WO2018212266A1 - Backlight unit and liquid crystal display device - Google Patents

Backlight unit and liquid crystal display device Download PDF

Info

Publication number
WO2018212266A1
WO2018212266A1 PCT/JP2018/019052 JP2018019052W WO2018212266A1 WO 2018212266 A1 WO2018212266 A1 WO 2018212266A1 JP 2018019052 W JP2018019052 W JP 2018019052W WO 2018212266 A1 WO2018212266 A1 WO 2018212266A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
liquid crystal
light
sheet
cholesteric liquid
Prior art date
Application number
PCT/JP2018/019052
Other languages
French (fr)
Japanese (ja)
Inventor
隆 米本
信彦 一原
浩史 遠山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2018212266A1 publication Critical patent/WO2018212266A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a backlight unit used in a liquid crystal display device and the like, and a liquid crystal display device using the backlight unit.
  • LCD Liquid Crystal Display
  • LCD Liquid Crystal Display
  • its use is expanding year by year as a space-saving image display device.
  • a performance improvement further higher dynamic range, power saving, color reproducibility improvement and the like are required.
  • a so-called direct-type backlight configuration is preferably used.
  • Patent Document 1 discloses a display optical device having a function of selectively absorbing light of a specific wavelength, which is arranged in an optical path from the light source of the LCD to the outermost surface of the viewing portion.
  • a filter is disclosed.
  • unnecessary light emission other than the three primary colors of the backlight for example, light in the wavelength range of 440 to 510 nm or light in the wavelength range of 570 to 605 nm described in Patent Document 1 is selectively absorbed. By doing so, the emission spectrum of the backlight can be narrowed, the color purity of the display can be improved, and the color reproduction range can be expanded.
  • a dye or the like used as an absorbing material that absorbs light in such an optical filter has a wide absorption band. Therefore, if the optical filter is placed in the optical path from the light source of the LCD to the outermost surface of the visual recognition part, it not only absorbs light in an unnecessary wavelength range, but also absorbs light of the three primary colors necessary for color display of the LCD at the same time. End up. Therefore, when such an optical filter is used, the color reproduction range can be improved, but at the same time, the efficiency of the display is lowered.
  • Patent Document 2 a light absorbing element that absorbs light of a specific wavelength is combined with a cholesteric liquid crystal layer that selectively reflects light of a specific wavelength to be absorbed by the light absorbing element.
  • a method for limiting the bandwidth of light is disclosed.
  • the inventors of the present invention have a configuration in which the light absorbing element and the cholesteric liquid crystal layer are used in combination. I found out that I was sacrificed.
  • An object of the present invention is to solve such problems of the prior art, and a backlight unit having a narrow emission spectrum, and a high color purity and color reproduction range using the backlight unit.
  • the object is to provide a wide liquid crystal display (LCD).
  • the inventors have used both an absorption element that absorbs light with an extra wavelength and a wavelength selective reflection sheet that selectively reflects light with a specific wavelength, and in the plane of the wavelength selective reflection sheet.
  • a portion with different reflectance is provided and the reflectance in the plane of the wavelength selective reflection sheet corresponds to the light emission position of the light source.
  • a reflection element a wavelength selection reflection sheet that selectively reflects light of a specific wavelength
  • a plurality of light sources disposed between the reflection element and the wavelength selection reflection sheet, a reflection element, and a wavelength selection reflection sheet
  • an absorbent element arranged between The absorption element has a maximum absorption wavelength in the wavelength range of 460 to 520 nm, a maximum absorption wavelength in the wavelength range of 540 to 620 nm, and one of the wavelength range of 460 to 520 nm and the wavelength range of 540 to 620 nm.
  • the wavelength selective reflection sheet selectively reflects light in the wavelength range that is absorbed by the absorbing element, and further has a portion with a different reflectance in the surface, and the reflectance in the surface is that of the light source.
  • Backlight unit according to the arrangement. [2] The backlight unit according to [1], wherein the reflectance of the wavelength selective reflection sheet is maximum on the optical axis of the light source. [3] The backlight unit according to [1] or [2], wherein the wavelength selective reflection sheet has at least one of a transparent region and an opening. [4] The backlight unit according to any one of [1] to [3], wherein the wavelength selective reflection sheet has portions having different reflectances in the reflection surface.
  • the reflectance of light having the maximum absorption wavelength ⁇ max 1 in the wavelength range of 460 to 520 nm of the absorption element of the wavelength selective reflection sheet is R ( ⁇ max 1), and the absorption element of the wavelength selection reflection sheet is 540 to 620 nm.
  • R ( ⁇ max 2) is the reflectance of light having the maximum absorption wavelength ⁇ max 2 in the wavelength range of Rmax 1
  • R max 1 is the reflectance of light having the maximum reflection wavelength in the wavelength range of 460 to 520 nm of the wavelength selective reflection sheet.
  • the wavelength selective reflection sheet has the following formula: R max 1 ⁇ 0.8 ⁇ R
  • a liquid crystal display device comprising the backlight unit according to any one of [1] to [6].
  • the present invention it is possible to provide a direct type backlight unit having a narrow emission spectrum and a liquid crystal display device having high color purity using the backlight unit.
  • FIG. 1 is a conceptual diagram showing an example of a backlight unit of the present invention.
  • FIG. 2 is a conceptual diagram showing an example of the wavelength selective reflection sheet of the backlight unit of the present invention.
  • FIG. 3 is a conceptual perspective view for explaining the configuration of the backlight unit shown in FIG.
  • FIG. 4 is a conceptual diagram for explaining the operation of the cholesteric liquid crystal layer.
  • FIG. 5 is a conceptual diagram for explaining the operation of the cholesteric liquid crystal layer.
  • FIG. 6 is a conceptual diagram showing another example of the wavelength selective reflection sheet of the backlight unit of the present invention.
  • FIG. 7 is a plan view conceptually showing another example of the wavelength selective reflection sheet of the backlight unit of the present invention.
  • FIG. 1 is a conceptual diagram showing an example of a backlight unit of the present invention.
  • FIG. 2 is a conceptual diagram showing an example of the wavelength selective reflection sheet of the backlight unit of the present invention.
  • FIG. 3 is a conceptual perspective view for explaining the configuration of the back
  • FIG. 8 is a conceptual diagram showing another example of the wavelength selective reflection sheet of the backlight unit of the present invention.
  • FIG. 9 is a conceptual diagram showing another example of the backlight unit of the present invention.
  • FIG. 10 is a conceptual diagram illustrating an example of a wavelength conversion sheet.
  • FIG. 11 is a conceptual diagram showing another example of the backlight unit of the present invention.
  • FIG. 12 is a conceptual diagram for explaining the embodiment.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • (meth) acrylate is used to mean “one or both of acrylate and methacrylate”.
  • “same” includes an error range generally allowed in the technical field.
  • visible light is light having a wavelength range of 400 to 700 nm
  • blue light is light having a wavelength range of 400 to 500 nm
  • the green light is light having a wavelength range of more than 500 nm and not more than 600 nm
  • the red light is light having a wavelength range of more than 600 nm and not more than 700 nm.
  • FIG. 1 conceptually shows an example of the backlight unit of the present invention.
  • a backlight unit 10 shown in FIG. 1 is used as a backlight of an LCD (Liquid Crystal Display) or the like, and includes a reflection plate 12, a light source 14, an absorption sheet 15, a wavelength selection reflection sheet 16, and a diffusion plate 18. And prism sheets 20 a and 20 b and a reflective polarizing plate 24.
  • LCD Liquid Crystal Display
  • the backlight unit 10 of the present invention is basically a known direct type backlight except that it has an absorption sheet 15 and a wavelength selective reflection sheet 16. Accordingly, the diffusing plate 18, the prism sheets 20a and 20b, the reflective polarizing plate 24, and the like are all known optical members used for the backlight unit of the LCD. In addition, the prism sheet 20a and the prism sheet 20b are arranged so that the prism ridges are orthogonal to each other, as in a known backlight unit. In the backlight unit 10 of the present invention, optical members such as the diffuser plate 18, the prism sheets 20a and 20b, and the reflective polarizing plate 24 are provided as necessary and are not essential constituent elements.
  • the backlight unit of the present invention may not have one or more of these optical members.
  • the backlight unit 10 includes various known members that are provided in a known illumination device such as an LCD backlight, such as one or more of an LED substrate, wiring, and heat dissipation mechanism, in addition to the illustrated members. Also good.
  • the reflecting plate 12 is a reflecting element in the present invention.
  • the reflection plate 12 is for reflecting light or the like irradiated by the light source 14 and reflected by the wavelength selective reflection sheet 16 or the like to improve the utilization efficiency of the light emitted by the light source 14.
  • the main material of the reflecting surface of the reflecting plate 12 may be resin or metal. Since the energy loss at the time of reflection is small, the reflecting plate 12 is preferably formed of a resin.
  • a fine foam resin is preferably used as an example.
  • a dielectric multilayer film may be formed on the reflecting plate 12.
  • the reflection characteristic of the reflecting plate 12 may be specular reflection or diffuse reflection.
  • the light source 14 is preferably disposed in a housing in which one maximum surface is open and the surface facing the open surface is the reflection plate 12.
  • the inner surface of the housing in which the light source 14 is disposed is a reflecting plate (light reflecting surface).
  • a light source 14 is disposed on the light reflecting surface of the reflecting plate 12.
  • the upper direction in FIG. 1, that is, the light irradiation direction is also referred to as “upper”. Therefore, the upper surface of the reflecting plate 12 is a light reflecting surface, and the light source 14 is disposed on the upper surface of the reflecting plate 12.
  • the light source 14 is two-dimensionally arranged (arranged) on the upper surface of the reflector 12.
  • An absorption sheet 15 is disposed on the light source 14, and a wavelength selective reflection sheet 16 is disposed on the absorption sheet 15. That is, the light source 14 is disposed between the reflecting plate 12 and the wavelength selective reflection sheet 16.
  • positioned (arrayed) two-dimensionally is also included in this invention.
  • the arrangement of the light sources 14 may be the same as that of a general direct type backlight used in an LCD. Accordingly, the arrangement of the light sources 14 may be regular or irregular, but is usually regular. Further, the arrangement density of the light sources 14 may be uniform in the surface direction of the reflection plate 12 or may vary in the arrangement density. In addition, a surface direction is the surface direction of the largest surface, ie, main surface, of a sheet-like thing (a plate-like thing, a film-like thing).
  • the light source 14 There is no restriction
  • An example of the light source 14 is an LED (Light Emitting Diode).
  • a configuration in which a plurality of LEDs are two-dimensionally arranged as a direct light source is preferably used as the light source 14 in that local dimming can be suitably performed.
  • the light source 14 may be a white light source or a light source that emits light having a color such as a blue light source.
  • the light source 14 of the illustrated backlight unit 10 is a white light source.
  • a blue light source or the like is usually used in a configuration in which a backlight unit described later has a wavelength conversion element.
  • the absorbent sheet 15 is an absorbent element in the present invention.
  • the absorption sheet 15 is a light absorption sheet that absorbs light in a predetermined wavelength band.
