WO2018212579A1 - 비디오 신호 처리 방법 및 장치 - Google Patents

비디오 신호 처리 방법 및 장치 Download PDF

Info

Publication number
WO2018212579A1
WO2018212579A1 PCT/KR2018/005585 KR2018005585W WO2018212579A1 WO 2018212579 A1 WO2018212579 A1 WO 2018212579A1 KR 2018005585 W KR2018005585 W KR 2018005585W WO 2018212579 A1 WO2018212579 A1 WO 2018212579A1
Authority
WO
WIPO (PCT)
Prior art keywords
intra prediction
block
sample
prediction
current block
Prior art date
Application number
PCT/KR2018/005585
Other languages
English (en)
French (fr)
Inventor
이배근
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201880032562.0A priority Critical patent/CN110651479B/zh
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Priority to CN202310833473.9A priority patent/CN116866609A/zh
Priority to CN202310833554.9A priority patent/CN116828206A/zh
Priority to CN202310832996.1A priority patent/CN116614643A/zh
Priority to CN202310830082.1A priority patent/CN116828205A/zh
Priority to CN202310833353.9A priority patent/CN116668721A/zh
Priority to CN202310836795.9A priority patent/CN116634176A/zh
Priority to CN202310837829.6A priority patent/CN116668722A/zh
Priority to CN202310830851.8A priority patent/CN116634175A/zh
Priority to US16/613,976 priority patent/US11184639B2/en
Publication of WO2018212579A1 publication Critical patent/WO2018212579A1/ko
Priority to US17/509,560 priority patent/US11706446B2/en
Priority to US18/199,137 priority patent/US20230291929A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock

Definitions

  • the present invention relates to a video signal processing method and apparatus.
  • High efficiency image compression techniques can be used to solve these problems caused by high resolution and high quality image data.
  • An inter-screen prediction technique for predicting pixel values included in the current picture from a picture before or after the current picture using an image compression technique an intra prediction technique for predicting pixel values included in a current picture using pixel information in the current picture
  • An object of the present invention is to provide a method and apparatus for efficiently performing intra prediction on an encoding / decoding target block in encoding / decoding a video signal.
  • An object of the present invention is to provide a method and apparatus for performing intra prediction using a plurality of reference samples that are not adjacent to each other in encoding / decoding a video signal.
  • the video signal decoding method and apparatus determine an intra prediction mode of a current block, derive reference samples of the current block, and use at least one of the reference samples to perform prediction samples of the current block. Can be obtained.
  • the prediction sample may be obtained based on a plurality of reference samples that do not neighbor each other.
  • the video signal encoding method and apparatus determine an intra prediction mode of a current block, derive reference samples of the current block, and use at least one of the reference samples to perform prediction samples of the current block. Can be obtained.
  • the prediction sample may be obtained based on a plurality of reference samples that do not neighbor each other.
  • a plurality of reference samples that are not adjacent to each other include an upper reference sample located at the top of the current block and a left reference sample located at the left of the current block. can do.
  • the prediction sample may be obtained based on a weighted sum between the upper reference sample and the left reference sample.
  • weights applied to the upper reference sample and the left reference sample may be determined based on a position of the prediction sample or a distance between each reference sample and the prediction sample. Can be.
  • weights applied to the upper reference sample and the left reference sample may be determined in units of subblocks.
  • any one of the upper reference sample and the left reference sample is specified by applying the intra prediction mode in a forward direction, and the other is a reverse direction of the intra prediction mode. It can be specified according to the application.
  • whether to perform the intra weighted prediction may be determined according to whether the intra prediction mode is a predefined intra prediction mode.
  • intra prediction can be efficiently performed on an encoding / decoding target block.
  • FIG. 1 is a block diagram illustrating an image encoding apparatus according to an embodiment of the present invention.
  • FIG. 3 illustrates an example in which a coding block is hierarchically divided based on a tree structure according to an embodiment to which the present invention is applied.
  • FIG. 4 is a diagram illustrating a partition type in which binary tree based partitioning is allowed as an embodiment to which the present invention is applied.
  • FIG. 5 is a diagram illustrating an example in which only a specific type of binary tree based partitioning is allowed as an embodiment to which the present invention is applied.
  • FIG. 6 is a diagram for explaining an example in which information related to a binary tree split permission number is encoded / decoded according to an embodiment to which the present invention is applied.
  • FIG. 8 illustrates a type of intra prediction mode that is pre-defined in an image encoder / decoder as an embodiment to which the present invention is applied.
  • 16 and 17 illustrate examples of performing intra prediction on a sub-block basis.
  • 19 is a diagram illustrating an example in which intra weighted prediction is performed in stages.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a block diagram illustrating an image encoding apparatus according to an embodiment of the present invention.
  • the image encoding apparatus 100 may include a picture splitter 110, a predictor 120 and 125, a transformer 130, a quantizer 135, a realigner 160, and an entropy encoder. 165, an inverse quantizer 140, an inverse transformer 145, a filter 150, and a memory 155.
  • each of the components shown in FIG. 1 is independently illustrated to represent different characteristic functions in the image encoding apparatus, and does not mean that each of the components is made of separate hardware or one software component unit.
  • each component is included in each component for convenience of description, and at least two of the components may be combined into one component, or one component may be divided into a plurality of components to perform a function.
  • Integrated and separate embodiments of the components are also included within the scope of the present invention without departing from the spirit of the invention.
  • the components may not be essential components for performing essential functions in the present invention, but may be optional components for improving performance.
  • the present invention can be implemented including only the components essential for implementing the essentials of the present invention except for the components used for improving performance, and the structure including only the essential components except for the optional components used for improving performance. Also included in the scope of the present invention.
  • the picture dividing unit 110 may divide the input picture into at least one processing unit.
  • the processing unit may be a prediction unit (PU), a transform unit (TU), or a coding unit (CU).
  • the picture dividing unit 110 divides one picture into a combination of a plurality of coding units, prediction units, and transformation units, and combines one coding unit, prediction unit, and transformation unit on a predetermined basis (eg, a cost function). You can select to encode the picture.
  • one picture may be divided into a plurality of coding units.
  • a recursive tree structure such as a quad tree structure may be used, and coding is divided into other coding units by using one image or a largest coding unit as a root.
  • the unit may be split with as many child nodes as the number of split coding units. Coding units that are no longer split according to certain restrictions become leaf nodes. That is, when it is assumed that only square division is possible for one coding unit, one coding unit may be split into at most four other coding units.
  • a coding unit may be used as a unit for encoding or may be used as a unit for decoding.
  • the prediction unit may be split in the form of at least one square or rectangle having the same size in one coding unit, or the prediction unit of any one of the prediction units split in one coding unit is different from one another. It may be divided to have a different shape and / or size than the unit.
  • the intra prediction may be performed without splitting into a plurality of prediction units NxN.
  • prediction mode information and motion vector information used for prediction may be encoded by the entropy encoder 165 together with the residual value and transmitted to the decoder.
  • the original block may be encoded as it is and transmitted to the decoder without generating the prediction block through the prediction units 120 and 125.
  • the motion predictor may perform motion prediction based on the reference picture interpolated by the reference picture interpolator.
  • various methods such as full search-based block matching algorithm (FBMA), three step search (TSS), and new three-step search algorithm (NTS) may be used.
  • FBMA full search-based block matching algorithm
  • TSS three step search
  • NTS new three-step search algorithm
  • the motion vector may have a motion vector value of 1/2 or 1/4 pixel units based on the interpolated pixels.
  • the motion prediction unit may predict the current prediction unit by using a different motion prediction method.
  • various methods such as a skip method, a merge method, an advanced motion vector prediction (AMVP) method, an intra block copy method, and the like may be used.
  • AMVP advanced motion vector prediction
  • the intra predictor 125 may generate a prediction unit based on reference pixel information around the current block, which is pixel information in the current picture. If the neighboring block of the current prediction unit is a block that has performed inter prediction, and the reference pixel is a pixel that has performed inter prediction, the reference pixel of the block that has performed intra prediction around the reference pixel included in the block where the inter prediction has been performed Can be used as a substitute for information. That is, when the reference pixel is not available, the unavailable reference pixel information may be replaced with at least one reference pixel among the available reference pixels.
  • intra prediction When performing intra prediction, if the size of the prediction unit and the size of the transform unit are the same, the intra prediction on the prediction unit is performed based on the pixels on the left of the prediction unit, the pixels on the upper left, and the pixels on the top. Can be performed. However, when performing intra prediction, if the size of the prediction unit is different from that of the transform unit, intra prediction may be performed using a reference pixel based on the transform unit. In addition, intra prediction using NxN division may be used only for a minimum coding unit.
  • the intra prediction method may generate a prediction block after applying an adaptive intra smoothing (AIS) filter to a reference pixel according to a prediction mode.
  • AIS adaptive intra smoothing
  • the type of AIS filter applied to the reference pixel may be different.
  • the intra prediction mode of the current prediction unit may be predicted from the intra prediction mode of the prediction unit existing around the current prediction unit.
  • the prediction mode of the current prediction unit is predicted by using the mode information predicted from the neighboring prediction unit, if the intra prediction mode of the current prediction unit and the neighboring prediction unit is the same, the current prediction unit and the neighboring prediction unit using the predetermined flag information If the prediction modes of the current prediction unit and the neighboring prediction unit are different, entropy encoding may be performed to encode the prediction mode information of the current block.
  • the transform unit 130 converts the residual block including residual information of the original block and the prediction unit generated by the prediction units 120 and 125 into a discrete cosine transform (DCT), a discrete sine transform (DST), and a KLT. You can convert using the same conversion method. Whether to apply DCT, DST, or KLT to transform the residual block may be determined based on intra prediction mode information of the prediction unit used to generate the residual block.
  • DCT discrete cosine transform
  • DST discrete sine transform
  • KLT KLT
  • the quantization unit 135 may quantize the values converted by the transformer 130 into the frequency domain.
  • the quantization coefficient may change depending on the block or the importance of the image.
  • the value calculated by the quantization unit 135 may be provided to the inverse quantization unit 140 and the reordering unit 160.
  • the reordering unit 160 may reorder coefficient values with respect to the quantized residual value.
  • the reordering unit 160 may change the two-dimensional block shape coefficients into a one-dimensional vector form through a coefficient scanning method. For example, the reordering unit 160 may scan from DC coefficients to coefficients in the high frequency region by using a Zig-Zag scan method and change them into one-dimensional vectors.
  • a vertical scan that scans two-dimensional block shape coefficients in a column direction instead of a zig-zag scan may be used, and a horizontal scan that scans two-dimensional block shape coefficients in a row direction. That is, according to the size of the transform unit and the intra prediction mode, it is possible to determine which scan method among the zig-zag scan, the vertical scan, and the horizontal scan is used.
  • the entropy encoder 165 may perform entropy encoding based on the values calculated by the reordering unit 160. Entropy encoding may use various encoding methods such as, for example, Exponential Golomb, Context-Adaptive Variable Length Coding (CAVLC), and Context-Adaptive Binary Arithmetic Coding (CABAC).
  • Entropy encoding may use various encoding methods such as, for example, Exponential Golomb, Context-Adaptive Variable Length Coding (CAVLC), and Context-Adaptive Binary Arithmetic Coding (CABAC).
  • the entropy encoder 165 receives residual value coefficient information, block type information, prediction mode information, partition unit information, prediction unit information, transmission unit information, and motion of the coding unit from the reordering unit 160 and the prediction units 120 and 125.
  • Various information such as vector information, reference frame information, interpolation information of a block, and filtering information can be encoded.
  • the entropy encoder 165 may entropy encode a coefficient value of a coding unit input from the reordering unit 160.
  • the inverse quantizer 140 and the inverse transformer 145 inverse quantize the quantized values in the quantizer 135 and inversely transform the transformed values in the transformer 130.
  • the residual value generated by the inverse quantizer 140 and the inverse transformer 145 is reconstructed by combining the prediction units predicted by the motion estimator, the motion compensator, and the intra predictor included in the predictors 120 and 125. You can create a Reconstructed Block.
  • the filter unit 150 may include at least one of a deblocking filter, an offset correction unit, and an adaptive loop filter (ALF).
  • a deblocking filter may include at least one of a deblocking filter, an offset correction unit, and an adaptive loop filter (ALF).
  • ALF adaptive loop filter
  • the deblocking filter may remove block distortion caused by boundaries between blocks in the reconstructed picture.
  • it may be determined whether to apply a deblocking filter to the current block based on the pixels included in several columns or rows included in the block.
  • a strong filter or a weak filter may be applied according to the required deblocking filtering strength.
  • horizontal filtering and vertical filtering may be performed in parallel when vertical filtering and horizontal filtering are performed.
  • the offset correction unit may correct the offset with respect to the original image on a pixel-by-pixel basis for the deblocking image.
  • the pixels included in the image are divided into a predetermined number of areas, and then, an area to be offset is determined, an offset is applied to the corresponding area, or offset considering the edge information of each pixel. You can use this method.
  • Adaptive Loop Filtering may be performed based on a value obtained by comparing the filtered reconstructed image with the original image. After dividing the pixels included in the image into a predetermined group, one filter to be applied to the group may be determined and filtering may be performed for each group. For information related to whether to apply ALF, a luminance signal may be transmitted for each coding unit (CU), and the shape and filter coefficient of an ALF filter to be applied may vary according to each block. In addition, regardless of the characteristics of the block to be applied, the same type (fixed form) of the ALF filter may be applied.
  • ALF Adaptive Loop Filtering
  • the memory 155 may store the reconstructed block or picture calculated by the filter unit 150, and the stored reconstructed block or picture may be provided to the predictors 120 and 125 when performing inter prediction.
  • FIG. 2 is a block diagram illustrating an image decoding apparatus according to an embodiment of the present invention.
  • the image decoder 200 includes an entropy decoder 210, a reordering unit 215, an inverse quantizer 220, an inverse transformer 225, a predictor 230, 235, and a filter unit ( 240, a memory 245 may be included.
  • the intra predictor 235 may generate a prediction block based on pixel information in the current picture.
  • intra prediction may be performed based on intra prediction mode information of the prediction unit provided by the image encoder.
  • the intra predictor 235 may include an adaptive intra smoothing (AIS) filter, a reference pixel interpolator, and a DC filter.
  • the AIS filter is a part of filtering the reference pixel of the current block and determines whether to apply the filter according to the prediction mode of the current prediction unit.
  • AIS filtering may be performed on the reference pixel of the current block by using the prediction mode and the AIS filter information of the prediction unit provided by the image encoder. If the prediction mode of the current block is a mode that does not perform AIS filtering, the AIS filter may not be applied.
  • the reference pixel interpolator may generate a reference pixel having an integer value or less by interpolating the reference pixel. If the prediction mode of the current prediction unit is a prediction mode for generating a prediction block without interpolating the reference pixel, the reference pixel may not be interpolated.
  • the DC filter may generate the prediction block through filtering when the prediction mode of the current block is the DC mode.
  • the reconstructed block or picture may be provided to the filter unit 240.
  • the filter unit 240 may include a deblocking filter, an offset correction unit, and an ALF.
  • Information about whether a deblocking filter is applied to a corresponding block or picture, and when the deblocking filter is applied to the corresponding block or picture, may be provided with information about whether a strong filter or a weak filter is applied.
  • the deblocking filter related information provided by the image encoder may be provided and the deblocking filtering of the corresponding block may be performed in the image decoder.
  • the offset correction unit may perform offset correction on the reconstructed image based on the type of offset correction and offset value information applied to the image during encoding.
  • the ALF may be applied to a coding unit based on ALF application information, ALF coefficient information, and the like provided from the encoder. Such ALF information may be provided included in a specific parameter set.
  • the memory 245 may store the reconstructed picture or block to use as a reference picture or reference block, and may provide the reconstructed picture to the output unit.
  • a coding unit is used as a coding unit for convenience of description, but may also be a unit for performing decoding as well as encoding.
  • the current block represents a block to be encoded / decoded, and according to the encoding / decoding step, a coding tree block (or a coding tree unit), an encoding block (or a coding unit), a transform block (or a transform unit), or a prediction block. (Or prediction unit) or the like.
  • a partition of any size generated as the coding tree unit is split may be defined as a coding unit.
  • the coding unit may be split recursively or split into basic units for performing prediction, quantization, transform, or in-loop filtering.
  • an arbitrary size partition generated as a coding unit is divided may be defined as a coding unit or a transform unit or a prediction unit that is a basic unit for performing prediction, quantization, transform, or in-loop filtering.
  • Partitioning of the coding tree unit or the coding unit may be performed based on at least one of a vertical line or a horizontal line.
  • the number of vertical lines or horizontal lines partitioning the coding tree unit or the coding unit may be at least one. For example, by splitting a coding tree unit or coding unit into two partitions using one vertical line or one horizontal line, or by using two vertical lines or two horizontal lines, the coding tree unit or coding unit into three partitions. Can be divided Alternatively, one vertical line and one horizontal line may be used to divide a coding tree unit or coding unit into four partitions of 1/2 length and width.
  • the partitions may have a uniform size or may have different sizes. Alternatively, one partition may have a different size than the other partition.
  • the input video signal is decoded in predetermined block units, and the basic unit for decoding the input video signal in this way is called a coding block.
  • the coding block may be a unit for performing intra / inter prediction, transformation, and quantization.
  • a prediction mode eg, an intra prediction mode or an inter prediction mode
  • the coding block can be a square or non-square block with any size in the range 8x8 to 64x64, and can be a square or non-square block with a size of 128x128, 256x256 or more.
  • Binary tree-based partitioning may be performed symmetrically or asymmetrically.
  • the coding block divided based on the binary tree may be a square block or a non-square block such as a rectangle.
  • a partition type that allows binary tree based partitioning may be symmetric 2NxN (horizontal non-square coding unit) or Nx2N (vertical non-square coding unit), asymmetric, as in the example shown in FIG. It may include at least one of asymmetric nLx2N, nRx2N, 2NxnU or 2NxnD.
  • Binary tree-based partitioning may be performed on coding blocks in which quadtree-based partitioning is no longer performed.
  • the coding block split based on the binary tree may be configured such that at least one of quad tree based splitting, triple tree based splitting, or binary tree based splitting is no longer performed.
  • triple tree-based partitioning or binary tree-based partitioning may be allowed for a coding block partitioned based on a binary tree, but only one of horizontal or vertical partitioning may be limited.
  • an index of a coding block having a coding order of 0 (hereinafter, referred to as a coding block index 0) of two coding blocks generated due to binary tree-based partitioning, and an index of a coding block having a coding order of 1 (hereinafter,
  • the coding block index 1 When the coding block index 1) is applied to the coding block having the coding block index 0 or the coding block index 1, the binary tree based splitting is applied to the binary tree based splitting direction of the coding block having the coding block index 1,
  • the coding block index may be determined according to a binary tree based split direction of a coding block having zero.
  • Triple tree based splitting means splitting a coding block into three partitions in a horizontal or vertical direction. All three partitions created due to triple tree based partitioning may have different sizes. Alternatively, two of the partitions created due to triple tree based partitioning may have the same size, and the other one may have a different size.
  • the width ratio or height ratio of the partitions generated as the coding block is divided may be set to 1: n: 1, 1: 1: n, n: 1: 1 or m: n: 1 depending on the split direction. have.
  • m and n may be 1 or a real number greater than 1, for example, an integer such as 2.
  • triple tree-based partitioning or binary tree-based partitioning may be allowed for the coding block split based on the triple tree, but only one of horizontal or vertical partitioning may be limited.
  • the additional partition or the additional split direction for the split coded block on the triple tree may be limited.
  • one of horizontal division or vertical division may be limited to a partition having the largest size among coding blocks generated due to triple tree based division.
  • the largest partition among coding blocks generated due to triple tree-based partitioning may not allow binary tree splitting in the same direction as the triple tree splitting direction of the upper depth partition or tripletree splitting direction in the same direction. have.
  • encoding / decoding of information indicating the binary tree splitting direction or the triple tree splitting direction may be omitted for the weighted large partition among the coding blocks split based on the triple tree.
  • the division of the lower depth may be determined depending on the division type of the upper depth. For example, when binary tree-based partitioning is allowed in two or more depths, only a binary tree-based partitioning of the same type as a binary tree partitioning of an upper depth may be allowed in a lower depth. For example, when the binary tree based splitting is performed in the 2NxN form at the upper depth, the binary tree based splitting in the 2NxN form may be performed at the lower depth. Alternatively, when binary tree-based partitioning is performed in an Nx2N form at an upper depth, Nx2N-type binary tree-based partitioning may be allowed in a lower depth.
  • a sequence, slice, coding tree unit, or coding unit it may be restricted to use only a particular type of binary tree based splitting or a particular type of triple tree based splitting.
  • the 2NxN or Nx2N type binary tree based partitioning may be limited to the coding tree unit.
  • the allowed partition type may be predefined in the encoder or the decoder, and information about the allowed partition type or the not allowed partition type may be encoded and signaled through a bitstream.
  • FIG. 5 illustrates an example in which only a specific type of binary tree based partitioning is allowed.
  • FIG. 5A illustrates an example in which only binary tree-based partitioning in the form of Nx2N is allowed
  • FIG. 5B illustrates an example in which only binary tree-based partitioning in the form of 2NxN is allowed.
  • a syntax 'max_binary_depth_idx_minus1' indicating a maximum depth that allows binary tree splitting may be encoded / decoded through the bitstream through the bitstream.
  • max_binary_depth_idx_minus1 + 1 may indicate the maximum depth allowed for binary tree splitting.
  • binary tree splitting is performed on a coding unit having a depth of 2 and a coding unit having a depth of 3. Accordingly, information indicating the number of times binary tree splitting has been performed in the coding tree unit (2 times), information indicating the maximum depth (depth 3) allowed for binary tree splitting in the coding tree unit, or binary tree splitting in the coding tree unit is obtained. At least one of information indicating the number of allowed depths (2, depth 2, and depth 3) may be encoded / decoded through the bitstream.
  • At least one of the number of times binary tree split / triple tree split is allowed, the depth allowed for binary tree split / triple tree split, or the number of depths allowed for binary tree split / triple tree split is allowed per sequence, picture or slice.
  • the information may be encoded in a sequence, picture or slice unit and transmitted through a bitstream.
  • a depth for which binary tree split / triple tree split is allowed or a number of depths allowed for binary tree split / triple tree split may be predefined for each sequence, picture or slice.
  • At least one of the number of binary tree / triple tree splits, the maximum depth allowed for binary tree / triple tree splits, or the number of depths allowed for binary tree / triple tree splits of the first and second slices may be different.
  • binary tree splitting is allowed only at one depth, while in the second slice, binary tree splitting may be allowed at two depths.
  • TemporalID the number of times binary tree / triple tree splitting is allowed, the depth of binary tree / triple tree splitting is allowed, or the depth of binary tree / triple tree splitting is allowed. At least one of the numbers may be set differently.
  • the temporal level identifier TemporalID may be used to identify each of a plurality of layers of an image having at least one scalability among a view, a spatial, a temporal, or a quality. will be.
  • the second coding block 310 having the division depth k + 1 may be divided into a plurality of third coding blocks having the division depth k + 2. Partitioning of the second coding block 310 may be selectively performed using either a quart tree or a binary tree according to a partitioning scheme.
  • the splitting scheme may be determined based on at least one of information indicating splitting based on the quad tree or information indicating splitting based on the binary tree.
  • the second coding block 310 When the second coding block 310 is divided on the basis of the quart tree, the second coding block 310 is divided into four third coding blocks 310a having half the width and the height of the second coding block, The split depth can be increased to k + 2.
  • the second coding block 310 when the second coding block 310 is divided on a binary tree basis, the second coding block 310 may be split into two third coding blocks. In this case, each of the two third coding blocks is a non-square block having one half of the width and the height of the second coding block, and the split depth may be increased to k + 2.
  • the second coding block may be determined as a non-square block in the horizontal direction or the vertical direction according to the division direction, and the division direction may be determined based on information about whether the binary tree-based division is the vertical direction or the horizontal direction.
  • the second coding block 310 may be determined as an end coding block that is no longer split based on the quad tree or the binary tree, and in this case, the corresponding coding block may be used as a prediction block or a transform block.
  • the third coding block 310a may be determined as an end coding block like the division of the second coding block 310, or may be further divided based on a quad tree or a binary tree.
  • the third coding block 310b split based on the binary tree may be further divided into a vertical coding block 310b-2 or a horizontal coding block 310b-3 based on the binary tree, and corresponding coding
  • the partition depth of the block can be increased to k + 3.
  • the third coding block 310b may be determined as an end coding block 310b-1 that is no longer split based on the binary tree, in which case the coding block 310b-1 may be used as a prediction block or a transform block. Can be.
  • the above-described partitioning process allows information about the size / depth of a coding block that allows quad-tree based partitioning, information about the size / depth of the coding block that allows binary tree-based partitioning, or binary-tree based partitioning. It may be limitedly performed based on at least one of information about the size / depth of the coding block that is not.
  • the size of the coding block may be limited to a predetermined number, or the size of the coding block in the predetermined unit may have a fixed value.
  • the size of the coding block in the sequence or the size of the coding block in the picture may be limited to 256x256, 128x128 or 32x32.
  • Information representing the size of a coding block in a sequence or picture may be signaled through a sequence header or picture header.
  • the coding unit may take a square or a rectangle of any size.
  • the coding block is generated based on the quad tree split, the binary tree split, or the triple tree split, it is possible to limit the application of the transform skip.
  • the residual quantized residual coefficient may be scaled to a preset value to obtain a residual sample of the coding block.
  • Omitting the inverse transform in the horizontal direction means performing the inverse transform using DCT, DST, etc. in the vertical direction, without performing the inverse transform in the horizontal direction. In this case, scaling may be performed in the horizontal direction.
  • Omitting the inverse transformation in the vertical direction means not performing the inverse transformation in the vertical direction and performing the inverse transformation using DCT, DST, etc. in the horizontal direction. In this case, scaling may be performed in the vertical direction.
  • an inverse transform skip technique may be used for the coding block. For example, when the coding block is generated through binary tree-based partitioning, it may be restricted to not use an inverse transform skip technique for the coding block. Accordingly, when the coding block is generated through binary tree-based partitioning, the residual sample of the coding block may be obtained by inversely transforming the coding block. In addition, when the coding block is generated through binary tree based partitioning, encoding / decoding of information (eg, transform_skip_flag) indicating whether an inverse transform is skipped may be omitted.
  • information eg, transform_skip_flag
  • the inverse transform skip scheme may be limited to only at least one of the horizontal direction and the vertical direction.
  • the direction in which the inverse transform skip technique is limited may be determined based on information decoded from the bitstream or adaptively determined based on at least one of the size of the coding block, the shape of the coding block, or the intra prediction mode of the coding block. have.
  • the inverse transform skip technique may be allowed only for the vertical direction, and the use of the inverse transform skip technique may be restricted for the horizontal direction. That is, when the coding block is 2N ⁇ N, inverse transform may be performed in the horizontal direction of the coding block, and inverse transform may be selectively performed in the vertical direction.
  • the inverse skip skip technique can be allowed only in the horizontal direction and the use of the inverse skip skip technique can be restricted in the vertical direction. That is, when the coding block is Nx2N, inverse transform may be performed in the vertical direction of the coding block, and inverse transform may be selectively performed in the horizontal direction.
  • the inverse skipping scheme is allowed only for the horizontal direction, and if the coding block is a non-square block with a height greater than the width, an inverse transform for the vertical direction only
  • the skip technique may be allowed.
  • Information on whether to skip the inverse transform in the horizontal direction or information indicating whether to skip the inverse transform in the vertical direction may be signaled through the bitstream.
  • the information indicating whether to skip the inverse transform in the horizontal direction is a 1-bit flag, 'hor_transform_skip_flag'
  • the information indicating whether to skip the inverse transform in the vertical direction is a 1-bit flag, and the 'ver_transform_skip_flag' Can be '.
  • the encoder may encode at least one of 'hor_transform_skip_flag' or 'ver_transform_skip_flag' according to the shape of the coding block.
  • the decoder may determine whether an inverse transform in the horizontal direction or the vertical direction is skipped using at least one of 'hor_transform_skip_flag' or 'ver_transform_skip_flag'.
  • FIG. 7 is a diagram illustrating a partition mode that may be applied to a coding block when the coding block is encoded by inter prediction.
  • partition mode PART_2Nx2N or PART_NxN may be applied to the coding block.
  • PART_NxN may be applied when the coding block has a minimum size.
  • the minimum size of the coding block may be predefined in the encoder and the decoder.
  • information about the minimum size of the coding block may be signaled through the bitstream.
  • the minimum size of the coding block is signaled through the slice header, and accordingly, the minimum size of the coding block may be defined for each slice.
  • the size of the prediction block may have a size of 64x64 to 4x4.
  • the prediction block may not have a 4x4 size in order to reduce the memory bandwidth.
  • intra prediction may be performed using different numbers of intra prediction modes according to a color difference format. For example, in 4: 2: 0 format, intra prediction may be performed using 67 intra prediction modes in a luminance component, and 35 intra prediction modes may be used in a chrominance component, and in 4: 4: 4 format. Intra prediction may be used using 67 intra prediction modes in both a luminance component and a chrominance component.
  • intra prediction may be performed using different numbers of intra prediction modes according to the size and / or shape of the block. That is, intra prediction may be performed using 35 intra prediction modes or 67 intra prediction modes according to the size and / or shape of the PU or CU. For example, if the size of a CU or PU is less than 64x64 or an asymmetric partition, intra prediction can be performed using 35 intra prediction modes, and the size of the CU or PU is greater than or equal to 64x64. In this case, intra prediction may be performed using 67 intra prediction modes. Intra_2Nx2N may allow 65 directional intra prediction modes, and Intra_NxN may allow only 35 directional intra prediction modes.
  • the number of intra prediction modes may be determined in consideration of at least one of a color difference component, a color difference format, a size, or a shape of a block.
  • the intra prediction mode candidates (for example, the number of MPMs) used to determine the intra prediction mode of the block to be encoded / decoded are not limited to the examples described above. It may be determined accordingly. It is also possible to use a larger number of intra prediction modes than shown in FIG. 8. For example, it is also possible to further refine the directional prediction mode shown in FIG. 8 to use 129 directional prediction modes and two non-directional prediction modes. Whether to use a larger number of intra prediction modes than shown in FIG. 8 may be determined in consideration of at least one of a color difference component, a color difference component, a size or a shape of a block, as in the above-described example.
  • FIG. 10 is a flowchart schematically illustrating an intra prediction method according to an embodiment to which the present invention is applied.
  • an intra prediction mode of a current block may be determined (S1000).
  • the intra prediction mode of the current block may be derived based on the candidate list and the index.
  • the candidate list includes a plurality of candidates, and the plurality of candidates may be determined based on the intra prediction mode of the neighboring block adjacent to the current block.
  • the neighboring block may include at least one of blocks located at the top, bottom, left, right, or corner of the current block.
  • the index may specify any one of a plurality of candidates belonging to the candidate list.
  • the candidate specified by the index may be set to the intra prediction mode of the current block.
  • the intra prediction mode used by the neighboring block for intra prediction may be set as a candidate.
  • candidates may be derived based on intra prediction modes of a left block, a top block, a bottom left corner neighboring block, a top right corner neighboring block, and a top left corner neighboring block of the current block.
  • the neighboring block is encoded by inter prediction, the candidate of the current block may be derived using the intra prediction mode of the collocated block of the neighboring block.
  • an intra prediction mode having a direction similar to that of the neighboring block may be set as a candidate.
  • the intra prediction mode having similar directionality may be determined by adding or subtracting a predetermined constant value to the intra prediction mode of the neighboring block.
  • the predetermined constant value may be an integer of 1, 2 or more, and the predetermined constant value may be adaptively determined according to the number of available intra prediction modes. For example, when the number of available intra prediction modes is 35, the predetermined constant value may be set to 1, and when the number of available intra prediction modes is 67, the predetermined constant value may be set to 2. Furthermore, when the number of available intra prediction modes is 131, the predetermined constant value may be set to four.
  • the candidate list may further include a default mode.
  • the default mode may include at least one of a planner mode, a DC mode, a vertical mode, a horizontal mode, an upper right diagonal direction mode, and an upper left diagonal direction mode.
  • the default mode may be adaptively added in consideration of the maximum number of candidates included in the candidate list of the current block.
  • the maximum number of candidates that can be included in the candidate list may be three, four, five, six, seven, or more.
  • the maximum number of candidates that may be included in the candidate list may be a fixed value preset in the image encoder / decoder and may be variably determined based on the attributes of the current block.
  • the attribute may mean the position / size / type of the block, the number / type of intra prediction modes that the block can use, the color difference attribute, the color difference format, and the like.
  • information indicating the maximum number of candidates included in the candidate list may be separately signaled, and the maximum number of candidates included in the candidate list may be variably determined using the information.
  • Information indicating the maximum number of candidates may be signaled at least one of a sequence level, a picture level, a slice level, or a block level.
  • Candidates included in the candidate list may be sorted in a predefined order. For example, candidates may be arranged in the candidate list in the order of the left block, the top block, the bottom left block, the top right block, and the top left block. Alternatively, the order of candidates may be variably determined according to the size or shape of the current block. For example, when the current block is a non-square block having a height greater than the width, the intra prediction mode of the upper block may be arranged with a higher priority than the intra prediction mode of the left block.
  • the left neighbor block uses 35 intra prediction modes and the intra prediction mode of the left neighbor block is 10 (horizontal mode), it is converted from the extended intra prediction mode to index 16 corresponding to the horizontal mode. Can be.
  • the upper neighboring block uses the extended intra prediction mode and the intra prediction mode index of the upper neighboring block is 50 (vertical mode), it may be converted from the 35 intra prediction modes to the index 26 corresponding to the vertical mode. have.
  • an intra prediction mode may be derived independently of each of the luminance component and the chrominance component, and the chrominance component may be derived as a dependency on the intra prediction mode of the luminance component.
  • the intra prediction mode of the chrominance component may be determined based on the intra prediction mode of the luminance component, as shown in Table 1 below.
  • intra_chroma_pred_mode means information signaled to specify an intra prediction mode of a chrominance component
  • IntraPredModeY represents an intra prediction mode of a luminance component
  • a reference sample for intra prediction of a current block may be derived (S1010).
  • a reference sample for intra prediction may be derived based on a neighboring sample of the current block.
  • the peripheral sample may mean a reconstruction sample of the above-described peripheral block, which may be a reconstruction sample before the in-loop filter is applied or a reconstruction sample after the in-loop filter is applied.
  • the surrounding sample reconstructed before the current block may be used as the reference sample, and the surrounding sample filtered based on a predetermined intra filter may be used as the reference sample. Filtering the surrounding samples using an intra filter may be referred to as reference sample smoothing.
  • the intra filter may include at least one of a first intra filter applied to a plurality of peripheral samples located on the same horizontal line or a second intra filter applied to a plurality of peripheral samples located on the same vertical line. Depending on the position of the peripheral sample, either the first intra filter or the second intra filter may be selectively applied, or two intra filters may be applied in duplicate. In this case, at least one filter coefficient of the first intra filter or the second intra filter may be (1, 2, 1), but is not limited thereto.
  • the filtering may be adaptively performed based on at least one of the intra prediction mode of the current block or the size of the transform block for the current block. For example, filtering may not be performed when the intra prediction mode of the current block is a DC mode, a vertical mode, or a horizontal mode.
  • the size of the transform block is NxM, filtering may not be performed.
  • N and M may be the same or different values, and may be any one of 4, 8, 16, or more values.
  • filtering may not be performed.
  • filtering may be selectively performed based on a comparison result between a difference between the intra prediction mode and the vertical mode (or the horizontal mode) of the current block and a pre-defined threshold. For example, filtering may be performed only when the difference between the intra prediction mode and the vertical mode of the current block is larger than the threshold.
  • the threshold may be defined for each transform block size as shown in Table 2.
  • the intra filter may be determined as one of a plurality of intra filter candidates pre-defined in the image encoder / decoder. To this end, a separate index for specifying an intra filter of the current block among the plurality of intra filter candidates may be signaled. Alternatively, the intra filter may be determined based on at least one of the size / shape of the current block, the size / shape of the transform block, the information about the filter strength, or the variation of surrounding samples.
  • Intra prediction of the current block may be performed using multiple reference sample lines. For example, it may be performed using two or more reference sample lines.
  • intra prediction may be performed using an intra prediction mode and a reference sample of a current block (S1020).
  • the prediction sample of the current block may be obtained using the intra prediction mode determined in S1000 and the reference sample derived in S1010.
  • a prediction sample may be obtained based on a weighted sum of reference samples belonging to different reference sample lines.
  • the prediction sample may be derived based on a weighted sum of the first reference sample belonging to the first reference sample line and the second reference sample belonging to the second reference sample line.
  • the weights applied to the first reference sample and the second reference sample may have the same value or may have different values depending on the distance from the sample to be predicted. For example, a higher weight may be given to a distance between the first reference sample and the second reference sample that is closer to the prediction target sample.
  • FIG. 11 illustrates a method of correcting a prediction sample of a current block based on difference information of neighboring samples according to an embodiment to which the present invention is applied.
  • the prediction sample of the current block may be corrected based on difference information of a plurality of neighboring samples for the current block.
  • the correction may be performed on all prediction samples belonging to the current block, or may be performed only on prediction samples belonging to a predetermined partial region.
  • Some areas may be one row / column or a plurality of rows / columns, which may be pre-configured areas for correction in the image encoder / decoder. For example, correction may be performed on one row / column positioned at the boundary of the current block or a plurality of rows / columns from the boundary of the current block.
  • some regions may be variably determined based on at least one of the size / shape of the current block or the intra prediction mode.
  • the neighboring samples may belong to at least one of the neighboring blocks located at the top, left, and top left corners of the current block.
  • the number of peripheral samples used for the calibration may be two, three, four or more.
  • the position of the neighboring samples may be variably determined according to the position of the prediction sample to be corrected in the current block. Alternatively, some of the surrounding samples may have a fixed position regardless of the position of the prediction sample to be corrected, and others may have a variable position according to the position of the prediction sample to be corrected.
  • the difference information of the neighboring samples may mean a difference sample between the neighboring samples, or may mean a value obtained by scaling the difference sample to a predetermined constant value (eg, 1, 2, 3, etc.).
  • a predetermined constant value eg, 1, 2, 3, etc.
  • the predetermined constant value may be determined in consideration of the position of the prediction sample to be corrected, the position of the column or row to which the prediction sample to be corrected belongs, and the position of the prediction sample within the column or row.
  • An intra direction parameter for the current block may be determined based on a lookup table that defines a mapping relationship between the directional intra prediction mode and the intra direction parameter.
  • an intra direction parameter for the current block may be determined based on the information signaled through the bitstream.
  • Intra prediction of the current block may be performed using at least one of a left reference sample or a top reference sample, depending on the directionality of the directional intra prediction mode.
  • the upper reference sample may be a reference sample (eg, (-1, -1) to (2W-1, -1) having a y-axis coordinate smaller than the predicted sample (x, 0) included in the top row in the current block. )
  • the left reference sample includes reference samples (for example, (-1, -1) to (-) having x-axis coordinates smaller than the predicted sample (0, y) included in the leftmost column in the current block. 1, 2H-1)).
  • reference samples of the current block may be arranged in one dimension. Specifically, when both the top reference sample and the left reference sample should be used for intra prediction of the current block, it is assumed that they are arranged in a line along the vertical or horizontal direction, and reference samples of each prediction target sample may be selected. .
  • the upper reference samples and the left reference samples may be rearranged along the horizontal or vertical direction to be one-dimensional.
  • the reference sample group P_ref_1D may be configured.
  • 12 and 13 illustrate a group of one-dimensional reference samples in which reference samples are rearranged in a line.
  • Whether to rearrange the reference samples in the vertical direction or in the horizontal direction may be determined according to the directionality of the intra prediction mode.
  • the intra prediction mode index is between 11 and 18, as in the example shown in FIG. 12, the top reference samples of the current block are rotated counterclockwise so that the left reference samples and the top reference samples are in the vertical direction.
  • One-dimensional reference sample groups can be created.
  • the left reference samples of the current block are rotated clockwise in the clockwise direction, as in the example shown in FIG. 13, so that the left reference samples and the top reference samples are One-dimensional reference sample groups arranged in the horizontal direction may be generated.
  • intra prediction for the current block may be performed using only left reference samples or top reference samples. Accordingly, for the intra prediction modes in which the intra direction parameter is not negative, the one-dimensional reference sample group may be generated using only the left reference sample or the top reference samples.
  • a reference sample determination index iIdx for specifying at least one reference sample used to predict the sample to be predicted may be derived.
  • a weight related parameter i fact used to determine a weight applied to each reference sample based on the intra direction parameter may be derived.
  • Equations 7 and 8 show examples of deriving reference sample determination index and weight related parameters.
  • the integer A reference image of the predicted sample may be generated by copying a reference sample of the pel position or considering a position between the reference sample of the integer pel position and the predicted sample.
  • Equation 8 below copies the reference sample P_ref_1D (x + iIdx + 1) in the one-dimensional reference sample group specified by the intra prediction mode of the current block, thereby predicting an image P (x, y) for the sample to be predicted. It shows an example of generating.
  • the coefficient of the interpolation filter may be determined based on the weight related parameter i fact .
  • the coefficient of the interpolation filter may be determined based on the distance between the fractional pel and the integer pel (ie, the integer position of each reference sample) located on the angular line.
  • a sample at a position that does not correspond to the left reference sample or the top reference sample may be replaced with the nearest reference sample at that position.
  • the sample at the position P_ref_1D (x + iIdx-1) does not correspond to the upper reference sample
  • the sample at the P_ref_1D (x + iIdx + 2) position does not correspond to the upper reference sample
  • the sample may be replaced with the reference sample at the P_ref_1D (x + iIdx + 1) position.
  • generating a prediction sample by interpolating a reference sample using the directionality of intra prediction may be referred to as an intra prediction sample interpolation technique.
  • the type of tap filter to be used may be determined based on the width or height of the current block.
  • an intra prediction sample interpolation technique may be performed using a 2-tap filter instead of a 4-tap filter.
  • the intra prediction sample interpolation technique may be performed using the 4-tap filter.
  • the predefined value may represent a value such as 4, 8, or 16.
  • the type of tap filter to be used may be determined according to whether the width and height of the current block are the same. For example, when the width and height of the current block are different values, the intra prediction sample interpolation technique may be performed using the 2-tap filter instead of the 4-tap filter. On the other hand, when the width and height of the current block have the same value, the intra prediction sample interpolation technique may be performed using the 4-tap filter.
  • the type of tap filter to be used may be determined according to the ratio of the width and the height of the current block. For example, if the ratio of the width (w) to the height (h) of the current block (ie, w / h or h / w) is less than the predefined threshold, use 2-tap filter instead of 4-tap filter to predict intra Sample interpolation techniques can be performed. On the other hand, if the ratio of the width and height of the current block is greater than or equal to a predefined threshold value, the intra prediction sample interpolation technique may be performed using a 4-tap filter.
  • the intra prediction sample interpolation technique may be performed using a tap filter having n taps.
  • the intra prediction sample interpolation technique may be performed using a tap filter having a tap number m.
  • the horizontal range may indicate a predetermined range including the intra prediction mode in the horizontal direction
  • the vertical range may indicate a predetermined range including the intra prediction mode in the vertical direction.
  • the horizontal direction range may indicate an intra prediction mode between modes 11 and 18, and the vertical direction range may indicate an intra prediction mode between modes 19 and 27.
  • One block may be divided into a plurality of subblocks, and intra prediction may be performed in units of subblocks.
  • subblocks belonging to one block may have the same intra prediction mode.
  • the range of reference samples to which each subblock refers may be different. That is, in the example shown in FIG. 10, the reference sample derivation step S1010 and the intra prediction step S1020 may be performed in units of sub blocks.
  • a block including a plurality of sub blocks may be a coding block, a prediction block, or a transform.
  • a block including a plurality of sub blocks may be a predetermined region sharing the same intra prediction mode and the same MPM candidate list.
  • the size and shape of a block (or region) including a plurality of subblocks may have an NxM shape predefined in an encoder and a decoder.
  • N and M may be the same as natural numbers or may be different from each other.
  • information for specifying the size and shape of a block (or region) including a plurality of sub-blocks may be signaled through the bitstream.
  • the size and shape of a block (or region) including a plurality of sub blocks may be variably determined based on the signaled information.
  • an intra prediction target block (or region) including a plurality of sub blocks will be referred to as a current block.
  • a method of performing intra prediction on a sub-block basis will be described in detail.
  • FIG. 14 is a flowchart of a method of performing intra prediction on a sub-block basis according to an embodiment of the present invention. Embodiments to be described later may be implemented by replacing the steps S1010 and S1020 illustrated in FIG. 10.
  • a division type of a current block may be determined (S1410).
  • the partition type of the current block may be determined based on at least one of the size, shape, or intra prediction mode of the current block.
  • the partition shape of the current block may have a form in which sub blocks are arranged up and down.
  • the intra prediction mode of the current block is adjacent to the horizontal direction or the horizontal direction, the partition shape of the current block may have a form in which sub blocks are arranged left and right.
  • the intra prediction mode adjacent to the specific direction may mean an intra prediction mode in which the mode value number difference with the intra prediction mode within a predetermined angle from the specific direction or the intra prediction mode in the specific direction is within a predetermined reference value.
  • information indicating the partition type of the current block may be signaled through the bitstream.
  • the information indicating the partition type may include at least one of an index for specifying the partition type, information indicating the size and shape of the sub block, or information indicating the partition direction of the current block.
  • one block may be divided into a plurality of sub blocks.
  • the coding block is shown to be divided into two sub blocks, it is also possible to divide the coding block into a larger number of sub blocks.
  • the intra prediction of the second sub block may include a first intra prediction using a reference sample adjacent to the current block and a second intra prediction using a reference sample in the first sub block.
  • the prediction sample in the second sub-block may be derived based on a weighted sum between the first prediction sample generated based on the first intra prediction and the second prediction sample generated based on the second intra prediction.
  • the weights applied to the first prediction sample and the second prediction sample may have the same value or may be set differently according to the distance from the prediction target sample.
  • a case where a sample of a location that is not predicted or reconstructed should be used as a reference sample may occur.
  • the samples adjacent to the upper right corner of the second sub-block and the samples located to the right from the samples are likely to be samples that have not yet been predicted or reconstructed.
  • a sample that is not predicted or reconstructed may be replaced with a sample located at a right boundary of the first subblock, or a predetermined number of samples included in the first subblock may be replaced with an interpolated value.
  • information indicating whether to perform intra prediction of the current block on a sub-block basis may be encoded and signaled through a bitstream.
  • the information may be signaled in units of blocks or signaled in units of slices or pictures.
  • Equation 11 is an example of intra weighted prediction, and illustrates a method of obtaining a prediction sample p (x, y) for a sample to be predicted at the position (x, y).
  • Equation 12 illustrates another example of intra-weighted prediction, which obtains a prediction sample p (x, y) for a sample to be predicted at the position (x, y).
  • the weights applied to the upper reference sample and the left reference sample may be determined in predetermined block units. That is, intra weighted prediction may be performed by applying the same weight to the upper reference sample and the left reference sample for the prediction target samples included in the predetermined block unit.
  • Equation 14 the variables x 'and y' may be derived as shown in Equation 15 according to the size of the sub-block to which the same weight is applied.
  • Whether to perform intra weighted prediction may be variably determined according to the size, shape, or intra prediction mode of the current block. For example, it may be determined whether to perform intra weighted prediction according to whether the intra prediction mode of the current block is a planner mode, a DC mode, a horizontal mode, a vertical mode, or a diagonal mode.
  • the diagonal direction mode may indicate an intra prediction mode having a specific direction (eg, an intra prediction mode corresponding to 2, 34, or 66), or may indicate any one of a range of intra prediction modes having similar directions.
  • intra weighted prediction may not be used when the intra prediction mode of the current block is the horizontal mode or the vertical mode.
  • intra weighted prediction may replace any of the directional intra prediction modes.
  • intra weighted prediction may be set to be used. Taking the 67 intra prediction modes illustrated in FIG. 9 as an example, the upper right diagonal prediction mode having the intra prediction mode 66 may be used as the intra weighted prediction mode.
  • intra weighted prediction may be performed to apply both the top reference sample and the left reference sample to the prediction sample obtained according to the intra prediction mode of the current block.
  • intra weighted prediction may be selectively performed according to the size, shape, or intra prediction mode of the current block.
  • intra weighted prediction may be selectively performed according to whether the intra prediction mode of the current block is a planner mode, a vertical direction, a horizontal direction, or a diagonal direction.
  • intra weighted prediction is not performed when the intra prediction mode of the current block has an upper horizontal direction or a left vertical direction, whereas intra weighted prediction is performed when the intra prediction mode of the current block has a lower horizontal direction or a right vertical direction.
  • Prediction can be performed. If the intra prediction mode of the current block has a lower horizontal direction, intra weighted prediction is performed by the following equation (16), while if the intra prediction mode of the current block has the right vertical direction, intra weighted by the following equation (17) Prediction can be performed.
  • each component for example, a unit, a module, etc. constituting the block diagram may be implemented as a hardware device or software, and a plurality of components are combined into one hardware device or software. It may be implemented.
  • the above-described embodiments may be implemented in the form of program instructions that may be executed by various computer components, and may be recorded in a computer-readable recording medium.
  • the computer-readable recording medium may include program instructions, data files, data structures, etc. alone or in combination.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks and magnetic tape, optical recording media such as CD-ROMs, DVDs, and magneto-optical media such as floptical disks. media), and hardware devices specifically configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
  • the hardware device may be configured to operate as one or more software modules to perform the process according to the invention, and vice versa.
  • the present invention can be applied to an electronic device capable of encoding / decoding an image.

Abstract

본 발명에 따른 영상 복호화 방법은, 현재 블록의 인트라 예측 모드를 결정하는 단계, 상기 현재 블록의 참조 샘플들을 유도하는 단계, 및 상기 참조 샘플들 중 적어도 하나를 이용하여, 상기 현재 블록의 예측 샘플을 획득하는 단계를 포함할 수 있다.

