WO2018212530A1 - 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치 - Google Patents
무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치 Download PDFInfo
- Publication number
- WO2018212530A1 WO2018212530A1 PCT/KR2018/005501 KR2018005501W WO2018212530A1 WO 2018212530 A1 WO2018212530 A1 WO 2018212530A1 KR 2018005501 W KR2018005501 W KR 2018005501W WO 2018212530 A1 WO2018212530 A1 WO 2018212530A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- csi
- reporting
- terminal
- information
- value
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
- H04L5/0057—Physical resource allocation for CQI
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0626—Channel coefficients, e.g. channel state information [CSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/0051—Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
Definitions
- the present invention relates to a wireless communication system, and more particularly, to a method for measuring and reporting channel state information (CSI) and an apparatus for supporting the same.
- CSI channel state information
- Mobile communication systems have been developed to provide voice services while ensuring user activity.
- the mobile communication system has expanded not only voice but also data service, and the explosive increase in traffic causes shortage of resources and users require faster services. Therefore, a more advanced mobile communication system is required. .
- the present specification proposes a method for measuring and reporting CSI based on the CSI framework and an apparatus therefor.
- the present specification proposes a method of calculating an estimated value for CSI reporting by using a time gap set in consideration of a transmission time of a CSI-RS and a CSI reporting time.
- the present specification proposes a method of calculating an estimated value for CSI reporting by distinguishing whether a measurement restriction is set for a terminal.
- the present specification proposes a method of setting an offset (eg, aperiodic CSI report offset) related to CSI reporting.
- an offset eg, aperiodic CSI report offset
- the method performed by the base station, the terminal, CSI report configuration information associated with the CSI report Transmitting the CSI reporting setting information, and the CSI reporting setting information includes information indicating a time offset for the CSI reporting, and sends a channel state information reference signal (CSI-Reference Signal, CSI-) to the terminal. Transmitting a control information for triggering the CSI report, and receiving, from the terminal, a CSI report generated based on the measurement for the CSI-RS. If the information indicating the time offset for the CSI reporting is set to a value '0', the CSI-RS is periodic or semi-persistent It can be sent.
- CSI-Reference Signal CSI-Reference Signal
- the time offset for the CSI report is a time interval between when the terminal receives control information for triggering the CSI report and when the CSI report is transmitted. Can be.
- the CSI-RS may be transmitted in a specific slot located before the slot in which control information for triggering the CSI report is transmitted.
- the measurement for the CSI-RS may be performed before the terminal receives control information for triggering the CSI report.
- the information indicating the time offset for the CSI report is set for each slot type, and the slot type is the number of symbols constituting one slot. It can be set according to.
- the setting for information 'k' indicating a time offset for CSI reporting in a slot type composed of M symbols may include information indicating a time offset for CSI reporting in an N symbol slot type composed of N symbols. It may correspond to the setting for 'M / N * k'.
- the base station is an RF module (radio frequency module) for transmitting and receiving radio signals and the RF And a processor operatively connected to the module, wherein the processor transmits CSI reporting setting information related to CSI reporting to the terminal, wherein the CSI reporting setting information is a time for the CSI reporting.
- CSI channel state information
- CSI-RS channel state information reference signal
- control information triggered control information
- CSI report generated based on the measurement for the CSI-RS and indicate a time offset for the CSI report.
- the output information is set to a value of '0', the CSI-RS may be transmitted periodically or semi-persistent.
- CSI reporting setting information (CSI reporting setting information) related to CSI reporting from a base station
- receiving the CSI report configuration information the information including a time offset for the CSI report, and receiving a channel state information reference signal (CSI-Reference Signal, CSI-RS) from the base station.
- CSI-Reference Signal CSI-RS
- CSI-RS channel state information reference signal
- a time gap for calculating a measurement value of the CSI report for each terminal eg, according to the terminal capability
- flexible and ununiform CSI measurement and reporting may be performed. It can be effective.
- FIG. 1 is a view showing an example of the overall system structure of the NR to which the method proposed in this specification can be applied.
- FIG. 2 illustrates a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present specification may be applied.
- FIG 3 shows an example of a resource grid supported by a wireless communication system to which the method proposed in the present specification can be applied.
- FIG. 4 shows examples of an antenna port and a neuralology-specific resource grid to which the method proposed in this specification can be applied.
- FIG. 5 is a diagram illustrating an example of a self-contained slot structure to which the method proposed in the present specification can be applied.
- FIG. 6 shows an example of a connection method of the TXRU and the antenna element to which the method proposed in the present specification can be applied.
- FIG. 7 shows various examples of a service area for each TXRU to which the method proposed in the present specification may be applied.
- FIG. 8 shows an example of a MIMO system using a two-dimensional planar array structure to which the method proposed in the specification can be applied.
- FIG 9 shows an example of a CSI framework considered in an NR system to which the method proposed in this specification can be applied.
- FIG. 10 shows an example of a method of performing CSI measurement and reporting to which the method proposed in the present specification can be applied.
- FIG. 11 shows another example of a method of performing CSI measurement and reporting to which the method proposed in the present specification can be applied.
- FIG. 12 shows another example of a method of performing CSI measurement and reporting to which the method proposed in the present specification can be applied.
- FIG. 13 is a flowchart illustrating an operation of a base station associated with a procedure for measuring and reporting CSI to which a method proposed in this specification may be applied.
- FIG. 14 is a block diagram of a wireless communication device according to one embodiment of the present invention.
- 15 is a block diagram illustrating a communication device according to one embodiment of the present invention.
- a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
- the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
- a base station (BS) is a fixed station, Node B, evolved-NodeB (eNB), base transceiver system (BTS), access point (AP), next generation NB, general NB , gNodeB), and the like.
- a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
- UE user equipment
- MS mobile station
- UT user terminal
- MSS mobile subscriber station
- SS subscriber station
- AMS Advanced Mobile Station
- WT Wireless Terminal
- MTC Machine-Type Communication
- M2M Machine-to-Machine
- D2D Device-to-Device
- downlink means communication from a base station to a terminal
- uplink means communication from a terminal to a base station.
- a transmitter may be part of a base station, and a receiver may be part of a terminal.
- a transmitter may be part of a terminal and a receiver may be part of a base station.
- CDMA code division multiple access
- FDMA frequency division multiple access
- TDMA time division multiple access
- OFDMA orthogonal frequency division multiple access
- SC-FDMA single carrier frequency division multiple access
- GSM global system for mobile communications
- GPRS general packet radio service
- EDGE enhanced data rates for GSM evolution
- OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
- UTRA is part of a universal mobile telecommunications system (UMTS).
- 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
- LTE-A (advanced) is the evolution of 3GPP LTE.
- Embodiments of the present invention may be supported by standard documents disclosed in at least one of IEEE 802, 3GPP, and 3GPP2, which are wireless access systems. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
- eLTE eNB An eLTE eNB is an evolution of an eNB that supports connectivity to EPC and NGC.
- gNB Node that supports NR as well as connection with NGC.
- New RAN A radio access network that supports NR or E-UTRA or interacts with NGC.
- Network slice A network slice defined by the operator to provide an optimized solution for specific market scenarios that require specific requirements with end-to-end coverage.
- Network function is a logical node within a network infrastructure with well-defined external interfaces and well-defined functional behavior.
- NG-C Control plane interface used for the NG2 reference point between the new RAN and NGC.
- NG-U User plane interface used for the NG3 reference point between the new RAN and NGC.
- Non-standalone NR A deployment configuration where a gNB requires an LTE eNB as an anchor for control plane connection to EPC or an eLTE eNB as an anchor for control plane connection to NGC.
- Non-Standalone E-UTRA Deployment configuration in which the eLTE eNB requires gNB as an anchor for control plane connection to NGC.
- User plane gateway The endpoint of the NG-U interface.
- FIG. 1 is a view showing an example of the overall system structure of the NR to which the method proposed in this specification can be applied.
- the NG-RAN consists of gNBs that provide control plane (RRC) protocol termination for the NG-RA user plane (new AS sublayer / PDCP / RLC / MAC / PHY) and UE (User Equipment).
- RRC control plane
- the gNBs are interconnected via an Xn interface.
- the gNB is also connected to the NGC via an NG interface.
- the gNB is connected to an Access and Mobility Management Function (AMF) through an N2 interface and to a User Plane Function (UPF) through an N3 interface.
- AMF Access and Mobility Management Function
- UPF User Plane Function
- the numerology may be defined by subcarrier spacing and cyclic prefix overhead.
- the plurality of subcarrier intervals may be represented by an integer N (or, Can be derived by scaling. Further, even if it is assumed that very low subcarrier spacing is not used at very high carrier frequencies, the used numerology may be selected independently of the frequency band.
- OFDM Orthogonal Frequency Division Multiplexing
- OFDM numerologies supported in the NR system may be defined as shown in Table 1.
- the size of the various fields in the time domain Is expressed as a multiple of the time unit. From here, ego, to be.
- Downlink and uplink transmissions It consists of a radio frame having a section of (radio frame).
- each radio frame is It consists of 10 subframes having a section of.
- FIG. 2 illustrates a relationship between an uplink frame and a downlink frame in a wireless communication system to which the method proposed in the present specification may be applied.
- the transmission of an uplink frame number i from a user equipment (UE) is greater than the start of the corresponding downlink frame at the corresponding UE. You must start before.
- slots within a subframe Numbered in increasing order of within a radio frame They are numbered in increasing order of.
- One slot is Consists of consecutive OFDM symbols of, Is determined according to the numerology and slot configuration used. Slot in subframe Start of OFDM symbol in the same subframe Is aligned with the beginning of time.
- Not all terminals can transmit and receive at the same time, which means that not all OFDM symbols of a downlink slot or an uplink slot can be used.
- Table 2 shows numerology Shows the number of OFDM symbols per slot for a normal CP in Table 3, This indicates the number of OFDM symbols per slot for the extended CP in.
- an antenna port In relation to physical resources in the NR system, an antenna port, a resource grid, a resource element, a resource block, a carrier part, etc. Can be considered.
- the antenna port is defined so that the channel on which the symbol on the antenna port is carried can be inferred from the channel on which another symbol on the same antenna port is carried. If the large-scale property of a channel carrying a symbol on one antenna port can be deduced from the channel carrying the symbol on another antenna port, then the two antenna ports are quasi co-located or QC / QCL. quasi co-location relationship.
- the wide range characteristics include one or more of delay spread, Doppler spread, frequency shift, average received power, and received timing.
- FIG 3 shows an example of a resource grid supported by a wireless communication system to which the method proposed in the present specification can be applied.
- the resource grid is in the frequency domain
- one subframe includes 14 x 2 u OFDM symbols, but is not limited thereto.
- the transmitted signal is One or more resource grids composed of subcarriers, and Is described by the OFDM symbols of. From here, to be. remind Denotes the maximum transmission bandwidth, which may vary between uplink and downlink as well as numerologies.
- the numerology And one resource grid for each antenna port p.
- FIG. 4 shows examples of an antenna port and a neuralology-specific resource grid to which the method proposed in this specification can be applied.
- each element of the resource grid for antenna port p is referred to as a resource element and is an index pair Uniquely identified by From here, Is the index on the frequency domain, Refers to the position of a symbol within a subframe. Index pair when referring to a resource element in a slot This is used. From here, to be.
- Numerology Resource elements for antenna and antenna port p Is a complex value Corresponds to If there is no risk of confusion, or if no specific antenna port or numerology is specified, the indices p and Can be dropped, so the complex value is or This can be
- the physical resource block (physical resource block) is in the frequency domain It is defined as consecutive subcarriers. On the frequency domain, the physical resource blocks can be zero Numbered until. At this time, a physical resource block number on the frequency domain And resource elements The relationship between is given by Equation 1.
- the terminal may be configured to receive or transmit using only a subset of the resource grid.
- the set of resource blocks set to be received or transmitted by the UE is from 0 on the frequency domain. Numbered until.
- Beam management in NR is defined as follows.
- Beam determination the TRP (s) or the UE selecting its transmit / receive beam.
- Beam measurement an operation in which the TRP (s) or the UE measures the characteristics of the received beamforming signal.
- Beam reporting the UE reporting information of the beamformed signal based on the beam measurement.
- Beam sweeping an operation of covering a spatial region using beams transmitted and / or received during a time interval in a predetermined manner.
- Tx / Rx beam correspondence (correspondence) at the TRP and the UE is defined as follows.
- the Tx / Rx beam correspondence in the TRP is maintained if at least one of the following is met.
- the TRP may determine the TRP receive beam for uplink reception based on downlink measurements of the UE for one or more transmit beams of the TRP.
- the TRP may determine the TRP Tx beam for downlink transmission based on the uplink measurement of the TRP for one or more Rx beams of the TRP.
- the Tx / Rx beam correspondence at the UE is maintained if at least one of the following is met.
- the UE may determine the UE Tx beam for uplink transmission based on the downlink measurement of the UE for one or more Rx beams of the UE.
- the UE may determine the UE receive beam for downlink reception based on the indication of the TRP based on uplink measurement for one or more Tx beams.
- TRP capability indication of UE beam response related information is supported.
- the following DL L1 / L2 beam management procedure is supported within one or multiple TRPs.
- P-1 Used to enable UE measurement for different TRP Tx beams to support the selection of TRP Tx beams / UE Rx beam (s).
- Beamforming in TRP generally includes intra / inter-TRP Tx beam sweeps in different beam sets.
- Beamforming at the UE it typically includes a UE Rx beam sweep from a set of different beams.
- P-2 UE measurements for different TRP Tx beams are used to change the inter / intra-TRP Tx beam (s).
- P-3 UE measurement for the same TRP Tx beam is used to change the UE Rx beam when the UE uses beam forming.
- At least aperiodic reporting triggered by the network is supported in P-1, P-2 and P-3 related operations.
- the UE measurement based on RS for beam management (at least CSI-RS) consists of K (total number of beams) beams, and the UE reports the measurement results of the selected N Tx beams.
- N is not necessarily a fixed number.
- Procedures based on RS for mobility purposes are not excluded.
- the reporting information includes information indicating the measurand for the N beam (s) and the N DL transmission beams if at least N ⁇ K.
- the UE may report a CRI (CSI-RS resource indicator) of N'.
- the UE may be configured with the following higher layer parameters for beam management.
- the links between the report setup and the resource setup are established in the agreed CSI measurement setup.
- CSI-RS based P-1 and P-2 are supported with resource and reporting configuration.
- -P-3 can be supported with or without reporting settings.
- a reporting setting that includes at least the following:
- Time domain operations e.g., aperiodic, periodic, semi-persistent
- a resource setting that includes at least the following:
- RS type at least NZP CSI-RS
- Each CSI-RS resource set includes K ⁇ 1 CSI-RS resources (some parameters of K CSI-RS resources may be the same, e.g. port number, time domain operation, density and period)
- NR supports the next beam report considering the L group with L> 1.
- Measurement quantity for the N1 beam (supporting L1 RSRP and CSI reporting (if CSI-RS is for CSI acquisition))
- Group-based beam reporting as described above may be configured in a UE unit.
- NR supports that the UE can trigger a mechanism to recover from beam failure.
- a beam failure event occurs when the quality of the beam pair link of the associated control channel is low enough (eg compared to a threshold, timeout of the associated timer).
- the mechanism for recovering from beam failure (or failure) is triggered when a beam failure occurs.
- the network is explicitly configured in the UE with resources for transmitting UL signals for recovery purposes.
- the configuration of resources is supported where the base station listens from all or part of the direction (eg, random access region).
- the UL transmission / resource reporting a beam failure may be located at the same time instance as the PRACH (resource orthogonal to the PRACH resource) or at a different time instance (configurable for UE) than the PRACH. Transmission of the DL signal is supported so that the UE can monitor the beam to identify new potential beams.
- NR supports beam management regardless of beam-related indications. If a beam related indication is provided, the information about the UE side beam forming / receiving procedure used for CSI-RS based measurement may be indicated to the UE via QCL. As QCL parameters to be supported in NR, parameters for delay, doppler, average gain, etc. used in the LTE system, as well as spatial parameters for beamforming at the receiver will be added. And / or parameters related to angle of departure from the base station reception beamforming perspective may be included. NR supports the use of the same or different beams in the control channel and corresponding data channel transmissions.
- the UE may be configured to monitor the NR-PDCCH on M beam pair links simultaneously.
- the UE may be configured to monitor the NR-PDCCH on different beam pair link (s) in different NR-PDCCH OFDM symbols.
- Parameters related to UE Rx beam setup for monitoring the NR-PDCCH on multiple beam pair links are configured by higher layer signaling or MAC CE and / or are considered in the search space design.
- NR supports the indication of the spatial QCL assumption between the DL RS antenna port (s) and the DL RS antenna port (s) for demodulation of the DL control channel.
- candidate signaling methods for beam indication for NR-PDCCH i.e., configuration method for monitoring NR-PDCCH
- MAC CE signaling RRC signaling
- DCI signaling spec transparent and / or implicit methods, and combinations of these signaling methods. to be.
- the NR For reception of a unicast DL data channel, the NR supports the indication of the spatial QCL assumption between the DL RS antenna port and the DMRS antenna port of the DL data channel.
- Information indicative of the RS antenna port is indicated via DCI (downlink grant). This information also indicates a DMRS antenna port and a QCL RS antenna port.
- the different set of DMRS antenna ports for the DL data channel can be represented as QCL with another set of RS antenna ports.
- next-generation communication such as 5G and New Rat (NR)
- NR New Rat
- RAT radio access technology
- massive MTC Machine Type Communications
- next-generation radio access technology considering enhanced mobile broadband (eMBB) communication, massive MTC (mMTC), Ultra-Reliable and Low Latency Communication (URLLC), and the like are currently discussed.
- eMBB enhanced mobile broadband
- mMTC massive MTC
- URLLC Ultra-Reliable and Low Latency Communication
- NR 'new RAT
- the fifth generation New RAT (NR) considers a self-contained slot structure as shown in FIG. 5.
- FIG. 5 is a diagram illustrating an example of a self-contained slot structure to which the method proposed in the present specification can be applied.
- the hatched area 510 represents a downlink control area
- the black portion 520 represents an uplink control area
- the portion 530 without any indication may be used for downlink data transmission or may be used for uplink data transmission.
- the feature of this structure is that DL transmission and UL transmission are sequentially performed in one slot, DL data can be transmitted in one slot, and UL Ack / Nack can also be transmitted and received.
- Such a slot may be defined as a 'self-contained slot'.
- the base station reduces the time taken to retransmit data to the terminal when a data transmission error occurs, thereby minimizing the latency of the final data transfer.
- a base station and a terminal need a time gap for a process of switching from a transmission mode to a reception mode or a process of switching from a reception mode to a transmission mode.
- some OFDM symbols at the time of switching from DL to UL are set to a guard period (GP).
- mmW millimeter wave
- the wavelength is 1 cm
- a total of 64 (8x8) antenna elements can be installed in a 2-dimension array at intervals of 0.5 lambda (wavelength) on a panel of 4 x 4 cm.
- a plurality of antenna elements are used to increase beamforming (BF) gain to increase coverage or to increase throughput.
- BF beamforming
- TXRU Transceiver Unit
- the analog beamforming method has a disadvantage in that only one beam direction can be made in the entire band and thus frequency selective beamforming cannot be performed.
- hybrid BF having B TXRUs having a smaller number than Q antenna elements in an intermediate form between Digital BF and analog BF may be considered.
- HBF is different depending on the connection method of B TXRU and Q antenna elements, but the direction of beams that can be simultaneously transmitted is limited to B or less.
- FIG. 6 shows an example of a connection method of the TXRU and the antenna element to which the method proposed in the present specification can be applied.
- the TXRU virtualization model represents the relationship between the output signal of the TXRU and the output signal of the antenna elements.
- FIG. 6A illustrates an example of a method in which a TXRU is connected to a sub-array.
- the antenna element is connected to only one TXRU.
- (b) of FIG. 6 illustrates a method in which a TXRU is connected to all antenna elements.
- the antenna element is connected to all TXRUs.
- W represents a phase vector multiplied by an analog phase shifter.
- the direction of analog beamforming is determined by W.
- the mapping between the CSI-RS antenna ports and the TXRUs may be 1-to-1 or 1-to-many.
- the user equipment In the 3GPP LTE (-A) system, the user equipment (UE) is defined to report the channel state information (CSI) to the base station (BS).
- CSI channel state information
- the channel state information refers to information that may indicate the quality of a radio channel (or 'link') formed between the UE and the antenna port.
- RI rank indicator
- PMI precoding matrix indicator
- CQI channel quality indicator
- RI represents rank information of a channel, which means the number of streams that a UE receives through the same time-frequency resource. Since this value is determined dependent on the long term fading of the channel, it is fed back from the UE to the BS with a period that is usually longer than PMI, CQI.
- PMI is a value reflecting channel spatial characteristics and indicates a precoding index preferred by the UE based on a metric such as SINR.
- CQI is a value indicating the strength of the channel, and generally means a reception SINR that can be obtained when the BS uses PMI.
- the base station may configure a plurality of CSI processes to the UE, and receive and report the CSI for each process.
- the CSI process consists of a CSI-RS for signal quality specification from a base station and a CSI-interference measurement (CSI-IM) resource for interference measurement.
- CSI-IM CSI-interference measurement
- PDSCH transmission is possible only in one analog beam direction at one time by analog beamforming in mmW.
- the base station transmits data only to some few UEs in a specific direction.
- FIG. 7 shows various examples of a service area for each TXRU to which the method proposed in the present specification may be applied.
- FIG. 7 a structure in which four sub-arrays are formed by dividing 256 antenna elements into four parts and a TXRU is connected to each sub-array will be described as an example.
- each sub-array is composed of a total of 64 (8x8) antenna elements in the form of a 2-dimension array, it is possible to cover an area corresponding to the horizontal angle region of 15 degrees and the vertical angle region of 15 degrees by a specific analog beamforming.