  • the absorption sheet 15 has a maximum absorption wavelength in a wavelength range of 460 to 520 nm, a maximum absorption wavelength in a wavelength range of 540 to 620 nm, and a wavelength range of 460 to 520 nm and a wavelength range of 540 to 620 nm. And having the maximum absorption wavelength in one wavelength range and having the second largest absorption wavelength in the other wavelength range.
  • the maximum absorption wavelength is a wavelength at which the absorbance is a maximum value, and in other words, an absorption maximum wavelength.
  • the absorption sheet 15 when the absorption sheet 15 has a maximum absorption wavelength in the wavelength range of 460 to 520 nm, assuming that the maximum absorption wavelength of the absorption sheet 15 is ⁇ max , the absorption sheet 15 satisfies “460 nm ⁇ max ⁇ 520 nm”. Fulfill. At this time, the maximum absorption wavelength of the absorption sheet 15 preferably satisfies 475 nm ⁇ max ⁇ 510 nm, and more preferably satisfies 480 nm ⁇ max ⁇ 505 nm.
  • the absorbent sheet 15 if it has a maximum absorption wavelength in the wavelength range of 540 ⁇ 620nm, and the maximum absorption wavelength of the absorbent sheet 15 and ⁇ max, the absorbent sheet 15, the "540nm ⁇ max ⁇ 620nm" Fulfill.
  • the maximum absorption wavelength of the absorbent sheet 15 preferably satisfies 570 nm ⁇ max ⁇ 605 nm, and more preferably satisfies 580 nm ⁇ max ⁇ 600 nm.
  • the absorbent sheet 15 to meet the maximum absorption wavelength lambda max is the absorbent sheet 15 satisfying "460nm ⁇ max ⁇ 520nm" maximum absorbance wavelength lambda max is the "540nm ⁇ max ⁇ 620nm" You may have both.
  • the absorption sheet 15 is a single absorption sheet 15 having a wavelength of 460 to 520 nm, for example, by a method using a plurality of absorption materials in combination and a method of laminating layers containing absorption materials having different maximum absorption wavelengths. It may have a maximum absorption wavelength in one wavelength region and a second largest absorption wavelength in the other wavelength region of the wavelength region and the wavelength region of 540 to 620 nm.
  • the absorbing material include pigments, dyes and pigments. In this case, a preferable wavelength range is the same as described above.
  • the absorbing sheet 15 can be disposed at any position as long as it is between the reflecting plate 12 and the wavelength selective reflecting sheet 16. Therefore, for example, the absorption sheet 15 and the wavelength selective reflection sheet 16 may be provided so as to be laminated with the absorption sheet 15 on the light source 14 side. Alternatively, the absorbing sheet 15 may be provided on the upper surface of the reflecting plate 12, and the light source 14 may be provided on the absorbing sheet 15. That is, the reflection plate 12 may also serve as the absorption sheet 15. Moreover, the structure provided so that the absorption sheet 15 may cover the whole surface direction of the backlight unit 10 is not limited. For example, the structure which provided the some absorption sheet 15 in the arbitrary positions between the reflecting plate 12 and the wavelength selection reflection sheet 16 mutually spaced apart may be sufficient.
  • the absorption sheet 15 preferably has an absorption region with an absorbance of 0.1 or more in an at least one wavelength region of 460 to 520 nm and 540 to 620 nm, and more preferably has an absorption region with an absorbance of 1 or more. Preferably, it has an absorption region with an absorbance of 2 or more.
  • absorbance A ⁇ log 10 (transmittance).
  • the absorption sheet 15 has a small absorption in the vicinity of emission peaks of blue light, green light, and red light used for displaying the three primary colors of the display. Specifically, it is preferable that the maximum absorbance Ab at 440 to 455 nm, the maximum absorbance Ag at 525 to 540 nm, and the maximum absorbance Ar at 630 to 650 nm are small.
  • the average value of the ratio of Ab, Ag, and Ar to the absorbance A at the absorption maximum wavelength of the absorbent sheet 15 is preferably 0.2 or less, more preferably 0.1 or less, and 0.05 or less. More preferably.
  • Such an absorption sheet 15 is obtained by introducing an absorbing material (light absorbing material, absorbing compound) that absorbs light into a composition containing a polymerizable compound, molding the sheet into a sheet shape, and curing the polymerizable compound.
  • An absorbing material light absorbing material, absorbing compound
  • a method for forming a sheet containing an absorbent material, a method for forming a layer containing an absorbent material on a resin substrate by applying a coating material (coating composition) containing the absorbent material on a transparent resin substrate and drying it, etc. Can be produced by a method.
  • absorbent material used for the absorbent sheet 15 examples include phthalocyanine, cyanine, diimonium, quaterylene, dithiol Ni complex, indoaniline, azomethine complex, aminoanthraquinone, naphthalocyanine, oxonol, squalium, and croconium dye. Etc. are preferably exemplified. As a specific example, “Chemical Reviews” published in 1992, vol. 6 pp.
  • Absorbing materials having a maximum absorption wavelength in the wavelength range of 460 to 520 nm and a peak of absorbance with a half width of 50 nm or less include squarylium, azomethine, cyanine, oxonol, anthraquinone Compounds such as azo-type, azo-type, and benzylidene-type are preferably used.
  • azo dye many azo dyes described in GB539970, 575691, US29556879, and “Review Review Synthetic Dye” by Sankyo Publishing by Horiguchi Hiroshi can be used. Examples of an absorbing material having a maximum absorption wavelength in the wavelength range of 460 to 520 nm and having an absorbance peak with a half width of 50 nm or less are shown below.
  • Absorbing materials having a maximum absorption wavelength in the wavelength range of 540 to 620 nm and a peak of absorbance with a half-width of 50 nm or less include cyanine-based, squarylium-based, azomethine-based, xanthene-based, oxonol And azo compounds are preferred, and cyanine and oxonol dyes are more preferred.
  • An example of an absorbing material having a maximum absorption wavelength in the wavelength range of 540 to 620 nm and an absorbance peak having a half-value width of 50 nm or less is shown below.
  • the oxonol dye can be synthesized with reference to the descriptions in JP-A-7-230671 and the specifications of European Patent 0778493 and US Pat. No. 5,459,265.
  • For the synthesis of merocyanine dyes reference can be made to the descriptions in US Pat. No. 2,170,806 and JP-A Nos. 55-155350 and 55-161232.
  • Regarding the synthesis of anthraquinone dyes the specifications of British Patent 710060 and US Pat. No. 3,575,704, JP-A-48-5425, and Hiroshi Horiguchi, Review / Synthetic dyes (Sankyo Publishing, published in 1968) See description.
  • the dye two or more kinds of pigments as described above can be used in combination.
  • a dye having a maximum absorption wavelength in both the wavelength range of 460 to 520 nm and the wavelength range of 540 to 620 nm can also be used.
  • the wavelength generally shifts to the longer wavelength side and the peak becomes sharp.
  • some dyes having the maximum absorption wavelength in the range of 460 to 520 nm include those whose aggregates have the maximum absorption wavelength in the range of 540 to 620 nm.
  • the maximum absorption wavelength can be obtained in both the wavelength range of 460 to 520 nm and the wavelength range of 540 to 620 nm. Examples of such dyes are shown below.
  • Examples of other absorbing materials include dye compounds described in JP-A No. 2000-32419, JP-A No. 2002-122729, and Japanese Patent No. 45044496. Incorporated into the invention.
  • the content of the dye in the layer containing the absorbent material is preferably 0.001 to 0.05% by mass, and preferably 0.001 to 0.01% by mass with respect to the total mass of the layer containing the absorbent material. Is more preferable.
  • the absorption spectrum of light has blue light, green light, and In order to selectively cut the light so as not to affect the red light, it is preferably sharp.
  • the half width of the absorption spectrum of the absorption sheet 15 having the maximum absorption wavelength in the wavelength range of 460 to 520 nm is 50 nm or less. Is preferably 5 to 40 nm, more preferably 10 to 30 nm.
  • the half width of the absorption spectrum of the absorbent sheet 15 having the maximum absorption wavelength in the wavelength range of 540 to 620 nm is preferably 50 nm or less, more preferably 5 to 40 nm, and even more preferably 10 to 30 nm.
  • means for setting the full width at half maximum in such a range there are means for containing a plurality of dyes and / or pigments having different maximum absorption wavelengths in the layer containing the absorbing material, and a dye aggregate in the layer containing the absorbing material.
  • the means include.
  • methine dyes for example, cyanine, merocyanine, oxonol, pyromethene, styryl, arylidene
  • diphenylmethane dye triphenylmethane dye
  • xanthene dye squarylium dye
  • croconium dye azine dye, acridine dye, thiazine dye
  • oxazine dyes and the like can be selected.
  • These dyes are preferably used in aggregates.
  • the dye in an associated state forms a so-called J band and shows a sharp absorption spectrum peak.
  • the association of dyes and the J band are described in various literatures (for example, Photographic Science and engineering Vol. 18, No. 323-335 (1974)).
  • the maximum absorption wavelength of the dye in the J-association state moves to the longer wave side than the maximum absorption wavelength of the dye in the solution state. Therefore, whether the dye contained in the layer containing the absorbing material is in an associated state or a non-associated state can be easily determined by measuring the maximum absorption wavelength.
  • the dye in an associated state preferably has a maximum absorption wavelength shift of 30 nm or more, more preferably 40 nm or more, and even more preferably 45 nm or more.
  • the dye used in the association state is preferably a methine dye, more preferably a cyanine dye or an oxonol dye.
  • Some of these dyes can form aggregates only by dissolving in water, but in general, gelatin or a salt (barium chloride, calcium chloride, sodium chloride, etc.) is added to an aqueous solution of the dye to form an aggregate. Can be formed.
  • a method for forming the aggregate a method of adding gelatin to an aqueous dye solution is particularly preferable.
  • a plurality of dyes having different maximum absorption wavelengths can be dispersed in an aqueous solution to which gelatin is added, and then mixed to prepare a sample containing a plurality of aggregates having different maximum absorption wavelengths.
  • each aggregate can be formed by simply dispersing a plurality of dyes in an aqueous solution to which gelatin is added.
  • the dye aggregate can also be formed as a solid fine particle dispersion of the dye.
  • a known disperser can be used. Examples of the disperser include a ball mill, a vibrating ball mill, a planetary ball mill, a sand mill, a colloid mill, a jet mill, and a roller mill.
  • the disperser is described in JP-A-52-92716 and International Publication No. 88/074794.
  • a vertical or horizontal medium disperser is preferred.
  • an additive such as an infrared absorber or an ultraviolet absorber may be added to the layer containing the absorbing material, and those described in JP-A-2008-203436, [0031] can be used.
  • the absorbent sheet 15 containing the absorbent material and the layer containing the absorbent material in the absorbent sheet 15 may contain a polymer binder in order to control the stability and reflection characteristics of the absorbent material.
  • a polymer binder a binder known to those skilled in the art can be used, but an aqueous binder is preferably used in order to perform the dispersion operation more easily.
  • the aqueous binder include gelatin, polyvinyl alcohol, polyacrylamide, and polyethylene glycol.
  • the thickness of the layer containing the absorbent material may be set as appropriate to obtain a desired light absorption characteristic according to the target absorbance, the type of the absorbent material, and the like.
