WO2018212770A1 - Transgenic macrophages, chimeric antigen receptors, and associated methods - Google Patents
Transgenic macrophages, chimeric antigen receptors, and associated methods Download PDFInfo
- Publication number
- WO2018212770A1 WO2018212770A1 PCT/US2017/033039 US2017033039W WO2018212770A1 WO 2018212770 A1 WO2018212770 A1 WO 2018212770A1 US 2017033039 W US2017033039 W US 2017033039W WO 2018212770 A1 WO2018212770 A1 WO 2018212770A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- receptor
- chimeric receptor
- macrophages
- macrophage
- amino acids
- Prior art date
Links
- 210000002540 macrophage Anatomy 0.000 title claims abstract description 219
- 238000000034 method Methods 0.000 title claims description 72
- 230000009261 transgenic effect Effects 0.000 title description 10
- 108010019670 Chimeric Antigen Receptors Proteins 0.000 title description 6
- 108700010039 chimeric receptor Proteins 0.000 claims abstract description 153
- 230000001086 cytosolic effect Effects 0.000 claims abstract description 57
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 42
- 230000004913 activation Effects 0.000 claims abstract description 39
- 239000003446 ligand Substances 0.000 claims abstract description 39
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 28
- 230000027455 binding Effects 0.000 claims abstract description 19
- 210000004322 M2 macrophage Anatomy 0.000 claims abstract description 18
- 108020003175 receptors Proteins 0.000 claims abstract description 9
- 210000004027 cell Anatomy 0.000 claims description 127
- 239000012634 fragment Substances 0.000 claims description 71
- 150000007523 nucleic acids Chemical class 0.000 claims description 43
- 239000013598 vector Substances 0.000 claims description 40
- 102100039360 Toll-like receptor 4 Human genes 0.000 claims description 36
- 102000039446 nucleic acids Human genes 0.000 claims description 34
- 108020004707 nucleic acids Proteins 0.000 claims description 34
- 108010060804 Toll-Like Receptor 4 Proteins 0.000 claims description 32
- 210000001616 monocyte Anatomy 0.000 claims description 22
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 claims description 19
- 102100029098 Hypoxanthine-guanine phosphoribosyltransferase Human genes 0.000 claims description 19
- 102000002689 Toll-like receptor Human genes 0.000 claims description 12
- 108020000411 Toll-like receptor Proteins 0.000 claims description 12
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 claims description 10
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 claims description 10
- 102000006942 B-Cell Maturation Antigen Human genes 0.000 claims description 9
- 108010008014 B-Cell Maturation Antigen Proteins 0.000 claims description 9
- 108010008629 CA-125 Antigen Proteins 0.000 claims description 9
- 108010022366 Carcinoembryonic Antigen Proteins 0.000 claims description 9
- 102100025475 Carcinoembryonic antigen-related cell adhesion molecule 5 Human genes 0.000 claims description 9
- 102000010956 Glypican Human genes 0.000 claims description 9
- 108050001154 Glypican Proteins 0.000 claims description 9
- 108050007237 Glypican-3 Proteins 0.000 claims description 9
- 102100023123 Mucin-16 Human genes 0.000 claims description 9
- 108010087914 epidermal growth factor receptor VIII Proteins 0.000 claims description 9
- 102000040430 polynucleotide Human genes 0.000 claims description 9
- 108091033319 polynucleotide Proteins 0.000 claims description 9
- 239000002157 polynucleotide Substances 0.000 claims description 9
- 102000005962 receptors Human genes 0.000 claims description 8
- 102000003735 Mesothelin Human genes 0.000 claims description 7
- 108090000015 Mesothelin Proteins 0.000 claims description 7
- 102000006601 Thymidine Kinase Human genes 0.000 claims description 7
- 108020004440 Thymidine kinase Proteins 0.000 claims description 7
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 claims description 6
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 claims description 6
- 101000998120 Homo sapiens Interleukin-3 receptor subunit alpha Proteins 0.000 claims description 6
- 101000934338 Homo sapiens Myeloid cell surface antigen CD33 Proteins 0.000 claims description 6
- 101001051490 Homo sapiens Neural cell adhesion molecule L1 Proteins 0.000 claims description 6
- 101000610551 Homo sapiens Prominin-1 Proteins 0.000 claims description 6
- 101000874179 Homo sapiens Syndecan-1 Proteins 0.000 claims description 6
- 101000851376 Homo sapiens Tumor necrosis factor receptor superfamily member 8 Proteins 0.000 claims description 6
- 108010072621 Interleukin-1 Receptor-Associated Kinases Proteins 0.000 claims description 6
- 102100033493 Interleukin-3 receptor subunit alpha Human genes 0.000 claims description 6
- 102100025243 Myeloid cell surface antigen CD33 Human genes 0.000 claims description 6
- 102100024964 Neural cell adhesion molecule L1 Human genes 0.000 claims description 6
- 102100040120 Prominin-1 Human genes 0.000 claims description 6
- 102100035721 Syndecan-1 Human genes 0.000 claims description 6
- 108010060825 Toll-Like Receptor 7 Proteins 0.000 claims description 6
- 108010060752 Toll-Like Receptor 8 Proteins 0.000 claims description 6
- 108010060818 Toll-Like Receptor 9 Proteins 0.000 claims description 6
- 102000008230 Toll-like receptor 3 Human genes 0.000 claims description 6
- 108010060885 Toll-like receptor 3 Proteins 0.000 claims description 6
- 102100039390 Toll-like receptor 7 Human genes 0.000 claims description 6
- 102100033110 Toll-like receptor 8 Human genes 0.000 claims description 6
- 102100036857 Tumor necrosis factor receptor superfamily member 8 Human genes 0.000 claims description 6
- 102100024222 B-lymphocyte antigen CD19 Human genes 0.000 claims description 5
- 101000980825 Homo sapiens B-lymphocyte antigen CD19 Proteins 0.000 claims description 5
- 102100039615 Inactive tyrosine-protein kinase transmembrane receptor ROR1 Human genes 0.000 claims description 3
- 102100039459 Myelin and lymphocyte protein Human genes 0.000 claims description 3
- 101710183596 Myelin and lymphocyte protein Proteins 0.000 claims description 3
- 108010006700 Receptor Tyrosine Kinase-like Orphan Receptors Proteins 0.000 claims description 3
- 210000002950 fibroblast Anatomy 0.000 claims description 3
- 206010073071 hepatocellular carcinoma Diseases 0.000 claims description 3
- 231100000844 hepatocellular carcinoma Toxicity 0.000 claims description 3
- 102100031153 Growth arrest and DNA damage-inducible protein GADD45 beta Human genes 0.000 claims description 2
- 102000034815 High affinity immunoglobulin epsilon receptor subunit gamma Human genes 0.000 claims description 2
- 108091010847 High affinity immunoglobulin epsilon receptor subunit gamma Proteins 0.000 claims description 2
- 101001066164 Homo sapiens Growth arrest and DNA damage-inducible protein GADD45 beta Proteins 0.000 claims description 2
- 108060003951 Immunoglobulin Proteins 0.000 claims description 2
- 101710099301 Low affinity immunoglobulin gamma Fc region receptor III-A Proteins 0.000 claims description 2
- 102100029185 Low affinity immunoglobulin gamma Fc region receptor III-B Human genes 0.000 claims description 2
- 102000018358 immunoglobulin Human genes 0.000 claims description 2
- 102100036342 Interleukin-1 receptor-associated kinase 1 Human genes 0.000 claims 2
- 102100033117 Toll-like receptor 9 Human genes 0.000 claims 2
- 230000003834 intracellular effect Effects 0.000 abstract description 6
- 210000003690 classically activated macrophage Anatomy 0.000 abstract description 5
- 235000001014 amino acid Nutrition 0.000 description 160
- 229940024606 amino acid Drugs 0.000 description 159
- 150000001413 amino acids Chemical class 0.000 description 159
- 108090000765 processed proteins & peptides Proteins 0.000 description 99
- 206010028980 Neoplasm Diseases 0.000 description 94
- 102000004196 processed proteins & peptides Human genes 0.000 description 90
- 229920001184 polypeptide Polymers 0.000 description 85
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 68
- 108091028043 Nucleic acid sequence Proteins 0.000 description 47
- 125000003729 nucleotide group Chemical group 0.000 description 45
- 230000014509 gene expression Effects 0.000 description 43
- 239000002773 nucleotide Substances 0.000 description 43
- 201000011510 cancer Diseases 0.000 description 42
- 108010076504 Protein Sorting Signals Proteins 0.000 description 40
- 230000010287 polarization Effects 0.000 description 39
- 102000004127 Cytokines Human genes 0.000 description 28
- 108090000695 Cytokines Proteins 0.000 description 28
- 108010036901 thymidine kinase 1 Proteins 0.000 description 28
- 102100034838 Thymidine kinase, cytosolic Human genes 0.000 description 27
- 210000004981 tumor-associated macrophage Anatomy 0.000 description 25
- 238000010361 transduction Methods 0.000 description 24
- 230000026683 transduction Effects 0.000 description 24
- 239000000523 sample Substances 0.000 description 23
- 235000018102 proteins Nutrition 0.000 description 22
- 238000010586 diagram Methods 0.000 description 20
- 230000004614 tumor growth Effects 0.000 description 19
- 108010065805 Interleukin-12 Proteins 0.000 description 16
- 102000013462 Interleukin-12 Human genes 0.000 description 16
- 238000006467 substitution reaction Methods 0.000 description 15
- 230000037361 pathway Effects 0.000 description 14
- 238000011160 research Methods 0.000 description 14
- 230000003321 amplification Effects 0.000 description 13
- 239000002158 endotoxin Substances 0.000 description 13
- 229920006008 lipopolysaccharide Polymers 0.000 description 13
- 238000003199 nucleic acid amplification method Methods 0.000 description 13
- 238000003786 synthesis reaction Methods 0.000 description 13
- 230000008685 targeting Effects 0.000 description 13
- 102000003814 Interleukin-10 Human genes 0.000 description 12
- 108090000174 Interleukin-10 Proteins 0.000 description 12
- 206010027476 Metastases Diseases 0.000 description 12
- 230000033115 angiogenesis Effects 0.000 description 12
- 230000006870 function Effects 0.000 description 12
- 238000001727 in vivo Methods 0.000 description 12
- 230000009401 metastasis Effects 0.000 description 12
- 229940122361 Bisphosphonate Drugs 0.000 description 11
- 238000009396 hybridization Methods 0.000 description 11
- 238000009169 immunotherapy Methods 0.000 description 11
- 208000026310 Breast neoplasm Diseases 0.000 description 10
- 102000004388 Interleukin-4 Human genes 0.000 description 10
- 108090000978 Interleukin-4 Proteins 0.000 description 10
- 150000004663 bisphosphonates Chemical class 0.000 description 10
- 230000011664 signaling Effects 0.000 description 10
- -1 CCL3 Proteins 0.000 description 9
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 9
- 102100040247 Tumor necrosis factor Human genes 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 230000004069 differentiation Effects 0.000 description 9
- 229940028885 interleukin-4 Drugs 0.000 description 9
- 230000035772 mutation Effects 0.000 description 9
- 238000003752 polymerase chain reaction Methods 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- 230000004083 survival effect Effects 0.000 description 9
- 206010006187 Breast cancer Diseases 0.000 description 8
- 108010074328 Interferon-gamma Proteins 0.000 description 8
- 125000003275 alpha amino acid group Chemical group 0.000 description 8
- 230000002491 angiogenic effect Effects 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 230000002757 inflammatory effect Effects 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 230000001404 mediated effect Effects 0.000 description 8
- 239000002679 microRNA Substances 0.000 description 8
- 230000004048 modification Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 102100031151 C-C chemokine receptor type 2 Human genes 0.000 description 7
- 101710149815 C-C chemokine receptor type 2 Proteins 0.000 description 7
- 108010057466 NF-kappa B Proteins 0.000 description 7
- 102000003945 NF-kappa B Human genes 0.000 description 7
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 7
- 101710094705 Sedoheptulokinase Proteins 0.000 description 7
- 102100029990 Sedoheptulokinase Human genes 0.000 description 7
- 230000003110 anti-inflammatory effect Effects 0.000 description 7
- 238000013459 approach Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 238000001514 detection method Methods 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 230000000770 proinflammatory effect Effects 0.000 description 7
- 230000019491 signal transduction Effects 0.000 description 7
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 6
- 206010061218 Inflammation Diseases 0.000 description 6
- 102100037850 Interferon gamma Human genes 0.000 description 6
- 108010050904 Interferons Proteins 0.000 description 6
- 108090001005 Interleukin-6 Proteins 0.000 description 6
- 102000004889 Interleukin-6 Human genes 0.000 description 6
- 108010006444 Leucine-Rich Repeat Proteins Proteins 0.000 description 6
- 238000007792 addition Methods 0.000 description 6
- 239000012620 biological material Substances 0.000 description 6
- 238000002619 cancer immunotherapy Methods 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 6
- 230000012010 growth Effects 0.000 description 6
- 210000002865 immune cell Anatomy 0.000 description 6
- 230000028993 immune response Effects 0.000 description 6
- 230000004054 inflammatory process Effects 0.000 description 6
- 210000004901 leucine-rich repeat Anatomy 0.000 description 6
- 230000037353 metabolic pathway Effects 0.000 description 6
- 230000004060 metabolic process Effects 0.000 description 6
- 239000013612 plasmid Substances 0.000 description 6
- 230000007115 recruitment Effects 0.000 description 6
- 230000001105 regulatory effect Effects 0.000 description 6
- 230000028327 secretion Effects 0.000 description 6
- 230000005751 tumor progression Effects 0.000 description 6
- 230000003612 virological effect Effects 0.000 description 6
- 108020004414 DNA Proteins 0.000 description 5
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 5
- 102000014150 Interferons Human genes 0.000 description 5
- 102000013264 Interleukin-23 Human genes 0.000 description 5
- 108010065637 Interleukin-23 Proteins 0.000 description 5
- 241000699670 Mus sp. Species 0.000 description 5
- 206010061309 Neoplasm progression Diseases 0.000 description 5
- 102100023050 Nuclear factor NF-kappa-B p105 subunit Human genes 0.000 description 5
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 5
- 239000000427 antigen Substances 0.000 description 5
- 108091007433 antigens Proteins 0.000 description 5
- 102000036639 antigens Human genes 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 5
- 239000002299 complementary DNA Substances 0.000 description 5
- 231100000517 death Toxicity 0.000 description 5
- 230000004153 glucose metabolism Effects 0.000 description 5
- 210000000987 immune system Anatomy 0.000 description 5
- 230000001939 inductive effect Effects 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 210000004881 tumor cell Anatomy 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 102100021943 C-C motif chemokine 2 Human genes 0.000 description 4
- 102000019034 Chemokines Human genes 0.000 description 4
- 108010012236 Chemokines Proteins 0.000 description 4
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 4
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 4
- 101000669447 Homo sapiens Toll-like receptor 4 Proteins 0.000 description 4
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 4
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 4
- 108090000467 Interferon-beta Proteins 0.000 description 4
- 102000006940 Interleukin-1 Receptor-Associated Kinases Human genes 0.000 description 4
- YFGBQHOOROIVKG-FKBYEOEOSA-N Met-enkephalin Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(O)=O)NC(=O)CNC(=O)CNC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 YFGBQHOOROIVKG-FKBYEOEOSA-N 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 108010042237 Methionine Enkephalin Proteins 0.000 description 4
- 108700011259 MicroRNAs Proteins 0.000 description 4
- 108010076864 Nitric Oxide Synthase Type II Proteins 0.000 description 4
- 102000011779 Nitric Oxide Synthase Type II Human genes 0.000 description 4
- 208000008589 Obesity Diseases 0.000 description 4
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 4
- 102000008235 Toll-Like Receptor 9 Human genes 0.000 description 4
- 102100032120 Toll/interleukin-1 receptor domain-containing adapter protein Human genes 0.000 description 4
- 230000000259 anti-tumor effect Effects 0.000 description 4
- 229920006317 cationic polymer Polymers 0.000 description 4
- 230000030833 cell death Effects 0.000 description 4
- 230000034994 death Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 210000004443 dendritic cell Anatomy 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- 230000008595 infiltration Effects 0.000 description 4
- 238000001764 infiltration Methods 0.000 description 4
- 230000005764 inhibitory process Effects 0.000 description 4
- 229940079322 interferon Drugs 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 238000002372 labelling Methods 0.000 description 4
- 210000000265 leukocyte Anatomy 0.000 description 4
- 208000020816 lung neoplasm Diseases 0.000 description 4
- 230000003211 malignant effect Effects 0.000 description 4
- 230000002503 metabolic effect Effects 0.000 description 4
- 108091070501 miRNA Proteins 0.000 description 4
- 210000004980 monocyte derived macrophage Anatomy 0.000 description 4
- 238000010172 mouse model Methods 0.000 description 4
- 210000000066 myeloid cell Anatomy 0.000 description 4
- 235000020824 obesity Nutrition 0.000 description 4
- 230000036284 oxygen consumption Effects 0.000 description 4
- 238000004393 prognosis Methods 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 230000002285 radioactive effect Effects 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 230000005747 tumor angiogenesis Effects 0.000 description 4
- 102000011690 Adiponectin Human genes 0.000 description 3
- 108010076365 Adiponectin Proteins 0.000 description 3
- 102100021723 Arginase-1 Human genes 0.000 description 3
- 102100025248 C-X-C motif chemokine 10 Human genes 0.000 description 3
- 108020004635 Complementary DNA Proteins 0.000 description 3
- 108010073807 IgG Receptors Proteins 0.000 description 3
- 102000009490 IgG Receptors Human genes 0.000 description 3
- 102100026720 Interferon beta Human genes 0.000 description 3
- 102000003816 Interleukin-13 Human genes 0.000 description 3
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 3
- 102000010168 Myeloid Differentiation Factor 88 Human genes 0.000 description 3
- 108010077432 Myeloid Differentiation Factor 88 Proteins 0.000 description 3
- 102000014736 Notch Human genes 0.000 description 3
- 108010070047 Notch Receptors Proteins 0.000 description 3
- 102000001253 Protein Kinase Human genes 0.000 description 3
- 108010044012 STAT1 Transcription Factor Proteins 0.000 description 3
- 102000006381 STAT1 Transcription Factor Human genes 0.000 description 3
- 102000013968 STAT6 Transcription Factor Human genes 0.000 description 3
- 108010011005 STAT6 Transcription Factor Proteins 0.000 description 3
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 3
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 230000035508 accumulation Effects 0.000 description 3
- 210000000577 adipose tissue Anatomy 0.000 description 3
- 230000005975 antitumor immune response Effects 0.000 description 3
- 230000001640 apoptogenic effect Effects 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 210000003719 b-lymphocyte Anatomy 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 239000012472 biological sample Substances 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010367 cloning Methods 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 238000000684 flow cytometry Methods 0.000 description 3
- 238000001415 gene therapy Methods 0.000 description 3
- 230000034659 glycolysis Effects 0.000 description 3
- 230000036039 immunity Effects 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 239000002502 liposome Substances 0.000 description 3
- 201000005202 lung cancer Diseases 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 230000036210 malignancy Effects 0.000 description 3
- 201000001441 melanoma Diseases 0.000 description 3
- 230000001394 metastastic effect Effects 0.000 description 3
- 206010061289 metastatic neoplasm Diseases 0.000 description 3
- 244000052769 pathogen Species 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 230000001737 promoting effect Effects 0.000 description 3
- 108060006633 protein kinase Proteins 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 230000002476 tumorcidal effect Effects 0.000 description 3
- 239000013603 viral vector Substances 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 239000013607 AAV vector Substances 0.000 description 2
- 101710129000 Arginase-1 Proteins 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- 102000030431 Asparaginyl endopeptidase Human genes 0.000 description 2
- 101710155857 C-C motif chemokine 2 Proteins 0.000 description 2
- 108091011896 CSF1 Proteins 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000003951 Erythropoietin Human genes 0.000 description 2
- 108090000394 Erythropoietin Proteins 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 102100022132 High affinity immunoglobulin epsilon receptor subunit gamma Human genes 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000858088 Homo sapiens C-X-C motif chemokine 10 Proteins 0.000 description 2
- 101000824104 Homo sapiens High affinity immunoglobulin epsilon receptor subunit gamma Proteins 0.000 description 2
- 101000946889 Homo sapiens Monocyte differentiation antigen CD14 Proteins 0.000 description 2
- 206010021143 Hypoxia Diseases 0.000 description 2
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 2
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 2
- 102000008070 Interferon-gamma Human genes 0.000 description 2
- 108050006617 Interleukin-1 receptor Proteins 0.000 description 2
- 102000019223 Interleukin-1 receptor Human genes 0.000 description 2
- 108010002386 Interleukin-3 Proteins 0.000 description 2
- 102000000646 Interleukin-3 Human genes 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 2
- 229930064664 L-arginine Natural products 0.000 description 2
- 235000014852 L-arginine Nutrition 0.000 description 2
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 2
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102100028123 Macrophage colony-stimulating factor 1 Human genes 0.000 description 2
- 102100035877 Monocyte differentiation antigen CD14 Human genes 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 2
- 206010057249 Phagocytosis Diseases 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- 230000018199 S phase Effects 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 102000009524 Vascular Endothelial Growth Factor A Human genes 0.000 description 2
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 150000001412 amines Chemical group 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000001028 anti-proliverative effect Effects 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 235000009697 arginine Nutrition 0.000 description 2
- 210000004507 artificial chromosome Anatomy 0.000 description 2