- the area that the base station should serve is divided into a plurality of areas, and the service is performed one at a time.
- antenna port and TXRU may be interpreted to have the same meaning in the following description.
- a digital beam having a higher resolution may be formed to increase throughput of a corresponding region.
- each TXRU (antenna port, sub-array) has a different analog beamforming direction
- data can be simultaneously transmitted in a corresponding subframe (SF) to UEs distributed in a wider area.
- two of the four antenna ports are used for PDSCH transmission to UE1 in region 1 and the other two for PDSCH transmission to UE2 in region 2. do.
- FIG. 7B illustrates an example in which SDM (Spatial Division Multiplexing) of PDSCH 1 transmitted to UE1 and PDSCH 2 transmitted to UE2 is performed.
- SDM Spatial Division Multiplexing
- PDSCH 1 transmitted to UE1 and PDSCH 2 transmitted to UE2 may be transmitted by frequency division multiplexing (FDM).
- FDM frequency division multiplexing
- the method of serving one area using all antenna ports and the method of dividing the antenna ports to serve multiple areas simultaneously may be changed according to the RANK and MCS serving the UE. have.
- the preferred method also changes according to the amount of data to be transmitted to each UE.
- the base station calculates the cell throughput or scheduling metric that can be obtained when serving one region by using all antenna ports, and calculates the cell throughput or scheduling metric that can be obtained when serving two regions by dividing the antenna ports.
- the base station compares the cell throughput or scheduling metric obtained through each scheme to select the final transmission scheme.
- the base station In order for the base station to calculate the transmission MCS of the PDSCH according to the number of antenna ports and reflect the scheduling algorithm, CSI feedback from the UE suitable for this is required.
- BRS Beam reference signal
- the reference signal sequence r l (m) is defined by equation (2).
- Equation 2 l represents 0 to 13, indicating an OFDM symbol number.
- c (i) denotes a pseudo-random sequence, and the pseudo-random sequence generator may be initialized to Equation 3 at the start of each OFDM symbol.
- the reference signal r l, ns (m) is generated as shown in Equation 4.
- Equation 4 n s denotes a slot number in a radio frame, and l denotes an OFDM symbol number in a slot.
- c (n) means a pseudo-random sequence, and the pseudo-random sequence generator is initialized to Equation 5 at the start of each OFDM symbol.
- Equation 5 Is set in the terminal through RRC signaling.
- the phase noise compensation reference signal is present and / or valid only for the xPDSCH transmission associated with the corresponding antenna port, and is transmitted only in the physical resource blocks and symbols to which the corresponding sPDSCH is mapped.
- the phase noise compensation reference signal is the same in all symbols corresponding to the xPDSCH assignment.
- the reference signal sequence r (m) is defined by equation (6).
- Equation 6 c (i) denotes a pseudo-random sequence, and the pseudo-random sequence generator is initialized to Equation 7 at the beginning of each subframe.
- n SCID is given by the DCI format related to the xPDSCH transmission, and is set to 0 unless it is a special case.
- AAS active antenna system
- FIG. 8 shows an example of a MIMO system using a two-dimensional planar array structure to which the method proposed in the specification can be applied.
- a CSI framework for channel state measurement and reporting between a base station and a terminal is considered.
- This specification proposes a CSI reporting method based on the CSI framework (or CSI acquisition framework) described below. Specifically, this specification proposes a method of determining a measurement interval (or time point) for CSI measurement (or estimation) based on the CSI reporting setting of the CSI framework. In other words, herein, a method of determining the CSI-RS (s) and / or time gap of the CSI measurement used for the CSI measurement is described.
- a method proposed in this specification has been described based on the CSI reporting method, but may be commonly applied to the general beam reporting method as well as the CSI reporting method.
- a method proposed in this specification that is, a method for performing reporting in consideration of a computation time (or decoding time, etc.) of the terminal may include CRI, Synchronization Signal Block (SSB) -ID, And / or may be equally or similarly applied to beam reporting based on L1-RSRP.
- CRI CRI
- SSB Synchronization Signal Block
- the CSI framework is based on CSI reporting settings, resource settings, and CSI measurement, unlike CSI-related procedures in legacy LTE systems, which are defined only in the form of CSI processes. setting) can be used to define CSI-related procedures. Through this, in the NR system, CSI-related procedures may be performed in a more flexible manner according to channel and / or resource conditions.
- the setting for the CSI related procedure in the NR system may be defined by a combination between the CSI report setting, the resource setting, and the CSI measurement setting.
- the UE may be configured for CSI acquisition with N ⁇ 1 CSI report settings, M ⁇ 1 resource settings, and one CSI measurement setting.
- the CSI measurement configuration may refer to configuration information on a link relationship between N CSI reporting settings and M resource settings.
- the resource settings also include reference signal settings (RS settings) and / or interference measurement settings (IM settings).
- FIG 9 shows an example of a CSI framework considered in an NR system to which the method proposed in this specification can be applied.
- the CSI framework may be set to a reporting setting 902, a measurement setting 904, and a resource setting 906.
- the reporting configuration may mean CSI reporting configuration
- the measurement configuration may mean CSI measurement configuration
- the resource configuration may mean CSI-RS resource configuration.
- the reporting setting 902 may be configured with N (N ⁇ 1) reporting settings (eg, Reporting setting n1, Reporting setting n2, etc.).
- the resource setting 906 may be configured of M (M ⁇ 1) resource settings (eg, Resource setting m1, Resource setting m2, Resource setting m3, etc.).
- each resource set may include S (S ⁇ 1) resource sets, and each resource set may include K (K ⁇ 1) CSI-RS resources.
- the measurement configuration 904 may mean configuration information indicating a link relationship between the report configuration and the resource configuration and a measurement type set for the link.
- each measurement setup may include L (L ⁇ 1) links.
- the measurement setting may include setting information about the link Link l1 between the reporting setting n1 and the resource setting m1, setting information about the link Link l2 between the reporting setting n1 and the resource setting m2, and the like.
- each of Link l1 and Link l2 may be set to either a link for channel measurement or a link for interference measurement.
- Link l1 and / or Link l2 may be set for rate matching or other purposes.
- one or more CSI reporting settings may be dynamically selected through L1 (Layer 1) or L2 (Layer 2) signaling within one CSI measurement configuration.
- one or more CSI-RS resource sets selected from at least one resource configuration and one or more CSI-RS resources selected from at least one CSI-RS resource set may also be dynamically selected through L1 or L2 signaling. Can be.
- the CSI reporting setting the resource setting (that is, the CSI-RS resource setting), and the CSI measurement setting constituting the CSI framework considered in the NR system will be described.
- the CSI report setting may mean information for setting the type of CSI report to be performed by the UE for the base station, information included in the corresponding CSI report, and the like.
- the CSI reporting settings may include time-domain behavior type, frequency granularity, CSI parameters to be reported (e.g., Precoding Matrix Indicator (PMI), Rank Indicator (RI), CQI). (Channel Quality Indicator)), codebook settings including CSI type (e.g. CSI Type 1 or 2, high complexity CSI, low complexity CSI), codebook subset restriction, measurement restriction Settings and the like.
- PMI Precoding Matrix Indicator
- RI Rank Indicator
- CQI Channel Quality Indicator
- codebook settings including CSI type (e.g. CSI Type 1 or 2, high complexity CSI, low complexity CSI), codebook subset restriction, measurement restriction Settings and the like.
- an operation type in the time domain may mean an aperiodic operation, a periodic operation, or a semi-persistent operation.
- configuration parameter (s) for CSI report configuration may be configured (or indicated) through higher layer signaling (eg, RRC signaling).
- the resource configuration may mean information for configuring a resource to be used for CSI measurement and reporting.
- the resource configuration may include the type of operation in the time domain, the type of RS (e.g., Non-Zero Power CSI-RS (NZP CSI-RS), Zero Power CSI-RS (ZP CSI-RS), DMRS, etc.) It may include a resource set composed of K resources.
- NZP CSI-RS Non-Zero Power CSI-RS
- ZP CSI-RS Zero Power CSI-RS
- DMRS DMRS
- each resource configuration may include one or more resource sets, and each resource set may include one or more resources (eg, CSI-RS resources).
- the resource setting may include setting of a signal for channel measurement and / or interference measurement.
- each resource configuration may include configuration information on S resource sets (eg, CSI-RS resource set), and may also include configuration information on K resources for each resource set.
- each resource set may correspond to a set differently selected from a pool of all CSI-RS resources configured for the terminal.
- the setting information for each resource may include information on mapping to resource elements, the number of ports, the operation type of the time domain, and the like.
- each resource configuration may include configuration information for S CSI-RS resources and / or configuration information for K CSI-RS resources of the same or smaller number of ports for each CSI-RS resource. have.
- the CSI-RS RE mapping pattern of the N-port CSI-RS resource may be one or more CSI-RS mapping patterns of the same or fewer CSI-RS resources of the port number (eg, 2, 4, or 8). Can be configured.
- the CSI-RS RS mapping pattern may be defined in a slot and may span a plurality of configurable continuous / discontinuous OFDM symbols.
- configuration parameter (s) for resource configuration may be configured through higher layer signaling (eg, RRC signaling).
- the CSI measurement configuration may refer to configuration information indicating what measurement the UE performs for specific CSI reporting configuration and specific resource configuration mapped thereto for CSI reporting. That is, the CSI measurement configuration may include information on the link relationship between the CSI reporting configuration and the resource configuration, and may include information indicating a measurement type for each link. In addition, the measurement type may mean channel measurement, interference measurement, rate matching, or the like.
- the CSI measurement configuration may include information indicating a CSI reporting configuration, information representing a resource configuration, and a configuration for a reference transmission scheme in the case of CQI.
- the terminal may support L ⁇ 1 CSI measurement setting, and the L value may be set according to the capability of the corresponding terminal.
- one CSI reporting configuration may be linked to one or more resource configurations, and multiple CSI reporting configurations may be linked to the same resource configuration.
- configuration parameter (s) for CSI measurement configuration may be configured through higher layer signaling (eg, RRC signaling).
- semi-persistent CSI reporting is activated by MAC CE and / or Downlink Control Information (DCI). activation / deactivation.
- DCI Downlink Control Information
- aperiodic CSI reporting may be triggered by DCI, but in this case, additional signaling set to MAC CE may be required.
- semi-persistent CSI-RS ie, when the transmission of the CSI-RS is performed semi-persistently
- periodic CSI reporting is not supported.
- semi-persistent CSI reporting may be activated / deactivated by MAC-CE and / or DCI
- semi-persistent CSI-RS may be activated / deactivated by MAC-CE and / or DCI.
- aperiodic CSI reporting can be triggered by DCI and semi-persistent CSI-RS can be activated / deactivated by MAC-CE and / or DCI.
- aperiodic CSI-RS ie, the transmission of the CSI-RS is performed aperiodically
- periodic (and semi-persistent) CSI reporting is not supported.
- aperiodic CSI reporting may be triggered by DCI and aperiodic CSI-RS may be triggered by DC and / or MAC-CE.
- the CSI-RS resource configuration may include two types of RS types such as NZP CSI-RS and ZP CSI-RS (for reference, the CSI-RS referred to herein). Can be applied to both NZP CSI-RS and ZP CSI-RS).
- both the NZP CSI-RS resource and the ZP CSI-RS resource can be set in the corresponding resource configuration.
- the ZP CSI-RS may be applied for interference estimation (ie, interference measurement) or rate matching of a data channel (eg, NR-PDSCH).
- NZP CSI-RS can be applied not only for channel estimation (ie, channel measurement), but also for interference estimation.
- the NZP CSI-RS included in the resource configuration may be applied to both CSI acquisition and beam management.
- CSI-RS resources for beam management may also be included in resource setting for unified operation for analog beam selection and digital beam selection.
- One of the main functions of CSI acquisition is beam selection through terminal feedback information such as PMI and CSI-TE Resource Indication (CRI).
- the purpose of DL beam management is also to select beam (s), and the TRP transmission beam may be selected through the terminal feedback information.
- the terminal receive beam selection can be simply supported by transmitting multiple repeated transmit beams via CSI-RS symbols or subsymbols.
- the aforementioned CSI framework can also be used for beam management purposes.
- aperiodic CSI-RS For such resource configuration, three types of time domain operations may be supported: aperiodic CSI-RS, semi-persistent CSI-RS, and periodic CSI-RS.
- the above three types of time domain operation types may be commonly applied to both the NZP CSI-RS and the ZP CSI-RS.
- aperiodic Interference Measurement Resource (IMR) and semi-persistent IMR have high interference estimation accuracy and high design for system design, given the dynamic TDD operation and forward compatibility of NR systems. It can provide flexibility.
- the resource configuration may include a CSI-RS timing offset (hereinafter, referred to as 'X').
- X may mean a time gap between a triggering / activation / deactivation timing (timing, instance) for transmission of the CSI-RS and an actual transmission time of the CSI-RS.
- X may be expressed in the form of a number of slots (ie, a slot) or a number of symbols (ie, a symbol). For example, when aperiodic CSI-RS triggering is performed by DCI, X may be set to '0'.
- candidate values of X are indicated by a higher layer message (eg, an RRC message) and may be included in resource configuration on the CSI framework.
- a higher layer message eg, an RRC message
- the candidate values of X may refer to X values that are preset according to a predetermined criterion (or according to a standard). That is, X may not be set to a specific value (eg, 0), but may be set to values (eg, 0, 1, 2) that may be used differently according to a situation (or service).
- the terminal may receive '1' as an X value for beam management from the base station. Accordingly, when the transmission of the CSI-RS is triggered at a specific time point, the UE may recognize that the CSI-RS will be transmitted after a time interval (for example, 2 slots) corresponding to '1' based on the specific time point. have.
- a time interval for example, 2 slots
- X values may be set shorter than other services.
- a service requiring a short latency eg. Ultra-Reliable and Low Latency Communications (URLLC)
- URLLC Ultra-Reliable and Low Latency Communications
- the X value to be applied for channel measurement or interference measurement may be indicated through dynamic signaling such as L1 or L2 signaling (eg, DCI or MAC-CE).
- the indication of the X value may be included in the MAC-CE and / or DCI for CSI-RS triggering and transmitted together. That is, the X value may be delivered together with triggering information (eg, triggered CSI-RS resource setting) for the CSI-RS.
- a hierarchical signaling structure may be applied in which a candidate resource is selected through MAC-CE in a resource configuration set to RRC signaling and then a final resource is selected as DCI.
- the X value may be included in either MAC-CE or DCI.
- a final X value may be set (or indicated) through DCI. That is, the X value may be indicated to the UE hierarchically using RRC signaling, MAC-CE, and / or DCI.
- the X value may be used to set whether to apply the method for determining the CSI measurement interval proposed in the present specification in a specific situation (eg, when CSI-RS triggering and CSI reporting triggering are performed simultaneously). have. Details thereof will be described in detail in the following part of FIG. 12.
- any combination between aperiodic / semi-persistent / periodic resource setting for channel measurement and aperiodic / semi-persistent / periodic resource setting for interference measurement is selected. Supporting flexible measurement settings may be acceptable.
- resources for semi-persistent or periodic interference measurement may be used. It needs to be considered.
- aperiodic CSI-RS configuration may be associated with resources for semi-persistent or periodic interference measurement for aperiodic CSI reporting.
- semi-persistent or periodic CSI_RS may be associated with a resource for aperiodic interference measurement for aperiodic CSI reporting.
- the measurement setup includes aperiodic / semi-persistent / persistent CSI reporting, aperiodic / semi-persistent / persistent resource configuration for channel measurement (e.g. NZP CSI-RS), and aperiodic / semi-period for interference measurement. It is necessary to support a flexible mapping method between persistent / persistent resource settings (eg ZP CSI-RS and NZP CSI-RS).
- a specific resource (ie, resource configuration) in the CSI measurement configuration may be configured for rate matching during demodulation of a data channel (eg, NR-PDSCH).
- a data channel eg, NR-PDSCH.
- the base station may set the application to null the corresponding resource. In this way, the degree of interference that may occur during channel measurement or interference measurement of the terminal receiving the corresponding indication may be efficiently controlled.
- the NR system may support aperiodic CSI reporting, semi-persistent CSI reporting, and periodic CSI reporting.
- the corresponding CSI report content may be existing CSI report types supported in the LTE system (especially, the eFD-MIMO WI).
- the corresponding CSI report content may be determined based on the required report content for supporting DL beam management. Since each CSI-RS port in a CSI resource may correspond to a different analog beam, the corresponding CSI report content is a pair of information (eg ⁇ CRI, port index) for reporting appropriate beam direction information. ⁇ ). In addition to beam related information, a beam gain related metric such as RSRP needs to be reported together.
- the CSI reporting setting may include a CSI reporting offset (hereinafter, referred to as 'Y').
- Y may mean a time interval between a triggering / activation / deactivation time point for CSI reporting and an actual CSI-RS reporting instance or timing.
- the Y value may be a period from a time point at which a DCI triggering a CSI report is received to a time point at which a UE reports CSI through a data channel (eg, a PUSCH (Physucal Uplink Shared Channel) (or control channel)). interval, gap).
- a data channel eg, a PUSCH (Physucal Uplink Shared Channel) (or control channel)
- the Y value may be expressed in the form of a number of slots (ie, slots) or a number of symbols (ie, symbols), fixed in advance in the system, or set by a network (e.g., base station) ( Or instructed).
- the candidate value (s) for Y may be supported according to the information included in the CSI report setting.
- the candidate values for Y may include a CSI parameter, a CSI type (eg CSI type 1 or 2), a codebook configuration (eg codebook size), a recent CSI-RS transmission point (nearest CSI-). RS transmission timing), DL-UL slot structure, UE capability, and the number of CSI calculations related to the CSI report setting.
- the candidate values for the Y are set based on the above-described information, explicit signaling for the Y value may be unnecessary.
- signaling for the Y value may be performed, and a lower limit value for the Y value may be set based on the above-described information.
- the minimum time interval required to perform the CSI report on the basis of when the terminal receives the actual CSI-RS (hereinafter referred to as 'Z') May be considered.
- Z may mean a processing time interval required for the terminal to report the CSI using the CSI-RS received from the base station. That is, Z may mean a minimum time gap between CSI reporting time points and CSI-RS transmission time points. In addition, Z may refer to gap information for setting a measurement interval (or measurement gap) for generating a measurement value for CSI reporting.
- the CSI-RS received in the Z (eg, the Z window) based on the point in time at which the terminal performs the CSI report triggered by the base station is accurately measured until the corresponding CSI report point by the terminal. And therefore may not be available in the corresponding CSI report.
- the Z value may be set in consideration of the CSI calculation time (ie, the CSI processing time) required for CSI reporting in the corresponding UE. That is, the Z value may be set according to information elements that determine the CSI calculation processing time.
- the Z value is the frequency for CQI and PMI, codebook configuration information including CSI reporting configuration parameters (e.g., CSI parameter, CSI type, CSI codebook type, codebook size and codebook set (or subset) restriction). Frequency granularity, etc.) and UE capability (eg, UE computation capability).
- CSI reporting configuration parameters e.g., CSI parameter, CSI type, CSI codebook type, codebook size and codebook set (or subset) restriction.
- Frequency granularity, etc. e.g., UE computation capability.
- the Z value may be set small. This is because, when the codebook subset is limited, the time required for the UE to select the codebook to perform the CSI measurement is reduced. That is, when the terminal does not apply all the codebooks and uses only a specific range of codebooks, the Z value may be set small by the network (or base station).
- the Z value may be determined according to the number of CSI report settings dynamically selected through L1 or L2 signaling.
- the required time may vary according to the operation type of the time domain for the CSI report setting.
- the Z value may be set differently when two periodic CSI reporting settings are designated and when two aperiodic (or semi-persistent) CSI reporting settings are specified.
- the Z value may be set differently for the case where one periodic CSI reporting setting is designated and the case where two are designated. That is, the Z value may be set differently depending on how the CSI reporting setting is set for the terminal.
- the Z value may be set or indicated for each terminal by a base station (or a network).
- the Z value may be included in CSI report configuration information delivered through higher layer signaling (eg, RRC signaling).
- the Z value may be conveyed with CSI reporting configuration that is dynamically indicated (or triggered) via L1 or L2 signaling (ie, DCI or MAC-CE).
- the terminal may report the Z value as its capability to the base station.
- the base station may set the Z value in consideration of the capability of the terminal. That is, the Z value may be set in an implicit manner by the capability report of the terminal.
- the present specification proposes a specific method of performing CSI measurement and reporting in consideration of the above-described Z value (that is, a value indicating a time required to perform CSI reporting on the basis of the CSI-RS transmission time point).
- the CSI-RS is set (ie, the transmission setting), or triggered (triggered) at a time after the CSI reporting time minus Z value, or Can be activated.
- the UE may ignore the estimated value (or measured value) calculated from the corresponding CSI-RS when calculating the channel or interference estimation value for the corresponding CSI report.
- the CSI-RS resource used for CSI reporting may be referred to as a reference resource for the corresponding CSI reporting
- the Z value may be a parameter for setting the reference resource.
- CSI reporting (ie, additional CSI reporting) is set at a later time point, and if the CSI-RS exists before the reporting time minus Z value, the CSI report at that time point (ie, future time point) An estimate from the CSI-RS that was ignored at may be used.
- the CSI-RS existing within a previous time interval corresponding to the Z value based on the CSI reporting time triggered by the base station cannot be used for the corresponding CSI reporting.
- CSI reporting triggering is indicated in the nth slot (#n slot)
- CSI reporting point is indicated to be performed in the n + 8th slot (# n + 8 slot)
- the Z value is 2 slots (2 slot).
- the UE ignores the value estimated by the CSI-RS received in the previous time interval (ie, # n + 6 slot to # n + 8 slot) corresponding to the Z value based on the CSI reporting time point. Can be set.