  • the absorbing material included in the absorbing sheet 15 may have a light emitting characteristic as long as it absorbs light in a target wavelength range. It is preferable that the emission center wavelength when the absorbing material included in the absorbing sheet 15 has a light emitting characteristic is 520 nm or more and less than 550 nm or 620 nm or more.
  • a wavelength selective reflection sheet 16 is provided on the absorption sheet 15.
  • the wavelength selective reflection sheet 16 is a sheet-like object that selectively reflects light having a specific wavelength.
  • the wavelength selective reflection sheet 16 in the illustrated example has a cholesteric liquid crystal layer 30 as a reflective layer that selectively reflects light having a specific wavelength, and thus selectively reflects light having a specific wavelength.
  • the wavelength selective reflection sheet 16 preferably includes a Bragg reflection layer.
  • the Bragg reflection layer is a layer having a refractive index modulation in the thickness direction of the layer.
  • transmitted light and reflected light are generated at each refractive index interface, and they interfere with each other. Part is reflected.
  • the selective reflection in the Bragg reflection layer generally follows Bragg's law, which will be described later. Therefore, the reflection wavelength can be selected by controlling the thickness of each layer in the multilayer structure.
  • the Bragg reflection layer include a dielectric multilayer film and a layer formed by fixing a cholesteric liquid crystal phase (cholesteric liquid crystal layer).
  • the wavelength selective reflection sheet 16 preferably includes at least a part of a Bragg reflection layer, more preferably a Bragg reflection layer, or a reflection whose entire surface is a Bragg reflection layer. More preferably, it has a layer.
  • a Bragg reflective layer it is preferable that it is 100 micrometers or less, It is more preferable that it is 30 micrometers or less, It is further more preferable that it is 10 micrometers or less.
  • the wavelength selective reflection sheet 16 selectively reflects light having a wavelength within the wavelength range absorbed by the absorption sheet 15. More specifically, the wavelength selective reflection sheet 16 (cholesteric liquid crystal layer 30) selects light in the wavelength range of 460 to 520 nm when the absorption sheet 15 satisfies “460 nm ⁇ max ⁇ 520 nm”. Reflectively. As described above, “ ⁇ max ” is the maximum absorption wavelength of the absorption sheet. The wavelength selective reflection sheet 16 selectively reflects light in the wavelength range of 540 to 600 nm when the absorption sheet 15 satisfies “540 nm ⁇ max ⁇ 600 nm”.
  • the wavelength selective reflection sheet 16 is It selectively reflects both light in the wavelength range of 460 to 520 nm and light in the wavelength range of 540 to 600 nm. Further, the wavelength selective reflection sheet 16 has the absorption sheet 15 having a maximum absorption wavelength in one of the wavelength range of 460 to 520 nm and the wavelength range of 540 to 600 nm, and second in the other wavelength range. Even when it has a large absorption wavelength, it selectively reflects both light in the wavelength range of 460 to 520 nm and light in the wavelength range of 540 to 600 nm.
  • the wavelength selective reflection sheet 16 is formed by holding a plurality of cholesteric liquid crystal layers 30 on one main surface (maximum surface) of a transparent sheet-like support 28 so as to be separated from each other. It has a configuration. Therefore, the wavelength selective reflection sheet 16 selectively reflects light in a predetermined wavelength region at the position of the cholesteric liquid crystal layer 30, but hardly reflects light only at the support 28. Preferably, the reflectance of only the support 28 is preferably 10% or less, and more preferably 8% or less. In the present invention, the reflectance (light reflectance) for light of a certain wavelength ⁇ is calculated in the form of 1-t ( ⁇ ) by measuring the spectral transmittance t ( ⁇ ) of the wavelength selective reflection sheet 16.
  • the spectral transmittance t ( ⁇ ) may be measured by a known method.
  • the spectral transmittance t ( ⁇ ) can be measured with an ultraviolet-visible near-infrared spectrophotometer (for example, UV-3150 manufactured by Shimadzu Corporation).
  • an ultraviolet-visible near-infrared spectrophotometer for example, UV-3150 manufactured by Shimadzu Corporation.
  • t ( ⁇ ) uses the total light transmittance measured by using an integrating sphere.
  • it can be measured using an ultraviolet visible near infrared spectrophotometer (for example, V7200 manufactured by JASCO Corporation).
  • each cholesteric liquid crystal layer 30 is provided on the optical axis of the light source 14 as conceptually shown in FIGS. 1 and 3.
  • the cholesteric liquid crystal layer 30 has uniform in-plane reflection characteristics. That is, the wavelength selective reflection sheet 16 has the maximum reflectance at the optical axis of the light source 14.
  • the absorbent sheet 15 is omitted in order to clearly show the positional relationship between the light source 14 and the cholesteric liquid crystal layer 30.
  • the cholesteric liquid crystal layer 30 has a circular planar shape and the center coincides with the optical axis of the light source 14.
  • the cholesteric liquid crystal layer 30 may have any one of a triangular shape, a quadrangular shape, and a polygonal shape having a planar shape that coincides with the optical axis of the light source 14.
  • a planar shape is a shape at the time of seeing from the direction orthogonal to the surface direction of the wavelength selection reflection sheet 16 (shape in a top view).
  • the wavelength selective reflection sheet 16 has portions with different reflectivities in the surface, and the in-plane reflectivity depends on the arrangement of the light sources 14. In other words, the wavelength selective reflection sheet 16 has a reflectance distribution according to the arrangement of the light sources 14 in the plane.
  • the backlight unit 10 of the present invention includes an absorption sheet 15 that absorbs light in a wavelength range unnecessary for light emission, and a wavelength selective reflection sheet 16 having a reflectance distribution according to the arrangement of the light source 14.
  • a backlight unit is realized that narrows the emission spectrum of the backlight and enables image display with high color purity by expanding the color gamut using the LCD.
  • the white light emitted by the current light unit includes light in an unnecessary wavelength range, and the light in the unnecessary wavelength range causes a decrease in color purity of display.
  • an optical filter that absorbs light in an unnecessary wavelength region is disposed in the backlight unit, thereby absorbing light in an unnecessary wavelength region and By narrowing the emission spectrum, the color purity of the display can be improved.
  • a dye used as an absorbing material in an optical filter has a wide absorption band. Therefore, the configuration using the optical filter not only absorbs light in an unnecessary wavelength range, but also absorbs light of three primary colors necessary for color display of the LCD at the same time, thereby reducing the efficiency of the display. There is.
  • the backlight unit having this configuration when the light irradiated from the light source and transmitted through the optical filter enters the wavelength selective reflection layer, only the light in the vicinity of 600 nm is reflected by the wavelength selective reflection layer, and the other light is To Penetrate. Accordingly, light other than light in the vicinity of 600 nm is used for irradiation, but light in the vicinity of 600 nm is reflected by the wavelength selective reflection layer, and again passes through the optical filter and is absorbed. In addition, light in the vicinity of 600 nm that has not been absorbed by the optical filter is reflected by the reflecting plate under the light source, and is again transmitted through the optical filter and absorbed.
  • the inventors of the present invention have not sufficiently narrowed the absorption band in the wavelength selective reflection layer in the configuration in which the optical filter, the light absorption element, and the wavelength selective reflection layer are used in combination. It has been found that the efficiency of the display is sacrificed when the emission spectrum is narrowed.
  • the conventionally known wavelength selective reflection layer uses light interference in a thin film.
  • d is the thickness of the thin film
  • is the incident angle of the incident light (angle formed by the plane direction of the layer and the light beam)
  • is the wavelength
  • n is an integer.
  • the light emitted from the light source is diffused light. Therefore, the light incident on the wavelength selective reflection layer has a wide incident angle, and therefore the effective reflection wavelength range is widened. Specifically, when light is incident on the reflection selective reflection layer at an angle, the wavelength of the light reflected by the reflection selection reflection layer is shorter on the short wavelength side according to the incident angle of the light with respect to the normal line (perpendicular line) of the reflection selection reflection layer. A so-called short wavelength shift occurs. The short wavelength shift increases as the angle between the normal line of the reflection selective reflection layer and the light incident direction increases. In the following description, “incident at a large angle” means that the angle with respect to the normal (perpendicular) of the incident surface is large.
  • the wavelength selective reflection layer does not reflect the light in the desired wavelength range to be removed when light is incident obliquely at a large angle, and does not reflect the necessary light on the shorter wavelength side than the desired wavelength range. It will be reflected.
  • the wavelength selective reflection layer and the optical filter are used in combination, the absorption band narrowing in the optical filter by the wavelength selective reflection layer is not sufficient, and when narrowing the emission spectrum in the backlight, Efficiency is sacrificed.
  • the wavelength selective reflection sheet 16 having the cholesteric liquid crystal layer 30 has a reflectance distribution according to the arrangement of the light sources 14.
  • a plurality of cholesteric liquid crystal layers 30 are arranged on the optical axis of the light source 14 while being separated from each other. Accordingly, light that is irradiated from the light source 14 and obliquely incident on the wavelength selective reflection sheet 16 at a large angle is incident on the region of only the support 28 where the cholesteric liquid crystal layer 30 is not present. Most of the light incident obliquely at an angle passes without being reflected by the wavelength selective reflection sheet 16.
  • the effective reflection band of the cholesteric liquid crystal layer 30 can be narrowed, and as a result, the decrease in efficiency of the backlight unit (LCD) is minimized,
  • the emission spectrum of the backlight can be narrowed, the color gamut of image display by LCD can be expanded, and the color purity can be improved.
  • the size of the cholesteric liquid crystal layer 30 (a reflective layer that selectively reflects light of a specific wavelength) is not limited.
  • the size referred to here is the size in the surface direction.
  • the cholesteric liquid crystal layer 30 is larger, light in an unnecessary wavelength region can be reduced.
  • the larger the cholesteric liquid crystal layer 30 is, the more the reflection of the light in the necessary wavelength region by the cholesteric liquid crystal layer 30 and the absorption in the absorption sheet 15 are caused by the short wavelength shift caused by the light obliquely incident on the cholesteric liquid crystal layer 30. .
  • the size of the cholesteric liquid crystal layer 30 is appropriately set according to the size of the backlight unit 10, the distance between the light source 14 and the cholesteric liquid crystal layer 30, the light emission directivity of the light source 14, and the like. That's fine.
  • the wavelength selective reflection sheet 16 selectively reflects light in the wavelength range of 460 to 520 nm and / or light in the wavelength range of 540 to 620 nm.
  • the wavelength selective reflection sheet 16 reflects the light having the maximum absorption wavelength in the absorption sheet 15 with a high reflectance.
  • the wavelength selective reflection sheet 16 preferably reflects light of 600 nm with a high reflectance.
  • the wavelength selective reflection sheet 16 preferably reflects the light having the maximum absorption wavelength in the absorption sheet 15 with a reflectance of 80% or more of the reflectance of the light having the maximum reflection wavelength.
  • the maximum absorption wavelength of the absorption sheet 15 is ⁇ max
  • the reflectance at the maximum reflection wavelength of the wavelength selective reflection sheet 16 is R max
  • the reflectance at the wavelength ⁇ max of the wavelength selective reflection sheet 16 is Let R ( ⁇ max ).