Description

비디오 신호 처리 방법 및 장치
본 발명은 비디오 신호 처리 방법 및 장치에 관한 것이다.
최근 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품질의 영상에 대한 수요가 다양한 응용 분야에서 증가하고 있다. 영상 데이터가 고해상도, 고품질이 될수록 기존의 영상 데이터에 비해 상대적으로 데이터량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 저장하는 경우, 전송 비용과 저장 비용이 증가하게 된다. 영상 데이터가 고해상도, 고품질화 됨에 따라 발생하는 이러한 문제들을 해결하기 위해서는 고효율의 영상 압축 기술들이 활용될 수 있다.
영상 압축 기술로 현재 픽쳐의 이전 또는 이후 픽쳐로부터 현재 픽쳐에 포함된 화소값을 예측하는 화면 간 예측 기술, 현재 픽쳐 내의 화소 정보를 이용하여 현재 픽쳐에 포함된 화소값을 예측하는 화면 내 예측 기술, 출현 빈도가 높은 값에 짧은 부호를 할당하고 출현 빈도가 낮은 값에 긴 부호를 할당하는 엔트로피 부호화 기술 등 다양한 기술이 존재하고 이러한 영상 압축 기술을 이용해 영상 데이터를 효과적으로 압축하여 전송 또는 저장할 수 있다.
한편, 고해상도 영상에 대한 수요가 증가함과 함께, 새로운 영상 서비스로서 입체 영상 컨텐츠에 대한 수요도 함께 증가하고 있다. 고해상도 및 초고해상도의 입체 영상 콘텐츠를 효과적으로 제공하기 위한 비디오 압축 기술에 대하여 논의가 진행되고 있다.
본 발명은 비디오 신호를 부호화/복호화함에 있어서, 부호화/복호화 대상 블록에 대해 효율적으로 인트라 예측을 수행할 수 있는 방법 및 장치를 제공하는 것을 목적으로 한다.
본 발명은 비디오 신호를 부호화/복호화함에 있어서, 서로 이웃하지 않는 복수의 참조 샘플을 이용하여 인트라 예측을 수행하는 방법 및 장치를 제공하는 것을 목적으로 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 따른 비디오 신호 복호화 방법 및 장치는, 현재 블록의 인트라 예측 모드를 결정하고, 상기 현재 블록의 참조 샘플들을 유도하고, 상기 참조 샘플들 중 적어도 하나를 이용하여, 상기 현재 블록의 예측 샘플을 획득할 수 있다. 이때, 상기 현재 블록에 인트라 가중 예측이 적용되는 경우, 상기 예측 샘플은, 서로 이웃하지 않는 복수의 참조 샘플들을 기초로 획득될 수 있다.
본 발명에 따른 비디오 신호 부호화 방법 및 장치는, 현재 블록의 인트라 예측 모드를 결정하고, 상기 현재 블록의 참조 샘플들을 유도하고, 상기 참조 샘플들 중 적어도 하나를 이용하여, 상기 현재 블록의 예측 샘플을 획득할 수 있다. 이때, 상기 현재 블록에 인트라 가중 예측이 적용되는 경우, 상기 예측 샘플은, 서로 이웃하지 않는 복수의 참조 샘플들을 기초로 획득될 수 있다.
본 발명에 따른 비디오 신호 부호화/복호화 방법 및 장치에 있어서, 서로 이웃하지 않는 복수의 참조 샘플들은, 상기 현재 블록의 상단에 위치하는 상단 참조 샘플 및 상기 현재 블록의 좌측에 위치하는 좌측 참조 샘플을 포함할 수 있다.
본 발명에 따른 비디오 신호 부호화/복호화 방법 및 장치에 있어서, 상기 예측 샘플은, 상기 상단 참조 샘플 및 상기 좌측 참조 샘플 사이의 가중합을 기초로 획득될 수 있다.
본 발명에 따른 비디오 신호 부호화/복호화 방법 및 장치에 있어서, 상기 상단 참조 샘플 및 상기 좌측 참조 샘플에 적용되는 가중치는, 상기 예측 샘플의 위치 또는 각 참조 샘플과 상기 예측 샘플 사이의 거리에 기초하여 결정될 수 있다.
본 발명에 따른 비디오 신호 부호화/복호화 방법 및 장치에 있어서, 상기 상단 참조 샘플 및 상기 좌측 참조 샘플에 적용되는 가중치는, 서브 블록 단위로 결정될 수 있다.
본 발명에 따른 비디오 신호 부호화/복호화 방법 및 장치에 있어서, 상기 상단 참조 샘플 및 상기 좌측 참조 샘플 중 어느 하나는 상기 인트라 예측 모드를 정방향으로 적용함에 따라 특정되고, 다른 하나는 상기 인트라 예측 모드를 역방향으로 적용함에 따라 특정될 수 있다.
본 발명에 따른 비디오 신호 부호화/복호화 방법 및 장치에 있어서, 상기 인트라 가중 예측을 수행할 것인지 여부는, 상기 인트라 예측 모드가 기 정의된 인트라 예측 모드인지 여부에 따라 결정될 수 있다.
본 발명에 대하여 위에서 간략하게 요약된 특징들은 후술하는 본 발명의 상세한 설명의 예시적인 양상일 뿐이며, 본 발명의 범위를 제한하는 것은 아니다.
본 발명에 의하면, 부호화/복호화 대상 블록에 대해 효율적으로 인트라 예측을 수행할 수 있다.
본 발명에 의하면, 서로 이웃하지 않는 복수의 참조 샘플을 이용하여 인트라 예측을 수행함으로써, 인트라 예측의 효율을 높일 수 있는 이점이 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일실시예에 따른 영상 부호화 장치를 나타낸 블록도이다.
도 2는 본 발명의 일실시예에 따른 영상 복호화 장치를 나타낸 블록도이다.
도 3은 본 발명이 적용되는 일실시예로서, 트리 구조(tree structure)에 기반하여 코딩 블록을 계층적으로 분할하는 일예를 도시한 것이다.
도 4는 본 발명이 적용되는 일실시예로서, 바이너리 트리 기반의 분할이 허용되는 파티션 형태를 나타낸 도면이다.
도 5는 본 발명이 적용되는 일실시예로서, 특정 형태의 바이너리 트리 기반의 분할만이 허용된 예를 나타낸 도면이다.
도 6은 본 발명이 적용되는 일실시예로서, 바이너리 트리 분할 허용 횟수와 관련된 정보가 부호화/복호화되는 예를 설명하기 위한 도면이다.
도 7은 본 발명이 적용되는 일실시예로서, 코딩 블록에 적용될 수 있는 파티션 모드를 예시한 도면이다.
도 8은 본 발명이 적용되는 일실시예로서, 영상 부호화기/복호화기에 기-정의된 인트라 예측 모드의 종류를 도시한 것이다.
도 9는 본 발명이 적용되는 일실시예로서, 확장된 인트라 예측 모드의 종류를 도시한 것이다.
도 10은 본 발명이 적용되는 일실시예로서, 인트라 예측 방법을 개략적으로 도시한 순서도이다.
도 11은 본 발명이 적용되는 일실시예로서, 주변 샘플들의 차분 정보에 기반하여 현재 블록의 예측 샘플을 보정하는 방법을 도시한 것이다.
도 12 및 도 13은 참조 샘플들이 일렬로 재배열된 일차원 레퍼런스 샘플 그룹을 나타낸 도면이다.
도 14는 본 발명의 일 실시예에 따른 서브 블록 단위로 인트라 예측을 수행하는 방법의 흐름도이다.
도 15는 인트라 예측 모드에 따른 서브 블록의 분할 형태를 예시한 도면이다.
도 16 및 도 17은 서브 블록 단위로 인트라 예측이 수행되는 예를 나타낸 도면이다.
도 18은 소정의 블록 단위로 동일한 가중치가 적용되는 예를 나타낸 도면이다.
도 19는 인트라 가중 예측이 단계적으로 수행되는 예를 나타낸 도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어"있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어"있다거나 "직접 접속되어"있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 이하, 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
도 1은 본 발명의 일실시예에 따른 영상 부호화 장치를 나타낸 블록도이다.
도 1을 참조하면, 영상 부호화 장치(100)는 픽쳐 분할부(110), 예측부(120, 125), 변환부(130), 양자화부(135), 재정렬부(160), 엔트로피 부호화부(165), 역양자화부(140), 역변환부(145), 필터부(150) 및 메모리(155)를 포함할 수 있다.
도 1에 나타난 각 구성부들은 영상 부호화 장치에서 서로 다른 특징적인 기능들을 나타내기 위해 독립적으로 도시한 것으로, 각 구성부들이 분리된 하드웨어나 하나의 소프트웨어 구성단위로 이루어짐을 의미하지 않는다. 즉, 각 구성부는 설명의 편의상 각각의 구성부로 나열하여 포함한 것으로 각 구성부 중 적어도 두 개의 구성부가 합쳐져 하나의 구성부로 이루어지거나, 하나의 구성부가 복수개의 구성부로 나뉘어져 기능을 수행할 수 있고 이러한 각 구성부의 통합된 실시예 및 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리범위에 포함된다.
또한, 일부의 구성 요소는 본 발명에서 본질적인 기능을 수행하는 필수적인 구성 요소는 아니고 단지 성능을 향상시키기 위한 선택적 구성 요소일 수 있다. 본 발명은 단지 성능 향상을 위해 사용되는 구성 요소를 제외한 본 발명의 본질을 구현하는데 필수적인 구성부만을 포함하여 구현될 수 있고, 단지 성능 향상을 위해 사용되는 선택적 구성 요소를 제외한 필수 구성 요소만을 포함한 구조도 본 발명의 권리범위에 포함된다.
픽쳐 분할부(110)는 입력된 픽쳐를 적어도 하나의 처리 단위로 분할할 수 있다. 이때, 처리 단위는 예측 단위(Prediction Unit: PU)일 수도 있고, 변환 단위(Transform Unit: TU)일 수도 있으며, 부호화 단위(Coding Unit: CU)일 수도 있다. 픽쳐 분할부(110)에서는 하나의 픽쳐에 대해 복수의 부호화 단위, 예측 단위 및 변환 단위의 조합으로 분할하고 소정의 기준(예를 들어, 비용 함수)으로 하나의 부호화 단위, 예측 단위 및 변환 단위 조합을 선택하여 픽쳐를 부호화 할 수 있다.
예를 들어, 하나의 픽쳐는 복수개의 부호화 단위로 분할될 수 있다. 픽쳐에서 부호화 단위를 분할하기 위해서는 쿼드 트리 구조(Quad Tree Structure)와 같은 재귀적인 트리 구조를 사용할 수 있는데 하나의 영상 또는 최대 크기 부호화 단위(largest coding unit)를 루트로 하여 다른 부호화 단위로 분할되는 부호화 유닛은 분할된 부호화 단위의 개수만큼의 자식 노드를 가지고 분할될 수 있다. 일정한 제한에 따라 더 이상 분할되지 않는 부호화 단위는 리프 노드가 된다. 즉, 하나의 코딩 유닛에 대하여 정방형 분할만이 가능하다고 가정하는 경우, 하나의 부호화 단위는 최대 4개의 다른 부호화 단위로 분할될 수 있다.
이하, 본 발명의 실시예에서는 부호화 단위는 부호화를 수행하는 단위의 의미로 사용할 수도 있고, 복호화를 수행하는 단위의 의미로 사용할 수도 있다.
예측 단위는 하나의 부호화 단위 내에서 동일한 크기의 적어도 하나의 정사각형 또는 직사각형 등의 형태를 가지고 분할된 것일 수도 있고, 하나의 부호화 단위 내에서 분할된 예측 단위 중 어느 하나의 예측 단위가 다른 하나의 예측 단위와 상이한 형태 및/또는 크기를 가지도록 분할된 것일 수도 있다.
부호화 단위를 기초로 인트라 예측을 수행하는 예측 단위를 생성시 최소 부호화 단위가 아닌 경우, 복수의 예측 단위 NxN 으로 분할하지 않고 인트라 예측을 수행할 수 있다.
예측부(120, 125)는 인터 예측을 수행하는 인터 예측부(120)와 인트라 예측을 수행하는 인트라 예측부(125)를 포함할 수 있다. 예측 단위에 대해 인터 예측을 사용할 것인지 또는 인트라 예측을 수행할 것인지를 결정하고, 각 예측 방법에 따른 구체적인 정보(예컨대, 인트라 예측 모드, 모션 벡터, 참조 픽쳐 등)를 결정할 수 있다. 이때, 예측이 수행되는 처리 단위와 예측 방법 및 구체적인 내용이 정해지는 처리 단위는 다를 수 있다. 예컨대, 예측의 방법과 예측 모드 등은 예측 단위로 결정되고, 예측의 수행은 변환 단위로 수행될 수도 있다. 생성된 예측 블록과 원본 블록 사이의 잔차값(잔차 블록)은 변환부(130)로 입력될 수 있다. 또한, 예측을 위해 사용한 예측 모드 정보, 모션 벡터 정보 등은 잔차값과 함께 엔트로피 부호화부(165)에서 부호화되어 복호화기에 전달될 수 있다. 특정한 부호화 모드를 사용할 경우, 예측부(120, 125)를 통해 예측 블록을 생성하지 않고, 원본 블록을 그대로 부호화하여 복호화부에 전송하는 것도 가능하다.
인터 예측부(120)는 현재 픽쳐의 이전 픽쳐 또는 이후 픽쳐 중 적어도 하나의 픽쳐의 정보를 기초로 예측 단위를 예측할 수도 있고, 경우에 따라서는 현재 픽쳐 내의 부호화가 완료된 일부 영역의 정보를 기초로 예측 단위를 예측할 수도 있다. 인터 예측부(120)는 참조 픽쳐 보간부, 모션 예측부, 움직임 보상부를 포함할 수 있다.
참조 픽쳐 보간부에서는 메모리(155)로부터 참조 픽쳐 정보를 제공받고 참조 픽쳐에서 정수 화소 이하의 화소 정보를 생성할 수 있다. 휘도 화소의 경우, 1/4 화소 단위로 정수 화소 이하의 화소 정보를 생성하기 위해 필터 계수를 달리하는 DCT 기반의 8탭 보간 필터(DCT-based Interpolation Filter)가 사용될 수 있다. 색차 신호의 경우 1/8 화소 단위로 정수 화소 이하의 화소 정보를 생성하기 위해 필터 계수를 달리하는 DCT 기반의 4탭 보간 필터(DCT-based Interpolation Filter)가 사용될 수 있다.
모션 예측부는 참조 픽쳐 보간부에 의해 보간된 참조 픽쳐를 기초로 모션 예측을 수행할 수 있다. 모션 벡터를 산출하기 위한 방법으로 FBMA(Full search-based Block Matching Algorithm), TSS(Three Step Search), NTS(New Three-Step Search Algorithm) 등 다양한 방법이 사용될 수 있다. 모션 벡터는 보간된 화소를 기초로 1/2 또는 1/4 화소 단위의 모션 벡터값을 가질 수 있다. 모션 예측부에서는 모션 예측 방법을 다르게 하여 현재 예측 단위를 예측할 수 있다. 모션 예측 방법으로 스킵(Skip) 방법, 머지(Merge) 방법, AMVP(Advanced Motion Vector Prediction) 방법, 인트라 블록 카피(Intra Block Copy) 방법 등 다양한 방법이 사용될 수 있다.
인트라 예측부(125)는 현재 픽쳐 내의 화소 정보인 현재 블록 주변의 참조 픽셀 정보를 기초로 예측 단위를 생성할 수 있다. 현재 예측 단위의 주변 블록이 인터 예측을 수행한 블록이어서, 참조 픽셀이 인터 예측을 수행한 픽셀일 경우, 인터 예측을 수행한 블록에 포함되는 참조 픽셀을 주변의 인트라 예측을 수행한 블록의 참조 픽셀 정보로 대체하여 사용할 수 있다. 즉, 참조 픽셀이 가용하지 않는 경우, 가용하지 않은 참조 픽셀 정보를 가용한 참조 픽셀 중 적어도 하나의 참조 픽셀로 대체하여 사용할 수 있다.
인트라 예측에서 예측 모드는 참조 픽셀 정보를 예측 방향에 따라 사용하는 방향성 예측 모드와 예측을 수행시 방향성 정보를 사용하지 않는 비방향성 모드를 가질 수 있다. 휘도 정보를 예측하기 위한 모드와 색차 정보를 예측하기 위한 모드가 상이할 수 있고, 색차 정보를 예측하기 위해 휘도 정보를 예측하기 위해 사용된 인트라 예측 모드 정보 또는 예측된 휘도 신호 정보를 활용할 수 있다.
인트라 예측을 수행할 때 예측 단위의 크기와 변환 단위의 크기가 동일할 경우, 예측 단위의 좌측에 존재하는 픽셀, 좌측 상단에 존재하는 픽셀, 상단에 존재하는 픽셀을 기초로 예측 단위에 대한 인트라 예측을 수행할 수 있다. 그러나 인트라 예측을 수행할 때 예측 단위의 크기와 변환 단위의 크기가 상이할 경우, 변환 단위를 기초로 한 참조 픽셀을 이용하여 인트라 예측을 수행할 수 있다. 또한, 최소 부호화 단위에 대해서만 NxN 분할을 사용하는 인트라 예측을 사용할 수 있다.
인트라 예측 방법은 예측 모드에 따라 참조 화소에 AIS(Adaptive Intra Smoothing) 필터를 적용한 후 예측 블록을 생성할 수 있다. 참조 화소에 적용되는 AIS 필터의 종류는 상이할 수 있다. 인트라 예측 방법을 수행하기 위해 현재 예측 단위의 인트라 예측 모드는 현재 예측 단위의 주변에 존재하는 예측 단위의 인트라 예측 모드로부터 예측할 수 있다. 주변 예측 단위로부터 예측된 모드 정보를 이용하여 현재 예측 단위의 예측 모드를 예측하는 경우, 현재 예측 단위와 주변 예측 단위의 인트라 예측 모드가 동일하면 소정의 플래그 정보를 이용하여 현재 예측 단위와 주변 예측 단위의 예측 모드가 동일하다는 정보를 전송할 수 있고, 만약 현재 예측 단위와 주변 예측 단위의 예측 모드가 상이하면 엔트로피 부호화를 수행하여 현재 블록의 예측 모드 정보를 부호화할 수 있다.
또한, 예측부(120, 125)에서 생성된 예측 단위를 기초로 예측을 수행한 예측 단위와 예측 단위의 원본 블록과 차이값인 잔차값(Residual) 정보를 포함하는 잔차 블록이 생성될 수 있다. 생성된 잔차 블록은 변환부(130)로 입력될 수 있다.
변환부(130)에서는 원본 블록과 예측부(120, 125)를 통해 생성된 예측 단위의 잔차값(residual)정보를 포함한 잔차 블록을 DCT(Discrete Cosine Transform), DST(Discrete Sine Transform), KLT와 같은 변환 방법을 사용하여 변환시킬 수 있다. 잔차 블록을 변환하기 위해 DCT를 적용할지, DST를 적용할지 또는 KLT를 적용할지는 잔차 블록을 생성하기 위해 사용된 예측 단위의 인트라 예측 모드 정보를 기초로 결정할 수 있다.
양자화부(135)는 변환부(130)에서 주파수 영역으로 변환된 값들을 양자화할 수 있다. 블록에 따라 또는 영상의 중요도에 따라 양자화 계수는 변할 수 있다. 양자화부(135)에서 산출된 값은 역양자화부(140)와 재정렬부(160)에 제공될 수 있다.
재정렬부(160)는 양자화된 잔차값에 대해 계수값의 재정렬을 수행할 수 있다.
재정렬부(160)는 계수 스캐닝(Coefficient Scanning) 방법을 통해 2차원의 블록 형태 계수를 1차원의 벡터 형태로 변경할 수 있다. 예를 들어, 재정렬부(160)에서는 지그-재그 스캔(Zig-Zag Scan)방법을 이용하여 DC 계수부터 고주파수 영역의 계수까지 스캔하여 1차원 벡터 형태로 변경시킬 수 있다. 변환 단위의 크기 및 인트라 예측 모드에 따라 지그-재그 스캔 대신 2차원의 블록 형태 계수를 열 방향으로 스캔하는 수직 스캔, 2차원의 블록 형태 계수를 행 방향으로 스캔하는 수평 스캔이 사용될 수도 있다. 즉, 변환 단위의 크기 및 인트라 예측 모드에 따라 지그-재그 스캔, 수직 방향 스캔 및 수평 방향 스캔 중 어떠한 스캔 방법이 사용될지 여부를 결정할 수 있다.
엔트로피 부호화부(165)는 재정렬부(160)에 의해 산출된 값들을 기초로 엔트로피 부호화를 수행할 수 있다. 엔트로피 부호화는 예를 들어, 지수 골롬(Exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)과 같은 다양한 부호화 방법을 사용할 수 있다.
엔트로피 부호화부(165)는 재정렬부(160) 및 예측부(120, 125)로부터 부호화 단위의 잔차값 계수 정보 및 블록 타입 정보, 예측 모드 정보, 분할 단위 정보, 예측 단위 정보 및 전송 단위 정보, 모션 벡터 정보, 참조 프레임 정보, 블록의 보간 정보, 필터링 정보 등 다양한 정보를 부호화할 수 있다.
엔트로피 부호화부(165)에서는 재정렬부(160)에서 입력된 부호화 단위의 계수값을 엔트로피 부호화할 수 있다.
역양자화부(140) 및 역변환부(145)에서는 양자화부(135)에서 양자화된 값들을 역양자화하고 변환부(130)에서 변환된 값들을 역변환한다. 역양자화부(140) 및 역변환부(145)에서 생성된 잔차값(Residual)은 예측부(120, 125)에 포함된 움직임 추정부, 움직임 보상부 및 인트라 예측부를 통해서 예측된 예측 단위와 합쳐져 복원 블록(Reconstructed Block)을 생성할 수 있다.
필터부(150)는 디블록킹 필터, 오프셋 보정부, ALF(Adaptive Loop Filter)중 적어도 하나를 포함할 수 있다.
디블록킹 필터는 복원된 픽쳐에서 블록간의 경계로 인해 생긴 블록 왜곡을 제거할 수 있다. 디블록킹을 수행할지 여부를 판단하기 위해 블록에 포함된 몇 개의 열 또는 행에 포함된 픽셀을 기초로 현재 블록에 디블록킹 필터 적용할지 여부를 판단할 수 있다. 블록에 디블록킹 필터를 적용하는 경우 필요한 디블록킹 필터링 강도에 따라 강한 필터(Strong Filter) 또는 약한 필터(Weak Filter)를 적용할 수 있다. 또한 디블록킹 필터를 적용함에 있어 수직 필터링 및 수평 필터링 수행시 수평 방향 필터링 및 수직 방향 필터링이 병행 처리되도록 할 수 있다.
오프셋 보정부는 디블록킹을 수행한 영상에 대해 픽셀 단위로 원본 영상과의 오프셋을 보정할 수 있다. 특정 픽쳐에 대한 오프셋 보정을 수행하기 위해 영상에 포함된 픽셀을 일정한 수의 영역으로 구분한 후 오프셋을 수행할 영역을 결정하고 해당 영역에 오프셋을 적용하는 방법 또는 각 픽셀의 에지 정보를 고려하여 오프셋을 적용하는 방법을 사용할 수 있다.
ALF(Adaptive Loop Filtering)는 필터링한 복원 영상과 원래의 영상을 비교한 값을 기초로 수행될 수 있다. 영상에 포함된 픽셀을 소정의 그룹으로 나눈 후 해당 그룹에 적용될 하나의 필터를 결정하여 그룹마다 차별적으로 필터링을 수행할 수 있다. ALF를 적용할지 여부에 관련된 정보는 휘도 신호는 부호화 단위(Coding Unit, CU) 별로 전송될 수 있고, 각각의 블록에 따라 적용될 ALF 필터의 모양 및 필터 계수는 달라질 수 있다. 또한, 적용 대상 블록의 특성에 상관없이 동일한 형태(고정된 형태)의 ALF 필터가 적용될 수도 있다.
메모리(155)는 필터부(150)를 통해 산출된 복원 블록 또는 픽쳐를 저장할 수 있고, 저장된 복원 블록 또는 픽쳐는 인터 예측을 수행 시 예측부(120, 125)에 제공될 수 있다.
도 2는 본 발명의 일실시예에 따른 영상 복호화 장치를 나타낸 블록도이다.
도 2를 참조하면, 영상 복호화기(200)는 엔트로피 복호화부(210), 재정렬부(215), 역양자화부(220), 역변환부(225), 예측부(230, 235), 필터부(240), 메모리(245)가 포함될 수 있다.
영상 부호화기에서 영상 비트스트림이 입력된 경우, 입력된 비트스트림은 영상 부호화기와 반대의 절차로 복호화될 수 있다.
엔트로피 복호화부(210)는 영상 부호화기의 엔트로피 부호화부에서 엔트로피 부호화를 수행한 것과 반대의 절차로 엔트로피 복호화를 수행할 수 있다. 예를 들어, 영상 부호화기에서 수행된 방법에 대응하여 지수 골롬(Exponential Golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)과 같은 다양한 방법이 적용될 수 있다.
엔트로피 복호화부(210)에서는 부호화기에서 수행된 인트라 예측 및 인터 예측에 관련된 정보를 복호화할 수 있다.
재정렬부(215)는 엔트로피 복호화부(210)에서 엔트로피 복호화된 비트스트림을 부호화부에서 재정렬한 방법을 기초로 재정렬을 수행할 수 있다. 1차원 벡터 형태로 표현된 계수들을 다시 2차원의 블록 형태의 계수로 복원하여 재정렬할 수 있다. 재정렬부(215)에서는 부호화부에서 수행된 계수 스캐닝에 관련된 정보를 제공받고 해당 부호화부에서 수행된 스캐닝 순서에 기초하여 역으로 스캐닝하는 방법을 통해 재정렬을 수행할 수 있다.
역양자화부(220)는 부호화기에서 제공된 양자화 파라미터와 재정렬된 블록의 계수값을 기초로 역양자화를 수행할 수 있다.
역변환부(225)는 영상 부호화기에서 수행한 양자화 결과에 대해 변환부에서 수행한 변환 즉, DCT, DST, 및 KLT에 대해 역변환 즉, 역 DCT, 역 DST 및 역 KLT를 수행할 수 있다. 역변환은 영상 부호화기에서 결정된 전송 단위를 기초로 수행될 수 있다. 영상 복호화기의 역변환부(225)에서는 예측 방법, 현재 블록의 크기 및 예측 방향 등 복수의 정보에 따라 변환 기법(예를 들어, DCT, DST, KLT)이 선택적으로 수행될 수 있다.
예측부(230, 235)는 엔트로피 복호화부(210)에서 제공된 예측 블록 생성 관련 정보와 메모리(245)에서 제공된 이전에 복호화된 블록 또는 픽쳐 정보를 기초로 예측 블록을 생성할 수 있다.
전술한 바와 같이 영상 부호화기에서의 동작과 동일하게 인트라 예측을 수행시 예측 단위의 크기와 변환 단위의 크기가 동일할 경우, 예측 단위의 좌측에 존재하는 픽셀, 좌측 상단에 존재하는 픽셀, 상단에 존재하는 픽셀을 기초로 예측 단위에 대한 인트라 예측을 수행하지만, 인트라 예측을 수행시 예측 단위의 크기와 변환 단위의 크기가 상이할 경우, 변환 단위를 기초로 한 참조 픽셀을 이용하여 인트라 예측을 수행할 수 있다. 또한, 최소 부호화 단위에 대해서만 NxN 분할을 사용하는 인트라 예측을 사용할 수도 있다.
예측부(230, 235)는 예측 단위 판별부, 인터 예측부 및 인트라 예측부를 포함할 수 있다. 예측 단위 판별부는 엔트로피 복호화부(210)에서 입력되는 예측 단위 정보, 인트라 예측 방법의 예측 모드 정보, 인터 예측 방법의 모션 예측 관련 정보 등 다양한 정보를 입력 받고 현재 부호화 단위에서 예측 단위를 구분하고, 예측 단위가 인터 예측을 수행하는지 아니면 인트라 예측을 수행하는지 여부를 판별할 수 있다. 인터 예측부(230)는 영상 부호화기에서 제공된 현재 예측 단위의 인터 예측에 필요한 정보를 이용해 현재 예측 단위가 포함된 현재 픽쳐의 이전 픽쳐 또는 이후 픽쳐 중 적어도 하나의 픽쳐에 포함된 정보를 기초로 현재 예측 단위에 대한 인터 예측을 수행할 수 있다. 또는, 현재 예측 단위가 포함된 현재 픽쳐 내에서 기-복원된 일부 영역의 정보를 기초로 인터 예측을 수행할 수도 있다.
인터 예측을 수행하기 위해 부호화 단위를 기준으로 해당 부호화 단위에 포함된 예측 단위의 모션 예측 방법이 스킵 모드(Skip Mode), 머지 모드(Merge 모드), AMVP 모드(AMVP Mode), 인트라 블록 카피 모드 중 어떠한 방법인지 여부를 판단할 수 있다.
인트라 예측부(235)는 현재 픽쳐 내의 화소 정보를 기초로 예측 블록을 생성할 수 있다. 예측 단위가 인트라 예측을 수행한 예측 단위인 경우, 영상 부호화기에서 제공된 예측 단위의 인트라 예측 모드 정보를 기초로 인트라 예측을 수행할 수 있다. 인트라 예측부(235)에는 AIS(Adaptive Intra Smoothing) 필터, 참조 화소 보간부, DC 필터를 포함할 수 있다. AIS 필터는 현재 블록의 참조 화소에 필터링을 수행하는 부분으로써 현재 예측 단위의 예측 모드에 따라 필터의 적용 여부를 결정하여 적용할 수 있다. 영상 부호화기에서 제공된 예측 단위의 예측 모드 및 AIS 필터 정보를 이용하여 현재 블록의 참조 화소에 AIS 필터링을 수행할 수 있다. 현재 블록의 예측 모드가 AIS 필터링을 수행하지 않는 모드일 경우, AIS 필터는 적용되지 않을 수 있다.
참조 화소 보간부는 예측 단위의 예측 모드가 참조 화소를 보간한 화소값을 기초로 인트라 예측을 수행하는 예측 단위일 경우, 참조 화소를 보간하여 정수값 이하의 화소 단위의 참조 화소를 생성할 수 있다. 현재 예측 단위의 예측 모드가 참조 화소를 보간하지 않고 예측 블록을 생성하는 예측 모드일 경우 참조 화소는 보간되지 않을 수 있다. DC 필터는 현재 블록의 예측 모드가 DC 모드일 경우 필터링을 통해서 예측 블록을 생성할 수 있다.
복원된 블록 또는 픽쳐는 필터부(240)로 제공될 수 있다. 필터부(240)는 디블록킹 필터, 오프셋 보정부, ALF를 포함할 수 있다.
영상 부호화기로부터 해당 블록 또는 픽쳐에 디블록킹 필터를 적용하였는지 여부에 대한 정보 및 디블록킹 필터를 적용하였을 경우, 강한 필터를 적용하였는지 또는 약한 필터를 적용하였는지에 대한 정보를 제공받을 수 있다. 영상 복호화기의 디블록킹 필터에서는 영상 부호화기에서 제공된 디블록킹 필터 관련 정보를 제공받고 영상 복호화기에서 해당 블록에 대한 디블록킹 필터링을 수행할 수 있다.
오프셋 보정부는 부호화시 영상에 적용된 오프셋 보정의 종류 및 오프셋 값 정보 등을 기초로 복원된 영상에 오프셋 보정을 수행할 수 있다.
ALF는 부호화기로부터 제공된 ALF 적용 여부 정보, ALF 계수 정보 등을 기초로 부호화 단위에 적용될 수 있다. 이러한 ALF 정보는 특정한 파라메터 셋에 포함되어 제공될 수 있다.
메모리(245)는 복원된 픽쳐 또는 블록을 저장하여 참조 픽쳐 또는 참조 블록으로 사용할 수 있도록 할 수 있고 또한 복원된 픽쳐를 출력부로 제공할 수 있다.
전술한 바와 같이 이하, 본 발명의 실시예에서는 설명의 편의상 코딩 유닛(Coding Unit)을 부호화 단위라는 용어로 사용하지만, 부호화뿐만 아니라 복호화를 수행하는 단위가 될 수도 있다.
또한, 현재 블록은, 부호화/복호화 대상 블록을 나타내는 것으로, 부호화/복호화 단계에 따라, 코딩 트리 블록(또는 코딩 트리 유닛), 부호화 블록(또는 부호화 유닛), 변환 블록(또는 변환 유닛) 또는 예측 블록(또는 예측 유닛) 등을 나타내는 것일 수 있다.
