WO2018212390A1 - 냉각 레이저가 내장된 광 송수신 모듈 - Google Patents

냉각 레이저가 내장된 광 송수신 모듈 Download PDF

Info

Publication number
WO2018212390A1
WO2018212390A1 PCT/KR2017/005435 KR2017005435W WO2018212390A1 WO 2018212390 A1 WO2018212390 A1 WO 2018212390A1 KR 2017005435 W KR2017005435 W KR 2017005435W WO 2018212390 A1 WO2018212390 A1 WO 2018212390A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
cooling
wavelength
module
cooling laser
Prior art date
Application number
PCT/KR2017/005435
Other languages
English (en)
French (fr)
Inventor
권윤구
노영욱
Original Assignee
㈜켐옵틱스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ㈜켐옵틱스 filed Critical ㈜켐옵틱스
Publication of WO2018212390A1 publication Critical patent/WO2018212390A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • H04J14/0216Bidirectional architectures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/03WDM arrangements
    • H04J14/0307Multiplexers; Demultiplexers

Definitions

  • the present invention relates to an optical transmission / reception module having a cooling laser embedded therein, and more particularly, to an optical transmission / reception module including at least four cooling lasers having a TOCAN (Transistor Outline CAN) type, and having a high communication speed through multi-channel optical communication
  • the present invention relates to an optical transmission / reception module including a cooling laser capable of improving the reliability of two-way optical transmission and reception.
  • a semiconductor laser diode chip having a horizontal length and a vertical length of about 0.3 mm can be used to easily convert an electric signal of 10 Gbps into laser light, and the light transmitted through an optical fiber using a semiconductor optical receiver. Since signals can be easily converted into electric signals, large-capacity information transmission and high-speed information communication are common.
  • Light is an energy wave with very unusual characteristics. In order for several lights simultaneously in an area to interact with each other, the light to be interacted with must have the same wavelength or have the same light phase. The direction of travel must also match. Therefore, light has very low coherence with each other, and optical communication using a wavelength division multiplexing (WDM) method that transmits light having various wavelengths through one optical fiber at the same time by using such characteristics of light is preferred.
  • WDM wavelength division multiplexing
  • the optical communication of the WDM method has the advantage of reducing the cost of laying the optical fiber by allowing the optical fiber, which is a signal transmission medium, to be shared.
  • the line width of the laser light used for communication is very narrow.
  • a representative method of manufacturing such a narrow line width laser light source is a method of inserting a refractive index mural grating into a laser diode chip, which is typical of the DFB-LD (Distributed Feedback Laser Diode) manufactured by the above method.
  • DFB-LD can easily perform 10Gbps high-speed communication, but since the wavelength changes according to the use environment temperature, wavelength multiplexing with at least 20nm wavelength interval considering the typical use environment temperature 20 ⁇ 70 It is used for the method.
  • an optical transmission / reception module having a cooling laser is incorporated therein, so that the temperature control of the laser can be easily performed through the TEC control by incorporating the TEC in the optical transmission device. Can be done.
  • Korean Patent No. 10-1630354 discloses a bidirectional optical transmission / reception module having an efficient optical coupling structure that is applicable to high-speed mass data communication and advantageous for integration and low cost of modules.
  • an object of the present invention is an optical transmission and reception module having at least four cooling lasers in the form of a transistor outline CAN (TOCAN), multi-channel optical communication It is to provide an optical transceiver module with a cooling laser that can improve the reliability of two-way optical transmission and reception at a high communication speed.
  • TOCAN transistor outline CAN
  • the optical transmission / reception module including a cooling laser includes at least four cooling lasers 110 in the form of a transistor outline CAN (TOCAN), and different wavelengths for each of the cooling lasers 110.
  • At least four or more optical transmitters 100 and TOCAN type photodiodes 210 for setting an optical signal to emit an optical signal, and set to receive an optical signal having a specific wavelength different for each of the photodiodes 210.
  • Bidirectional multiplexer 300 including a light filter 200 for receiving an optical signal and a wavelength filter for simultaneously transmitting and receiving a plurality of wavelengths set in the optical transmitter 100 and a plurality of wavelengths set in the light receiver 200.
  • a housing selected from the CFP (Century Form-factor Pluggable) optical module, CFP2 optical module, CPF4 optical module, CPF8 optical module and QSFP Quad Small Form-factor Pluggable Multi-Source Agreement (MSA) optical moduleCharacterized in that the sex.
  • CFP Cosmetic Form-factor Pluggable
  • CFP2 optical module CFP2 optical module
  • CPF4 optical module CPF8 optical module
  • MSA Quad Small Form-factor Pluggable Multi-Source Agreement
  • the optical transmitter 100 sets the transmission wavelength of each cooling laser 110 through temperature control of a thermoelectric cooler (TEC) built in the cooling laser 110. It is characterized by including
  • the optical transmitter 100 is characterized by including a MCU (130) for controlling the setting of the transmission wavelength of the cooling laser 110 by transmitting a control signal received to the TEC control unit 120.
  • the optical transmitter 100 may include a multiplexer (MUX) 140 in which a wavelength filter for accommodating different wavelengths set for each of the cooling lasers 110 is embedded.
  • MUX multiplexer
  • the light receiving unit 200 is characterized in that it comprises a demultiplexer (DEMUX) (220) with a built-in wavelength filter for receiving different wavelengths set for each photodiode (210).
  • DEMUX demultiplexer
  • the bidirectional multiplexer 300 is set to transmit and receive the wavelength of the multiplexer 140 and the wavelength of the demultiplexer 220.
  • optical transmission / reception module in which the cooling laser is built is characterized in that it is in the form of a single core having one port through the bidirectional multiplexer 300.
  • an optical transmission / reception module including a cooling laser may include at least four or more cooling lasers 11 having a TOCAN (Transistor Outline CAN) type, and different cooling units configured for each of the cooling lasers 11. And a multiplexer (MUX) 14 having a built-in wavelength filter for receiving the wavelengths, wherein each of the cooling lasers 11 is configured to have a different wavelength and emits an optical signal.
  • TOCAN Transistor Outline CAN
  • MUX multiplexer
  • a light receiving unit 20 configured to receive an optical signal having a specific wavelength different from each other, and receive an optical signal, and include a CFP (Century Form-factor Pluggable) optical module, a CFP2 optical module, a CPF4 optical module, and a CPF8 optical module.
  • CFP Cosmetic Form-factor Pluggable
  • QSFP MSA Quad Small Form-factor Pluggable Multi-Source Agreement
  • QSFP MSA is configured in one housing selected from the optical modules, and has one optical transmission port (port) through the optical transmitter 10 through the optical receiver 20 It is characterized in that the form of two core (2 core) having one light receiving port (port).
  • the optical transmitter 10 sets the transmission wavelength of each cooling laser 110 through temperature control of a thermoelectric cooler (TEC) built in the cooling laser 11. And it is characterized in that it comprises a MCU (13) for controlling the setting of the transmission wavelength of the cooling laser 11 by transmitting the control signal received to the TEC control unit 12.
  • TEC thermoelectric cooler
  • the optical transmission / reception module including the cooling laser of the present invention having the above-described configuration is an optical transmission / reception module including at least four cooling lasers having a TOCAN (Transistor Outline CAN) type, and is bidirectional at a high communication speed through multi-channel optical communication. The reliability of optical transmission and reception can be improved.
  • TOCAN Transistor Outline CAN
  • optical module housing according to the standards of CFP (Century Form-factor Pluggable), CFP2, CFP4, CPF8, QSFP Quad Small Form-factor Pluggable Multi-Source Agreement (MSA), there is an advantage that can be easily applied .
  • CFP Cosmetic Form-factor Pluggable
  • CFP2, CFP4, CPF8, QSFP Quad Small Form-factor Pluggable Multi-Source Agreement (MSA) there is an advantage that can be easily applied .
  • FIG. 1 is a block diagram showing an optical transmission and reception module with a built-in cooling laser according to a first embodiment of the present invention.
  • FIG. 2 is an exemplary configuration diagram showing an optical transceiver module having a cooling laser according to a first embodiment of the present invention.
  • FIG. 3 is a block diagram showing an optical transmission and reception module with a cooling laser according to a second embodiment of the present invention.
  • FIG. 4 is an exemplary configuration diagram showing an optical transmission / reception module including a cooling laser according to a second embodiment of the present invention.
  • FIG. 5 is a graph illustrating control-controlled wavelengths of an optical transmitter in an optical transceiver module having a cooling laser according to an embodiment of the present invention.
  • the optical transmission and reception module with a cooling laser relates to an optical transmission and reception module having a core or two cores, and includes a CFP (Century Form-factor Pluggable), CFP2, CFP4, CPF8, It is preferable to use an optical module housing according to the standard of QSFP Quad Small Form-factor Pluggable Multi-Source Agreement.
  • CFP Cosmetic Form-factor Pluggable
  • FIGS. 1 and 2 are views illustrating an optical transceiver module having a cooling laser according to a first embodiment of the present invention. Referring to FIGS. 1 and 2, the cooling laser according to the first embodiment of the present invention is incorporated. The optical transmission and reception module will be described in detail.
  • the optical transmission / reception module including the cooling laser according to the first embodiment of the present invention includes at least four cooling lasers 110 having a TOCAN (Transistor Outline CAN) type. ),
  • the optical transmitter 100 converts an electric signal having a different wavelength for each cooling laser 110 into laser light to convert the bidirectional multiplexing. It can be transmitted through the firearm 300, the optical receiver 200 receives the optical signal of a specific wavelength set for each photodiode 210 through the bi-directional multiplexer 300 to convert into an electrical signal Communication is established.
  • the optical transmitter 100 preferably includes at least four or more cooling lasers 110 having a TOCAN shape, and a TOCAN shape means a form of covering a top surface of an integrated element in which active elements capable of performing an optical transmission and reception function are integrated. do.