  • the wavelength selective reflection sheet 16 is: R max ⁇ 0.8 ⁇ R ( ⁇ max ) It is preferable to have
  • the backlight unit 10 includes both the absorption sheet 15 satisfying “460 nm ⁇ max ⁇ 520 nm” and the absorption sheet 15 satisfying “540 nm ⁇ max ⁇ 620 nm”, and
  • One absorption sheet 15 has a maximum absorption wavelength in one wavelength range of 460 to 520 nm and a wavelength range of 540 to 620 nm, and has the second largest absorption wavelength in the other wavelength range. There are cases.
  • the maximum absorption wavelength in the wavelength range of 460 to 520 nm of the absorption sheet 15 is ⁇ max 1
  • the reflectance at the wavelength ⁇ max 1 of the wavelength selective reflection sheet 16 is R ( ⁇ max 1)
  • the maximum absorption wavelength in the wavelength range of 540 to 620 nm of the absorption sheet 15 is ⁇ max 2
  • the reflectance at the wavelength ⁇ max 2 of the wavelength selective reflection sheet 16 is R ( ⁇ max 2)
  • R max 1 represents the reflectance of light having the maximum reflection wavelength in the wavelength range of 460 to 520 nm of the wavelength selective reflection sheet 16;
  • the reflectance of light having the maximum reflection wavelength in the wavelength range of 540 to 620 nm of the wavelength selective reflection sheet 16 is R max 2
  • R max 1 ⁇ 0.8 ⁇ R ( ⁇ max 1) and R max 2 ⁇ 0.8 ⁇ R ( ⁇ max 2) It is preferable to satisfy at least one of these, and it is more preferable to satisfy both.
  • the absorbing sheet 15 is an absorbing sheet satisfying “460 nm ⁇ max ⁇ 520 nm” or an absorbing sheet satisfying “540 nm ⁇ max ⁇ 620 nm” as described above, It is preferable to satisfy the corresponding wavelength range equation.
  • the wavelength selective reflection sheet 16 has a configuration in which the cholesteric liquid crystal layer 30 is provided on the support 28 as shown in FIGS.
  • the support 28 of the wavelength selective reflection sheet 16 supports the cholesteric liquid crystal layer 30.
  • the support 28 may be a single layer or a multilayer.
  • Examples of the support 28 in the case of a single layer include a support made of glass, triacetyl cellulose (TAC), polyethylene terephthalate (PET), polycarbonate, polyvinyl chloride, acrylic, polyolefin, and the like.
  • TAC triacetyl cellulose
  • PET polyethylene terephthalate
  • PC polycarbonate
  • polyvinyl chloride acrylic
  • polyolefin polyolefin
  • the thickness of the support 28 is not limited, and a thickness that has sufficient transparency and can support the cholesteric liquid crystal layer 30 may be appropriately set according to the forming material and the like. Specifically, the thickness of the support 28 is preferably 10 to 300 ⁇ m, more preferably 12 to 100 ⁇ m, and even more preferably 12 to 50 ⁇ m.
  • the support 28 is preferably transparent. Specifically, the support 28 preferably has a total light transmittance of 90% or more as measured in accordance with JIS K 7361.
  • the support 28 may have an opening (through hole) in a portion where the cholesteric liquid crystal layer 30 is not provided. Regarding this point, the same applies to a portion having a low reflectance in a configuration in which the cholesteric liquid crystal layer 34 has a portion having a different reflectance in the plane, which will be described later.
  • a base layer may be provided between the support 28 and the cholesteric liquid crystal layer 30.
  • the underlayer is preferably a resin layer, and more preferably a transparent resin layer. Examples of the underlayer include an alignment film for adjusting the alignment of the liquid crystal compound when forming the cholesteric liquid crystal layer 30, and a layer for improving the adhesion characteristics between the support 28 and the cholesteric liquid crystal layer 30. Is mentioned.
  • the cholesteric liquid crystal layer 30 (cholesteric liquid crystal layer 34 described later) is a layer formed by fixing a cholesteric liquid crystal phase. That is, the cholesteric liquid crystal layer 30 is a layer made of a liquid crystal material having a cholesteric structure. As described above, the cholesteric liquid crystal layer 30 has wavelength selective reflectivity for reflection, and selectively selects at least one of light in the wavelength range of 460 to 520 nm and light in the wavelength range of 540 to 620 nm. reflect. The following description of the cholesteric liquid crystal layer 30 is the same for the cholesteric liquid crystal layer 34 shown in FIG.
  • the cholesteric liquid crystal phase has wavelength selectivity in reflection, and reflects either left circularly polarized light or right circularly polarized light. That is, as an example, if the cholesteric liquid crystal phase reflects left circularly polarized light having a selective reflection center wavelength in blue light, the cholesteric liquid crystal layer formed by fixing the cholesteric liquid crystal phase has blue left circularly polarized light. Only a part is reflected and the other light is transmitted.
  • ⁇ Cholesteric liquid crystal phase ⁇ Cholesteric liquid crystal phase
  • the pitch of the cholesteric liquid crystal phase depends on the kind of chiral agent used together with the polymerizable liquid crystal compound or the concentration of the chiral agent when forming the cholesteric liquid crystal layer, a desired pitch can be obtained by adjusting these.
  • Fujifilm Research Report No. 50 (2005) p. There is a detailed description in 60-63.
  • the cholesteric liquid crystal phase gives a stripe pattern of a bright part and a dark part in a cross-sectional view of the cholesteric liquid crystal layer 30 observed by a scanning electron microscope (SEM (Scanning Electron Microscope)).
  • SEM scanning Electron Microscope
  • the two bright parts and the dark part 2 in the repetition of the bright part and the dark part correspond to one pitch of the spiral. From this, the pitch can be measured from the SEM sectional view.
  • the normal line of each line of the striped pattern is the spiral axis direction of the cholesteric liquid crystal phase.
  • the reflected light of the cholesteric liquid crystal phase is right circularly polarized light or left circularly polarized light. That is, the cholesteric liquid crystal layer 30 reflects either right-handed circularly polarized light or left-handed circularly polarized light. Whether the reflected light is right-handed circularly polarized light or left-handed circularly polarized light depends on the twist direction of the cholesteric liquid crystal phase.
  • the selective reflection of circularly polarized light by the cholesteric liquid crystal phase reflects right circularly polarized light when the twist direction of the spiral of the cholesteric liquid crystal phase is right, and reflects left circularly polarized light when the twist direction of the spiral is left.
  • the direction of rotation of the cholesteric liquid crystal phase can be adjusted by the type of liquid crystal compound forming the cholesteric liquid crystal layer 30 or the type of chiral agent added.
  • the half-value width of the reflection wavelength region is adjusted according to the use of the wavelength selective reflection sheet 16, and may be, for example, 10 to 500 nm.
  • the half-value width of the reflection wavelength region is preferably narrow.
  • the full width at half maximum of the reflection wavelength region is preferably 10 to 80 nm, more preferably 10 to 50 nm, and still more preferably 10 to 30 nm.
  • ⁇ n of the cholesteric liquid crystal phase may be reduced and the pitch P of the spiral structure may be increased.
  • ⁇ n of the cholesteric liquid crystal phase is preferably 0.15 or less, more preferably 0.12 or less, further preferably 0.1 or less, and particularly preferably 0.09 or less.
  • the cholesteric liquid crystal layer 30 can be obtained by fixing a cholesteric liquid crystal phase.
  • the structure in which the cholesteric liquid crystal phase is fixed may be a structure in which the alignment of the liquid crystal compound that is the cholesteric liquid crystal phase is maintained.
  • the polymerizable liquid crystal compound is in an alignment state of the cholesteric liquid crystal phase.
  • any structure may be used as long as it is polymerized and cured by ultraviolet irradiation and heating to form a layer having no fluidity, and at the same time, the orientation state is not changed by an external field or an external force.
  • the liquid crystal compound may not exhibit liquid crystallinity.
  • the polymerizable liquid crystal compound may have a high molecular weight by a curing reaction and lose liquid crystallinity.
  • a liquid crystal composition containing a liquid crystal compound can be given.
  • the liquid crystal compound is preferably a polymerizable liquid crystal compound.
  • the liquid crystal composition containing a liquid crystal compound used for forming the cholesteric liquid crystal layer 30 preferably further contains a surfactant.
  • the liquid crystal composition used for forming the cholesteric liquid crystal layer may further contain a chiral agent and a polymerization initiator.
  • the polymerizable liquid crystal compound may be a rod-like liquid crystal compound or a disk-like liquid crystal compound, but is preferably a rod-like liquid crystal compound.
  • Examples of the rod-like polymerizable liquid crystal compound that forms the cholesteric liquid crystal phase include a rod-like nematic liquid crystal compound.
  • rod-like nematic liquid crystal compounds examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines.
  • Phenyldioxanes, tolanes, and alkenylcyclohexylbenzonitriles are preferably used. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
  • the polymerizable liquid crystal compound can be obtained by introducing a polymerizable group into the liquid crystal compound.
  • the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, preferably an unsaturated polymerizable group, and more preferably an ethylenically unsaturated polymerizable group.
  • the polymerizable group can be introduced into the molecule of the liquid crystal compound by various methods.
  • the number of polymerizable groups possessed by the polymerizable liquid crystal compound is preferably 1 to 6, more preferably 1 to 3. Examples of polymerizable liquid crystal compounds are described in Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. Nos.
  • polymerizable liquid crystal compound examples include compounds represented by the following formulas (1) to (11).
  • cyclic organopolysiloxane compounds having a cholesteric liquid crystal phase as disclosed in JP-A-57-165480 can be used.
  • the above-mentioned polymer liquid crystal compound includes a polymer in which a mesogenic group exhibiting liquid crystal is introduced into the main chain, a side chain, or both positions of the main chain and the side chain, and a polymer cholesteric in which a cholesteryl group is introduced into the side chain.
  • Liquid crystal, a liquid crystalline polymer as disclosed in JP-A-9-133810, a liquid crystalline polymer as disclosed in JP-A-11-293252, and the like can be used.
  • the addition amount of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 75 to 99.9% by mass, and 80 to 99% by mass with respect to the solid content mass (mass excluding the solvent) of the liquid crystal composition. More preferred is 85 to 90% by mass.
  • the liquid crystal composition used when forming the cholesteric liquid crystal layer 30 may contain a surfactant.
  • the surfactant is preferably a compound that can function as an alignment control agent that contributes to stably or rapidly producing a planar alignment cholesteric liquid crystal phase.
  • Examples of the surfactant include a silicone-based surfactant and a fluorine-based surfactant, and a fluorine-based surfactant is preferably exemplified.
  • the surfactant include compounds described in paragraphs [0082] to [0090] of JP-A No. 2014-119605, and compounds described in paragraphs [0031] to [0034] of JP-A No. 2012-203237. , Compounds exemplified in paragraphs [0092] and [0093] of JP-A-2005-99248, paragraphs [0076] to [0078] and paragraphs [0082] to [0085] of JP-A 2002-129162 And the compounds exemplified therein, and fluorine (meth) acrylate polymers described in paragraphs [0018] to [0043] of JP-A-2007-272185, and the like.
  • surfactant may be used individually by 1 type and may use 2 or more types together.
  • fluorine-based surfactant compounds described in paragraphs [0082] to [0090] of JP-A No. 2014-119605 are preferable.
