的重点发展对象。并且,由于智能运动服具有较强的适用性以及便携性,近年来,智能运动服也逐渐开始应用于康复训练运动领域。
在用户执行康复训练运动的过程中,智能运动服可对人体特定部位的各种物理和/或生理参数进行监测和记录,从而为后续的运动效果分析提供物理依据,并且基于分析结果提供关于用户运动表现的反馈信息。为了实现上述参数监测以及信息反馈的效果,在智能运动服的各个位置上不得不同时布设采集电极以及反馈电极,因此,需要利用大量的导线将各个采集电极以及反馈电极分别接入主控模块,使得智能运动服上的连接导线过多。大量导线的相互缠绕极大地降低了智能运动服在使用过程中的舒展性能。
发明内容
本发明实施例提供一种用于可穿戴装置的数据传输方法及设备,旨在解决现有技术中智能运动服上的连接导线过多,从而降低了智能运动服在使用过程中的舒展性能的问题。
本发明实施例是这样实现的,一种用于可穿戴装置的数据传输方法,包括:
获取数据包并解析出所述数据包中携带的导通参数,所述导通参数包括导 通时长以及导通模式;
若所述导通模式为采集模式,控制导通模块选通其内部的第一电路,以使能贴片电极在所述导通时长内采集预设人体位置的肌电信号,并将采集到的肌电信号通过导线进行上行传输,所述贴片电极通过所述导线与所述导通模块的端口连接;
若所述导通模式为反馈模式,控制所述导通模块选通其内部的第二电路,以使能所述贴片电极在所述导通时长内向所述预设人体位置输出电刺激信号,所述电刺激信号通过所述导线传输至所述贴片电极。
本发明实施例的另一目的在于提供一种用于可穿戴装置的数据传输设备,包括:
第一获取单元,用于获取数据包并解析出所述数据包中携带的导通参数,所述导通参数包括导通时长以及导通模式;
采集单元,用于若所述导通模式为采集模式,控制导通模块选通其内部的第一电路,以使能贴片电极在所述导通时长内采集预设人体位置的肌电信号,并将采集到的肌电信号通过导线进行上行传输,所述贴片电极通过所述导线与所述导通模块的端口连接;
反馈单元,用于若所述导通模式为反馈模式,控制所述导通模块选通其内部的第二电路,以使能所述贴片电极在所述导通时长内向所述预设人体位置输出电刺激信号,所述电刺激信号通过所述导线传输至所述贴片电极。
本发明实施例中,在可穿戴装置上设置有导通模块,通过对获取到的数据包进行解析处理,能够基于数据包所携带的导通参数,准确控制导通模块选通其内部的不同电路,保证在选通第一电路时,贴片电极能够用于采集肌电信号,在选通第二电路时,贴片电极能够用于输出电刺激信号。由于贴片电极均通过同一根导线来传输肌电信号以及电刺激信号,因而实现了导线以及贴片电极的多功能复用。因此,无须在智能运动服的每一位置上同时布设采集电极以及反馈电极,降低了智能运动服上的连接导线数量,保证了智能运动服在使用过程 中能达到更好的舒展效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一提供的用于可穿戴装置的数据传输方法的实现流程图;
图2是本发明实施例一提供的控制模块、导通模块以及贴片电极之间的逻辑连接关系示意图;
图3是本发明实施例二提供的用于可穿戴装置的数据传输方法的实现流程图;
图4是本发明实施例三提供的用于可穿戴装置的数据传输方法的实现流程图;
图5是本发明实施例四提供的用于可穿戴装置的数据传输方法的实现流程图;
图6是本发明实施例五提供的用于可穿戴装置的数据传输方法的实现流程图;
图7是本发明实施例七提供的用于可穿戴装置的数据传输设备的结构框图;
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
首先,对本发明实施例中提及的可穿戴装置进行解释说明。在本发明实施 例中,可穿戴装置即可穿戴式的智能健身衣,其可以是由柔性面料制成的衣服或裤子,且在柔性面料贴近人体皮肤一侧镶嵌有多个贴片电极,每个贴片电极分布于不同的位置点,以使得用户穿上该智能健身衣之后,各个贴片电极能够贴附于用户身体的各个运动肌群。在可穿戴装置中,还镶嵌有控制模块以及一个或多个导通模块,每个贴片电极分别与一个导通模块通过一导线相连。其中,导通模块与主控模块通信相连,且导通模块还可集成于控制模块内部。上述贴片电极包括但不限于织物电极、橡胶电极以及凝胶电极等。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
实施例一
图1示出了本发明实施例提供的肌电信号采集方法的实现流程,如图1所示,该方法包括步骤S101至步骤S103,详述如下:
S101:获取数据包并解析出所述数据包中携带的导通参数,所述导通参数包括导通时长以及导通模式。
本发明实施例中,控制模块可与远程的终端设备进行数据交互。终端设备内部运行有与可穿戴装置配套使用的应用程序客户端,其能将预先生成的数据包发送至可穿戴装置上的控制模块。因此,控制模块能够在任意一个时刻获取到一个或多个数据包,且每个数据包对应不同的导通模块。
控制模块对接收到的每一数据包进行解析处理,提取出数据包中携带的导通参数。导通参数用于控制导通模块中各电路从当前时刻起的具体选通方式。导通参数包括导通时长以及导通模式等。导通模式为采集模式以及反馈模式中的一种。
S102:若所述导通模式为采集模式,控制导通模块选通其内部的第一电路,以使能贴片电极在所述导通时长内采集预设人体位置的肌电信号,并将采集到的肌电信号通过导线进行上行传输,所述贴片电极通过所述导线与所述导通模块的端口连接。
作为本发明实施例的一个具体示例,若解析出的导通模式为采集模式,数 据包所对应的导通模块为导通模块A,则控制模块在其通信连接的多个导通模块中,确定出导通模块A,并将导通模块A中单刀双掷模拟开关的电子接点与导通模块A中第一电路的电子接点接通。其中,第一电路为具有肌电信号采集功能的电路。此时,导通模块A的输出端口与导通模块A中的第一电路以及控制模块相连。由于导通模块A的输出端口通过一导线与可穿戴装置上的一贴片电极固定连接,因而该贴片电极将与第一电路以及控制模块导通。此时,贴片电极可持续采集来源于预设人体位置的肌电信号,并实时将采集得到的肌电信号通过上述导线进行上行传输,使得采集得到的肌电信号能够传输至控制模块中。
从导通模块A选通其内部的第一电路的时刻起,控制模块触发计时功能,以得到后续各个时刻的计时值。若某一时刻的计时值达到了导通时长,则控制模块控制导通模块A中单刀双掷模拟开关的电子接点与第一电路上的电子接点保持断开状态,由此保证在导通时长过后,导通模块A不再选通其内部的第一电路。