- 10 shows an example of a method of performing CSI measurement and reporting to which the method proposed in the present specification can be applied. 10 is merely for convenience of description and does not limit the scope of the invention.
- a terminal and a base station ie, TRP
- TRP a base station
- FIG. 10A shows the overall procedure of CSI measurement and reporting and setting values related thereto (ie, X value, Y value, and Z value).
- 'X' shown in (a) of FIG. 10 represents a time interval between the triggering / activation / deactivation time point for the transmission of the CSI-RS and the actual transmission of the CSI-RS.
- 'X' means the interval from the time when the terminal receives the PDCCH (ie, DCI) for the triggering of the CSI-RS to the time when the CSI-RS actually received. can do.
- 'Y' shown in (a) of FIG. 10 indicates a time interval between the triggering / activation / deactivation time point for the aforementioned CSI report and the actual CSI report time point.
- 'Y' may mean an interval from the time when the UE receives the PDCCH (ie, DCI) including the triggering information for the CSI report to the time when the CSI report is directly performed.
- the Z value may be set according to various information elements, for example, 'Z1' for light CSI (ie, low complexity CSI) according to a predetermined criterion (ie, a predetermined criterion). And 'Z2' for heavy CSI (i.e. high complexity CSI).
- the light CSI may mean a CSI whose CSI processing time is set to be small by the terminal.
- the heavy CSI may mean a CSI which is set to have a large CSI processing time.
- CSIs having N or more antenna ports related to CSI measurement and reporting may correspond to heavy CSIs, and less than N CSIs may correspond to light CSIs.
- an estimated value ie, a channel or interference estimated value measured using the CSI-RS
- the Z value may be referred to as a measurement window, and an estimated value for the CSI-RS received within the measurement window may be ignored in the CSI report.
- the UE may include the estimated value for the previously received CSI-RS # 0 and the estimated value for the CSI-RS # 1 in the CSI report information.
- the UE may ignore the estimated value for the CSI-RS # 1 and include only the estimated value for the CSI-RS # 0 in the CSI report information.
- FIG. 10 (b) shows a simplified example with respect to the operation of the terminal described above.
- the CSI-RS 1002 received before the Z value based on the CSI reporting instance is used for the CSI reporting, and the received CSI-RS 1004 thereafter. ) May be ignored in the corresponding CSI report.
- the operation of the UE described above is not only when aperiodic CSI-RS and / or aperiodic CSI reporting is triggered, but also periodic CSI-RS and / or periodic CSI reporting, semi-persistent CSI-RS and / or semi-persistent CSI. The same applies to reporting.
- the above-described operation of the UE may be applied regardless of the operation type of the time domain of CSI-RS triggering (ie, CSI-RS transmission triggering) and CSI report triggering.
- the predetermined criterion may be set using the above-described X value, Y value, and Z value.
- the Z value needs to be guaranteed between the Y value and the X value.
- whether or not the above-described operation of the terminal may be determined by comparing a difference value between the Y value and the X value and the Z value.
- 11 shows another example of a method of performing CSI measurement and reporting to which the method proposed in the present specification can be applied. 11 is merely for convenience of description and does not limit the scope of the present invention.
- CSI-RS triggering specifically, triggering for CSI-RS # 1
- CSI reporting triggering may be simultaneously indicated through PDCCH (ie, DCI).
- PDCCH ie, DCI
- two triggering instructions may be indicated through one DCI or through two DCIs (ie, each DCI).
- the terminal may include the estimated value for the previously received CSI-RS # 0 and the estimated value for the CSI-RS # 1 in the CSI report information.
- the UE may ignore the estimated value for the CSI-RS # 1 and include only the estimated value for the CSI-RS # 0 in the CSI report information.
- the estimated value (ie, channel or interference estimated value) for the corresponding CSI-RS may be ignored in the corresponding CSI report of the UE.
- the ignored estimated value may be utilized in a CSI report (eg, preset or dynamically triggered / activated CSI reported) at a future time point.
- the CSI reporting information was determined using an estimated value for the CSI-RS before a time point (eg, n-4th subframe) determined as a specification based on the CSI report time point.
- the NR system can perform more flexible CSI measurement and reporting. In other words, using a Z value set in consideration of the actual CSI-RS transmission time (CSI-RS transmission instance and the actual CSI reporting instance), a uniform method (for example, n based on the nth slot) There is an advantage that adaptive CSI reporting is possible, rather than CSI reporting through -4th slot).
- the value may vary.
- whether the measurement is limited or not may be represented by an indicator indicating the measurement limit ON or OFF.
- the measurement limit is set to ON, the terminal uses only the estimated value by the RS transmitted at the most recent time of the RS (for example, CSI-RS) transmitted at a plurality of instances (instances). It may mean that it is set to perform a channel or interference estimation.
- 12 shows another example of a method of performing CSI measurement and reporting to which the method proposed in the present specification can be applied. 12 is merely for convenience of description and does not limit the scope of the invention.
- the above-described Z value and measurement limitation are set (or indicated) through CSI report setting.
- the triggered CSI-RSs 1202 to 1208 are transmitted periodically, but the method is not limited to the case in which the CSI-RS is periodically transmitted, but is transmitted aperiodically or semi-persistently. Of course, the case may be applied.
- CSI reporting is also aperiodic, but the method may be applied to periodic CSI reporting or semi-persistent CSI reporting, which is not limited thereto.
- the UE estimates the most recently measured value at a point before the Z value (that is, the CSI reporting point-Z) based on the CSI reporting point. (Channel estimate value or interference estimate value). For example, the UE may perform CSI calculation using only the recently received CSI-RS 1204 among the CSI-RS 1202 and 1204 received before a time interval corresponding to the Z value based on the CSI reporting time point. .
- the location of the CSI-RS symbol (s) may be different.
- the UE may use the measured value based on the CSI-RS transmitted before the time interval corresponding to the Z value based on the CSI reporting time point for each of the channel measurement and the interference measurement.
- the continuous CSI-RS is triggered, only one estimated value belonging to the time point before the Z value exists (eg, semi-persistent CSI-RS) or the aperiodic CSI-RS indicates that the CSI is reported.
- the trigger may be triggered before the Z value.
- the terminal may perform CSI calculation based on the estimated value for the CSI-RS at the time of transmission.
- the UE may perform CSI calculation using one or more estimated values up to a point before the Z value based on the CSI reporting time point.
- the measurement limit is indicated as OFF
- the UE is measured by the CSI-RS received within a time interval corresponding to the Z value (that is, the 'Z interval' shown in FIG. 12) based on the CSI reporting time point.
- the value can be ignored when reporting CSI. That is, in this case, the UE does not need to update the CSI report value according to the value measured by the CSI-RS received within a time interval corresponding to the Z value based on the CSI report time point.
- the terminal may calculate the CSI as an average value of one or more estimated values.
- the UE may calculate the CSI by applying a weighted average to one or more estimation values.
- the UE may apply a high weight to a recently estimated channel (ie, CSI-RS).
- the terminal may perform extrapolation to a point before the Z value based on the CSI reporting time point based on one or more estimation values and use the estimated value as a channel estimate value or interference estimation value for the corresponding CSI report. It may be.
- the terminal calculates an estimated value for the CSI-RS 1202 and an estimated value for the CSI-RS 1204, and then calculates the predicted estimated value by applying an extrapolation method to the CSI reporting time point -Z time point. can do.
- the extrapolation method may mean an analysis technique for predicting and estimating a value after a predetermined time according to the degree of a specific value.
- the terminal has an advantage of obtaining the latest information on the channel state (that is, the connected state) than when a certain measurement time point is defined.
- the UE is configured to perform measurement only before a predetermined interval (for example, n-4th subframe) based on the CSI reporting time point.
- the proposed method of the present invention which can acquire information on a channel state until a Z value set in consideration of the CSI calculation capability of the UE, is more accurate than that of legacy LTE (that is, reflecting the latest channel state).
- a channel (or interference) estimate can be obtained.
- the CSI-RS timing offset i.e., the X value described above
- the CSI reporting offset i.e., the Y value described above
- the CSI calculation time i.e., the Z value described above
- a method of performing CSI reporting of the UE may be considered. That is, the CSI report may be set in consideration of various processing times that such a terminal may be required to perform the CSI report.
- multiple CSI report offset values may be supported in case of aperiodic CSI reporting.
- the Y value may be supported at least values such as 0, 1, 2, 3, and 4. In this case, the Y value may be set by the network.
- the CSI reporting offset that can be supported (or applicable) for CSI reporting may be set differently.
- the transmission type of the CSI-RS means a periodic CSI-RS transmission, a semi-persistent CSI-RS transmission, an aperiodic CSI-RS transmission, and the like as described above. can do.
- the CSI report offset is set to a '0' value
- the time interval from the reception of the DCI triggering the CSI report to the time to perform the actual CSI report is '0' (or the smallest of the Y values that can be set) Value).
- the previous slot may mean a slot located before the slot in which the DCI indicating the CSI report is transmitted.
- the CSI reporting offset may be set to a value of '0'. That is, during aperiodic CSI-RS transmission, the UE may be configured not to expect the CSI report offset (Y value) to be set to '0'.
- the number of symbols (eg, OFDM symbols) constituting one slot may vary.
- one slot may consist of fourteen OFDM symbols, seven OFDM symbols, or two OFDM symbols. If a small number of symbols is set, the corresponding slot may be referred to as a mini-slot.
- various slot types eg, 14 symbol slot types, 7 symbol slot types, etc. may be set according to different numbers of OFDM symbols constituting one slot.
- a method of separately setting the allowed condition or the allowed condition for each CSI report offset value may be considered according to the slot type.
- the allowable condition or the disallowed condition may be a CSI parameter, a CSI codebook type, the number of CSI-RS antenna ports, and the like for each Y value.
- the range of supportable Y values may be defined differently according to each slot type. At this time, the smaller the number of symbols constituting the slot, the greater the minimum value and / or maximum value of the Y value can be defined.
- a separate non-permit condition may be additionally set.
- type 2 feedback e.g. CSI Type 2, linear combining codebook based feedback, covariance matrix feedback, eigen value / vector feedback, channel coefficient quantized feedback, etc.
- type 2 feedback e.g. CSI Type 2, linear combining codebook based feedback, covariance matrix feedback, eigen value / vector feedback, channel coefficient quantized feedback, etc.
- CSI Type 2 feedback e.g. CSI Type 2, linear combining codebook based feedback, covariance matrix feedback, eigen value / vector feedback, channel coefficient quantized feedback, etc.
- FIG. 13 is a flowchart illustrating an operation of a base station associated with a procedure for measuring and reporting CSI to which a method proposed in this specification may be applied. 13 is merely for convenience of description and does not limit the scope of the present invention.
- the terminal and the base station perform a CSI measurement procedure and a reporting procedure based on the above-described CSI framework.
- the above-described methods are used independently or in combination with each other.
- operations of the base station and the terminal described in FIG. 13 may be set to be performed based on the method proposed in the fifth embodiment.
- the base station may transmit CSI reporting setting information related to CSI reporting to the terminal.
- the CSI beam setting information may include information (eg, the Y value described above) indicating a time offset for CSI reporting.
- the time offset for the CSI report may mean a time interval between when the UE receives control information for triggering the CSI report and when the CSI report is transmitted (that is, the CSI report time).
- the base station may transmit a channel state information reference signal (CSI-Reference Signal, CSI-RS) to the terminal.
- CSI-RS channel state information reference signal
- the base station may transmit control information for triggering (or activating / deactivating) CSI reporting.
- the CSI-RS may be transmitted in a specific slot located before the slot in which control information triggering the CSI report is transmitted.
- step S1310 is shown to be performed before step S1315, but step S1310 and step S1315 may be performed simultaneously, or step S1315 may be performed first and step S1310 may be performed.
- the base station may receive a CSI report generated based on the measurement for the CSI-RS from the terminal.
- the information indicating the time offset for the CSI report may be set differently for each slot type as described above.
- the aforementioned schemes may be equally or similarly applied to general beam reporting (eg, CRI, SSB-ID and / or L1-RSRP based beam reporting) as well as CSI reporting.
- general beam reporting eg, CRI, SSB-ID and / or L1-RSRP based beam reporting
- FIG. 14 is a block diagram of a wireless communication device according to one embodiment of the present invention.
- a wireless communication system includes a base station (or network) 1410 and a terminal 1420.
- the base station 1410 includes a processor 1411, a memory 1412, and a communication module 1413.
- the processor 1411 implements the functions, processes, and / or methods proposed in FIGS. 1 to 13. Layers of the wired / wireless interface protocol may be implemented by the processor 1411.
- the memory 1412 is connected to the processor 1411 and stores various information for driving the processor 1411.
- the communication module 1413 is connected to the processor 1411 to transmit and / or receive wired / wireless signals.
- the communication module 1413 may include an RF unit for transmitting / receiving a radio signal.
- the terminal 1420 includes a processor 1421, a memory 1422, and a communication module (or RF unit) 1423.
- the processor 1421 implements the functions, processes, and / or methods proposed in FIGS. 1 to 13. Layers of the air interface protocol may be implemented by the processor 1421.
- the memory 1422 is connected to the processor 1421 and stores various information for driving the processor 1421.
- the communication module 1423 is connected with the processor 1421 to transmit and / or receive a radio signal.
- the memories 1412 and 1422 may be inside or outside the processors 1411 and 1421, and may be connected to the processors 1411 and 1421 through various well-known means.
- the base station 1410 and / or the terminal 1420 may have a single antenna or multiple antennas.
- 15 is a block diagram illustrating a communication device according to one embodiment of the present invention.
- FIG. 15 illustrates the terminal of FIG. 14 in more detail.
- a terminal may include a processor (or a digital signal processor (DSP) 1510, an RF module (or an RF unit) 1535, and a power management module 1505). ), Antenna 1540, battery 1555, display 1515, keypad 1520, memory 1530, SIM card Subscriber Identification Module card) 1525 (this configuration is optional), speaker 1545, and microphone 1550.
- the terminal may also include a single antenna or multiple antennas. Can be.
- the processor 1510 implements the functions, processes, and / or methods proposed in FIGS. 1 to 13.
- the layer of the air interface protocol may be implemented by the processor 1510.
- the memory 1530 is connected to the processor 1510 and stores information related to the operation of the processor 1510.
- the memory 1530 may be inside or outside the processor 1510 and may be connected to the processor 1510 by various well-known means.
- the processor 1510 receives the command information, processes the telephone number, and performs a proper function. Operational data may be extracted from the SIM card 1525 or the memory 1530. In addition, the processor 1510 may display command information or driving information on the display 1515 for the user to recognize and for convenience.
- the RF module 1535 is connected to the processor 1510 to transmit and / or receive an RF signal.
- the processor 1510 transmits command information to the RF module 1535 to transmit a radio signal constituting voice communication data, for example, to initiate communication.
- the RF module 1535 is composed of a receiver and a transmitter for receiving and transmitting a radio signal.
- the antenna 1540 functions to transmit and receive wireless signals. Upon receiving the wireless signal, the RF module 1535 may forward the signal and convert the signal to baseband for processing by the processor 1510. The processed signal may be converted into audible or readable information output through the speaker 1545.
- Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
- an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
- ASICs application specific integrated circuits
- DSPs digital signal processors
- DSPDs digital signal processing devices
- PLDs programmable logic devices
- FPGAs field programmable gate arrays
- an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
- the software code may be stored in memory and driven by the processor.
- the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.
- the method for measuring and reporting channel state information in the wireless communication system of the present invention has been described with reference to the example applied to the 3GPP LTE / LTE-A system and 5G, but can be applied to various wireless communication systems.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
본 명세서는 무선 통신 시스템에서 채널 상태 정보(Channel State Information, CSI)를 측정 및 보고하는 방법 및 이를 위한 장치를 제공한다. 구체적으로, 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법에 있어서, 기지국에 의해 수행되는 방법은, 단말로 CSI 보고와 관련된 CSI 보고 설정 정보를 전송하는 과정과, 상기 CSI 보고 설정 정보는, 상기 CSI 보고를 위한 시간 오프셋을 나타내는 정보를 포함하고, 상기 단말로 채널 상태 정보 참조 신호(CSI-RS)를 전송하는 과정과, 상기 단말로 상기 CSI 보고를 트리거링하는 제어 정보를 전송하는 과정과, 상기 단말로부터 상기 CSI-RS에 대한 측정에 기반하여 생성된 CSI 보고를 수신하는 과정을 포함할 수 있다. 여기에서, 상기 CSI 보고를 위한 시간 오프셋을 나타내는 정보가 '0' 값으로 설정되는 경우, 상기 CSI-RS는 주기적 또는 반-지속적으로 전송될 수 있다.
Description
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 채널 상태 정보(Channel State Information, CSI)를 측정 및 보고하기 위한 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 CSI 프레임워크(CSI framework)에 기반하여 CSI를 측정 및 보고하는 방법 및 이를 위한 장치를 제안한다.
이와 관련하여, 본 명세서는, CSI-RS의 전송 시점과 CSI 보고 시점을 고려하여 설정된 시간 간격(time gap)을 이용하여, CSI 보고를 위한 추정 값을 산출하는 방법을 제안한다.
또한, 본 명세서는, 단말에 대해 설정된 측정 제한(measurement restriction) 여부를 구분하여 CSI 보고를 위한 추정 값을 산출하는 방법을 제안한다.
또한, 본 명세서는, CSI 보고와 관련된 오프셋(예: 비주기적 CSI 보고 오프셋)을 설정하는 방법을 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시 예에 따른 무선 통신 시스템에서 채널 상태 정보(Channel State Information, CSI)를 보고하는(reporting) 방법에 있어서, 기지국에 의해 수행되는 방법은, 단말로, CSI 보고와 관련된 CSI 보고 설정 정보(CSI reporting setting information)를 전송하는 과정과, 상기 CSI 보고 설정 정보는, 상기 CSI 보고를 위한 시간 오프셋을 나타내는 정보를 포함하고, 상기 단말로, 채널 상태 정보 참조 신호(CSI-Reference Signal, CSI-RS)를 전송하는 과정과, 상기 단말로, 상기 CSI 보고를 트리거링하는 제어 정보(control information)를 전송하는 과정과, 상기 단말로부터, 상기 CSI-RS에 대한 측정에 기반하여 생성된 CSI 보고를 수신하는 과정을 포함하고, 상기 CSI 보고를 위한 시간 오프셋을 나타내는 정보가 '0' 값으로 설정되는 경우, 상기 CSI-RS는 주기적(periodic) 또는 반-지속적(semi-persistent)으로 전송될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 CSI 보고를 위한 시간 오프셋은, 상기 단말이 상기 CSI 보고를 트리거링하는 제어 정보를 수신하는 시점과 상기 CSI 보고를 전송하는 시점 간의 시간 간격일 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 CSI-RS는, 상기 CSI 보고를 트리거링하는 제어 정보(control information)가 전송되는 슬롯 이전에 위치하는 특정 슬롯에서 전송될 수 있다. 이 때, 상기 CSI-RS에 대한 측정은, 상기 단말이 상기 CSI 보고를 트리거링하는 제어 정보(control information)를 수신하기 이전에 수행될 수 있다.
또한, 본 발명의 실시 예에 따른 상기 방법에 있어서, 상기 CSI 보고를 위한 시간 오프셋을 나타내는 정보는, 슬롯 유형(slot type) 별로 설정되며, 상기 슬롯 유형은, 하나의 슬롯을 구성하는 심볼의 수에 따라 설정될 수 있다. 예를 들어, M 개의 심볼로 구성된 슬롯 유형에서의 CSI 보고를 위한 시간 오프셋을 나타내는 정보 'k'에 대한 설정은, N 개의 심볼로 구성된 N 심볼 슬롯 유형에서의 CSI 보고를 위한 시간 오프셋을 나타내는 정보 'M/N*k'에 대한 설정에 해당할 수 있다.
본 발명의 실시 예에 따른 무선 통신 시스템에서 채널 상태 정보(Channel State Information, CSI)를 보고(reporting) 받는 기지국에 있어서, 상기 기지국은 무선 신호를 송수신하기 위한 RF 모듈(radio frequency module) 및 상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는, 단말로, CSI 보고와 관련된 CSI 보고 설정 정보(CSI reporting setting information)를 전송하고, 상기 CSI 보고 설정 정보는, 상기 CSI 보고를 위한 시간 오프셋을 나타내는 정보를 포함하고, 상기 단말로, 채널 상태 정보 참조 신호(CSI-Reference Signal, CSI-RS)를 전송하고, 상기 단말로, 상기 CSI 보고를 트리거링하는 제어 정보(control information)를 전송하고, 상기 단말로부터, 상기 CSI-RS에 대한 측정에 기반하여 생성된 CSI 보고를 수신하도록 제어하며, 상기 CSI 보고를 위한 시간 오프셋을 나타내는 정보가 '0' 값으로 설정되는 경우, 상기 CSI-RS는 주기적(periodic) 또는 반-지속적(semi-persistent)으로 전송될 수 있다.
본 발명의 실시 예에 따른 무선 통신 시스템에서 단말이 채널 상태 정보(Channel State Information, CSI)를 보고하는(reporting) 방법에 있어서, 기지국으로부터, CSI 보고와 관련된 CSI 보고 설정 정보(CSI reporting setting information)를 수신하는 과정과, 상기 CSI 보고 설정 정보는, 상기 CSI 보고를 위한 시간 오프셋을 나타내는 정보를 포함하고, 상기 기지국으로부터, 채널 상태 정보 참조 신호(CSI-Reference Signal, CSI-RS)를 수신하는 과정과, 상기 기지국으로부터, 상기 CSI 보고를 트리거링하는 제어 정보(control information)를 수신하는 과정과, 상기 기지국으로, 상기 CSI-RS에 대한 측정에 기반하여 생성된 CSI를 보고하는 과정을 포함하고, 상기 CSI 보고를 위한 시간 오프셋을 나타내는 정보가 '0' 값으로 설정되는 경우, 상기 CSI-RS는 주기적(periodic) 또는 반-지속적(semi-persistent)으로 전송될 수 있다.