  • the addition amount of the surfactant in the liquid crystal composition is preferably 0.01 to 10% by mass, more preferably 0.01 to 5% by mass, and more preferably 0.02 to 1% with respect to the total mass of the polymerizable liquid crystal compound. More preferred is mass%.
  • the chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase.
  • the chiral agent may be selected according to the purpose because the twist direction or the spiral pitch of the spiral induced by the compound is different.
  • the chiral agent is not particularly limited, and is a known compound (for example, liquid crystal device handbook, chapter 3-4-3, chiral agent for TN (Twisted Nematic), STN (Super Twisted Nematic), 199 pages, Japan Science Foundation) 142th Committee, edited by 1989), isosorbide, isomannide derivatives, and the like can be used.
  • a chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound and a planar asymmetric compound that do not contain an asymmetric carbon atom can also be used as the chiral agent.
  • the axial asymmetric compound and the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof.
  • the chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, they are derived from the repeating unit derived from the polymerizable liquid crystal compound and the chiral agent by a polymerization reaction between the polymerizable chiral agent and the polymerizable liquid crystal compound.
  • the polymerizable group possessed by the polymerizable chiral agent is preferably the same group as the polymerizable group possessed by the polymerizable liquid crystal compound. Accordingly, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Further preferred.
  • the chiral agent may be a liquid crystal compound.
  • the chiral agent has a photoisomerizable group because a pattern having a desired reflection wavelength corresponding to the emission wavelength can be formed by photomask irradiation such as actinic rays after coating and orientation.
  • the photoisomerization group an isomerization site, an azo group, an azoxy group, and a cinnamoyl group of a compound exhibiting photochromic properties are preferable.
  • Specific examples of the compound include JP2002-80478, JP200280851, JP2002-179668, JP2002-179669, JP2002-179670, and JP2002.
  • Compounds described in JP-A No. 179681, JP-A No. 2002-179682, JP-A No. 2002-338575, JP-A No. 2002-338668, JP-A No. 2003-313189, JP-A No. 2003-313292, etc. Can be used.
  • the content of the chiral agent in the liquid crystal composition is preferably 0.01 to 200 mol%, more preferably 1 to 30 mol%, based on the amount of the polymerizable liquid crystal compound.
  • the liquid crystal composition contains a polymerizable compound, it preferably contains a polymerization initiator.
  • the polymerization initiator to be used is preferably a photopolymerization initiator that can start the polymerization reaction by ultraviolet irradiation.
  • photopolymerization initiators include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatics.
  • Group acyloin compounds described in US Pat. No.
  • the content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass, more preferably 0.5 to 12% by mass with respect to the content of the polymerizable liquid crystal compound. .
  • the liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and improve the durability.
  • a crosslinking agent one that can be cured by ultraviolet rays, heat, moisture, or the like can be suitably used.
  • polyfunctional acrylate compounds such as a trimethylol propane tri (meth) acrylate and pentaerythritol tri (meth) acrylate
  • Glycidyl (meth) acrylate Epoxy compounds such as ethylene glycol diglycidyl ether; aziridine compounds such as 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane; hexa Isocyanate compounds such as methylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylto Alkoxysilane compounds such as methoxy silane.
  • a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
  • the content of the crosslinking agent is preferably 3 to 20% by mass and more preferably 5 to 15% by mass with respect to the solid content mass of the liquid crystal composition. If content of a crosslinking agent is in the said range, the effect of a crosslinking density improvement will be easy to be acquired, and stability of a cholesteric liquid crystal phase will improve more.
  • -Other additives In the liquid crystal composition, if necessary, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a coloring material, and metal oxide fine particles, etc., do not deteriorate the optical performance or the like. It can be added in a range.
  • the liquid crystal composition is preferably used as a liquid.
  • the liquid crystal composition may contain a solvent.
  • the organic agent include ketones such as methyl ethyl ketone and methyl isobutyl ketone, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, and ethers. These may be used individually by 1 type and may use 2 or more types together. Among these, ketones are preferable in consideration of environmental load.
  • the above-described components such as the above-described monofunctional polymerizable monomer may function as a solvent.
  • a liquid crystal composition is applied to the surface on which the cholesteric liquid crystal layer is formed, the liquid crystal compound is aligned in a cholesteric liquid crystal phase, the liquid crystal compound is cured, and the cholesteric liquid crystal layer 30 is formed.
  • the liquid crystal composition is applied to the support 28, the liquid crystal compound is aligned in a cholesteric liquid crystal phase, the liquid crystal compound is cured, and the cholesteric liquid crystal layer 30 is then cured.
  • a cholesteric liquid crystal layer 30 formed by fixing the liquid crystal phase is formed.
  • a printing method such as ink jet and scroll printing, and a known method that can uniformly apply a liquid to a sheet-like material such as spin coating, bar coating, and spray coating can be used.
  • the applied liquid crystal composition is dried and / or heated as necessary, and then cured to form a cholesteric liquid crystal layer.
  • the polymerizable liquid crystal compound in the liquid crystal composition may be aligned in the cholesteric liquid crystal phase.
  • the heating temperature is preferably 200 ° C. or lower, more preferably 130 ° C. or lower.
  • the aligned liquid crystal compound is further polymerized as necessary.
  • the polymerization may be either thermal polymerization or photopolymerization by light irradiation, but photopolymerization is preferred. It is preferable to use ultraviolet rays for light irradiation.
  • the irradiation energy is preferably 20 to 50 J / cm 2 and more preferably 100 to 1500 mJ / cm 2 .
  • light irradiation may be performed under heating conditions or in a nitrogen atmosphere.
  • the irradiation ultraviolet wavelength is preferably 250 to 430 nm.
  • the cholesteric liquid crystal layer formed by fixing the cholesteric liquid crystal phase has a striped pattern in which bright portions and dark portions are alternately stacked in a cross-sectional view observed with an SEM.
  • the cholesteric liquid crystal layer 30 preferably has a wavy structure in the bright and dark portions in the cross section.
  • the bright part and the dark part of the cholesteric liquid crystal layer 30 are observed by SEM observation of the cross section of the cholesteric liquid crystal layer 30.
  • FIG. 4 conceptually shows a cross section of a general cholesteric liquid crystal layer 30.
  • a stripe pattern of bright portions B and dark portions D is usually observed in the cross section of the cholesteric liquid crystal layer 30 disposed on the support 28 . That is, in the cross section of the cholesteric liquid crystal layer 30 in which the cholesteric liquid crystal phase is fixed, a layered structure in which bright portions B and dark portions D are alternately stacked is observed. As described above, the two bright portions and the two dark portions correspond to one pitch of the spiral of the cholesteric liquid crystal phase.
  • the stripe pattern (layered structure) of the bright part B and the dark part D is formed to be parallel to the surface of the support 28, that is, the formation surface of the cholesteric liquid crystal layer 30, as shown in FIG.
  • the spiral axes of the liquid crystal compound in the cholesteric liquid crystal phase are aligned in a state orthogonal to the surface of the support 28, and thus the cholesteric liquid crystal layer 30 exhibits specular reflectivity. That is, when light is incident from the normal direction of the cholesteric liquid crystal layer 30 formed by fixing the cholesteric liquid crystal phase, the light is reflected in the normal direction, but the light is not easily reflected in the oblique direction, and is diffusely reflective. (See arrow in FIG. 4).
  • the bright part B and the dark part D of the cholesteric liquid crystal layer 30 in which the cholesteric liquid crystal phase is fixed have a wavy structure (uneven structure) as conceptually shown in FIG.
  • the liquid crystal compound has a region in which the spiral axis of the liquid crystal compound is inclined. Therefore, when light is incident on the cholesteric liquid crystal layer 30 having a wavy structure from the normal direction of the cholesteric liquid crystal layer 30, there is a region where the spiral axis of the liquid crystal compound is inclined as shown in FIG. A part of the incident light is reflected in an oblique direction (see the arrow in FIG. 7).
  • the cholesteric liquid crystal layer 30 formed by fixing the cholesteric liquid crystal phase has a waved structure, so that the cholesteric liquid crystal layer 30 has diffuse reflectivity. Therefore, by forming the cholesteric liquid crystal layer 30 having a waved structure, the light incident on the wavelength selective reflection sheet 16 can be appropriately diffusely reflected, and the absorption efficiency of light in an unnecessary wavelength region by the absorption sheet 15 can be improved. Is preferable.
  • the cholesteric liquid crystal layer 30 having a wavy structure, a plurality of peaks (tops) and valleys (bottoms) at which the inclination angle of the support 28 with respect to the formation surface of the cholesteric liquid crystal layer 30 is 0 ° in the continuous line formed by the wavy structure, Identified.
  • the cholesteric liquid crystal layer 30 has a continuous line support 28 formed by a bright portion B or a dark portion D having a wave structure sandwiched between adjacent peaks and valleys in that good diffuse reflectance can be obtained. It is preferable to have a plurality of regions where the angle with respect to the surface, that is, the formation surface of the cholesteric liquid crystal layer 30 is 5 ° or more.
  • the cholesteric liquid crystal layer 30 preferably has an average peak-to-peak distance (wave period) of 1 to 50 ⁇ m in the wavy structure of the bright part B and the dark part D.
  • the cholesteric liquid crystal layer 30 having such a bright part B and dark part D having a waved structure can be formed as follows, for example. That is, the cholesteric liquid crystal layer 30 in which a general cholesteric liquid crystal phase is fixed is formed by subjecting the support 28, that is, the surface on which the cholesteric liquid crystal layer 30 is formed, to a rubbing treatment or the like to give an alignment regulating force. On the other hand, the cholesteric liquid crystal layer 30 in which the bright part B and the dark part D have a waved structure does not impart an alignment regulating force to the formation surface of the cholesteric liquid crystal layer 30, or a state in which a weak alignment regulating force is imparted. By doing so, it can be formed.
  • the above preferred waved structure can be obtained by applying an appropriate alignment regulating force to such an extent that the rubbing treatment is not performed on the formation surface (the support 28 or the base layer) of the cholesteric liquid crystal layer 30 or the weak rubbing treatment is performed.
  • the cholesteric liquid crystal layer 30 can be formed.
  • the cholesteric liquid crystal layer 30 has wavelength selective reflectivity for reflection, and selectively selects at least one of light in the wavelength range of 460 to 520 nm and light in the wavelength range of 540 to 620 nm. reflect.
  • the cholesteric liquid crystal layer 30 selectively reflects light in the wavelength range of 460 to 520 nm, as an example, the cholesteric liquid crystal layer 30 has a selective reflection center wavelength in the wavelength range of 460 to 520 nm.
  • the cholesteric liquid crystal layer 30 selectively reflects light in the wavelength range of 540 to 620 nm, for example, the cholesteric liquid crystal layer 30 has a selective reflection center wavelength in the wavelength range of 540 to 620 nm.
  • the cholesteric liquid crystal layer 30 is a reflective layer that selectively reflects both light in the wavelength range of 460 to 520 nm and light in the wavelength range of 540 to 600 nm
  • the cholesteric liquid crystal layer 30 is, for example, A cholesteric liquid crystal layer having a selective reflection center wavelength in a wavelength range of 460 to 520 nm and a cholesteric liquid crystal layer having a selective reflection center wavelength in a wavelength range of 540 to 600 nm are included.