- 108010055066 asparaginylendopeptidase Proteins 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 210000003651 basophil Anatomy 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 230000019522 cellular metabolic process Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 208000037976 chronic inflammation Diseases 0.000 description 2
- 230000006020 chronic inflammation Effects 0.000 description 2
- 208000013056 classic Hodgkin lymphoma Diseases 0.000 description 2
- 238000004624 confocal microscopy Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 150000001945 cysteines Chemical class 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 230000003831 deregulation Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 210000003979 eosinophil Anatomy 0.000 description 2
- 229940105423 erythropoietin Drugs 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 108020001507 fusion proteins Proteins 0.000 description 2
- 102000037865 fusion proteins Human genes 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 210000003714 granulocyte Anatomy 0.000 description 2
- 239000012456 homogeneous solution Substances 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 101150026046 iga gene Proteins 0.000 description 2
- 230000002519 immonomodulatory effect Effects 0.000 description 2
- 238000013394 immunophenotyping Methods 0.000 description 2
- 230000028709 inflammatory response Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 210000005007 innate immune system Anatomy 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229960003130 interferon gamma Drugs 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 2
- 230000035800 maturation Effects 0.000 description 2
- 210000003593 megakaryocyte Anatomy 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 230000006680 metabolic alteration Effects 0.000 description 2
- 108010065059 methylaspartate ammonia-lyase Proteins 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000009456 molecular mechanism Effects 0.000 description 2
- 210000003643 myeloid progenitor cell Anatomy 0.000 description 2
- 210000000581 natural killer T-cell Anatomy 0.000 description 2
- 210000000822 natural killer cell Anatomy 0.000 description 2
- 210000000440 neutrophil Anatomy 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 201000002528 pancreatic cancer Diseases 0.000 description 2
- 208000008443 pancreatic carcinoma Diseases 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 230000006320 pegylation Effects 0.000 description 2
- 230000004108 pentose phosphate pathway Effects 0.000 description 2
- 238000002823 phage display Methods 0.000 description 2
- 230000008782 phagocytosis Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000010837 poor prognosis Methods 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 239000003642 reactive oxygen metabolite Substances 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 108010078070 scavenger receptors Proteins 0.000 description 2
- 102000014452 scavenger receptors Human genes 0.000 description 2
- 235000004400 serine Nutrition 0.000 description 2
- 150000003355 serines Chemical group 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 210000000952 spleen Anatomy 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000017423 tissue regeneration Effects 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 241000701447 unidentified baculovirus Species 0.000 description 2
- 229960005486 vaccine Drugs 0.000 description 2
- CEGXZKXILQSJHO-KODRXGBYSA-N (3r,4s,5r)-3,4,5,6-tetrahydroxyhexanoyl fluoride Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)CC(F)=O CEGXZKXILQSJHO-KODRXGBYSA-N 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- CZIHNRWJTSTCEX-UHFFFAOYSA-N 2 Acetylaminofluorene Chemical compound C1=CC=C2C3=CC=C(NC(=O)C)C=C3CC2=C1 CZIHNRWJTSTCEX-UHFFFAOYSA-N 0.000 description 1
- PRRZDZJYSJLDBS-UHFFFAOYSA-N 3-bromo-2-oxopropanoic acid Chemical compound OC(=O)C(=O)CBr PRRZDZJYSJLDBS-UHFFFAOYSA-N 0.000 description 1
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 1
- 108091027075 5S-rRNA precursor Proteins 0.000 description 1
- 101150107888 AKT2 gene Proteins 0.000 description 1
- 241000701242 Adenoviridae Species 0.000 description 1
- WPWUFUBLGADILS-WDSKDSINSA-N Ala-Pro Chemical group C[C@H](N)C(=O)N1CCC[C@H]1C(O)=O WPWUFUBLGADILS-WDSKDSINSA-N 0.000 description 1
- 108091093088 Amplicon Proteins 0.000 description 1
- 241001149092 Arabidopsis sp. Species 0.000 description 1
- 102000004452 Arginase Human genes 0.000 description 1
- 108700024123 Arginases Proteins 0.000 description 1
- 108010031480 Artificial Receptors Proteins 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 201000001320 Atherosclerosis Diseases 0.000 description 1
- WOVKYSAHUYNSMH-UHFFFAOYSA-N BROMODEOXYURIDINE Natural products C1C(O)C(CO)OC1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-UHFFFAOYSA-N 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 231100000699 Bacterial toxin Toxicity 0.000 description 1
- 208000006386 Bone Resorption Diseases 0.000 description 1
- 206010055113 Breast cancer metastatic Diseases 0.000 description 1
- 102100032367 C-C motif chemokine 5 Human genes 0.000 description 1
- 101710098275 C-X-C motif chemokine 10 Proteins 0.000 description 1
- 102100036170 C-X-C motif chemokine 9 Human genes 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 108090000835 CX3C Chemokine Receptor 1 Proteins 0.000 description 1
- 102100039196 CX3C chemokine receptor 1 Human genes 0.000 description 1
- 102000009410 Chemokine receptor Human genes 0.000 description 1
- 108050000299 Chemokine receptor Proteins 0.000 description 1
- 108091062157 Cis-regulatory element Proteins 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 102000005927 Cysteine Proteases Human genes 0.000 description 1
- 108010005843 Cysteine Proteases Proteins 0.000 description 1
- HAIWUXASLYEWLM-UHFFFAOYSA-N D-manno-Heptulose Natural products OCC1OC(O)(CO)C(O)C(O)C1O HAIWUXASLYEWLM-UHFFFAOYSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- SHIBSTMRCDJXLN-UHFFFAOYSA-N Digoxigenin Natural products C1CC(C2C(C3(C)CCC(O)CC3CC2)CC2O)(O)C2(C)C1C1=CC(=O)OC1 SHIBSTMRCDJXLN-UHFFFAOYSA-N 0.000 description 1
- 102000016607 Diphtheria Toxin Human genes 0.000 description 1
- 108010053187 Diphtheria Toxin Proteins 0.000 description 1
- 206010061819 Disease recurrence Diseases 0.000 description 1
- 102100025027 E3 ubiquitin-protein ligase TRIM69 Human genes 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 206010017993 Gastrointestinal neoplasms Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 208000031448 Genomic Instability Diseases 0.000 description 1
- 208000007990 Giant Cell Tumor of Tendon Sheath Diseases 0.000 description 1
- 201000010915 Glioblastoma multiforme Diseases 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 102000016355 Granulocyte-Macrophage Colony-Stimulating Factor Receptors Human genes 0.000 description 1
- 108010092372 Granulocyte-Macrophage Colony-Stimulating Factor Receptors Proteins 0.000 description 1
- 101000766096 Halorubrum sodomense Archaerhodopsin-3 Proteins 0.000 description 1
- 102000002812 Heat-Shock Proteins Human genes 0.000 description 1
- 108010004889 Heat-Shock Proteins Proteins 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 229940119173 Hexokinase 2 inhibitor Drugs 0.000 description 1
- 102100029242 Hexokinase-2 Human genes 0.000 description 1
- 101710198385 Hexokinase-2 Proteins 0.000 description 1
- 102100026122 High affinity immunoglobulin gamma Fc receptor I Human genes 0.000 description 1
- 101000752037 Homo sapiens Arginase-1 Proteins 0.000 description 1
- 101000797762 Homo sapiens C-C motif chemokine 5 Proteins 0.000 description 1
- 101000947172 Homo sapiens C-X-C motif chemokine 9 Proteins 0.000 description 1
- 101000830203 Homo sapiens E3 ubiquitin-protein ligase TRIM69 Proteins 0.000 description 1
- 101000913074 Homo sapiens High affinity immunoglobulin gamma Fc receptor I Proteins 0.000 description 1
- 101001011382 Homo sapiens Interferon regulatory factor 3 Proteins 0.000 description 1
- 101001011441 Homo sapiens Interferon regulatory factor 4 Proteins 0.000 description 1
- 101001033249 Homo sapiens Interleukin-1 beta Proteins 0.000 description 1
- 101001128158 Homo sapiens Nanos homolog 2 Proteins 0.000 description 1
- 101000582320 Homo sapiens Neurogenic differentiation factor 6 Proteins 0.000 description 1
- 101001124991 Homo sapiens Nitric oxide synthase, inducible Proteins 0.000 description 1
- 101000595923 Homo sapiens Placenta growth factor Proteins 0.000 description 1
- 101000584743 Homo sapiens Recombining binding protein suppressor of hairless Proteins 0.000 description 1
- 101000637726 Homo sapiens Toll/interleukin-1 receptor domain-containing adapter protein Proteins 0.000 description 1
- 101000800287 Homo sapiens Tubulointerstitial nephritis antigen-like Proteins 0.000 description 1
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 1
- 241001135569 Human adenovirus 5 Species 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010022489 Insulin Resistance Diseases 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 108010032038 Interferon Regulatory Factor-3 Proteins 0.000 description 1
- 102000002227 Interferon Type I Human genes 0.000 description 1
- 108010014726 Interferon Type I Proteins 0.000 description 1
- 102100029843 Interferon regulatory factor 3 Human genes 0.000 description 1
- 102100030126 Interferon regulatory factor 4 Human genes 0.000 description 1
- 102000003996 Interferon-beta Human genes 0.000 description 1
- 102100039065 Interleukin-1 beta Human genes 0.000 description 1
- 102000013691 Interleukin-17 Human genes 0.000 description 1
- 108050003558 Interleukin-17 Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 108090001007 Interleukin-8 Proteins 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- HSNZZMHEPUFJNZ-UHFFFAOYSA-N L-galacto-2-Heptulose Natural products OCC(O)C(O)C(O)C(O)C(=O)CO HSNZZMHEPUFJNZ-UHFFFAOYSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 102000018671 Lymphocyte Antigen 96 Human genes 0.000 description 1
- 108010066789 Lymphocyte Antigen 96 Proteins 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 108091007772 MIRLET7C Proteins 0.000 description 1
- 108010048043 Macrophage Migration-Inhibitory Factors Proteins 0.000 description 1
- 102100037791 Macrophage migration inhibitory factor Human genes 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 206010027480 Metastatic malignant melanoma Diseases 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- BAWFJGJZGIEFAR-NNYOXOHSSA-O NAD(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 BAWFJGJZGIEFAR-NNYOXOHSSA-O 0.000 description 1
- 102100030589 Neurogenic differentiation factor 6 Human genes 0.000 description 1
- 102100029438 Nitric oxide synthase, inducible Human genes 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 101150100944 Nos2 gene Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 238000012879 PET imaging Methods 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 102100035194 Placenta growth factor Human genes 0.000 description 1
- 206010067565 Pneumonia cryptococcal Diseases 0.000 description 1
- 208000000474 Poliomyelitis Diseases 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 108010039918 Polylysine Proteins 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 206010060862 Prostate cancer Diseases 0.000 description 1
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 102000005765 Proto-Oncogene Proteins c-akt Human genes 0.000 description 1
- 108010045717 Proto-Oncogene Proteins c-akt Proteins 0.000 description 1
- 108010066717 Q beta Replicase Proteins 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- HAIWUXASLYEWLM-AZEWMMITSA-N Sedoheptulose Natural products OC[C@H]1[C@H](O)[C@H](O)[C@H](O)[C@@](O)(CO)O1 HAIWUXASLYEWLM-AZEWMMITSA-N 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 101150043341 Socs3 gene Proteins 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 108700027336 Suppressor of Cytokine Signaling 1 Proteins 0.000 description 1
- 102000058015 Suppressor of Cytokine Signaling 3 Human genes 0.000 description 1
- 108700027337 Suppressor of Cytokine Signaling 3 Proteins 0.000 description 1
- 102100024779 Suppressor of cytokine signaling 1 Human genes 0.000 description 1
- 241001661355 Synapsis Species 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- 108700012920 TNF Proteins 0.000 description 1
- 201000008754 Tenosynovial giant cell tumor Diseases 0.000 description 1
- 108010055044 Tetanus Toxin Proteins 0.000 description 1
- 210000004241 Th2 cell Anatomy 0.000 description 1
- 101150082427 Tlr4 gene Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 1
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 1
- 101710123661 Venom allergen 5 Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 101150063416 add gene Proteins 0.000 description 1
- 108700010877 adenoviridae proteins Proteins 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000006536 aerobic glycolysis Effects 0.000 description 1
- 108010087924 alanylproline Proteins 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000002870 angiogenesis inducing agent Substances 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000011122 anti-angiogenic therapy Methods 0.000 description 1
- 230000001745 anti-biotin effect Effects 0.000 description 1
- 230000001093 anti-cancer Effects 0.000 description 1
- 230000002494 anti-cea effect Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 230000005809 anti-tumor immunity Effects 0.000 description 1
- 230000006023 anti-tumor response Effects 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000000688 bacterial toxin Substances 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000002805 bone matrix Anatomy 0.000 description 1
- 230000024279 bone resorption Effects 0.000 description 1
- 208000030270 breast disease Diseases 0.000 description 1
- 229950004398 broxuridine Drugs 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- 230000003185 calcium uptake Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 230000022131 cell cycle Effects 0.000 description 1
- 230000006369 cell cycle progression Effects 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 230000008614 cellular interaction Effects 0.000 description 1
- 230000036755 cellular response Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000002604 chemokine receptor CCR2 antagonist Substances 0.000 description 1
- ACSIXWWBWUQEHA-UHFFFAOYSA-N clodronic acid Chemical compound OP(O)(=O)C(Cl)(Cl)P(O)(O)=O ACSIXWWBWUQEHA-UHFFFAOYSA-N 0.000 description 1
- 229960002286 clodronic acid Drugs 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 230000002281 colonystimulating effect Effects 0.000 description 1
- 230000002301 combined effect Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 108010047295 complement receptors Proteins 0.000 description 1
- 102000006834 complement receptors Human genes 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229940124446 critical care medicine Drugs 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- QONQRTHLHBTMGP-UHFFFAOYSA-N digitoxigenin Natural products CC12CCC(C3(CCC(O)CC3CC3)C)C3C11OC1CC2C1=CC(=O)OC1 QONQRTHLHBTMGP-UHFFFAOYSA-N 0.000 description 1
- SHIBSTMRCDJXLN-KCZCNTNESA-N digoxigenin Chemical compound C1([C@@H]2[C@@]3([C@@](CC2)(O)[C@H]2[C@@H]([C@@]4(C)CC[C@H](O)C[C@H]4CC2)C[C@H]3O)C)=CC(=O)OC1 SHIBSTMRCDJXLN-KCZCNTNESA-N 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002222 downregulating effect Effects 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 210000002308 embryonic cell Anatomy 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 201000003914 endometrial carcinoma Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 230000017188 evasion or tolerance of host immune response Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 230000004547 gene signature Effects 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000023266 generation of precursor metabolites and energy Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 208000005017 glioblastoma Diseases 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000002303 glucose derivatives Chemical class 0.000 description 1
- 230000004190 glucose uptake Effects 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 230000006692 glycolytic flux Effects 0.000 description 1
- 208000035474 group of disease Diseases 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 210000002443 helper t lymphocyte Anatomy 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 1
- 230000001146 hypoxic effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000005965 immune activity Effects 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 210000002074 inflammatory monocyte Anatomy 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229960001388 interferon-beta Drugs 0.000 description 1
- 229940047124 interferons Drugs 0.000 description 1
- 108040006732 interleukin-1 receptor activity proteins Proteins 0.000 description 1
- 102000014909 interleukin-1 receptor activity proteins Human genes 0.000 description 1
- 230000031261 interleukin-10 production Effects 0.000 description 1
- 229940117681 interleukin-12 Drugs 0.000 description 1
- 108040006852 interleukin-4 receptor activity proteins Proteins 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 238000011813 knockout mouse model Methods 0.000 description 1
- 238000011694 lewis rat Methods 0.000 description 1
- 238000007834 ligase chain reaction Methods 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 108091005446 macrophage receptors Proteins 0.000 description 1
- 238000002826 magnetic-activated cell sorting Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000034217 membrane fusion Effects 0.000 description 1
- 208000021039 metastatic melanoma Diseases 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000002864 mononuclear phagocyte Anatomy 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 230000031990 negative regulation of inflammatory response Effects 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 230000004145 nucleotide salvage Effects 0.000 description 1
- 238000011580 nude mouse model Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229940124276 oligodeoxyribonucleotide Drugs 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 230000005868 ontogenesis Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 210000002997 osteoclast Anatomy 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000242 pagocytic effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 102000007863 pattern recognition receptors Human genes 0.000 description 1
- 108010089193 pattern recognition receptors Proteins 0.000 description 1
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 238000002428 photodynamic therapy Methods 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000008884 pinocytosis Effects 0.000 description 1
- 229920000656 polylysine Polymers 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000012636 positron electron tomography Methods 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 230000036515 potency Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 230000013823 prenylation Effects 0.000 description 1
- 230000007112 pro inflammatory response Effects 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000002818 protein evolution Methods 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 108010054624 red fluorescent protein Proteins 0.000 description 1
- 230000006884 regulation of angiogenesis Effects 0.000 description 1
- 230000037425 regulation of transcription Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 210000003289 regulatory T cell Anatomy 0.000 description 1
- 238000004153 renaturation Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000002336 repolarization Effects 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 230000008672 reprogramming Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 108010056030 retronectin Proteins 0.000 description 1
- 230000001177 retroviral effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000013606 secretion vector Substances 0.000 description 1
- HSNZZMHEPUFJNZ-SHUUEZRQSA-N sedoheptulose Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)[C@H](O)C(=O)CO HSNZZMHEPUFJNZ-SHUUEZRQSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 210000002536 stromal cell Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000009392 systemic autoimmunity Effects 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 229940118376 tetanus toxin Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000004565 tumor cell growth Effects 0.000 description 1
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 1
- 230000003827 upregulation Effects 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 230000008728 vascular permeability Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/40—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
- A61K39/001154—Enzymes
- A61K39/001162—Kinases, e.g. Raf or Src
-
- A61K39/4614—
-
- A61K39/4622—
-
- A61K39/4631—
-
- A61K39/464404—
-
- A61K39/464406—
-
- A61K39/464417—
-
- A61K39/464422—
-
- A61K39/464454—
-
- A61K39/464462—
-
- A61K39/464468—
-
- A61K39/46447—
-
- A61K39/464471—
-
- A61K39/464482—
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/515—Animal cells
- A61K2039/5154—Antigen presenting cells [APCs], e.g. dendritic cells or macrophages
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/515—Animal cells
- A61K2039/5156—Animal cells expressing foreign proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/515—Animal cells
- A61K2039/5158—Antigen-pulsed cells, e.g. T-cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K40/00
- A61K2239/10—Indexing codes associated with cellular immunotherapy of group A61K40/00 characterized by the structure of the chimeric antigen receptor [CAR]
- A61K2239/11—Antigen recognition domain
- A61K2239/13—Antibody-based
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K40/00
- A61K2239/10—Indexing codes associated with cellular immunotherapy of group A61K40/00 characterized by the structure of the chimeric antigen receptor [CAR]
- A61K2239/21—Transmembrane domain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K2239/00—Indexing codes associated with cellular immunotherapy of group A61K40/00
- A61K2239/46—Indexing codes associated with cellular immunotherapy of group A61K40/00 characterised by the cancer treated
- A61K2239/55—Lung
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/03—Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
Definitions
- the present disclosure relates generally to biotechnology. More specifically, the present disclosure relates to chimeric antigen receptors, nucleic acids encoding chimeric antigen receptors, macrophages harboring chimeric antigen receptors and/or nucleic acids encoding, and associated methods. BACKGROUND
- Cancer consists of a group of diseases which involve unregulated cell growth and death, genome instability and mutations, tumor-promoting inflammation, induction of angiogenesis, immune system evasion, deregulation of metabolic pathways, immortal cell replication, and metastatic tissue invasion [1] . Cancer is the second leading cause of death in the United States after heart disease [2]. More than 1.6 million new cases of cancer are projected to be diagnosed each year, with more than 580,000 Americans expected to die (about 1600 cancer deaths per day), accounting for nearly 1 in 4 of all American deaths [2,3] .