본 발명의 실시 예에 따르면, 단말 별로(예: 단말 능력에 따라) CSI 보고의 측정 값을 산출하기 위한 시간 간격(time gap)을 설정함에 따라, 획일화되지 않은 유연한 CSI 측정 및 보고가 수행될 수 있는 효과가 있다.
또한, 본 발명의 실시 예에 따르면, 단말의 CSI 산출 능력을 고려하여 CSI 측정 및 보고를 수행함에 따라, 해당 단말에 허용되는 가장 최근의 채널 추정 값 또는 간섭 추정 값을 산출할 수 있는 효과가 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸 도이다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
도 5는 본 명세서에서 제안하는 방법이 적용될 수 있는 self-contained slot 구조의 일례를 나타낸 도이다.
도 6은 본 명세서에서 제안하는 방법이 적용될 수 있는 TXRU와 안테나 element의 연결 방식의 일례들을 나타낸다.
도 7은 본 명세서에서 제안하는 방법이 적용될 수 있는 TXRU 별 서비스 영역의 다양한 일례들을 나타낸다.
도 8은 본 명세서에서 제안하는 방법이 적용될 수 있는 2 차원 평면 어레이 구조를 이용하는 MIMO 시스템의 일 예를 나타낸다.
도 9는 본 명세서에서 제안하는 방법이 적용될 수 있는 NR 시스템에서 고려되는 CSI 프레임워크(CSI framework)의 일 예를 나타낸다.
도 10은 본 명세서에서 제안하는 방법이 적용될 수 있는 CSI 측정 및 보고를 수행하는 방법의 일 예를 나타낸다.
도 11은 본 명세서에서 제안하는 방법이 적용될 수 있는 CSI 측정 및 보고를 수행하는 방법의 다른 예를 나타낸다.
도 12는 본 명세서에서 제안하는 방법이 적용될 수 있는 CSI 측정 및 보고를 수행하는 방법의 또 다른 예를 나타낸다.
도 13은 본 명세서에서 제안하는 방법이 적용될 수 있는 CSI를 측정 및 보고하는 절차와 관련된 기지국의 동작 순서도를 나타낸다.
도 14은 본 발명의 일 실시 예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 15는 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 통상의 기술자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), gNB(next generation NB, general NB, gNodeB) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시 예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시 예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A/NR(New RAT)를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
용어 정의
eLTE eNB: eLTE eNB는 EPC 및 NGC에 대한 연결을 지원하는 eNB의 진화(evolution)이다.
gNB: NGC와의 연결뿐만 아니라 NR을 지원하는 노드.
새로운 RAN: NR 또는 E-UTRA를 지원하거나 NGC와 상호 작용하는 무선 액세스 네트워크.
네트워크 슬라이스(network slice): 네트워크 슬라이스는 종단 간 범위와 함께 특정 요구 사항을 요구하는 특정 시장 시나리오에 대해 최적화된 솔루션을 제공하도록 operator에 의해 정의된 네트워크.
네트워크 기능(network function): 네트워크 기능은 잘 정의된 외부 인터페이스와 잘 정의된 기능적 동작을 가진 네트워크 인프라 내에서의 논리적 노드.
NG-C: 새로운 RAN과 NGC 사이의 NG2 레퍼런스 포인트(reference point)에 사용되는 제어 평면 인터페이스.
NG-U: 새로운 RAN과 NGC 사이의 NG3 레퍼런스 포인트(reference point)에 사용되는 사용자 평면 인터페이스.
비 독립형(Non-standalone) NR: gNB가 LTE eNB를 EPC로 제어 플레인 연결을 위한 앵커로 요구하거나 또는 eLTE eNB를 NGC로 제어 플레인 연결을 위한 앵커로 요구하는 배치 구성.
비 독립형 E-UTRA: eLTE eNB가 NGC로 제어 플레인 연결을 위한 앵커로 gNB를 요구하는 배치 구성.
사용자 평면 게이트웨이: NG-U 인터페이스의 종단점.
시스템 일반
도 1은 본 명세서에서 제안하는 방법이 적용될 수 있는 NR의 전체적인 시스템 구조의 일례를 나타낸 도이다.
도 1을 참조하면, NG-RAN은 NG-RA 사용자 평면(새로운 AS sublayer/PDCP/RLC/MAC/PHY) 및 UE(User Equipment)에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다.
상기 gNB는 Xn 인터페이스를 통해 상호 연결된다.
상기 gNB는 또한, NG 인터페이스를 통해 NGC로 연결된다.
보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF (Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF (User Plane Function)로 연결된다.
NR(New Rat) 뉴머롤로지(Numerology) 및 프레임(frame) 구조
NR 시스템에서는 다수의 뉴머롤로지(numerology)들이 지원될 수 있다. 여기에서, 뉴머롤로지는 서브캐리어 간격(subcarrier spacing)과 CP(Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 서브캐리어 간격은 기본 서브캐리어 간격을 정수 N(또는, )으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 뉴머롤로지는 주파수 대역과 독립적으로 선택될 수 있다.
또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 OFDM(Orthogonal Frequency Division Multiplexing) 뉴머롤로지 및 프레임 구조를 살펴본다.
NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1과 같이 정의될 수 있다.
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는 의 시간 단위의 배수로 표현된다. 여기에서, 이고, 이다. 하향링크(downlink) 및 상향링크(uplink) 전송은 의 구간을 가지는 무선 프레임(radio frame)으로 구성된다. 여기에서, 무선 프레임은 각각 의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다.
도 2는 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 상향링크 프레임과 하향링크 프레임 간의 관계를 나타낸다.
도 2에 나타난 것과 같이, 단말(User Equipment, UE)로 부터의 상향링크 프레임 번호 i의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다 이전에 시작해야 한다.
뉴머롤로지 에 대하여, 슬롯(slot)들은 서브프레임 내에서 의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서 의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은 의 연속하는 OFDM 심볼들로 구성되고, 는, 이용되는 뉴머롤로지 및 슬롯 설정(slot configuration)에 따라 결정된다. 서브프레임에서 슬롯 의 시작은 동일 서브프레임에서 OFDM 심볼 의 시작과 시간적으로 정렬된다.
모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다.
표 2는 뉴머롤로지 에서의 일반(normal) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타내고, 표 3은 뉴머롤로지 에서의 확장(extended) CP에 대한 슬롯 당 OFDM 심볼의 수를 나타낸다.
NR 물리 자원(NR Physical Resource)
NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다.
이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 추론될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기에서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일 예를 나타낸다.
도 3을 참고하면, 자원 그리드가 주파수 영역 상으로 서브캐리어들로 구성되고, 하나의 서브프레임이 14 x 2u OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
NR 시스템에서, 전송되는 신호(transmitted signal)는 서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및 의 OFDM 심볼들에 의해 설명된다. 여기에서, 이다. 상기 는 최대 전송 대역폭을 나타내고, 이는, 뉴머롤로지들뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다.
도 4는 본 명세서에서 제안하는 방법이 적용될 수 있는 안테나 포트 및 뉴머롤로지 별 자원 그리드의 예들을 나타낸다.
뉴머롤로지 및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍 에 의해 고유적으로 식별된다. 여기에서, 는 주파수 영역 상의 인덱스이고, 는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍 이 이용된다. 여기에서, 이다.
뉴머롤로지 및 안테나 포트 p에 대한 자원 요소 는 복소 값(complex value) 에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 뉴머롤로지가 특정되지 않은 경우에는, 인덱스들 p 및 는 드롭(drop)될 수 있으며, 그 결과 복소 값은 또는 이 될 수 있다.
또한, 물리 자원 블록(physical resource block)은 주파수 영역 상의 연속적인 서브캐리어들로 정의된다. 주파수 영역 상에서, 물리 자원 블록들은 0부터 까지 번호가 매겨진다. 이 때, 주파수 영역 상의 물리 자원 블록 번호(physical resource block number) 와 자원 요소들 간의 관계는 수학식 1과 같이 주어진다.
또한, 캐리어 파트(carrier part)와 관련하여, 단말은 자원 그리드의 서브셋(subset)만을 이용하여 수신 또는 전송하도록 설정될 수 있다. 이 때, 단말이 수신 또는 전송하도록 설정된 자원 블록의 집합(set)은 주파수 영역 상에서 0부터 까지 번호가 매겨진다.
빔 관리(Beam management)
NR에서 빔 관리는 다음과 같이 정의된다.
빔 관리(Beam management): DL 및 UL 송수신에 사용될 수 있는 TRP(들) 및/또는 UE 빔들의 세트(set)를 획득하고 유지하기 위한 L1/L2 절차들의 세트로서, 적어도 다음 사항들을 포함한다:
- 빔 결정: TRP (들) 또는 UE가 자신의 송신 / 수신 빔을 선택하는 동작.
- 빔 측정: TRP (들) 또는 UE가 수신된 빔 형성 신호의 특성을 측정하는 동작.
- 빔 보고: UE가 빔 측정에 기반하여 빔 형성된 신호의 정보를 보고하는 동작.
- 빔 스위핑 (Beam sweeping): 미리 결정된 방식으로 시간 간격 동안 송신 및 / 또는 수신된 빔을 이용하여 공간 영역을 커버하는 동작.
또한, TRP 및 UE에서의 Tx / Rx 빔 대응(correspondence)는 다음과 같이 정의된다.
- TRP에서의 Tx / Rx 빔 대응은 다음 중 적어도 하나가 충족되면 유지된다.
- TRP는 TRP의 하나 이상의 송신 빔에 대한 UE의 하향링크 측정에 기초하여 상향링크 수신을 위한 TRP 수신 빔을 결정할 수 있다.
- TRP는 TRP의 하나 이상의 Rx 빔들에 대한 TRP의 상향링크 측정에 기초하여 하향링크 전송에 대한 TRP Tx 빔을 결정할 수 있다.
- UE에서의 Tx / Rx 빔 대응은 다음 중 적어도 하나가 충족되면 유지된다.
- UE는 UE의 하나 이상의 Rx 빔에 대한 UE의 하향링크 측정에 기초하여 상향링크 전송을 위한 UE Tx 빔을 결정할 수 있다.
- UE는 하나 이상의 Tx 빔에 대한 상향링크 측정에 기초한 TRP의 지시에 기초하여 하향링크 수신을 위한 UE 수신 빔을 결정할 수 있다.
- TRP로 UE 빔 대응 관련 정보의 능력 지시가 지원된다.
다음과 같은 DL L1 / L2 빔 관리 절차가 하나 또는 다수의 TRP들 내에서 지원된다.
P-1: TRP Tx 빔 / UE Rx 빔 (들)의 선택을 지원하기 위해 상이한 TRP Tx 빔에 대한 UE 측정을 가능하게 하기 위해 사용된다.
- TRP에서의 빔포밍의 경우 일반적으로 서로 다른 빔 세트에서 인트라(intra)/인터(inter)-TRP Tx 빔 스윕(sweep)을 포함한다. UE에서의 빔포밍을 위해, 그것은 통상적으로 상이한 빔들의 세트로부터의 UE Rx 빔 sweep를 포함한다.
P-2: 상이한 TRP Tx 빔에 대한 UE 측정이 인터/인트라-TRP Tx 빔(들)을 변경하도록 하기 위해 사용된다.
P-3: UE가 빔 포밍을 사용하는 경우에 동일한 TRP Tx 빔에 대한 UE 측정이 UE Rx 빔을 변경시키는데 사용된다.
적어도 네트워크에 의해 트리거된 비주기적 보고(apreiodic reporting)는 P-1, P-2 및 P-3 관련 동작에서 지원된다.
빔 관리 (적어도 CSI-RS)를 위한 RS에 기초한 UE 측정은 K (빔의 총 개수) 빔으로 구성되며, UE는 선택된 N개의 Tx 빔들의 측정 결과를 보고한다. 여기서, N은 반드시 고정된 수는 아니다. 이동성 목적을 위한 RS에 기반한 절차는 배제되지 않는다. 보고 정보는 적어도 N <K 인 경우 N 개의 빔 (들)에 대한 측정량 및 N 개의 DL 송신 빔을 나타내는 정보를 포함한다. 특히, UE가 K'> 1 논-제로-파워 (NZP) CSI- RS 자원들에 대해, UE는 N'의 CRI (CSI-RS 자원 지시자)를 보고 할 수 있다.
UE는 빔 관리를 위해 다음과 같은 상위 계층 파라미터(higher layer parameter)들로 설정될 수 있다.
- N≥1 보고 설정(setting), M≥1 자원 설정
- 보고 설정과 자원 설정 간의 링크들은 합의된 CSI 측정 설정에서 설정된다.
- CSI-RS 기반 P-1 및 P-2는 자원 및 보고 설정으로 지원된다.
- P-3은 보고 설정의 유무에 관계없이 지원될 수 있다.
- 적어도 이하 사항들을 포함하는 보고 설정(reporting setting)
*- 선택된 빔을 나타내는 정보
- L1 측정 보고(L1 measurement reporting)
- 시간 영역 동작(예: 비주기적(aperiodic) 동작, 주기적(periodic) 동작, 반-지속적(semi-persistent) 동작)
- 여러 주파수 세분성(frequency granularity)이 지원되는 경우의 주파수 세분성
- 적어도 이하 사항들을 포함하는 리소스 설정(resource setting)
- 시간 영역 동작(예: 비주기적 동작, 주기적 동작, 반-지속적 동작)
- RS 유형: 적어도 NZP CSI-RS
- 적어도 하나의 CSI-RS 자원 세트. 각 CSI-RS 자원 세트는 K≥1 CSI-RS 자원들을 포함(K개의 CSI-RS 자원들의 일부 파라미터들은 동일할 수 있다. 예를 들어, 포트 번호, 시간 영역 동작, 밀도 및 주기)
또한, NR은 L> 1 인 L 그룹을 고려하여 다음 빔 보고를 지원한다.
- 최소한의 그룹을 나타내는 정보
- N1 빔에 대한 측정량(measurement quantity)(L1 RSRP 및 CSI 보고 지원 (CSI-RS가 CSI 획득을 위한 경우))
- 적용 가능한 경우, Nl개의 DL 송신 빔을 나타내는 정보
상술한 바와 같은 그룹 기반의 빔 보고는 UE 단위로 구성할 수 있다. 또한, 상기 그룹 기반의 빔 보고는 UE 단위로 턴-오프(turn-off) 될 수 있다(예를 들어, L = 1 또는 Nl = 1인 경우).
NR은 UE가 빔 실패로부터 복구하는 메커니즘을 트리거할 수 있음을 지원한다.
빔 실패(beam failure) 이벤트는 연관된 제어 채널의 빔 쌍 링크(beam pair link)의 품질이 충분히 낮을 때 발생한다(예를 들어 임계 값과의 비교, 연관된 타이머의 타임 아웃). 빔 실패(또는 장애)로부터 복구하는 메커니즘은 빔 장애가 발생할 때 트리거된다.
네트워크는 복구 목적으로 UL 신호를 전송하기 위한 자원을 갖는 UE에 명시적으로 구성한다. 자원들의 구성은 기지국이 전체 또는 일부 방향으로부터(예를 들어, random access region) 청취(listening)하는 곳에서 지원된다.
빔 장애를 보고하는 UL 송신/자원은 PRACH (PRACH 자원에 직교하는 자원)와 동일한 시간 인스턴스(instance)에 또는 PRACH와 다른 시간 인스턴스(UE에 대해 구성 가능)에 위치할 수 있다. DL 신호의 송신은 UE가 새로운 잠재적인 빔들을 식별하기 위해 빔을 모니터할 수 있도록 지원된다.
NR은 빔 관련 지시(beam-related indication)에 관계 없이 빔 관리를 지원한다. 빔 관련 지시가 제공되는 경우, CSI-RS 기반 측정을 위해 사용된 UE 측 빔 형성 / 수신 절차에 관한 정보는 QCL을 통해 UE에 지시될 수 있다. NR에서 지원할 QCL 파라미터로는 LTE시스템에서 사용하던 delay, Doppler, average gain등에 대한 파라미터 뿐만 아니라 수신단에서의 빔포밍을 위한 공간 파라미터가 추가될 예정이며, 단말 수신 빔포밍 관점에서 angle of arrival 관련 파라미터 및/또는 기지국 수신 빔포밍 관점에서 angle of departure 관련 파라미터들이 포함될 수 있다. NR은 제어 채널 및 해당 데이터 채널 전송에서 동일하거나 다른 빔을 사용하는 것을 지원한다.
빔 쌍 링크 블로킹(beam pair link blocking)에 대한 견고성(robustness)를 지원하는 NR-PDCCH 전송을 위해, UE는 동시에 M개의 빔 쌍 링크상에서 NR-PDCCH를 모니터링하도록 구성될 수 있다. 여기서, M=1 및 M의 최대값은 적어도 UE 능력에 의존할 수 있다.
UE는 상이한 NR-PDCCH OFDM 심볼들에서 상이한 빔 쌍 링크(들)상의 NR-PDCCH를 모니터링하도록 구성될 수 있다. 다수의 빔 쌍 링크들 상에서 NR-PDCCH를 모니터링하기 위한 UE Rx 빔 설정과 관련된 파라미터는 상위 계층 시그널링 또는 MAC CE에 의해 구성되거나 및 / 또는 탐색 공간 설계에서 고려된다.
적어도, NR은 DL RS 안테나 포트(들)과 DL 제어 채널의 복조를 위한 DL RS 안테나 포트(들) 사이의 공간 QCL 가정의 지시를 지원한다. NR-PDCCH(즉, NR-PDCCH를 모니터링하는 구성 방법)에 대한 빔 지시를 위한 후보 시그널링 방법은 MAC CE 시그널링, RRC 시그널링, DCI 시그널링, 스펙 transparent 및/또는 암시적 방법, 및 이들 시그널링 방법의 조합이다.
유니 캐스트 DL 데이터 채널의 수신을 위해, NR은 DL RS 안테나 포트와 DL 데이터 채널의 DMRS 안테나 포트 사이의 공간 QCL 가정의 지시를 지원한다.
RS 안테나 포트를 나타내는 정보는 DCI (다운 링크 허가)를 통해 표시된다. 또한, 이 정보는 DMRS 안테나 포트와 QCL 되어 있는 RS 안테나 포트를 나타낸다. DL 데이터 채널에 대한 DMRS 안테나 포트의 상이한 세트는 RS 안테나 포트의 다른 세트와 QCL로서 나타낼 수 있다.
이하, 본 명세서에서 제안하는 방법들을 구체적으로 설명하기에 앞서 본 명세서에서 제안하는 방법들과 직/간접적으로 관련된 내용들에 대해 먼저 간략히 살펴보기로 한다.
5G, New Rat(NR) 등 차세대 통신에서는, 더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 radio access technology(RAT)에 비해 향상된 mobile broadband 통신에 대한 필요성이 대두되고 있다.
또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC (Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다.
뿐만 아니라, 신뢰성(reliability) 및 지연(latency)에 민감한 서비스 및/또는 단말(UE)를 고려한 통신 시스템의 디자인 또는 구조가 논의되고 있다.
이와 같이, enhanced mobile broadband(eMBB) communication, massive MTC(mMTC), URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 radio access technology(RAT)의 도입이 현재 논의되고 있으며, 본 명세서에서는 편의상 해당 technology를 'new RAT(NR)'로 통칭하기로 한다.
Self-contained 슬롯 구조
TDD 시스템에서 데이터 전송의 latency를 최소화하기 위하여 5세대 New RAT(NR)에서는 도 5와 같은 self-contained slot structure를 고려하고 있다.
즉, 도 5는 본 명세서에서 제안하는 방법이 적용될 수 있는 self-contained slot 구조의 일례를 나타낸 도이다.
도 5에서, 빗금 친 영역(510)은 하향링크 제어(downlink control) 영역을 나타내고, 검정색 부분(520)은 상향링크 제어(uplink control) 영역을 나타낸다.
아무런 표시가 없는 부분(530)은 downlink data 전송을 위해 사용될 수도 있고, uplink data 전송을 위해 사용될 수도 있다.
이러한 구조의 특징은 한 개의 slot 내에서 DL 전송과 UL 전송이 순차적으로 진행되고, 하나의 slot 내에서 DL data를 보내고, UL Ack/Nack도 송수신할 수 있다.
이와 같은 slot을 'self-contained slot'이라고 정의할 수 있다.
즉, 이러한 slot 구조를 통해서, 기지국은 데이터 전송 에러 발생시에 단말로 데이터 재전송까지 걸리는 시간을 줄이게 되며, 이로 인해 최종 데이터 전달의 latency를 최소화할 수 있다.
이러한 self-contained slot 구조에서, 기지국과 단말은 송신 모드에서 수신모드로 전환하는 과정 또는 수신모드에서 송신모드로 전환하는 과정을 위한 시간 간격(time gap)이 필요하다.
이를 위하여 해당 slot 구조에서, DL에서 UL로 전환되는 시점의 일부 OFDM symbol이 보호 구간(guard period, GP)로 설정된다.
아날로그 빔포밍(Analog beamforming)
밀리미터 웨이브(Millimeter Wave, mmW)에서는 파장이 짧아져서 동일 면적에 다수 개의 안테나 element들의 설치가 가능해 진다.
즉, 30GHz 대역에서 파장은 1cm로써 4 x 4cm의 패널(panel)에 0.5 lambda(파장) 간격으로 2-dimension 배열 형태로 총 64(8x8)개의 안테나 element 설치가 가능하다.
그러므로, mmW에서는 다수 개의 안테나 element를 사용하여 beamforming(BF) 이득을 높여 커버리지를 증가시키거나, throughput을 높이려고 한다.