  • the optical transmitter 100 may be configured to have a different wavelength for each of the cooling lasers 110 to emit an optical signal, that is, to convert an electrical signal into laser light and transmit the laser signal. As shown in FIG. 1 and FIG. 2 for each cooling laser 110, each of the cooling lasers 110 may include a driver.
  • each cooling is performed through temperature control of a thermoelectric cooler (TEC) built in the cooling laser 110. It may be configured to further include a TEC control unit 120 for setting the transmission wavelength of the laser (110).
  • TEC thermoelectric cooler
  • the TEC controller 120 sets the transmission wavelength of each cooling laser 110 by using the received control signal, and the control signal is transmitted to the TEC controller 120 through the MCU 130. It is preferred to be delivered.
  • the control signal is preferably received through an external manager.
  • the optical transmitter 100 receives a temperature control signal for setting a desired transmission wavelength from an external manager in the MCU 130, and transmits the signal to the TEC controller 120, and the TEC controller 120 By controlling the thermoelectric element embedded in each of the cooling lasers 110 according to the received temperature control signal, each of the cooling lasers 110 is set to have a different communication wavelength.
  • the cooling laser 110 is preferably in the form of a Cooled DFB TOCAN with a built-in TEC, as described above, the wavelength is controlled by changing the wavelength in accordance with the use environment temperature, generally used Depending on the environmental temperature, the wavelength will change to about 0.1 nm /.
  • the communication wavelength of the cooling laser 110 select one of the 18 wavelength wave division division multiplexing (CWDM) wavelength band set to the DWDM (Dense Wavelength Division Multiplexing) wavelength interval That is, it can be set to different wavelengths for each of the cooling laser 110 in one wavelength band of the CWDM, the wavelength interval is most preferably set to 50GHz, 100GHz, 200GHz, 400GHz, 800GHz, etc. Do.
  • CWDM wavelength wave division division multiplexing
  • the optical transmitter 100 includes a multiplexer (MUX) 140 having a built-in wavelength filter that can accommodate communication wavelengths differently set for each of the cooling lasers 110. It may be configured to include more.
  • MUX multiplexer
  • optical transmission may be performed by receiving communication wavelengths of a plurality of cooling lasers 110 having different DWDM wavelength intervals.
  • the optical receiver 200 uses a PIN-PD or an APD according to a reception sensitivity request, and preferably includes at least four photo diodes 210 of a TOCAN type. It refers to a form in which active elements capable of performing a transmission / reception function cover an upper surface of an integrated stem.
  • the optical receiver 200 may receive an optical signal having a specific wavelength different for each photodiode 210 and convert the optical signal into an electrical signal.
  • each photo Each diode 210 is preferably configured to include a respective amplifier (Limiting Amplifier).
  • the amplifier may receive a control signal for setting a desired reception wavelength from an external manager connected to the MCU 130 to be connected, and set a specific wavelength received for each photodiode 210. have.
  • the photodiode 210 of the optical receiver 200 may receive an optical signal suitable for a predetermined wavelength, and in this case, the optical receiver 200 further includes a demultiplexer (DEMUX) 220.
  • the optical signal transmitted from the optical transmitter 100 may be converted into a unique wavelength and transmitted to the photodiode 210, and the photodiode 210 may receive only a specific wavelength set among the received optical signals.
  • the demultiplexer 220 has a built-in wavelength filter to accommodate different wavelengths set for each photodiode 210.
  • the communication wavelengths of the plurality of cooling lasers 110 having different DWDM wavelength intervals are received to allow light reception to the plurality of photodiodes 210 having different wavelengths. Can be.
  • the bidirectional multiplexer 300 is a BiDi MUX, and bidirectional optical communication is applied to convert an electrical signal received from the optical transmitter 100 into an optical signal and transmit it through an optical fiber, and is transmitted downward through an optical fiber. Incoming optical signals may be received and converted into electrical signals and transmitted to the optical receiver 200.
  • the bidirectional multiplexer 300 includes a wavelength filter for simultaneously transmitting and receiving a plurality of communication wavelengths set in the optical transmitter 100 and a plurality of wavelengths set in the optical receiver 200.
  • the optical transmission and reception module with a built-in cooling laser transmits and receives the wavelength of the multiplexer 140 and the wavelength of the demultiplexer 220 through the bidirectional multiplexer 300.
  • it may be configured in the form of a single core having one port.
  • FIGS. 3 and 4 are views illustrating an optical transceiver module having a cooling laser according to a second embodiment of the present invention, and with reference to FIGS. 3 and 4, the cooling laser according to the second embodiment of the present invention is incorporated.
  • the optical transmission and reception module will be described in detail.
  • the optical transmission / reception module including the cooling laser according to the second embodiment of the present invention may include at least four or more cooling lasers 110 having a TOCAN (Transistor Outline CAN) type. And a light receiving unit 20 including at least four photo diodes 210 of TOCAN type, and compared with an optical transmitting / receiving module having a cooling laser according to the first embodiment of the present invention.
  • the optical transmitter 10 and the optical receiver 20 are preferably in the form of two cores having respective ports.
  • the optical transmission unit 10 converts an electric signal having a different wavelength for each cooling laser 11 into laser light and converts the MUX 14.
  • the optical receiver 200 receives an optical signal having a specific wavelength set for each photodiode 21 through the DEMUX 22 and converts the optical signal into an electrical signal, thereby performing communication. .
  • the optical transmitter 10 preferably includes at least four or more cooling lasers 11 of TOCAN type, and the TOCAN type means a form of covering a top surface of an integrated element in which active elements capable of performing optical transmission and reception functions are integrated. do.
  • the optical transmitter 10 may be set to have a different wavelength for each of the cooling lasers 11, and may transmit an optical signal, that is, convert an electric signal into laser light and transmit the same.
  • each of the cooling drivers 11 is preferably configured to include a laser driver.
  • each cooling is performed through temperature control of a thermoelectric cooler (TEC) built in the cooling laser 11. It can be configured to further include a TEC control unit 12 for setting the transmission wavelength of the laser (11).
  • TEC thermoelectric cooler
  • the TEC controller 12 sets the transmission wavelength of each cooling laser 11 by using the received control signal, and the control signal is transmitted to the TEC controller 12 through the MCU 13. It is preferred to be delivered.
  • the control signal is preferably received through an external manager.
  • the optical transmitter 10 receives a temperature control signal for setting a desired transmission wavelength from the external manager in the MCU 13, and transmits the signal to the TEC controller 12, and the TEC controller 12 By controlling the thermoelectric element embedded in each of the cooling lasers 11 according to the received temperature control signal, each of the cooling lasers 11 is set to have a different communication wavelength.
  • the cooling laser 11 is preferably in the form of a Cooled DFB TOCAN with a built-in TEC, as described above, the wavelength is controlled by changing the wavelength depending on the use environment temperature, generally used Depending on the environmental temperature, the wavelength will change to about 0.1 nm /.
  • the communication wavelength of the cooling laser 11 is selected from one of 18 coarse wavelength division multiplexing (CWDM) wavelength bands and set to DWDM (Dense Wavelength Division Multiplexing) wavelength interval. That is, it is possible to set different wavelengths for each of the cooling lasers 11 within one wavelength band of CWDM, and most preferably set to 50 GHz, 100 GHz, 200 GHz, 400 GHz, 800 GHz, etc. as the wavelength interval. Do.
  • CWDM coarse wavelength division multiplexing
  • DWDM Dens Division Multiplexing
  • the optical transmitter 10 includes the multiplexer (MUX) 140 having a built-in wavelength filter capable of receiving communication wavelengths differently set for each of the cooling lasers 11. It may be configured to include more.
  • MUX multiplexer
  • optical transmission may be performed by receiving communication wavelengths of a plurality of cooling lasers 11 having different DWDM wavelength intervals.
  • the optical receiver 20 uses a PIN-PD or an APD according to a reception sensitivity request, and preferably includes at least four photo diodes 21 of a TOCAN type. It refers to a form in which active elements capable of performing a transmission / reception function cover an upper surface of an integrated stem.
  • the optical receiver 20 may receive an optical signal having a specific wavelength different for each photodiode 21 and convert the optical signal into an electrical signal.
  • each photo Each diode 21 is preferably configured to include a respective amplifier (Limiting Amplifier).
  • the amplifier receives a control signal for setting a desired reception wavelength from an external manager connected to the MCU 130 connected thereto, and sets a specific wavelength received for each photodiode 21. have.
  • the photodiode 21 of the optical receiver 20 may receive an optical signal suitable for a predetermined wavelength, and at this time, the optical receiver 20 further includes a demultiplexer (DEMUX) 22.
  • the optical signal transmitted from the optical transmitter 10 may be converted into a unique wavelength and transmitted to the photodiode 21, and the photodiode 21 may receive only a specific wavelength set among the received optical signals.
  • the demultiplexer 22 has a built-in wavelength filter for accommodating different wavelengths set for each photodiode 21.
  • the communication wavelengths of the plurality of cooling lasers 11 having different DWDM wavelength intervals are received to allow light reception to the plurality of photodiodes 21 having different wavelengths. Can be.
  • the optical transceiver module with a cooling laser can configure a CFP optical module without a bidirectional multiplexer, wherein the optical transmitter 10 and the optical receiver 20 are each one. It can be configured in the form of two cores having two ports.
  • cooling laser 120 TEC control unit
  • photodiode 220 DEMUX
  • cooling laser 12 TEC control unit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