在上述示例中,通过利用单刀双掷模拟开关来选通导通模块中的不同电路,实现了对导通模块中电路的导通控制。值得注意的是,除了这一导通控制方式之外,本发明实施例还可利用模拟分立元件、三极管、场效应管以及基于高压低阻抗的模拟开关集成电路来选通导通模块的内部电路,在此不作限定。
S103:若所述导通模式为反馈模式,控制所述导通模块选通其内部的第二电路,以使能所述贴片电极在所述导通时长内向所述预设人体位置输出电刺激信号,所述电刺激信号通过所述导线传输至所述贴片电极。
若解析出的导通模式反馈模式,数据包所对应的导通模块为导通模块A,则控制模块在其通信连接的多个导通模块中,确定出导通模块A,并将导通模块A中单刀双掷模拟开关的电子接点与导通模块A中第二电路的电子接点接通。其中,第二电路为具有电刺激功能的反馈电路。此时,导通模块A的输出端口与导通模块A中的第二电路以及控制模块相连。由于导通模块A的输出端口通 过一导线与可穿戴装置上的一贴片电极连接,因而该贴片电极将与第二电路以及控制模块导通。此时,贴片电极可基于其与导通模块A相连的导线,接收由控制模块所产生的电刺激信号,从而根据该电刺激信号,贴片电极可以持续对其贴附的人体位置进行电刺激模拟。
从导通模块A选通其内部的第二电路的时刻起,控制模块触发计时功能,以得到后续各个时刻的计时值。若某一时刻的计时值达到了导通时长,则控制模块控制导通模块A中单刀双掷模拟开关的电子接点与第二电路上的电子接点保持断开状态,使得导通时长过后,导通模块A不再选通其内部的第二电路。
示例性地,图2示出了可穿戴装置上控制模块、导通模块以及贴片电极之间的逻辑连接关系。在图2中,可穿戴装置上导通模块的数量为2个,多个导通模块集成于一微型芯片中。控制模块基于其获得的数据包,选择需要连接的一个或两个导通模块。在每一导通模块的内部设置有用于控制贴片电极进行肌电信号采集的第一电路以及用于控制贴片电极进行电刺激反馈的第二电路。在一个导通模块中,根据数据包中导通参数的导通模式,控制模块判断需要将单刀双掷模拟开关的电子接点与哪一路电路的电子接点接触,从而通过导通模块以及贴片电极之间的同一导线,控制模块能够输出电刺激信号或者接收来自贴片电极所采集到的肌电信号。
本发明实施例中,在可穿戴装置上设置有导通模块,通过对获取到的数据包进行解析处理,能够基于数据包所携带的导通参数,准确控制导通模块选通其内部的不同电路,保证在选通第一电路时,贴片电极能够用于采集肌电信号,在选通第二电路时,贴片电极能够用于输出电刺激信号。由于贴片电极均通过同一根导线来传输肌电信号以及电刺激信号,因而实现了导线以及贴片电极的多功能复用。因此,无须在智能运动服的每一位置上同时布设采集电极以及反馈电极,降低了智能运动服上的连接导线数量,保证了智能运动服在使用过程中能达到更好的舒展效果。
实施例二
作为本发明的一个实施例,在上述实施例一的基础上,对控制模块接收到贴片电极所上行传输的肌电信号时的处理过程做进一步的限定,如图3所示,在上述102之后,还包括:
S104:对所述导通时长内采集到的所述肌电信号进行解析处理,以获取所述肌电信号对应的肌力等级。
由上述S102可知,在导通时长内,贴片电极将持续采集预设人体位置的肌电信号,并通过导线将采集到的肌电信号上行传输至控制模块,故控制模块将获取得到该导通时长内贴片电极所对应的人体位置的肌电信号。
由于控制模块在导通时长内所接收到的肌电信号分别来源于可穿戴装置上的不同贴片电极,因此,根据肌电信号所携带的贴片电极来源标识,控制模块将其在导通时长内所获得的肌电信号分成N路信号,N为导通时长内处于肌电信号采集状态的贴片电极的数量。由于各个贴片电极所贴附的人体位置所对应的运动肌群也已预设于控制模块中,故控制模块可确定出每一路肌电信号所对应的运动肌群。
控制模块解析出每一路肌电信号在导通时长内的平均肌电幅值,读取该路肌电信号所对应的运动肌群的肌电幅值最大值。在计算平均肌电幅值与肌电幅值最大值的比值之后,将该比值输出为该路肌电信号所对应的肌电幅值百分比。
本发明实施例中,根据每一路肌电信号所对应的运动肌群及肌电幅值百分比,确定出每一路肌电信号对应的肌力等级。
具体地,控制模块内部预设有一张肌力等级关系对照表。肌力等级关系对照表中包含有多个肌力等级,每个肌力等级与一个肌电幅值百分比区间相对应。
在确定了每一路肌电信号所对应的肌电幅值百分比后,控制模块读取肌力等级关系对照表,从而确定该肌电幅值百分比属于哪个肌电幅值百分比区间,并将该肌电幅值百分比区间所对应的肌力等级判断为该肌电信号的肌力等级。
示例性地,表1为终端设备内部预设的肌力等级关系对照表,具体如下:
表1
肌力等级 肌电幅值百分比
[0,20%]
(20%,40%]
(40%,60%]
(60%,80%]
(80%,100%]
若控制模块所获得的肌电信号所对应的运动肌群为肱三头肌,该路肌电信号的平均肌电幅值为500微伏,且肱三头肌对应的肌电幅值最大值为2000微伏,则计算出的肌电幅值百分比为25%。控制模块从表1中能够确定出25%属于第二个肌电幅值百分比区间,从而把该肌电幅值百分比区间对应的肌力等级Ⅱ确定为该肌电信号对应的肌力等级。
S105:判断所述肌力等级是否低于预设的标准肌力等级。
本发明实施例中,控制模块通过S104确认出每一路肌电信号对应的运动肌群时,将这些运动肌群输入数据分析模型,以得出该运动肌群的最佳发力等级,并将该最佳发力等级输出为该路肌电信号的标准肌力等级。
控制模块将每一路肌电信号的肌力等级与该肌电信号所对应的标准肌力等级进行对比,判断该肌力等级是否低于标准肌力等级。
S106:若所述肌力等级低于预设的标准肌力等级,则获取携带有电刺激频率、导通时长以及所述反馈模式的数据包,且该数据包与所述肌力等级匹配。
若采集得到的一路肌电信号的肌力等级低于其对应的标准肌力等级,则控制模块向终端设备上的应用程序客户端发出数据包获取请求,且该数据包获取请求携带有该路肌电信号对应的导通模块标识以及携带有肌力等级以及标准肌力等级等参数。终端设备根据该数据包获取请求,确定出当前用户的肌力等级过低,因此,生成包含有电刺激频率、导通时长、反馈模式以及导通模块标识等导通参数的数据包,且数据包中的各项导通参数与数据包获取请求中的肌力等级相对应。其中,当肌力等级与标准肌力等级的差值越大时,电刺激频率越高、导通时长越长。
终端设备将生成的该数据包传输至控制模块,以使控制模块接收到携带有电刺激频率、导通时长以及反馈模式的数据包。