이 경우에 안테나 element 별로 전송 파워 및 위상 조절이 가능하도록 TXRU(Transceiver Unit)을 가지면 주파수 자원 별로 독립적인 beamforming이 가능하다.
그러나, 약 100개의 안테나 element 모두에 TXRU를 설치하기에는 가격측면에서 실효성이 떨어지는 문제를 갖게 된다.
그러므로, 하나의 TXRU에 다수 개의 안테나 element를 mapping하고 아날로그 위상 천이기(analog phase shifter)로 beam의 방향을 조절하는 방식이 고려되고 있다.
이러한 analog beamforming 방식은 전 대역에 있어서 하나의 beam 방향만을 만들 수 있어 주파수 선택적 beamforming을 해줄 수 없는 단점을 갖는다.
이러한 이유로 인해, Digital BF와 analog BF의 중간 형태로 Q개의 안테나 element보다 적은 개수인 B개의 TXRU를 갖는 hybrid BF(HBF)를 고려할 수 있다.
HBF는 B개의 TXRU와 Q개의 안테나 element의 연결 방식에 따라서 차이는 있지만, 동시에 전송할 수 있는 beam의 방향은 B개 이하로 제한되게 된다.
도 6은 본 명세서에서 제안하는 방법이 적용될 수 있는 TXRU와 안테나 element의 연결 방식의 일례들을 나타낸다.
여기서, TXRU 가상화(virtualization) 모델은 TXRU의 출력 signal과 antenna elements의 출력 signal의 관계를 나타낸다.
도 6의 (a)는 TXRU가 sub-array에 연결된 방식의 일례를 나타낸다.
도 6의 (a)를 참고하면, 안테나 element는 하나의 TXRU에만 연결된다. 도 6의 (a)와 달리 도 6의 (b)는 TXRU가 모든 안테나 element에 연결된 방식을 나타낸다.
즉, 도 6의 (b)의 경우, 안테나 element는 모든 TXRU에 연결된다.
도 6에서, W는 analog phase shifter에 의해 곱해지는 위상 벡터를 나타낸다.
즉, W에 의해 analog beamforming의 방향이 결정된다. 여기서, CSI-RS antenna ports와 TXRU들과의 mapping은 1-to-1 또는 1-to-many 일 수 있다.
CSI feedback
3GPP LTE(-A) 시스템에서는, 사용자 기기(UE)가 채널상태정보(CSI)를 기지국(BS)으로 보고하도록 정의되어 있다.
여기서, 채널상태정보(CSI)라 함은 UE와 안테나 포트 사이에 형성되는 무선 채널(혹은 '링크'라고도 함)의 품질을 나타낼 수 있는 정보를 통칭한다.
예를 들어, 랭크 지시자(rank indicator, RI), 프리코딩행렬 지시자(precoding matrix indicator, PMI), 채널품질지시자(channel quality indicator, CQI) 등이 이에 해당한다.
여기서, RI는 채널의 랭크(rank) 정보를 나타내며, 이는 UE가 동일 시간-주파수 자원을 통해 수신하는 스트림의 개수를 의미한다. 이 값은 채널의 롱 텀 페이딩(fading)에 의해 종속되어 결정되므로, PMI, CQI보다 보통 더 긴 주기를 가지고 UE에서 BS로 피드백된다.
PMI는 채널 공간 특성을 반영한 값으로, SINR 등의 메트릭(metric)을 기준으로 UE가 선호하는 프리코딩 인덱스를 나타낸다.
CQI는 채널의 세기를 나타내는 값으로, 일반적으로 기지국(BS)가 PMI를 이용했을 때 얻을 수 있는 수신 SINR을 의미한다.
3GPP LTE(-A) 시스템에서 기지국은 다수개의 CSI 프로세스를 UE에게 설정해 주고, 각 프로세스에 대한 CSI를 보고 받을 수 있다.
여기서, CSI 프로세스는 기지국으로부터의 신호 품질 특정을 위한 CSI-RS와 간섭 측정을 위한 CSI-interference measurement (CSI-IM) 자원으로 구성된다.
참조 신호 가상화(RS virtualization)
mmW에서 analog beamforming에 의해 한 시점에 하나의 analog beam 방향으로만 PDSCH 전송이 가능하다.
그러므로, 기지국은 특정 방향에 있는 일부 소수의 UE에게만 데이터를 전송하게 된다.
따라서, 필요에 따라서 안테나 포트별로 analog beam 방향을 다르게 설정하여 여러 analog beam 방향에 있는 다수의 UE들에게 동시에 데이터 전송을 수행할 수 있도록 한다.
도 7은 본 명세서에서 제안하는 방법이 적용될 수 있는 TXRU 별 서비스 영역의 다양한 일례들을 나타낸다.
도 7의 경우, 256 antenna element를 4등분하여 4개의 sub-array를 형성하고, 각 sub-array에 TXRU를 연결한 구조에 관한 것으로 이를 예로 들어 설명한다.
각 sub-array가 2-dimension 배열 형태로 총 64(8x8)의 안테나 element로 구성되면, 특정 analog beamforming에 의해 15도의 수평각 영역과 15도의 수직각 영역에 해당하는 지역을 커버할 수 있게 된다.
즉, 기지국이 서비스해야 되는 지역을 다수 개의 영역으로 나누어, 한번에 하나씩 서비스 하게 된다.
이하의 설명에서 CSI-RS antenna port와 TXRU는 1-to-1 mapping되었다고 가정한다.
따라서, antenna port와 TXRU는 이하의 설명에서 같은 의미를 갖는 것으로 해석될 수 있다.
도 7의 (a)와 같이, 모든 TXRU(안테나 포트, sub-array)가 동일 analog beamforming 방향을 가지면, 더 높은 resolution을 갖는 digital beam을 형성하여 해당 지역의 throughput을 증가시킬 수 있다.
또한, 해당 지역으로 전송 데이터의 랭크(rank)를 증가시켜 해당 지역의 throughput을 증가시킬 수 있다.
또한, 도 7의 (b)와 같이, 각 TXRU(안테나 포트, sub-array)가 다른 analog beamforming 방향을 가지면, 더 넓은 영역에 분포된 UE들에게 해당 subframe(SF)에서 동시에 데이터 전송이 가능해 진다.
도 7의 (b)에 도시된 바와 같이, 4개의 안테나 포트들 중에서 2개는 영역 1에 있는 UE1에게 PDSCH 전송을 위해 사용하고, 나머지 2개는 영역 2에 있는 UE2에게 PDSCH 전송을 위해 사용하도록 한다.
또한, 도 7의 (b)는 UE1에게 전송되는 PDSCH 1과 UE2에게 전송되는 PDSCH 2가 SDM(Spatial Division Multiplexing)된 예를 나타낸다.
이와 달리, 도 7의 (c)에서와 같이, UE1에게 전송되는 PDSCH 1과 UE2에게 전송되는 PDSCH 2가 FDM(Frequency Division Multiplexing)되어 전송될 수도 있다.
모든 안테나 포트를 사용하여 한 영역을 서비스 하는 방식과 안테나 포트들을 나누어 여러 영역을 동시에 서비스 하는 방식 중에서 cell throughput을 최대화(maximization)하기 위하여, UE에게 서비스하는 RANK 및 MCS에 따라서 선호되는 방식이 바뀔 수 있다.
또한, 각 UE에게 전송할 데이터의 양에 따라서도 선호되는 방식이 바뀌게 된다.
기지국은 모든 안테나 포트를 사용하여 한 영역을 서비스 할 때 얻을 수 있는 cell throughput 또는 scheduling metric을 계산하고, 안테나 포트를 나누어서 두 영역을 서비스 할 때 얻을 수 있는 cell throughput 또는 scheduling metric을 계산한다.
기지국은 각 방식을 통해 얻을 수 있는 cell throughput 또는 scheduling metric을 비교하여 최종 전송 방식을 선택하도록 한다.
결과적으로, SF-by-SF으로 PDSCH 전송에 참여하는 안테나 포트의 개수가 변동되게 된다.
기지국이 안테나 포트의 개수에 따른 PDSCH의 전송 MCS를 계산하고 scheduling 알고리즘에 반영하기 위하여, 이에 적합한 UE로부터의 CSI 피드백이 요구된다.
빔 참조 신호(beam reference signal, BRS)
빔 참조 신호(BRS)들은 하나 또는 그 이상의 안테나 포트들 p = {0, 1, ..., 7}에서 전송된다.
BRS의 시퀀스 생성과 관련하여, 참조 신호 시퀀스 rl(m)은 수학식 2에 의해 정의된다.
수학식 2에서, l은 0 내지 13으로, OFDM 심볼 번호를 나타낸다. 또한, c(i)는 의사-랜덤 시퀀스(pseudo-random sequence)를 의미하며, 의사-랜덤 시퀀스 생성기는 각 OFDM 심볼의 시작에서 수학식 3으로 초기화될 수 있다.
빔 조정 참조 신호(beam refinement reference signal)
또한, 빔 조정 참조 신호(beam refinement reference signal)와 관련하여, 빔 조정 참조 신호는 8 개의 안테나 포트들(p = 600 내지 607)까지의 안테나 포트를 통해 전송된다.
빔 조정 참조 신호의 시퀀스 생성과 관련하여, 참조 신호 rl,ns(m)은 수학식 4와 같이 생성된다.
수학식 4에서, ns는 무선 프레임 내의 슬롯 번호를 나타내고, l은 슬롯 내의 OFDM 심볼 번호를 나타낸다. c(n)은 의사-랜덤 시퀀스를 의미하며, 의사-랜덤 시퀀스 생성기는 각 OFDM 심볼의 시작에서 수학식 5로 초기화된다.
DL 위상 잡음 보상 참조 신호(DL Phase noise compensation reference signal)
xPDSCH(즉, NR 시스템에서 지원하는 PDSCH)와 연관된 위상 잡음 보상 참조 신호는 DCI 포맷에서의 시그널링을 통해 안테나 포트(들) p = 60 및/또는 p = 61에서 전송된다. 또한, 위상 잡음 보상 참조 신호는 해당 안테나 포트와 연관된 xPDSCH 전송에 대해서만 존재(present) 및/또는 유효(valid)하며, 해당 sPDSCH가 매핑된 물리 자원 블록들 및 심볼들에서만 전송된다. 또한, 위상 잡음 보상 참조 신호는 xPDSCH 할당에 해당하는 모든 심볼들에서 동일하다.
위상 잡음 보상 참조 신호의 시퀀스 생성과 관련하여, 참조 신호 시퀀스 r(m)은 수학식 6에 의해 정의된다.
수학식 6에서, c(i)는 의사-랜덤 시퀀스를 의미하며, 의사-랜덤 시퀀스 생성기는 각 서브프레임의 시작에서 수학식 7로 초기화된다.
수학식 7에서, xPDSCH 전송의 경우, nSCID는 xPDSCH 전송과 관련된 DCI 포맷에 의해 주어지며, 특별한 경우가 아니면 0으로 설정된다.
또한, 3D-MIMO(3-dimension multiple-input multiple-output) 또는 FD-MIMO(Full-dimension multiple-input multiple-output) 기술의 경우, 2 차원 평면 어레이 구조(2-dimensional planar array structure)를 갖는 능동 안테나 시스템(Active Antenna System, AAS)이 이용될 수 있다.
도 8은 본 명세서에서 제안하는 방법이 적용될 수 있는 2 차원 평면 어레이 구조를 이용하는 MIMO 시스템의 일 예를 나타낸다.
2 차원 평면 어레이 구조를 통해, 많은 수의 안테나 요소(antenna element)들이 가능한 기지국 형태의 요소들 내에서 패킹(packing)될 뿐만 아니라, 3 차원 공간에서의 적응적인 빔포밍(adaptive electronic) 능력을 제공할 수도 있다.
NR 시스템의 MIMO 설계와 관련하여, 기지국과 단말 간의 채널 상태 측정 및 보고를 위한 CSI 프레임워크(CSI framework)가 고려되고 있다.
본 명세서는, 이하 설명되는 CSI 프레임워크(또는 CSI 획득 프레임워크)에 기반한 CSI 보고 방법을 제안한다. 구체적으로, 본 명세서는, CSI 프레임워크의 CSI 보고 설정(CSI reporting setting)에 기반하여, CSI 측정(또는 추정)에 대한 측정 간격(또는 시점)을 결정하는 방법을 제안한다. 다시 말해, 본 명세서에서는, CSI 측정에 이용되는 CSI-RS(들) 및/또는 CSI 측정의 시간 구간(time gap)을 결정하는 방법이 설명된다.
또한, 본 명세서에서 제안하는 방법은 CSI 보고 방식을 기준으로 하여 설명되어 있지만, CSI 보고 방식뿐만 아니라 일반적인 빔 보고(beam reporting) 방식에도 공통적으로 적용될 수 있다. 예를 들어, 본 명세서에서 제안하는 방식 즉, 단말의 산출 시간(computation time)(또는 디코딩(decoding) 시간 등)을 고려하여 보고를 수행하는 방식은, CRI, SSB(Synchronization Signal Block)-ID, 및/또는 L1-RSRP에 기반한 빔 보고에도 동일 또는 유사하게 적용될 수 있다.
우선, NR 시스템에서 고려되는 CSI 프레임워크에 대해 구체적으로 살펴본다.
CSI 프레임워크는, 레거시 LTE 시스템에서 CSI 관련 절차가 CSI 프로세스(CSI process)의 형태로만 규정된 것과는 달리, CSI 보고 설정(CSI reporting setting), 자원 설정(resource setting), 및 CSI 측정 설정(CSI measurement setting)을 이용하여 CSI 관련 절차를 규정하는 것을 의미할 수 있다. 이를 통해, NR 시스템에서는 CSI 관련 절차는 채널 및/또는 자원 상황에 맞추어 보다 유연한(flexible) 방식으로 수행될 수 있다.
즉, NR 시스템에서의 CSI 관련 절차에 대한 설정은, CSI 보고 설정, 자원 설정, 및 CSI 측정 설정 간의 조합에 의해 정의될 수 있다.
예를 들어, 단말은, N≥1 개의 CSI 보고 설정들, M≥1 개의 자원 설정들, 및 하나의 CSI 측정 설정으로 CSI 획득을 위해 설정될 수 있다. 여기에서, CSI 측정 설정은 N 개의 CSI 보고 설정들과 M 개의 자원 설정들 간의 링크 관계(link)에 대한 설정 정보를 의미할 수 있다. 또한, 여기에서, 자원 설정들은 참조 신호 설정들(RS settings) 및/또는 간섭 측정 설정들(Interference Measurement settings, IM settings)을 포함한다.
도 9는 본 명세서에서 제안하는 방법이 적용될 수 있는 NR 시스템에서 고려되는 CSI 프레임워크(CSI framework)의 일 예를 나타낸다.
도 9를 참고하면, CSI 프레임워크는 보고 설정(Reporting setting)(902), 측정 설정(Measurement setting)(904), 및 자원 설정(Resource setting)(906)으로 설정될 수 있다. 여기에서, 보고 설정은 CSI 보고 설정을 의미하고, 측정 설정은 CSI 측정 설정을 의미하며, 자원 설정은 CSI-RS 자원 설정을 의미할 수 있다.
도 9에 나타난 것과 같이, 보고 설정(902)은 N 개의(N≥1) 보고 설정들(예: Reporting setting n1, Reporting setting n2 등)로 구성될 수 있다.
또한, 자원 설정(906)은, M 개의(M≥1) 자원 설정들(예: Resource setting m1, Resource setting m2, Resource setting m3 등)로 구성될 수 있다. 여기에서, 각 자원 설정은 S 개의(S≥1) 자원 집합(resource set)을 포함할 수 있으며, 각 자원 집합은 K 개의(K≥1) CSI-RS 자원을 포함할 수 있다.
또한, 측정 설정(904)는, 보고 설정과 자원 설정 간의 링크(link) 관계 및 해당 링크에 대해 설정된 측정 유형을 나타내는 설정 정보를 의미할 수 있다. 이 경우, 각 측정 설정은 L 개의(L≥1) 링크들을 포함할 수 있다. 예를 들어, 측정 설정은, Reporting setting n1과 Resource setting m1 간의 링크(Link l1) 에 대한 설정 정보, Reporting setting n1과 Resource setting m2 간의 링크(Link l2) 에 대한 설정 정보 등을 포함할 수 있다.
이 때, Link l1 및 Link l2 각각은 채널 측정용 링크 또는 간섭 측정용 링크 중 어느 하나로 설정될 수 있다. 뿐만 아니라, Link l1 및/또는 Link l2는 레이트 매칭(rate matching) 또는 다른 용도로 설정될 수도 있다.
이 경우, 하나의 CSI 측정 설정 내에서 하나 또는 그 이상의 CSI 보고 설정들이 L1(Layer 1) 또는 L2(Layer 2) 시그널링을 통해 동적으로(dynamically) 선택될 수 있다. 또한, 적어도 하나의 자원 설정으로부터 선택된 하나 또는 그 이상의 CSI-RS 자원 집합들 및 적어도 하나의 CSI-RS 자원 집합으로부터 선택된 하나 또는 그 이상의 CSI-RS 자원들도 L1 또는 L2 시그널링을 통해 동적으로 선택될 수 있다.
이하, NR 시스템에서 고려되는 CSI 프레임워크를 구성하는 CSI 보고 설정, 자원 설정(즉, CSI-RS 자원 설정), 및 CSI 측정 설정에 대해 살펴본다.
CSI 보고 설정(CSI reporting setting)
먼저, CSI 보고 설정은 단말이 기지국에 대해 수행할 CSI 보고의 유형, 해당 CSI 보고에 포함되는 정보 등을 설정하기 위한 정보를 의미할 수 있다.
예를 들어, CSI 보고 설정은, 시간 영역의 동작 유형(time-domain behavior type), 주파수 세분성(frequency granularity), 보고될 CSI 파라미터(예: PMI(Precoding Matrix Indicator), RI(Rank Indicator), CQI(Channel Quality Indicator)), CSI 유형(예: CSI Type 1 또는 2, 높은 복잡도의 CSI, 낮은 복잡도의 CSI), 코드북 부분 집합 제한(codebook subset restriction)을 포함하는 코드북 설정, 측정 제한(measurement restriction) 설정 등을 포함할 수 있다.
본 명세서에서, 시간 영역의 동작 유형은 비주기적(aperiodic) 동작, 주기적(periodic) 동작, 또는 반-지속적(semi-persistent) 동작을 의미할 수 있다.
이 때, CSI 보고 설정에 대한 설정 파라미터(들)는 상위 계층 시그널링(higher layer signaling)(예: RRC 시그널링)을 통해 설정(또는 지시)될 수 있다.
자원 설정(resource setting)
다음으로, 자원 설정은 CSI 측정 및 보고를 위해 이용할 자원을 설정하기 위한 정보를 의미할 수 있다. 예를 들어, 자원 설정은, 시간 영역의 동작 유형, RS의 유형(예: NZP CSI-RS(Non-Zero Power CSI-RS), ZP CSI-RS(Zero Power CSI-RS), DMRS 등), K 개의 자원들로 구성된 자원 집합 등을 포함할 수 있다.
앞서 언급한 바와 같이, 각 자원 설정은 하나 이상의 자원 집합들을 포함할 수 있으며, 각 자원 집합은 하나 이상의 자원들(예: CSI-RS 자원들)을 포함할 수 있다. 또한, 자원 설정은 채널 측정 및/또는 간섭 측정을 위한 신호에 대한 설정을 포함할 수 있다.
일례로, 각 자원 설정은 S 개의 자원 집합(예: CSI-RS 자원 집합)에 대한 설정 정보를 포함하며, 각 자원 집합에 대한 K 대의 자원들에 대한 설정 정보도 포함할 수 있다. 이 때, 각 자원 집합은 단말에 대해 설정된 모든 CSI-RS 자원들의 풀(pool)로부터 다르게 선택된 집합에 해당할 수 있다. 또한, 각 자원에 대한 설정 정보는, 자원 요소로의 매핑, 포트의 수, 시간 영역의 동작 유형 등에 관한 정보를 포함할 수 있다.
또는, 다른 예로, 각 자원 설정은 S 개의 CSI-RS 자원에 대한 설정 정보 및/또는 각 CSI-RS 자원에 대해 같거나 작은 수의 포트들의 K 개의 CSI-RS 자원에 대한 설정 정보를 포함할 수도 있다.
이 때, N-포트 CSI-RS 자원의 CSI-RS RE 매핑 패턴은 동일하거나 더 적은 포트 수(예: 2, 4, 또는 8)의 CSI-RS 자원들의 하나 또는 그 이상의 CSI-RS 매핑 패턴으로 구성될 수 있다. 여기에서, CSI-RS RS 매핑 패턴은 슬롯 내에서 정의될 수 있으며, 다수의 설정 가능한 연속적/비연속적 OFDM 심볼들에 걸칠(span) 수 있다.
이 경우, 자원 설정에 대한 설정 파라미터(들)는 상위 계층 시그널링(예: RRC 시그널링)을 통해 설정될 수 있다.
CSI 측정 설정(CSI measurement setting)
다음으로, CSI 측정 설정은 단말이 CSI 보고를 위하여 특정 CSI 보고 설정과 이에 매핑된 특정 자원 설정에 대해 어떠한 측정을 수행할지를 나타내는 설정 정보를 의미할 수 있다. 즉, CSI 측정 설정은 CSI 보고 설정과 자원 설정 간의 링크 관계에 대한 정보를 포함하며, 각 링크(link)에 대한 측정 유형을 나타내는 정보를 포함할 수 있다. 또한, 측정 유형은 채널 측정(channel measurement), 간섭 측정(interference measurement), 레이트 매칭(rate matching) 등을 의미할 수 있다.
일례로, CSI 측정 설정은, CSI 보고 설정을 나타내는 정보, 자원 설정을 나타내는 정보, CQI의 경우 기준 전송 방식(reference transmission scheme)에 대한 설정을 포함할 수 있다. 이와 관련하여, 단말은 L≥1 개의 CSI 측정 설정을 지원할 수 있으며, L 값은 해당 단말의 능력에 따라 설정될 수 있다.