본 발명은 냉각 레이저가 내장된 광 송수신 모듈에 관한 것으로서, 더욱 상세하게는 TOCAN(Transistor Outline CAN) 형태의 냉각 레이저(110)를 적어도 4개 이상 포함하며, 각각의 상기 냉각 레이저(110)별로 상이한 파장을 갖도록 설정하여 광신호를 발산하는 광송신부(100), TOCAN 형태의 포토 다이오드(210)를 적어도 4개 이상 포함하며, 각각의 상기 포토 다이오드(210)별로 상이한 특정 파장의 광신호를 수신하도록 설정하여 광신호를 수신하는 광수신부(200) 및 상기 광송신부(100)에 설정된 다수의 파장과 상기 광수신부(200)에 설정된 다수의파장을 동시 송수신하는 파장 필터를 포함하는 양방향 다중화기(300)를 포함하며, CFP(Century Form-factor Pluggable) 광모듈, CFP2 광모듈, CPF4 광모듈, CPF8 광모듈 및 QSFP MSA(Quad Small Form-factor Pluggable Multi-Source Agreement) 광모듈 중 선택되는 하나의 하우징에 구성되는 것을 특징으로 하는 냉각 레이저가 내장된 광 송수신 모듈에 관한 것이다.

Description

냉각 레이저가 내장된 광 송수신 모듈
본 발명은 냉각 레이저가 내장된 광 송수신 모듈에 관한 것으로, 더욱 상세하게는 TOCAN(Transistor Outline CAN) 형태의 냉각 레이저가 적어도 4개 이상 내장된 광 송수신 모듈로서, 다채널 광통신을 통해 빠른 통신속도로 양방향 광 송수신의 신뢰성을 향상시킬 수 있는 냉각 레이저가 내장된 광 송수신 모듈에 관한 것이다.
근래에 들어, 가로 길이 및 세로 길이가 각각 0.3mm 정도인 반도체 레이저 다이오드 칩을 이용하여 손쉽게 10Gbps의 전기 신호를 레이저 빛으로 변환할 수 있으며, 반도체 광 수신소자를 이용하여 광섬유를 통해 전송되어오는 광신호를 전기신호로 손쉽게 변환할 수 있어, 대용량의 정보 전송 및 고속의 정보 통신이 일반화되어 있다.
빛은 매우 특이한 특성을 갖는 에너지파로서, 어느 한 지역에 동시에 존재하는 여러 빛들이 서로 상호 작용을 하기 위해서는, 상호 작용의 대상이 되는 빛들이 동일한 파장을 가지거나, 빛의 위상(phase)이 맞아야 하며, 진행 방향 역시 일치하여야 한다. 그러므로 빛은 서로 간의 간섭성이 매우 떨어지며 이러한 빛의 특성을 이용하여 여러 가지 파장을 갖는 빛을 동시에 하나의 광섬유를 통하여 전송하는 파장분할(WDM, Wavelength Division Multiplexing) 방식의 광통신이 선호되고 있다.
이러한 WDM 방식의 광통신은 신호의 전송 매질인 광섬유를 공유할 수 있게 해줌으로써 광섬유 포설에 따른 비용을 줄여주는 장점이 있으며, 이러한 파장 다중화 방식을 사용하기 위해서는 통신에 사용되는 레이저 빛의 선폭이 매우 좁아야 하기 때문에 이러한 좁은 선폭의 레이저 광원을 제작하는 대표적인 방법은 레이저 다이오드 칩 내에 굴절률의 벽화 격자를 삽입하는 방법으로서 상기 방법을 통해 제작한 DFB-LD(Distributed Feedback Laser Diode)가 대표적이다.
DFB-LD는 10Gbps 급의 초고속의 통신을 용이하게 수행할 수 있으나, 사용 환경 온도에 따라 파장이 변화하기 때문에 일반적인 사용 환경 온도인 20 ~ 70를 고려하여 최소한 20nm 정보의 파장 간격이 존재하는 파장 다중화 방식에 사용되고 있다.
본 발명의 일 실시예에 따른 냉각 레이저가 내장된 광 송수신 모듈은 상술한 특징을 이용하여, 광송신소자에 TEC를 내장시킴으로써 TEC 제어를 통해 레이저의 온도 조절을 수행할 수 있어 용이하게 파장 제어를 수행할 수 있다.
이와 관련해서, 국내 등록 특허 제10-1630354호(양방향 광 송수신 모듈)에서는 고속 대용량 데이터 통신에 적용 가능하고 모듈의 집적화와 저가격화에 유리한 효율적인 광 결합 구조를 가지는 양방향 광 송수신 모듈을 개시하고 있다.
[선행기술문헌]
[특허문헌]
국내등록공고 제10-1630354호(등록일 2016.06.08.)
본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 TOCAN(Transistor Outline CAN) 형태의 냉각 레이저가 적어도 4개 이상 내장된 광 송수신 모듈로서, 다채널 광통신을 통해 빠른 통신속도로 양방향 광 송수신의 신뢰성을 향상시킬 수 있는 냉각 레이저가 내장된 광 송수신 모듈을 제공하는 것이다.
본 발명의 일 실시예에 따른 냉각 레이저가 내장된 광 송수신 모듈은, TOCAN(Transistor Outline CAN) 형태의 냉각 레이저(110)를 적어도 4개 이상 포함하며, 각각의 상기 냉각 레이저(110)별로 상이한 파장을 갖도록 설정하여 광신호를 발산하는 광송신부(100), TOCAN 형태의 포토 다이오드(210)를 적어도 4개 이상 포함하며, 각각의 상기 포토 다이오드(210)별로 상이한 특정 파장의 광신호를 수신하도록 설정하여 광신호를 수신하는 광수신부(200) 및 상기 광송신부(100)에 설정된 다수의 파장과 상기 광수신부(200)에 설정된 다수의파장을 동시 송수신하는 파장 필터를 포함하는 양방향 다중화기(300)를 포함하며, CFP(Century Form-factor Pluggable) 광모듈, CFP2 광모듈, CPF4 광모듈, CPF8 광모듈 및 QSFP MSA(Quad Small Form-factor Pluggable Multi-Source Agreement) 광모듈 중 선택되는 하나의 하우징에 구성되는 것을 특징으로 한다.
더 나아가, 상기 광송신부(100)는 상기 냉각 레이저(110)에 내장된 열전소자(TEC, Thermoelectric cooler)의 온도 제어를 통해서, 각각의 냉각 레이저(110)의 송신 파장을 설정하는 TEC 제어부(120)를 포함하는 것을 특징으로 한다
더 나아가, 상기 광송신부(100)는 상기 TEC 제어부(120)로 전달받은 제어신호를 전송하여 상기 냉각 레이저(110)의 송신 파장의 설정을 제어하는 MCU(130)를 포함하는 것을 특징으로 한다.
더 나아가, 상기 광송신부(100)는 각각의 상기 냉각 레이저(110)별로 설정된 상이한 파장들을 수용하는 파장 필터가 내장되는 다중화기(MUX)(140)를 포함하는 것을 특징으로 한다.
더 나아가, 상기 광수신부(200)는 각각의 상기 포토 다이오드(210)별로 설정된 상이한 파장들을 수용하는 파장 필터가 내장된 역다중화기(DEMUX)(220)를 포함하는 것을 특징으로 한다.