- the immune system plays an important role in the development and progression of cancer. Immune cell infiltration to the tumor site can adversely affect malignancy progression and metastasis [4, 5] . Infiltration of macrophages into the tumor site has been shown to account for more than 50% of the tumor mass in certain breast cancer cases suggesting macrophages have a significant role in tumor progression [6-8].
- Macrophages are cells derived from the myeloid lineage and belong to the innate immune system. They are derived from blood monocytes that migrate into tissue. One of their main functions is to phagocytose microbes and clear cellular debris. They also play an important role in both the initiation and resolution of inflammation [9, 10]. Moreover, macrophages can display different responses, ranging from pro-inflammatory to antiinflammatory, depending on the type of stimuli they receive from the surrounding microenvironment [11]. Two major macrophage phenotypes have been proposed which correlate with extreme macrophage responses: Ml and M2.
- Ml pro-inflammatory macrophages are activated upon contact with certain molecules such as lipopolysaccharide (LPS), IFN- ⁇ , IL- ⁇ ⁇ , TNF-a, and Toll-like receptor engagement.
- M l macrophages constitute a potent arm of the immune system deployed to fight infections. They are capable of either direct (pathogen pattern recognition receptors) or indirect (Fc receptors, complement receptors) recognition of the pathogen. They are also armed in their ability to produce reactive oxygen species (ROS) as means to help killing pathogens.
- ROS reactive oxygen species
- Ml macrophages secrete pro-inflammatory cytokines and ehemokines attracting other types of immune cells and integrating/orchestrating the immune response. Ml activation is induced by IFN-g, TNFa, GM-CSF, LPS and other toll -like receptors (TLR) ligands.
- TLR toll -like receptors
- M2 anti-inflammatory macrophages also known as alternatively activated macrophages, are activated by anti-inflammatory molecules such as IL-4, IL-13, and IL-10 [12, 13].
- M2 macrophages exhibit immunomodulatory, tissue repair, and angiogenesis properties which allow them to recruit regulatory T cells to sites of inflammation.
- M2 macrophages do not constitute a uniform population and often are further subdivided into M2a, M2b and M2c categories. The common denominator of all three subpopulations is high IL-10 production accompanied by low production of IL-12.
- One of their signatures is production of enzyme Arginase-1 that depletes L-arginine thereby suppressing T cell responses and depriving iNOS of its substrate.
- macrophages The presence of macrophages is crucial for tumor progression and growth, and has implications in determining prognosis [17, 18]. Because macrophages can exhibit both pro-inflammatory and anti-inflammatory properties, it is important to understand their polarization and function in tumor progression and metastasis. Macrophage polarization
- the tumor microenvironment can affect macrophage polarization.
- the process of polarization can be diverse and complex because of the hostile environment of IL-10, glucocorticoid hormones, apoptotic cells, and immune complexes that can interfere with innate immune cells function [11, 19].
- the mechanisms of polarization are still unclear but we know they involve transcriptional regulation. For example, macrophages exposed to LPS or IFN- ⁇ will polarize towards an Ml phenotype, whereas macrophages exposed to IL-4 or IL-13 will polarize towards an M2 phenotype.
- LPS or IFN- ⁇ can interact with Tolllike receptor 4 (TLR4) on the surface of macrophages inducing the Trif and MyD88 pathways, inducing the activation of transcription factors IRF3, AP-1, and NFKB and thus activating TNFs genes, interferon genes, CXCL10, NOS2, IL-12, etc., which are necessary in a pro-inflammatory Ml macrophage response [20].
- TLR4 and IL-13 bind to IL-4R, activation the Jak/Stat6 pathway, which regulates the expression of CCL17, ARG1, IRF4, IL-10, SOCS3, etc., which are genes associated with an anti -inflammatory response (M2 response).
- miRNAs are small non-coding RNA of 22 nucleotides in length that regulate gene expression post-transcriptionally, as they affect the rate of mRNA degradation.
- miRNAs have been shown to be highly expressed in polarized macrophages, especially miRNA-155, miRNA-125, miRNA-378 (Ml polarization), and miRNA let-7c, miRNA-9, miRNA-21, miRNA- 146, miRNA147, miRNA- 187 (M2 polarization) [21].
- Macrophage polarization is a complex process, were macrophages behave and elicit different responses depending on microenvironment stimuli. Therefore, macrophage polarization is better represented by a continuum of activation states where Ml and M2 phenotypes are the extremes of the spectrum.
- Ml and M2 phenotypes are the extremes of the spectrum.
- Ml pro-inflammatory macrophages or classically activated macrophages are aggressive, highly phagocytic, and produce large amounts of reactive oxygen and nitrogen species, thereby promoting a Thl response [11].
- Ml macrophages secrete high levels of two important inflammatory cytokines, IL-12 and IL-23.
- IL-12 induces the activation and clonal expansion of Thl7 cells, which secrete high amounts of IL-17, which contributes to inflammation [23].
- IL-12 induces the activation and clonal expansion of Thl7 cells, which secrete high amounts of IL-17, which contributes to inflammation [23].
- inflammatory signals such as IFN- ⁇ , TNF-a, IL-1B and LPS as well as transcription factors and miRNAs [29, 30].
- Classically activated macrophages initiate the induction of the STAT1 transcription factor which targets CXCL9, CXCL10 (also known as IP-10), IFN regulatory factor- 1, and suppressor of cytokine signaling- 1 [31].
- Cytokine signaling- 1 protein functions downstream of cytokine receptors, and takes part in a negative feedback loop to attenuate cytokine signaling.
- Notch signaling plays an important role in the polarization of Ml macrophages, as it allows transcription factor RBP-J to regulate classical activation. Macrophages that are deficient in Notch signaling express an M2 phenotype regardless of other extrinsic inducers [32].
- miRNA-155 One crucial miRNA, miRNA-155, is upregulated when macrophages are transitioning from M2 to Ml; Ml macrophages overexpressing miRNA-155 are generally more aggressive and are associated with tumor reduction [33].
- miRNA-342-5p has been found to foster a greater inflammatory response in macrophages by targeting Aktl in mice.
- miRNA-125 and miRNA-378 have also been shown to be involved in the classical activation pathway of macrophages (Ml) [35].
- Ml macrophages Classically activated macrophages are thought to play an important role in the recognition and destruction of cancer cells as their presence usually indicates good prognosis. After recognition, malignant cells can be destroyed by Ml macrophages through several mechanisms, which include contact-dependent phagocytosis and cytotoxicity (i.e., cytokine release such as TNF-a) [24].
- cytokine release i.e., cytokine release such as TNF-a
- Environmental signals such as the tumor microenvironment or tissue-resident cells, however, can polarize Ml macrophages to M2 macrophages.
- M2 macrophages are anti-inflammatory and aid in the process of angiogenesis and tissue repair. They express scavenger receptors and produce large quantities of IL-10 and other anti-inflammatory cytokines [33, 36] . Expression of IL-10 by M2 macrophages promotes a Th2 response. Th2 cells consequently upregulate the production of IL-3 and IL-4. IL-3 stimulates proliferation of all cells in the myeloid lineage (granulocytes, monocytes, and dendritic cells), in conjunction with other cytokines, e.g., Erythropoietin (EPO), Granulocyte macrophage colony-stimulating factor (GM-CSF), and IL-6.
- EPO Erythropoietin
- GM-CSF Granulocyte macrophage colony-stimulating factor
- IL-4 is an important cytokine in the healing process because it contributes to the production of the extracellular matrix [23].
- M2 macrophages exhibit functions that may help tumor progression by allowing blood vessels to feed the malignant cells and thus promoting their growth.
- the presence of macrophages (thought to be M2) in the majority of solid tumors negatively correlates with treatment success and longer survival rates [37].
- M2 macrophages has been linked to the metastatic potential in breast cancer. Lin and colleagues found that early recruitment of macrophages to the breast tumor sites in mice increase angiogenesis and incidence of malignancy [38] . It is thought that the tumor microenvironment helps macrophages maintain an M2 phenotype [23, 39] .
- Anti-inflammatory signals present in the tumor microenvironment such as adiponectin and IL-10 can enhance an M2 response [41] .
- TAMs Tumor-associated macrophages
- Tumor-associated macrophages found in the periphery of solid tumors are thought to help promote tumor growth and metastasis, and have an M2-like phenotype [42] .
- Tumor- associated macrophages can be either tissue resident macrophages or recruited macrophages derived from the bone marrow (macrophages that differentiate from monocytes to macrophages and migrate into tissue).
- a study by Cortez-Retamozo found that high numbers of TAM precursors in the spleen migrate to the tumor stroma, suggesting this organ as a TAM reservoir also [43].
- TAM precursors found in the spleen were found to initiate migration through their CCR2 chemokine receptor [43].
- CSF-1 the primary factor that attracts macrophages to the tumor periphery
- CSF-1 production by cancer cells predicts lower survival rates and it indicates an overall poor prognosis [44-46].
- Other cytokines such as TNF-a and IL-6 have been also linked to the accumulation/recruitment of macrophages to the tumor periphery [45].
- angiogenic switch is defined as the process by which the tumor develops a high density network of blood vessels that potentially allows the tumor to become metastatic, and is necessary for malignant transition.
- angiogenic switch was also delayed suggesting that the angiogenic switch does not occur in the absence of macrophages and that macrophage presence is necessary for malignancy progression [47].
- the tumor stromal cells produce chemokines such as CSF1, CCL2, CCL3, CCL5, and placental growth factor that will recruit macrophages to the tumor surroundings.
- chemokines provide an environment for macrophages to activate the angiogenic switch, in which macrophages will produce high levels of IL-10, TGF- ⁇ , ARG-1 and low levels of IL-12, TNF-a, and IL-6.
- the level of expression of these cytokines suggests macrophages modulate immune evasion.
- macrophages are attracted to hypoxic tumor environments and will respond by producing hypoxia-inducible factor-la (HIF-la) and HIF-2a, which regulate the transcription of genes associated with angiogenesis.
- HIF-la hypoxia-inducible factor-la
- HIF-2a hypoxia-inducible factor-2a
- macrophages can also secrete VEGF (stimulated by the NF- ⁇ pathway), which will promote blood vessel maturation and vascular permeability [48
- Tumor-associated macrophages are thought to be able to maintain their M2-like phenotype by receiving polarization signals from malignant cells such as IL-1R and MyD88, which are mediated through IkB kinase ⁇ and NF-kB signaling cascade. Inhibition of NF-kB in TAMs promotes classical activation [40]. Moreover, another study suggested that p50 NF-kB subunit was involved in suppression of Ml macrophages, and reduction of inflammation promoted tumor growth. A p50 NF- ⁇ knock-out mouse generated by Saccani et al. suggested that Ml aggressiveness was restored upon p50 NF- kB knockout, reducing tumor survival [49].
- TAMs can be used as a target for cancer treatment. Reducing the number of TAMs or polarizing them towards an Ml phenotype can help destroy cancer cells and impair tumor growth [50- 52].
- Luo and colleagues used a vaccine against legumain, a cysteine protease and stress protein upregulated in TAMs thought to be a potential tumor target [52]. When the vaccine against legumain was administered to mice, genes controlling angiogenesis were downregulated and tumor growth was halted [52].
- Metabolic alterations present in tumor cells are controlled by the same genetic mutations that produce cancer [53]. As a result of these metabolic alterations, cancer cells are able to produce signals that can modify the polarization of macrophages and promote tumor growth [54, 55].
- Ml and M2 macrophages demonstrate distinct metabolic patterns that reflect their dissimilar behaviors [56].
- the Ml phenotype increases glycolysis and skews glucose metabolism towards the oxidative pentose phosphate pathway, thereby decreasing oxygen consumption and consequently producing large amounts of radical oxygen and nitrogen species as well as inflammatory cytokines such as TNF-a, IL-12, and IL-6 [56, 57].
- the M2 phenotype increases fatty acid intake and oxidation, which decreases flux towards the pentose phosphate pathway while increasing the overall cell redox potential, consequently upregulating scavenger receptors and immunomodulatory cytokines such as IL-10 and TGF- ⁇ [56].
- Protein kinases such as Aktl and Akt2, alter macrophage polarization by allowing cancer cells to survive, proliferate, and use an intermediary metabolism [58].
- Other protein kinases can direct macrophage polarization through glucose metabolism by increasing glycolysis and decreasing oxygen consumption [57, 59].
- Shu and colleagues were the first to visualize macrophage metabolism and immune response in vivo using a PET scan and a glucose analog [60].
- L-arginine metabolism also exhibits discrete shifts important to cytokine expression in macrophages and exemplifies distinct metabolic pathways which alter TAM-tumor cell interactions [61].
- Classically activated (Ml) macrophages favor inducible nitric oxide synthase (iNOS). The iNOS pathway produces cytotoxic nitric oxide (NO), and consequently exhibits anti-tumor behavior.
- activated (M2) macrophages have been shown to favor the arginase pathway and produce ureum and 1-ornithine, which contribute to progressive tumor cell growth [61, 62].
- CARKL carbohydrate kinase-like protein
- Obesity can also affect macrophage polarization.
- Obesity is associated with a state of chronic inflammation, an environment that drives the IL4/STAT6 pathway to activate NKT cells, which drive macrophages towards an M2 response.
- macrophages migrate to adipose tissue, where immune cells alter levels of T H 1 or T H 2 cytokine expression in the adipose tissue, causing an M2 phenotype bias and possibly increased insulin sensitivity [63].
- Ml phenotype bias by targeting metabolic pathways in TAMS may offer an alternative means of reducing tumor growth and metastasis.
- cancer immunotherapy The role of cancer immunotherapy is to stimulate the immune system to recognize, reject, and destroy cancer cells.
- Cancer immunotherapy with monocytes/macrophages has the goal to polarize macrophages towards a pro-inflammatory response (Ml), thus allowing the macrophages and other immune cells to destroy the tumor.
- Ml pro-inflammatory response
- Many cytokines and bacterial compounds can achieve this in vitro, although the side effects are typically too severe in vivo.
- the key is to find a compound with minimal or easily managed patient side effects.
- Immunotherapy using monocytes/macrophages has been used in past decades and new approaches are being developed every year [64, 65] . Early immunotherapy has established a good foundation for better cancer therapies and increased survival rate in patients treated with immunotherapies [66].
- Some approaches to cancer immunotherapy include the use of cytokines or chemokines to recruit activated macrophages and other immune cells to the tumor site which allow for recognition and targeted destruction of the tumor site [67, 68] .
- IFN- a and IFN- ⁇ have been shown to inhibit tumor progression by inducing cell differentiation and apoptosis [69].
- IFN treatments are anti-proliferative and can increase S phase time in the cell cycle [70, 71].
- Zhang and colleagues performed a study in nude mice using IFN- ⁇ gene therapy to target human prostate cancer cells. Their results indicate that adenoviral - delivered IFN- ⁇ gene therapy involves macrophages and helps suppress growth and metastasis [72].
- the macrophage inhibitory factor is another cytokine that can be used in cancer immunotherapy.
- MIF is usually found in solid tumors and indicates poor prognosis.
- MIF inhibits aggressive macrophage function and drives macrophages toward an M2 phenotype, which can aid tumor growth and progression.
- Simpson, Templeton & Cross (2012) found that MIF induces differentiation of myeloid cells, macrophage precursors, into a suppressive population of myeloid cells that express an M2 phenotype [73]. By targeting MIF, they were able to deplete this suppressive population of macrophages, inhibiting their growth and thus control tumor growth and metastasis [73].
- the chemokine receptor type 2, CCR2 is crucial to the recruitment of monocytes to inflammatory sites and it has been shown as a target to prevent the recruitment of macrophages to the tumor site, angiogenesis, and metastasis.
- CCR2 chemokine receptor type 2
- Mahford and colleagues (2013) studied a novel CCR2 inhibitor (PF-04136309) in a pancreatic mouse model, demonstrating that the CCR2 inhibitor depleted monocyte/macrophage recruitment to the tumor site, decreased tumor growth and metastasis, and increased antitumor immunity [74] .
- Another recent study by Schmall et al. showed that macrophages co-cultured with 10 different human lung cancers upregulated CCR2 expression. Moreover, they showed that tumor growth and metastasis were reduced in a lung mouse model treated with a CCR2 antagonist [75].
- MENK methionine enkephalin
- Bisphosphonates are commonly used to treat metastatic breast cancer patients to prevent skeletal complications such as bone resorption [78]. While bisphosphonates stay in the body for short periods of time, bisphosphonates can target osteoclasts, cells in the same family as macrophages, due to their high affinity for hydroxyapatite. Once bisphosphonates bind to the bones, the bone matrix internalizes the bisphosphonates by endocytosis. Once in the cytoplasm, bisphosphonates can inhibit protein prenylation, an event that prevents integrin signaling and endosomal trafficking, thereby forcing the cell to go apoptotic [69].
- Cationic polymers are used in immunotherapy because of their reactivity once dissolved in water. Chen et al. used cationic polymers including PEI, polylysine, cationic dextran and cationic gelatin to produce a strong Thl immune response [77]. They were also able to induce proliferation of CD4+ cells and secretion of IL-12 typical of Ml macrophages [77] . Huang and colleagues also used biomaterials to trigger TAMs to produce an anti -tumor response by targeting TLR4 [80]. This study found that TAMs were able to polarize to an Ml phenotype and express IL-12. They found that these cationic molecules have direct tumoricidal activity and demonstrate tumor reduction in mice [80].
- Toll-like receptor 4 is a protein in humans that is encoded by the TLR4 gene.
- TLR 4 detects lipopolysaccharide (LPS) on gram negative bacteria and thus plays a fundamental role in the recognition of danger and the activation of the innate immune system (FIG. 7). It cooperates with LY96 (MD-2) and CD 14 to mediate signal transduction when macrophages are induced by LPS.
- LPS lipopolysaccharide
- LY96 MD-2
- CD 14 CD 14
- the cytoplasmic domain of TLR4 is responsible for the activation of Ml macrophages when they detect the presence of LPS. This is the functional portion of the receptor that would be coupled to the MOTO-CAR (i. e. , chimeric receptor) to induce activation of the monocyte/macrophage when the CAR binds its target protein.
- MOTO-CAR i. e. , chimeric receptor
- the adaptor proteins MyD88 and TIRAP contribute to the activation of several and possibly all pathways via direct interactions with TLR4's Toll/interleukin-1 receptor (IL- 1R) (TIR) domain.
- TLR4's Toll/interleukin-1 receptor (IL- 1R) (TIR) domain TLR4's Toll/interleukin-1 receptor (IL- 1R) (TIR) domain.