S107:根据该数据包,控制所述导通模块选通其内部的第二电路,以使能所述贴片电极在该导通时长内以所述电刺激频率向所述预设人体位置输出电刺激信号。
控制模块对接收到的该数据包进行解析处理,提取出数据包中携带的导通参数,从而可以确定出导通参数中导通模块标识所对应的导通模块A以及确定出导通模式为反馈模式,因此,控制模块在其通信连接的多个导通模块中,确定出导通模块A,并将导通模块A中单刀双掷模拟开关的电子接点与导通模块A中第二电路的电子接点接通。此时,控制模块可根据数据包所携带的电刺激频率,控制导通模块A所连接的贴片电极A以该电刺激频率向其贴附的人体位置输出电刺激信号。其中,电刺激信号的输出时长为数据包所携带的导通时长。
贴片电极在导通时长内持续输出电刺激信号后,随着时间的推移,在导通时长后的任一时刻,控制模块可能会接收到不同的数据包,从而使能对应该数据包的贴片电极从该时刻起能够输出不同的电刺激信号或者采集肌电信号。
本发明实施例适用于用户使用可穿戴装置进行康复训练运动的场景之下,例如,当用户执行手臂抬举动作时,通过对该手臂抬举过程中所产生的肌电信号进行采集并分析,能够确定出手臂抬举动作所对应的肌力等级是否达到预设的标准肌力等级。若肌力等级不达标,则控制模块可以根据获取得到的数据包,控制导通模块选通其内部的第二电路,以使能贴片电极对用户的手臂进行电刺激辅助,因此,可提升用户手臂的发力效果,并且能促进用户的血液循环,起到了一定的保健作用。
实施例三
作为本发明的一个实施例,如图4所示,在实施例一的基础上,S101包括步骤S201;在S102之后,还包括步骤S202至步骤S206,各步骤实现原理具体如下:
S201:获取携带有初始化标记的第一数据包,并解析出所述第一数据包中携带的第一导通参数,所述第一导通参数包括第一导通时长以及所述采集模式。
控制模块在用户的整个康复训练运动过程中,将接收到多个数据包,每一次接收到携带采集模式的数据包时,将接收到贴片电极在导通时长内所上传的肌电信号。随着时间的推移,采集到的肌电信号越来越多,故控制模块难以存储所有采集到的肌电信号。本发明实施例中,控制模块存储第一个数据包所对应的导通时长内,贴片电极所采集到的肌电信号。
为了准确识别哪个数据包是第一个数据包,当用户在应用程序客户端中发出康复训练运动执行指令时,终端设备将生成携带有初始化标记的第一数据包,且该第一数据包的导通模式为采集模式。终端设备将第一数据包传输至控制模块,以使控制模块对接收到的第一数据包进行解析处理。此时,控制模块确定出该第一数据包为一次康复训练运动过程中所接收到的第一个数据包,并识别出其导通时长为第一导通时长,导通模式为采集模式。因此,控制模块执行上述S102。
在控制模块执行上述S102的同时,发出语音提示信息,以提示用户依照应用程序客户端所展示的视频数据,进行热身动作。
S202:对所述第一导通时长内采集到的第一肌电信号进行存储。
控制模块接收到贴片电极在第一导通时长内上传的肌电信号后,存储作为基准信号的该肌电信号。
S203:在康复训练结束时,获取携带有终止标记的第二数据包,并解析出所述第二数据包中携带的第二导通参数,所述第二导通参数包括第二导通时长以及所述采集模式。
若控制模块在预设时长内没有接收到任意数据包,则确定为康复训练运动结束,并向应用程序客户端发出携带终止标记的第二数据包获取请求。应用程序客户端接收到第二数据包获取请求后,生成携带第二导通参数的第二数据包,该第二数据包的导通时长为第二导通时长,导通模式为采集模式。应用程序客 户端将携带终止标记的第二数据包返回至控制模块。
S204:根据所述携带有终止标记的第二数据包,发出放松提示信息,并控制导通模块选通其内部的第一电路,以使能贴片电极在所述第二导通时长内采集预设人体位置的肌电信号,并将采集到的肌电信号通过导线进行上行传输。
控制模块确定出其接收到的第二数据包为一次康复训练运动过程中所接收到的最后一个数据包,并识别出其导通时长为第二导通时长,导通模式为采集模式。因此,控制模块执行上述S102。
在控制模块执行上述S102的同时,发出语音提示信息,以提示用户执行肌肉放松动作。则控制模块将得到用户在静息条件下所产生的肌电信号。
S205:对所述第二导通时长内采集到的第二肌电信号进行存储。
控制模块接收到贴片电极在第二导通时长内上传的肌电信号后,以该肌电信号作为对比信号进行存储。
S206:读取所述第一肌电信号及所述第二肌电信号,并根据所述第一肌电信号及所述第二肌电信号,对用户进行训练效果评估,以输出训练效果评估报告。
控制模块读取一次康复训练运动过程中所存储的第一肌电信号以及第二肌电信号,以通过预设的算法对该第一肌电信号以及第二肌电信号进行处理,得出康复训练运动前后用户的各项生理指标参数,进而通过分析生理指标参数的变化情况,确定出用户的康复保健效果。
例如,根据第一肌电信号,通过预设的算法可以得到用户在执行康复训练运动前的肌力等级以及肌痉挛度;根据第二肌电信号,通过预设的算法可以得到用户在执行康复训练运动后的肌力等级以及肌痉挛度。基于肌力等级以及肌痉挛度的变化大小,可确认用户在康复训练过程中是否得到了较好的康复保健效果。
本发明实施例中,训练效果评估报告用于表征,将康复训练运动完成后所得到的生理指标参数与初始状态下的生理指标参数进行对比,哪些方面有所改 善,哪些方面没有改善等。例如,当肌力等级从Ⅰ级变成了Ⅲ级,则训练效果评估报告中会显示肌力等级从Ⅰ级恢复至Ⅲ级,有明显改善。
本发明实施例中,控制模块根据数据包所携带的标记,能够区分出康复训练运动过程的起止时刻,从而确定出其所要存储的肌电信号。通过对康复训练运动过程前后所分别存储的肌电信号进行分析,能够确定用户在康复训练过程中是否达到了康复保健的效果,使得医务人员以及用户自己能够迅速了解康复情况,提高了对康复保健效果的评估效率。
实施例四
作为本发明的一个实施例,在上述实施例一的基础上,对贴片电极上行传输肌电信号后的处理过程做进一步的限定,如图5所示,在上述102之后,还包括:
S301:获取所述导通时长内采集到的所述肌电信号以及所述导通时长内用户的运动视频数据。
本发明实施例中,当控制模块接收到贴片电极所上传的肌电信号时,控制模块将该肌电信号发送至终端设备的应用程序客户端中,以触发终端设备启动摄像头并开始执行视频录制。若导通时长内应用程序客户端持续接收到肌电信号,则终端设备将持续执行视频录制,因而可得到导通时长内用户执行康复训练动作时的运动视频数据。终端设备将该运动视频数据传输至可穿戴装置的控制模块中。