더 나아가, 상기 양방향 다중화기(300)는 상기 다중화기(140)의 파장과 상기 역다중화기(220)의 파장을 송수신하도록 설정되는 것을 특징으로 한다.
더 나아가, 상기 냉각 레이저가 내장된 광 송수신 모듈은 상기 양방향 다중화기(300)를 통해서 1개의 포트(port)를 갖는 단일 코어(1 core) 형태인 것을 특징으로 한다.
본 발명의 또다른 일 실시예에 따른 냉각 레이저가 내장된 광 송수신 모듈은, TOCAN(Transistor Outline CAN) 형태의 적어도 4개 이상의 냉각 레이저(11)와, 각각의 상기 냉각 레이저(11)별로 설정된 상이한 파장들을 수용하는 파장 필터가 내장되는 다중화기(MUX)(14)를 포함하며, 각각의 상기 냉각 레이저(11)별로 상이한 파장을 갖도록 설정하여 광신호를 발산하는 광송신부(10) 및 TOCAN 형태의 적어도 4개 이상의 포토 다이오드(21)와, 각각의 상기 포토 다이오드(21)별로 설정된 상이한 파장들을 수용하는 파장 필터가 내장된 역다중화기(DEMUX)(22)를 포함하며, 각각의 상기 포토 다이오드(21)별로 상이한 특정 파장의 광신호를 수신하도록 설정하여 광신호를 수신하는 광수신부(20)를 포함하며, CFP(Century Form-factor Pluggable) 광모듈, CFP2 광모듈, CPF4 광모듈, CPF8 광모듈 및 QSFP MSA(Quad Small Form-factor Pluggable Multi-Source Agreement) 광모듈 중 선택되는 하나의 하우징에 구성되고, 상기 광송신부(10)를 통해서 1개의 광송신 포트(port)를 갖고 상기 광수신부(20)를 통해서 1개의 광수신 포트(port)를 갖는 두 개의 코어(2 core) 형태인 것을 특징으로 한다.
더 나아가, 상기 광송신부(10)는 상기 냉각 레이저(11)에 내장된 열전소자(TEC, Thermoelectric cooler)의 온도 제어를 통해서, 각각의 냉각 레이저(110)의 송신 파장을 설정하는 TEC 제어부(12) 및 상기 TEC 제어부(12)로 전달받은 제어신호를 전송하여 상기 냉각 레이저(11)의 송신 파장의 설정을 제어하는 MCU(13)를 포함하는 것을 특징으로 한다.
상기와 같은 구성에 의한 본 발명의 냉각 레이저가 내장된 광 송수신 모듈은 TOCAN(Transistor Outline CAN) 형태의 냉각 레이저가 적어도 4개 이상 내장된 광 송수신 모듈로서, 다채널 광통신을 통해 빠른 통신속도로 양방향 광 송수신의 신뢰성을 향상시킬 수 있다.
또한, CFP(Century Form-factor Pluggable), CFP2, CFP4, CPF8, QSFP MSA(Quad Small Form-factor Pluggable Multi-Source Agreement)의 규격에 따라 광모듈 하우징을 구성함으로써, 용이한 적용이 가능한 장점이 있다.
특히, 양방향 광송수신이 가능한 1개의 포트를 갖는 1 코어 형태로 구성할 수 있어, 광 송수신 모듈을 포함한 구성을 용이하게 설계할 수 있는 장점이 있다.
도 1은 본 발명의 제 1 실시예에 따른 냉각 레이저가 내장된 광 송수신 모듈을 나타낸 구성도이다.
도 2는 본 발명의 제 1 실시예에 따른 냉각 레이저가 내장된 광 송수신 모듈을 나타낸 구성 예시도이다.
도 3은 본 발명의 제 2 실시예에 따른 냉각 레이저가 내장된 광 송수신 모듈을 나타낸 구성도이다.
도 4는 본 발명의 제 2 실시예에 따른 냉각 레이저가 내장된 광 송수신 모듈을 나타낸 구성 예시도이다.
도 5는 본 발명의 일 실시예에 따른 냉각 레이저가 내장된 광 송수신 모듈에서 광송신부의 제어 설정된 파장을 나타낸 그래프이다.
이하 첨부한 도면들을 참조하여 본 발명의 냉각 레이저가 내장된 광 송수신 모듈을 상세히 설명한다. 다음에 소개되는 도면들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 제시되는 도면들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 또한, 명세서 전반에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
이 때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
본 발명의 일 실시예에 따른 냉각 레이저가 내장된 광 송수신 모듈은 한 개의 코어 또는 두 개의 코어를 갖는 형태의 광 송수신 모듈에 관한 것으로서, CFP(Century Form-factor Pluggable), CFP2, CFP4, CPF8, QSFP MSA(Quad Small Form-factor Pluggable Multi-Source Agreement)의 규격에 따라 광모듈 하우징을 사용하는 것이 바람직하다.
제 1 실시예
도 1 및 도 2는 본 발명의 제 1 실시예에 따른 냉각 레이저가 내장된 광 송수신 모듈을 나타낸 도면으로서, 도 1 및 도 2를 참고로 하여 본 발명의 제 1 실시예에 따른 냉각 레이저가 내장된 광 송수신 모듈을 상세히 설명한다.
본 발명의 제 1 실시예에 따른 냉각 레이저가 내장된 광 송수신 모듈은 도 1에 도시된 바와 같이, TOCAN(Transistor Outline CAN) 형태의 냉각 레이저(110)를 적어도 4개 이상 포함하는 광송신부(100), TOCAN 형태의 포토 다이오드(210)를 적어도 4개 이상 포함하는 광수신부(200) 및 상기 광송신부(100)와 광수신부(200)의 파장을 모두 수용할 수 있는 양방향 다중화기(300)를 포함하여 구성될 수 있다.
각 구성에 대해서 자세히 알아보자면,
본 발명의 제 1 실시예에 따른 냉각 레이저가 내장된 광 송수신 모듈은, 상기 광송신부(100)는 각각의 상기 냉각 레이저(110) 별로 상이한 파장을 갖는 전기 신호를 레이저 빛으로 변환하여 상기 양방향 다중화기(300)를 거쳐서 송신할 수 있으며, 상기 광수신부(200)는 상기 양방향 다중화기(300)를 통해서 각각의 상기 포토 다이오드(210) 별로 설정된 특정 파장의 광신호를 수신하여 전기신호로 변환함으로써, 통신이 이루어지게 된다.
상기 광송신부(100)는 TOCAN 형태의 냉각 레이저(110)를 적어도 4개 이상 포함하는 것이 바람직하며, TOCAN 형태란, 광송수신 기능을 수행할 수 있는 능동 소자들이 집적된 스탬 상면을 덮는 형태를 의미한다.
상기 광송신부(100)는 각각의 상기 냉각 레이저(110) 별로 상이한 파장을 갖도록 설정하여, 광신호를 발산, 다시 말하자면, 전기신호를 레이저 빛으로 변환하여 송신할 수 있으며, 이를 위해서, 각각의 상기 냉각 레이저(110) 별로 도 1 및 도 2에 도시된 바와 같이, 각각의 구동 드라이버(Laser Driver)를 포함하여 구성되는 것이 바람직하다.