  • the cholesteric liquid crystal layer 30 selectively reflects light in the wavelength range absorbed by the absorption sheet 15.
  • the selective reflection center wavelength of the cholesteric liquid crystal layer 30 and the maximum absorption wavelength of the absorption sheet 15 are close to each other in that the emission spectrum can be narrowed more preferably.
  • the difference between the selective reflection center wavelength of the cholesteric liquid crystal layer 30 and the maximum absorption wavelength of the absorbing sheet 15 is preferably ⁇ 100 nm or less, more preferably ⁇ 50 nm or less, further preferably ⁇ 30 nm or less, and cholesteric liquid crystal It is particularly preferable that the selective reflection center wavelength of the layer 30 matches the maximum absorption wavelength of the absorption sheet 15.
  • the reflection band of the wavelength selective reflection sheet 16 is preferably narrower than the absorption band of the absorption sheet 15. Specifically, it is preferable that the half width of the reflection band of the wavelength selective reflection sheet 16 is narrower than the wavelength width in which the absorbance takes a value of 10% with respect to the maximum absorption wavelength of the absorption sheet 15.
  • a cholesteric liquid crystal layer 30 is formed on a single support 28.
  • the wavelength selective reflection sheet 16 may be one in which a plurality of cholesteric liquid crystal layers are formed on one support 28, or A plurality of the cholesteric liquid crystal layers 30 formed on the support 28 may be produced and adhered to form the wavelength selective reflection sheet 16.
  • the wavelength selective reflection sheet 16 is produced by preparing a plurality of small sheets in which the cholesteric liquid crystal layer 30 is formed on the support 28, and sticking the small sheets to another transparent sheet.
  • the wavelength selective reflection sheet 16 may be configured.
  • the cholesteric liquid crystal layer 30 has both a cholesteric liquid crystal layer that reflects right circularly polarized light and a cholesteric liquid crystal layer that reflects right circularly polarized light. But you can.
  • the film thickness of the cholesteric liquid crystal layer 30 is not particularly limited, and the film thickness that provides the required reflectance may be set as appropriate according to the selective reflection center wavelength and the like. This also applies to the cholesteric liquid crystal layer 34 described later.
  • the selective reflection center wavelength of the cholesteric liquid crystal layer 30 is determined by the helical pitch of the cholesteric liquid crystal phase, so that the cholesteric liquid crystal layer 30 having a longer selective reflection center wavelength has a desired reflectance.
  • the required film thickness increases.
  • the reflectance by the cholesteric liquid crystal layer 30 increases as the number of spiral pitches of the cholesteric liquid crystal phase (the number of spiral turns) increases, that is, as the film thickness of the cholesteric liquid crystal layer increases.
  • the absorption sheet 15 has a maximum absorption wavelength at 600 nm
  • the wavelength selective reflection sheet 16 has a cholesteric layer 30 having a selective reflection center wavelength at 600 nm.
  • the light emitted from the light source 14 first enters the absorption sheet 15, and light in the vicinity of 600 nm is absorbed.
  • the light transmitted through the absorption sheet 15 then enters the wavelength selective reflection sheet 16.
  • the light incident on the wavelength selective reflection sheet 16 the light incident on the cholesteric liquid crystal layer 30 is selectively reflected only in the vicinity of 600 nm (right circularly polarized light and / or left circularly polarized light), and other wavelength regions.
  • Light passes through the cholesteric liquid crystal layer 30.
  • the light incident on the region of the support 28 only is transmitted through the wavelength selective reflection sheet 16 as it is.
  • the cholesteric liquid crystal layer 30 is provided on the optical axis of the light source 14. Therefore, the light irradiated from the light source 14 and obliquely incident on the wavelength selective reflection sheet 16 at a large angle hardly enters the cholesteric liquid crystal layer 30. In other words, the cholesteric liquid crystal layer 30 properly reflects only light of a target near 600 nm without causing a short wavelength shift. On the other hand, most of the light emitted from the light source 14 and obliquely incident on the wavelength selective reflection sheet 16 at a large angle is incident on the region of the support 28 alone, and thus is not reflected and is transmitted as it is.
  • the backlight unit 10 of the present invention narrows the effective reflection band of the wavelength selective reflection sheet 16 because the wavelength selective reflection sheet 16 has a reflectance distribution according to the arrangement of the light sources 14 in the plane.
  • the display efficiency can be kept to a minimum, and only the light in the unnecessary wavelength band is removed to suitably narrow the emission spectrum, widen the color gamut, and the LCD has high color purity. Display can be made.
  • the light transmitted through the wavelength selective reflection sheet 16 is further uniformized by the diffusion plate 18 and the prism sheets 20a and 20b, and only polarized light in a predetermined direction is transmitted through the reflective polarizing plate 24 and irradiated from the backlight unit 10.
  • the light reflected by the reflective polarizing plate 24 is reflected by the wavelength selective reflection sheet 16, the reflective plate 12, and the like, and enters the reflective polarizing plate 24 again in the same manner as described above.
  • the wavelength selective reflection sheet 16 shown in FIGS. 1 and 2 is formed on the transparent support 28 by forming cholesteric liquid crystal layers 30 that coincide with the optical axis of the light source 14 and are separated from each other.
  • the surface has a portion with different reflectivity
  • the in-plane reflectivity has a configuration corresponding to the arrangement of the light source 14.
  • the present invention is not limited to this, and the wavelength selective reflection sheet has a portion with different reflectance in the plane of the wavelength selective reflection sheet by having a portion with different reflectance in the plane of the cholesteric liquid crystal layer.
  • the in-plane reflectance may be configured according to the arrangement of the light source 14. That is, in the backlight unit of the present invention, the wavelength selective reflection sheet may have a cholesteric liquid crystal layer having a reflectance distribution according to the arrangement of the light sources 14.
  • the wavelength selective reflection sheet is provided with a light source in an in-plane by discretely providing a reflective layer that selectively reflects a specific wavelength, like the wavelength selective reflection sheet 16 described above.
  • the reflectance distribution according to the arrangement of the light source may be provided, or the reflection layer having the reflectance distribution in the reflection surface may be provided so that the wavelength selection reflection sheet can be provided in accordance with the arrangement of the light sources.
  • a reflection distribution may be provided.
  • FIGS. 7 An example is shown in FIGS.
  • the wavelength selective reflection sheet 32 shown in FIGS. 6 and 7 is obtained by forming a cholesteric liquid crystal layer 34 on the same support 28 as described above.
  • FIG. 7 is a plan view of the cholesteric liquid crystal layer 34 as seen from a direction orthogonal to the plane direction.
  • the cholesteric liquid crystal layer 34 selectively reflects light in the wavelength range of 460 to 520 nm and / or light in the wavelength range of 540 to 620 nm, like the cholesteric liquid crystal layer 30 described above.
  • the cholesteric liquid crystal layer 34 includes a high reflectance region 34a and a low reflectance region 34b having a lower reflectance than the high reflectance region 34a in other regions.
  • the high reflectance region 34a and the low reflectance region 34b have the same selective reflection wavelength.
  • the high reflectivity region 34 a has a circular planar shape, and its center coincides with the optical axis of the light source 14 as in the case of the cholesteric liquid crystal layer 30 described above. Therefore, the reflectance of the wavelength selective reflection sheet 32 is also maximized on the optical axis of the light source 14. Note that the planar shape of the high reflectance region 34 a conforms to the cholesteric liquid crystal layer 30 described above.
  • the wavelength selective reflection sheet 32 includes the cholesteric liquid crystal layer 34 having such a high reflectance region 34a and the low reflectance region 34b, thereby having portions having different reflectances in the plane, and the arrangement of the light source 14. It has in-plane reflectivity according to. That is, the wavelength selective reflection sheet 32 has a cholesteric liquid crystal layer 34 composed of such a high reflectance region 34a and a low reflectance region 34b, and thus has a reflectance distribution corresponding to the arrangement of the light source 14 in the plane. .
  • the high reflectance region 34 a is provided with its center aligned with the optical axis of the light source 14. Therefore, the light irradiated from the light source 14 and obliquely incident on the wavelength selective reflection sheet 32 at a large angle hardly enters the high reflectance region 34a. Accordingly, the cholesteric liquid crystal layer 30 appropriately reflects only light in the target wavelength range without causing a short wavelength shift. On the other hand, most of the light irradiated from the light source 14 and obliquely incident on the wavelength selective reflection sheet 32 at a large angle is incident on the low reflectance region 34b.
  • the low reflectance region 34b Since the low reflectance region 34b has a low reflectance, a short wavelength shift occurs, and even if light in a necessary wavelength region is reflected, the amount of reflected light is small. Accordingly, even in this configuration, the effective reflection band of the wavelength selective reflection sheet 32 can be substantially narrowed. As a result, the efficiency of the display is minimized, and only light in an unnecessary wavelength band is obtained. And the emission spectrum is preferably narrowed to broaden the color gamut and display with high color purity can be performed by the LCD.
  • the difference in reflectance between the high reflectance region 34a and the low reflectance region 34b There is no particular limitation on the difference in reflectance between the high reflectance region 34a and the low reflectance region 34b.
  • the high reflectivity region 34a needs a certain reflectivity in order to remove light in an unnecessary wavelength region.
  • the low reflectance region 34b is likely to cause a short wavelength shift, it is preferable that the reflectance is low.
  • the difference in reflectance between the high reflectance region 34a and the low reflectance region 34b is preferably 40% or more, more preferably 70% or more, and 90% or more. Is more preferable.
  • the cholesteric liquid crystal layer 34 having an in-plane reflectance distribution is not limited to a configuration having a high reflectance region 34a and a low reflectance region 34b as shown in FIGS. That is, as long as the wavelength selective reflection sheet has a reflectance distribution according to the position of the light source 14 in the plane, cholesteric liquid crystal layers having various configurations can be used. For example, a cholesteric liquid crystal layer having a reflectance distribution in which the reflectance is maximized on the optical axis of the light source 14 in the plane direction and gradually changes as the distance from the optical axis increases in the plane direction. Is also available. At this time, the decrease in reflectance in the direction away from the optical axis may be continuous or stepwise.
  • the wavelength ratio distribution of the cholesteric liquid crystal layer 34 may be measured by measuring the reflectance of the cholesteric liquid crystal layer 34 two-dimensionally in the plane direction using the above-described reflectance measurement method.
  • the reflectance distribution in the reflective layer may be formed by a known method according to the material for forming the reflective layer.
  • a method of partially changing the number of layers of the reflective layer, a method of partially changing the thickness of the reflective layer, a method of partially changing the forming material of the reflective layer, and the like are exemplified.
  • the thickness of the cholesteric liquid crystal layer 34 is set to the target reflectance as a method for forming the reflectance distribution in the plane of the cholesteric liquid crystal layer 34.
  • a method of partially changing according to the distribution is exemplified.
  • the reflectivity of the cholesteric liquid crystal layer increases as the film thickness increases, that is, as the number of spiral pitches of the cholesteric liquid crystal phase increases. Therefore, the reflectance distribution can be formed in the plane of the cholesteric liquid crystal layer 34 by changing the film thickness of the cholesteric liquid crystal layer 34 in accordance with the target reflectance distribution.