S302:对所述肌电信号以及所述运动视频数据进行解析处理,以确定所述用户所执行的动作的动作幅度与预设的标准动作幅度是否相同以及确定所述用户的平均肌电幅值是否属于预设的标准肌电幅值区间。
一方面,控制模块对导通时长内所采集到的运动视频数据中的多帧视频图像进行图像识别处理,以识别出用户在导通时长内所执行的动作的动作幅度以及确定出视频图像的特征与预设的哪个动作所对应的视频图像特征相似度最高,从而将该动作确定为用户在导通时长内所执行的动作。控制模块将该动作输入 数据分析模型,以得出该动作所应当达到的标准动作幅度以及标准肌电幅值区间。其中,标准动作幅度表示用户在执行康复训练动作时,其肢体的活动距离最大值所对应的参考值;标准肌电幅值区间表示用户在执行康复训练动作时,其产生的肌电信号对应的参考肌电幅值范围。
另一方面,利用上述S104中相同的实现原理,控制模块对导通时长内所采集到的肌电信号进行解析,以确定出肌电信号在导通时长内的平均肌电幅值以及肌电信号所对应的运动肌群。根据该运动肌群,控制模块读取与该运动肌群对应的标准肌电幅值区间。
控制模块判断运动视频数据所对应的动作幅度与标准动作幅度是否相同以及判断肌电信号的平均肌电幅值是否属于预设的标准肌电幅值区间。
S303:若所述用户所执行的动作的动作幅度与预设的标准动作幅度不同,或者所述用户的平均肌电幅值不属于预设的标准肌电幅值区间,则依次获取携带所述反馈模式的第三数据包以及携带所述采集模式的第四数据包,并在第四数据包所携带的导通时长结束后,返回执行所述获取所述导通时长内所采集到的所述肌电信号以及所述导通时长内用户的运动视频数据;其中,不同时刻获取的第三数据包携带有不同的电击强度。
S304:若所述用户所执行的动作的动作幅度与预设的标准动作幅度相同,且所述用户的平均肌电幅值属于预设的标准肌电幅值区间。
当用户所执行的动作的动作幅度与预设的标准动作幅度不同,或者用户的平均肌电幅值不属于预设的标准肌电幅值区间,则表示用户执行康复训练动作时,动作不到位或者力度不达标。此时,控制模块请求应用程序客户端生成导通模式为反馈模式的第三数据包,并接收该第三数据包。其中,第三数据包的导通参数还包括电刺激频率、电击强度以及导通模块标识。
控制模块对其接收到的第三数据包进行解析处理,提取出第三数据包中携带的导通参数,从而可以确定出其导通模式为反馈模式,因此,重复执行步骤S103。
在第三数据包所对应的导通时长过后,贴片电极停止执行电刺激反馈。控制模块请求应用程序客户端生成导通模式为采集模式的第四数据包,并接收该第四数据包。其中,第四数据包的导通参数包括采集模式、采集频率以及导通模块标识。
控制模块对其接收到的第四数据包进行解析处理,提取出第四数据包中携带的导通参数,从而可以确定出其导通模式为采集模式。控制模块重复执行步骤S102的同时,提示用户执行相同的康复训练动作,以再次对用户在康复训练过程中所产生的肌电信号进行采集。
控制模块每次接收到贴片电极所上行传输的肌电信号时,将返回执行步骤S301及S302。根据最近一次导通时长内所采集得到的肌电信号,若控制模块确定当用户所执行的动作的动作幅度依然与预设的标准动作幅度不同,或者用户的平均肌电幅值依然不属于预设的标准肌电幅值区间,则再次请求应用程序客户端生成导通模式为反馈模式的第三数据包,并接收该第三数据包。根据第三数据包所对应的导通参数,在导通时长内,控制模块控制贴片电极以该第三数据包对应的电击强度完成电刺激信号输出后,控制模块再次请求应用程序客户端生成导通模式为采集模式的第四数据包。在执行步骤S102的同时,控制模块提示用户执行相同的康复训练动作,以再次对用户在康复训练过程中所产生的肌电信号进行采集。
同理,控制模块每次接收到贴片电极所上行传输的肌电信号时,将返回执行步骤S301及S302。根据最近一次导通时长内所采集得到的肌电信号,若控制模块确定当用户所执行的动作的动作幅度依然与预设的标准动作幅度不同,或者用户的平均肌电幅值依然不属于预设的标准肌电幅值区间,则继续获取一组第三数据包以及第四数据包,即交替获取携带反馈模式的第三数据包以及第四数据包,直至用户所执行的动作的动作幅度依然与预设的标准动作幅度相同,且用户的平均肌电幅值属于预设的标准肌电幅值区间时,停止获取第三数据包以及第四数据包。
其中,控制模块每次获取的第三数据包所携带的电击强度均与上一次所获取的第三数据包所携带的电击强度不同。
S305:根据最后一次获取到的第三数据包所携带的电击强度,确定该电击强度对应的肌力水平评估值,将所述肌力水平评估值进行输出。
在停止获取数据包时,控制模块读取上一次所获取到的第三数据包所携带的电击强度。根据电击强度与肌力水平评估值之间的对应关系,确定该第三数据包所携带的电击强度对应的肌力水平评估值,并将该肌力水平评估值发送至应用程序客户端,以使应用程序客户端能够对该肌力水平评估值进行展示,以提供至医务人员作为参考。
本发明实施例中,通过交替控制贴片电极进行电刺激反馈以及进行肌电信号的采集,能够在电击强度达到一定值的情况下,促使用户正确完成康复训练动作,因而在确定用户的动作、力度均达标的情况下,通过确定电击强度的大小,根据电击强度越大,用户的肌力水平评估值越小的原理,能够较为准确地判断出用户的肌力水平评估值,使得医务人员能够基于该肌力水平评估值,制订更为准确的康复保健计划。
实施例五
作为本发明的一个实施例,在上述实施例四的基础上,对第三数据包以及第四数据包的获取过程做进一步的限定,如图6所示,上述S303包括:
S401:基于最近一次采集到的肌电信号,若用户所执行的动作的动作幅度未达到预设的第一百分比阈值,或者所述用户的平均肌电幅值未达到预设的第二百分比阈值,则根据前一次所获得的第三数据包所携带的历史电击强度,获取电击强度大于该历史电击强度的第三数据包,其中,第三数据包所携带的导通参数包括导通时长以及所述反馈模式。
S402:基于最近一次采集到的肌电信号,若用户所执行的动作的动作幅度达到了预设的第一百分比阈值,或者所述用户的平均肌电幅值达到了预设的第二百分比阈值,则根据前一次所获得的第三数据包所携带的历史电击强度,获 取电击强度小于该历史电击强度的第三数据包,其中,第三数据包所携带的导通参数包括导通时长以及所述反馈模式;在该第三数据包所携带的导通时长结束后,获取携带所述采集模式的第四数据包。