상기 광송신부(100)에서 각각의 상기 냉각 레이저(110) 별로 상이한 파장을 갖도록 설정하기 위하여, 상기 냉각 레이저(110)에 내장된 열전소자(TEC, Thermoelectric cooler)의 온도 제어를 통해서, 각각의 냉각 레이저(110)의 송신 파장을 설정하는 TEC 제어부(120)를 더 포함하여 구성될 수 있다.
이 때, 상기 TEC 제어부(120)는 전달받은 제어신호를 이용하여, 각각의 냉각 레이저(110)의 송신 파장을 설정하게 되며, 상기 제어신호는 MCU(130)를 통해서 상기 TEC 제어부(120)로 전달되는 것이 바람직하다. 상기 제어신호는 외부 관리자를 통해서 입력받는 것이 바람직하다.
다시 말하자면, 상기 광송신부(100)는 상기 MCU(130)에서 외부 관리자로부터 원하는 송신 파장을 설정하기 위한 온도 제어신호를 전달받아, 상기 TEC 제어부(120)로 전달하고, 상기 TEC 제어부(120)는 각각의 상기 냉각 레이저(110)에 내장된 열전소자를 전달받은 온도 제어신호에 따라서 제어함으로써, 각각의 상기 냉각 레이저(110)가 상이한 통신 파장을 갖도록 설정되게 된다.
이를 위해서, 상기 냉각 레이저(110)는 TEC가 내장된 Cooled DFB TOCAN 형태인 것이 바람직하며, 상술한 바와 같이, 사용 환경 온도에 따라 파장이 변화함을 이용하여 파장 제어가 이루어지게 되며, 일반적으로 사용 환경 온도에 따라 파장이 0.1nm/ 정도로 변화하게 된다.
이 때, 상기 냉각 레이저(110)의 통신 파장은 도 5에 도시된 바와 같이, 18개의 CWDM(Coarse Wavelength Division Multiplexing) 파장대역 중 1개의 대역을 선택하여 DWDM(Dense Wavelength Division Multiplexing) 파장 간격으로 설정하는 것이 바람직하며, 즉, CWDM의 1개의 파장대역 내에서 상기 냉각 레이저(110) 별로 각기 다른 파장으로 설정할 수 있으며, 파장 간격으로는 50GHz, 100GHz, 200GHz, 400GHz, 800GHz 등으로 설정하는 것이 가장 바람직하다.
또한, 상기 광송신부(100)는 상술한 바와 같이, 각각의 상기 냉각 레이저(110) 별로 상이하게 설정된 통신 파장들을 수용할 수 있는 파장 필터(filter)가 내장된 다중화기(MUX)(140)를 더 포함하여 구성될 수 있다.
상기 다중화기(140)를 통해서, 각기 다른 DWDM 파장 간격을 갖는 다수의 상기 냉각 레이저(110)의 통신 파장을 수용하여 광송신이 이루어지게 할 수 있다.
상기 광수신부(200)는 수신감도 요청에 따라 PIN-PD 또는 APD를 사용하며, TOCAN 형태의 포토 다이오드(210)를 적어도 4개 이상 포함하는 것이 바람직하며, 상술한 바와 같이, TOCAN 형태란, 광송수신 기능을 수행할 수 있는 능동 소자들이 집적된 스탬 상면을 덮는 형태를 의미한다.
상기 광수신부(200)는 각각의 상기 포토 다이오드(210) 별로 상이한 특정 파장의 광신호를 수신하여 전기신호로 변환할 수 있으며, 이를 위해서, 도 1 및 도 2에 도시된 바와 같이, 각각의 포토 다이오드(210) 별로 각각의 증폭기(Limiting Amplifier)를 포함하여 구성되는 것이 바람직하다.
도 1에 도시된 바와 같이, 상기 증폭기는 연결되어 있는 상기 MCU(130)에서 외부 관리자로부터 원하는 수신 파장을 설정하기 위한 제어신호를 전달받아, 상기 포토 다이오드(210) 별로 수신되는 특정 파장을 설정할 수 있다.
이러한 상기 광수신부(200)의 포토 다이오드(210)는 설정된 특정 파장에 맞는 광신호를 수신할 수 있으며, 이 때, 광수신부(200)는 역다중화기(DEMUX)(220)를 더 포함하여, 상기 광송신부(100)로부터 전달되는 광신호를 고유의 파장으로 변환하여 상기 포토 다이오드(210)로 전달할 수 있으며, 상기 포토 다이오드(210)는 전달받은 광신호 중 설정된 특정 파장만을 수신하게 된다.
이를 위해, 상기 역다중화기(220)는 각각의 상기 포토 다이오드(210) 별로 설정된 상이한 파장을 수용하는 파장 필터(filter)가 내장되는 것이 바람직하다.
상기 역다중화기(220)를 통해서, 각기 다른 DWDM 파장 간격을 갖는 다수의 상기 냉각 레이저(110)의 통신 파장을 전달받아 각기 다른 파장을 갖는 다수의 상기 포토 다이오트(210)로 광수신이 이루어지게 할 수 있다.
상기 양방향 다중화기(300)는 BiDi MUX로서, 양방향(bidirectional) 광통신이 적용되어, 상기 광송신기(100)로부터 전달받은 전기신호를 광신호로 바꾸어 광섬유를 통하여 전송할 수 있으며, 광섬유를 통하여 하향 전송되어 들어오는 광신호를 수신하여 전기 신호로 바꾸어 상기 광수신기(200)로 전달할 수 있다.
이를 위해서, 상기 양방향 다중화기(300)는 상기 광송신부(100)에 설정된 다수의 통신 파장과 상기 광수신부(200)에 설정된 다수의 파장을 동시에 송수신하는 파장 필터(filter)를 포함하여 구성되는 것이 바람직하며, 본 발명의 제 1 실시예에 따른 냉각 레이저가 내장된 광 송수신 모듈은 상기 양방향 다중화기(300)를 통해서, 상기 다중화기(140)의 파장과 상기 역다중화기(220)의 파장을 송수신할 수 있어, 도 2에 도시된 바와 같이, 1개의 포트(port)를 갖는 단일 코어(1 core) 형태로 구성할 수 있다.
제 2 실시예
도 3 및 도 4는 본 발명의 제 2 실시예에 따른 냉각 레이저가 내장된 광 송수신 모듈을 나타낸 도면으로서, 도 3 및 도 4를 참고로 하여 본 발명의 제 2 실시예에 따른 냉각 레이저가 내장된 광 송수신 모듈을 상세히 설명한다.
본 발명의 제 2 실시예에 따른 냉각 레이저가 내장된 광 송수신 모듈은 도 3에 도시된 바와 같이, TOCAN(Transistor Outline CAN) 형태의 냉각 레이저(110)를 적어도 4개 이상 포함하는 광송신부(10) 및 TOCAN 형태의 포토 다이오드(210)를 적어도 4개 이상 포함하는 광수신부(20)를 포함하여 구성될 수 있으며, 본 발명의 제 1 실시예에 따른 냉각 레이저가 내장된 광 송수신 모듈과 비교하여 도 4에 도시된 바와 같이, 상기 광송신부(10)와 광수신부(20)가 각각의 포트를 갖고 있는 2개의 코어(2 core) 형태인 것이 바람직하다.
각 구성에 대해서 자세히 알아보자면,