- TIR Toll/interleukin-1 receptor
- additional adaptors that are required for the activation of specific subsets of pathways may exist, which could contribute to the differential regulation of target genes.
- TK1 Human Thymidine Kinase 1
- sTK serum of cancer patients
- TK1 levels in primary breast tumors can be used to predict recurrence.
- Other exciting TK1 prognostic studies show significant reductions in sTKl levels when patients respond to treatment while sTKl levels continue to rise in patients who do not appear to respond to their treatment. It is also known that sTKl levels begin to rise prior to recurrence and noted in some cases sTKl levels could predict recurrence "1-6 months before the onset of clinical symptoms.”
- TKl is a known cytosolic protein. It has been recently discovered that TKl is expressed not only in cancer cells but also on the surface membrane of multiple tumor types and is therefore a very viable target for tumor immunotherapy.
- Chimeric receptors comprise a cytoplasmic domain; a transmembrane domain; and an extracellular domain.
- the cytoplasmic domain comprises a cytoplasmic portion of a receptor that when activated polarizes a macrophage.
- a wild-type protein comprising the cytoplasmic portion does not comprise the extracellular domain of the chimeric receptor (see, .e.g., FIG. 21).
- the binding of a ligand to the extracellular domain of the chimeric receptor activates the intracellular portion of the chimeric receptor (see, .e.g., FIG. 22). Activation of the intracellular portion of the chimeric receptor may polarize the macrophage into an Ml or M2 macrophage (see, .e.g., FIGs. 23 and 24(A) and 25).
- the extracellular domain may comprise an antibody or a fragment there of that specifically binds to a ligand.
- the chimeric receptor may contain a linker.
- the chimeric receptor may contain a hinge region.
- Embodiments include methods of polarizing a macrophage by contacting a macrophage comprising a chimeric receptor with a ligand for the extracellular domain of the chimeric receptor; binding the ligand to the extracellular domain of the chimeric receptor.
- the binding of the ligand to the extracellular domain of the chimeric receptor activates the cytoplasmic portion and the activation of the cytoplasmic portion polarizes the macrophage.
- FIG. 1A depicts a block diagram of the order of elements in the chimeric receptor TKl-MOTOl.
- FIG. IB depicts the sequence of TKl-MOTOl (SEQ ID NO:35).
- Amino acids 1-18 are a signal peptide (SP).
- amino acids 19-275 are an anti-TKl ScFv, amino acids 276-290 are a GS linker, amino acids 291-313 are a TLR4 transmembrane domain, and amino acids 314-496 are a TLR4 cytosolic domain.
- FIG. 2A depicts a block diagram of the order of elements in the chimeric receptor TK1-MOT02.
- FIG. 2B depicts the sequence of TK1-MOT02 (SEQ ID NO: 36).
- Amino acids 1-18 are a signal peptide (SP)
- amino acids 19-275 are an anti-TKl ScFv
- amino acids 276-290 are a GS linker
- amino acids 291-295 are a LRR short hinge
- amino acids 296-318 are a TLR4 transmembrane domain
- amino acids 319-500 are a TLR4 cytosolic domain.
- FIG. 3A depicts a block diagram of the order of elements in the chimeric receptor TK1-MOT03.
- FIG. 3B depicts the sequence of TK1-MOT03 (SEQ ID NO:37).
- Amino acids 1-18 are a signal peptide (SP)
- amino acids 19-275 are an anti-TKl ScFv
- amino acids 276-290 are a GS linker
- amino acids 291-345 are a LRR long hinge
- amino acids 346-368 are a TLR4 transmembrane domain
- amino acids 269-501 are a TLR4 cytosolic domain.
- FIG. 4A depicts a block diagram of the order of elements in the chimeric receptor TK1-MOT04.
- FIG. 4B depicts the sequence of TK1-MOT04 (SEQ ID NO: 38).
- Amino acids 1-18 are a signal peptide (SP)
- amino acids 19-275 are an anti-TKl ScFv
- amino acids 276-290 are a GS linker
- amino acids 291-302 are an IgG4 short hinge
- amino acids 303-325 are a TLR4 transmembrane domain
- amino acids 326-508 are a TLR4 cytosolic domain.
- FIG. 5A depicts a block diagram of the order of elements in the chimeric receptor TK1-MOT05.
- FIG. 5B depicts the sequence of TK1-MOT05 (SEQ ID NO:39).
- Amino acids 1-18 are a signal peptide (SP)
- amino acids 19-275 are an anti-TKl ScFv
- amino acids 276-290 are a GS linker
- amino acids 291-409 are an IgG 119 amino acid medium hinge
- amino acids 410-432 are a TLR4 transmembrane domain
- amino acids 433-615 are a TLR4 cytosolic domain.
- FIG. 6A depicts a block diagram of the order of elements in the chimeric receptor TK1-MOT06.
- FIG. 6B depicts the sequence of TK1-MOT06 (SEQ ID NO:40).
- Amino acids 1-18 are a signal peptide (SP)
- amino acids 19-275 are an anti-TKl ScFv
- amino acids 276-290 are a GS linker
- amino acids 291-518 are an IgG4 long hinge
- amino acids 519-541 are a TLR4 transmembrane domain
- amino acids 542-724 are a TLR4 cytosolic domain.
- FIG. 7A depicts a block diagram of the order of elements in the chimeric receptor TK1-MOT07.
- TK1-MOT07 depicts the sequence of TK1-MOT07 (SEQ ID NO:41).
- Amino acids 1-18 are a signal peptide (SP)
- amino acids 19-275 are an anti-TKl ScFv
- amino acids 276-290 are a GS linker
- amino acids 291-358 are mutated CD8 hinge with C339S and C356S
- amino acids 359-381 are a TLR4 transmembrane domain
- amino acids 382-564 are a TLR4 cytosolic domain.
- FIG. 8A depicts a block diagram of the order of elements in the chimeric receptor TK1-MOT08.
- FIG. 8B depicts the sequence of TK1-MOT08 (SEQ ID NO:42).
- Amino acids 1-18 are a signal peptide (SP)
- amino acids 19-275 are an anti-TKl ScFv
- amino acids 276-290 are a GS linker
- amino acids 291-358 are a portion of a CD8 hinge
- amino acids 359- 381 are a TLR4 transmembrane domain
- amino acids 382-564 are a TLR4 cytosolic domain.
- FIG. 9A depicts a block diagram of the order of elements in the chimeric receptor TKl-MO-FCGRA-CAR-1.
- FIG. 9B depicts the sequence of TKl-MO-FCGRA-CAR-1 (SEQ ID NO:43).
- Amino acids 1-18 are a signal peptide (SP)
- amino acids 19-275 are an anti-TKl ScFv
- amino acids 276-290 are a GS linker
- amino acids 291-311 are a FCGR3A transmembrane domain
- amino acids 312-336 are a FCGR3A cytosolic domain
- amino acids 337-378 are a FCERIG cytosolic domain.
- FIG. 10A depicts a block diagram of the order of elements in the chimeric receptor TKl-MO-FCGRA-CAR-2.
- FIG. 10B depicts the sequence of TKl-MO-FCGRA-CAR-2 (SEQ ID NO:44).
- Amino acids 1-18 are a signal peptide (SP)
- amino acids 19-275 are an anti-TKl ScFv
- amino acids 276-290 are a GS linker
- amino acids 291-358 are mutated CD8 hinge with C339S and C356S
- amino acids 359-379 are a FCGR3A transmembrane domain
- amino acids 380-404 are a FCGR3A cytosolic domain
- amino acids 405-446 are a FCERIG cytosolic domain.
- FIG. 11A depicts a block diagram of the order of elements in the chimeric receptor TKl-MO-FCGRA-CAR-3.
- FIG. 11B depicts the sequence of TKl-MO-FCGRA-CAR-3 (SEQ ID NO:45).
- Amino acids 1-18 are a signal peptide (SP)
- amino acids 19-275 are an anti-TKl ScFv
- amino acids 276-290 are a GS linker
- amino acids 291-358 are a portion of a CD8 hinge
- amino acids 359-379 are a FCGR3A transmembrane domain
- amino acids 380- 404 are a FCGR3A cytosolic domain
- amino acids 405-446 are a FCERIG cytosolic domain.
- FIG. 11A depicts a block diagram of the order of elements in the chimeric receptor TKl-MO-FCGRA-CAR-3.
- FIG. 11B depicts the sequence of TKl-MO-FCGRA-CAR
- FIG. 12A depicts a block diagram of the order of elements in the chimeric receptor TKl-MO-FCGRA-CAR-4.
- FIG. 12B depicts the sequence of TKl-MO-FCGRA-CAR-4 (SEQ ID NO:46).
- Amino acids 1-18 are a signal peptide (SP)
- amino acids 19-275 are an anti-TKl ScFv
- amino acids 276-290 are a GS linker
- amino acids 291-303 are a IgG4 short hinge
- amino acids 304-324 are a FCGR3A transmembrane domain
- amino acids 325-349 are a FCGR3A cytosohc domain
- amino acids 350-391 are a FCERIG cytosohc domain.
- FIG. 13A depicts a block diagram of the order of elements in the chimeric receptor TKl-MO-FCGRA-CAR-5.
- FIG. 13B depicts the sequence of TKl-MO-FCGRA-CAR-5 (SEQ ID NO:47).
- Amino acids 1-18 are a signal peptide (SP)
- amino acids 19-275 are an anti-TKl ScFv
- amino acids 276-290 are a GS linker
- amino acids 291-409 are a IgG4 119 amino acid hinge
- amino acids 410-430 are a FCGR3A transmembrane domain
- amino acids 431-455 are a FCGR3A cytosohc domain
- amino acids 456-497 are a FCERIG cytosohc domain.
- FIG. 14A depicts a block diagram of the order of elements in the chimeric receptor TKl-MO-FCGRA-CAR-6.
- FIG. 14B depicts the sequence of TKl-MO-FCGRA-CAR-6 (SEQ ID NO:48).
- Amino acids 1-18 are a signal peptide (SP)
- amino acids 19-275 are an anti-TKl ScFv
- amino acids 276-290 are a GS linker
- amino acids 291-519 are a IgG4 long hinge
- amino acids 520-540 are a FCGR3A transmembrane domain
- amino acids 541-565 are a FCGR3A cytosohc domain
- amino acids 566-607 are a FCERIG cytosohc domain.
- FIG. 15A depicts a block diagram of the order of elements in the chimeric receptor
- FIG. 15B depicts the sequence of TK1-MO-FCG2A-CAR-1 (SEQ ID NO:49).
- Amino acids 1-18 are a signal peptide (SP)
- amino acids 19-275 are an anti-TKl ScFv
- amino acids 276-290 are a GS linker
- amino acids 291-312 are a FCGR2A transmembrane domain
- amino acids 313-390 are a FCGR2A cytosohc domain.
- FIG. 16A depicts a block diagram of the order of elements in the chimeric receptor
- FIG. 16B depicts the sequence of TK1 -MO-FCG2A-CAR-2 (SEQ ID NO:50).
- Amino acids 1-18 are a signal peptide (SP)
- amino acids 19-275 are an anti-TKl ScFv
- amino acids 276-290 are a GS linker
- amino acids 291-358 are mutated CD8 hinge with C339S and C356S
- amino acids 359-380 are a FCGR2A transmembrane domain
- amino acids 381-458 are a FCGR2A cytosohc domain.
- FIG. 17A depicts a block diagram of the order of elements in the chimeric receptor TK1 -MO-FCG2A-C AR-3.
- FIG. 17B depicts the sequence of TK1 -MO-FCG2A-CAR-3 (SEQ ID NO:51).
- Amino acids 1-18 are a signal peptide (SP)
- amino acids 19-275 are an anti-TKl ScFv
- amino acids 276-290 are a GS linker
- amino acids 291-358 are a portion of a CD8 hinge
- amino acids 359-380 are a FCGR2A transmembrane domain
- amino acids 381- 458 are a FCGR2A cytosolic domain.
- FIG. 18A depicts a block diagram of the order of elements in the chimeric receptor TK1-MO-FCG2A-CAR-4.
- FIG. 18B depicts the sequence of TK1 -MO-FCG2A-CAR-4 (SEQ ID NO: 52).
- Amino acids 1-18 are a signal peptide (SP)
- amino acids 19-275 are an anti-TKl ScFv
- amino acids 276-290 are a GS linker
- amino acids 291-303 are a IgG4 short hinge
- amino acids 304-325 are a FCGR2A transmembrane domain
- amino acids 326-403 are a FCGR2A cytosolic domain.
- FIG. 19A depicts a block diagram of the order of elements in the chimeric receptor
- FIG. 19B depicts the sequence of TK1 -MO-FCG2A-CAR-5 (SEQ ID NO:53).
- Amino acids 1-18 are a signal peptide (SP)
- amino acids 19-275 are an anti-TKl ScFv
- amino acids 276-290 are a GS linker
- amino acids 291-409 are a IgG4 119 amino acid hinge
- amino acids 410-431 are a FCGR2A transmembrane domain
- amino acids 432-509 are a FCGR2A cytosolic domain.
- FIG. 20A depicts a block diagram of the order of elements in the chimeric receptor TK1-MO-FCG2A-CAR-6.
- FIG. 20B depicts the sequence of TK1 -MO-FCG2A-CAR-6 (SEQ ID NO: 54).
- Amino acids 1-18 are a signal peptide (SP)
- amino acids 19-275 are an anti-TKl ScFv
- amino acids 276-290 are a GS linker
- amino acids 291-519 are a IgG4 long hinge
- amino acids 520-541 are a FCGR2A transmembrane domain
- amino acids 542-619 are a FCGR2A cytosolic domain.
- FIG. 21 is a schematic illustrating a chimeric receptor.
- FIG. 22 is a schematic showing a macrophage expressing a chimeric receptor.
- the chimeric receptor comprises the cytosolic domain of a toll like receptors, a transmembrane domain, and a ScFv specific for a ligand.
- the arrows depict signaling to polarize the macrophage upon the ScFv binding the ligand.
- FIG. 23 is a schematic showing different macrophage receptors that could be utilized to build a chimeric receptor.
- FIGs. 24A through 24C are schematic showing the Fc Gamma Receptor III signaling cascade leading to cell activation.
- FIG. 24B is a schematic showing the Fc Gamma Receptor III signaling cascade leading to inhibition of calcium flux and proliferation.
- FIG. 24C is a schematic showing the Fc Gamma Receptor III signaling cascade leading to apoptosis.
- FIG. 25 is a schematic illustrating the Toll Like Receptor Signaling cascade.
- FIG. 26 presents graphs illustrating flow cytometry confirming that an expressed antibody fragment binds the ligand of interest.
- FIG. 27 presents two images showing a phenotype change in macrophages after transduction with a chimeric receptor.
- FIG. 28 presents two images confirming the expression of a chimeric receptor in monocytes.
- FIG. 29 presents three scatter plots of fluorescence activated cell sorting demonstrating the expression of dTomato.
- the left most plot shows a control wherein only 0.58% of cells show fluorescence which would indicate expression of dTomato.
- the right two plots show a transduction efficiency of 27.1 percent after transduction.
- FIG. 30 presents six scatter plots of fluorescence activated cell sorting demonstrating the retention of dye (Alexa 647), and the expression of CD80, CD 163, CD206, and CD 14 in macrophages transduced with a chimeric receptor.
- FIG. 31 presents a histogram demonstrating the relative expression levels of CD80
- CD163, CD206, and CD14 in macrophages transduced with a chimeric receptor.
- FIG. 32 presents six images of transduced macrophages expressing a chimeric receptor detecting, attacking, and inducing cell death in a lung cancer cell line (NCI-H460).
- Chimeric receptors comprise a cytoplasmic domain; a transmembrane domain; and an extracellular domain.
- the cytoplasmic domain comprises a cytoplasmic portion of a receptor that when activated polarizes a macrophage.
- a wild-type protein comprising the cytoplasmic portion does not comprise the extracellular domain of the chimeric receptor.
- the binding of a ligand to the extracellular domain of the chimeric receptor activates the intracellular portion of the chimeric receptor. Activation of the intracellular portion of the chimeric receptor may polarize the macrophage into an Ml or M2 macrophage.
- the cytoplasmic portion of the chimeric receptor may comprise a cytoplasmic domain from a toll-like receptor, myeloid differentiation primary response protein (MYD88) (SEQ ID NO: 19), toll-like receptor 3 (TLR3) (SEQ ID NO: l), toll-like receptor 4 (TLR4) (SEQ ID NO:3), toll-like receptor 7 (TLR7) (SEQ ID NO:7), tolllike receptor 8 (TLR8) (SEQ ID NO: 9), toll-like receptor 9 (TLR9) (SEQ ID NO: 11), myelin and lymphocyte protein (MAL) (SEQ ID NO:21), interleukin-1 receptor-associated kinase 1 (IRAKI) (SEQ ID NO:23), low affinity immunoglobulin gamma Fc region receptor III-A (FCGR3A) (SEQ ID NO: 15), low affinity immunoglobulin gamma Fc region receptor Il-a (FCGR2A) (SEQ ID NO: 13), high
- the cytoplasmic portion is not a cytoplasmic domain from a toll-like receptor, FCGR3A, IL-1 receptor, or IFN- gamma receptor.
- the cytosolic portion can be any polypeptide that, when activated, will result in the polarization of a macrophage.
- examples of ligands which bind to the extracellular domain may be, but are not limited to, Thymidine Kinase (TK1), Hypoxanthine-Guanine Phosphoribosyltransferase (HPRT), Receptor Tyrosine Kinase-Like Orphan Receptor 1 (ROR1), Mucin- 16 (MUC-16), Epidermal Growth Factor Receptor vIII (EGFRvIII), Mesothelin, Human Epidermal Growth Factor Receptor 2 (HER2), Carcinoembryonic Antigen (CEA), B-Cell Maturation Antigen (BCMA), Glypican 3 (GPC3), Fibroblast Activation Protein (FAP), Erythropoietin-Producing Hepatocellular Carcinoma A2 (EphA2), Natural Killer Group 2D (NKG2D) ligands, Disialoganglioside 2 (GD2), CD 19, CD20, CD30, CD33
- Antibodies which may be adapted to generate extracellular domains of a chimeric receptor are well known in the art and are commercially available. Examples of commercially available antibodies include, but are not limited to: anti-HGPRT, clone 13H11.1 (EMD Millipore), anti-RORl (abl35669) (Abeam), anti-MUCl [EP1024Y] (ab45167) (Abeam), anti-MUC16 [X75] (abl l07) (Abeam), anti-EGFRvIII [L8A4] (Absolute antibody), anti- Mesothelin [EPR2685(2)] (abl34109) (Abeam), HER2 [3B5] (abl6901) (Abeam), anti- CEA (LS-C84299-1000) (LifeSpan Biosciences), anti-BCMA (ab5972) (Abeam), anti-Glypican 3 [9C2] (abl29381) (Abeam), anti-FAP (ab53066) (
- the extracellular domain may comprise an antibody or a fragment there of that specifically binds to a ligand.
- antibodies and fragments thereof include, but are not limited to IgAs, IgDs, IgEs, IgGs, IgMs, Fab fragments, F(ab')2 fragments, monovalent antibodies, ScFv fragments, scRv-Fc fragments, IgNARs, hcIgGs, VhH antibodies, nanobodies, and alphabodies.
- the extracellular domain may comprise any amino acid sequence that allows for the specific binding of a ligand, including, but not limited to, dimerization domains, receptors, binding pockets, etc.
- the chimeric receptor may contain a linker.
- the linker may be located between the extracellular domain and the transmembrane domain of the chimeric receptor.
- the linker may be a G linker, a GS linker, a G4S linker, an EAAAK linker, a PAPAP linker, or an (Ala-Pro) n linker.
- Other examples of linkers are well known in the art.
- the chimeric receptor may contain a hinge region.
- the hinge region may be located between the extracellular domain and the transmembrane domain of the chimeric receptor.
- the hinge region may be located between a linker and the transmembrane domain.
- the linker may be a leucine rich repeat (LRR), or a hinge region from a toll-like receptor, an IgG, IgG4, CD8m or Fcyllla-hing.