이 때, 하나의 CSI 보고 설정은 하나 또는 그 이상의 자원 설정들에 연결될 수 있으며, 다수의 CSI 보고 설정이 동일한 자원 설정에 대해 연결될 수도 있다.
이 경우, CSI 측정 설정에 대한 설정 파라미터(들)는 상위 계층 시그널링(예: RRC 시그널링)을 통해 설정될 수 있다.
또한, 상술한 CSI 보고 설정, 자원 설정, 및 CSI 측정 설정과 관련하여, 시간 영역에 동작 유형에 따른 합의 사항은 다음과 같다.
먼저, 주기적 CSI-RS의 경우(즉, CSI-RS의 전송이 주기적으로 수행되는 경우), 반-지속적 CSI 보고는 MAC CE 및/또는 하향링크 제어 정보(Downlink Control Information, DCI)에 의해 활성화(activation)/비활성화(deactivation)될 수 있다. 이와 달리, 비주기적 CSI 보고는 DCI에 의해 트리거링될 수 있으며, 다만 이 경우, MAC CE로 설정된 추가적인 시그널링이 필요할 수도 있다.
다음으로, 반-지속적 CSI-RS의 경우(즉, CSI-RS의 전송이 반-지속적으로 수행되는 경우), 주기적 CSI 보고는 지원되지 않는다. 반면, 반-지속적 CSI 보고는 MAC-CE 및/또는 DCI에 의해 활성화/비활성화될 수 있으며, 반-지속적 CSI-RS는 MAC-CE 및/또는 DCI에 의해 활성화/비활성화될 수 있다. 또한, 이 경우, 비주기적 CSI 보고는 DCI에 의해 트리거링될 수 있으며, 반-지속적 CSI-RS는 MAC-CE 및/또는 DCI에 의해 활성화/비활성화될 수 있다.
마지막으로, 비주기적 CSI-RS의 경우(즉, CSI-RS의 전송이 비주기적으로 수행되는 경우), 주기적(및 반-지속적) CSI 보고는 지원되지 않는다. 반면, 비주기적 CSI 보고는 DCI에 의해 트리거링될 수 있으며, 비주기적 CSI-RS는 DC 및/또는 MAC-CE에 의해 트리거링될 수 있다.
이하, 본 명세서에서 설명되는 실시 예들은 설명의 편의를 위하여 구분된 것일 뿐, 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다. 예를 들어, 이하 제1 실시 예 내지 제3 실시 예에서 설명되는 방식이 제4 실시 예에서 설명되는 방식에 적용될 수 있으며, 그 반대의 경우도 가능하다.
이하, 상술한 자원 설정(즉, CSI-RS 자원 설정), CSI 측정 설정, 및 CSI 보고 설정에 대해 고려될 수 있는 설정 방법들에 대해 살펴본다.
제1 실시 예 - 자원 설정(resource setting)에 대해 고려 가능한 설정 방법
먼저, 상술한 자원 설정과 관련하여, CSI-RS 자원 설정은 NZP CSI-RS 및 ZP CSI-RS와 같은 두 가지 유형의 RS 유형들을 포함할 수 있다(참고로, 본 명세서에서 언급되는 CSI-RS는 NZP CSI-RS 및 ZP CSI-RS 모두에 적용될 수 있다).
CSI 측정 설정 내에서 특정 자원의 용도가 각각 지시되기 때문에, NZP CSI-RS 자원 및 ZP CSI-RS 자원 모두가 해당 자원 설정 내에서 설정될 수 있다. 여기에서, ZP CSI-RS는 간섭 추정(즉, 간섭 측정(interference measurement)) 용도 또는 데이터 채널(예: NR-PDSCH)의 레이트 매칭(rate matching) 용도로 적용될 수 있다. 또한, NZP CSI-RS는 채널 추정(즉, 채널 측정(channel measurement)) 용도뿐만 아니라, 간섭 추정 용도로도 적용될 수 있다.
또한, 자원 설정에 포함되는 NZP CSI-RS는 CSI 획득 및 빔 관리(beam management) 모두에 대해 적용될 수 있다.
구체적으로, 빔 관리를 위한 CSI-RS 자원들도, 아날로그 빔 선택 및 디지털 빔 선택에 대한 통합 운용(unified operation)을 위한 자원 설정에 포함될 수 있다. CSI 획득의 주요 기능 중 하나는 PMI 및 CRI(CSI-TE Resource Indication)와 같은 단말 피드백 정보를 통한 빔 선택이다. DL 빔 관리의 목적도 빔(들)을 선택하는 것이며, TRP 전송 빔은 단말 피드백 정보를 통해 선택될 수 있다. 단지 DL 빔 관리의 추가 기능이 단말 수신 빔을 선택하는 것이지만, 단말 수신 빔 선택은 CSI-RS 심볼 또는 서브 심볼을 통해 다수의 반복된 송신 빔을 전송함에 따라 간단하게 지원될 수 있다. 결과적으로, 상술한 CSI 프레임워크는 빔 관리 목적으로도 이용될 수 있다.
이와 같은 자원 설정에 대하여, 비주기적 CSI-RS, 반-지속적 CSI-RS, 및 주기적 CSI-RS와 같은 세 가지의 시간 영역의 동작 유형들이 지원될 수 있다. 이 경우, 상술한 세 가지의 시간 영역의 동작 유형들은 NZP CSI-RS 및 ZP CSI-RS 모두에 대해 공통적으로 적용될 수 있다. 이와 관련하여, 비주기적 IMR(Interference Measurement Resource) 및 반-지속적 IMR은, 동적인(dynamic) TDD 동작 및 NR 시스템의 순방향 호환성(forward compatibility)을 고려할 때, 높은 간섭 추정 정확도와 시스템 설계에 대한 높은 유연성을 제공할 수 있다.
또한, 자원 설정에는, CSI-RS 타이밍 오프셋(이하, 'X'로 지칭함.)이 포함될 수 있다. 여기에서, X는 CSI-RS의 전송에 대한 트리거링/활성화/비활성화 시점(timing, instance)과 실제 CSI-RS의 전송 시점 간의 시간 간격(time gap)을 의미할 수 있다.
이 때, X는 슬롯의 수(즉, 슬롯 단위) 또는 심볼의 수(즉, 심볼 단위)의 형태로 표현될 수 있다. 일례로, DCI에 의해 비주기적 CSI-RS 트리거링이 수행되는 경우, X는 '0'으로 설정될 수 있다.
본 발명의 다양한 실시 예들에서, X가 네트워크(즉, 기지국)에 의해 설정될 때, X의 후보 값들은 상위 계층 메시지(예: RRC 메시지)에 의해 지시되며, CSI 프레임워크 상에서 자원 설정에 포함될 수 있다. 여기에서, X는 설정 가능하도록 지원되는 경우가 가정된다. 여기에서, X의 후보 값들은, 일정 기준에 따라(또는 규격(standard)에 따라) 미리 설정된 X 값들을 의미할 수 있다. 즉, X가 특정 값(예: 0)으로 설정되는 것이 아닌, 상황(또는 서비스(service))에 따라 다르게 이용될 수 있는 값들(예: 0, 1, 2)로 설정될 수 있다.
예를 들어, 단말은 기지국으로부터 빔 관리를 위한 X 값으로 '1'을 지시 받을 수 있다. 이에 따라, CSI-RS의 전송이 특정 시점에 트리거링된 경우, 해당 단말은 특정 시점을 기준으로 '1'에 해당하는 시간 간격(예: 2 슬롯) 이후에 CSI-RS가 전송될 것임을 인식할 수 있다.
또는, 다른 예를 들어, 짧은 지연(latency)를 요구하는 서비스(예: URLLC(Ultra-Reliable and Low Latency Communications))에서는 X 값들이 다른 서비스에 비해 짧게 설정될 수도 있다.
이 경우, 채널 측정 또는 간섭 측정을 위해 적용할 상기 X 값은, L1 또는 L2 시그널링(예: DCI 또는 MAC-CE)과 같은 동적 시그널링(dynamic signaling)을 통해 지시될 수도 있다. 특히, 상기 X 값에 대한 지시는 CSI-RS 트리거링을 위한 MAC-CE 및/또는 DCI에 포함되어 함께 전달될 수 있다. 즉, 해당 X 값은 CSI-RS에 대한 트리거링 정보(예: 트리거링되는 CSI-RS 자원 설정)와 함께 전달될 수 있다.
또한, CSI-RS 트리거링에 대해, RRC 시그널링으로 설정된 자원 설정에서 MAC-CE를 통해 후보 자원을 선택한 후, DCI로 최종 자원을 선택하는 계층적 시그널링(hierarchical signaling) 구조가 적용될 수도 있다. 이 때, 상기 X 값은 MAC-CE 또는 DCI 중 어느 하나에 포함될 수 있다. 또는, MAC-CE를 통해 후보 군을 선택한 후, DCI를 통해 최종 X 값이 설정(또는 지시)될 수도 있다. 즉, 상기 X 값은, RRC 시그널링, MAC-CE, 및/또는 DCI를 이용하여 계층적으로 단말에게 지시될 수 있다.
또한, 상기 X 값은, 특정 상황(예: CSI-RS 트리거링과 CSI 보고 트리거링이 동시에 수행되는 경우)에서, 본 명세서에서 제안하는 CSI 측정 간격을 결정하는 방법의 적용 여부를 설정하기 위해 이용될 수 있다. 이에 대한 구체적인 내용은, 후속하는 도 12 부분에서 구체적으로 설명된다.
제2 실시 예 - CSI 측정 설정(CSI measurement setting)에 대해 고려 가능한 설정 방법
다음으로, 상술한 CSI 측정 설정과 관련하여, NR 시스템에서는, 채널 측정을 위한 비주기적/반-지속적/주기적 자원 설정과 간섭 측정을 위한 비주기적/반-지속적/주기적 자원 설정 간의 임의의 조합을 지원하는 유연한 측정 설정(flexible measurement setting)이 허용될 수 있다.
특히, 반-지속적 CSI 보고 또는 주기적 CSI 보고를 고려할 때, L1/L2 제어 시그널링을 회피 또는 최소화하기 위하여, 반-지속적 또는 주기적 간섭 측정용 자원(예: ZP CSI-RS 및 NZP CSI-RS)이 고려될 필요가 있다. 또한, 비주기적 CSI-RS 설정은 비주기적 CSI 보고를 위한 반-지속적 또는 주기적 간섭 측정용 자원과 연관될 수 있다. 반대로, 반-지속적 또는 주기적 CSI_RS는 비주기적 CSI 보고를 위한 비주기적 간섭 측정용 자원과 연관될 수 있다.
결론적으로, 측정 설정은, 비주기적/반-지속적/지속적 CSI 보고, 채널 측정을 위한 비주기적/반-지속적/지속적 자원 설정(예: NZP CSI-RS), 및 간섭 측정을 위한 비주기적/반-지속적/지속적 자원 설정(예: ZP CSI-RS 및 NZP CSI-RS) 간의 유연한 매핑 방식을 지원할 필요가 있다.
또한, 본 발명의 다양한 실시 예들에서, CSI 측정 설정 내의 특정 자원(즉, 자원 설정)이 데이터 채널(예: NR-PDSCH)의 복조 시의 레이트 매칭 용도로 설정될 수도 있다. 다시 말해, 레거시 LTE 시스템의 ZP CSI-RS와 같이, 해당 CSI-RS 자원이 주는(또는 받는) 간섭이 큰 것으로 판단되는 경우, 기지국은 해당 자원을 널링(nulling)하는 용도로 설정할 수 있다. 이를 통해, 해당 지시를 받는 단말의 채널 측정 또는 간섭 측정 시에 발생 가능한 간섭 정도가 효율적으로 제어될 수 있다.
제3 실시 예 - CSI 보고 설정(CSI reporting setting)에 대해 고려 가능한 설정 방법
다음으로, 상술한 CSI 보고 설정과 관련하여, NR 시스템은, 비주기적 CSI 보고, 반-지속적 CSI 보고, 및 주기적 CSI 보고를 지원할 수 있다.
이 경우, 상술한 CSI 측정 설정 구성(CSI measurement setting configuration)에 따라 적절한 CSI 보고 내용(CSI reporting contents)이 정의될 필요가 있다.
우선, CSI 획득을 위한 CSI-RS 자원(들)이 특정 측정 설정에서 지시되는 경우, 해당 CSI 보고 내용은, LTE 시스템(특히, eFD-MIMO WI)에서 지원되는 기존 CSI 보고 유형들일 수 있다.
이와 달리, 빔 관리를 위한 CSI-RS 자원(들)이 특정 측정 설정에서 지시되는 경우, 해당 CSI 보고 내용은, DL 빔 관리를 지원하기 위한 필수 보고 내용에 기반하여 결정될 수 있다. CSI 자원 내의 각 CSI-RS 포트는 상이한 아날로그 빔에 대응할 수 있으므로, 해당 CSI 보고 내용은 적합한 빔 방향 정보(beam direction information)를 보고하기 위한 쌍(pair)으로 된 정보(예: {CRI, port index})일 수 있다. 빔 관련 정보 이외에도, RSRP와 같은 빔 이득 관련 메트릭(beam gain related metric)고 함께 보고될 필요가 있다.
또한, CSI 보고 설정에는, CSI 보고 오프셋(CSI reporting offset)(이하, 'Y'로 지칭함.)이 포함될 수 있다. 여기에서, Y는 CSI 보고에 대한 트리거링/활성화/비활성화 시점과 실제 CSI 보고 시점(CSI-RS reporting instance or timing) 간의 시간 간격을 의미할 수 있다.
일례로, NR 시스템에서 고려되는 DL-UL 혼합 슬롯 구조(DL-UL mixed slot structure)(예: self-contained 슬롯 구조)의 경우, CSI 보고가 트리거링된 슬롯에서 CSI 보고가 바로 수행될 수 없는 경우가 발생될 수 있다. 이러한 경우를 고려하면, CSI 보고가 트리거링된 시점과 실제 단말이 CSI 보고를 수행하는 시점 간의 간격을 나타내는 Y 값이 설정될 필요가 있다. 예를 들어, Y 값은, CSI 보고를 트리거링하는 DCI가 수신되는 시점부터 단말이 데이터 채널(예: PUSCH(Physucal Uplink Shared Channel))(또는 제어 채널)을 통해 CSI를 보고하는 시점까지의 구간(interval, gap)을 의미할 수 있다.
상기 Y 값은 슬롯의 수(즉, 슬롯 단위) 또는 심볼의 수(즉, 심볼 단위)의 형태로 표현될 수 있으며, 시스템 상으로 미리 고정되어 있거나, 또는 네트워크(예: 기지국)에 의해 설정(또는 지시)될 수도 있다.
이 때, 상기 Y에 대한 후보 값(들)은, CSI 보고 설정에 포함된 정보에 따라 지원될 수 있다. 예를 들어, 상기 Y에 대한 후보 값들은, CSI 파라미터, CSI 유형(예: CSI type 1 또는 2), 코드북 설정(codebook configuration)(예: 코드북 크기), 최근 CSI-RS 전송 시점(nearest CSI-RS transmission timing), DL-UL 슬롯 구조, 단말 능력, 해당 CSI 보고 설정과 관련된 CSI 산출 횟수 등에 기반하여 설정될 수 있다.
상기 Y에 대한 후보 값들이 상술한 정보에 기반하여 설정되는 경우, Y 값에 대한 명시적인(explicit) 시그널링은 불필요할 수 있다. 물론, 이 경우에도 Y 값에 대한 시그널링이 수행될 수도 있으며, Y 값에 대한 하한 값(lower limit value)이 상술한 정보에 기반하여 설정될 수도 있다.
제4 실시 예 - CSI 보고 설정의 파라미터 값을 이용한 유연한(flexible) CSI 측정 및 보고 방법
다만, 단말의 CSI 측정 및 보고와 관련하여, 상기 Y 값과 별개로, 해당 단말이 실제 CSI-RS를 수신한 시점을 기준으로 CSI 보고를 수행하기 위해 요구되는 최소 시간 간격(이하 'Z'로 지칭함.)이 고려될 수 있다.
이는, 단말이 기지국으로부터 CSI-RS를 수신하더라도, 지시된(즉, 트리거링된) CSI 보고 시점까지 해당 CSI-RS에 대한 측정을 수행할 수 없는 경우가 발생할 수 있기 때문이다.
여기에서, 상기 Z는, 단말이 기지국으로부터 수신된 CSI-RS를 이용하여 CSI를 보고하기 위해 요구되는 처리 시간 간격을 의미할 수 있다. 즉, 상기 Z는, CSI-RS 전송 시점 대비 CSI 보고 시점 간의 최소 시간 간격(minimum time gap)을 의미할 수 있다. 또한, 상기 Z는, CSI 보고에 대한 측정 값을 생성하기 한 측정 구간(measurement interval)(또는 측정 간격(measurement gap))을 설정하는 간격 정보(gap information)를 의미할 수도 있다.
일례로, 단말이 기지국에 의해 트리거링된 CSI 보고를 수행할 시점을 기준으로 상기 Z 내(예: Z 윈도우(Z window))에서 수신된 CSI-RS는, 단말에 의해 해당 CSI 보고 시점까지 정확하게 측정될 수 없으며, 이에 따라 해당 CSI 보고에서 이용될 수 없을 수 있다.
이 경우, 상기 Z 값은 해당 단말에서 CSI 보고에 요구되는 CSI 산출 시간(즉, CSI 처리 시간(CSI processing time))을 고려하여 설정될 수 있다. 즉, 상기 Z 값은 CSI 산출 처리 시간을 결정하는 정보 요소들에 따라 설정될 수 있다.
구체적으로, 상기 Z 값은, CSI 보고 설정 파라미터들(예: CSI 파라미터, CSI 유형, CSI 코드북 유형, 코드북 크기 및 코드북 집합(또는 서브집합) 제한을 포함하는 코드북 설정 정보, CQI 및 PMI에 대한 주파수 세분성(frequency granularity) 등) 및 단말의 능력(UE capability)(예: UE computation capability)에 따라 설정될 수 있다.
일례로, 단말이 이용할 코드북이 서브집합으로 설정되고(즉, 그룹화되고) 특정 코드북 서브집합(들)으로 제한되는 경우, 상기 Z 값은 작게 설정될 수 있다. 이는, 코드북 서브집합이 제한되면, 해당 단말이 CSI 측정을 수행하기 위하여 코드북을 선택하기 위해 소요되는 시간이 감소되기 때문이다. 즉, 단말이 모든 코드북을 다 적용하지 않고, 특정 범위의 코드북만 이용하도록 설정되는 경우에는 네트워크(또는 기지국)에 의해 상기 Z 값이 작게 설정될 수 있다.
또한, 상기 Z 값은, L1 또는 L2 시그널링을 통해 동적으로 선택되는 CSI 보고 설정의 수에 따라 결정될 수도 있다. 또한, CSI 보고 설정에 대한 시간 영역의 동작 유형에 따라 요구 시간이 달라질 수 있다. 구체적으로, 주기적 CSI 보고 설정이 두 개 지정된 경우와 비주기적(또는 반-지속적) CSI 보고 설정이 두 개 지정된 경우에 Z 값이 서로 다르게 설정될 수 있다. 또한, 주기적 CSI 보고 설정이 한 개 지정된 경우와 두 개 지정된 경우에 대해 Z 값이 서로 다르게 설정될 수도 있다. 즉, CSI 보고 설정이 단말에 대해 어떻게 설정되느냐에 따라 Z 값이 다르게 설정될 수 있다.
상기 Z 값은, 기지국(또는 네트워크)에 의해 단말 별로 설정 또는 지시될 수 있다. 예를 들어, 상기 Z 값은 상위 계층 시그널링(예: RRC 시그널링)을 통해 전달되는 CSI 보고 설정 정보에 포함될 수 있다. 다른 예를 들어, 상기 Z 값은, L1 또는 L2 시그널링(즉, DCI 또는 MAC-CE)을 통해 동적으로 지시되는(또는 트리거링되는) CSI 보고 설정과 함께 전달될 수도 있다.
이 경우, 단말은 상기 Z 값을 자신의 능력(capability)으로서 기지국으로 보고할 수 있다. 단말이 Z 값에 대한 단말 능력을 기지국으로 보고함에 따라, 기지국은 해당 단말의 능력을 고려하여 Z 값을 설정할 수 있다. 즉, Z 값은 단말의 능력 보고에 의해 암시적인(implicit) 방법으로 설정될 수도 있다.
이하, 본 명세서는, 상술한 Z 값(즉, CSI-RS 전송 시점을 기준으로 CSI 보고 수행까지 요구되는 시간을 나타내는 값)을 고려하여 CSI 측정 및 보고를 수행하는 구체적인 방법을 제안한다.
단말이 기지국으로부터 CSI 보고를 지시 받은 경우(즉, CSI 보고가 트리거링된 경우), CSI 보고 시점 빼기 Z 값 이후 시점에서 CSI-RS가 설정(즉, 전송 설정)되거나, 트리거링(triggering)되거나, 또는 활성화될 수 있다. 이 경우, 단말은 해당 CSI 보고를 위한 채널 또는 간섭 추정 값을 산출할 때, 해당 CSI-RS로부터 산출된 추정 값(또는 측정 값)을 무시할 수 있다. 여기에서, CSI 보고를 위해 이용되는 CSI-RS 자원은 해당 CSI 보고에 대한 기준 자원(reference resource)으로 지칭될 수 있으며, Z 값은 기준 자원을 설정하기 위한 파라미터일 수 있다.