본 발명의 제 2 실시예에 따른 냉각 레이저가 내장된 광 송수신 모듈은, 상기 광송신부(10)는 각각의 상기 냉각 레이저(11) 별로 상이한 파장을 갖는 전기 신호를 레이저 빛으로 변환하여 MUX(14)를 거쳐서 송신할 수 있으며, 상기 광수신부(200)는 DEMUX(22)를 통해서 각각의 상기 포토 다이오드(21) 별로 설정된 특정 파장의 광신호를 수신하여 전기신호로 변환함으로써, 통신이 이루어지게 된다.
상기 광송신부(10)는 TOCAN 형태의 냉각 레이저(11)를 적어도 4개 이상 포함하는 것이 바람직하며, TOCAN 형태란, 광송수신 기능을 수행할 수 있는 능동 소자들이 집적된 스탬 상면을 덮는 형태를 의미한다.
상기 광송신부(10)는 각각의 상기 냉각 레이저(11) 별로 상이한 파장을 갖도록 설정하여, 광신호를 발산, 다시 말하자면, 전기신호를 레이저 빛으로 변환하여 송신할 수 있으며, 이를 위해서, 각각의 상기 냉각 레이저(11) 별로 도 3 및 도 4에 도시된 바와 같이, 각각의 구동 드라이버(Laser Driver)를 포함하여 구성되는 것이 바람직하다.
상기 광송신부(10)에서 각각의 상기 냉각 레이저(11) 별로 상이한 파장을 갖도록 설정하기 위하여, 상기 냉각 레이저(11)에 내장된 열전소자(TEC, Thermoelectric cooler)의 온도 제어를 통해서, 각각의 냉각 레이저(11)의 송신 파장을 설정하는 TEC 제어부(12)를 더 포함하여 구성될 수 있다.
이 때, 상기 TEC 제어부(12)는 전달받은 제어신호를 이용하여, 각각의 냉각 레이저(11)의 송신 파장을 설정하게 되며, 상기 제어신호는 MCU(13)를 통해서 상기 TEC 제어부(12)로 전달되는 것이 바람직하다. 상기 제어신호는 외부 관리자를 통해서 입력받는 것이 바람직하다.
다시 말하자면, 상기 광송신부(10)는 상기 MCU(13)에서 외부 관리자로부터 원하는 송신 파장을 설정하기 위한 온도 제어신호를 전달받아, 상기 TEC 제어부(12)로 전달하고, 상기 TEC 제어부(12)는 각각의 상기 냉각 레이저(11)에 내장된 열전소자를 전달받은 온도 제어신호에 따라서 제어함으로써, 각각의 상기 냉각 레이저(11)가 상이한 통신 파장을 갖도록 설정되게 된다.
이를 위해서, 상기 냉각 레이저(11)는 TEC가 내장된 Cooled DFB TOCAN 형태인 것이 바람직하며, 상술한 바와 같이, 사용 환경 온도에 따라 파장이 변화함을 이용하여 파장 제어가 이루어지게 되며, 일반적으로 사용 환경 온도에 따라 파장이 0.1nm/ 정도로 변화하게 된다.
이 때, 상기 냉각 레이저(11)의 통신 파장은 도 5에 도시된 바와 같이, 18개의 CWDM(Coarse Wavelength Division Multiplexing) 파장대역 중 1개의 대역을 선택하여 DWDM(Dense Wavelength Division Multiplexing) 파장 간격으로 설정하는 것이 바람직하며, 즉, CWDM의 1개의 파장대역 내에서 상기 냉각 레이저(11) 별로 각기 다른 파장으로 설정할 수 있으며, 파장 간격으로는 50GHz, 100GHz, 200GHz, 400GHz, 800GHz 등으로 설정하는 것이 가장 바람직하다.
또한, 상기 광송신부(10)는 상술한 바와 같이, 각각의 상기 냉각 레이저(11) 별로 상이하게 설정된 통신 파장들을 수용할 수 있는 파장 필터(filter)가 내장된 상기 다중화기(MUX)(140)를 더 포함하여 구성될 수 있다.
상기 다중화기(14)를 통해서, 각기 다른 DWDM 파장 간격을 갖는 다수의 상기 냉각 레이저(11)의 통신 파장을 수용하여 광송신이 이루어지게 할 수 있다.
상기 광수신부(20)는 수신감도 요청에 따라 PIN-PD 또는 APD를 사용하며, TOCAN 형태의 포토 다이오드(21)를 적어도 4개 이상 포함하는 것이 바람직하며, 상술한 바와 같이, TOCAN 형태란, 광송수신 기능을 수행할 수 있는 능동 소자들이 집적된 스탬 상면을 덮는 형태를 의미한다.
상기 광수신부(20)는 각각의 상기 포토 다이오드(21) 별로 상이한 특정 파장의 광신호를 수신하여 전기신호로 변환할 수 있으며, 이를 위해서, 도 3 및 도 4에 도시된 바와 같이, 각각의 포토 다이오드(21) 별로 각각의 증폭기(Limiting Amplifier)를 포함하여 구성되는 것이 바람직하다.
도 3에 도시된 바와 같이, 상기 증폭기는 연결되어 있는 상기 MCU(130)에서 외부 관리자로부터 원하는 수신 파장을 설정하기 위한 제어신호를 전달받아, 상기 포토 다이오드(21) 별로 수신되는 특정 파장을 설정할 수 있다.
이러한 상기 광수신부(20)의 포토 다이오드(21)는 설정된 특정 파장에 맞는 광신호를 수신할 수 있으며, 이 때, 광수신부(20)는 역다중화기(DEMUX)(22)를 더 포함하여, 상기 광송신부(10)로부터 전달되는 광신호를 고유의 파장으로 변환하여 상기 포토 다이오드(21)로 전달할 수 있으며, 상기 포토 다이오드(21)는 전달받은 광신호 중 설정된 특정 파장만을 수신하게 된다.
이를 위해, 상기 역다중화기(22)는 각각의 상기 포토 다이오드(21) 별로 설정된 상이한 파장을 수용하는 파장 필터(filter)가 내장되는 것이 바람직하다.
상기 역다중화기(22)를 통해서, 각기 다른 DWDM 파장 간격을 갖는 다수의 상기 냉각 레이저(11)의 통신 파장을 전달받아 각기 다른 파장을 갖는 다수의 상기 포토 다이오트(21)로 광수신이 이루어지게 할 수 있다.
이를 통해서, 본 발명의 제 2 실시예에 따른 냉각 레이저가 내장된 광 송수신 모듈은 양방향 다중화기 없이도 CFP 광모듈을 구성할 수 있으며, 상기 광송신부(10)와 광수신부(20)가 각각의 1개의 포트를 갖고 있는 2개의 코어(2 core) 형태로 구성할 수 있다.
이상과 같이 본 발명에서는 구체적인 구성 소자 등과 같은 특정 사항들과 한정된 실시예 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것 일 뿐, 본 발명은 상기의 일 실시예에 한정되는 것이 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허 청구 범위뿐 아니라 이 특허 청구 범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.
[부호의 설명]
제 1 실시예
100 : 광송신부
110 : 냉각 레이저 120 : TEC 제어부
130 : MCU 140 : MUX
200 : 광수신부
210 : 포토 다이오드 220 : DEMUX
300 : 양방향 다중화기
제 2 실시예
10 : 광송신부
11 : 냉각 레이저 12 : TEC 제어부
13 : MCU 14 : MUX
20 : 광수신부
21 : 포토 다이오드 22 : DEMUX