- cysteines in the hinge region may be replaced with serines.
- Other examples of hinge regions are well known in the art.
- Chimeric receptors as described herein may comprise one or more of SEQ ID NOS: l, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, and 25-34, fragments of any of thereof, and/or polypeptides having at least 90% sequence identity to at least one of SEQ ID NOS: l, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, and 25-34 or fragments thereof.
- Examples of chimeric receptors include, but are not limited to, SEQ ID NOS:35-54, or a homologue or fragment thereof.
- the polypeptide comprises an amino acid sequence selected from the group consisting of a polypeptide having at least 90% sequence identity to at least one of SEQ ID NOS:35-54.
- Embodiments include nucleic acid sequences comprising a nucleic acid sequence encoding a chimeric receptor as described above.
- nucleic acids may comprise one or more of SEQ ID NOS:2, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24, fragments of any of thereof, and/or nucleic acids having at least 90% sequence identity to at least one of SEQ ID NOS:2, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 or fragments thereof.
- Further examples include nucleic acids encoding one or more of SEQ ID NOS:24-54 and fragments of any of thereof.
- the chimeric receptors may be glycosylated, pegylated, and/or otherwise post-translationally modified.
- the nucleic acid sequence may be part of a vector.
- the vector may be a plasmid, phage, cosmid, artificial chromosome, viral vector, AAV vector, adenoviral vector, or lentiviral vector.
- a nucleic acid encoding a chimeric receptor may be operably linked to a promoter and/or other regulatory sequences (e.g., enhancers, silencers, insulators, locus control regions, cis-acting elements, etc.).
- Further embodiments include cells comprising a chimeric receptor or nucleic acids encoding a chimeric receptor.
- Non-limiting examples of such cells include myeloid cells, myeloid progenitor cells, monocytes, neutrophils, basophils, eosinophils, megakaryocytes, T cells, B cells, natural killer cells, leukocytes, lymphocytes, dendritic cells, and macrophages.
- Embodiments include methods of polarizing a macrophage by contacting a macrophage comprising a chimeric receptor with a ligand for the extracellular domain of the chimeric receptor; binding the ligand to the extracellular domain of the chimeric receptor.
- the binding of the ligand to the extracellular domain of the chimeric receptor activates the cytoplasmic portion and the activation of the cytoplasmic portion polarizes the macrophage.
- Nucleotide, polynucleotide, or nucleic acid sequence will be understood according to the present disclosure as meaning both a double-stranded or single-stranded DNA or RNA in the monomelic and dimeric (so-called in tandem) forms and the transcription products of the DNAs or RNAs.
- aspects of the disclosure relate nucleotide sequences which it has been possible to isolate, purify or partially purify, starting from separation methods such as, for example, ion- exchange chromatography, by exclusion based on molecular size, or by affinity, or alternatively fractionation techniques based on solubility in different solvents, or starting from methods of genetic engineering such as amplification, cloning, and subcloning, it being possible for the sequences to be carried by vectors.
- separation methods such as, for example, ion- exchange chromatography, by exclusion based on molecular size, or by affinity, or alternatively fractionation techniques based on solubility in different solvents, or starting from methods of genetic engineering such as amplification, cloning, and subcloning, it being possible for the sequences to be carried by vectors.
- a nucleotide sequence fragment will be understood as designating any nucleotide fragment, and may include, by way of non-limiting examples, length of at least 8, 12, 20, 25, 50, 75, 100, 200, 300, 400, 500, 1000, or more, consecutive nucleotides of the sequence from which it originates.
- a specific fragment of a nucleotide sequence will be understood as designating any nucleotide fragment of, having, after alignment and comparison with the corresponding wild- type sequence, at least one less nucleotide or base.
- Homologous nucleotide sequence as used herein is understood as meaning a nucleotide sequence having at least a percentage identity with the bases of a nucleotide sequence of at least about 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.6%, or 99.7%, this percentage being purely statistical and it being possible to distribute the differences between the two nucleotide sequences at random and over the whole of their length.
- Specific homologous nucleotide sequences in the sense of the present disclosure is understood as meaning a homologous sequence having at least one sequence of a specific fragment, such as defined above.
- the "specific" homologous sequences can comprise, for example, the sequences corresponding to a genomic sequence or to the sequences of its fragments representative of variants of the genomic sequence. These specific homologous sequences can thus correspond to variations linked to mutations within the sequence and especially correspond to truncations, substitutions, deletions and/or additions of at least one nucleotide.
- the homologous sequences can likewise correspond to variations linked to the degeneracy of the genetic code.
- degree or percentage of sequence homology refers to "degree or percentage of sequence identity between two sequences after optimal alignment” as defined in the present application.
- Two nucleotide sequences are said to be "identical” if the sequence of amino-acids or nucleotidic residues, in the two sequences is the same when aligned for maximum correspondence as described below.
- Sequence comparisons between two (or more) peptides or polynucleotides are typically performed by comparing sequences of two optimally aligned sequences over a segment or "comparison window" to identify and compare local regions of sequence similarity.
- Optimal alignment of sequences for comparison may be conducted by the local homology algorithm of Smith and Waterman, Ad. App. Math 2: 482 (1981), by the homology alignment algorithm of Neddleman and Wunsch, J. Mol. Biol.
- Percentage of sequence identity is determined by comparing two optimally aligned sequences over a comparison window, where the portion of the peptide or polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical amino-acid residue or nucleic acid base occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity.
- sequence identity is the definition that would be used by one of skill in the art.
- the definition by itself does not need the help of any algorithm, the algorithms being helpful only to achieve the optimal alignments of sequences, rather than the calculation of sequence identity.
- BLAST 2 sequence software which is available in the web site worldwideweb.ncbi.nlm.nih.gov/gorfbl2.html, and habitually used by the inventors and in general by the skilled person for comparing and determining the identity between two sequences, gap cost which depends on the sequence length to be compared is directly selected by the software (i.e., 11.2 for substitution matrix BLOSUM-62 for length>85).
- Complementary nucleotide sequence of a sequence as used herein is understood as meaning any DNA whose nucleotides are complementary to those of the sequences and whose orientation is reversed (antisense sequence).
- Hybridization under conditions of stringency with a nucleotide sequence as used herein is understood as meaning hybridization under conditions of temperature and ionic strength chosen in such a way that they allow the maintenance of the hybridization between two fragments of complementary DNA.
- the hybridization is carried out at a preferential temperature of 65°C in the presence of SSC buffer, 1 x SSC corresponding to 0.15 M NaCl and 0.05 M Na citrate.
- the washing steps can be the following: 2 x SSC, at ambient temperature followed by two washes with 2 x SSC, 0.5% SDS at 65°C; 2 x 0.5 x SSC, 0.5% SDS; at 65°C for 10 minutes each.
- the conditions of intermediate stringency using, for example, a temperature of 42°C in the presence of a 2 x SSC buffer, or of less stringency, for example a temperature of 37°C in the presence of a 2 x SSC buffer, respectively require a globally less significant complementarity for the hybridization between the two sequences.
- nucleotide sequences described herein are those which can be used as a primer or probe in methods allowing the homologous sequences to be obtained, these methods, such as the polymerase chain reaction (PCR), nucleic acid cloning, and sequencing, being well known to the person skilled in the art.
- PCR polymerase chain reaction
- nucleotide sequences are those which can be used as a primer or probe in methods allowing the presence of specific nucleic acids, one of their fragments, or one of their variants such as defined below to be determined.
- the nucleotide sequences may comprise fragments of SEQ ID NOS:2, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 which encode a transmembrane domain, cytosolic domain, or a portion thereof.
- Further fragments may include nucleotide sequences encoding linkers, hinges, or fragments thereof such as nucleotides encoding one or more of SEQ ID NOS:26-34.
- Further fragments may include fragments of nucleotide sequences encoding one or more of SEQ ID NOS:35-54.
- nucleotide sequence fragments can be obtained, for example, by specific amplification, such as PCR, or after digestion with appropriate restriction enzymes of nucleotide sequences, these methods in particular being described in the work of Sambrook et al., 1989. Also, such fragments may be obtained with gene synthesis standard technology available from companies such as GENSCRTPT®. Such representative fragments can likewise be obtained by chemical synthesis according to methods well known to persons of ordinary skill in the art.
- Modified nucleotide sequence will be understood as meaning any nucleotide sequence obtained by mutagenesis according to techniques well known to the person skilled in the art, and containing modifications with respect to a wild-type sequence, for example mutations in the regulatory and/or promoter sequences of polypeptide expression, especially leading to a modification of the rate of expression of the polypeptide or to a modulation of the replicative cycle.
- Modified nucleotide sequence will likewise be understood as meaning any nucleotide sequence coding for a modified polypeptide such as defined below.
- nucleotide sequences encoding a chimeric receptor comprising nucleotide sequences selected from SEQ ID NOS:2, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 or one of their fragments. Such fragments may encode particular domains such as transmembrane domains or cytosolic domains or portions thereof.
- Further nucleotide sequences encoding a chimeric receptor may include nucleotide sequences encoding linkers, hinges, or fragments thereof such as nucleotides encoding one or more of SEQ ID NOS:26-34.
- Nucleotide sequences encoding a chimeric receptor may further nucleotide sequences encoding one or more of SEQ ID NOS: 35-54 or fragments thereof.
- Embodiments likewise relate to nucleotide sequences characterized in that they comprise a nucleotide sequence selected from: a) at least one of a nucleotide sequence of SEQ ID NOS:2, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24, a nucleotide sequence encoding at least one of SEQ ID NOS:25-54, or one of their fragments; b) a nucleotide sequence of a specific fragment of a sequence such as defined in a); c) a homologous nucleotide sequence having at least 80% identity with a sequence such as defined in a) or b); d) a complementary nucleotide sequence or sequence of RNA corresponding to a sequence such as defined in a), b) or c); and e) a nucleotide sequence modified by a sequence such as defined in a), b), c) or d).
- nucleotide sequences are the nucleotide sequences of SEQ ID NOS:2, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24, a nucleotide sequence encoding at least one of SEQ ID NOS:25-54,or fragments thereof and any nucleotide sequences which have a homology of at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.6%, or 99.7% identity with the at least one of the sequences of SEQ ID NOS: 2, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 a nucleotide sequence encoding at least one of SEQ ID NOS:25-54, or fragments thereof.
- the homologous sequences can comprise, for example, the sequences corresponding to the wild-type sequences.
- these specific homologous sequences can correspond to variations linked to mutations within the wild-type sequence and especially correspond to truncations, substitutions, deletions and/or additions of at least one nucleotide.
- such homologues are easily created and identified using standard techniques and publicly available computer programs such as BLAST. As such, each homologue referenced above should be considered as set forth herein and fully described.
- Embodiments comprise the chimeric receptors coded for by a nucleotide sequence described herein, or fragments thereof, whose sequence is represented by a fragment. Amino acid sequences corresponding to the polypeptides which can be coded for according to one of the three possible reading frames of at least one of the sequences of SEQ ID NOS:35-54.
- Embodiments likewise relate to chimeric receptors, characterized in that they comprise a polypeptide selected from at least one of the amino acid sequences of SEQ ID NOS: l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, and 25-54, or one of their fragments.
- polypeptides are the polypeptides of amino acid sequence SEQ ID NOS:3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, and 25-54, or fragments thereof or any other polypeptides which have a homology of at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91 %, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, 99.6%, or 99.7% identity with at least one of the sequences of SEQ ID NOS: l, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, and 25-54 or fragments thereof.
- homologues are easily created and identified using standard techniques and publicly available computer programs such as BLAST. As such, each homologue referenced above should be considered as set forth herein and fully described.
- Embodiments also relate to the polypeptides, characterized in that they comprise a polypeptide selected from: a) a specific fragment of at least 5 amino acids of a polypeptide of an amino acid sequence; b) a polypeptide homologous to a polypeptide such as defined in a); c) a specific biologically active fragment of a polypeptide such as defined in a) or b); and d) a polypeptide modified by a polypeptide such as defined in a), b) or c).
- a polypeptide selected from: a) a specific fragment of at least 5 amino acids of a polypeptide of an amino acid sequence; b) a polypeptide homologous to a polypeptide such as defined in a); c) a specific biologically active fragment of a polypeptide such as defined in a) or b); and d) a polypeptide modified by a polypeptide such as defined in a), b) or c).
- polypeptide In the present description, the terms polypeptide, peptide and protein are interchangeable.
- the chimeric receptors may be glycosylated, pegylated, and/or otherwise post-translationally modified.
- glycosylation, pegylation, and/or other posttranslational modifications may occur in vivo or in vitro and/or may be performed using chemical techniques.
- any glycosylation, pegylation and/or other posttranslational modifications may be N-linked or O-linked.
- any one of the chimeric receptors may be enzymatically or functionally active such that, when the extracellular domain is bound by a ligand, a signal is transduced to polarize a macrophage.
- a "polarized macrophage" is a macrophage that correlates with an Ml or M2 macrophage phenotype. Ml polarized macrophages secrete IL-12 and IL-23. The determination of a macrophage as polarized to Ml may be performed by measuring the expression of IL-12 and/or IL-23 using a standard cytokine assay and comparing that expression to the expression by newly differentiated unpolarized macrophages.
- the determination can be made by determining if the cells are CD14+, CD80+, CD206+, and CDCD163-.
- M2 polarized macrophages secrete IL-10.
- the determination of a macrophage as polarized to M2 may be performed by measuring the expression of IL-10 using a standard cytokine assay and comparing that expression to the expression by newly differentiated unpolarized macrophages.
- the determination can be made by determining if the cells are CD 14+, CD80-, CD206+, and CDCD163+
- aspects of the disclosure relate to chimeric receptors obtained by genetic recombination, or alternatively by chemical synthesis and that they may thus contain unnatural amino acids, as will be described below.
- polypeptide fragment according to the embodiments is understood as designating a polypeptide containing at least 5 consecutive amino acids, preferably 10 consecutive amino acids or 15 consecutive amino acids.
- a specific polypeptide fragment is understood as designating the consecutive polypeptide fragment coded for by a specific fragment a nucleotide sequence.
- homologous polypeptide will be understood as designating the polypeptides having, with respect to the natural polypeptide, certain modifications such as, in particular, a deletion, addition, or substitution of at least one amino acid, a truncation, a prolongation, a chimeric fusion, and/or a mutation.
- homologous polypeptides those are preferred whose amino acid sequence has at least 80% or 90%, homology with the sequences of amino acids of polypeptides described herein.
- Specific homologous polypeptide will be understood as designating the homologous polypeptides such as defined above and having a specific fragment of polypeptide polypeptides described herein.
- substitution In the case of a substitution, one or more consecutive or nonconsecutive amino acids are replaced by "equivalent” amino acids.
- the expression "equivalent” amino acid is directed here at designating any amino acid capable of being substituted by one of the amino acids of the base structure without, however, essentially modifying the biological activities of the corresponding peptides and such that they will be defined by the following.
- substitutions are easily created and identified using standard molecular biology techniques and publicly available computer programs such as BLAST. As such, each substitution referenced above should be considered as set forth herein and fully described.
- substitutions are limited to substitutions in amino acids not conserved among other proteins which have similar identified enzymatic activity.
- one of ordinary skill in the art may align proteins of the same function in similar organisms and determine which amino acids are generally conserved among proteins of that function.
- One example of a program that may be used to generate such alignments is wordlwideweb.charite.de/bioinf/strap/ in conjunction with the databases provided by the NCBI.
- substitutions or mutation may be made at positions that are generally conserved among proteins of that function.
- nucleic acid sequences may be mutated or substituted such that the amino acid they code for is unchanged (degenerate substitutions and/mutations) and/or mutated or substituted such that any resulting amino acid substitutions or mutation are made at positions that are generally conserved among proteins of that function.
- the specific homologous polypeptides likewise correspond to polypeptides coded for by the specific homologous nucleotide sequences such as defined above and thus comprise in the present definition the polypeptides which are mutated or correspond to variants which can exist in wild-type sequences, and which especially correspond to truncations, substitutions, deletions, and/or additions of at least one amino acid residue.
- "Specific biologically active fragment of a polypeptide" as used herein will be understood in particular as designating a specific polypeptide fragment, such as defined above, having at least one of the characteristics of polypeptides described herein.
- the peptide is capable of behaving as chimeric antigen receptor that when activated polarizes a macrophage.
- Modified polypeptide of a polypeptide as used herein is understood as designating a polypeptide obtained by genetic recombination or by chemical synthesis as will be described below, having at least one modification with respect to a wild-type sequence. These modifications may or may not be able to bear on amino acids at the origin of specificity, and/or of activity, or at the origin of the structural conformation, localization, and of the capacity of membrane insertion of the polypeptide as described herein. It will thus be possible to create polypeptides of equivalent, increased, or decreased activity, and of equivalent, narrower, or wider specificity. Among the modified polypeptides, it is necessary to mention the polypeptides in which up to 5 or more amino acids can be modified, truncated at the N- or C-terminal end, or even deleted or added.
- the preceding modified polypeptides can be obtained by using combinatorial chemistry, in which it is possible to systematically vary parts of the polypeptide before testing them on models, cell cultures or microorganisms for example, to select the compounds which are most active or have the properties sought.
- Chemical synthesis likewise has the advantage of being able to use unnatural amino acids, or nonpeptide bonds.
- nucleotide sequences coding for a polypeptide are likewise disclosed herein.
- Embodiments likewise relates to nucleotide sequences utilizable as a primer or probe, characterized in that the sequences are selected from the nucleotide sequences described herein.
- Embodiments additionally relate to the use of a nucleotide sequence as a primer or probe for the detection and/or the amplification of nucleic acid sequences.
- nucleotide sequences according to embodiments can thus be used to amplify nucleotide sequences, especially by the PCR technique (polymerase chain reaction) (Erlich, 1989; Innis et al., 1990; Rolfs et al., 1991; and White et al., 1997).
- PCR technique polymerase chain reaction
- oligodeoxyribonucleotide or oligoribonucleotide primers advantageously have a length of at least 8 nucleotides, preferably of at least 12 nucleotides, and even more preferentially at least 20 nucleotides.
- amplification techniques of the target nucleic acid can be advantageously employed as alternatives to PCR.
- the nucleotide sequences described herein, in particular the primers, can likewise be employed in other procedures of amplification of a target nucleic acid, such as: the TAS technique (Transcription-based Amplification System), described by Kwoh et al. in 1989; the 3SR technique (Self-Sustained Sequence Replication), described by Guatelli et al. in 1990; the NASBA technique (Nucleic Acid Sequence Based Amplification), described by Kievitis et al. in 1991; the SDA technique (Strand Displacement Amplification) (Walker et al., 1992); the TMA technique (Transcription Mediated Amplification).
- the polynucleotides can also be employed in techniques of amplification or of modification of the nucleic acid serving as a probe, such as: the LCR technique (Ligase Chain Reaction), described by Landegren et al. in 1988 and improved by Barany et al. in 1991, which employs a thermostable ligase; the RCR technique (Repair Chain Reaction), described by Segev in 1992; the CPR technique (Cycling Probe Reaction), described by Duck et al. in 1990; the amplification technique with Q-beta replicase, described by Miele et al. in 1983 and especially improved by Chu et al. in 1986, Lizardi et al. in 1988, then by Burg et al. as well as by Stone et al. in 1996.
- LCR technique Liigase Chain Reaction
- RCR technique Repair Chain Reaction
- CPR technique Cycling Probe Reaction
- the target polynucleotide to be detected is possibly an RNA, for example an mRNA
- an enzyme of reverse transcriptase type in order to obtain a cDNA from the RNA contained in the biological sample.
- the cDNA obtained will thus serve as a target for the primer(s) or the probe(s) employed in the amplification or detection procedure.
- the detection probe will be chosen in such a manner that it hybridizes with the target sequence or the amplicon generated from the target sequence.
- a probe will advantageously have a sequence of at least 12 nucleotides, in particular of at least 20 nucleotides, and preferably of at least 100 nucleotides.
- Embodiments also comprise the nucleotide sequences utilizable as a probe or primer, characterized in that they are labeled with a radioactive compound or with a nonradioactive compound.