하나의 픽쳐는 정방형 또는 비정방형의 기본 블록으로 분할되어 부호화/복호화될 수 있다. 이때, 기본 블록은, 코딩 트리 유닛(Coding Tree Unit)이라 호칭될 수 있다. 코딩 트리 유닛은, 시퀀스 또는 슬라이스에서 허용하는 가장 큰 크기의 부호화 유닛으로 정의될 수도 있다. 코딩 트리 유닛이 정방형 또는 비정방형인지 여부 또는 코딩 트리 유닛의 크기와 관련한 정보는 시퀀스 파라미터 셋트, 픽처 파라미터 셋트 또는 슬라이스 헤더 등을 통해 시그널링될 수 있다. 코딩 트리 유닛은 더 작은 크기의 파티션으로 분할될 수 있다. 이때, 코딩 트리 유닛을 분할함으로써 생성된 파티션을 뎁스 1이라 할 경우, 뎁스 1인 파티션을 분할함으로써 생성된 파티션은 뎁스 2로 정의될 수 있다. 즉, 코딩 트리 유닛 내 뎁스 k인 파티션을 분할함으로써 생성된 파티션은 뎁스 k+1을 갖는 것으로 정의될 수 있다.
코딩 트리 유닛이 분할됨에 따라 생성된 임의 크기의 파티션을 코딩 유닛이라 정의할 수 있다. 코딩 유닛은 재귀적으로 분할되거나, 예측, 양자화, 변환 또는 인루프 필터링 등을 수행하기 위한 기본 단위로 분할될 수 있다. 일 예로, 코딩 유닛이 분할됨에 따라 생성된 임의 크기의 파티션은 코딩 유닛으로 정의되거나, 예측, 양자화, 변환 또는 인루프 필터링 등을 수행하기 위한 기본 단위인 변환 유닛 또는 예측 유닛으로 정의될 수 있다.
코딩 트리 유닛 또는 코딩 유닛의 파티셔닝은, 수직선(Vertical Line) 또는 수평선(Horizontal Line) 중 적어도 하나에 기초하여 수행될 수 있다. 또한, 코딩 트리 유닛 또는 코딩 유닛을 파티셔닝하는 수직선 또는 수평선의 개수는 적어도 하나 이상일 수 있다. 일 예로, 하나의 수직선 또는 하나의 수평선을 이용하여, 코딩 트리 유닛 또는 코딩 유닛을 2개의 파티션으로 분할하거나, 두개의 수직선 또는 두개의 수평선을 이용하여, 코딩 트리 유닛 또는 코딩 유닛을 3개의 파티션으로 분할할 수 있다. 또는, 하나의 수직선 및 하나의 수평선을 이용하여, 코딩 트리 유닛 또는 코딩 유닛을 길이 및 너비가 1/2 인 4개의 파티션으로 분할할 수 있다.
코딩 트리 유닛 또는 코딩 유닛을 적어도 하나의 수직선 또는 적어도 하나의 수평선을 이용하여 복수의 파티션으로 분할하는 경우, 파티션들은 균일한 크기를 갖거나, 서로 다른 크기를 가질 수 있다. 또는, 어느 하나의 파티션이 나머지 파티션과 다른 크기를 가질 수도 있다.
후술되는 실시예들에서는, 코딩 트리 유닛 또는 코딩 유닛이 쿼드 트리, 트리플 트리 또는 바이너리 트리 구조로 분할되는 것으로 가정한다. 그러나, 더 많은 수의 수직선 또는 더 많은 수의 수평선을 이용한 코딩 트리 유닛 또는 코딩 유닛의 분할도 가능하다.
도 3은 본 발명이 적용되는 일실시예로서, 트리 구조(tree structure)에 기반하여 코딩 블록을 계층적으로 분할하는 일예를 도시한 것이다.
입력 영상 신호는 소정의 블록 단위로 복호화되며, 이와 같이 입력 영상 신호를 복호화하기 위한 기본 단위를 코딩 블록이라 한다. 코딩 블록은 인트라/인터 예측, 변환, 양자화를 수행하는 단위가 될 수 있다. 또한, 코딩 블록 단위로 예측 모드(예컨대, 화면 내 예측 모드 또는 화면 간 예측 모드)가 결정되고, 코딩 블록에 포함된 예측 블록들은, 결정된 예측 모드를 공유할 수 있다. 코딩 블록은 8x8 내지 64x64 범위에 속하는 임의의 크기를 가진 정방형 또는 비정방형 블록일 수 있고, 128x128, 256x256 또는 그 이상의 크기를 가진 정방형 또는 비정방형 블록일 수 있다.
구체적으로, 코딩 블록은 쿼드 트리(quad tree), 트리플 트리(triple tree) 및 바이너리 트리(binary tree) 중 적어도 하나에 기초하여 계층적으로 분할될 수 있다. 여기서, 쿼드 트리 기반의 분할은 2Nx2N 코딩 블록이 4개의 NxN 코딩 블록으로 분할되는 방식을, 트리플 트리 기반의 분할은 하나의 코딩 블록이 3개의 코딩 블록으로 분할되는 방식을, 바이너리 트리 기반의 분할은 하나의 코딩 블록이 2개의 코딩 블록으로 분할되는 방식을 각각 의미할 수 있다. 트리플 트리 분할 또는 바이너리 트리 기반의 분할이 수행되었다 하더라도, 하위 뎁스에서는 정방형인 코딩 블록이 존재할 수 있다. 또는, 트리플 트리 분할 또는 바이너리 트리 기반의 분할이 수행된 이후, 하위 뎁스에서는 정방형 코딩 블록이 생성되는 것을 제한할 수도 있다.
바이너리 트리 기반의 분할은 대칭적으로 수행될 수도 있고, 비대칭적으로 수행될 수도 있다. 바이너리 트리 기반으로 분할된 코딩 블록은 정방형 블록일 수도 있고, 직사각형과 같은 비정방형 블록일 수도 있다. 일 예로, 바이너리 트리 기반의 분할이 허용되는 파티션 형태는 도 4에 도시된 예에서와 같이, 대칭형(symmetric)인 2NxN (수평 방향 비 정방 코딩 유닛) 또는 Nx2N (수직 방향 비정방 코딩 유닛), 비대칭형(asymmetric)인 nLx2N, nRx2N, 2NxnU 또는 2NxnD 중 적어도 하나를 포함할 수 있다.
바이너리 트리 기반의 분할은, 대칭형 또는 비대칭 형태의 파티션 중 어느 하나만 제한적으로 허용될 수도 있다. 이 경우, 코딩 트리 유닛을, 정방형 블록으로 구성하는 것은 쿼드 트리 CU 파티셔닝에 해당하고, 코딩 트리 유닛을, 대칭형인 비정방형 블록으로 구성하는 것은 이진 트리 파티셔닝에 해당할 수 있다. 코딩 트리 유닛을 정방형 블록과 대칭형 비정방형 블록으로 구성하는 것은 쿼드 및 바이너리 트리 CU 파티셔닝에 해당할 수 있다.
바이너리 트리 기반의 분할은 쿼드 트리 기반의 분할이 더 이상 수행되지 않는 코딩 블록에 대해서 수행될 수 있다. 바이너리 트리 기반으로 분할된 코딩 블록에 대해서는 쿼드 트리 기반의 분할, 트리플 트리 기반의 분할 또는 바이너리 트리 기반의 분할 중 적어도 하나가 더 이상 수행되지 않도록 설정될 수 있다.
또는, 바이너리 트리 기반으로 분할된 코딩 블록에 대해 트리플 트리 기반의 분할 또는 바이너리 트리 기반의 분할을 허용하되, 수평 방향 또는 수직 방향의 분할 중 어느 하나만을 제한적으로 허용할 수도 있다.
예컨대, 바이너리 트리 기반으로 분할된 코딩 블록의 위치, 인덱스, 형태, 이웃 파티션의 추가 분할 형태 등에 따라, 바이너리 트리 기반으로 분할된 코딩 블록에 대해 추가 분할 또는 추가 분할 방향을 제한할 수도 있다. 일 예로, 바이너리 트리 기반의 분할로 인해 생성된 두 코딩 블록 중 코딩 순서가 앞에 있는 코딩 블록의 인덱스를 0(이하, 코딩 블록 인덱스 0), 코딩 순서가 뒤에 있는 코딩 블록의 인덱스를 1(이하, 코딩 블록 인덱스 1) 이라 할 때, 코딩 블록 인덱스 0 또는 코딩 블록 인덱스 1인 코딩 블록에 모두 바이너리 트리 기반의 분할이 적용되는 경우, 코딩 블록 인덱스가 1인 코딩 블록의 바이너리 트리 기반의 분할 방향은, 코딩 블록 인덱스가 0인 코딩 블록의 바이너리 트리 기반의 분할 방향에 따라 결정될 수 있다. 구체적으로, 코딩 블록 인덱스가 0인 코딩 블록의 바이너리 트리 기반의 분할 방향이 코딩 블록 인덱스가 0인 코딩 블록을 정방형 파티션들로 분할하는 것인 경우, 코딩 블록 인덱스가 1인 코딩 블록의 바이너리 트리 기반의 분할은 코딩 블록 인덱스가 1인 코딩 블록의 바이너리 트리 기반의 분할과 상이한 방향을 갖도록 제한될 수 있다. 즉, 코딩 블록 인덱스 0 및 코딩 블록 인덱스 1인 코딩 블록들이 모두 정방형 파티션들로 분할되는 것이 제한될 수 있다. 이 경우, 코딩 블록 인덱스가 1인 코딩 블록의 바이너리 트리 분할 방향을 나타내는 정보의 부호화/복호화가 생략될 수 있다. 이는, 코딩 블록 인덱스 0 및 코딩 블록 인덱스 1인 코딩 블록들이 모두 정방형 파티션들로 분할되는 것은, 상위 뎁스 블록을 쿼드 트리 기반으로 분할하는 것과 동일한 효과를 나타내는바, 코딩 블록 인덱스 0 및 코딩 블록 인덱스 1을 모두 정방형 파티션들로 분할하는 것을 허용하는 것은 부호화 효율 측면에서 바람직하지 않기 때문이다.
트리플 트리 기반의 분할은, 수평 또는 수직 방향으로 코딩 블록을 3개의 파티션으로 분할하는 것을 의미한다. 트리플 트리 기반의 분할로 인해 생성된 3개의 파티션들 모두는 상이한 크기를 가질 수 있다. 또는, 트리플 트리 기반의 분할로 인해 생성된 파티션들 중 2개는 동일한 크기를 갖고, 나머지 하나가 상이한 크기를 가질수도 있다. 일 예로, 코딩 블록이 분할됨에 따라 생성된 파티션들의 너비비 또는 높이비는 분할 방향에 따라 1:n:1, 1:1:n ,n:1:1 또는 m:n:1 로 설정될 수 있다. 여기서, m과 n은 1 또는 1보다 큰 실수로 예컨대, 2와 같은 정수일 수 있다.
트리플 트리 기반의 분할은 쿼드 트리 기반의 분할이 더 이상 수행되지 않는 코딩 블록에 대해서 수행될 수 있다. 트리플 트리 기반으로 분할된 코딩 블록에 대해서는, 쿼드 트리 기반의 분할, 트리플 트리 기반의 분할 또는 바이너리 트리 기반의 분할 중 적어도 하나가 더 이상 수행되지 않도록 설정될 수 있다.
또는, 트리플 트리 기반으로 분할된 코딩 블록에 대해 트리플 트리 기반의 분할 또는 바이너리 트리 기반의 분할을 허용하되, 수평 방향 또는 수직 방향의 분할 중 어느 하나만을 제한적으로 허용할 수도 있다.
예컨대, 트리플 트리 기반으로 분할된 코딩 블록의 위치, 인덱스, 형태, 크기, 이웃 파티션의 추가 분할 형태 등에 따라, 트리플 트리 기반으로 분할된 코딩 블록에 대한 추가 분할 또는 추가 분할 방향을 제한할 수도 있다. 일 예로, 트리플 트리 기반의 분할로 인해 생성된 코딩 블록들 중 크기가 가장 큰 파티션에 대해서는 수평 방향 분할 또는 수직 방향 분할 중 어느 하나가 제한될 수 있다. 구체적으로, 트리플 트리 기반의 분할로 인해 생성된 코딩 블록들 중 크기가 가장 큰 파티션은 상위 뎁스 파티션의 트리플 트리 분할 방향과 동일한 방향의 바이너리 트리 분할 또는 동일한 방향의 트리플 트리 분할 방향이 허용되지 않을 수 있다. 이 경우, 트리플 트리 기반으로 분할된 코딩 블록 중 가중 큰 파티션에 대해서는 바이너리 트리 분할 방향 또는 트리플 트리 분할 방향을 나타내는 정보의 부호화/복호화가 생략될 수 있다.
하위 뎁스의 분할은 상위 뎁스의 분할 형태에 종속적으로 결정될 수도 있다. 일 예로, 2개 이상의 뎁스에서 바이너리 트리 기반의 분할이 허용된 경우, 하위 뎁스에서는 상위 뎁스의 바이너리 트리 분할 형태와 동일한 형태의 바이너리 트리 기반의 분할만이 허용될 수 있다. 예컨대, 상위 뎁스에서 2NxN 형태로 바이너리 트리 기반의 분할이 수행된 경우, 하위 뎁스에서도 2NxN 형태의 바이너리 트리 기반의 분할이 수행될 수 있다. 또는, 상위 뎁스에서 Nx2N 형태로 바이너리 트리 기반의 분할이 수행된 경우, 하위 뎁스에서도 Nx2N 형태의 바이너리 트리 기반의 분할이 허용될 수 있다.
반대로, 하위 뎁스에서, 상위 뎁스의 바이너리 트리 분할 형태와 상이한 형태의 바이너리 트리 기반의 분할만을 허용하는 것도 가능하다.
시퀀스, 슬라이스, 코딩 트리 유닛 또는 코딩 유닛에 대해, 특정 형태의 바이너리 트리 기반의 분할 또는 특정 형태의 트리플 트리 기반의 분할만이 사용되도록 제한할 수도 있다. 일 예로, 코딩 트리 유닛에 대해 2NxN 또는 Nx2N 형태의 바이너리 트리 기반의 분할만이 허용되도록 제한할 수 있다. 허용되는 파티션 형태는 부호화기 또는 복호화기에 기 정의되어 있을 수도 있고, 허용되는 파티션 형태 또는 허용되지 않는 파티션 형태에 관한 정보를 부호화하여 비트스트림을 통해 시그널링할 수도 있다.
도 5는 특정 형태의 바이너리 트리 기반의 분할만이 허용된 예를 나타낸 도면이다. 도 5의 (a)는 Nx2N 형태의 바이너리 트리 기반의 분할만이 허용되도록 제한된 예를 나타내고, 도 5의 (b)는 2NxN 형태의 바이너리 트리 기반의 분할만이 허용되도록 제한된 예를 나타낸다. 상기 쿼드 트리 또는 바이너리 트리 기반의 적응적 분할을 구현하기 위해 쿼드 트리 기반의 분할을 지시하는 정보, 쿼드 트리 기반의 분할이 허용되는 코딩 블록의 크기/깊이에 관한 정보, 바이너리 트리 기반의 분할을 지시하는 정보, 바이너리 트리 기반의 분할이 허용되는 코딩 블록의 크기/깊이에 대한 정보, 바이너리 트리 기반의 분할이 허용되지 않는 코딩 블록의 크기/깊이에 대한 정보 또는 바이너리 트리 기반의 분할이 세로 방향인지 또는 가로 방향인지에 관한 정보 등이 이용될 수 있다.
또한, 코딩 트리 유닛 또는 소정의 코딩 유닛에 대해, 바이너리 트리 분할/트리플 트리 분할이 허용되는 횟수, 바이너리 트리 분할/트리플 트리 분할이 허용되는 깊이 또는 바이너리 트리 분할/트리플 트리 분할이 허용된 뎁스의 개수 등이 획득될 수 있다. 상기 정보는 코딩 트리 유닛 또는 코딩 유닛 단위로 부호화되어, 비트스트림을 통해 복호화기로 전송될 수 있다.
일 예로, 비트스트림을 통해, 바이너리 트리 분할이 허용되는 최대 뎁스를 나타내는 신택스 'max_binary_depth_idx_minus1'가 비트스트림을 통해 부호화/복호화될 수 있다. 이 경우, max_binary_depth_idx_minus1+1이 바이너리 트리 분할이 허용되는 최대 뎁스를 가리킬 수 있다.
도 6에 도시된 예를 살펴보면, 도 6에서는, 뎁스 2인 코딩 유닛 및 뎁스 3인 코딩 유닛에 대해 바이너리 트리 분할이 수행된 것으로 도시되었다. 이에 따라, 코딩 트리 유닛 내 바이너리 트리 분할이 수행된 횟수(2회)를 나타내는 정보, 코딩 트리 유닛 내 바이너리 트리 분할이 허용된 최대 뎁스(뎁스 3)를 나타내는 정보 또는 코딩 트리 유닛 내 바이너리 트리 분할이 허용된 뎁스의 개수(2개, 뎁스 2 및 뎁스 3)를 나타내는 정보 중 적어도 하나가 비트스트림을 통해 부호화/복호화될 수 있다.
다른 예로, 바이너리 트리 분할/트리플 트리 분할이 허용되는 횟수, 바이너리 트리 분할/트리플 트리 분할이 허용되는 깊이 또는 바이너리 트리 분할/트리플 트리 분할이 허용된 뎁스의 개수 중 적어도 하나는 시퀀스, 픽처 또는 슬라이스별로 획득될 수 있다. 일 예로, 상기 정보는, 시퀀스, 픽처 또는 슬라이스 단위로 부호화되어 비트스트림을 통해 전송될 수 있다. 또는, 시퀀스, 픽처 또는 슬라이스 별로 바이너리 트리 분할/트리플 트리 분할 이 허용되는 깊이 또는 바이너리 트리 분할/트리플 트리 분할 이 허용된 뎁스의 개수가 기 정의되어 있을 수도 있다. 이에 따라, 제1 슬라이스 및 제2 슬라이스의, 바이너리 트리/트리플 트리 분할 횟수, 바이너리 트리/트리플 트리 분할이 허용되는 최대 뎁스 또는 바이너리 트리/트리플 트리 분할이 허용되는 뎁스의 개수 중 적어도 하나가 상이할 수 있다. 일 예로, 제1 슬라이스에서는, 하나의 뎁스에서만 바이너리 트리 분할이 허용되는 반면, 제2 슬라이스에서는, 두개의 뎁스에서 바이너리 트리 분할이 허용될 수 있다.
또 다른 일 예로, 슬라이스 또는 픽쳐의 시간레벨 식별자(TemporalID)에 따라 바이너리 트리/트리플 트리 분할이 허용되는 횟수, 바이너리 트리/트리플 트리 분할이 허용되는 깊이 또는 바이너리 트리/트리플 트리 분할이 허용되는 뎁스의 개수 중 적어도 하나를 상이하게 설정할 수도 있다. 여기서, 시간레벨 식별자(TemporalID)는, 시점(view), 공간(spatial), 시간(temporal) 또는 화질(quality) 중 적어도 하나 이상의 스케일러빌리티(Scalability)를 갖는 영상의 복수개의 레이어 각각을 식별하기 위한 것이다.
도 3에 도시된 바와 같이, 분할 깊이(split depth)가 k인 제1 코딩 블록 300은 쿼드 트리(quad tree)에 기반하여 복수의 제2 코딩 블록으로 분할될 수 있다. 예를 들어, 제2 코딩 블록 310 내지 340은 제1 코딩 블록의 너비와 높이의 절반 크기를 가진 정방형 블록이며, 제2 코딩 블록의 분할 깊이는 k+1로 증가될 수 있다.
분할 깊이가 k+1인 제2 코딩 블록 310은 분할 깊이가 k+2인 복수의 제3 코딩 블록으로 분할될 수 있다. 제2 코딩 블록 310의 분할은 분할 방식에 따라 쿼트 트리 또는 바이너리 트리 중 어느 하나를 선택적으로 이용하여 수행될 수 있다. 여기서, 분할 방식은 쿼드 트리 기반으로의 분할을 지시하는 정보 또는 바이너리 트리 기반의 분할을 지시하는 정보 중 적어도 하나에 기초하여 결정될 수 있다.
제2 코딩 블록 310이 쿼트 트리 기반으로 분할되는 경우, 제2 코딩 블록 310은 제2 코딩 블록의 너비와 높이의 절반 크기를 가진 4개의 제3 코딩 블록 310a으로 분할되며, 제3 코딩 블록 310a의 분할 깊이는 k+2로 증가될 수 있다. 반면, 제2 코딩 블록 310이 바이너리 트리 기반으로 분할되는 경우, 제2 코딩 블록 310은 2개의 제3 코딩 블록으로 분할될 수 있다. 이때, 2개의 제3 코딩 블록 각각은 제2 코딩 블록의 너비와 높이 중 어느 하나가 절반 크기인 비정방형 블록이며, 분할 깊이는 k+2로 증가될 수 있다. 제2 코딩 블록은 분할 방향에 따라 가로 방향 또는 세로 방향의 비정방형 블록으로 결정될 수 있고, 분할 방향은 바이너리 트리 기반의 분할이 세로 방향인지 또는 가로 방향인지에 관한 정보에 기초하여 결정될 수 있다.
한편, 제2 코딩 블록 310은 쿼드 트리 또는 바이너리 트리에 기반하여 더 이상 분할되지 않는 말단 코딩 블록으로 결정될 수도 있고, 이 경우 해당 코딩 블록은 예측 블록 또는 변환 블록으로 이용될 수 있다.
제3 코딩 블록 310a은 제2 코딩 블록 310의 분할과 마찬가지로 말단 코딩 블록으로 결정되거나, 쿼드 트리 또는 바이너리 트리에 기반하여 추가적으로 분할될 수 있다.
한편, 바이너리 트리 기반으로 분할된 제3 코딩 블록 310b은 추가적으로 바이너리 트리에 기반하여 세로 방향의 코딩 블록(310b-2) 또는 가로 방향의 코딩 블록(310b-3)으로 더 분할될 수도 있고, 해당 코딩 블록의 분할 깊이는 k+3으로 증가될 수 있다. 또는, 제3 코딩 블록 310b는 바이너리 트리에 기반하여 더 이상 분할되지 않는 말단 코딩 블록(310b-1)으로 결정될 수 있고, 이 경우 해당 코딩 블록(310b-1)은 예측 블록 또는 변환 블록으로 이용될 수 있다. 다만, 상술한 분할 과정은 쿼드 트리 기반의 분할이 허용되는 코딩 블록의 크기/깊이에 관한 정보, 바이너리 트리 기반의 분할이 허용되는 코딩 블록의 크기/깊이에 대한 정보 또는 바이너리 트리 기반의 분할이 허용되지 않는 코딩 블록의 크기/깊이에 대한 정보 중 적어도 하나에 기초하여 제한적으로 수행될 수 있다.
코딩 블록이 가질 수 있는 크기는 소정 개수로 제한되거나, 소정 단위 내 코딩 블록의 크기는 고정된 값을 가질 수도 있다. 일 예로, 시퀀스 내 코딩 블록의 크기 또는 픽처 내 코딩 블록의 크기는, 256x256, 128x128 또는 32x32로 제한될 수 있다. 시퀀스 또는 픽처 내 코딩 블록의 크기를 나타내는 정보가 시퀀스 헤더 또는 픽처 헤더를 통해 시그널링 될 수 있다.
쿼드 트리 및 바이터리 트리에 기반한 분할 결과, 코딩 유닛은, 정방형 또는 임의 크기의 직사각형을 띨 수 있다.
코딩 블록이 쿼드 트리 분할을 기반으로 생성되었는지, 바이너리 트리 분할을 기반으로 생성되었는지 또는 트리플 트리 분할을 기반으로 생성되었는지 여부에 따라, 변환 스킵(Transform skip)의 적용을 제한하는 것도 가능하다.
여기서, 코딩 블록의 수평 방향 및 수직 방향 모두에 역변환이 스킵된 경우, 코딩 블록의 수평 방향 및 수직 방향으로 역변환이 수행되지 않는다. 이 경우, 역양자화된 잔차 계수를 기 설정된 값으로 스케일링하여, 코딩 블록의 잔차 샘플을 획득할 수 있다.
수평 방향으로의 역변환을 생략하는 것은, 수평 방향으로는 역변환을 수행하지 않고, 수직 방향으로는 DCT, DST 등을 이용한 역변환을 수행하는 것을 의미한다. 이때, 수평 방향으로는 스케일링이 수행될 수 있다.
수직 방향의 역변환을 생략하는 것은, 수직 방향으로는 역변환을 수행하지 않고, 수평 방향으로는 DCT, DST 등을 이용한 역변환을 수행하는 것을 의미한다. 이때, 수직 방향으로는 스케일링이 수행될 수 있다.
구체적으로, 코딩 블록의 분할 형태에 따라, 코딩 블록에 대해 역변환 스킵 기법을 이용할 수 있는지 여부가 결정될 수 있다. 일 예로, 코딩 블록이 바이너리 트리 기반의 분할을 통해 생성된 것일 경우, 코딩 블록에 대해 역변환 스킵 기법을 이용하지 못하도록 제한할 수 있다. 이에 따라, 코딩 블록이 바이너리 트리 기반의 분할을 통해 생성된 것일 경우, 코딩 블록을 역변환 함으로써, 코딩 블록의 잔차 샘플을 획득할 수 있다. 아울러, 코딩 블록이 바이너리 트리 기반의 분할을 통해 생성된 것일 경우, 역변환이 스킵되는지 여부를 나타내는 정보(예컨대, transform_skip_flag)의 부호화/복호화가 생략될 수 있다.
또는, 코딩 블록이 바이너리 트리 기반의 분할을 통해 생성된 경우, 수평 방향 또는 수직 방향 중 적어도 하나에서만 역변환 스킵 기법이 허용되도록 제한할 수 있다. 여기서, 역변환 스킵 기법이 제한되는 방향은, 비트스트림으로부터 복호화되는 정보에 기초하여 결정되거나, 코딩 블록의 크기, 코딩 블록의 형태 또는 코딩 블록의 인트라 예측 모드 중 적어도 하나에 기초하여 적응적으로 결정될 수 있다.
일 예로, 코딩 블록이 너비가 높이보다 큰 비정방형 블록일 경우, 수직 방향에 대해서만 역변환 스킵 기법을 허용하고, 수평 방향에 대해서는 역변환 스킵 기법 사용을 제한할 수 있다. 즉, 코딩 블록이 2NxN인 경우, 코딩 블록의 수평 방향으로는 역변환이 수행되고, 수직 방향으로는 선택적으로 역변환이 수행될 수 있다.
반면, 코딩 블록의 높이가 너비보다 큰 비정방형 블록일 경우, 수평 방향에 대해서만 역변환 스킵 기법을 허용하고, 수직 방향에 대해서는 역변환 스킵 기법 사용을 제한할 수 있다. 즉, 코딩 블록이 Nx2N인 경우, 코딩 블록의 수직 방향으로는 역변환이 수행되고, 수평 방향으로는 선택적으로 역변환이 수행될 수 있다.
상기의 예와 반대로, 코딩 블록이 너비가 높이보다 큰 비정방형 블록일 경우, 수평 방향에 대해서만 역변환 스킵 기법을 허용하고, 코딩 블록이 높이가 너비보다 큰 비정방형 블록일 경우, 수직 방향에 대해서만 역변환 스킵 기법을 허용할 수도 있다.
수평 방향에 대한 역변환을 스킵할 것인지 여부에 대한 정보 또는 수직 방향에 대한 역변환을 스킵할 것인지 여부를 나타내는 정보는 비트스트림을 통해 시그널링될 수 있다. 일 예로, 수평 방향에 대한 역변환을 스킵할 것인지 여부를 나타내는 정보는 1비트의 플래그로, 'hor_transform_skip_flag'이고, 수직 방향에 대한 역변환을 스킵할 것인지 여부를 나타내는 정보는 1비트의 플래그로, 'ver_transform_skip_flag'일 수 있다. 부호화기는, 코딩 블록의 형태에 따라, 'hor_transform_skip_flag' 또는 'ver_transform_skip_flag' 중 적어도 하나를 부호화할 수 있다. 또한, 복호화기는 'hor_transform_skip_flag' 또는 'ver_transform_skip_flag' 중 적어도 이용하여, 수평 방향 또는 수직 방향으로의 역변환이 스킵되는지 여부를 판단할 수 있다.
코딩 블록의 분할 형태에 따라, 어느 하나의 방향에 대해서는, 역변환이 생략되도록 설정될 수도 있다. 일 예로, 코딩 블록이 바이너리 트리 기반의 분할을 통해 생성된 경우, 수평 방향 또는 수직 방향으로의 역변환을 생략할 수 있다. 즉, 코딩 블록이 바이너리 트리 기반의 분할로 생성된 것이라면, 코딩 블록의 역변환이 스킵되는지 여부를 나타내는 정보(예컨대, transform_skip_flag, hor_transform_skip_flag, ver_transform_skip_flag)의 부호화/복호화 없이도, 코딩 블록에 대해 수평 방향 또는 수직 방향 중 적어도 하나에 대해 역변환을 스킵할 것을 결정할 수 있다.
코딩 블록은, 스킵 모드, 화면 내 예측, 화면 간 예측 또는 스킵 방법 중 적어도 하나를 이용하여 부호화된다. 코딩 블록이 결정되면, 코딩 블록의 예측 분할을 통해 예측 블록(Prediction Block)을 결정할 수 있다. 코딩 블록의 예측 분할은 코딩 블록의 분할 형태를 나타내는 파티션 모드(Part_mode)에 의해 수행될 수 있다. 예측 블록의 크기 또는 형태는 코딩 블록의 파티션 모드에 따라 결정될 수 있다. 일 예로, 파티션 모드에 따라 결정되는 예측 블록의 크기는 코딩 블록의 크기와 동일하거나 작은 값을 가질 수 있다.
도 7은 코딩 블록이 화면 간 예측으로 부호화되었을 때, 코딩 블록에 적용될 수 있는 파티션 모드를 예시한 도면이다.
코딩 블록이 화면 간 예측으로 부호화된 경우, 코딩 블록에는 도 7에 도시된 예에서와 같이, 8개의 파티션 모드 중 어느 하나가 적용될 수 있다.
코딩 블록이 화면 내 예측으로 부호화된 경우, 코딩 블록에는 파티션 모드 PART_2Nx2N 또는 PART_NxN 이 적용될 수 있다.
PART_NxN은 코딩 블록이 최소 크기를 갖는 경우 적용될 수 있다. 여기서, 코딩 블록의 최소 크기는 부호화기 및 복호화기에서 기 정의된 것일 수 있다. 또는, 코딩 블록의 최소 크기에 관한 정보는 비트스트림을 통해 시그널링될 수도 있다. 일 예로, 코딩 블록의 최소 크기는 슬라이스 헤더를 통해 시그널링되고, 이에 따라, 슬라이스별로 코딩 블록의 최소 크기가 정의될 수 있다.
일반적으로, 예측 블록의 크기는 64x64 부터 4x4의 크기를 가질 수 있다. 단, 코딩 블록이 화면 간 예측으로 부호화된 경우, 움직임 보상을 수행할 때, 메모리 대역폭(memory bandwidth)을 줄이기 위해, 예측 블록이 4x4 크기를 갖지 않도록 할 수 있다.
도 8은 본 발명이 적용되는 일실시예로서, 영상 부호화기/복호화기에 기-정의된 인트라 예측 모드의 종류를 도시한 것이다.
영상 부호화기/복호화기는 기-정의된 인트라 예측 모드 중 어느 하나를 이용하여 인트라 예측을 수행할 수 있다. 인트라 예측을 위한 기-정의된 인트라 예측 모드는 비방향성 예측 모드(예를 들어, Planar mode, DC mode) 및 33개의 방향성 예측 모드(directional prediction mode)로 구성될 수 있다.
또는, 인트라 예측의 정확도를 높이기 위해 33개의 방향성 예측 모드보다 더 많은 개수의 방향성 예측 모드가 이용될 수 있다. 즉, 방향성 예측 모드의 각도(angle)를 더 세분화하여 M개의 확장된 방향성 예측 모드를 정의할 수도 있고(M>33), 기-정의된 33개의 방향성 예측 모드 중 적어도 하나를 이용하여 소정의 각도를 가진 방향성 예측 모드를 유도하여 사용할 수도 있다.
구체적으로, 도 8에 도시된 35개의 인트라 예측 모드 보다 더 많은 수의 인트라 예측 모드를 이용할 수도 있다. 도 8에 도시된 35개의 인트라 예측 모드 보다 더 많은 수의 인트라 예측 모드를 이용하는 것을, 확장된 인트라 예측 모드라 호칭할 수 있다.
도 9는 확장된 인트라 예측 모드의 일예이며, 확장된 인트라 예측 모드는 2개의 비방향성 예측 모드와 65개의 확장된 방향성 예측 모드로 구성될 수 있다. 확장된 인트라 예측 모드는 휘도 성분과 색차 성분에 대해서 동일하게 사용할 수도 있고, 성분 별로 서로 상이한 개수의 인트라 예측 모드를 사용할 수도 있다. 예를 들어, 휘도 성분에서는 67개의 확장된 인트라 예측 모드를 사용하고, 색차 성분에서는 35개의 인트라 예측 모드를 사용할 수도 있다.
또는, 색차 포맷(format)에 따라 서로 다른 개수의 인트라 예측 모드를 사용하여 인트라 예측을 수행할 수도 있다. 예를 들어, 4:2:0 format인 경우에는 휘도 성분에서는 67개의 인트라 예측 모드를 이용하여 인트라 예측을 수행하고 색차 성분에서는 35개의 인트라 예측 모드를 사용할 수 있고, 4:4:4 format인 경우에는 휘도 성분과 색차 성분 모두에서 67개의 인트라 예측 모드를 이용하여 인트라 예측을 사용할 수도 있다.
또는, 블록의 크기 및/또는 형태에 따라 서로 다른 개수의 인트라 예측 모드를 사용하여 인트라 예측을 수행할 수도 있다. 즉, PU 또는 CU의 크기 및/또는 형태에 따라 35개의 인트라 예측 모드 또는 67개의 인트라 예측 모드를 이용하여 인트라 예측을 수행할 수도 있다. 예를 들어, CU 또는 PU의 크기가 64x64보다 작거나 비대칭 파티션(asymmetric partition)인 경우에는 35개의 인트라 예측 모드를 이용하여 인트라 예측을 수행할 수 있고, CU 또는 PU의 크기가 64x64보다 같거나 큰 경우에는 67개의 인트라 예측 모드를 이용하여 인트라 예측을 수행할 수도 있다. Intra_2Nx2N에서는 65개의 방향성 인트라 예측 모드를 허용할 수도 있으며, Intra_NxN에서는 35개의 방향성 인트라 예측 모드만 허용할 수도 있다.