根据最近一次导通时长内所采集得到的肌电信号,若控制模块确定当用户所执行的动作的动作幅度依然与预设的标准动作幅度不同,或者用户的平均肌电幅值依然不属于预设的标准肌电幅值区间,则在控制模块请求应用程序客户端生成第三数据包之前,还需判断用户所执行的动作的动作幅度是否达到了预设的第一百分比阈值以及判断用户的平均肌电幅值是否达到了预设的第二百分比阈值。
若用户所执行的动作的动作幅度未达到预设的第一百分比阈值,或者用户的平均肌电幅值未达到预设的第二百分比阈值,则根据这一判断结果,控制模块确定最近一次的电击强度过小,没有达到预设的康复效果,因此,控制模块先读取最近一次获得的第三数据包所携带的电击强度,以在请求应用程序客户端生成第三数据包时,将该电击强度以及判断结果一并发送至应用程序客户端。
应用程序客户端生成导通模式为反馈模式的第三数据包时,根据控制模块上传的电击强度以及判断结果,以预设的步长,增大该电击强度,并将增大后的电击强度设置为该第三数据包中的一电刺激参数后,下发至控制模块。
若用户所执行的动作的动作幅度达到了预设的第一百分比阈值,或者用户的平均肌电幅值达到了预设的第二百分比阈值,则根据这一判断结果,控制模块确定最近一次对人体位置的电刺激反馈达到了预设的康复效果,用户的肌力逐渐得到了恢复,此时,控制模块先读取最近一次获得的第三数据包所携带的电击强度,以在请求应用程序客户端生成第三数据包时,将该电击强度以及判断结果一并发送至应用程序客户端。
应用程序客户端生成导通模式为反馈模式的第三数据包时,根据控制模块上传的电击强度以及判断结果,以预设的步长,减小该电击强度,并将减小后的电击强度设置为该第三数据包中的一电刺激参数后,下发至控制模块。
S403:在该第三数据包所携带的导通时长结束后,获取携带所述采集模式的第四数据包。
本发明实施例中未提到的步骤的实现原理与上述各个实施例中的实现原理相同,因此不一一赘述。
本发明实施例中,在用户所执行的动作的动作幅度与预设的标准动作幅度不同,或者用户的平均肌电幅值不属于预设的标准肌电幅值区间的情况下,控制模块需要多次获取第三数据包,为了避免每次获取电击强度相同的第三数据包以及获取到电击强度过大或过小的第三数据包而导致用户依然无法准确完成康复训练动作的问题发生,将最近一次获得的第三数据包中的电击强度上传至应用程序客户端,使得应用程序客户端能够根据用户的肌力恢复情况,有目的性地逐渐增大或减小其生成的第三数据包的电击强度,由此保证了用户所执行的动作能够逐渐达标,提高了肌力水平评估值的评估效率。
应理解,在本发明实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
实施例六
对应于上文实施例所述的方法,图7示出了本发明实施例提供的用于可穿戴装置的数据传输设备的结构框图。为了便于说明,仅示出了与本实施例相关的部分。
参照图7,该数据传输设备包括:
第一获取单元71,用于获取数据包并解析出所述数据包中携带的导通参数,所述导通参数包括导通时长以及导通模式。
采集单元72,用于若所述导通模式为采集模式,控制导通模块选通其内部的第一电路,以使能贴片电极在所述导通时长内采集预设人体位置的肌电信号,并将采集到的肌电信号通过导线进行上行传输,所述贴片电极通过所述导线与所述导通模块的端口连接。
反馈单元73,用于若所述导通模式为反馈模式,控制所述导通模块选通其内部的第二电路,以使能所述贴片电极在所述导通时长内向所述预设人体位置输出电刺激信号,所述电刺激信号通过所述导线传输至所述贴片电极。
可选地,该数据传输设备还包括:
第一解析单元,用于对所述导通时长内采集到的所述肌电信号进行解析处理,以获取所述肌电信号对应的肌力等级。
判断单元,用于判断所述肌力等级是否低于预设的标准肌力等级。
第二获取单元,用于若所述肌力等级低于预设的标准肌力等级,则获取携带有电刺激频率、导通时长以及所述反馈模式的数据包,且该数据包与所述肌力等级匹配。
控制单元,用于根据该数据包,控制所述导通模块选通其内部的第二电路,以使能所述贴片电极在该导通时长内以所述电刺激频率向所述预设人体位置输出电刺激信号。
可选地,所述第一获取单元71包括:
第一获取子单元,用于获取携带有初始化标记的第一数据包,并解析出所述第一数据包中携带的第一导通参数,所述第一导通参数包括第一导通时长以及所述采集模式。
所述数据传输设备还包括:
第一存储单元,用于对所述第一导通时长内采集到的第一肌电信号进行存储。
第三获取单元,用于在康复训练结束时,获取携带有终止标记的第二数据包,并解析出所述第二数据包中携带的第二导通参数,所述第二导通参数包括第二导通时长以及所述采集模式。
提示单元,用于根据所述携带有终止标记的第二数据包,发出放松提示信息,并控制导通模块选通其内部的第一电路,以使能贴片电极在所述第二导通时长内采集预设人体位置的肌电信号,并将采集到的肌电信号通过导线进行上 行传输。
第二存储单元,用于对所述第二导通时长内采集到的第二肌电信号进行存储。
输出单元,用于读取所述第一肌电信号及所述第二肌电信号,并根据所述第一肌电信号及所述第二肌电信号,对用户进行训练效果评估,以输出训练效果评估报告。
可选地,所述数据传输设备还包括:
第四获取单元,用于获取所述导通时长内采集到的所述肌电信号以及所述导通时长内用户的运动视频数据。
第二解析单元,用于对所述肌电信号以及所述运动视频数据进行解析处理,以确定所述用户所执行的动作的动作幅度与预设的标准动作幅度是否相同以及确定所述用户的平均肌电幅值是否属于预设的标准肌电幅值区间。
第五获取单元,用于若所述用户所执行的动作的动作幅度与预设的标准动作幅度不同,或者所述用户的平均肌电幅值不属于预设的标准肌电幅值区间,则依次获取携带所述反馈模式的第三数据包以及携带所述采集模式的第四数据包,并在第四数据包所携带的导通时长结束后,返回执行所述获取所述导通时长内所采集到的所述肌电信号以及所述导通时长内用户的运动视频数据;其中,不同时刻获取的第三数据包携带有不同的电击强度。
停止单元,用于若所述用户所执行的动作的动作幅度与预设的标准动作幅度相同,且所述用户的平均肌电幅值属于预设的标准肌电幅值区间。
评估单元,用于根据最后一次获取到的第三数据包所携带的电击强度,确定该电击强度对应的肌力水平评估值,将所述肌力水平评估值进行输出。
可选地,所述第五获取单元包括:
第二获取子单元,用于基于最近一次采集到的肌电信号,若用户所执行的动作的动作幅度未达到预设的第一百分比阈值,或者所述用户的平均肌电幅值未达到预设的第二百分比阈值,则根据前一次所获得的第三数据包所携带的历 史电击强度,获取电击强度大于该历史电击强度的第三数据包,其中,第三数据包所携带的导通参数包括导通时长以及所述反馈模式。
第三获取子单元,用于基于最近一次采集到的肌电信号,若用户所执行的动作的动作幅度达到了预设的第一百分比阈值,或者所述用户的平均肌电幅值达到了预设的第二百分比阈值,则根据前一次所获得的第三数据包所携带的历史电击强度,获取电击强度小于该历史电击强度的第三数据包,其中,第三数据包所携带的导通参数包括导通时长以及所述反馈模式;在该第三数据包所携带的导通时长结束后,获取携带所述采集模式的第四数据包。
第四获取子单元,用于在该第三数据包所携带的导通时长结束后,获取携带所述采集模式的第四数据包。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现 所描述的功能,但是这种实现不应认为超出本发明的范围。
在本发明所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软 件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种用于可穿戴装置的数据传输方法,其特征在于,包括:
    获取数据包并解析出所述数据包中携带的导通参数,所述导通参数包括导通时长以及导通模式;
    若所述导通模式为采集模式,控制导通模块选通其内部的第一电路,以使能贴片电极在所述导通时长内采集预设人体位置的肌电信号,并将采集到的肌电信号通过导线进行上行传输,所述贴片电极通过所述导线与所述导通模块的端口连接;
    若所述导通模式为反馈模式,控制所述导通模块选通其内部的第二电路,以使能所述贴片电极在所述导通时长内向所述预设人体位置输出电刺激信号,所述电刺激信号通过所述导线传输至所述贴片电极。
  2. 如权利要求1所述的数据传输方法,其特征在于,在所述控制导通模块选通其内部的第一电路,以使能贴片电极在所述导通时长内采集预设人体位置的肌电信号,并将采集到的肌电信号通过导线进行上行传输之后,还包括:
    对所述导通时长内采集到的所述肌电信号进行解析处理,以获取所述肌电信号对应的肌力等级;
    判断所述肌力等级是否低于预设的标准肌力等级;
    若所述肌力等级低于预设的标准肌力等级,则获取携带有电刺激频率、导通时长以及所述反馈模式的数据包,且该数据包与所述肌力等级匹配;
    根据该数据包,控制所述导通模块选通其内部的第二电路,以使能所述贴片电极在该导通时长内以所述电刺激频率向所述预设人体位置输出电刺激信号。
  3. 如权利要求1所述的数据传输方法,其特征在于,所述获取数据包并解析出所述数据包中携带的导通参数,包括:
    获取携带有初始化标记的第一数据包,并解析出所述第一数据包中携带的第一导通参数,所述第一导通参数包括第一导通时长以及所述采集模式;
    在所述控制导通模块选通其内部的第一电路,以使能贴片电极在所述导通 时长内采集预设人体位置的肌电信号,并将采集到的肌电信号通过导线进行上行传输之后,还包括:
    对所述第一导通时长内采集到的第一肌电信号进行存储;
    在康复训练结束时,获取携带有终止标记的第二数据包,并解析出所述第二数据包中携带的第二导通参数,所述第二导通参数包括第二导通时长以及所述采集模式;
    根据所述携带有终止标记的第二数据包,发出放松提示信息,并控制导通模块选通其内部的第一电路,以使能贴片电极在所述第二导通时长内采集预设人体位置的肌电信号,并将采集到的肌电信号通过导线进行上行传输;
    对所述第二导通时长内采集到的第二肌电信号进行存储;
    读取所述第一肌电信号及所述第二肌电信号,并根据所述第一肌电信号及所述第二肌电信号,对用户进行训练效果评估,以输出训练效果评估报告。
  4. 如权利要求1所述的数据传输方法,其特征在于,在所述控制导通模块选通其内部的第一电路,以使能贴片电极在所述导通时长内采集预设人体位置的肌电信号,并将采集到的肌电信号通过导线进行上行传输之后,还包括:
    获取所述导通时长内采集到的所述肌电信号以及所述导通时长内用户的运动视频数据;
    对所述肌电信号以及所述运动视频数据进行解析处理,以确定所述用户所执行的动作的动作幅度与预设的标准动作幅度是否相同以及确定所述用户的平均肌电幅值是否属于预设的标准肌电幅值区间;
    若所述用户所执行的动作的动作幅度与预设的标准动作幅度不同,或者所述用户的平均肌电幅值不属于预设的标准肌电幅值区间,则依次获取携带所述反馈模式的第三数据包以及携带所述采集模式的第四数据包,并在第四数据包所携带的导通时长结束后,返回执行所述获取所述导通时长内所采集到的所述肌电信号以及所述导通时长内用户的运动视频数据;其中,不同时刻获取的第三数据包携带有不同的电击强度;
    若所述用户所执行的动作的动作幅度与预设的标准动作幅度相同,且所述用户的平均肌电幅值属于预设的标准肌电幅值区间;
    根据最后一次获取到的第三数据包所携带的电击强度,确定该电击强度对应的肌力水平评估值,将所述肌力水平评估值进行输出。
  5. 如权利要求4所述的数据传输方法,其特征在于,所述依次获取携带所述反馈模式的第三数据包以及携带所述采集模式的第四数据包,包括:
    基于最近一次采集到的肌电信号,若用户所执行的动作的动作幅度未达到预设的第一百分比阈值,或者所述用户的平均肌电幅值未达到预设的第二百分比阈值,则根据前一次所获得的第三数据包所携带的历史电击强度,获取电击强度大于该历史电击强度的第三数据包,其中,第三数据包所携带的导通参数包括导通时长以及所述反馈模式;
    基于最近一次采集到的肌电信号,若用户所执行的动作的动作幅度达到了预设的第一百分比阈值,或者所述用户的平均肌电幅值达到了预设的第二百分比阈值,则根据前一次所获得的第三数据包所携带的历史电击强度,获取电击强度小于该历史电击强度的第三数据包,其中,第三数据包所携带的导通参数包括导通时长以及所述反馈模式;在该第三数据包所携带的导通时长结束后,获取携带所述采集模式的第四数据包。
  6. 一种用于可穿戴装置的数据传输设备,其特征在于,包括:
    第一获取单元,用于获取数据包并解析出所述数据包中携带的导通参数,所述导通参数包括导通时长以及导通模式;