- the unlabeled nucleotide sequences can be used directly as probes or primers, although the sequences are generally labeled with a radioactive isotope ( P, S, H, I) or with a nonradioactive molecule (biotin, acetylaminofluorene, digoxigenin, 5- bromodeoxyuridine, fluorescein) to obtain probes which are utilizable for numerous applications.
- a radioactive isotope P, S, H, I
- a nonradioactive molecule biotin, acetylaminofluorene, digoxigenin, 5- bromodeoxyuridine, fluorescein
- nucleotide sequences examples include French Patent No. 78.10975 or by Urdea et al. or by Sanchez-Pescador et al. in 1988.
- the hybridization technique can be carried out in various manners (Matthews et al., 1988).
- the most general method consists in immobilizing the nucleic acid extract of cells on a support (such as nitrocellulose, nylon, polystyrene) and in incubating, under well-defined conditions, the immobilized target nucleic acid with the probe. After hybridization, the excess of probe is eliminated and the hybrid molecules formed are detected by the appropriate method (measurement of the radioactivity, of the fluorescence or of the enzymatic activity linked to the probe).
- Various embodiments likewise comprise the nucleotide sequences or polypeptide sequences described herein, characterized in that they are immobilized on a support, covalently or noncovalently.
- the latter can be used immobilized on a support and can thus serve to capture, by specific hybridization, the target nucleic acid obtained from the biological sample to be tested. If necessary, the solid support is separated from the sample and the hybridization complex formed between the capture probe and the target nucleic acid is then detected with the aid of a second probe, a so-called detection probe, labeled with an easily detectable element.
- Another aspect is a vector for the cloning and/or expression of a sequence, characterized in that it contains a nucleotide sequence described herein.
- the vectors characterized in that they contain the elements allowing the integration, expression and/or the secretion of the nucleotide sequences in a determined host cell, are likewise provided.
- the vector may then contain a promoter, signals of initiation and termination of translation, as well as appropriate regions of regulation of transcription. It may be able to be maintained stably in the host cell and can optionally have particular signals specifying the secretion of the translated protein. These different elements may be chosen as a function of the host cell used. To this end, the nucleotide sequences described herein may be inserted into autonomous replication vectors within the chosen host, or integrated vectors of the chosen host.
- Such vectors will be prepared according to the methods currently used by the person skilled in the art, and it will be possible to introduce the clones resulting therefrom into an appropriate host by standard methods, such as, for example, calcium phosphate precipitation, lipofection, electroporation, and thermal shock.
- the vectors according are, for example, vectors of plasmid or viral origin.
- vectors for the expression of polypeptides described herein are plasmids, phages, cosmids, artificial chromosomes, viral vectors, AAV vectors, baculovirus vectors, adenoviral vectors, lentiviral vectors, retroviral vectors, chimeric viral vectors, and chimeric adenoviridae such as AD5/F35.
- vectors are useful for transforming host cells in order to clone or to express the nucleotide sequences described herein.
- Embodiments likewise comprise the host cells transformed by a vector. These cells can be obtained by the introduction into host cells of a nucleotide sequence inserted into a vector such as defined above, then the culturing of the cells under conditions allowing the replication and/or expression of the transfected nucleotide sequence.
- the host cell can be selected from prokaryotic or eukaryotic systems, such as, for example, bacterial cells (Olins and Lee, 1993), but likewise yeast cells (Buckholz, 1993), as well as plants cells, such as Arabidopsis sp., and animal cells, in particular the cultures of mammalian cells (Edwards and Aruffo, 1993), for example, HEK 293, cells, HEK 293T cells, Chinese hamster ovary (CHO) cells, myeloid cells, myeloid progenitor cells, monocytes, neutrophils, basophils, eosinophils, megakaryocytes, T cells, B cells, natural killer cells, leukocytes, lymphocytes, dendritic cells, and macrophages, but likewise the cells of insects in which it is possible to use procedures employing baculoviruses, for example sf9 insect cells (Luckow, 1993).
- prokaryotic or eukaryotic systems such as, for example,
- Embodiments likewise relate to organisms comprising one of the transformed cells.
- the obtainment of transgenic organisms expressing one or more of the nucleic acids or part of the nucleic acids may be carried out in, for example, rats, mice, or rabbits according to methods well known to the person skilled in the art, such as by viral or nonviral transfections. It will be possible to obtain the transgenic organisms expressing one or more of the genes by transfection of multiple copies of the genes under the control of a strong promoter of ubiquitous nature, or selective for one type of tissue.
- transgenic organisms by homologous recombination in embryonic cell strains, transfer of these cell strains to embryos, selection of the affected chimeras at the level of the reproductive lines, and growth of the chimeras.
- the transformed cells as well as the transgenic organisms are utilizable in procedures for preparation of recombinant polypeptides.
- a polypeptide such as a chimeric receptor
- a vector and/or a cell transformed by a vector and/or a transgenic organism comprising one of the transformed cells are themselves comprised in in the present disclosure.
- transformation and “transformed” relate to the introduction of nucleic acids into a cell, whether prokaryotic or eukaryotic. Further, “transformation” and “transformed,” as used herein, need not relate to growth control or growth deregulation.
- the preparation procedures employing a vector, and/or a cell transformed by the vector and/or a transgenic organism comprising one of the transformed cells, containing a nucleotide sequence, such as those encoding a chimeric receptor.
- a variant according, as used herein, may consist of producing a recombinant polypeptide fused to a "carrier" protein (chimeric protein).
- carrier chimeric protein
- embodiments relate to a procedure for preparation of a polypeptide comprising the following steps: a) culture of transformed cells under conditions allowing the expression of a recombinant polypeptide of nucleotide sequence; b) if need be, recovery of the recombinant polypeptide.
- the recombinant polypeptide may then extracted from the organism or left in place.
- Embodiments also relate to a polypeptide which is capable of being obtained by a procedure such as described previously.
- Embodiments also comprise a procedure for preparation of a synthetic polypeptide, characterized in that it uses a sequence of amino acids of polypeptides.
- This disclosure likewise relates to a synthetic polypeptide, such as a chimeric receptor, obtained by a procedure.
- polypeptides such as chimeric receptors
- chimeric receptors can likewise be prepared by techniques which are conventional in the field of the synthesis of peptides. This synthesis can be carried out in homogeneous solution or in solid phase.
- This method of synthesis consists in successively condensing, two by two, the successive amino acids in the order required, or in condensing amino acids and fragments formed previously and already containing several amino acids in the appropriate order, or alternatively several fragments previously prepared in this way, it being understood that it will be necessary to protect beforehand all the reactive functions carried by these amino acids or fragments, with the exception of amine functions of one and carboxyls of the other or vice- versa, which must normally be involved in the formation of peptide bonds, especially after activation of the carboxyl function, according to the methods well known in the synthesis of peptides.
- hybrid molecules can be formed, in part, of a polypeptide carrier molecule or of fragments thereof, associated with a possibly immunogenic part, in particular an epitope of the diphtheria toxin, the tetanus toxin, a surface antigen of the hepatitis B virus (patent FR 79 21811), the VP1 antigen of the poliomyelitis virus or any other viral or bacterial toxin or antigen.
- polypeptides including chimeric receptors, the antibodies described below and the nucleotide sequences encoding any of the foregoing can advantageously be employed in procedures for the polarization of a macrophage.
- a nucleic acid sequence encoding a chimeric receptor is provided to a cell.
- the cell may then express the encoded chimeric receptor.
- the expressed chimeric receptor may be present on the surface of the cell or in the cytoplasm.
- the cell expressing the chimeric receptor is a macrophage.
- the macrophage expressed chimeric receptor may bind a ligand, and binding of the ligand may activate the chimeric receptor so as to induce polarization of the macrophage as previously described.
- the cell provided with the nucleic acid sequence encoding a chimeric receptor may be isolated from a subject. After the cell is provided with the nucleic acid, the cell may be returned to the subject from whom it was obtained, for example by injection or transfusion. In other embodiments, the cell provided with the nucleic acid may be provided by a donor. After the donor cell is provided with the nucleic acid, the cell may then be provided to an individual other than the donor. Examples of donor cells include, but are not limited to primary cells from a subject and cells from a cell line.
- chimeric receptors may be introduced directly into cells. Any method of introducing a protein into cell may be used, including, but not limited to, microinjection, electroporation, membrane fusion, and the use of protein transduction domains. After the cell is provided with chimeric receptors, the cell may be returned to the subject from whom it was obtained, for example by injection or transfusion. In other embodiments, the cell provided with the chimeric receptors is provided by a donor. After the donor cell is provided with the nucleic acid, the cell may then be provided to an individual other than the donor. Examples of donor cells include, but are not limited to primary cells from a subject and cells from a cell line.
- Embodiments likewise relates to polypeptides, such as chimeric receptors, labeled with the aid of an adequate label, such as, of the enzymatic, fluorescent or radioactive type.
- the polypeptides allow monoclonal or polyclonal antibodies to be prepared which are characterized in that they specifically recognize the polypeptide. It will advantageously be possible to prepare the monoclonal antibodies from hybridomas according to the technique described by Kohler and Milstein in 1975. It will be possible to prepare the polyclonal antibodies, for example, by immunization of an animal, in particular a mouse, with a polypeptide or a DNA, associated with an adjuvant of the immune response, and then purification of the specific antibodies contained in the serum of the immunized animals on an affinity column on which the polypeptide which has served as an antigen has previously been immobilized.
- the polyclonal antibodies can also be prepared by purification, on an affinity column on which a polypeptide has previously been immobilized, of the antibodies contained in the serum of an animal immunologically challenged by a chimeric receptor, or a polypeptide or fragment thereof.
- antibodies can be used to prepare other forms of binding molecules, including, but not limited to, IgAs, IgDs, IgEs, IgGs, IgMs, Fab fragments, F(ab')2 fragments, monovalent antibodies, scFv fragments, scRv-Fc fragments, IgNARs, hcIgGs, VhH antibodies, nanobodies, and alphabodies.
- Embodiments likewise relates to mono- or polyclonal antibodies or their fragments, or chimeric antibodies, or fragments thereof, characterized in that they are capable of specifically recognizing a polypeptide described herein or a ligand of a polypeptide and/or chimeric receptor.
- the antibodies will be labeled in the same manner as described previously for the nucleic probes, such as a labeling of enzymatic, fluorescent or radioactive type. It will be also be possible to include such antibodies and/or fragments thereof as part of a chimeric receptor. By way of non-limiting example, such an antibody or fragment thereof may make up a portion of the extracellular domain of a chimeric receptor.
- Embodiments are additionally directed at a procedure for the detection and/or identification of chimeric receptor in a sample, characterized in that it comprises the following steps: a) contacting of the sample with a mono- or polyclonal (under conditions allowing an immunological reaction between the antibodies and the chimeric receptor possibly present in the biological sample); b) demonstration of the antigen-antibody complex possibly formed.
- cDNA was purified from a monoclonal antibody hybridoma cell (CB1) expressing an antibody specific to human TK1.
- CB1 monoclonal antibody hybridoma cell
- the isolated cDNA was used to amplify the heavy and light chains of the CB1 variable region via polymerase chain reaction (PCR) Sequences from the heavy and light chain were confirmed using NCBI Blast.
- CB1 heavy and light chains were fused together via site overlap extension (SOE) PCR to form a single chain fragment variable (scFv) using a G4S linker.
- the G4S linker was codon optimized for yeast and humans using the Codon Optimization tool provided by IDT (https://www.idtdna.com/CodonOpt) in order to maximize protein expression.
- the CB1 scFv was cut out using restriction enzymes and inserted into a pMP71 CAR vector.
- TK-1 and HPRT-specific human scFv fragments were isolated from a yeast antibody library. TK-1 and HPRT proteins were isolated, His-tagged, and purified. TK-1 and HPRT protein were labeled with an anti-His biotinylated antibody and added to the library to select for TK-1 and HPRT-specific antibody clones. TK-1 and HPRT antibody clones were alternately stained with streptavidin or anti-biotin microbeads and enriched using a magnetic column. Two additional rounds of sorting and selection were performed to isolate TK-1 and HPRT specific antibodies.
- TK-1 and HPRT antibody clones and their respective proteins were sorted by fluorescence-activated cell sorting (FACS) by alternately labeling with fluorescently-conjugated anti-HA or anti-c-myc antibodies to isolate TK-1 and HPRT specific antibodies.
- FACS fluorescence-activated cell sorting
- High affinity clones were selected for chimeric receptor construction.
- Other human antibodies or humanized antibodies from other animals could be selected or altered to be TK-1 or HPRT specific by using phage display or other recombination methods.
- Selected scFv clones were then combined with human IgGl constant domains to create an antibody for use in applications such as Western blot or ELISA in order to confirm the binding specificity of the scFv.
- the antibody construct was inserted into the pPNL9 yeast secretion vector and YVH10 yeast were transformed with the construct and induced to produce the antibody.
- Other expression systems such as E. coli or mammalian systems could also be used to secrete antibodies. Isolation and characterization of protein-specific antibody fragments.
- 105 yeast were incubated with 2.5ug of protein of interest labeled with the fluorescent tag APC.
- the higher left (red) peak indicates yeast population that was not binding to the protein of interest (negative control).
- the lower left (blue) peak on the left illustrates yeast not expressing their surface protein while the high (blue) peak on the right indicates binding of the expressed antibody fragment to the protein of interest.
- the first step in the process is the design of the nucleotide sequences for synthetic chimeric receptor genes and the selection of appropriate lentiviral vectors. All the vector design are carried out in genious software version 9.1.6. The sequences are retrieved from the Uniprot and the Human Protein Reference Data base and NCBI as well. Vectors are synthesized with a combination of recombinant DNA techniques and gene synthesis.
- Sequences for the Single chain variable fragments are produced with a humanized antibody yeast display library or a phage display library.
- All possible combinations of nucleic acids encoding chimeric receptors having at least one of each of a), b), c), d), and e), wherein a), b), c), d), and e) are:
- a hinge region selected from an LRR 5 amino acid short hinge, a LRR long hinge, an IgG4 short hinge, an IgG 119 amino acid medium hinge, and IgG4 long hinge, a CD8 hinge, a CD8 hinge with cysteines converted to serines, and no hinge; d) a transmembrane domain selected from the transmembrane domains of MYD88, TLR3, TLR4, TLR7, TLR8, TLR9, MAL, IRAKI, FCGR2A, FCGR3A, and FCER1G; and
- a cytosolic domain selected from the cytosolic domains of MYD88, TLR3, TLR4, TLR7, TLR8, TLR9, MAL, IRAKI, FCGR2A, FCGR3A, and
- nucleic acids encoding chimeric receptors are synthesized with a combination of recombinant DNA techniques and gene synthesis.
- Macrophages are genetically modified with an integrated gene delivery method via lentiviral-mediated gene transfer to provide the nucleic acids encoding chimeric receptors.
- a third generation lentiviral system from addgene is used to package our lentiviral vectors.
- pHIV-dTomato (#21374) and pUltra-chilli (#48687) are the gene transfer plasmids.
- VSV-G (#8454), pMDLg/pRRE (#12251), pRSV-Rev (#12253), pHCMV-AmphoEnv
- HEK293T cells are transfected with the calcium phosphate method (SIGMA CAPHOS).
- each packaging plasmid and 20 ug of vector encoding the chimeric receptor are used per transfection. After 48-36 hours viral particles are harvested and sterile filtered. Viral titration are determined infecting HT1080 and U937 cells.
- the analysis is performed by flow cytometry detecting a red fluorescent protein. After viral titration human monocytes are transduced using retronectin plates (Clonetech, T100B) and the spin infection method
- monocytes are isolated from whole PBMNCs by negative selection and magnetic sorting using the Monocyte Isolation Kit II, human (MACS 130-091 -153). After monocyte isolation cells are split in 2 nunclon 6-well plates (Thermo, 145380) seeding 1.5X106 cells in each well for each vector. One plate is immediately transduced while the second plate is used for ex- vivo differentiation of monocytes to Ml macrophages. The Ml macrophages are produced using the media Ml- Macrophage Generation Medium DFX (Promocell, C-28055).
- macrophages are transduced and activated at day 9 with LPS (500X) (Affimetryx, 00-4976-03) and IFN- ⁇ (Promokine, C-60724).
- LPS 500X
- IFN- ⁇ Promokine, C-60724
- the transduction efficiency is analyzed by flow cytometry.
- Transduced cells are separated by cell sorting using a FACS Aria cell sorter. After cell sorting transduced monocytes are ex vivo cultured for a couple of days before differentiation while differentiated macrophages can last a month.
- transduced macrophages prepared in Example 2 are separately exposed to TK1,
- FIG. 27 shows images of Non-transduced and transduced monocyte-derived macrophages at day 8 of differentiation. No Interferon gamma and LPS was added at this point. It can be observed that the phenotype of macrophages transduced with a chimeric receptor is different from non-transduced macrophages. Transduced cells displayed a classically activated or Ml -like phenotype indicating macrophage activation. The altered phenotype may be a combined effect of the transduction process and the expression of the new synthetic receptor.
- FIG 28 provides confirmation of the insertion and expression of constructs encoding a chimeric receptor as was confirmed by the expression of dTomato 48-72 hours after transduction. This demonstrates the successful transduction of human monocyte-derived macrophages.
- FIG. 29 shows the results of macrophages that were transduced being cell sorted using a FACSAria system. Around 30% of macrophage transduction was achieved using the lentiviral approach. The left most plot shows a control wherein only 0.58% of cells show fluorescence which would indicate expression of dTomato. The right two plots show a transduction efficiency of 27.1 percent after transduction.
- Immunophenotyping of macrophages transduced with vectors for the expression of a chimeric receptor was performed to identify the activation state of the transduced cells. It has been reported that modifications of the extracellular domain of TLR-4 may induce constant activation of its signaling domain (Gay et al., 2014). Constant activation of the TLR-4 signaling could lead to macrophage activation or Ml phenotype. It is not know if the construct which was used, which is based on TLR-4, is able to trigger a constant activation of the signaling through the TIR domain taken from TLR-4. However, after the transduction process, a change in the phenotype was observed and a change in the expression of cell surface markers in the macrophages.
- FIG. 30 presents six scatter plots of fluorescence activated cell sorting demonstrating the retention of dye (Alexa 647), and the expression of CD80, CD 163, CD206, and CD 14 in macrophages transduced with a chimeric receptor.
- FIG 31 Presents a histogram of the relative expression levels of Ml cells surface markers in macrophages transduced with a vector to express a chimeric receptor.
- Example 7 In-vitro toxicity of TK1 targeting chimeric receptor transduced macrophages against NCI-H460 cells.
- TK1 targeting chimeric receptor transduced macrophages The tumoricidal activity of TK1 targeting chimeric receptor transduced macrophages was tested against NCI-H460-GFP cells. The E:T ratio used was 1 : 10. The analysis was performed with confocal microscopy. Detection of fluorescence was performed every 5 minutes during a 12 hour period. It was observed during time lapse that TK1 targeting chimeric receptor transduced macrophages migrate toward H460-GFP cells and attack them. After the synapsis, specific cell death is induced in the target cell. As demonstrated by the images in FIG. 32, TK1 targeting chimeric receptor transduced macrophages can detect, attack and induce cell death in lung cancer cell lines expressing TK1. NCI-H460 cells were modified to express GFP. The tumoricidal activity of TK1 targeting chimeric receptor transduced macrophages was detected with confocal microscopy as a loss of fluorescence in the target cell.
- Macrophage polarization tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23(11), 549-55. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12401408
- Macrophages within NSCLC tumour islets are predominantly of a cytotoxic Ml phenotype associated with extended survival.
- Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme.
- Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis.