시퀀스, 픽처 또는 슬라이스 별로, 확장된 인트라 예측 모드를 적용하는 블록의 크기를 상이하게 설정할 수도 있다. 일 예로, 제1 슬라이스에서는, 64x64 보다 큰 블록(예컨대, CU 또는 PU)에 확장된 인트라 예측 모드가 적용되도록 설정하고, 제2 슬라이스에서는, 32x32 보다 큰 블록에 확장된 인트라 예측 모드가 적용되도록 설정할 수 있다. 확장된 인트라 예측 모드가 적용되는 블록의 크기를 나타내는 정보는, 시퀀스, 픽처 또는 슬라이스 단위별로 시그널링될 수 있다. 일 예로, 확장된 인트라 예측 모드가 적용되는 블록의 크기를 나타내는 정보는, 블록의 크기에 로그값을 취한 뒤 정수 4를 차감한 'log2_extended_intra_mode_size_minus4'로 정의될 수 있다. 일 예로, log2_extended_intra_mode_size_minus4 의 값이 0인 것은, 16x16 이상의 크기를 갖는 블록 또는 16x16 보다 큰 크기를 갖는 블록에 확장된 인트라 예측 모드를 적용할 수 있음을 나타내고, log2_extended_intra_mode_size_minus4 의 값이 1인 것은, 32x32 이상의 크기를 갖는 블록 또는 32x32 보다 큰 크기를 갖는 블록에 확장된 인트라 예측 모드를 적용할 수 있음을 나타낼 수 있다.
상술한 바와 같이, 색차 성분, 색차 포맷, 블록의 크기 또는 형태 중 적어도 하나를 고려하여, 인트라 예측 모드의 개수가 결정될 수 있다. 설명한 예에 그치지 않고, 부호화/복호화 대상 블록의 인트라 예측 모드를 결정하기 위해 이용되는, 인트라 예측 모드 후보자(예컨대, MPM의 개수)도, 색차 성분, 색차 포맷, 블록의 크기 또는 형태 중 적어도 하나에 따라 결정될 수도 있다. 또한, 도 8에 도시된 것 보다 더 많은 수의 인트라 예측 모드를 이용하는 것도 가능하다. 예컨대, 도 8에 도시된 방향성 예측 모드를 더욱 세분화하여, 129개의 방향성 예측 모드와 2개의 비방향성 예측 모드를 사용하는 것도 가능하다. 도 8에 도시된 것보다 더 많은 수의 인트라 예측 모드를 사용할 것인지 여부는 상술한 예에서와 같이, 색차 성분, 색차 성분, 블록의 크기 또는 형태 중 적어도 하나를 고려하여 결정될 수 있다.
인트라 예측 모드의 방향성에 따라, 방향성 인트라 예측 모드를 복수의 그룹으로 분류할 수 있다. 일 예로, 제1 그룹은, 좌측 하단 방향을 향하는 방향성 인트라 예측 모드로, 수평 방향의 인트라 예측 모드보다 작은 값을 갖는 인트라 예측 모드들을 나타낼 수 있다. 제1 그룹의 인트라 예측 모드들을 하 수평 방향 인트라 예측 모드라 호칭할 수 있다. 일 예로, 35개 인트라 예측 모드에서 10보다 작은 인트라 예측 모드들 또는 67개의 인트라 예측 모드에서 모드 값이 16보다 작은 인트라 예측 모드들이 제1 그룹에 포함될 수 있다.
제2 그룹은, 수평 방향 인트라 예측 모드부터 및 좌측 상단 대각 방향보다 작은 모드값을 갖는 인트라 예측 모드를 나타낼 수 있다. 제2 그룹의 인트라 예측 모드들을 상 수평 방향 인트라 예측 모드로 호칭할 수 있다. 일 예로, 35개 인트라 예측 모드에서 모드값이 10 이상 18 미만인 인트라 예측 모드들 또는 67개의 인트라 예측 모드에서 모드값이 16이상 34 미만인 인트라 예측 모드들이 제2 그룹에 포함될 수 있다.
제3 그룹은, 좌측 상단 대각 방향부터 수직 방향보다 작은 모드값을 갖는 인트라 예측 모드를 나타낼 수 있다. 제3 그룹의 인트라 예측 모드들을 좌 수직 방향 인트라 예측 모드라 호칭할 수 있다. 일 예로, 35개 인트라 예측 모드에서 모드값이 18 이상 26 미만인 인트라 예측 모드들 또는 67개의 인트라 예측 모드에서 모드값이 34 이상 50 미만인 인트라 예측 모드들이 제3 그룹에 포함될 수 있다.
제4 그룹은, 수직 방향의 인트라 예측 모드와 모드값이 같거나 큰 인트라 예측 모드를 나타낼 수 있다. 제4 그룹의 인트라 예측 모드들을 우 수직 방향 인트라 예측 모드라 호칭할 수 있다. 일 예로, 35개 인트라 예측 모드에서 모드값이 26 이상인 인트라 예측 모드들 또는 67개의 인트라 예측 모드에서 모드값이 50 이상인 인트라 예측 모드들이 제4 그룹에 포함될 수 있다.
상기 4개의 그룹보다 더 많은 수 또는 더 적은 수로 방향성 인트라 예측 모드들을 분류하는 것도 가능하며, 4개의 그룹 각각이 포함하는 인트라 예측 모드의 범위를 설명한 것과 다르게 설정하는 것 역시 가능하다.
후술되는 도면을 참조하여, 부호화/복호화 대상 블록의 인트라 예측 모드를 결정하는 방법 및 결정된 인트라 예측 모드를 이용하여, 인트라 예측을 수행하는 방법에 대해 살펴보기로 한다.
도 10은 본 발명이 적용되는 일실시예로서, 인트라 예측 방법을 개략적으로 도시한 순서도이다.
도 10을 참조하면, 현재 블록의 인트라 예측 모드를 결정할 수 있다(S1000).
구체적으로, 현재 블록의 인트라 예측 모드는 후보 리스트와 인덱스를 기반으로 유도될 수 있다. 여기서, 후보 리스트는 복수의 후보자를 포함하며, 복수의 후보자는 현재 블록에 인접한 주변 블록의 인트라 예측 모드에 기반하여 결정될 수 있다. 주변 블록은 현재 블록의 상단, 하단, 좌측, 우측 또는 코너에 위치한 블록 중 적어도 하나를 포함할 수 있다. 상기 인덱스는 후보 리스트에 속한 복수의 후보자 중 어느 하나를 특정할 수 있다. 상기 인덱스에 의해 특정된 후보자는 현재 블록의 인트라 예측 모드로 설정될 수 있다.
주변 블록이 인트라 예측에 사용한 인트라 예측 모드가 후보자로 설정될 수 있다. 일 예로, 현재 블록의 좌측 블록, 상단 블록, 좌측 하단 코너 인접 블록, 우측 상단 코너 인접 블록 및 좌측 상단 코너 인접 블록의 인트라 예측 모드에 기초하여 후보자를 유도할 수 있다. 만약, 주변 블록이 인터 예측으로 부호화되었다면, 주변 블록의 콜로케이티드 블록(Collocated block)의 인트라 예측 모드를 이용하여 현재 블록의 후보자를 유도할 수 있다.
또한, 주변 블록의 인트라 예측 모드와 유사한 방향성을 가진 인트라 예측 모드가 후보자로 설정될 수도 있다. 여기서, 유사한 방향성을 가진 인트라 예측 모드는 주변 블록의 인트라 예측 모드에 소정의 상수값을 더하거나 뺀 값으로 결정될 수 있다. 소정의 상수값은 1, 2 또는 그 이상의 정수일 수 있고, 소정의 상수값은 사용 가능한 인트라 예측 모드의 개수에 따라 적응적으로 결정될 수 있다. 일 예로, 사용 가능한 인트라 예측 모드의 개수가 35개인 경우, 소정의 상수값은 1로 설정되고, 사용 가능한 인트라 예측 모드의 개수가 67개인 경우 소정의 상수값은 2로 설정될 수 있다. 나아가, 사용 가능한 인트라 예측 모드의 개수가 131개인 경우, 소정의 상수값은 4로 설정될 수 있다.
상기 후보 리스트는 디폴트 모드를 더 포함할 수도 있다. 디폴트 모드는 플래너 모드, DC 모드, 수직 모드, 수평 모드, 우상단 대각 방향 모드, 좌상단 대각 방향 모드 중 적어도 하나를 포함할 수 있다. 디폴트 모드는 현재 블록의 후보 리스트에 포함 가능한 후보자의 최대 개수를 고려하여 적응적으로 추가될 수 있다.
후보 리스트에 포함 가능한 후보자의 최대 개수는 3개, 4개, 5개, 6개, 7개 또는 그 이상일 수 있다. 후보 리스트에 포함 가능한 후보자의 최대 개수는 영상 부호화기/복호화기에 기-설정된 고정된 값일 수 있고, 현재 블록의 속성에 기초하여 가변적으로 결정될 수도 있다. 속성은 블록의 위치/크기/형태, 블록이 사용 가능한 인트라 예측 모드의 개수/종류, 색차 속성, 색차 포맷 등을 의미할 수 있다. 또는, 후보 리스트에 포함 가능한 후보자의 최대 개수를 나타내는 정보가 별도로 시그날링될 수도 있으며, 이를 이용하여 후보 리스트에 포함 가능한 후보자의 최대 개수가 가변적으로 결정될 수도 있다. 상기 후보자의 최대 개수를 나타내는 정보는 시퀀스 레벨, 픽쳐 레벨, 슬라이스 레벨 또는 블록 레벨 중 적어도 하나에서 시그날링될 수 있다.
후보 리스트에 포함되는 후보자는 기 정의된 순서로 정렬될 수 있다. 일 예로, 좌측 블록, 상단 블록, 좌측 하단 블록, 우측 상단 블록, 좌측 상단 블록의 순서로 후보자가 후보 리스트에 배열될 수 있다. 또는, 현재 블록의 크기 또는 형태 등에 따라, 후보자의 배열 순서가 가변적으로 결정될 수도 있다. 일 예로, 현재 블록이 높이가 너비보다 큰 비 정방형 블록인 경우, 상단 블록의 인트라 예측 모드가 좌측 블록의 인트라 예측 모드보다 더 높은 우선순위를 갖고 배열될 수 있다.
확장된 인트라 예측 모드와 기-정의된 35개의 인트라 예측 모드가 선택적으로 사용되는 경우, 주변 블록의 인트라 예측 모드를 확장된 인트라 예측 모드에 대응하는 인덱스로 변환하거나, 또는 35개의 인트라 예측 모드에 대응하는 인덱스로 변환하여 후보자를 유도할 수 있다. 인덱스의 변환을 위해 기-정의된 테이블이 이용될 수도 있고, 소정의 값에 기반한 스케일링 연산이 이용될 수도 있다. 여기서, 기-정의된 테이블은 서로 상이한 인트라 예측 모드 그룹 (예를 들어, 확장된 인트라 예측 모드와 35개의 인트라 예측 모드) 간의 매핑 관계를 정의한 것일 수 있다.
예를 들어, 좌측 주변 블록이 35개의 인트라 예측 모드를 사용하고, 좌측 주변 블록의 인트라 예측 모드가 10(horizontal mode)인 경우, 이를 확장된 인트라 예측 모드에서 horizontal mode에 대응하는 인덱스 16으로 변환할 수 있다.
또는, 상단 주변 블록이 확장된 인트라 예측 모드를 사용하고, 상단 주변 블록의 인트라 예측 모드 인덱스가 50(vertical mode)인 경우, 이를 35개의 인트라 예측 모드에서 vertical mode에 대응하는 인덱스 26으로 변환할 수 있다.
상술한 인트라 예측 모드 결정 방법에 기반하여 휘도 성분과 색차 성분 각각에 대해서 상호 독립적으로 인트라 예측 모드가 유도될 수도 있고, 색차 성분은 휘도 성분의 인트라 예측 모드에 종속성으로 유도될 수도 있다.
구체적으로, 색차 성분의 인트라 예측 모드는 다음 표 1과 같이 휘도 성분의 인트라 예측 모드에 기반하여 결정될 수 있다.
Intra_chroma_pred_mode[xCb][yCb] IntraPredModeY[xCb][yCb]
0 26 10 1 X(0<=X<=34)
0 34 0 0 0 0
1 26 34 26 26 26
2 10 10 34 10 10
3 1 1 1 34 1
4 0 26 10 1 X
표 1에서 intra_chroma_pred_mode는 색차 성분의 인트라 예측 모드를 특정하기 위해 시그날링되는 정보를 의미하며, IntraPredModeY는 휘도 성분의 인트라 예측 모드를 나타낸다.
도 10을 참조하면, 현재 블록의 인트라 예측을 위한 참조 샘플을 유도할 수 있다(S1010).
구체적으로, 현재 블록의 주변 샘플에 기반하여 인트라 예측을 위한 참조 샘플을 유도할 수 있다. 주변 샘플은 상술한 주변 블록의 복원 샘플을 의미할 수 있고, 이는 인루프 필터가 적용되기 이전의 복원 샘플 또는 인루프 필터가 적용된 이후의 복원 샘플일 수 있다.
현재 블록 이전에 복원된 주변 샘플이 참조 샘플로 이용될 수도 있고, 소정의 인트라 필터를 기반으로 필터링된 주변 샘플이 참조 샘플로 이용될 수도 있다. 인트라 필터를 이용하여 주변 샘플을 필터링하는 것을 참조 샘플 스무딩(smoothing)이라 호칭할 수도 있다. 상기 인트라 필터는 동일한 수평 라인에 위치한 복수의 주변 샘플에 적용되는 제1 인트라 필터 또는 동일한 수직 라인에 위치한 복수의 주변 샘플에 적용되는 제2 인트라 필터 중 적어도 하나를 포함할 수 있다. 주변 샘플의 위치에 따라 제1 인트라 필터 또는 제2 인트라 필터 중 어느 하나가 선택적으로 적용될 수도 있고, 2개의 인트라 필터가 중복적으로 적용될 수도 있다. 이때, 제1 인트라 필터 또는 제2 인트라 필터 중 적어도 하나의 필터 계수는 (1,2,1)일 수 있으나, 이에 한정되지는 않는다.
상기 필터링은 현재 블록의 인트라 예측 모드 또는 현재 블록에 관한 변환 블록의 크기 중 적어도 하나에 기초하여 적응적으로 수행될 수 있다. 예를 들어, 현재 블록의 인트라 예측 모드가 DC 모드, 수직 모드 또는 수평 모드인 경우 필터링은 수행되지 않을 수 있다. 상기 변환 블록의 크기가 NxM인 경우, 필터링은 수행되지 않을 수 있다. 여기서, N과 M은 동일하거나 서로 상이한 값일 수 있고, 4, 8, 16 또는 그 이상의 값 중 어느 하나일 수 있다. 일 예로, 변환 블록의 크기가 4x4인 경우, 필터링은 수행되지 않을 수 있다. 또는, 현재 블록의 인트라 예측 모드와 수직 모드(또는 수평 모드)의 차이와 기-정의된 임계치(threshold) 간의 비교 결과에 기초하여 필터링을 선택적으로 수행할 수 있다. 예를 들어, 현재 블록의 인트라 예측 모드와 수직 모드의 차이가 임계치보다 큰 경우에 한하여 필터링을 수행할 수 있다. 상기 임계치는 표 2와 같이 변환 블록의 크기 별로 정의될 수 있다.
8x8 transform 16x16 transform 32x32 transform
Threshold 7 1 0
상기 인트라 필터는 영상 부호화기/복호화기에 기-정의된 복수의 인트라 필터 후보 중 어느 하나로 결정될 수 있다. 이를 위해 복수의 인트라 필터 후보 중 현재 블록의 인트라 필터를 특정하는 별도의 인덱스가 시그날링될 수 있다. 또는, 현재 블록의 크기/형태, 변환 블록의 크기/형태, 필터 강도(strength)에 관한 정보, 또는 주변 샘플들의 변화량(variation) 중 적어도 하나에 기초하여 인트라 필터가 결정될 수도 있다.
현재 블록의 인트라 예측은 복수 참조 샘플 라인을 이용하여 수행될 수도 있다. 일 예로, 2개 이상의 참조 샘플 라인을 이용하여 수행될 수 있다.
복수의 참조 샘플 라인을 이용하여 인트라 예측을 수행할 것인지 여부는 현재 블록의 크기, 형태 또는 인트라 예측 모드 등에 따라 적응적으로 결정될 수 있다. 일 예로, 현재 블록의 인트라 예측 모드가 비 방향성 인트라 예측 모드 또는 특정 방향의 인트라 예측 모드인 경우, 복수 참조 샘플 라인을 이용하여 인트라 예측을 수행하는 것이 제한될 수 있다. 여기서, 특정 방향은 수직 방향, 수평 방향 또는 대각 방향 등을 포함할 수 있다.
도 10을 참조하면, 현재 블록의 인트라 예측 모드와 참조 샘플을 이용하여 인트라 예측을 수행할 수 있다(S1020).
즉, S1000에서 결정된 인트라 예측 모드와 S1010에서 유도된 참조 샘플을 이용하여 현재 블록의 예측 샘플을 획득할 수 있다. 복수 참조 샘플 라인을 이용하여 인트라 예측이 수행되는 경우, 상이한 참조 샘플 라인에 속한 참조 샘플들의 가중합을 기초로 예측 샘플을 획득할 수 있다. 일 예로, 제1 참조 샘플 라인에 속하는 제1 참조 샘플과 제2 참조 샘플 라인에 속하는 제2 참조 샘플의 가중합을 기초로 예측 샘플을 유도할 수 있다. 이때, 제1 참조 샘플과 제2 참조 샘플에 적용되는 가중치는 동일한 값을 가질 수도 있고 예측 대상 샘플과의 거리에 따라 상이한 값을 가질 수도 있다. 일 예로, 제1 참조 샘플 및 제2 참조 샘플 중 예측 대상 샘플과의 거리가 가까운 것에 더 높은 가중치가 부여될 수 있다.
다만, 인트라 예측의 경우 주변 블록의 경계 샘플을 이용하기 때문에 예측 영상의 화질이 떨어지는 문제가 발생할 수 있다. 따라서, 상술한 예측 과정을 통해 생성된 예측 샘플에 대한 보정 과정을 더 수반할 수 있으며, 이하 도 11을 참조하여 자세히 살펴 보기로 한다. 다만, 후술할 보정 과정은 인트라 예측 샘플에 대해서만 적용되는 것으로 한정되는 것은 아니며, 인터 예측 샘플 또는 복원 샘플에도 적용될 수 있음은 물론이다.
도 11은 본 발명이 적용되는 일실시예로서, 주변 샘플들의 차분 정보에 기반하여 현재 블록의 예측 샘플을 보정하는 방법을 도시한 것이다.
현재 블록에 대한 복수의 주변 샘플들의 차분 정보에 기반하여 현재 블록의 예측 샘플을 보정할 수 있다. 상기 보정은 현재 블록에 속한 모든 예측 샘플에 대해서 수행될 수도 있고, 소정의 일부 영역에 속한 예측 샘플에 대해서만 수행될 수도 있다. 일부 영역은 하나의 행/열 또는 복수의 행/열일 수 있고, 이는 영상 부호화기/복호화기에서 보정을 위해 기-설정된 영역일 수도 있다. 일 예로, 현재 블록의 경계에 위치한 하나의 행/열 또는 현재 블록의 경계로부터 복수의 행/열에 보정이 수행될 수 있다. 또는, 일부 영역은 현재 블록의 크기/형태 또는 인트라 예측 모드 중 적어도 하나에 기초하여 가변적으로 결정될 수도 있다.
주변 샘플들은 현재 블록의 상단, 좌측, 좌상단 코너에 위치한 주변 블록 중 적어도 하나에 속할 수 있다. 보정을 위해 이용되는 주변 샘플들의 개수는 2개, 3개, 4개 또는 그 이상일 수 있다. 주변 샘플들의 위치는 현재 블록 내 보정 대상인 예측 샘플의 위치에 따라 가변적으로 결정될 수 있다. 또는, 주변 샘플들 중 일부는 보정 대상인 예측 샘플의 위치와 관계없이 고정된 위치를 가지고, 나머지는 보정 대상인 예측 샘플의 위치에 따른 가변적인 위치를 가질 수도 있다.
주변 샘플들의 차분 정보는 주변 샘플들 간의 차분 샘플을 의미할 수도 있고, 상기 차분 샘플을 소정의 상수값(예를 들어, 1, 2, 3 등)으로 스케일링한 값을 의미할 수도 있다. 여기서, 소정의 상수값은 보정 대상인 예측 샘플의 위치, 보정 대상인 예측 샘플이 속한 열 또는 행의 위치, 열 또는 행 내에서 예측 샘플의 위치 등을 고려하여 결정될 수 있다.
예를 들어, 현재 블록의 인트라 예측 모드가 수직 모드인 경우, 현재 블록의 좌측 경계에 인접한 주변 샘플 p(-1,y)과 좌상단 주변 샘플 p(-1,-1) 간의 차분 샘플을 이용하여 다음 수학식 1과 같이 최종 예측 샘플을 획득할 수 있다.
Figure PCTKR2018005585-appb-M000001
예를 들어, 현재 블록의 인트라 예측 모드가 수평 모드인 경우, 현재 블록의 상단 경계에 인접한 주변 샘플 p(x,-1)과 좌상단 주변 샘플 p(-1,-1) 간의 차분 샘플을 이용하여 다음 수학식 2와 같이 최종 예측 샘플을 획득할 수 있다.
Figure PCTKR2018005585-appb-M000002
예를 들어, 현재 블록의 인트라 예측 모드가 수직 모드인 경우, 현재 블록의 좌측 경계에 인접한 주변 샘플 p(-1,y)과 좌상단 주변 샘플 p(-1,-1) 간의 차분 샘플을 이용하여 최종 예측 샘플을 획득할 수 있다. 이때, 상기 차분 샘플을 예측 샘플에 가산할 수도 있고, 상기 차분 샘플을 소정의 상수값으로 스케일링한 후, 이를 예측 샘플에 가산할 수도 있다. 스케일링에 이용되는 소정의 상수값은 열 및/또는 행에 따라 상이하게 결정될 수 있다. 일예로, 다음 수학식 3과 수학식 4와 같이 예측 샘플을 보정할 수 있다.
Figure PCTKR2018005585-appb-M000003
Figure PCTKR2018005585-appb-M000004
예를 들어, 현재 블록의 인트라 예측 모드가 수평 모드인 경우, 현재 블록의 상단 경계에 인접한 주변 샘플 p(x,-1)과 좌상단 주변 샘플 p(-1,-1) 간의 차분 샘플을 이용하여 최종 예측 샘플을 획득할 수 있으며, 이는 수직 모드에서 상술한 바와 같다. 일예로, 다음 수학식 5와 수학식 6과 같이 예측 샘플을 보정할 수 있다.
Figure PCTKR2018005585-appb-M000005
Figure PCTKR2018005585-appb-M000006
현재 블록의 인트라 예측 모드가 방향성 예측 모드인 경우, 현재 블록의 인트라 예측은, 방향성 예측 모드의 방향성에 기초하여 수행될 수 있다. 일 예로, 표 3은, 도 8에 도시된 방향성 인트라 예측 모드인 Mode 2부터 Mode 34까지의 인트라 방향 파라미터(intraPredAng)를 나타낸 것이다.
predModeIntra 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
intraPredAng - 32 26 21 17 13 9 5 2 0 -2 -5 -9 -13 -17 -21
predModeIntra 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
intraPredAng -32 -26 -21 -17 -13 -9 -5 -2 0 2 5 9 13 17 21 26
표 3에서는, 33개의 방향성 인트라 예측 모드를 예시하여 설명하였으나, 이보다 더 많은 수 혹은 이보다 더 적은 수의 방향성 인트라 예측 모드가 정의되는 것도 가능하다.
방향성 인트라 예측 모드와 인트라 방향 파라미터의 매핑 관계를 정의한 룩업 테이블에 기초하여, 현재 블록에 대한 인트라 방향 파라미터를 결정할 수 있다. 또는, 비트스트림을 통해 시그널링되는 정보에 기초하여, 현재 블록에 대한 인트라 방향 파라미터를 결정할 수도 있다.
현재 블록의 인트라 예측은, 방향성 인트라 예측 모드의 방향성에 따라, 좌측 참조 샘플 또는 상단 참조 샘플 중 적어도 하나를 이용하여 수행될 수 있다. 여기서, 상단 참조 샘플은, 현재 블록 내 최상단 행에 포함된 예측 대상 샘플 (x, 0)보다 작은 y축 좌표를 갖는 참조 샘플 (예컨대, (-1, -1) 부터 (2W-1, -1))을 의미하고, 좌측 참조 샘플은, 현재 블록 내 최좌측 열에 포함된 예측 대상 샘플 (0, y)보다 작은 x축 좌표를 갖는 참조 샘플들(예컨대, (-1, -1)부터 (-1, 2H-1))을 의미할 수 있다.
인트라 예측 모드의 방향성에 따라, 현재 블록의 참조 샘플들을 일차원으로 배열할 수도 있다. 구체적으로, 현재 블록의 인트라 예측 시 상단 참조 샘플 및 좌측 참조 샘플을 모두 이용해야 하는 경우, 이들이 수직 또는 수평 방향을 따라 일렬로 배열된 것으로 가정하고, 각 예측 대상 샘플의 참조 샘플을 선정할 수 있다.
일 예로, 인트라 방향 파라미터가 음수인 경우(예컨대, 표 3에서 Mode 11 부터 Mode 25에 해당하는 인트라 예측 모드의 경우), 상단 참조 샘플들 및 좌측 참조 샘플들을 수평 또는 수직 방향을 따라 재배열하여 일차원 레퍼런스 샘플 그룹(P_ref_1D)을 구성할 수 있다.
도 12 및 도 13은 참조 샘플들이 일렬로 재배열된 일차원 레퍼런스 샘플 그룹을 나타낸 도면이다.
참조 샘플들을 수직 방향으로 재배열할 것인지 또는 수평 방향으로 재배열할 것인지는, 인트라 예측 모드의 방향성에 따라 결정될 수 있다. 일 예로, 인트라 예측 모드 인덱스가 11 내지 18 사이인 경우, 도 12에 도시된 예에서와 같이, 현재 블록의 상단 참조 샘플들을 반시계 방향으로 회전시켜, 좌측 참조 샘플들 및 상단 참조 샘플들이 수직 방향으로 배열된 일차원 레퍼런스 샘플 그룹을 생성할 수 있다.
반면, 인트라 예측 모드 인덱스가 19내지 25 사이인 경우, 도 13에 도시된 예에서와 같이, 현재 블록의 좌측 참조 샘플들을 좌측 참조 샘플들을 시계 방향으로 회전시켜, 좌측 참조 샘플들 및 상단 참조 샘플들이 수평 방향으로 배열된 일차원 레퍼런스 샘플 그룹을 생성할 수 있다.
현재 블록의 인트라 방향 파라미터가 음수가 아닌 경우, 현재 블록에 대한 인트라 예측은 좌측 참조 샘플들 또는 상단 참조 샘플들만을 이용하여 수행될 수 있다. 이에 따라, 인트라 방향 파라미터가 음수가 아닌 인트라 예측 모드들에 대해서는 좌측 참조 샘플 또는 상단 참조 샘플들만을 이용하여, 일차원 레퍼런스 샘플 그룹을 생성할 수 있다.
인트라 방향 파라미터에 기초하여, 예측 대상 샘플을 예측하는데 이용되는 적어도 하나의 참조 샘플을 특정하기 위한 참조 샘플 결정 인덱스 iIdx를 유도할 수 있다. 또한, 인트라 방향 파라미터를 기초로 각 참조 샘플에 적용되는 가중치를 결정하는데 이용되는 가중치 관련 파라미터 ifact를 유도할 수 있다. 일 예로, 하기 수학식 7 및 8은 참조 샘플 결정 인덱스 및 가중치 관련 파라미터를 유도하는 예를 나타낸 것이다.
Figure PCTKR2018005585-appb-M000007
Figure PCTKR2018005585-appb-I000001
수학식 7에 나타난 바와 같이, iIdx와 ifact는 방향성 인트라 예측 모드의 기울기에 따라 가변적으로 결정된다. 이때, iIdx에 의해 특정되는 참조 샘플은 정수 펠(integer pel)에 해당할 수 있다.
참조 샘플 결정 인덱스에 기초하여, 예측 대상 샘플 별로 적어도 하나 이상의 참조 샘플을 특정할 수 있다. 일 예로, 참조 샘플 결정 인덱스에 기초하여, 현재 블록 내 예측 대상 샘플을 예측하기 위한 일차원 레퍼런스 샘플 그룹 내 참조 샘플의 위치를 특정할 수 있다. 특정된 위치의 참조 샘플을 기초로, 예측 대상 샘플에 대한 예측 영상(즉, 예측 샘플)을 생성할 수 있다.
현재 블록의 인트라 예측 모드를 고려하였을 때, 예측 대상 샘플이 하나의 참조 샘플만으로 예측이 가능한 경우, 현재 블록의 인트라 예측 모드에 의해 특정되는 참조 샘플에 기초하여 예측 대상 샘플에 대한 예측 영상을 생성할 수 있다.
일 예로, 인트라 예측 모드의 각도 또는 인트라 예측 모드의 기울기에 따른 가상의 각도 선(angular line)이 일차원 레퍼런스 샘플 그룹 내 정수 펠(integer pel)(즉, 정수 위치의 참조 샘플)을 지나는 경우, 정수 펠 위치의 참조 샘플을 복사하거나, 정수 펠 위치의 참조 샘플과 예측 대상 샘플 사이의 위치를 고려하여, 예측 대상 샘플에 대한 예측 영상을 생성할 수 있다. 일 예로, 하기 수학식 8은 현재 블록의 인트라 예측 모드에 의해 특정되는 일차원 레퍼런스 샘플 그룹 내 참조 샘플 P_ref_1D(x+iIdx+1) 을 복사하여, 예측 대상 샘플에 대한 예측 영상 P(x, y)를 생성하는 예를 나타낸 것이다.
Figure PCTKR2018005585-appb-M000008
현재 블록의 인트라 예측 모드를 고려하였을 때, 예측 대상 샘플이 하나의 참조 샘플만으로 예측되지 않는 것으로 판단되는 경우, 복수의 참조 샘플들을 이용하여, 예측 대상 샘플에 대한 예측을 수행할 수 있다. 구체적으로, 현재 블록의 인트라 예측 모드에 따라, 소정 위치의 참조 샘플 및 소정 위치의 참조 샘플에 이웃하는 이웃 참조 샘플들을 선형 보간하거나 탭 필터(Tap filter) 기반의 보간을 수행하여, 예측 대상 샘플에 대한 예측을 수행할 수 있다. 보간 필터의 탭수는 2 이상의 자연수일 수 있다. 구체적으로, 보간 대상이 되는 참조 샘플의 개수에 따라, 탭 필터(Tap filter)의 탭수가 2, 3, 4, 5, 6 또는 그 이상의 정수일 수도 있다.
일 예로, 인트라 예측 모드의 각도 또는 인트라 예측 모드의 기울기에 따른 가상의 각도 선(angular line)이 일차원 레퍼펀스 샘플 그룹 내 정수 펠(integer pel)(즉, 정수 위치의 참조 샘플)를 지나지 않는 경우, 해당 각도 선상에 놓인 참조 샘플 및 상기 참조 샘플의 좌/우 또는 상/하에 인접한 참조 샘플을 보간하여, 예측 대상 샘플에 대한 예측 영상을 생성할 수 있다. 일 예로, 하기 수학식 9는 둘 이상의 참조 샘플을 보간하여, 예측 대상 샘플에 대한 예측 샘플 P(x, y)를 생성하는 예를 나타낸 것이다.
Figure PCTKR2018005585-appb-M000009
보간 필터의 계수는, 가중치 관련 파라미터 ifact에 기초하여 결정될 수 있다. 일 예로, 보간 필터의 계수는, 각도 선(angular line) 상에 위치한 소수 펠(fractional pel)과 정수 펠(즉, 각 참조 샘플들의 정수 위치) 사이의 거리에 기초하여 결정될 수 있다.
하기 수학식 10은 탭 필터의 탭수가 4인 경우를 예시한 것이다.
Figure PCTKR2018005585-appb-M000010
멀티 탭 필터를 사용할 때, 좌측 참조 샘플 또는 상단 참조 샘플에 해당하지 않는 위치의 샘플은, 해당 위치에서 가장 인접한 참조 샘플로 대체될 수 있다. 일 예로, 상기 수학식 9에서, P_ref_1D(x+iIdx-1) 위치의 샘플이 상단 참조 샘플에 해당하지 않는 경우, 해당 샘플은 P_ref_1D(x+idx) 위치의 참조 샘플로 대체될 수 있다. 또는, P_ref_1D(x+iIdx+2) 위치의 샘플이 상단 참조 샘플에 해당하지 않는 경우, 해당 샘플은 P_ref_1D(x+iIdx+1) 위치의 참조 샘플로 대체될 수 있다.