다만, 이후 시점에서 CSI 보고(즉, 추가적인 CSI 보고)가 설정되며, 해당 보고 시점 빼기 Z 값 보다 이전에 상기 CSI-RS가 존재하는 경우, 해당 시점(즉, 미래 시점)에서의 CSI 보고에서는 이전에 무시되었던 CSI-RS로부터의 추정 값이 이용될 수 있다.
다시 말해, 기지국에 의해 트리거링된 CSI 보고 시점을 기준으로 Z 값에 해당하는 이전(previous) 시간 간격 내에 존재하는 CSI-RS는 해당 CSI 보고에 이용될 수 없다. 예를 들어, CSI 보고 트리거링이 n 번째 슬롯(#n slot)에서 지시되고, CSI 보고 시점은 n+8 번째 슬롯(#n+8 slot)에서 수행되도록 지시되며, Z 값은 2 슬롯(2 slot)으로 지시되는 경우를 가정한다. 이 경우, 단말은, CSI 보고 시점을 기준으로 Z 값에 해당하는 이전 시간 간격 내(즉, #n+6 slot 부터 #n+8 slot)에서 수신되는 CSI-RS에 의해 추정된 값을 무시하도록 설정될 수 있다.
도 10은 본 명세서에서 제안하는 방법이 적용될 수 있는 CSI 측정 및 보고를 수행하는 방법의 일 예를 나타낸다. 도 10은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 10을 참고하면, 단말 및 기지국(즉, TRP)은 상술한 CSI 프레임워크에 기반하여 CSI 측정 절차 및 보고 절차를 수행하는 경우가 가정된다.
도 10의 (a)는 CSI 측정 및 보고의 전반적인 절차 및 이와 관련된 설정 값들(즉, X 값, Y 값, 및 Z 값)을 나타낸다.
도 10의 (a)에 나타난 'X'는 상술한 CSI-RS의 전송에 대한 트리거링/활성화/비활성화 시점과 실제 CSI-RS의 전송 간의 시간 간격을 나타낸다. 일례로, CSI-RS #1의 경우, 'X'는 단말이 해당 CSI-RS의 트리거링에 대한 PDCCH(즉, DCI)를 수신한 시점부터 해당 CSI-RS를 실제 수신한 시점까지의 간격을 의미할 수 있다.
또한, 도 10의 (a)에 나타난 'Y'는 상술한 CSI 보고에 대한 트리거링/활성화/비활성화 시점과 실제 CSI 보고 시점 간의 시간 간격을 나타낸다. 일례로, 'Y'는 단말이 CSI 보고에 대한 트리거링 정보를 포함하는 PDCCH(즉, DCI)를 수신한 시점부터 해당 CSI 보고를 직접 수행하는 시점까지의 간격을 의미할 수 있다.
또한, 상술한 바와 같이, Z 값은 다양한 정보 요소들에 따라 설정될 수 있으며, 일례로, 일정 기준(즉, 미리 설정된 기준)에 따라 light CSI(즉, 낮은 복잡도의 CSI)를 위한 'Z1'과 heavy CSI(즉, 높은 복잡도의 CSI)를 위한 'Z2'로 설정될 수 있다.
여기에서, light CSI는 단말에 의한 CSI 처리 시간이 적게 설정되는 CSI를 의미하고, 반대로, heavy CSI는 CSI 처리 시간이 크게 설정되는 CSI를 의미할 수 있다. 예를 들어, CSI 측정 및 보고와 관련된 안테나 포트 수가 N 개 이상인 CSI는 heavy CSI에 해당하고, N 개 미만인 CSI는 light CSI에 해당할 수 있다.
이 때, 트리거링된 CSI 보고 시점을 기준으로 Z 간격 이내에 수신되는 CSI-RS에 대한 추정 값(즉, CSI-RS를 이용하여 측정된 채널 또는 간섭 추정 값)은, CSI 보고를 위한 정보에 포함되지 않는다. 즉, Z 값은 측정 윈도우(measurement window)로 지칭될 수 있으며, 해당 측정 윈도우 내에서 수신된 CSI-RS에 대한 추정 값은 CSI 보고에서 무시될 수 있다.
예를 들어, Z1에 대한 CSI 보고가 트리거링된 경우, 단말은 이전에 수신된 CSI-RS #0에 대한 추정 값 및 CSI-RS #1에 대한 추정 값을 CSI 보고 정보에 포함시킬 수 있다. 이와 달리, Z2에 대한 CSI 보고가 트리거링된 경우, 단말은 CSI-RS #1에 대한 추정 값은 무시하고, CSI-RS #0에 대한 추정 값만을 CSI 보고 정보에 포함시킬 수 있다.
도 10의 (b)는 상술한 단말의 동작과 관련하여 간략화된 예시를 나타낸다. 도 10의 (b)를 참고하면, CSI 보고 시점(CSI reporting instance)를 기준으로 Z 값 이전에 수신된 CSI-RS (1002)는 해당 CSI 보고에 이용되고, 이후에 수신된 CSI-RS (1004)는 해당 CSI 보고에서 무시될 수 있다.
상술한 단말의 동작은, 비주기적 CSI-RS 및/또는 비주기적 CSI 보고가 트리거링된 경우뿐만 아니라, 주기적 CSI-RS 및/또는 주기적 CSI 보고, 반-지속적 CSI-RS 및/또는 반-지속적 CSI 보고의 경우에도 동일하게 적용될 수 있다. 다시 말해, 상술한 단말의 동작은, CSI-RS 트리거링(즉, CSI-RS 전송 트리거링) 및 CSI 보고 트리거링의 시간 영역의 동작 유형에 관계없이 적용될 수 있다.
또한, 본 발명의 다양한 실시 예들에서, CSI-RS 트리거링과 CSI 보고 트리거링이 동일 시점(예: 동일 슬롯 또는 동일 심볼)에 존재하는 경우, 상술한 단말의 동작 여부를 일정 기준에 따라 결정하는 방법이 고려될 수 있다. 여기에서, 상기 일정 기준은 상술한 X 값, Y 값, 및 Z 값을 이용하여 설정될 수 있다. 특히, Z 값은 Y 값과 X 값 사이에서 보장될 필요가 있다.
예를 들어, Y 값과 X 값의 차이 값(difference value)과 Z 값의 비교를 통해 상술한 단말의 동작 여부가 결정될 수 있다.
도 11은 본 명세서에서 제안하는 방법이 적용될 수 있는 CSI 측정 및 보고를 수행하는 방법의 다른 예를 나타낸다. 도 11은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 11의 내용 중 도 10의 내용과 중첩되는 구성 및 동작에 대한 설명은 생략된다. 도 11의 경우, 도 10에 나타난 것과 달리, CSI-RS 트리거링(구체적으로, CSI-RS #1에 대한 트리거링)과 CSI 보고 트리거링이 PDCCH(즉, DCI)를 통해 동시에 지시될 수 있다. 이 경우, 두 개의 트리거링 지시들이 하나의 DCI를 통해 지시되거나, 또는 두 개의 DCI(즉, 각각의 DCI)를 통해 지시될 수도 있다.
이 때, Y 값과 X 값 간의 차이 값(Y - X 값)과 CSI 보고에 대해 설정된 Z 값의 비교를 통해, 특정 CSI-RS에 대한 추정 값이 CSI 보고 정보에 포함될지 여부가 결정될 수 있다.
예를 들어, CSI-RS #1의 경우에 대해, Z1 값은 Y - X 값보다 작고, Z2 값은 Y - X 값보다 큰 경우를 가정한다. 이 때, Z1에 대한 CSI 보고가 트리거링된 경우, 단말은 이전에 수신된 CSI-RS #0에 대한 추정 값 및 CSI-RS #1에 대한 추정 값을 CSI 보고 정보에 포함시킬 수 있다. 이와 달리, Z2에 대한 CSI 보고가 트리거링된 경우, 단말은 CSI-RS #1에 대한 추정 값은 무시하고, CSI-RS #0에 대한 추정 값만을 CSI 보고 정보에 포함시킬 수 있다.
다시 말해, Z 값이 Y - X 값보다 크게 설정된 경우, 해당 CSI-RS에 대한 추정 값(즉, 채널 또는 간섭 추정 값)은 단말의 해당 CSI 보고에서 무시될 수 있다. 다만, 무시된 추정 값은, 향후 시점에서의 CSI 보고(예: 미리 설정된 또는 동적으로 트리거링/활성화 CSI 보고된)에서는 활용될 수도 있다.
참고로, 레거시 LTE 시스템의 경우, CSI 보고 정보는 CSI 보고 시점을 기준으로 규격으로 정해진 시점(예: n-4 번째 서브프레임) 이전의 CSI-RS에 대한 추정 값을 이용하여 결정되었다. 반면, 상술한 단말의 동작을 통해, NR 시스템에서는 보다 유연한 CSI 측정 및 보고를 수행할 수 있다. 다시 말해, 실제 CSI-RS의 전송 시점(CSI-RS transmission instance과 실제 CSI 보고 시점(CSI reporting instance)를 고려하여 설정된 Z 값을 이용하여, 획일화된 방식(예: n번째 슬롯을 기준으로 n-4번째 슬롯)을 통한 CSI 보고가 아닌, 적응적인 CSI 보고가 가능하다는 장점이 있다.
또한, 본 발명의 다양한 실시 예들에서, 단말에 대한 CSI 보고를 위하여 상술한 Z 값이 설정된 경우, CSI 보고 설정에 포함된 정보 요소인 측정 제한(measurement restriction) 여부에 따라 CSI 보고를 위해 산출되는 추정 값(또는 측정 값)이 달라질 수 있다. 여기에서, 측정 제한 여부는, 측정 제한 온(ON) 또는 오프(OFF)를 나타내는 지시자(indicator)에 의해 표현될 수 있다. 여기에서, 측정 제한이 온(ON)으로 설정되는 것은, 단말이 복수의 시점들(instances)에서 전송된 RS(예: CSI-RS)들 중 가장 최근 시점에서 전송된 RS에 의한 추정 값만을 이용하여 채널 또는 간섭 추정을 수행하도록 설정되는 것을 의미할 수 있다.
도 12는 본 명세서에서 제안하는 방법이 적용될 수 있는 CSI 측정 및 보고를 수행하는 방법의 또 다른 예를 나타낸다. 도 12는 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 12를 참고하면, CSI 보고 설정을 통해 상술한 Z 값 및 측정 제한 여부가 설정(또는 지시)되는 경우가 가정된다. 또한, 트리거링된 CSI-RS 들(1202 내지 1208)은 주기적으로 전송되는 경우가 가정되나, 해당 방법은 주기적으로 CSI-RS가 전송되는 경우에만 한정되는 것이 아닌, 비주기적 또는 반-지속적으로 전송되는 경우에도 적용될 수 있음은 물론이다. 또한, CSI 보고도 비주기적인 경우가 가정되나, 이에 한정되는 것이 아닌 주기적 CSI 보고 또는 반-지속적 CSI 보고의 경우에도 해당 방법이 적용될 수 있음은 물론이다.
단말에 대해 Z 값이 설정되며 측정 제한이 온(ON)으로 지시되는 경우, 단말은 CSI 보고 시점을 기준으로 Z 값 이전의 시점(즉, CSI 보고 시점 - Z)에서 가장 최근에 측정된 추정 값(채널 추정 값 또는 간섭 추정 값)을 이용하도록 설정될 수 있다. 예를 들어, 단말은 CSI 보고 시점을 기준으로 Z 값에 해당하는 시간 간격 이전에 수신된 CSI-RS 1202 및 1204들 중에서, 최근에 수신된 CSI-RS 1204만을 이용하여 CSI 산출을 수행할 수 있다.
이 때, CSI 보고 시점을 기준으로 Z 값에 해당하는 시간 간격 이전에 가장 가까운 채널 측정(channel measurement) 용도의 NZP CSI-RS 심볼(들)의 위치와 간섭 측정(interference measurement) 용도의 ZP 또는 NZP CSI-RS 심볼(들)의 위치가 다를 수 있다. 이 경우, 단말은, 채널 측정 및 간섭 측정 각각에 대해, CSI 보고 시점을 기준으로 Z 값에 해당하는 시간 간격 이전에 전송된 CSI-RS에 기반한 측정 값을 이용할 수 있다.
또한, 연속적인 CSI-RS가 트리거링되었으나, CSI 보고 시점을 기준으로 Z 값 이전 시점에 속하는 추정 값이 하나만 존재하거나(예: 반-지속적 CSI-RS) 또는 비주기적 CSI-RS가 CSI 보고 시점을 기준으로 Z 값 이전 시점에 트리거링될 수도 있다. 이 경우, 단말은 해당 전송 시점의 CSI-RS에 대한 추정 값을 기준으로 CSI 산출을 수행할 수 있다.
반면에, 단말에 대해 Z 값이 설정되며 측정 제한이 오프(OFF)로 지시되는 경우 또는 CSI 보고 시점을 기준으로 Z 값 이전 시점에 다수의 추정 값들이 존재하는 경우(예: 반-지속적 CSI-RS), 단말은 CSI 보고 시점을 기준으로 Z 값 이전 시점까지의 하나 또는 그 이상의 추정 값들을 이용하여 CSI 산출을 수행할 수 있다. 다시 말해, 측정 제한이 오프로 지시되는 경우, 단말은 CSI 보고 시점을 기준으로 Z 값에 해당하는 시간 간격 이내(즉, 도 12에 나타난 'Z 구간')에 수신되는 CSI-RS에 의해 측정된 값을 CSI 보고 시에 무시할 수 있다. 즉, 이 경우, 단말은 CSI 보고 시점을 기준으로 Z 값에 해당하는 시간 간격 이내에 수신되는 CSI-RS에 의해 측정된 값에 따라 CSI 보고 값을 갱신(update)할 필요가 없다.
이 때, 단말은 하나 또는 그 이상의 추정 값들의 대해 평균 값으로 CSI를 산출할 수 있다. 특히, 단말은 하나 또는 그 이상의 추정 값들에 대해 가중치 평균(weighted average)을 적용하여 CSI를 산출할 수도 있다. 이 경우, 단말은 최근에 추정된 채널(즉, CSI-RS)에 대해 높은 가중치를 적용할 수 있다.
또는, 단말은 하나 또는 그 이상의 추정 값들에 기반하여 CSI 보고 시점을 기준으로 Z 값 이전 시점까지 보외법(extrapolation)을 수행하여 추정된 값을 해당 CSI 보고를 위한 채널 추정 값 또는 간섭 추정 값으로 이용할 수도 있다. 예를 들어, 단말은 CSI-RS 1202에 대한 추정 값 및 CSI-RS 1204에 대한 추정 값을 산출한 후, 산출된 값에 대해 CSI 보고 시점 - Z 시점까지 보외법을 적용하여 예측 추정 값을 산출할 수 있다. 여기에서, 보외법은 특정 값의 정도에 따라 일정 시간 이후의 값을 예측 추정하는 해석 기법을 의미할 수 있다.
상술한 방법을 이용하는 경우, 단말은 일정한 측정 시점이 정의된 경우보다 채널 상태(즉, 연결 상태)에 대한 최신 정보를 획득할 수 있는 장점이 있다. 구체적으로, 레거시 LTE 에서는, 단말은 CSI 보고 시점을 기준으로 일정 간격 이전(예: n-4번째 서브프레임)에서만 측정을 수행하도록 설정되었다. 이와 비교하여, 단말의 CSI 산출 능력을 고려하여 설정된 Z 값 이전까지 채널 상태에 정보를 획득할 수 있는 본 발명의 제안 방법은, 레거시 LTE의 경우보다 정확한(즉, 가장 최신의 채널 상태가 반영된) 채널(또는 간섭) 추정 값을 획득할 수 있는 장점이 있다.
제5 실시 예 - CSI 보고 오프셋을 고려하여 CSI 보고를 수행하는 방법
앞서 언급한 것과 같이, CSI-RS 타이밍 오프셋(즉, 상술한 X 값), CSI 보고 오프셋(즉, 상술한 Y 값), 및 CSI 보고에 요구되는 CSI 산출 시간(즉, 상술한 Z 값) 등을 고려하여, 단말의 CSI 보고를 수행하는 방법이 고려될 수 있다. 즉, 이와 같은 단말이 CSI 보고를 수행하기 위해 요구될 수 있는 다양한 처리 시간(computation time)을 고려하여, CSI 보고가 설정될 수 있다.
NR 시스템에서는, 비주기적 CSI 보고의 경우에 다수의 CSI 보고 오프셋 값(즉, 상술한 Y 값)들이 지원될 수 있다. 예를 들어, NR 시스템에서 Y 값은 적어도 0, 1, 2, 3, 및 4와 같은 값들이 지원될 수 있다. 이 경우, Y 값은 네트워크에 의해 설정 가능할 수 있다.
다만, CSI-RS의 전송 유형(type)에 따라, CSI 보고를 위해 지원 가능한(또는 적용 가능한) CSI 보고 오프셋이 서로 다르게 설정될 수 있다. 여기에서, CSI-RS의 전송 유형은, 상술한 바와 같이 주기적(periodic) CSI-RS 전송, 반-지속적(semi-persistent) CSI-RS 전송, 및 비주기적(aperiodic) CSI-RS 전송 등을 의미할 수 있다.
예를 들어, CSI 보고 오프셋 '0' 값(즉, CSI reporting offset (Y) = 0)은 이전 슬롯(slot)(또는 프레임(frame))에 CSI-RS가 전송된 경우에만 제한적으로 지원될 수 있다. 즉, 이전 슬롯에 CSI-RS가 전송된 경우에만, 기지국은 CSI 보고 오프셋 '0' 값을 단말에게 설정해줄 수 있다. 이 경우, 단말은 비주기적 CSI 보고의 경우에 대해 'Y = 0'이 설정되지 않을 것을 기대하지 않을 수 있다.
여기에서, CSI 보고 오프셋이 '0' 값으로 설정되는 것은, CSI 보고를 트리거링하는 DCI의 수신 시점부터 실제 CSI 보고를 수행하는 시점까지의 시간 간격이 '0'(또는 설정 가능한 Y 값들 중 가장 작은 값)으로 설정되는 것을 의미할 수 있다. 또한, 상기 이전 슬롯은 CSI 보고를 지시하는 DCI가 전송되는 슬롯 이전에 위치하는 슬롯을 의미할 수 있다.
즉, 'Y = 0'의 설정은, CSI-RS를 통한 채널 측정이 트리거링 DCI 수신 이전에 수행된 경우에만 지원될 수 있다.
따라서, 반-지속적 CSI-RS 전송 또는 주기적 CSI-RS 전송 시에만 'Y = 0' 설정이 지원될 수 있다. 다시 말해, 반-지속적 CSI-RS 전송 또는 주기적 CSI-RS 전송 시에만, CSI 보고 오프셋이 '0' 값으로 설정될 수 있다. 즉, 비주기적 CSI-RS 전송 시에는, 단말은 CSI 보고 오프셋(Y 값)이 '0'으로 설정될 것을 기대하지 않도록 설정될 수도 있다.
또한, NR 시스템의 경우, 하나의 슬롯(slot)을 구성하는 심볼(예: OFDM 심볼)의 수가 가변할 수 있다. 예를 들어, 하나의 슬롯은 14 개의 OFDM 심볼들, 7 개의 OFDM 심볼들, 또는 2 개의 OFDM 심볼들로 구성될 수 있다. 심볼의 수가 적게 설정되는 경우, 해당 슬롯은 미니 슬롯(mini-slot)으로 지칭될 수 있다. 이와 같이 하나의 슬롯을 구성하는 다른 수의 OFDM 심볼 수에 따라, 다양한 슬롯 유형들(예: 14 심볼 슬롯 유형, 7 심볼 슬롯 유형 등)이 설정될 수 있다.
이 때, 슬롯 유형에 따라 각 CSI 보고 오프셋 값(즉, 상술한 Y 값)에 대한 허용 조건(allowed condition) 또는 불허용 조건(disallowed condition)을 별도로 설정하는 방법이 고려될 수 있다. 여기에서, 허용 조건 또는 불허용 조건은, 각 Y 값에 대한 CSI 파라미터, CSI 코드북 유형, CSI-RS 안테나 포트의 수 등일 수 있다.
예를 들어, CSI 산출 시간(예: 하드웨어 상에서의 CSI 산출 시간)을 고려할 때, 14 심볼 슬롯 유형에서의 'Y = m'은, 7 심볼 슬롯 유형에서의 'Y = 2m'에 해당할 수 있다. 구체적으로, 14 심볼 슬롯 유형에서의 'Y = 1'은 7 심볼 슬롯 유형에서의 'Y = 2'에 해당할 수 있다. 즉, 14 심볼 슬롯 유형에서의 'Y = 1'에 해당하는 허용 조건(또는 비허용 조건)은, 7 심볼 슬롯 유형에서의 'Y = 2'에 해당하는 허용 조건(또는 비허용 조건)과 동일하게 설정될 수 있다.
이를 일반화 하면, M 개의 심볼로 구성된 M 심볼 슬롯 유형에서의 'Y = k'는, N 개의 심볼로 구성된 N 심볼 슬롯 유형에서의 'Y = M/N*k'에 해당할 수 있다.
또한, 각 슬롯 유형에 따라 지원 가능한 Y 값의 범위도 서로 다르게 정의될 수도 있다. 이 때, 슬롯을 구성하는 심볼의 수가 적을수록, Y 값의 최소 값 및/또는 최대 값이 크게 정의될 수 있다.
또한, 슬롯 유형에 따라 단말이 전송 가능한 최대 상향링크 페이로드 크기(uplink payload size)가 제한될 수 있는 점을 고려하여, 별도의 비허용 조건(또는 허용 조건)이 추가적으로 설정될 수도 있다. 예를 들어, 상대적으로 많은 피드백을 요구하는 유형 2의 피드백(예: CSI Type 2, linear combining codebook based feedback, covariance matrix feedback, eigen value/vector feedback, channel coefficient quantized feedback 등)은 7 심볼 이하로 구성된 슬롯 구조에서는 지원되지 않도록 설정될 수도 있다.