Claims (7)

  1. TOCAN(Transistor Outline CAN) 형태의 냉각 레이저(110)를 적어도 4개 이상 포함하며, 각각의 상기 냉각 레이저(110)별로 상이한 파장을 갖도록 설정하여 광신호를 발산하는 광송신부(100);
    TOCAN 형태의 포토 다이오드(210)를 적어도 4개 이상 포함하며, 각각의 상기 포토 다이오드(210)별로 상이한 특정 파장의 광신호를 수신하도록 설정하여 광신호를 수신하는 광수신부(200); 및
    상기 광송신부(100)에 설정된 다수의 파장과 상기 광수신부(200)에 설정된 다수의파장을 동시 송수신하는 파장 필터를 포함하는 양방향 다중화기(300);
    를 포함하며,
    CFP(Century Form-factor Pluggable) 광모듈, CFP2 광모듈, CPF4 광모듈, CPF8 광모듈 및 QSFP MSA(Quad Small Form-factor Pluggable Multi-Source Agreement) 광모듈 중 선택되는 하나의 하우징에 구성되는 것을 특징으로 하는 냉각 레이저가 내장된 광 송수신 모듈.
  2. 제 1항에 있어서,
    상기 광송신부(100)는
    상기 냉각 레이저(110)에 내장된 열전소자(TEC, Thermoelectric cooler)의 온도 제어를 통해서, 각각의 냉각 레이저(110)의 송신 파장을 설정하는 TEC 제어부(120);
    를 포함하는 것을 특징으로 하는 냉각 레이저가 내장된 광 송수신 모듈.
  3. 제 2항에 있어서,
    상기 광송신부(100)는
    상기 TEC 제어부(120)로 전달받은 제어신호를 전송하여 상기 냉각 레이저(110)의 송신 파장의 설정을 제어하는 MCU(130);
    를 포함하는 것을 특징으로 하는 냉각 레이저가 내장된 광 송수신 모듈.
  4. 제 1항에 있어서,
    상기 광송신부(100)는
    각각의 상기 냉각 레이저(110)별로 설정된 상이한 파장들을 수용하는 파장 필터가 내장되는 다중화기(MUX)(140);
    를 포함하는 것을 특징으로 하는 냉각 레이저가 내장된 광 송수신 모듈.
  5. 제 4항에 있어서,
    상기 광수신부(200)는
    각각의 상기 포토 다이오드(210)별로 설정된 상이한 파장들을 수용하는 파장 필터가 내장된 역다중화기(DEMUX)(220);
    를 포함하는 것을 특징으로 하는 냉각 레이저가 내장된 광 송수신 모듈.
  6. 제 5항에 있어서,
    상기 양방향 다중화기(300)는
    상기 다중화기(140)의 파장과 상기 역다중화기(220)의 파장을 송수신하도록 설정되는 것을 특징으로 하는 냉각 레이저가 내장된 광 송수신 모듈.
  7. 제 6항에 있어서,
    상기 냉각 레이저가 내장된 광 송수신 모듈은
    상기 양방향 다중화기(300)를 통해서 1개의 포트(port)를 갖는 단일 코어(1 core) 형태인 것을 특징으로 하는 냉각 레이저가 내장된 광 송수신 모듈.
PCT/KR2017/005435 2017-05-18 2017-05-25 냉각 레이저가 내장된 광 송수신 모듈 WO2018212390A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170061503A KR20180126736A (ko) 2017-05-18 2017-05-18 냉각 레이저가 내장된 광 송수신 모듈
KR10-2017-0061503 2017-05-18