멀티 탭 필터는 수평 또는 수직 방향을 따라 일렬로 놓인 복수의 참조 샘플에 적용될 수 있다. 또는, 멀티 탭 필터는 사각형 등 소정의 다각 형태에 적용될 수도 있다. 멀티 탭 필터가 적용되는 형태는 현재 블록의 크기, 형태 또는 인트라 예측 모드에 따라 가변적으로 결정될 수 있다.
수학식 8 내지 10에 나타난 것과 같이, 인트라 예측의 방향성을 이용하여 참조 샘플을 보간하여 예측 샘플을 생성하는 것을, 인트라 예측 샘플 보간 기법이라 호칭할 수 있다.
인트라 예측 샘플 보간 기법을 이용함에 있어서, 탭 필터의 탭 수가 큰 것이 반드시 예측 정확도 향상을 보장하지는 않는다. 예컨대, 현재 블록의 크기가 2x16과 같이 높이 또는 너비가 다른 하나에 비해 현저히 큰 비대칭 코딩 유닛이거나, 4x4와 같이 작은 크기의 블록이라면, 4 탭 이상의 탭 필터를 사용하는 것은 오히려 예측 영상을 과하게 스무딩하는 결과를 초래할 수 있다. 이에, 현재 블록의 크기, 형태 또는 인트라 예측 모드에 따라, 탭 필터의 종류를 적응적으로 결정할 수 있다. 여기서, 탭 필터의 종류는, 탭 수, 필터 계수, 필터 강도(강/약), 필터링 방향 중 적어도 하나에 의해 구분될 수 있다. 필터 탭 수 또는 필터 계수 등이 필터 강도에 따라 가변적으로 결정될 수도 있다. 또한, 탭 필터의 종류에 따라, 가로 방향 보간, 세로 방향 보간 또는 가로 및 세로 방향 보간 등 탭 필터의 적용 방향이 결정될 수 있다. 현재 블록 내 라인 단위(행 또는 열) 또는 샘플 단위로 탭 필터의 적용 방향을 가변적으로 설정할 수도 있다.
구체적으로, 현재 블록의 너비 또는 높이에 기초하여 사용하고자 하는 탭 필터의 종류를 결정할 수 있다. 일 예로, 현재 블록의 너비 또는 높이 중 적어도 하나의 값이 기 정의된 값보다 작은 경우, 4탭 필터 대신 2탭 필터를 사용하여 인트라 예측 샘플 보간 기법을 수행할 수 있다. 반면, 현재 블록의 너비 및 높이 모두 기 정의된 값 이상인 경우, 4탭 필터를 사용하여 인트라 예측 샘플 보간 기법을 수행할 수 있다. 여기서, 기 정의된 값은, 4, 8 또는 16 등의 값을 나타낼 수 있다.
또는, 현재 블록의 너비 및 높이가 동일한 값인지 여부에 따라 사용하고자 하는 탭 필터의 종류를 결정할 수 있다. 일 예로, 현재 블록의 너비 및 높이가 상이한 값인 경우, 4탭 필터 대신 2탭 필터를 사용하여 인트라 예측 샘플 보간 기법을 수행할 수 있다. 반면, 현재 블록의 너비 및 높이가 동일한 값을 가질 경우, 4탭 필터를 사용하여 인트라 예측 샘플 보간 기법을 수행할 수 있다.
또는, 현재 블록의 너비와 높이의 비율에 따라 사용하고자 하는 탭 필터의 종류를 결정할 수 있다. 일 예로, 현재 블록의 너비(w)와 높이(h)의 비율(즉, w/h 또는 h/w)이 기 정의된 임계값보다 작은 경우에는 4탭 필터 대신 2탭 필터를 사용하여 인트라 예측 샘플 보간 기법을 수행할 수 있다. 반면, 현재 블록의 너비와 높이의 비율이 기 정의된 임계값 이상인 경우, 4탭 필터를 사용하여 인트라 예측 샘플 보간 기법을 수행할 수 있다.
또는, 현재 블록의 인트라 예측 모드, 형태 또는 크기에 따라 탭 필터의 종류를 결정할 수도 있다. 일 예로, 현재 블록이 2x16 형태의 코딩 유닛이고, 현재 블록의 인트라 예측 모드가 수평 방향 범위에 속하는 인트라 예측 모드일 경우, 탭 수가 n인 탭 필터를 이용하여 인트라 예측 샘플 보간 기법을 수행할 수 있다. 반면, 현재 블록이 2x16 형태의 코딩 유닛이고, 현재 블록의 인트라 예측 모드가 수직 방향 범위에 속하는 인트라 예측 모드일 경우, 탭 수가 m인 탭 필터를 이용하여 인트라 예측 샘플 보간 기법을 수행할 수 있다.
반면, 현재 블록이 16x2 형태의 코딩 유닛이고, 현재 블록의 인트라 예측 모드가 수평 방향 범위에 속하는 인트라 예측 모드일 경우 탭 수가 n인 탭 필터를 이용하여 인트라 예측 샘플 보간 기법을 수행할 수 있다. 반면, 현재 블록이 16x2 형태의 코딩 유닛이고, 현재 블록의 인트라 예측 모드가 수직 방향 범위에 속하는 인트라 예측 모드일 경우, 탭 수가 m인 탭 필터를 이용하여 인트라 예측 샘플 보간 기법을 수행할 수 있다.
여기서, 수평 방향 범위는 수평 방향의 인트라 예측 모드를 포함하는 소정의 범위를 나타낼 수 있고, 수직 방향 범위는 수직 방향의 인트라 예측 모드를 포함하는 소정의 범위를 나타낼 수 있다. 일 예로, 35개의 인트라 예측 모드를 기반으로 하였을 때, 수평 방향 범위는 모드 11부터 모드 18 사이의 인트라 예측 모드를 나타내고, 수직 방향 범위는 모드 19부터 모드 27 사이의 인트라 예측 모드를 나타낼 수 있다.
또한, n과 m은 0보다 큰 상수로, n과 m은 상이한 값을 가질 수 있다. 또는, n과 m이 동일한 값을 갖도록 설정하되, n 탭 필터와 m 탭 필터의 필터 계수 또는 필터 강도 중 적어도 하나를 상이하게 설정할 수도 있다.
하나의 블록을 복수의 서브 블록으로 나누고, 서브 블록 단위로 인트라 예측을 수행할 수 있다. 이때, 하나의 블록에 속한 서브 블록들은 동일한 인트라 예측 모드를 가질 수 있다. 단, 각 서브 블록들이 참조하는 참조 샘플들의 범위는 상이할 수 있다. 즉, 도 10에 도시된 예에서, 참조 샘플 유도 단계(S1010)와 인트라 예측 수행 단계(S1020)가 서브 블록 단위로 수행될 수 있다.
복수의 서브 블록들을 포함하는 블록은, 코딩 블록, 예측 블록 또는 변환일 수 있다. 또는, 복수의 서브 블록들을 포함하는 블록은, 동일한 인트라 예측 모드, 동일한 MPM 후보 리스트를 공유하는 소정의 영역일 수도 있다.
복수의 서브 블록을 포함하는 블록(또는 영역)의 크기 및 형태는 부호화기 및 복호화기에서 기 정의된 NxM 형태를 가질 수 있다. 여기서, N과 M은 자연수로 상호 동일할 수도 있고 상이할 수도 있다.
또는, 복수의 서브 블록을 포함하는 블록(또는 영역)의 크기 및 형태를 특정하기 위한 정보가 비트스트림을 통해 시그널링될 수도 있다. 복수의 서브 블록을 포함하는 블록(또는 영역)의 크기 및 형태는 시그널링되는 정보에 기초하여 가변적으로 결정될 수 있다.
설명의 편의를 위해, 복수의 서브 블록을 포함하는 인트라 예측 대상 블록(또는 영역)을 현재 블록이라 호칭하기로 한다. 이하, 서브 블록 단위로 인트라 예측을 수행하는 방법에 대해 상세히 설명하기로 한다.
도 14는 본 발명의 일 실시예에 따른 서브 블록 단위로 인트라 예측을 수행하는 방법의 흐름도이다. 후술되는 실시예는, 도 10에 도시된 S1010 및 S1020 단계를 갈음하여 실시될 수 있다.
도 14를 참조하면, 먼저, 현재 블록의 분할 형태를 결정할 수 있다(S1410).
현재 블록의 분할 형태는 현재 블록의 크기, 형태 또는 인트라 예측 모드 중 적어도 하나에 기초하여 결정될 수 있다. 일 예로, 현재 블록의 인트라 예측 모드가 수직 방향 또는 수직 방향에 인접할 경우, 현재 블록의 파티션 형태는 서브 블록들이 상하로 배치되는 형태를 띨 수 있다. 반면, 현재 블록의 인트라 예측 모드가 수평 방향 또는 수평 방향에 인접할 경우, 현재 블록의 파티션 형태는 서브 블록들이 좌우로 배치되는 형태를 띨 수 있다. 여기서, 특정 방향에 인접한 인트라 예측 모드란, 특정 방향으로부터 소정 각도 이내의 인트라 예측 모드 또는 특정 방향의 인트라 예측 모드와의 모드값 번호 차이가 소정의 기준값 이내인 인트라 예측 모드를 의미할 수 있다.
도 15는 인트라 예측 모드에 따른 서브 블록의 분할 형태를 예시한 도면이다.
도 15에 도시된 예에서와 같이, 현재 블록이 우측 상단 방향의 인트라 예측 모드를 가질 경우, 현재 블록은 너비가 높이보다 긴 형태(NxM 형태, 여기서, N>M)의 서브 블록들로 분할될 수 있다. 반면, 현재 블록이 좌측 상단 방향의 인트라 예측 모드를 가질 경우, 현재 블록은 높이가 너비보다 긴 형태(NxM 형태, 여기서, N<M)의 서브 블록들로 분할될 수 있다.
다른 예로, 현재 블록의 인트라 예측 모드가 특정 방향을 갖는지 여부에 따라, 코딩 블록의 분할 형태를 결정할 수도 있다. 일 예로, 현재 블록이 우측 상단 방향의 인트라 예측 모드를 가질 경우, 현재 블록의 분할 형태는 서브 블록들이 상하로 배열되는 것으로 결정될 수 있다. 반면, 현재 블록이 그 이외의 인트라 예측 모드를 가질 경우, 현재 블록의 분할 형태는 서브 블록들이 좌우로 배열되는 것으로 결정될 수 있다.
또는, 현재 블록의 분할 형태를 나타내는 정보가 비트스트림을 통해 시그널링될 수도 있다. 여기서, 분할 형태를 나타내는 정보는, 분할 형태를 특정하기 위한 인덱스, 서브 블록의 크기 및 형태를 나타내는 정보 또는 현재 블록의 분할 방향을 나타내는 정보 중 적어도 하나를 포함할 수 있다.
서브 블록은 정방형 또는 비정방형일 수 있다. 또는, 하나의 행 또는 하나의 열 단위로 현재 블록을 분할하거나, 복수의 행 또는 복수의 열 단위로 현재 블록을 분할하여 서브 블록을 생성하는 것도 가능하다.
현재 블록을 분할하여 복수의 서브 블록이 생성되면, 서브 블록 단위로 인트라 예측을 수행할 수 있다(S1420). 이때, 인트라 예측은, 서브 블록의 위치에 따라 순차적으로 수행될 수 있다.
도 16 및 도 17은 서브 블록 단위로 인트라 예측이 수행되는 예를 나타낸 도면이다.
서브 블록 단위로 인트라 예측을 수행하기 위해, 하나의 블록을 복수의 서브 블록으로 분할할 수 있다. 도 16 및 도 17에 도시된 예에서는, 코딩 블록이 2개의 서브 블록들로 분할되는 것으로 도시되었으나, 코딩 블록을 이보다 많은 수의 서브 블록들로 분할하는 것 역시 가능하다.
복수의 서브 블록들은 동일한 인트라 예측 모드를 가질 수 있다. 일 예로, 제1 서브 블록 및 제2 서브 블록의 인트라 예측 모드는 모두 우측 상단 방향의 인트라 예측 모드일 수 있다.
복수의 서브 블록 중 현재 블록의 상단 경계 또는 좌측 경계에 인접하는 제1 서브 블록에 대한 인트라 예측은 코딩 블록에 인접한 참조 샘플을 이용하여 수행될 수 있다. 일 예로, 제1 서브 블록에 대한 인트라 예측은 인트라 예측 모드에 따라 코딩 블록에 인접한 상단 참조 샘플 또는 좌측 참조 샘플 중 적어도 하나를 이용하여 수행될 수 있다.
제1 서브 블록의 인트라 예측을 수행한 뒤, 제1 서브 블록에 인접하는 제2 서브 블록의 인트라 예측은, 제1 서브 블록에 포함된 샘플을 참조 샘플로 설정하여 수행될 수 있다. 일 예로, 제2 서브 블록에 인접하는 제1 서브 블록의 하단 경계에 위치한 샘플을 제2 서브 블록의 인트라 예측을 위한 참조 샘플로 설정할 수 있다. 이때, 제1 서브 블록의 샘플은, 제1 서브 블록에 대한 예측 샘플, 잔차 샘플, 또는 예측 샘플과 잔차 샘플을 이용하여 복원된 복원 샘플을 의미할 수 있다.
일 예로, 도 17에 도시된 예에서는, 제2 서브 블록의 상단에 인접한 이웃 샘플들이 제2 서브 블록을 위한 참조 샘플(도 17에서 '제2 레퍼런스 샘플'이라 표기됨)으로 설정되는 것으로 도시되었다.
또는, 제2 서브 블록의 인트라 예측은, 현재 블록에 인접한 참조 샘플을 이용한 제1 인트라 예측 및 제1 서브 블록 내 참조 샘플을 이용한 제2 인트라 예측을 포함할 수도 있다. 예컨대, 제2 서브 블록 내 예측 샘플은, 제1 인트라 예측을 기초로 생성된 제1 예측 샘플 및 제2 인트라 예측을 기초로 생성된 제2 예측 샘플 사이의 가중합을 기초로 유도될 수 있다. 이때, 제1 예측 샘플 및 제2 예측 샘플에 적용되는 가중치는 동일한 값을 갖거나, 예측 대상 샘플과의 거리에 따라 상이하게 설정될 수 있다.
인트라 예측이 수행된 현재 블록의 잔차 샘플은 역양자화 및 역변환을 거쳐 획득될 수 있다. 이때, 현재 블록에 복수의 변환이 적용되는 경우, 변환 순서에 따라 변환이 적용되는 단위가 가변적으로 결정될 수 있다. 일 예로, 1차 변환은 코딩 블록 단위로 수행되는 반면, 2차 변환은 서브 블록 단위로 수행될 수 있다. 이때, 제2 서브 블록의 참조 샘플은, 제1 서브 블록 내 2차 변환이 적용된 샘플(즉, 잔차 샘플)을 이용하여 구성될 수 있다. 일 예로, 제2 서브 블록의 참조 샘플은 제1 서브 블록 내 예측 샘플과 잔차 샘플의 합으로 유도될 수 있다.
인트라 예측 모드에 따라, 예측 또는 복원되지 않은 위치의 샘플을 참조 샘플로 이용하여야 하는 경우가 발생할 수 있다. 일 예로, 도 17에 도시된 예에서, 제2 서브 블록의 우측 상단 코너에 인접한 샘플 및 상기 샘플로부터 우측에 위치한 샘플들은 아직 예측 또는 복원되지 않은 샘플일 확률이 높다. 이 경우, 예측 또는 복원되지 않은 샘플을 제1 서브 블록의 우측 경계에 위치한 샘플로 대체하거나, 제1 서브 블록에 포함된 소정 개수의 샘플을 보간한 값으로 대체할 수 있다.
제1 서브 블록에 대한 인트라 예측을 통해 제1 서브 예측 블록이 생성되고, 제2 서브 블록에 대한 인트라 예측을 통해 제2 서브 예측 블록이 생성되면, 제1 서브 예측 블록과 제2 서브 예측 블록을 병합하여 현재 블록의 예측 블록이 생성될 수 있다.
현재 블록의 인트라 예측을 서브 블록 단위로 수행할 것인지 여부는, 현재 블록의 크기, 형태 또는 인트라 예측 모드에 따라 적응적으로 결정될 수 있다. 일 예로, 현재 블록의 인트라 예측 모드가 특정 방향의 방향성 모드인지 여부에 따라 현재 블록의 인트라 예측을 서브 블록 단위로 수행할 것인지 여부가 결정될 수 있다.
또는, 현재 블록의 인트라 예측을 서브 블록 단위로 수행할 것인지 여부를 나타내는 정보가 비트스트림을 통해 부호화되어 시그널링될 수도 있다. 상기 정보는 블록 단위로 시그널링될 수도 있고, 슬라이스 또는 픽처 단위로 시그널링될 수도 있다.
상술한 실시예에서는, 현재 블록에 하나의 인트라 예측 모드가 적용됨을 가정하였으나, 복수의 인트라 예측 모드를 이용하여, 현재 블록에 대한 인트라 예측을 수행할 수도 있다. 여기서, 복수의 인트라 예측 모드는 비방향성 인트라 예측 모드와 적어도 하나의 방향성 인트라 예측 모드의 조합, 복수의 방향성 인트라 예측 모드의 조합 또는 복수의 비방향성 인트라 예측 모드의 조합 등으로 표현될 수도 있다.
일 예로, 현재 블록 내 예측 대상 샘플별로 상이한 인트라 예측 모드 또는 상이한 방향성 인트라 예측 모드를 적용할 수 있다. 각 예측 대상 샘플의 인트라 예측 모드를 결정하기 위해, 이전 예측 대상 샘플과의 인트라 예측 모드 차분값을 나타내는 정보가 비트스트림을 통해 시그널링될 수 있다.
일 예로, 현재 블록을 복수의 영역으로 분할하고, 분할된 영역별로 상이한 인트라 예측 모드를 적용할 수 있다. 여기서, 복수의 영역은, 소정 개수의 샘플 단위, 소정 크기/형태의 블록 단위를 나타낼 수 있다. 예컨대, 현재 블록은, 소정 형태/크기의 복수의 서브 블록으로 분할될 수 있다. 또는, 복수의 영역은, 현재 블록 내 소정의 행/열 단위로 분할될 수 있다. 예컨대, 현재 블록의 양측 경계 행/열을 포함하는 영역이 제1 영역으로 설정되고, 그 이외의 영역이 제2 영역으로 설정되어, 제1 영역 및 제2 영역에 상이한 인트라 예측 모드가 적용될 수 있다. 영역의 개수는 현재 예측 블록의 크기 또는 샘플 개수 등에 따라 가변적으로 결정될 수도 있고, 이들 요소와는 무관하게 부호화기 및 복호화기에서 기 정의된 고정된 개수를 가질 수도 있다.
복수의 참조 샘플들을 이용하여, 현재 블록의 인트라 예측을 수행할 수 있다. 구체적으로, 복수의 참조 샘플 사이의 가중합 연산에 기초하여 예측 샘플을 생성할 수 있고, 이를 인트라 가중 예측이라 호칭할 수 있다.
인트라 가중 예측은, 서로 이웃하지 않는 복수의 참조 샘플들 또는 서로 이웃하지 않는 복수의 참조 샘플 그룹을 이용하여 수행될 수 있다. 예컨대, 인트라 가중 예측은, 상단 참조 샘플 및 좌측 참조 샘플들의 가중합을 기초로 수행되거나, 공간적으로 연속한 n개의 상단 참조 샘플들 및 공간적으로 연속하는 m개의 좌측 참조 샘플들의 가중합을 기초로 수행될 수 있다. n과 m은 동일한 값을 가질 수도 있고, 상이한 값을 가질 수도 있다.
인트라 가중 예측에 이용되는 상단 참조 샘플 및 좌측 참조 샘플의 위치는 인트라 예측 모드의 방향성에 의해 특정될 수 있다. 일 예로, 상단 참조 샘플 및 좌측 참조 샘플 중 어느 하나는 현재 블록의 인트라 예측 모드를 정방향으로 적용함에 따라 선택되는 한편, 다른 하나는 현재 블록의 인트라 예측 모드를 역방향으로 적용함에 따라 선택될 수 있다. 예컨대, 현재 블록의 인트라 예측 모드가 우측 상단 대각 방향인 경우, 예측 대상 샘플의 우측 상단 대각 방향에 놓인 상단 참조 샘플과 예측 대상 샘플의 좌측 하단 대각 방향에 놓인 좌측 참조 샘플을 이용하여 인트라 가중 예측을 수행할 수 있다.
예측 대상 샘플의 위치에 따라, 인트라 가중 예측에 이용되는 참조 샘플을 적응적으로 선택할 수도 있다. 예컨대, 예측 대상 샘플과 동일한 x축 좌표를 갖는 상단 참조 샘플 또는 예측 대상 샘플과 동일한 y축 좌표를 갖는 좌측 참조 샘플 중 적어도 하나를 인트라 가중 예측에 이용할 수도 있다.
고정된 위치의 참조 샘플을 이용하여, 인트라 가중 예측을 수행할 수도 있다. 예컨대, 현재 블록의 좌측 코너에 인접한 참조 샘플, 현재 블록의 우측 상단 코너에 인접한 참조 샘플 또는 현재 블록의 좌측 하단 코너에 인접한 참조 샘플 중 적어도 하나를 인트라 가중 예측에 이용할 수도 있다.
상단 참조 샘플 및 좌측 참조 샘플에 적용되는 가중치는 예측 대상 샘플의 위치 또는 예측 대상 샘플과 각 참조 샘플 사이의 거리를 기초로 결정될 수 있다. 수학식 11은 인트라 가중 예측의 일 예로, (x, y)위치의 예측 대상 샘플에 대한 예측 샘플 p(x, y)를 획득하는 방법을 나타낸 것이다.
Figure PCTKR2018005585-appb-M000011
상기 수학식 11에서, P_ref(x+y+2, -1)은 현재 블록의 상단 참조 샘플을 나타내고, P_ref(-1, x+y+2)는 현재 블록의 좌측 참조 샘플을 나타낸다. 수학식 11에서 상단 참조 샘플 및 좌측 참조 샘플의 위치는 현재 블록의 인트라 예측 모드 또는 인트라 예측 모드의 방향성에 따라 결정될 수 있다. 수학식 11에 나타난 바와 같이, 상단 참조 샘플 및 좌측 참조 샘플에 적용되는 가중치는 예측 대상 샘플의 위치 또는 예측 대상 샘플과의 거리에 기초하여 결정될 수 있다.
수학식 12는 인트라 가중 예측의 다른 예로, (x, y)위치의 예측 대상 샘플에 대한 예측 샘플 p(x, y)를 획득하는 방법을 나타낸 것이다.
Figure PCTKR2018005585-appb-M000012
수학식 12에서 상단 참조 샘플 및 좌측 참조 샘플의 위치는 현재 블록의 인트라 예측 모드 또는 인트라 예측 모드의 방향성에 따라 결정될 수 있다. 수학식 11은 구현 복잡도가 높은 나눗셈 연산(Division Operator)을 사용하는 반면, 수학식 12는 비트 시프트(Bit shift) 연산을 사용하는 차이점이 있다. 수학식 12에서, 변수 S[n]은 다음과 같이 정의될 수 있다.
Figure PCTKR2018005585-appb-I000002
또한, 상단 참조 샘플 및 좌측 참조 샘플에 적용되는 가중치 HorW 및 VerW는 하기 수학식 13에 따라 결정될 수 있다.
Figure PCTKR2018005585-appb-M000013
Figure PCTKR2018005585-appb-I000003
Figure PCTKR2018005585-appb-I000004
Figure PCTKR2018005585-appb-I000005
수학식 13에 나타난 바와 같이, 상단 참조 샘플 및 좌측 참조 샘플에 적용되는 가중치는 예측 대상 샘플의 위치 또는 예측 대상 샘플과 각 참조 샘플 사이의 거리 등에 기초하여 결정될 수 있다.
다른 예로, 상단 참조 샘플 및 좌측 참조 샘플에 적용되는 가중치를 예측 대상 샘플 별로 상이하게 설정하는 대신, 소정의 블록 단위로 상단 참조 샘플 및 좌측 참조 샘플에 적용되는 가중치를 결정할 수도 있다. 즉, 소정의 블록 단위에 포함된 예측 대상 샘플들에 대해서는, 상단 참조 샘플 및 좌측 참조 샘플에 동일한 가중치를 적용하여 인트라 가중 예측을 수행할 수 있다.
도 18은 소정의 블록 단위로 동일한 가중치가 적용되는 예를 나타낸 도면이다.
도 18에 도시된 예에서는, 4x4 크기의 서브 블록 단위로 동일한 가중치가 적용되는 것으로 예시되었다. 서브 블록 단위로 동일한 가중치가 적용되는 경우, (x, y) 위치의 예측 샘플은 다음의 수학식 14와 같이 유도될 수 있다.
Figure PCTKR2018005585-appb-M000014
상기 수학식 14에서, 변수 x' 및 y'은 동일한 가중치가 적용되는 서브 블록의 크기에 따라 다음의 수학식 15와 같이 유도될 수 있다.
Figure PCTKR2018005585-appb-M000015
상기 수학식 15에서, floor(x) 함수는 x보다 작거나 같은 가장 큰 정수를 나타내는 함수다. sub_width 및 sub_height는 각각 동일한 가중치가 적용되는 서브 블록의 너비 및 높이를 나타낸다.
소정의 블록 단위는, 코딩 블록, 예측 블록 또는 변환 블록 등 인트라 예측이 수행되는 단위 블록일 수도 있고, 또는 인트라 예측이 수행되는 단위 블록보다 작은 크기의 서브 블록일 수도 있다. 서브 블록의 크기 및 형태는 부호화기 및 복호화기에서 기 정의되어 있을 수도 있고, 서브 블록의 크기 및 형태를 나타내는 정보가 비트스트림을 통해 시그널링될 수도 있다.
인트라 가중 예측을 수행할 것인지 여부는, 현재 블록의 크기, 형태 또는 인트라 예측 모드에 따라 가변적으로 결정될 수 있다. 일 예로, 현재 블록의 인트라 예측 모드가 플래너 모드, DC 모드, 수평 모드, 수직 모드 또는 대각 방향 모드인지 여부에 따라 인트라 가중 예측을 수행할 것인지 여부가 결정될 수 있다. 대각 방향 모드는 특정 방향을 갖는 인트라 예측 모드(예컨대, 2, 34 또는 66에 해당하는 인트라 예측 모드)를 나타낼 수도 있고, 유사한 방향성을 갖는 소정 범위의 인트라 예측 모드들 중 어느 하나를 나타낼 수도 있다. 구체적으로, 현재 블록의 인트라 예측 모드가 수평 모드 또는 수직 모드인 경우에는 인트라 가중 예측이 사용되지 않을 수 있다. 또는, 인트라 예측 모드가 기 정의된 인트라 예측 모드 그룹에 속하는지 여부에 따라, 인트라 가중 예측을 수행할 것인지 여부를 결정할 수도 있다.
또는, 인트라 가중 예측은, 방향성 인트라 예측 모드 중 어느 하나를 대체할 수도 있다. 일 예로, 우측 상단 대각 방향의 인트라 예측 모드가 선택되는 경우, 인트라 가중 예측이 사용되도록 설정될 수 있다. 도 9에 도시된 67개의 인트라 예측 모드를 예로 들면, 인트라 예측 모드가 66인 우측 상단 대각 방향 예측 모드는 인트라 가중 예측 모드로 대체 사용될 수 있다.
또는, 인트라 가중 예측을 수행할 것인지 여부를 나타내는 정보가 비트스트림을 통해 시그널링될 수 있다. 상기 정보는 현재 블록의 인트라 예측 모드가 기 정의된 방향을 갖는 경우에 한하여 시그널링될 수 있다. 일 예로, 우측 상단 대각 방향의 인트라 예측 모드가 선택되는 경우, 비트스트림을 통해 시그널링되는 정보를 기초로, 인트라 가중 예측을 수행할 것인지 여부를 결정할 수 있다. 상기 정보는 1비트의 플래그일 수 있으나 이에 한정되는 것은 아니다. 도 9에 도시된 67개의 인트라 예측 모드를 예로 들면, 현재 블록의 인트라 예측 모드가 66인 경우, 인트라 가중 예측을 수행할 것인지 여부를 나타내는 플래그가 복호화될 수 있다.
인트라 가중 예측은, 인트라 예측을 수행하여 예측 샘플을 획득한 뒤, 획득된 예측 샘플과 추가 참조 샘플 사이에 가중합 연산을 수행함으로써 수행될 수도 있다. 즉, 인트라 가중 예측은, 인트라 예측 및 인트라 예측 결과에 참조 샘플을 추가 적용의 과정을 거쳐 수행될 수 있다.
도 19는 인트라 가중 예측이 단계적으로 수행되는 예를 나타낸 도면이다.
도 19에 도시된 예에서와 같이, 먼저, 현재 블록의 인트라 예측 모드에 따라, 현재 블록의 인트라 예측을 수행할 수 있다. 예컨대, 현재 블록의 인트라 예측 모드가 우측 상단 대각 방향인 경우, 현재 블록 내 예측 샘플은, 예측 대상 샘플의 우측 상단 방향에 위치한 참조 샘플에 기초하여 생성될 수 있다.
인트라 예측을 통해 예측 샘플이 획득되면, 예측 샘플과 현재 블록에 인접한 참조 샘플과의 가중합 연산을 통해 최종 예측 샘플을 획득할 수 있다. 일 예로, 도 19에 도시된 예에서와 같이, 인트라 예측을 통해 획득된 예측 샘플 p(x, y)와 현재 블록의 상단에 인접한 상단 참조 샘플 p_ref(x+y+2, -1) 사이의 가중합 연산을 통해 최종 예측 샘플을 획득할 수 있다.
도 19에 도시된 예에서는, 현재 블록의 인트라 예측 모드가 우측 상단 대각 방향일 때, 상단 참조 샘플을 이용하여 인트라 가중 예측이 수행되는 것으로 도시되었다. 즉, 현재 블록의 인트라 예측 모드에 따라 상단 참조 샘플을 이용하여 인트라 예측이 수행되었다면, 도 19에 도시된 예에서와 같이, 상단 참조 샘플 중 적어도 하나를 이용하여 인트라 가중 예측이 수행될 수 있다. 도시되지는 않았지만, 현재 블록의 인트라 예측 모드에 따라 좌측 참조 샘플을 이용하여 인트라 예측이 수행되었다면, 좌측 참조 샘플 중 적어도 하나를 이용하여 인트라 가중 예측을 수행할 수 있다.
반대로, 현재 블록의 인트라 예측 모드에 따라 상단 참조 샘플을 이용하여 인트라 예측이 수행되었다면, 좌측 참조 샘플 중 적어도 하나를 이용하여 인트라 가중 예측이 수행될 수도 있다. 또한, 현재 블록의 인트라 예측 모드에 따라 좌측 참조 샘플을 이용하여 인트라 예측이 수행되었다면, 상단 참조 샘플 중 적어도 하나를 이용하여 인트라 가중 예측을 수행하는 것도 가능하다.
또는, 현재 블록의 인트라 예측 모드에 따라 획득된 예측 샘플에, 상단 참조 샘플 및 좌측 참조 샘플을 모두 적용하는 인트라 가중 예측을 수행할 수도 있다.
현재 블록의 인트라 예측 모드가 우측 상단 대각 방향일 때, 좌측 참조 샘플을 이용하여 인트라 가중 예측이 수행될 수도 있다.
앞서 설명한 예에서와 같이, 인트라 가중 예측은, 현재 블록의 크기, 형태 또는 인트라 예측 모드에 따라 선택적으로 수행될 수 있다. 일 예로, 인트라 가중 예측은, 현재 블록의 인트라 예측 모드가 플래너 모드, 수직 방향, 수평 방향 또는 대각 방향인지 여부 등에 따라 선택적으로 수행될 수 있다.
일 예로, 현재 블록의 인트라 예측 모드가 상 수평 방향 또는 좌 수직 방향을 갖는 경우에는 인트라 가중 예측이 수행되지 않는 반면, 현재 블록의 인트라 예측 모드가 하 수평 방향 또는 우 수직 방향을 갖는 경우에는 인트라 가중 예측이 수행될 수 있다. 현재 블록의 인트라 예측 모드가 하 수평 방향을 갖는 경우 다음의 수학식 16에 의해 인트라 가중 예측이 수행되는 한편, 현재 블록의 인트라 예측 모드가 우 수직 방향을 갖는 경우 다음의 수학식 17에 의해 인트라 가중 예측이 수행될 수 있다.
Figure PCTKR2018005585-appb-M000016
Figure PCTKR2018005585-appb-M000017
상술한 실시예는 일련의 단계 또는 순서도를 기초로 설명되고 있으나, 이는 발명의 시계열적 순서를 한정한 것은 아니며, 필요에 따라 동시에 수행되거나 다른 순서로 수행될 수 있다. 또한, 상술한 실시예에서 블록도를 구성하는 구성요소(예를 들어, 유닛, 모듈 등) 각각은 하드웨어 장치 또는 소프트웨어로 구현될 수도 있고, 복수의 구성요소가 결합하여 하나의 하드웨어 장치 또는 소프트웨어로 구현될 수도 있다. 상술한 실시예는 다양한 컴퓨터 구성요소를 통하여 수행될 수 있는 프로그램 명령어의 형태로 구현되어 컴퓨터 판독 가능한 기록 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능한 기록 매체는 프로그램 명령어, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 컴퓨터 판독 가능한 기록 매체의 예에는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM, DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 ROM, RAM, 플래시 메모리 등과 같은 프로그램 명령어를 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 상기 하드웨어 장치는 본 발명에 따른 처리를 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
본 발명은 영상을 부호화/복호화할 수 있는 전자 장치에 적용될 수 있다.