    采集单元,用于若所述导通模式为采集模式,控制导通模块选通其内部的第一电路,以使能贴片电极在所述导通时长内采集预设人体位置的肌电信号,并将采集到的肌电信号通过导线进行上行传输,所述贴片电极通过所述导线与所述导通模块的端口连接;
    反馈单元,用于若所述导通模式为反馈模式,控制所述导通模块选通其内部的第二电路,以使能所述贴片电极在所述导通时长内向所述预设人体位置输 出电刺激信号,所述电刺激信号通过所述导线传输至所述贴片电极。
  7. 如权利要求6所述的数据传输设备,其特征在于,还包括:
    第一解析单元,用于对所述导通时长内采集到的所述肌电信号进行解析处理,以获取所述肌电信号对应的肌力等级;
    判断单元,用于判断所述肌力等级是否低于预设的标准肌力等级;
    第二获取单元,用于若所述肌力等级低于预设的标准肌力等级,则获取携带有电刺激频率、导通时长以及所述反馈模式的数据包,且该数据包与所述肌力等级匹配;
    控制单元,用于根据该数据包,控制所述导通模块选通其内部的第二电路,以使能所述贴片电极在该导通时长内以所述电刺激频率向所述预设人体位置输出电刺激信号。
  8. 如权利要求6所述的数据传输设备,其特征在于,所述第一获取单元包括:
    第一获取子单元,用于获取携带有初始化标记的第一数据包,并解析出所述第一数据包中携带的第一导通参数,所述第一导通参数包括第一导通时长以及所述采集模式;
    所述数据传输设备还包括:
    第一存储单元,用于对所述第一导通时长内采集到的第一肌电信号进行存储;
    第三获取单元,用于在康复训练结束时,获取携带有终止标记的第二数据包,并解析出所述第二数据包中携带的第二导通参数,所述第二导通参数包括第二导通时长以及所述采集模式;
    提示单元,用于根据所述携带有终止标记的第二数据包,发出放松提示信息,并控制导通模块选通其内部的第一电路,以使能贴片电极在所述第二导通时长内采集预设人体位置的肌电信号,并将采集到的肌电信号通过导线进行上行传输;
    第二存储单元,用于对所述第二导通时长内采集到的第二肌电信号进行存储;
    输出单元,用于读取所述第一肌电信号及所述第二肌电信号,并根据所述第一肌电信号及所述第二肌电信号,对用户进行训练效果评估,以输出训练效果评估报告。
  9. 如权利要求6所述的数据传输设备,其特征在于,还包括:
    第四获取单元,用于获取所述导通时长内采集到的所述肌电信号以及所述导通时长内用户的运动视频数据;
    第二解析单元,用于对所述肌电信号以及所述运动视频数据进行解析处理,以确定所述用户所执行的动作的动作幅度与预设的标准动作幅度是否相同以及确定所述用户的平均肌电幅值是否属于预设的标准肌电幅值区间;
    第五获取单元,用于若所述用户所执行的动作的动作幅度与预设的标准动作幅度不同,或者所述用户的平均肌电幅值不属于预设的标准肌电幅值区间,则依次获取携带所述反馈模式的第三数据包以及携带所述采集模式的第四数据包,并在第四数据包所携带的导通时长结束后,返回执行所述获取所述导通时长内所采集到的所述肌电信号以及所述导通时长内用户的运动视频数据;其中,不同时刻获取的第三数据包携带有不同的电击强度;
    停止单元,用于若所述用户所执行的动作的动作幅度与预设的标准动作幅度相同,且所述用户的平均肌电幅值属于预设的标准肌电幅值区间;
    评估单元,用于根据最后一次获取到的第三数据包所携带的电击强度,确定该电击强度对应的肌力水平评估值,将所述肌力水平评估值进行输出。
  10. 如权利要求9所述的数据传输设备,其特征在于,所述第五获取单元包括:
    第二获取子单元,用于基于最近一次采集到的肌电信号,若用户所执行的动作的动作幅度未达到预设的第一百分比阈值,或者所述用户的平均肌电幅值未达到预设的第二百分比阈值,则根据前一次所获得的第三数据包所携带的历 史电击强度,获取电击强度大于该历史电击强度的第三数据包,其中,第三数据包所携带的导通参数包括导通时长以及所述反馈模式;
    第三获取子单元,用于基于最近一次采集到的肌电信号,若用户所执行的动作的动作幅度达到了预设的第一百分比阈值,或者所述用户的平均肌电幅值达到了预设的第二百分比阈值,则根据前一次所获得的第三数据包所携带的历史电击强度,获取电击强度小于该历史电击强度的第三数据包,其中,第三数据包所携带的导通参数包括导通时长以及所述反馈模式;在该第三数据包所携带的导通时长结束后,获取携带所述采集模式的第四数据包。
    第四获取子单元,用于在该第三数据包所携带的导通时长结束后,获取携带所述采集模式的第四数据包。
PCT/CN2018/072339 2017-05-25 2018-01-12 用于可穿戴装置的数据传输方法及设备 WO2018214531A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710377855.XA CN108209913A (zh) 2017-05-25 2017-05-25 用于可穿戴装置的数据传输方法及设备
CN201710377855.X 2017-05-25

Publications (1)

Publication Number Publication Date
WO2018214531A1 true WO2018214531A1 (zh) 2018-11-29

Family

ID=62656603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/072339 WO2018214531A1 (zh) 2017-05-25 2018-01-12 用于可穿戴装置的数据传输方法及设备

Country Status (2)

Country Link
CN (1) CN108209913A (zh)
WO (1) WO2018214531A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109567769A (zh) * 2018-11-23 2019-04-05 锦州医科大学 一种具有康复训练功能的智能运动服
CN111603673B (zh) * 2020-03-23 2023-06-20 未来穿戴技术有限公司 颈部按摩仪的调节方法及颈部按摩仪
CN112057739B (zh) * 2020-08-10 2023-06-20 未来穿戴技术有限公司 脉冲输出控制方法、装置、电子设备及计算机存储介质