- CCR2 and CX3CR1 is a Fundamental Mechanism Driving Lung Cancer. American Journal of Respiratory and Critical Care Medicine. http://doi.org/10.1164/rccm.201406-1 137OC
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Cell Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Oncology (AREA)
- Dermatology (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2017414703A AU2017414703A1 (en) | 2017-05-17 | 2017-05-17 | Transgenic macrophages, chimeric antigen receptors, and associated methods |
EP17731332.7A EP3624834A1 (en) | 2017-05-17 | 2017-05-17 | Transgenic macrophages, chimeric antigen receptors, and associated methods |
JP2020514655A JP7164598B2 (en) | 2017-05-17 | 2017-05-17 | Transgenic macrophages, chimeric antigen receptors, and related methods |
KR1020197037141A KR102508182B1 (en) | 2017-05-17 | 2017-05-17 | Transformed macrophages, chimeric antigen receptors, and related methods |
CN201780090935.5A CN110662553A (en) | 2017-05-17 | 2017-05-17 | Transgenic macrophages, chimeric antigen receptors and related methods |
PCT/US2017/033039 WO2018212770A1 (en) | 2017-05-17 | 2017-05-17 | Transgenic macrophages, chimeric antigen receptors, and associated methods |
CA3062978A CA3062978A1 (en) | 2017-05-17 | 2017-05-17 | Transgenic macrophages, chimeric antigen receptors, and associated methods |
ZA2019/08245A ZA201908245B (en) | 2017-05-17 | 2019-12-11 | Transgenic macrophages, chimeric antigen receptors, and associated methods |
JP2022167762A JP2022189893A (en) | 2017-05-17 | 2022-10-19 | Transgenic macrophages, chimeric antigen receptors and related methods |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2017/033039 WO2018212770A1 (en) | 2017-05-17 | 2017-05-17 | Transgenic macrophages, chimeric antigen receptors, and associated methods |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018212770A1 true WO2018212770A1 (en) | 2018-11-22 |
Family
ID=59078161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2017/033039 WO2018212770A1 (en) | 2017-05-17 | 2017-05-17 | Transgenic macrophages, chimeric antigen receptors, and associated methods |
Country Status (8)
Country | Link |
---|---|
EP (1) | EP3624834A1 (en) |
JP (2) | JP7164598B2 (en) |
KR (1) | KR102508182B1 (en) |
CN (1) | CN110662553A (en) |
AU (1) | AU2017414703A1 (en) |
CA (1) | CA3062978A1 (en) |
WO (1) | WO2018212770A1 (en) |
ZA (1) | ZA201908245B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11052138B2 (en) | 2015-05-20 | 2021-07-06 | Thunder Biotech Inc. | Use of car and bite technology coupled with an SCFV from an antibody against human thymidine kinase 1 to specifically target tumors |
US11058725B2 (en) | 2019-09-10 | 2021-07-13 | Obsidian Therapeutics, Inc. | CA2 compositions and methods for tunable regulation |
US11352439B2 (en) | 2015-08-13 | 2022-06-07 | Kim Leslie O'Neill | Macrophage CAR (MOTO-CAR) in immunotherapy |
US11655282B2 (en) | 2016-09-27 | 2023-05-23 | Cero Therapeutics, Inc. | Chimeric engulfment receptor molecules |
US11708423B2 (en) | 2017-09-26 | 2023-07-25 | Cero Therapeutics, Inc. | Chimeric engulfment receptor molecules and methods of use |
US12024719B2 (en) | 2017-05-17 | 2024-07-02 | Thunder Biotech Inc. | Transgenic macrophages, chimeric antigen receptors, and associated methods |
EP4072574A4 (en) * | 2019-12-11 | 2024-09-11 | Myeloid Therapeutics Inc | Therapeutic cell compositions and methods for manufacture and uses thereof |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109336980B (en) * | 2017-07-27 | 2022-04-12 | 上海细胞治疗研究院 | Muc 1-targeted chimeric antigen receptor modified T cell and application thereof |
CN113980138B (en) * | 2021-08-11 | 2023-08-11 | 卡瑞济(北京)生命科技有限公司 | EphA2 chimeric antigen receptor and uses thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2422956A1 (en) | 1978-04-13 | 1979-11-09 | Pasteur Institut | METHOD OF DETECTION AND CHARACTERIZATION OF A NUCLEIC ACID OR OF A SEQUENCE OF THE SAME, AND ENZYMATIC REAGENT FOR THE IMPLEMENTATION OF THIS PROCESS |
FR2464269A1 (en) | 1979-08-30 | 1981-03-06 | Anvar | Nucleic acid coding for hepatitis B antigen - and corresp. peptides, vectors and hybrid proteins |
FR2518755A1 (en) | 1981-12-23 | 1983-06-24 | Pasteur Institut | PROBE CONTAINING A MODIFIED AND RECONNAISSABLE NUCLEIC ACID WITH SPECIFIC ANTIBODIES AND USE OF SAME FOR DETECTING AND CHARACTERIZING A HOMOLOGOUS DNA SEQUENCE |
WO2017019848A1 (en) * | 2015-07-28 | 2017-02-02 | The Trustees Of The University Of Pennsylvania | Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof |
WO2017025944A2 (en) * | 2015-08-13 | 2017-02-16 | Brigham Young University | Macrophage car (moto-car) in imunotherapy |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106459989B (en) * | 2013-12-19 | 2023-02-17 | 诺华股份有限公司 | Human mesothelin chimeric antigen receptor and uses thereof |
-
2017
- 2017-05-17 JP JP2020514655A patent/JP7164598B2/en active Active
- 2017-05-17 KR KR1020197037141A patent/KR102508182B1/en active IP Right Grant
- 2017-05-17 CA CA3062978A patent/CA3062978A1/en active Pending
- 2017-05-17 CN CN201780090935.5A patent/CN110662553A/en active Pending
- 2017-05-17 AU AU2017414703A patent/AU2017414703A1/en active Pending
- 2017-05-17 EP EP17731332.7A patent/EP3624834A1/en active Pending
- 2017-05-17 WO PCT/US2017/033039 patent/WO2018212770A1/en unknown
-
2019
- 2019-12-11 ZA ZA2019/08245A patent/ZA201908245B/en unknown
-
2022
- 2022-10-19 JP JP2022167762A patent/JP2022189893A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2422956A1 (en) | 1978-04-13 | 1979-11-09 | Pasteur Institut | METHOD OF DETECTION AND CHARACTERIZATION OF A NUCLEIC ACID OR OF A SEQUENCE OF THE SAME, AND ENZYMATIC REAGENT FOR THE IMPLEMENTATION OF THIS PROCESS |
FR2464269A1 (en) | 1979-08-30 | 1981-03-06 | Anvar | Nucleic acid coding for hepatitis B antigen - and corresp. peptides, vectors and hybrid proteins |
FR2518755A1 (en) | 1981-12-23 | 1983-06-24 | Pasteur Institut | PROBE CONTAINING A MODIFIED AND RECONNAISSABLE NUCLEIC ACID WITH SPECIFIC ANTIBODIES AND USE OF SAME FOR DETECTING AND CHARACTERIZING A HOMOLOGOUS DNA SEQUENCE |
WO2017019848A1 (en) * | 2015-07-28 | 2017-02-02 | The Trustees Of The University Of Pennsylvania | Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof |
WO2017025944A2 (en) * | 2015-08-13 | 2017-02-16 | Brigham Young University | Macrophage car (moto-car) in imunotherapy |
Non-Patent Citations (87)
Title |
---|
"Cancer Facts & Figures", 2015 |
"Structural Consensus among Antibodies Defines the Antigen 5 Binding Site", PLOS COMPUT. BIOL., vol. 8, no. 2, pages el002388 |
ANDERSON, C. F.; MOSSER, D. M.: "A novel phenotype for an activated macrophage: the type 2 activated macrophage", JOURNAL OF LEUKOCYTE BIOLOGY, vol. 72, no. 1, 2002, pages 101 - 106, Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/pubmed/12101268> |
ANDREESEN, R. ET AL: "Adoptive transfer of tumor cytotoxic macrophages generated in vitro from circulating blood monocytes: a new approach to cancer immunotherapy", CANCER RESEARCH, 1990, pages 7450 - 7456, Retrieved from the Internet <URL:http://cancerres.aacrjoumals.org/content/50/23/7450.short> |
ARRANZ, A. ET AL: "Aktl and Akt2 protein kinases differentially contribute to macrophage polarization.", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA,, vol. 109, no. 24, 2012, pages 9517 - 9522, Retrieved from the Internet <URL:http://doi.org/10.1073/pnas.1119038109> |
BACCALA, R.; HOEBE, K.; KONO, D. H.; BEUTLER, B.; THEOFILOPOULOS, A. N.: "TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity", NATURE MEDICINE, vol. 13, no. 5, 2007, pages 543 - 551, Retrieved from the Internet <URL:http://doi.org/10.1038/nm1590> |
BANERJEE, S.; XIE, N.; CUI, H.; TAN, Z.; YANG, S.; ICYUZ, M.; LIU, G.: "MicroRNA let-7c regulates macrophage polarization", JOURNAL OF IMMUNOLOGY (BALTIMORE,MD. : 1950, vol. 190, no. 12, 2013, pages 6542 - 6549, Retrieved from the Internet <URL:http://doi.org/10.4049/jimmunol.1202496> |
BETTENCOURT-DIAS, M. ET AL: "Genome-wide survey of protein kinases required for cell cycle progression", NATURE, vol. 432, no. 7020, 2004, pages 980 - 987, Retrieved from the Internet <URL:http://doi.org/10.1038/nature03160> |
BINGLE, L.; BROWN, N. J.; LEWIS, C. E.: "The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies", THE JOURNAL OF PATHOLOGY, vol. 196, no. 3, 2002, pages 254 - 265, Retrieved from the Internet <URL:http://doi.org/10.1002/path.1027> |
BISWAS, S. K. ET AL: "A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation).", BLOOD, vol. 107, no. 5, 2006, pages 2112 - 2122, Retrieved from the Internet <URL:http://doi.org/10.1182/blood-2005-01-0428> |
BLAGIH, J.; JONES, R. G.: "Polarizing macrophages through reprogramming of glucose metabolism", CELL METABOLISM, vol. 15, no. 6, 2012, pages 793 - 795, XP028520514, Retrieved from the Internet <URL:http://doi.org/10.1016/j.cmet.2012.05.008> DOI: doi:10.1016/j.cmet.2012.05.008 |
CAI, X. ET AL: "Re-polarization of tumor-associated macrophages to pro-inflammatory Ml macrophages by microRNA-155", JOURNAL OF MOLECULAR CELL BIOLOGY, vol. 4, no. 5, 2012, pages 341 - 343, Retrieved from the Internet <URL:http://doi.org/10.1093/jmcb/mjs044> |
CHEN, H. ET AL: "The promotion of type 1 T helper cell responses to cationic polymers in vivo via toll-like receptor-4 mediated IL-12 secretion", BIOMATERIALS, vol. 31, no. 32, 2010, pages 8172 - 8180, XP027259521, Retrieved from the Internet <URL:http://doi.org/10.1016/j.biomaterials.2010.07.056> |
CORTEZ-RETAMOZO, V.; ETZRODT, M.; NEWTON, A.; RAUCH, P. J.; CHUDNOVSKIY, A.; BERGER, C.; PITTET, M. J.: "Origins of tumor-associated macrophages and neutrophils", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 109, no. 7, 2012, pages 2491 - 6, Retrieved from the Internet <URL:http://doi.org/10.1073/pnas.1113744109> |
DALTON, H. J. ET AL: "Monocyte subpopulations in angiogenesis", CANCER RESEARCH, vol. 74, no. 5, 2014, pages 1287 - 1293, Retrieved from the Internet <URL:http://doi.org/10.1158/0008-5472.CAN-13-2825> |
DAVIS, M. J.; TSANG, T. M.; QIU, Y.; DAYRIT, J. K.; FREIJ, J. B.; HUFFNAGLE, G. B.; OLSZEWSKI, M. A.: "Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection", MBIO, vol. 4, no. 3, 2013, pages e00264-13, Retrieved from the Internet <URL:http://doi.org/10.1128/mBio.00264-13> |
EDIN, S.; WIKBERG, M. L.; DAHLIN, A. M.; RUTEGARD, J.; OBERG, A.; OLDENBORG, P.-A.; PALMQVIST, R.: "The distribution of macrophages with a ml or m2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer", PLOS ONE, vol. 7, no. 10, 2012, pages e47045, Retrieved from the Internet <URL:http://doi.org/10.1371/journal.pone.0047045> |
EIRO, N.; VIZOSO, F. J.: "Inflammation and cancer", WORLD JOURNAL OF GASTROINTESTINAL SURGERY, vol. 4, no. 3, 2012, pages 62 - 72, Retrieved from the Internet <URL:http://doi.org/10.4240/wjgs.v4.i3.62> |
ELLEM, K. A. O. ET AL: "A case report: immune responses and clinical course of the first human use of granulocyte/macrophage-colony-stimulating-factor-transduced autologous melanoma", CANCER IMMUNOLOGY, IMMUNOTHERAPY, 1997, pages 10 - 20, XP035544823, Retrieved from the Internet <URL:http://www.springerlink.com/index/JQ4EB21E4C7ADMT7.pdf> DOI: doi:10.1007/s002620050349 |
FORSSELL, J.; OBERG, A.; HENRIKSSON, M. L.; STENLING, R.; JUNG, A.; PALMQVIST, R.: "High macrophage infiltration along the tumor front correlates with improved survival in colon cancer", CLINICAL CANCER RESEARCH, vol. 13, no. 5, 2007, pages 1472 - 1479, XP055107292, Retrieved from the Internet <URL:http://doi.org/10.1158/1078-0432.CCR-06-2073> DOI: doi:10.1158/1078-0432.CCR-06-2073 |
GAST, G. DE; KLIIMPEN, H.: "immunotherapy with subcutaneous granulocyte macrophage colony-stimulating factor, low-dose interleukin 2, and interferon α in progressive metastatic melanoma", CLINICAL CANCER RESEARCH, 2000, Retrieved from the Internet <URL:http ://clincancerres. aacij ournals. org/ content/6/4/1267. short> |
GAZZANIGA, S. ET AL: "Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft", THE JOURNAL OF INVESTIGATIVE DERMATOLOGY,, vol. 127, no. 8, 2007, pages 2031 - 2041, XP055124836, Retrieved from the Internet <URL:http://doi.org/10.1038/sj.jid.5700827> DOI: doi:10.1038/sj.jid.5700827 |
GESCHWIND, J. H. ET AL: "Effects of 3 bromopyruvate (hexokinase 2 inhibitor ) on glucose uptake in lewis rats using 2-(F-18) fluoro-2-deoxy-d-glucose", 2006 GASTROINTESTINAL CANCERS SYMPOSIUM, 2006, pages 12 - 14 |
GHASSABEH, G. H.; DE BAETSELIER, P.; BRYS, L.; NOEL, W.; VAN GINDERACHTER, J. A; MEERSCHAUT, S.; RAES, G.: "Identification of a common gene signature for type II cytokine-associated myeloid cells elicited in vivo in different pathologic conditions", BLOOD, vol. 108, no. 2, 2006, pages 575 - 583, XP002402878, Retrieved from the Internet <URL:http://doi.org/10.1182/blood-2005-04-1485> DOI: doi:10.1182/blood-2005-04-1485 |
GUIDUCCI, C.; VICARI, A. P.; SANGALETTI, S; TRINCHIERI, G.; COLOMBO, M. P.: "Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection", CANCER RESEARCH, vol. 65, no. 8, 2005, pages 3437 - 3446, Retrieved from the Internet <URL:http://doi.org/10.1158/0008-5472.CAN-04-4262> |
HAGEMANN, T. ET AL: "Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype.", THE JOURNAL OF IMMUNOLOGY, vol. 176, no. 8, 2006, pages 5023 - 5032, Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/pubmed/16585599> |
HAGEMANN, T. ET AL: "Re-educating'' tumor-associated macrophages by targeting NF-kappaB", THE JOURNAL OF EXPERIMENTAL MEDICINE, vol. 205, no. 6, 2008, pages 1261 - 1268, Retrieved from the Internet <URL:http://doi.org/10.1084/jem.20080108> |
HANAHAN, D.; WEINBERG, R. A.: "Hallmarks of cancer: the next generation", CELL, vol. 144, no. 5, 2011, pages 646 - 674, XP028185429, Retrieved from the Internet <URL:http://doi.Org/10.1016/j.cell.2011.02.013> DOI: doi:10.1016/j.cell.2011.02.013 |
HAO, N.-B.; LII, M.-H.; FAN, Y.-H.; CAO, Y.-L.; ZHANG, Z.-R.; YANG, S.-M.: "Macrophages in tumor microenvironments and the progression of tumors", CLINICAL & DEVELOPMENTAL IMMUNOLOGY, 2012, pages 948098, Retrieved from the Internet <URL:http://doi.org/10.1155/2012/948098> |
HARDISON, S. E. ET AL: "Protective immunity against pulmonary cryptococcosis is associated with STAT1-mediated classical macrophage activation", JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950, vol. 189, no. 8, 2012, pages 4060 - 4068, Retrieved from the Internet <URL:http://doi.org/10.4049/jimmunol.1103455> |
HASCHEMI, A. ET AL: "The sedoheptulose kinase CARKL directs macrophage polarization through control of glucose metabolism.", CELL METABOLISM, vol. 15, no. 6, 2012, pages 813 - 826, XP028520508, Retrieved from the Internet <URL:http://doi.org/10.1016/j.cmet.2012.04.023> DOI: doi:10.1016/j.cmet.2012.04.023 |
HERBEUVAL, J.-P.; LAMBERT, C.; SABIDO, O.; COTTIER, M.; FOURNEL, P.; DY, M.; GENIN, C.: "Macrophages from cancer patients: analysis of TRAIL, TRAIL receptors, and colon tumor .", JOURNAL OF THE NATIONAL CANCER INSTITUTE, vol. 95, no. 8, 2003, pages 611 - 621, Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/pubmed/12697854> |
HERCUS, T. R. ET AL: "The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease", BLOOD, vol. 114, no. 7, 2009, pages 1289 - 1298, Retrieved from the Internet <URL:http://doi.org/10.1182/blood-2008-12-164004> |
HILL, H.; JR, T. C.; SABEL, M.: "Immunotherapy with Interleukin 12 and Granulocyte-Macrophage Colony-stimulating Factor-encapsulated Microspheres Coinduction of Innate and Adaptive Antitumor", CANCER RESEARCH, 2002, Retrieved from the Internet <URL:http://cancerres. aacrj oumals. org/content/62/24/7254> |
HOYERT, D. L.; XU, J., NATIONAL VITAL STATISTICS REPORTS DEATHS: PRELIMINARY DATA FOR, vol. 61, 2011 |
HUANG, Z. ET AL: "Anti-tumor immune responses of tumor-associated macrophages via toll-like receptor 4 triggered by cationic polymers", BIOMATERIALS, vol. 34, no. 3, 2013, pages 746 - 755, XP055333314, Retrieved from the Internet <URL:http://doi.org/10.1016/j.biomaterials.2012.09.062> DOI: doi:10.1016/j.biomaterials.2012.09.062 |
JI, Y. ET AL: "Activation of natural killer T cells promotes M2 Macrophage polarization in adipose tissue and improves systemic glucose tolerance via interleukin-4 (IL-4)/STAT6 protein signaling axis in obesity", HE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 287, no. 11, 2012, pages 13561 - 13571, Retrieved from the Internet <URL:http://doi.org/10.1074/jbc.M112.350066> |
JOHNS, T.; MACKAY, I.: "Antiproliferative potencies of interferons on melanoma cell lines and xenografts: higher efficacy of interferon I2", JOURNAL OF THE NATIONAL CANCER INSTITUTE, (TYPE II, 1992, pages 1185 - 1190, Retrieved from the Internet <URL:http://jnci.oxfordjournals.org/content/84/15/1185> |
JONES, R. G.; THOMPSON, C. B.: "Revving the engine: signal transduction fuels T cell activation.", IMMUNITY, vol. 27, no. 2, 2007, pages 173 - 178, Retrieved from the Internet <URL:http://doi.Org/10.1016/j.immuni.2007.07.008> |
JUNANKAR, S. ET AL: "Real-time intravital imaging establishes tumor-associated macrophages as the extraskeletal target of bisphosphonate action in cancer", CANCER DISCOVERY, vol. 5, no. 1, 2015, pages 35 - 42, Retrieved from the Internet <URL:http://doi.org/10.1158/2159-8290.CD-14-0621> |