Claims (15)

  1. 현재 블록의 인트라 예측 모드를 결정하는 단계;
    상기 현재 블록의 참조 샘플들을 유도하는 단계; 및
    상기 참조 샘플들 중 적어도 하나를 이용하여, 상기 현재 블록의 예측 샘플을 획득하는 단계를 포함하되,
    상기 현재 블록에 인트라 가중 예측이 적용되는 경우, 상기 예측 샘플은, 서로 이웃하지 않는 복수의 참조 샘플들을 기초로 획득되는 것을 특징으로 하는, 영상 복호화 방법.
  2. 제1 항에 있어서,
    서로 이웃하지 않는 복수의 참조 샘플들은, 상기 현재 블록의 상단에 위치하는 상단 참조 샘플 및 상기 현재 블록의 좌측에 위치하는 좌측 참조 샘플을 포함하는 것을 특징으로 하는, 영상 복호화 방법.
  3. 제2 항에 있어서,
    상기 예측 샘플은, 상기 상단 참조 샘플 및 상기 좌측 참조 샘플 사이의 가중합을 기초로 획득되는 것을 특징으로 하는, 영상 복호화 방법.
  4. 제3 항에 있어서,
    상기 상단 참조 샘플 및 상기 좌측 참조 샘플에 적용되는 가중치는, 상기 예측 샘플의 위치 또는 각 참조 샘플과 상기 예측 샘플 사이의 거리에 기초하여 결정되는 것을 특징으로 하는, 영상 복호화 방법.
  5. 제3 항에 있어서,
    상기 상단 참조 샘플 및 상기 좌측 참조 샘플에 적용되는 가중치는, 서브 블록 단위로 결정되는 것을 특징으로 하는, 영상 복호화 방법.
  6. 제2 항에 있어서,
    상기 상단 참조 샘플 및 상기 좌측 참조 샘플 중 어느 하나는 상기 인트라 예측 모드를 정방향으로 적용함에 따라 특정되고, 다른 하나는 상기 인트라 예측 모드를 역방향으로 적용함에 따라 특정되는 것을 특징으로 하는, 영상 복호화 방법.
  7. 제1 항에 있어서,
    상기 인트라 가중 예측을 수행할 것인지 여부는, 상기 인트라 예측 모드가 기 정의된 인트라 예측 모드인지 여부에 따라 결정되는 것을 특징으로 하는, 영상 복호화 방법.
  8. 현재 블록의 인트라 예측 모드를 결정하는 단계;
    상기 현재 블록의 참조 샘플들을 유도하는 단계; 및
    상기 참조 샘플들 중 적어도 하나를 이용하여, 상기 현재 블록의 예측 샘플을 획득하는 단계를 포함하되,
    상기 현재 블록에 인트라 가중 예측이 적용되는 경우, 상기 예측 샘플은, 서로 이웃하지 않는 복수의 참조 샘플들을 기초로 획득되는 것을 특징으로 하는, 영상 부호화 방법.
  9. 제8 항에 있어서,
    서로 이웃하지 않는 복수의 참조 샘플들은, 상기 현재 블록의 상단에 위치하는 상단 참조 샘플 및 상기 현재 블록의 좌측에 위치하는 좌측 참조 샘플을 포함하는 것을 특징으로 하는, 영상 부호화 방법.
  10. 제9 항에 있어서,
    상기 예측 샘플은, 상기 상단 참조 샘플 및 상기 좌측 참조 샘플 사이의 가중합을 기초로 획득되는 것을 특징으로 하는, 영상 복호화 방법.
  11. 제10 항에 있어서,
    상기 상단 참조 샘플 및 상기 좌측 참조 샘플에 적용되는 가중치는, 상기 예측 샘플의 위치 또는 각 참조 샘플과 상기 예측 샘플 사이의 거리에 기초하여 결정되는 것을 특징으로 하는, 영상 복호화 방법.
  12. 제10 항에 있어서,
    상기 상단 참조 샘플 및 상기 좌측 참조 샘플에 적용되는 가중치는, 서브 블록 단위로 결정되는 것을 특징으로 하는, 영상 복호화 방법.
  13. 제9 항에 있어서,
    상기 상단 참조 샘플 및 상기 좌측 참조 샘플 중 어느 하나는 상기 인트라 예측 모드를 정방향으로 적용함에 따라 특정되고, 다른 하나는 상기 인트라 예측 모드를 역방향으로 적용함에 따라 특정되는 것을 특징으로 하는, 영상 복호화 방법.
  14. 현재 블록의 인트라 예측 모드를 결정하고,
    상기 현재 블록의 참조 샘플들을 유도하고,
    상기 참조 샘플들 중 적어도 하나를 이용하여, 상기 현재 블록의 예측 샘플을 획득하는 인트라 예측부를 포함하되,
    상기 현재 블록에 인트라 가중 예측이 적용되는 경우, 상기 예측 샘플은, 서로 이웃하지 않는 복수의 참조 샘플들을 기초로 획득되는 것을 특징으로 하는, 영상 복호화 장치.
  15. 현재 블록의 인트라 예측 모드를 결정하고,
    상기 현재 블록의 참조 샘플들을 유도하고,
    상기 참조 샘플들 중 적어도 하나를 이용하여, 상기 현재 블록의 예측 샘플을 획득하는 인트라 예측부를 포함하되,
    상기 현재 블록에 인트라 가중 예측이 적용되는 경우, 상기 예측 샘플은, 서로 이웃하지 않는 복수의 참조 샘플들을 기초로 획득되는 것을 특징으로 하는, 영상 부호화 장치.
PCT/KR2018/005585 2017-05-17 2018-05-16 비디오 신호 처리 방법 및 장치 WO2018212579A1 (ko)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CN202310833353.9A CN116668721A (zh) 2017-05-17 2018-05-16 用于解码图像信号的方法和用于编码图像信号的方法
CN202310833473.9A CN116866609A (zh) 2017-05-17 2018-05-16 用于解码图像信号的方法和用于编码图像信号的方法
CN202310833554.9A CN116828206A (zh) 2017-05-17 2018-05-16 用于解码视频的方法和用于编码视频的方法
CN202310832996.1A CN116614643A (zh) 2017-05-17 2018-05-16 用于解码视频的方法和用于编码视频的方法
CN202310830082.1A CN116828205A (zh) 2017-05-17 2018-05-16 用于解码视频的方法和用于编码视频的方法
CN201880032562.0A CN110651479B (zh) 2017-05-17 2018-05-16 用于视频信号处理的方法和装置
CN202310836795.9A CN116634176A (zh) 2017-05-17 2018-05-16 用于解码图像信号的方法和用于编码图像信号的方法
US16/613,976 US11184639B2 (en) 2017-05-17 2018-05-16 Method and device for video signal processing
CN202310830851.8A CN116634175A (zh) 2017-05-17 2018-05-16 用于解码图像信号的方法和用于编码图像信号的方法
CN202310837829.6A CN116668722A (zh) 2017-05-17 2018-05-16 用于解码视频的方法和用于编码视频的方法
US17/509,560 US11706446B2 (en) 2017-05-17 2021-10-25 Method and device for video signal processing
US18/199,137 US20230291929A1 (en) 2017-05-17 2023-05-18 Method and device for video signal processing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170061087 2017-05-17
KR10-2017-0061087 2017-05-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/613,976 A-371-Of-International US11184639B2 (en) 2017-05-17 2018-05-16 Method and device for video signal processing
US17/509,560 Division US11706446B2 (en) 2017-05-17 2021-10-25 Method and device for video signal processing