  • a cholesteric liquid crystal layer that reflects right circularly polarized light is formed with a uniform thickness, and a cholesteric liquid crystal that reflects left circularly polarized light is formed thereon.
  • the layer may be configured to be partially or entirely formed by changing the thickness partially as necessary.
  • a method of changing the thickness of the cholesteric liquid crystal layer 34 as an example, a method of adjusting the coating thickness by applying the above-described liquid crystal composition by a printing method such as scroll printing and inkjet, and a liquid crystal composition
  • a method of adjusting the coating thickness by applying the above-described liquid crystal composition by a printing method such as scroll printing and inkjet an example is a method in which coating is performed by spray coating and the coating thickness is adjusted by the coating amount.
  • the support 28 formation surface of the cholesteric liquid crystal layer is formed.
  • a method of forming a cholesteric liquid crystal layer 4 so as to cover the protrusion 28a by providing a transparent protrusion 28a on the surface 28) can also be used.
  • a cholesteric liquid crystal layer that reflects right circularly polarized light is formed to a thickness that embeds the protrusion 28a indicated by a broken line, and a cholesteric liquid crystal layer that reflects left circularly polarized light is formed thereon. But you can.
  • a method for partially changing the degree of orientation of the cholesteric liquid crystal phase forming the cholesteric liquid crystal layer 34 is exemplified.
  • the reflectance in the cholesteric liquid crystal phase is higher as the degree of orientation of the cholesteric liquid crystal phase is higher. Therefore, a reflectance distribution can be formed in the reflecting surface of the cholesteric liquid crystal layer 34 by partially changing the degree of orientation of the cholesteric liquid crystal phase.
  • a method for partially changing the degree of orientation of the cholesteric liquid crystal phase a method for partially changing the heating temperature at the time of forming the cholesteric liquid crystal layer, a method for curing the liquid crystal compound at the time of forming the cholesteric liquid crystal layer by masking, etc.
  • Examples thereof include a method of partially changing the irradiation amount (that is, the exposure amount) of ultraviolet rays.
  • a single cholesteric liquid crystal layer 30 is formed by patterning cholesteric liquid crystal layers made of liquid crystal compounds having different compositions.
  • a method is illustrated.
  • the reflectivity of the cholesteric liquid crystal layer increases as the ⁇ n (birefringence) of the liquid crystal compound increases.
  • a plurality of types of liquid crystal compositions containing liquid crystal compounds having different ⁇ n from each other are prepared, and each liquid crystal composition is patterned and applied to form a cholesteric liquid crystal layer.
  • the selective reflection center wavelength is changed, so that the reflectance of light having a target wavelength is changed.
  • a plurality of types of liquid crystal compositions having different chiral agent contents are prepared, and each liquid crystal composition is patterned and applied to form a cholesteric liquid crystal layer.
  • a reflectance distribution can be formed inside.
  • Examples of the method of patterning a plurality of liquid crystal compositions and applying them to the support 28 include methods using a printing method such as scroll printing and ink jet.
  • the wavelength selective reflection sheet 16 has a cholesteric liquid crystal layer as a reflective layer that selectively reflects a specific wavelength
  • the present invention is not limited to this.
  • a dielectric multilayer film is formed on the support 28 instead of the cholesteric liquid crystal layer, in the same manner as the cholesteric liquid crystal layer, a part of light is reflected and a part of light is transmitted within a continuous reflecting surface.
  • a luminance uniforming sheet having a reflectance distribution can be formed.
  • FIG. 9 conceptually shows an example of another aspect of the backlight unit of the present invention.
  • the backlight unit 35 shown in FIG. 9 further has a wavelength conversion sheet 36. That is, the backlight unit of the present invention uses, for example, a light source that emits light in a predetermined wavelength region such as blue light (light including the first wavelength) as a light source, and a part of the light emitted by the light source is used.
  • White light may be irradiated by irradiating light of a wavelength region different from light irradiated by a light source such as green light and red light after being absorbed by the wavelength conversion element.
  • the backlight unit 35 shown in FIG. 9 has the wavelength conversion sheet 36 and uses many of the same members as the above-described backlight unit 10 except that the light source 14B is different from the above-described light source 14.
  • the same reference numerals are given, and the following description mainly focuses on different parts.
  • the light source 14B is a light source that emits monochromatic light, and emits blue light as an example.
  • the light source 14B various types similar to the light source 14 described above can be used.
  • the backlight unit 35 includes a wavelength conversion sheet 36 between the light source 14 and the wavelength selective reflection sheet 16.
  • the wavelength conversion sheet 36 is a known wavelength conversion sheet that receives the blue light irradiated by the light source 14B, absorbs a part thereof, converts the wavelength, and irradiates one or more kinds of light having different wavelengths.
  • FIG. 10 conceptually shows the configuration of the wavelength conversion sheet 36.
  • the wavelength conversion sheet 36 includes a wavelength conversion layer 40 and a support 42 that supports the wavelength conversion layer 40 while sandwiching it.
  • the wavelength conversion layer 40 is a fluorescent layer in which a large number of phosphors are dispersed in a matrix such as a curable resin, and converts the wavelength of light incident on the wavelength conversion layer 40 as described above. And has a function of emitting light.
  • the wavelength conversion layer 40 converts at least a part of the blue light into red light and green light due to the effect of the phosphor contained therein. The wavelength is converted and emitted.
  • the wavelength conversion function expressed by the wavelength conversion layer 40 is not limited to a configuration that converts the wavelength of blue light into red light and green light, but converts at least part of incident light into light of different wavelengths. I just need it.
  • ⁇ phosphor The phosphor is excited at least by incident excitation light and emits fluorescence.
  • the kind of the phosphor contained in the phosphor layer is not particularly limited, and various known phosphors may be appropriately selected according to the required wavelength conversion performance. Examples of such phosphors include, for example, phosphors, aluminates and metal oxides doped with rare earth ions in addition to organic fluorescent dyes and organic fluorescent pigments, metal sulfides and metal nitrides, etc. Illustrative are phosphors doped with activating ions in a semiconducting substance, and phosphors utilizing the quantum confinement effect known as quantum dots.
  • a quantum dot having a narrow emission spectrum width capable of realizing a light source excellent in color reproducibility when used in a display, and excellent in light emission quantum efficiency is preferably used in the present invention. That is, in the present invention, as the wavelength conversion layer 40, a quantum dot layer formed by dispersing quantum dots in a matrix such as a resin is preferably used. In the wavelength conversion sheet 36, as a preferred embodiment, the wavelength conversion layer 40 is a quantum dot layer.
  • JP 2012-169271 A for example, paragraphs [0060] to [0066] of JP 2012-169271 A can be referred to, but are not limited to those described here.
  • the quantum dots commercially available products can be used without any limitation.
  • the emission wavelength of the quantum dots can usually be adjusted by the composition and size of the particles.
  • the quantum dots are preferably dispersed uniformly in the matrix, but may be dispersed with a bias in the matrix. Moreover, only 1 type may be used for a quantum dot and it may use 2 or more types together. When using 2 or more types of quantum dots together, you may use 2 or more types of quantum dots from which the wavelength of emitted light differs.
  • the known quantum dots include a quantum dot (A) having an emission center wavelength in a wavelength range of more than 600 nm and in a range of 680 nm, and a quantum dot having an emission center wavelength in a wavelength range of more than 500 nm and 600 nm.
  • (B) There is a quantum dot (C) having an emission center wavelength in a wavelength region of 400 nm to 500 nm.
  • the quantum dots (A) are excited by excitation light to emit red light, the quantum dots (B) emit green light, and the quantum dots (C) emit blue light.
  • red light emitted from the quantum dots (A) and light emitted from the quantum dots (B) are emitted.
  • White light can be realized by green light and blue light transmitted through the quantum dot layer.
  • ultraviolet light enter the quantum dot layer including the quantum dots (A), (B), and (C) as excitation light
  • White light can be realized by the emitted green light and the blue light emitted by the quantum dots (C).
  • quantum rods having a rod shape and directivity and emitting polarized light, tetrapod quantum dots, or the like may be used.
  • the wavelength conversion layer 40 is formed by dispersing quantum dots or the like using a resin or the like as a matrix.
  • various known matrices used for the quantum dot layer can be used as the matrix, but those obtained by curing a polymerizable composition (coating composition) containing at least two or more polymerizable compounds are preferable.
  • the polymerizable group of the polymerizable compound used in combination of at least two may be the same or different.
  • the at least two compounds have at least one common polymerizable group. It is preferable.
  • the kind of the polymerizable group is not particularly limited, but preferably, a (meth) acrylate group, a vinyl group, an epoxy group, an oxetanyl group, etc. are exemplified, more preferably a (meth) acrylate group, and still more preferably. Is an acrylate group.
  • the matrix that forms the wavelength conversion layer 40 in other words, the polymerizable composition that becomes the wavelength conversion layer 40 may contain necessary components such as a viscosity modifier and a solvent, if necessary.
  • the polymerizable composition that becomes the wavelength conversion layer 40 is, in other words, a polymerizable composition for forming the wavelength conversion layer 40.
  • the polymerizable composition may contain a viscosity modifier as necessary.
  • the viscosity modifier is preferably a filler having a particle size of 5 to 300 nm.
  • the viscosity modifier is preferably a thixotropic agent for imparting thixotropic properties. Examples of thixotropic agents include fumed silica and alumina.
  • the polymerizable composition to be the wavelength conversion layer 40 may contain a solvent as necessary.
  • the type and amount of the solvent used are not particularly limited.
  • one or a mixture of two or more organic solvents can be used as the solvent.
  • the polymerizable composition to be the wavelength conversion layer 40 may be a compound having a fluorine atom such as trifluoroethyl (meth) acrylate and pentafluoroethyl (meth) acrylate, 2, 2, 6, 6- Contains hindered amine compounds such as tetramethyl-4-piperidylbenzoate and N- (2,2,6,6-tetramethyl-4-piperidyl) dodecylsuccinimide, surfactants, silane coupling agents, etc. Also good.
  • a fluorine atom such as trifluoroethyl (meth) acrylate and pentafluoroethyl (meth) acrylate, 2, 2, 6, 6- Contains hindered amine compounds such as tetramethyl-4-piperidylbenzoate and N- (2,2,6,6-tetramethyl-4-piperidyl) dodecylsuccinimide, surfactants, silane coupling agents, etc. Also good
  • the amount of the resin serving as a matrix may be appropriately determined according to the type of functional material included in the wavelength conversion layer 40 and the like.
  • the resin serving as a matrix is preferably 90 to 99.9 parts by mass, and 92 to 99 parts by mass with respect to 100 parts by mass of the total amount of the quantum dot layer. Is more preferable.
  • the thickness of the wavelength conversion layer 40 may be appropriately determined according to the type of the wavelength conversion layer 40 and the application of the wavelength conversion sheet 36.
  • the thickness of the wavelength conversion layer 40 is preferably 5 to 200 ⁇ m, and more preferably 10 to 150 ⁇ m, from the viewpoint of handleability and light emission characteristics.
  • the support 42 various film-like materials (sheet-like materials) that can support the wavelength conversion layer 40 and the polymerizable composition that becomes the wavelength conversion layer 40 can be used.