CN115381455A (zh) * 2022-07-27 2022-11-25 歌尔股份有限公司 肌电信号采集装置、控制方法及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103751909A (zh) * 2014-01-23 2014-04-30 上海诺诚电气有限公司 实时反馈智能型电刺激装置及其刺激方法
WO2015051219A1 (en) * 2013-10-04 2015-04-09 Covidien Lp Wearable physiological sensing device with optical pathways
CN104721955A (zh) * 2015-03-10 2015-06-24 上海交通大学 一种盆底肌肉康复装置及其使用方法
CN106037731A (zh) * 2016-07-06 2016-10-26 湖南天羿领航科技有限公司 用于提高训练效果的智能服装及其方法
CN106669029A (zh) * 2016-08-08 2017-05-17 北京新云医疗科技有限公司 一种可穿戴式低频脉冲治疗设备及其控制方法
CN206228345U (zh) * 2016-07-06 2017-06-09 湖南天羿领航科技有限公司 用于提高训练效果的智能服装

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202822489U (zh) * 2012-02-24 2013-03-27 江苏赛达医疗科技有限公司 交互式的盆底肌肉康复装置
CN103431976B (zh) * 2013-07-19 2016-05-04 燕山大学 基于肌电信号反馈的下肢康复机器人系统及其控制方法
CN104353184A (zh) * 2014-11-03 2015-02-18 上海理工大学 肌电反馈式刺激仪
CN105031812A (zh) * 2015-06-09 2015-11-11 电子科技大学 一种肌电信号反馈的功能性电刺激闭环控制系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015051219A1 (en) * 2013-10-04 2015-04-09 Covidien Lp Wearable physiological sensing device with optical pathways
CN103751909A (zh) * 2014-01-23 2014-04-30 上海诺诚电气有限公司 实时反馈智能型电刺激装置及其刺激方法
CN104721955A (zh) * 2015-03-10 2015-06-24 上海交通大学 一种盆底肌肉康复装置及其使用方法
CN106037731A (zh) * 2016-07-06 2016-10-26 湖南天羿领航科技有限公司 用于提高训练效果的智能服装及其方法
CN206228345U (zh) * 2016-07-06 2017-06-09 湖南天羿领航科技有限公司 用于提高训练效果的智能服装
CN106669029A (zh) * 2016-08-08 2017-05-17 北京新云医疗科技有限公司 一种可穿戴式低频脉冲治疗设备及其控制方法

Also Published As

Publication number Publication date
CN108209913A (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
WO2018214531A1 (zh) 用于可穿戴装置的数据传输方法及设备
CN106037731A (zh) 用于提高训练效果的智能服装及其方法
CN102871657B (zh) 基于阻抗自适应的脑电信号采集系统及方法
CN107929942B (zh) 智能产后康复治疗装置及其实现方法和康复治疗仪
Nielsen et al. EEG based BCI-towards a better control. Brain-computer interface research at Aalborg University
CN105536146B (zh) 移动智能多通道动态电刺激下肢助行仪及方法
CN106264520A (zh) 一种神经反馈运动训练系统及方法
CN103300853B (zh) 一种基于表面肌电的诊疗系统
CN108325162B (zh) 一种步态训练方法、装置及可穿戴设备
CN1803122A (zh) 利用想象运动脑电波产生康复训练器械控制命令的方法
CN109276808A (zh) 基于视频运动捕捉的多模态脑卒中上肢康复训练系统
CN103751909A (zh) 实时反馈智能型电刺激装置及其刺激方法
CN105148404A (zh) 基于健侧肢体肌电信号触发的电刺激训练系统及训练方法
CN113035314A (zh) 一种康复治疗系统、方法、计算机设备及可读存储介质
CN106267557A (zh) 一种基于小波变换和支持向量机辨识的脑控主动上肢医疗康复训练系统
CN108209912A (zh) 一种肌电信号采集方法及装置
CN111584027B (zh) 融合复杂网络和图卷积的脑控康复系统运动想象识别系统
WO2018214521A1 (zh) 健身动作的运动效果显示方法及装置
CN104353184A (zh) 肌电反馈式刺激仪
CN103961800A (zh) 具有实时反馈功能的肢体康复诊疗系统
CN109009718A (zh) 一种基于电阻抗技术结合手势控制轮椅的方法
CN203724633U (zh) 实时反馈智能型电刺激装置
CN110880364A (zh) 云计算智能康复训练系统及方法
CN104224168B (zh) 一种智能节奏互动式肌电信号肌肉康复治疗系统
KR20210005915A (ko) 건강 검출 장치 및 관련 안마의자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806717

Country of ref document: EP

Kind code of ref document: A1