Publications (1)

Publication Number Publication Date
WO2018212579A1 true WO2018212579A1 (ko) 2018-11-22

Family

ID=64274344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005585 WO2018212579A1 (ko) 2017-05-17 2018-05-16 비디오 신호 처리 방법 및 장치

Country Status (4)

Country Link
US (3) US11184639B2 (ko)
KR (1) KR102601267B1 (ko)
CN (9) CN116634176A (ko)
WO (1) WO2018212579A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112840648B (zh) * 2018-08-12 2023-06-16 Lg电子株式会社 用于处理图像信号的方法和装置
WO2020084554A1 (en) 2018-10-24 2020-04-30 Beijing Bytedance Network Technology Co., Ltd. Searching based motion candidate derivation for sub-block motion vector prediction
US11438583B2 (en) * 2018-11-27 2022-09-06 Tencent America LLC Reference sample filter selection in intra prediction
WO2020164480A1 (en) * 2019-02-11 2020-08-20 Beijing Bytedance Network Technology Co., Ltd. Condition dependent video block partition
EP3697094A1 (en) * 2019-02-13 2020-08-19 InterDigital VC Holdings, Inc. Intra prediction mode extension
WO2020171647A1 (ko) * 2019-02-21 2020-08-27 엘지전자 주식회사 영상 코딩 시스템에서 인트라 예측을 사용하는 영상 디코딩 방법 및 그 장치
WO2020175893A1 (ko) * 2019-02-28 2020-09-03 엘지전자 주식회사 Aps 시그널링 기반 비디오 또는 영상 코딩
KR20230016712A (ko) * 2019-03-11 2023-02-02 엘지전자 주식회사 루마 맵핑 및 크로마 스케일링 기반 비디오 또는 영상 코딩
CN115767088A (zh) * 2019-08-14 2023-03-07 Lg电子株式会社 图像编解码方法、发送比特流的方法和记录介质
WO2021110568A1 (en) * 2019-12-05 2021-06-10 Interdigital Vc Holdings France, Sas Intra sub partitions for video encoding and decoding combined with multiple transform selection, matrix weighted intra prediction or multi-reference-line intra prediction
US20230069984A1 (en) * 2021-08-24 2023-03-09 Tencent America LLC Hardware friendly design for intra mode coding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150140848A (ko) * 2010-12-22 2015-12-16 엘지전자 주식회사 화면 내 예측 방법 및 이러한 방법을 사용하는 장치
KR101600061B1 (ko) * 2011-06-28 2016-03-14 삼성전자주식회사 영상의 인트라 예측 부호화, 복호화 방법 및 장치
WO2016153146A1 (ko) * 2015-03-23 2016-09-29 엘지전자(주) 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8799153B2 (en) 1998-08-31 2014-08-05 Mastercard International Incorporated Systems and methods for appending supplemental payment data to a transaction message
US6315193B1 (en) 1998-08-31 2001-11-13 Mastercard International Incorporated Financial transaction card with installment loan feature
US20050049964A1 (en) 2003-01-14 2005-03-03 Winterer Mary Jo Financial transaction card with automatic payment feature
US20070250442A1 (en) 1998-08-31 2007-10-25 Hogan Edward J Financial Transaction Card With Installment Loan Feature
US20100094735A1 (en) 2006-11-15 2010-04-15 Charles Reynolds Methods and systems for automated payments
KR101452860B1 (ko) * 2009-08-17 2014-10-23 삼성전자주식회사 영상의 부호화 방법 및 장치, 영상 복호화 방법 및 장치
US9609342B2 (en) 2010-02-19 2017-03-28 Skype Compression for frames of a video signal using selected candidate blocks
PL2391129T3 (pl) 2010-05-25 2019-04-30 Lg Electronics Inc Nowy tryb predykcji planarnej
US9420294B2 (en) 2011-02-23 2016-08-16 Lg Electronics Inc. Intra-prediction method using filtering, and apparatus using the method
KR20120140181A (ko) 2011-06-20 2012-12-28 한국전자통신연구원 화면내 예측 블록 경계 필터링을 이용한 부호화/복호화 방법 및 그 장치
US9883203B2 (en) * 2011-11-18 2018-01-30 Qualcomm Incorporated Adaptive overlapped block motion compensation
WO2014010943A1 (ko) * 2012-07-10 2014-01-16 한국전자통신연구원 영상 부호화/복호화 방법 및 장치
KR20160051343A (ko) * 2014-11-03 2016-05-11 세종대학교산학협력단 인트라 예측을 이용한 비디오 신호 인코딩/디코딩 방법 및 장치
KR20180030791A (ko) * 2015-07-20 2018-03-26 엘지전자 주식회사 비디오 코딩 시스템에서 인트라 예측 방법 및 장치
ES2677193B1 (es) * 2015-08-28 2019-06-19 Kt Corp Procedimiento y dispositivo para procesar señales de vídeo
KR20180044943A (ko) * 2015-09-23 2018-05-03 엘지전자 주식회사 영상 코딩 시스템에서 인트라 예측 방법 및 장치
WO2017209328A1 (ko) * 2016-06-03 2017-12-07 엘지전자 주식회사 영상 코딩 시스템에서 인트라 예측 방법 및 장치
KR20180045530A (ko) * 2016-10-26 2018-05-04 디지털인사이트 주식회사 임의의 블록 분할을 사용하는 비디오 코딩 방법 및 장치
US11128872B2 (en) * 2018-07-16 2021-09-21 Qualcomm Incorporated Position dependent intra prediction combination with wide angle intra prediction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150140848A (ko) * 2010-12-22 2015-12-16 엘지전자 주식회사 화면 내 예측 방법 및 이러한 방법을 사용하는 장치
KR101600061B1 (ko) * 2011-06-28 2016-03-14 삼성전자주식회사 영상의 인트라 예측 부호화, 복호화 방법 및 장치
WO2016153146A1 (ko) * 2015-03-23 2016-09-29 엘지전자(주) 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MATHIAS WIEN: "Variable Block-Size Transforms for H.264/AVC", IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, vol. 13, no. 7, 31 July 2003 (2003-07-31), pages 604 - 613, XP011099253 *
MOK, JUNG-SOO ET AL: "SIMD Instruction-based Fast HEVC RExt Decoder", JOURNAL OF BROADCAST ENGINEERING, vol. 20, no. 2, 31 March 2015 (2015-03-31), pages 224 - 237, XP055612196, DOI: 10.5909/JBE.2015.20.2.224 *

Also Published As

Publication number Publication date
CN116828205A (zh) 2023-09-29
US20220046278A1 (en) 2022-02-10
US20200366930A1 (en) 2020-11-19
CN116634176A (zh) 2023-08-22
CN116668722A (zh) 2023-08-29
US11706446B2 (en) 2023-07-18
CN110651479A (zh) 2020-01-03
CN116668721A (zh) 2023-08-29
CN116866609A (zh) 2023-10-10
KR20180126384A (ko) 2018-11-27
KR102601267B1 (ko) 2023-11-10
US20230291929A1 (en) 2023-09-14
CN116828206A (zh) 2023-09-29
US11184639B2 (en) 2021-11-23
CN116614643A (zh) 2023-08-18
CN110651479B (zh) 2023-07-28
CN116634175A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2018212577A1 (ko) 비디오 신호 처리 방법 및 장치
WO2017222326A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018026219A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018106047A1 (ko) 비디오 신호 처리 방법 및 장치
WO2017222325A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018212579A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018008906A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018155986A2 (ko) 비디오 신호 처리 방법 및 장치
WO2017171370A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018056703A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018088805A1 (ko) 비디오 신호 처리 방법 및 장치
WO2017176030A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018097626A1 (ko) 비디오 신호 처리 방법 및 장치
WO2019190201A1 (ko) 비디오 신호 처리 방법 및 장치
WO2019164031A1 (ko) 영상 코딩 시스템에서 블록 분할 구조에 따른 영상 디코딩 방법 및 장치
WO2018066959A1 (ko) 비디오 신호 처리 방법 및 장치
WO2017043949A1 (ko) 비디오 신호 처리 방법 및 장치
WO2019050292A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018056701A1 (ko) 비디오 신호 처리 방법 및 장치
WO2019225993A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018066958A1 (ko) 비디오 신호 처리 방법 및 장치
WO2019182292A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018008905A1 (ko) 비디오 신호 처리 방법 및 장치
WO2018044089A1 (ko) 비디오 신호 처리 방법 및 장치
WO2019050291A1 (ko) 비디오 신호 처리 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18803246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.03.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18803246

Country of ref document: EP

Kind code of ref document: A1