Publications (1)

Publication Number Publication Date
WO2018212390A1 true WO2018212390A1 (ko) 2018-11-22

Family

ID=64274182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/005435 WO2018212390A1 (ko) 2017-05-18 2017-05-25 냉각 레이저가 내장된 광 송수신 모듈

Country Status (2)

Country Link
KR (1) KR20180126736A (ko)
WO (1) WO2018212390A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111245513A (zh) * 2020-01-17 2020-06-05 深圳市力子光电科技有限公司 一种光网络中长距离传输qsfp光模块

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040126066A1 (en) * 2002-12-27 2004-07-01 Yong-Chan Keh High speed TO-can based optical module
US20050025420A1 (en) * 2003-06-30 2005-02-03 Mina Farr Optical sub-assembly laser mount having integrated microlens
KR20050120067A (ko) * 2004-06-18 2005-12-22 한국전자통신연구원 수동형 광 가입자 망의 기지국측 광 송수신기
KR20140072793A (ko) * 2012-12-03 2014-06-13 한국전자통신연구원 멀티채널 광송신 서브 어셈블리
US20170075079A1 (en) * 2015-09-10 2017-03-16 Applied Optoelectronics, Inc. Multi-channel transmitter optical subassembly (tosa) with an optical coupling receptacle providing an off-center fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040126066A1 (en) * 2002-12-27 2004-07-01 Yong-Chan Keh High speed TO-can based optical module
US20050025420A1 (en) * 2003-06-30 2005-02-03 Mina Farr Optical sub-assembly laser mount having integrated microlens
KR20050120067A (ko) * 2004-06-18 2005-12-22 한국전자통신연구원 수동형 광 가입자 망의 기지국측 광 송수신기
KR20140072793A (ko) * 2012-12-03 2014-06-13 한국전자통신연구원 멀티채널 광송신 서브 어셈블리
US20170075079A1 (en) * 2015-09-10 2017-03-16 Applied Optoelectronics, Inc. Multi-channel transmitter optical subassembly (tosa) with an optical coupling receptacle providing an off-center fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111245513A (zh) * 2020-01-17 2020-06-05 深圳市力子光电科技有限公司 一种光网络中长距离传输qsfp光模块
CN111245513B (zh) * 2020-01-17 2024-04-23 深圳市力子光电科技有限公司 一种光网络中长距离传输qsfp光模块

Also Published As

Publication number Publication date
KR20180126736A (ko) 2018-11-28

Similar Documents

Publication Publication Date Title
WO2012039542A2 (ko) 파장 분할 다중화 및 역다중화 장치
CN1322689C (zh) 光导纤维固定接入网和光导纤维无线电接入网的集成
WO2012067366A1 (ko) 광통신 모듈
WO2013172541A1 (ko) 양방향 광 송수신 모듈
WO2020105779A1 (ko) 멀티채널 양방향 광통신 모듈
CN107592160B (zh) 用于可选择并行光纤和波分复用操作的方法和系统
US9923635B2 (en) Optical transmitter or transceiver including reversed planar lightwave circuit (PLC) splitter for optical multiplexing
JPH08256115A (ja) 光ファイバネットワークシステム
WO2018157767A1 (zh) 一种多波长共存光模块
WO2016093657A1 (ko) Fec를 이용한 광트랜시버, 이를 포함한 광송수신 시스템 및 원격 광파장 제어 방법
WO2020122491A1 (ko) 능동형 광케이블
US9313562B2 (en) Wavelength auto-negotiation
WO2014137183A1 (ko) 신호 처리 방법 및 그를 위한 양방향 cwdm 환형 네트워크 시스템
US20130287407A1 (en) Hybrid Multichannel or WDM Integrated Transceiver
US20150071649A1 (en) Detachable optical transceiver
WO2018212390A1 (ko) 냉각 레이저가 내장된 광 송수신 모듈
CN208999614U (zh) 一种通用波分复用光接收组件
WO2013111116A1 (en) Stackable interface modules for customized network functions
WO2021054803A1 (ko) 초소형 광송신 모듈 및 반도체 패키징 방식을 이용한 그의 제조방법
WO2013065989A1 (ko) 온도에 따라 자체 발열을 제어하는 광송수신기
CN111147961B (zh) 垂直腔面发射激光器(vcsel)的双频带波分复用(wdm)链路
WO2012153940A2 (ko) Vcsel을 이용한 다파장 광송신모듈, 광송수신모듈 및 양방향 광송수신장치
Lemoff et al. A compact, low-cost WDM transceiver for the LAN
WO2022131485A1 (ko) 광 네트워크에서 파장을 튜닝하기 위한 전자 장치 및 방법
WO2014084546A1 (en) Temperature controllable high bit rate laser diode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909976

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909976

Country of ref document: EP

Kind code of ref document: A1