또한, 특정 Y 값에 따라 상술한 허용 조건 또는 비허용 조건이 서로 다르게 정의될 수 있다. 구체적으로, 적어도 'Y = 0'인 경우와 'Y = 1'인 경우 각각에 대해 상술한 허용 조건 또는 비허용 조건이 다르게 정의될 수 있다.
예를 들어, CSI 보고 파라미터로서 PMI가 포함된 경우, 'Y = 0' 설정은 불허될 수 있다. 다른 예를 들어, CSI-RS 포트의 수가 특정 값(예: Z)을 초과하는 경우, 'Y = 0' 설정은 불허될 수 있다. 또 다른 예를 들어, 앞서 언급한 바와 같이, 연관된 CSI-RS가 이전 슬롯(들)에서 전송된 경우에만 'Y = 0' 설정이 허용될 수도 있다.
도 13은 본 명세서에서 제안하는 방법이 적용될 수 있는 CSI를 측정 및 보고하는 절차와 관련된 기지국의 동작 순서도를 나타낸다. 도 13은 단지 설명의 편의를 위한 것일 뿐, 본 발명의 범위를 제한하는 것이 아니다.
도 13을 참고하면, 단말 및 기지국은 상술한 CSI 프레임워크에 기반하여 CSI 측정 절차 및 보고 절차를 수행하며, 이 경우 상술한 방법들 각각 독립적으로 또는 상호간에 결합하여 이용함이 가정된다. 예를 들어, 도 13에서 설명되는 기지국과 단말의 동작은 상술한 제5 실시 예에서 제안한 방법에 기반하여 수행되도록 설정될 수 있다.
S1305 단계에서, 기지국은 단말로 CSI 보고와 관련된 CSI 보고 설정 정보(CSI reporting setting information)를 전송할 수 있다. 여기에서, CSI 보로 설정 정보는, CSI 보고를 위한 시간 오프셋을 나타내는 정보(예: 상술한 Y 값)를 포함할 수 있다. 이 때, CSI 보고를 위한 시간 오프셋은, 단말이 CSI 보고를 트리거링하는 제어 정보를 수신하는 시점과 CSI 보고를 전송하는 시점(즉, CSI 보고 시점) 간의 시간 간격을 의미할 수 있다.
S1310 단계에서, 기지국은 단말로 채널 상태 정보 참조 신호(CSI-Reference Signal, CSI-RS)를 전송할 수 있다. 또한, S1315 단계에서, 기지국은 CSI 보고를 트리거링(또는 활성화/비활성화)하는 제어 정보를 전송할 수 있다. 예를 들어, CSI-RS는, CSI 보고를 트리거링하는 제어 정보가 전송되는 슬롯 이전에 위치하는 특정 슬롯에서 전송될 수도 있다.
다만, 도 13에서는 S1310 단계가 S1315 단계보다 먼저 수행되는 것으로 도시되어 있지만, S1310 단계와 S1315 단계는 동시에 수행되거나, S1315 단계가 먼저 수행되고 S1310 단계가 수행될 수도 있다.
이 후, S1320 단계에서, 기지국은 단말로부터 CSI-RS에 대한 측정에 기반하여 생성된 CSI 보고를 수신할 수 있다.
이 때, CSI 보고를 위한 시간 오프셋을 나타내는 정보가 '0' 값으로 설정되는 경우(예: 'Y = 0'), S1310 단계에서 CSI-RS는 주기적(periodic) 또는 반-지속적(semi-persistent)으로 전송된다. 즉, 단말은 비주기적 CSI 보고의 경우에 'Y = 0'이 설정될 것을 기대하지 않도록 설정될 수 있다.
또한, CSI 보고를 위한 시간 오프셋을 나타내는 정보는, 상술한 방법과 같이 슬롯 유형 별로 다르게 설정될 수도 있다.
또한, 앞서 언급한 바와 같이, 상술한 방식은 CSI 보고뿐만 아니라, 일반적인 빔 보고(beam reporting)(예: CRI, SSB-ID 및/또는 L1-RSRP 기반의 빔 보고)에도 동일 또는 유사하게 적용될 수 있음은 물론이다.
본 발명이 적용될 수 있는 장치 일반
도 14은 본 발명의 일 실시 예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 14을 참조하면, 무선 통신 시스템은 기지국(또는 네트워크)(1410)와 단말(1420)을 포함한다.
기지국(1410)는 프로세서(processor, 1411), 메모리(memory, 1412) 및 통신 모듈(communication module, 1413)을 포함한다.
프로세서(1411)는 앞서 도 1 내지 도 13에서 제안된 기능, 과정 및/또는 방법을 구현한다. 유/무선 인터페이스 프로토콜의 계층들은 프로세서(1411)에 의해 구현될 수 있다. 메모리(1412)는 프로세서(1411)와 연결되어, 프로세서(1411)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1413)은 프로세서(1411)와 연결되어, 유/무선 신호를 송신 및/또는 수신한다.
상기 통신 모듈(1413)은 무선 신호를 송/수신하기 위한 RF부(radio frequency unit)을 포함할 수 있다.
단말(1420)은 프로세서(1421), 메모리(1422) 및 통신 모듈(또는 RF부)(1423)을 포함한다. 프로세서(1421)는 앞서 도 1 내지 도 13에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(1421)에 의해 구현될 수 있다. 메모리(1422)는 프로세서(1421)와 연결되어, 프로세서(1421)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(1423)는 프로세서(1421)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(1412, 1422)는 프로세서(1411, 1421) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1411, 1421)와 연결될 수 있다.
또한, 기지국(1410) 및/또는 단말(1420)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
도 15는 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
특히, 도 15에서는 앞서 도 14의 단말을 보다 상세히 예시하는 도면이다.
도 15를 참조하면, 단말은 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(1510), RF 모듈(RF module)(또는 RF 유닛)(1535), 파워 관리 모듈(power management module)(1505), 안테나(antenna)(1540), 배터리(battery)(1555), 디스플레이(display)(1515), 키패드(keypad)(1520), 메모리(memory)(1530), 심카드(SIM(Subscriber Identification Module) card)(1525)(이 구성은 선택적임), 스피커(speaker)(1545) 및 마이크로폰(microphone)(1550)을 포함하여 구성될 수 있다. 단말은 또한 단일의 안테나 또는 다중의 안테나를 포함할 수 있다.
프로세서(1510)는 앞서 도 1 내지 도 13에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층은 프로세서(1510)에 의해 구현될 수 있다.
메모리(1530)는 프로세서(1510)와 연결되고, 프로세서(1510)의 동작과 관련된 정보를 저장한다. 메모리(1530)는 프로세서(1510) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(1510)와 연결될 수 있다.
사용자는 예를 들어, 키패드(1520)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크로폰(1550)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서(1510)는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드(1525) 또는 메모리(1530)로부터 추출할 수 있다. 또한, 프로세서(1510)는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(1515) 상에 디스플레이할 수 있다.
RF 모듈(1535)는 프로세서(1510)에 연결되어, RF 신호를 송신 및/또는 수신한다. 프로세서(1510)는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 RF 모듈(1535)에 전달한다. RF 모듈(1535)은 무선 신호를 수신 및 송신하기 위하여 수신기(receiver) 및 전송기(transmitter)로 구성된다. 안테나(1540)는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, RF 모듈(1535)은 프로세서(1510)에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(1545)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시 예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시 예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법은 3GPP LTE/LTE-A 시스템, 5G에 적용되는 예를 중심으로 설명하였으나, 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.
Claims (8)
- 무선 통신 시스템에서 채널 상태 정보(Channel State Information, CSI)를 보고하는(reporting) 방법에 있어서, 기지국에 의해 수행되는 방법은,단말로, CSI 보고와 관련된 CSI 보고 설정 정보(CSI reporting setting information)를 전송하는 과정과, 상기 CSI 보고 설정 정보는, 상기 CSI 보고를 위한 시간 오프셋을 나타내는 정보를 포함하고,상기 단말로, 채널 상태 정보 참조 신호(CSI-Reference Signal, CSI-RS)를 전송하는 과정과,상기 단말로, 상기 CSI 보고를 트리거링하는 제어 정보(control information)를 전송하는 과정과,상기 단말로부터, 상기 CSI-RS에 대한 측정에 기반하여 생성된 CSI 보고를 수신하는 과정을 포함하고,상기 CSI 보고를 위한 시간 오프셋을 나타내는 정보가 '0' 값으로 설정되는 경우, 상기 CSI-RS는 주기적(periodic) 또는 반-지속적(semi-persistent)으로 전송되는 것을 특징으로 하는 CSI 보고 방법.
- 제 1항에 있어서,상기 CSI 보고를 위한 시간 오프셋은, 상기 단말이 상기 CSI 보고를 트리거링하는 제어 정보를 수신하는 시점과 상기 CSI 보고를 전송하는 시점 간의 시간 간격인 것을 특징으로 하는 CSI 보고 방법.
- 제 1항에 있어서,상기 CSI-RS는, 상기 CSI 보고를 트리거링하는 제어 정보(control information)가 전송되는 슬롯 이전에 위치하는 특정 슬롯에서 전송되는 것을 특징으로 하는 CSI 보고 방법.
- 제 3항에 있어서,상기 CSI-RS에 대한 측정은, 상기 단말이 상기 CSI 보고를 트리거링하는 제어 정보(control information)를 수신하기 이전에 수행되는 것을 특징으로 하는 CSI 보고 방법.
- 제 1항에 있어서,상기 CSI 보고를 위한 시간 오프셋을 나타내는 정보는, 슬롯 유형(slot type) 별로 설정되며,상기 슬롯 유형은, 하나의 슬롯을 구성하는 심볼의 수에 따라 설정되는 것을 특징으로 하는 방법.
- 제 5항에 있어서,M 개의 심볼로 구성된 슬롯 유형에서의 CSI 보고를 위한 시간 오프셋을 나타내는 정보 'k'에 대한 설정은, N 개의 심볼로 구성된 N 심볼 슬롯 유형에서의 CSI 보고를 위한 시간 오프셋을 나타내는 정보 'M/N*k'에 대한 설정에 해당하는 것을 특징으로 하는 CSI 보고 방법.
- 무선 통신 시스템에서 채널 상태 정보(Channel State Information, CSI)를 보고(reporting) 받는 기지국에 있어서,무선 신호를 송수신하기 위한 RF 모듈(radio frequency module), 및상기 RF 모듈과 기능적으로 연결되어 있는 프로세서를 포함하고,상기 프로세서는,단말로, CSI 보고와 관련된 CSI 보고 설정 정보(CSI reporting setting information)를 전송하고, 상기 CSI 보고 설정 정보는, 상기 CSI 보고를 위한 시간 오프셋을 나타내는 정보를 포함하고,상기 단말로, 채널 상태 정보 참조 신호(CSI-Reference Signal, CSI-RS)를 전송하고,상기 단말로, 상기 CSI 보고를 트리거링하는 제어 정보(control information)를 전송하고,상기 단말로부터, 상기 CSI-RS에 대한 측정에 기반하여 생성된 CSI 보고를 수신하도록 제어하며,상기 CSI 보고를 위한 시간 오프셋을 나타내는 정보가 '0' 값으로 설정되는 경우, 상기 CSI-RS는 주기적(periodic) 또는 반-지속적(semi-persistent)으로 전송되는 것을 특징으로 하는 기지국.
- 무선 통신 시스템에서 단말이 채널 상태 정보(Channel State Information, CSI)를 보고하는(reporting) 방법에 있어서,기지국으로부터, CSI 보고와 관련된 CSI 보고 설정 정보(CSI reporting setting information)를 수신하는 과정과, 상기 CSI 보고 설정 정보는, 상기 CSI 보고를 위한 시간 오프셋을 나타내는 정보를 포함하고,상기 기지국으로부터, 채널 상태 정보 참조 신호(CSI-Reference Signal, CSI-RS)를 수신하는 과정과,상기 기지국으로부터, 상기 CSI 보고를 트리거링하는 제어 정보(control information)를 수신하는 과정과,상기 기지국으로, 상기 CSI-RS에 대한 측정에 기반하여 생성된 CSI를 보고하는 과정을 포함하고,상기 CSI 보고를 위한 시간 오프셋을 나타내는 정보가 '0' 값으로 설정되는 경우, 상기 CSI-RS는 주기적(periodic) 또는 반-지속적(semi-persistent)으로 전송되는 것을 특징으로 하는 CSI 보고 방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/613,408 US11121754B2 (en) | 2017-05-14 | 2018-05-14 | Method for measuring and reporting channel state information in wireless communication system and device for same |
EP18803243.7A EP3614719B1 (en) | 2017-05-14 | 2018-05-14 | Method for measuring and reporting channel state information in wireless communication system and device for same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762505977P | 2017-05-14 | 2017-05-14 | |
US62/505,977 | 2017-05-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018212530A1 true WO2018212530A1 (ko) | 2018-11-22 |
Family
ID=64274178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/005501 WO2018212530A1 (ko) | 2017-05-14 | 2018-05-14 | 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11121754B2 (ko) |
EP (1) | EP3614719B1 (ko) |
WO (1) | WO2018212530A1 (ko) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021087793A1 (zh) * | 2019-11-06 | 2021-05-14 | Oppo广东移动通信有限公司 | 一种信息处理方法、终端设备 |
CN112929926A (zh) * | 2019-12-05 | 2021-06-08 | 维沃移动通信有限公司 | 邻小区csi报告发送方法、接收方法及相关设备 |
WO2022086268A1 (ko) * | 2020-10-22 | 2022-04-28 | 엘지전자 주식회사 | 채널 상태 정보 보고를 전송하는 방법, 사용자기기, 프로세싱 장치, 저장 매체 및 컴퓨터 프로그램, 그리고 채널 상태 정보 보고를 수신하는 방법 및 기지국 |
WO2023287095A1 (ko) * | 2021-07-15 | 2023-01-19 | 엘지전자 주식회사 | 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112019017763A2 (pt) * | 2017-02-28 | 2020-03-31 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Método de comunicação sem fio e dispositivo terminal que compreende uma unidade de transceptor e uma unidade de processamento |
CN110612735A (zh) * | 2017-08-11 | 2019-12-24 | Oppo广东移动通信有限公司 | 测量上报控制方法及相关产品 |
AU2017430812A1 (en) * | 2017-09-07 | 2020-04-02 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Signal reporting method, terminal device, and network device |
EP3711231A4 (en) | 2017-11-13 | 2020-11-04 | Nec Corporation | METHODS AND DEVICES FOR TRANSMITTING AND RECEIVING BEAM REPORTS |
WO2019134099A1 (en) | 2018-01-04 | 2019-07-11 | Nec Corporation | Methods and apparatuses for channel state information transmission |
CN110035450B (zh) * | 2018-01-12 | 2020-06-23 | 维沃移动通信有限公司 | 测量上报的方法、终端设备和网络设备 |
KR102322038B1 (ko) * | 2018-05-17 | 2021-11-04 | 한양대학교 산학협력단 | 채널상태정보를 전송하는 방법 및 그 장치 |
CN118157787A (zh) | 2018-05-17 | 2024-06-07 | 现代自动车株式会社 | 信道状态信息传输方法及其装置 |
US11652526B2 (en) * | 2019-04-30 | 2023-05-16 | Ofinno, Llc | Channel state information feedback for multiple transmission reception points |
WO2021195981A1 (en) * | 2020-03-31 | 2021-10-07 | Qualcomm Incorporated | Reporting of multiple alternatives of channel state information report quantities for full duplex base station |
US11671992B2 (en) * | 2020-04-08 | 2023-06-06 | Apple, Inc | Transmission configuration indicator (TCI) acquisition mechanism for secondary cell activation of a frequency range 2 (FR2) unknown cell |
US11743750B2 (en) | 2020-10-20 | 2023-08-29 | Rohde & Schwarz Gmbh & Co. Kg | Measuring device and method for testing CSI type II codebook compliance |
US12101155B2 (en) * | 2021-01-27 | 2024-09-24 | Qualcomm Incorporated | User equipment indication to suspend report occasions |
WO2023130239A1 (en) * | 2022-01-05 | 2023-07-13 | Zte Corporation | Systems and methods for ue processing |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012141421A1 (ko) * | 2011-04-14 | 2012-10-18 | (주)팬택 | 통신 시스템에서 채널상태정보 송수신 장치 및 방법 |
KR20120124363A (ko) * | 2011-05-03 | 2012-11-13 | 주식회사 팬택 | 기지국의 주기적 채널상태보고 설정 제공 방법, 및 단말의 주기적 채널상태보고 제공 방법 |
US8761062B2 (en) * | 2011-01-11 | 2014-06-24 | Texas Instruments Incorporated | CSI measurement, reporting and collision-handling |
US9001747B2 (en) * | 2008-03-26 | 2015-04-07 | Nokia Corporation | Reporting channel state information |
KR20150050890A (ko) * | 2013-11-01 | 2015-05-11 | 주식회사 아이티엘 | 주기적 채널상태정보 보고 방법 및 장치 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3309974B1 (en) * | 2015-06-12 | 2021-08-04 | Samsung Electronics Co., Ltd. | Method and device for reporting channel state information in wireless communication system |
US10200168B2 (en) | 2015-08-27 | 2019-02-05 | Futurewei Technologies, Inc. | Systems and methods for adaptation in a wireless network |
-
2018
- 2018-05-14 US US16/613,408 patent/US11121754B2/en active Active
- 2018-05-14 EP EP18803243.7A patent/EP3614719B1/en active Active
- 2018-05-14 WO PCT/KR2018/005501 patent/WO2018212530A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9001747B2 (en) * | 2008-03-26 | 2015-04-07 | Nokia Corporation | Reporting channel state information |
US8761062B2 (en) * | 2011-01-11 | 2014-06-24 | Texas Instruments Incorporated | CSI measurement, reporting and collision-handling |
WO2012141421A1 (ko) * | 2011-04-14 | 2012-10-18 | (주)팬택 | 통신 시스템에서 채널상태정보 송수신 장치 및 방법 |
KR20120124363A (ko) * | 2011-05-03 | 2012-11-13 | 주식회사 팬택 | 기지국의 주기적 채널상태보고 설정 제공 방법, 및 단말의 주기적 채널상태보고 제공 방법 |
KR20150050890A (ko) * | 2013-11-01 | 2015-05-11 | 주식회사 아이티엘 | 주기적 채널상태정보 보고 방법 및 장치 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3614719A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021087793A1 (zh) * | 2019-11-06 | 2021-05-14 | Oppo广东移动通信有限公司 | 一种信息处理方法、终端设备 |
CN112929926A (zh) * | 2019-12-05 | 2021-06-08 | 维沃移动通信有限公司 | 邻小区csi报告发送方法、接收方法及相关设备 |
CN112929926B (zh) * | 2019-12-05 | 2022-04-12 | 维沃移动通信有限公司 | 邻小区csi报告发送方法、接收方法及相关设备 |
WO2022086268A1 (ko) * | 2020-10-22 | 2022-04-28 | 엘지전자 주식회사 | 채널 상태 정보 보고를 전송하는 방법, 사용자기기, 프로세싱 장치, 저장 매체 및 컴퓨터 프로그램, 그리고 채널 상태 정보 보고를 수신하는 방법 및 기지국 |
WO2023287095A1 (ko) * | 2021-07-15 | 2023-01-19 | 엘지전자 주식회사 | 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치 |
Also Published As
Publication number | Publication date |
---|---|
EP3614719B1 (en) | 2022-05-04 |
US11121754B2 (en) | 2021-09-14 |
EP3614719A4 (en) | 2020-11-18 |
EP3614719A1 (en) | 2020-02-26 |
US20200099435A1 (en) | 2020-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018147676A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치 | |
WO2018212530A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치 | |
WO2018143665A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치 | |
WO2018174413A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 측정 및 보고하는 방법 및 이를 위한 장치 | |
WO2018230975A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이를 위한 장치 | |
WO2018164332A1 (ko) | 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치 | |
WO2019103562A1 (en) | Method for reporting channel state information in wireless communication system and apparatus for the same | |
WO2018203704A1 (ko) | 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치 | |
WO2018199704A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치 | |
WO2018128376A1 (ko) | 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치 | |
WO2019107873A1 (en) | Method for reporting channel state information in wireless communication system and apparatus for the same | |
WO2018203680A1 (ko) | 무선 통신 시스템에서 빔을 통해 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2022145995A1 (en) | Method and apparatus of uplink timing adjustment | |
WO2019066618A1 (ko) | 무선 통신 시스템에서 qcl에 기초하여 데이터를 송수신하기 위한 방법 및 이를 위한 장치 | |
WO2019098762A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 송수신하는 방법 및 이를 위한 장치 | |
WO2019098798A1 (ko) | 무선 통신 시스템에서 빔 실패 복구를 수행하는 방법 및 이를 위한 장치 | |
WO2018128365A1 (ko) | 무선 통신 시스템에서 물리 상향링크 제어 채널 전송 방법 및 이를 위한 장치 | |
WO2018128351A1 (ko) | 무선 통신 시스템에서 빔을 이용하여 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2019139288A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치 | |
WO2018203679A1 (ko) | 무선 통신 시스템에서 빔을 이용하여 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2019017751A1 (ko) | 무선 통신 시스템에서 채널 상태 정보 참조 신호를 송수신하는 방법 및 이를 위한 장치 | |
WO2018079969A1 (ko) | 무선 통신 시스템에서 빔 관리를 수행하는 방법 및 이를 위한 장치 | |
WO2019164363A1 (ko) | 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치 | |
WO2018199703A1 (ko) | 무선 통신 시스템에서 채널 상태 정보를 보고하기 위한 방법 및 이를 위한 장치 | |
WO2019050380A1 (ko) | 무선 통신 시스템에서 빔 복구를 수행하는 방법 및 이를 위한 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18803243 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018803243 Country of ref document: EP Effective date: 20191119 |