K. L. O'NEILL; M. HOPER; G. W. ODLING-SMEE: "Can thymidine kinase levels in breast tumors predict disease recurrence?", JOURNAL OF THE NATIONAL CANCER INSTITUTE, vol. 84, no. 23, 1992, pages 1825 - 1828 |
KELLY, P. M.; DAVISON, R. S.; BLISS, E.; MCGEE, J. O.: "Macrophages in human breast disease: a quantitative immunohistochemical study", BRITISH JOURNAL OF CANCER, vol. 57, no. 2, 1988, pages 174 - 177, Retrieved from the Internet <URL:http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2246436&tool=pmcentr ez&rendertype=abstract> |
KIMURA, Y. N. ET AL: "Inflammatory stimuli from macrophages and cancer cells synergistically promote tumor growth and angiogenesis", CANCER SCIENCE, vol. 98, no. 12, 2007, pages 2009 - 2018, Retrieved from the Internet <URL:http://doi.org/10.1111/J.1349-7006.2007.00633.X> |
KORBELIK, M. ET AL: "Macrophage-directed immunotherapy as adjuvant to photodynamic therapy of cancer.", BRITISH JOURNAL OF CANCER, vol. 75, no. 2, 1997, pages 202 - 207, XP009061849, Retrieved from the Internet <URL:http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2063270&tool=pmcentr ez&rendertype=abstract> |
KUNIK V; ASHKENAZI S; OFRAN Y: "Paratome: An online tool for systematic identification of antigen binding regions in antibodies based on sequence or structure", NUCLEIC ACIDS RES., vol. 40, 2012, pages W521 - W524, XP055246927, DOI: doi:10.1093/nar/gks480 |
KURAHARA, H.; SHINCHI, H.; MATAKI, Y.; MAEMURA, K.; NOMA, H.; KUBO, F; TAKAO, S.: "Significance of M2-polarized tumor-associated macrophage in pancreatic cancer", THE JOURNAL OF SURGICAL RESEARCH, vol. 167, no. 2, 2011, pages e211 - e219, Retrieved from the Internet <URL:http://doi.org/10.1016/j.jss.2009.05.026> |
LEWIS, C.; LEEK, R.: "Cytokine regulation of angiogenesis in breast cancer: the role of tumor-associated macrophages", JOURNAL OF LEUKOCYTE ..., vol. 57, May 1995 (1995-05-01), pages 747 - 751, Retrieved from the Internet <URL:http://www.jleukbio.org/content/57/5/747.short> |
LIAO, X.; SHARMA, N.; KAPADIA, F.: "Kruppel-like factor 4 regulates macrophage polarization", THE JOURNAL OF CLINICAL INVESTIGATION, vol. 121, no. 1, 2011, Retrieved from the Internet <URL:http://doi.org/1 0.1172/JCI45444DS 1> |
LIN, E. Y. ET AL: "Macrophages regulate the angiogenic switch in a mouse model of breast cancer", CANCER RESEARCH, vol. 56, no. 23, 2006, pages 11238 - 11246, Retrieved from the Internet <URL:http://doi.org/10.1158/0008-5472.CAN-06-1278> |
LIN, E. Y.; POLLARD, J. W.: "Tumor-associated macrophages press the angiogenic switch in breast cancer", CANCER RESEARCH, vol. 67, no. 11, 2007, pages 5064 - 5066, Retrieved from the Internet <URL:http://doi.org/10.1158/0008-5472.CAN-07-0912> |
LOKSHIN, A.; MAYOTTE, J.; LEVITT, M.: "Mechanism of Interferon Beta-Induced Squamous Differentiation and Programmed Cell Death in Human Non-Small-Cell Lung Cancer Cell Lines.", JOURNAL OF THE NATIONAL CANCER INSTITUTE,, vol. 87, 1995, pages 206 - 212, Retrieved from the Internet <URL:http://jnci.oxfordjournals.org/content/87/3/206.short> |
LUO, Y.; ZHOU, H.; KRUEGER, J.: "Targeting tumor-associated macrophages as a novel strategy against breast cancer", JOURNAL OF CLINICAL INVESTIGATION, vol. 116, no. 8, 2006, pages 2132 - 2141, Retrieved from the Internet <URL:http://doi.org/10.1172/JCI27648.2132> |
MA, J.; LIU, L.; CHE, G.; YU, N.; DAI, F.; YOU, Z.: "The Ml form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time.", BMC CANCER, vol. 10, 2010, pages 112, XP021074951, Retrieved from the Internet <URL:http://doi.org/10.1186/1471-2407-10-112> DOI: doi:10.1186/1471-2407-10-112 |
MANDAL, P. ET AL: "Molecular mechanism for adiponectin-dependent M2 macrophage polarization: link between the metabolic and innate immune activity of full-length adiponectin", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 286, no. 15, 2011, pages 13460 - 13469, Retrieved from the Internet <URL:http://doi.org/10.1074/jbc.M110.204644> |
MANTOVANI, A. ET AL: "Cancer-related inflammation", NATURE, vol. 454, no. 7203, 2008, pages 436 - 444, XP055175816, Retrieved from the Internet <URL:http://doi.org/10.1038/nature07205> DOI: doi:10.1038/nature07205 |
MANTOVANI, A.; BISWAS, S. K.; GALDIERO, M. R.; SICA, A.; LOCATI, M.: "Macrophage plasticity and polarization in tissue repair and remodelling", THE JOURNAL OF PATHOLOGY, vol. 229, no. 2, 2013, pages 176 - 185, Retrieved from the Internet <URL:http://doi.org/10.1002/path.4133> |
MANTOVANI, A.; SOZZANI, S.; LOCATI, M.; ALLAVENA, P.; SICA, A.: "Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes", TRENDS IN IMMUNOLOGY, vol. 23, no. 11, 2002, pages 549 - 555, XP004388301, Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/pubmed/12401408> DOI: doi:10.1016/S1471-4906(02)02302-5 |
MILLS, C. D. ET AL: "Macrophage arginine metabolism and the inhibition or stimulation of cancer.", JOURNAL OF IMMUNOLOGY (BALTIMORE, MD.: 1950), vol. 149, no. 8, 1992, pages 2709 - 2714, Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/pubmed/1401910> |
MURRAY, P. J.; ALLEN, J. E.; BISWAS, S. K.; FISHER, E. A.; GILROY, D. W.; GOERDT, S.; WYNN, T. A.: "Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines", IMMUNITY, vol. 41, no. 1, 2014, pages 14 - 20, Retrieved from the Internet <URL:http://doi.org/10.1016/j.immuni.2014.06.008> |
NEDDLEMAN; WUNSCH, J. MOL. BIOL., vol. 48, 1970, pages 443 |
OHRI, C. M.; SHIKOTRA, A.; GREEN, R. H.; WALLER, D. A; BRADDING, P.: "Macrophages within NSCLC tumour islets are predominantly of a cytotoxic Ml phenotype associated with extended survival", THE EUROPEAN RESPIRATORY JOURNAL, vol. 33, no. 1, 2009, pages 118 - 126, Retrieved from the Internet <URL:http://doi.org/10.1183/09031936.00065708> |
PEARSON; LIPMAN, PROC. NATL. ACAD. SCI. (U.S.A., vol. 85, 1988, pages 2444 |
PORTA, C.; RIMOLDI, M.; RAES, G.; BRYS, L.; GHEZZI, P.; DI LIBERTO, D.; SICA, A.: "Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 106, no. 35, 2009, pages 14978 - 14983, Retrieved from the Internet <URL:http://doi.org/10.1073/pnas.0809784106> |
Q. HE; T. POMANDER; H. JOHANSSON ET AL.: "Thymidine kinase 1 in serum predicts increased risk of distant or loco-regional recurrence following surgery in patients with early breast cancer", ANTICANCER RESEARCH, vol. 26, no. 6, 2006, pages 4753 - 4759 |
QIN, X.-Q. ET AL: "Interferon-beta induces S phase accumulation selectively in human transformed cells", JOURNAL OF INTERFERON & CYTOKINE RESEARCH,, vol. 17, no. 6, 1997, pages 355 - 367, XP000886677, Retrieved from the Internet <URL:http://doi.org/10.1089/jir.1997.17.355> |
ROGERS, T. L.; HOLEN, I.: "Tumour macrophages as potential targets of bisphosphonates", JOURNAL OF TRANSLATIONAL MEDICINE, vol. 9, no. 1, 2011, pages 177, XP021113601, Retrieved from the Internet <URL:http://doi.org/10.1186/1479-5876-9-177> DOI: doi:10.1186/1479-5876-9-177 |
SACCANI, A. ET AL: "p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits Ml inflammatory responses and antitumor resistance", CANCER RESEARCH, vol. 66, no. 23, 2006, pages 11432 - 11440, Retrieved from the Internet <URL:http://doi.org/10.1158/0008-5472.CAN-06-1867> |
SANFORD, D. E. ET AL: "Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: a role for targeting the CCL2/CCR2 axis", CLINICAL CANCER RESEARCH: AN OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH, vol. 19, no. 13, 2013, pages 3404 - 3415, Retrieved from the Internet <URL:http://doi.org/10.1158/1078-0432.CCR-13-0525> |
SCHMALL, A. ET AL: "Macrophage and Cancer Cell Crosstalk via CCR2 and CX3CR1 is a Fundamental Mechanism Driving Lung Cancer", AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE., 2014, Retrieved from the Internet <URL:http://doi.org/10.1164/rccm.201406-11370C> |
SHU, C. J. ET AL: "Visualization of a primary anti-tumor immune response by positron emission tomography", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 102, no. 48, 2005, pages 17412 - 17417, Retrieved from the Internet <URL:http://doi.org/10.1073/pnas.0508698102> |
SICA, A.; MANTOVANI, A.: "Macrophage plasticity and polarization: in vivo veritas", THE JOURNAL OF CLINICAL INVESTIGATION, vol. 122, no. 3, 2012, pages 787 - 796, XP055111479, Retrieved from the Internet <URL:http://doi.org/10.1172/JCI59643DS1> DOI: doi:10.1172/JCI59643 |
SIMPSON, K. D.; TEMPLETON, D. J.; CROSS, J. V.: "Macrophage Migration Inhibitory Factor Promotes Tumor Growth and Metastasis by Inducing Myeloid-Derived Suppressor Cells in the Tumor Microenvironment", THE JOURNAL OF IMMUNOLOGY, 2012, Retrieved from the Internet <URL:http://doi.org/10.4049/jimmunol.1201161> |
SINHA, P.; CLEMENTS, V. K.; OSTRAND-ROSENBERG, S.: "Reduction of myeloid-derived suppressor cells and induction of Ml macrophages facilitate the rejection of established metastatic disease", JOURNAL OF IMMUNOLOGY, vol. 174, no. 2, 2005, pages 636 - 645, Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.gov/pubmed/15634881> |
SMITH, H. O. ET AL: "The clinical significance of inflammatory cytokines in primary cell culture in endometrial carcinoma", MOLECULAR ONCOLOGY, vol. 7, no. 1, 2013, pages 41 - 54, Retrieved from the Internet <URL:http://doi.Org/10.1016/j.molonc.2012.07.002> |
SMITH; WATERMAN, AD. APP. MATH, vol. 2, 1981, pages 482 |
SQUADRITO, M. L. ET AL: "MicroRNA-mediated control of macrophages and its implications for cancer.", TRENDS IN IMMUNOLOGY,, vol. 34, no. 7, 2013, pages 350 - 359, Retrieved from the Internet <URL:http://doi.Org/10.1016/j.it.2013.02.003> |
STEIDL, C.; LEE, T.; SHAH, S.: "Tumor-associated macrophages and survival in classic Hodgkin's lymphoma", THE NEW ENGLAND JOURNAL OF MEDICINE, 2010, pages 875 - 885, XP055041466, Retrieved from the Internet <URL:http://www.nejm.org/doi/full/10.1056/NEJMoa0905680> DOI: doi:10.1056/NEJMoa0905680 |
STEIDL, C.; LEE, T.; SHAH, S.: "Tumor-associated macrophages and survival in classic Hodgkin's lymphoma", THE NEW ENGLAND JOURNAL OF MEDICINE, vol. 362, no. 10, 2010, pages 875 - 885, XP055041466, Retrieved from the Internet <URL:http://www.nejm.org/doi/full/10.1056/NEJMoa0905680> DOI: doi:10.1056/NEJMoa0905680 |
URBAN, J. L. ET AL: "Tumor necrosis factor: a potent effector molecule for tumor cell killing by activated macrophages", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 83, no. 14, 1986, pages 5233 - 5237, Retrieved from the Internet <URL:http://www.pubmedcentral.nih. gov/articlerender.fcgi?artid=323925&tool=pmcentrez &rendertype=abstract> |
VAN GINDERACHTER, J. A. ET AL: "Classical and alternative activation of mononuclear phagocytes: Picking the best of both worlds for tumor promotion", IMMUNOBIOLOGY, vol. 211, no. 6, 2006, pages 487 - 501, XP028020250, Retrieved from the Internet <URL:http://www.sciencedirect.corn/science/article/pii/S0171298506000829> DOI: doi:10.1016/j.imbio.2006.06.002 |
WANG, Y.-C. ET AL: "Notch signaling determines the Ml versus M2 polarization of macrophages in antitumor immune responses.", CANCER RESEARCH, vol. 70, no. 12, 2010, pages 4840 - 4849, XP009160889, Retrieved from the Internet <URL:http://doi.org/10.1158/0008-5472.CAN-10-0269> DOI: doi:10.1158/0008-5472.CAN-10-0269 |
WEI, Y. ET AL: "The microRNA-342-5p fosters inflammatory macrophage activation through an Aktl- and microRNA-155-dependent pathway during atherosclerosis.", CIRCULATION, vol. 127, no. 15, 2013, pages 1609 - 1619, Retrieved from the Internet <URL:http://doi.org/10.1161/CIRCULATIONAHA. 112.000736> |
WEST, R. B. ET AL: "A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 103, no. 3, 2006, pages 690 - 695, Retrieved from the Internet <URL:http://doi.org/10.1073/pnas.0507321103> |
WOLF, A. ET AL: "Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme", THE JOURNAL OF EXPERIMENTAL MEDICINE, vol. 208, no. 2, 2011, pages 313 - 326, Retrieved from the Internet <URL:http://doi.org/10.1084/jem.20101470> |
WONG, S.-C ET AL: "Macrophage polarization to a unique phenotype driven by B cells", EUROPEAN JOURNAL OF IMMUNOLOGY, vol. 40, no. 8, 2010, pages 2296 - 2307, Retrieved from the Internet <URL:http://doi.org/10.1002/eji.200940288> |
ZEISBERGER, S. M. ET AL: "Clodronate-liposome-mediated depletion of tumour-associated macrophages: a new and highly effective antiangiogenic therapy approach", BRITISH JOURNAL OF CANCER, vol. 95, no. 3, 2006, pages 272 - 281, XP003020894, Retrieved from the Internet <URL:http://doi.org/10.1038/sj.bjc.6603240> DOI: doi:10.1038/sj.bjc.6603240 |
ZHANG, F.; LU, W.; DONG, Z.: "Tumor-infiltrating macrophages are involved in suppressing growth and metastasis of human prostate cancer cells by INF-(3 gene therapy in nude mice", CLINICAL CANCER RESEARCH, 2002, pages 2942 - 2951, Retrieved from the Internet <URL:http://clincancerres.aacrjournals.org/content/8/9/2942.short> |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11052138B2 (en) | 2015-05-20 | 2021-07-06 | Thunder Biotech Inc. | Use of car and bite technology coupled with an SCFV from an antibody against human thymidine kinase 1 to specifically target tumors |
US12076378B2 (en) | 2015-05-20 | 2024-09-03 | Kim Leslie O'Neill | Use of car and bite technology coupled with an SCFV from an antibody against human thymidine kinase 1 to specifically target tumors |
US11352439B2 (en) | 2015-08-13 | 2022-06-07 | Kim Leslie O'Neill | Macrophage CAR (MOTO-CAR) in immunotherapy |
US11655282B2 (en) | 2016-09-27 | 2023-05-23 | Cero Therapeutics, Inc. | Chimeric engulfment receptor molecules |
US12024719B2 (en) | 2017-05-17 | 2024-07-02 | Thunder Biotech Inc. | Transgenic macrophages, chimeric antigen receptors, and associated methods |
US11708423B2 (en) | 2017-09-26 | 2023-07-25 | Cero Therapeutics, Inc. | Chimeric engulfment receptor molecules and methods of use |
US11058725B2 (en) | 2019-09-10 | 2021-07-13 | Obsidian Therapeutics, Inc. | CA2 compositions and methods for tunable regulation |
EP4072574A4 (en) * | 2019-12-11 | 2024-09-11 | Myeloid Therapeutics Inc | Therapeutic cell compositions and methods for manufacture and uses thereof |
Also Published As
Publication number | Publication date |
---|---|
CA3062978A1 (en) | 2018-11-22 |
KR102508182B1 (en) | 2023-03-09 |
EP3624834A1 (en) | 2020-03-25 |
KR20200020708A (en) | 2020-02-26 |
JP2022189893A (en) | 2022-12-22 |
JP7164598B2 (en) | 2022-11-01 |
AU2017414703A1 (en) | 2020-01-16 |
CN110662553A (en) | 2020-01-07 |
JP2020520252A (en) | 2020-07-09 |
ZA201908245B (en) | 2020-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12024719B2 (en) | Transgenic macrophages, chimeric antigen receptors, and associated methods | |
JP7164598B2 (en) | Transgenic macrophages, chimeric antigen receptors, and related methods | |
KR102624509B1 (en) | Stimulatory cell lines for EX VIVO expansion and activation of natural killer cells | |
TW202017576A (en) | Biologically relevant orthogonal cytokine/receptor pairs | |
US20210052643A1 (en) | Modified macrophages and macrophage precursors and associated methods | |
WO2017025944A2 (en) | Macrophage car (moto-car) in imunotherapy | |
CN113912737A (en) | Interleukin-2/interleukin-2 receptor alpha fusion proteins and methods of use | |
TWI811278B (en) | Immunocompetent cells that specifically recognize cell surface molecules of human mesothelin, IL-7, and CCL19 | |
TWI753141B (en) | Chimeric antigen receptor | |
KR20210139312A (en) | IL-10 variant molecules, and methods of treatment of inflammatory diseases and oncology | |
US20210040487A1 (en) | Chimeric antigen receptor t-cells expressing interleukin-8 receptor | |
KR20200070236A (en) | PD1-specific chimeric antigen receptor as an immunotherapeutic agent | |
EP4090339A2 (en) | Cd122 with altered icd stat signaling | |
CN101378783A (en) | Methods and compositions for expanding T regulatory cells | |
CN117730143A (en) | Cells modified by conjugated N-terminal glycine and uses thereof | |
CN101616686A (en) | The cell proliferation compositions and the method for LIGHT-mediation | |
KR20200036874A (en) | Methods and compositions for the treatment of cancer | |
WO2023056193A2 (en) | Il-18 variants and uses thereof | |
WO2022272088A1 (en) | Method of targeting cells and associated compositions | |
CN113185597A (en) | Human tumor antigen capable of activating anti-tumor immune response of patient and application thereof | |
WO2019197819A1 (en) | Engineered cytolytic immunecell | |
CA3084190A1 (en) | Methods for enhancing and maintaining car-t cell efficacy | |
AU2016305353B2 (en) | Macrophage chimeric antigen receptor (MOTO-CAR) in imunotherapy | |
WO2022260968A1 (en) | Compositions and methods for activating natural killer cells | |
CN116606379A (en) | Fusion polypeptide and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17731332 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3062978 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2020514655 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20197037141 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2017731332 Country of ref document: EP Effective date: 20191217 |
|
ENP | Entry into the national phase |
Ref document number: 2017414703 Country of ref document: AU Date of ref document: 20170517 Kind code of ref document: A |