  • the support 42 is preferably a so-called gas barrier film in which a gas barrier layer that does not allow oxygen or the like to pass through is formed on the surface of the support substrate. That is, the support 42 covers the main surface of the wavelength conversion layer 40 and is a member for suppressing the intrusion of a substance that degrades the wavelength conversion layer 40 such as moisture and oxygen from the main surface of the wavelength conversion layer 40. It is also preferable to act.
  • the light source 14B emits blue light.
  • the blue light irradiated by the light source 14B enters the wavelength conversion sheet 36.
  • the wavelength conversion sheet 36 absorbs part of the blue light and irradiates green light and red light. Thereby, the wavelength conversion sheet 36 emits white light in which blue light, green light, and red light are mixed.
  • the subsequent steps are the same as those of the backlight unit 10 described above, and the white light irradiated from the wavelength conversion sheet 36 is then absorbed by the absorption sheet 15 in the vicinity of 600 nm, for example, as described above.
  • the light transmitted through the absorption sheet 15 then enters the wavelength selective reflection sheet 16.
  • the light incident on the cholesteric liquid crystal layer 30 of the wavelength selective reflection sheet 16 only light in the vicinity of 600 nm is selectively reflected, and light in other wavelength regions is transmitted through the cholesteric liquid crystal layer 30.
  • the light in the vicinity of 600 nm reflected by the wavelength selective reflection sheet 16 repeats absorption by the absorption sheet 15, reflection by the reflection plate 12, and reflection by the cholesteric liquid crystal layer 30 as before, and efficiently absorbs the light in the absorption sheet 15. Is done. Further, light that is incident on the wavelength selective reflection sheet 16 obliquely at a large angle does not enter the cholesteric liquid crystal layer 30 but enters only the support 28 of the wavelength selective reflection sheet 16, and the wavelength selective reflection sheet. 16 is transmitted. As a result, the effective reflection band of the wavelength selective reflection sheet 16 can be narrowed, and as a result, the display efficiency can be minimized, and only the light in the unnecessary wavelength region can be removed to suitably emit light. The spectrum can be narrowed to widen the color gamut and display with high color purity can be performed by the LCD.
  • the light transmitted through the wavelength selective reflection sheet 16 is made uniform in luminance in the surface direction by the diffusion plate 18 and further made uniform by the prism sheets 20 a and 20 b, and only polarized light in a predetermined direction is transmitted through the reflective polarizing plate 24. Then, the light is emitted from the backlight unit 35.
  • the light reflected by the reflective polarizing plate 24 is reflected by the wavelength selective reflection sheet 16, the reflective plate 12, and the like, and enters the reflective polarizing plate 24 again in the same manner as described above.
  • the wavelength selective reflection sheet 16 needs to be disposed at a position where white light is incident. Therefore, when the backlight unit of the present invention includes the wavelength conversion sheet 36, the wavelength conversion sheet 36 is disposed between the reflection plate 12 and the wavelength selection reflection sheet 16. When the backlight unit of the present invention includes the wavelength conversion sheet 36, the absorption sheet 15 and the wavelength conversion sheet 36 are disposed between the reflection plate 12 and the wavelength selective reflection sheet 16 if the absorption sheet 15 and the wavelength conversion sheet 36 are disposed. There is no limitation on the positional relationship between the wavelength conversion sheet 15 and the wavelength conversion sheet 36. Therefore, contrary to the example shown in FIG. 9, the wavelength conversion sheet 36 may be disposed on the absorption sheet 15.
  • the blue light emitted from the light source 14B is incident on the wavelength conversion sheet before being uniformed in the plane. That is, the intensity of the blue light incident on the wavelength conversion sheet varies depending on the position in the plane. Therefore, in the backlight unit of the present invention in which the wavelength conversion sheet 36 is disposed on the light source 14B side with respect to the wavelength selective reflection sheet 16, the wavelength conversion sheets are separated from each other in the plane direction only in a portion where the intensity of blue light is high. Can be arranged. By partially arranging only the portion where the intensity of the blue light is high, the amount of quantum dots used can be reduced while the backlight unit emits white light.
  • the wavelength conversion sheet is disposed in the same cycle as the light source 14B in correspondence with the light source 14B.
  • a small wavelength conversion sheet 36s can be provided corresponding to each light source 14B as in the backlight unit 54 shown in FIG.
  • the LCD (liquid crystal display device) of the present invention is an LCD using such a backlight unit of the present invention as a backlight.
  • the LCD of the present invention is the same as the known LCD having a polarizer, a thin film transistor (TFT), a liquid crystal cell, a transparent electrode, a color filter, etc., except that the backlight unit of the present invention is used. It has a configuration. As described above, the backlight unit of the present invention can irradiate a backlight whose emission spectrum is narrowed. Therefore, the LCD of the present invention using this backlight unit is an LCD having high color purity and a wide color reproduction range.
  • TFT thin film transistor
  • the backlight unit and the liquid crystal display device of the present invention have been described in detail.
  • the present invention is not limited to the above-described examples, and various improvements and modifications may be made without departing from the gist of the present invention. Of course it is good.
  • Cellulose acetate solution composition Cellulose acetate having an acetylation degree of 60.7 to 61.1% 100 parts by weight Triphenyl phosphate 7.8 parts by weight Biphenyl diphenyl phosphate 3.9 parts by weight Methylene chloride 336 parts by weight Methanol 29 parts by weight 1-butanol 11 parts by weight
  • a dope was prepared by mixing 474 parts by mass of the cellulose acetate solution with 25 parts by mass of the retardation increasing agent solution and stirring sufficiently.
  • the addition amount of the retardation increasing agent was 6 parts by mass with respect to 100 parts by mass of cellulose acetate.
  • the obtained dope was cast using a band stretching machine. After the film surface temperature on the band reaches 40 ° C., the film is dried with warm air of 70 ° C. for 1 minute, and the film from the band is dried with 140 ° C. drying air for 10 minutes, and the residual solvent amount is 0.3% by mass.
  • a triacetyl cellulose film having a thickness of 40 ⁇ m was prepared. This film is referred to as a transparent support 1.
  • the cholesteric liquid crystal layer coating liquid 600R1 is a material that forms a cholesteric liquid crystal layer that reflects right-handed circularly polarized light with a selective reflection center wavelength of 600 nm.
  • the cholesteric liquid crystal layer coating liquid 600L1 is a material for forming a cholesteric liquid crystal layer that reflects left circularly polarized light having a selective reflection center wavelength of 600 nm.
  • ⁇ Preparation of wavelength selective reflection sheet 1> The produced sheets 600R1 and 600L1 were bonded with an adhesive (SK2057, manufactured by Soken Chemical Co., Ltd.) with the cholesteric layers facing each other to obtain a cholesteric liquid crystal cured layer A.
  • a plurality of obtained cholesteric liquid crystal cured layers A were cut into a circle having a diameter of 25 mm.
  • the cut-off cholesteric liquid crystal cured layer A was adhered to a transparent substrate with an adhesive (manufactured by Soken Chemical Co., Ltd., SK2057), thereby producing a wavelength selective reflection sheet 1 in which a cholesteric liquid crystal layer was provided on a support.
  • the cholesteric liquid crystal cured layer A cut out in a circular shape was arranged in a lattice pattern at regular intervals so that the center is positioned on the optical axis of the direct type LED of the liquid crystal television used in the example (see FIG. 7).
  • an ultraviolet-visible near-infrared spectrophotometer manufactured by Shimadzu Corporation, UV-3150
  • the reflectance of the produced wavelength selective reflection sheet 1 with respect to light having a wavelength of 600 nm is 75% at the maximum value in the plane, and the minimum value. 4%, and had a reflectance distribution in the plane of the wavelength selective reflection sheet 1.
  • the location where the reflectance in the surface of the wavelength selection reflection sheet 1 was the maximum was circular and distributed in a lattice shape (see FIG. 7).
  • the OHP sheet black ink is printed in a predetermined pattern as a mask, minimum 30 mJ / cm 2, most 500 mJ / cm 2, so as to irradiate, at a temperature of 25 ° C., using an ultraviolet irradiation device
  • the cholesteric liquid crystal layer coating solution 600R1 was irradiated with ultraviolet rays.
  • the mask is removed, and while heating to 130 ° C., the UV irradiator is used to irradiate the coating liquid 600R1 for cholesteric liquid crystal layer with 500 mJ / cm 2 of UV light, and the right-handed polarized light is reflected at the selective reflection center wavelength of 600 nm.
  • a sheet 600R2 having a cholesteric liquid crystal layer was prepared.
  • the OHP sheet black ink is printed in a predetermined pattern as a mask, minimum 30 mJ / cm 2, most 500 mJ / cm 2, so as to irradiate, at a temperature of 25 ° C., using an ultraviolet irradiation device
  • the cholesteric liquid crystal layer coating solution 600R1 was irradiated with ultraviolet rays.
  • the mask is removed, and while heating to 130 ° C., the UV irradiator is used to irradiate the coating liquid 600R1 for cholesteric liquid crystal layer with 500 mJ / cm 2 of UV light, and the right-handed polarized light is reflected at the selective reflection center wavelength of 600 nm.
  • a sheet 600R2 having a cholesteric liquid crystal layer was prepared.
  • the pattern of black ink printed on the mask minimum 30 mJ / cm 2, as UV 500 mJ / cm 2 at maximum is irradiated, from the most transmittance higher position, continuously transmitting concentrically
  • the distribution of ultraviolet transmittance is provided in the plane so that the rate is low.
  • a region having a high transmittance in other words, a region where the amount of ultraviolet irradiation is maximized, is provided in a grid pattern at regular intervals so that the center coincides with the optical axis of the direct type LED of the liquid crystal television used in the embodiment (FIG. 7). reference).
  • ⁇ Preparation of wavelength selective reflection sheet 2> The prepared sheets 600R2 and 600L2 were bonded to each other with an adhesive (SK2057, manufactured by Soken Chemical Co., Ltd.) with the cholesteric layers facing each other to obtain the wavelength selective reflection sheet 2. Both sheets were stuck so that the circular light transmission regions of the mask overlapped.
  • the reflectance of the produced wavelength selective reflection sheet 2 with respect to light having a wavelength of 600 nm is 75% at the maximum value in the plane and 4% at the minimum value, and the surface of the cholesteric liquid crystal layer. It had a reflectance distribution inside. Further, as conceptually shown in FIG.
  • the wavelength selective reflection sheet 2 is a two-dimensional distribution in which the maximum in-plane reflectivity is two-dimensionally distributed in a lattice shape, and the concentric circles from the maximum reflectivity. It had a reflectance distribution in which the reflectance continuously decreased. The portion having the highest reflectance had a distribution that coincided with the optical axis of the direct type LED of the liquid crystal television used in the examples.
  • concentric circles are described step by step in order to show that the reflectance decreases concentrically, but in reality, the reflectance distribution is continuous as described above.
  • a sheet 500R1 having the following was obtained. Further, except that the amount of the chiral agent B is 8.86 parts by mass and the wire bar coater at the time of coating is # 2.8, the selective reflection center wavelength is 500 nm and the left circularly polarized light is reflected in the same manner as the sheet 600L1.
  • a sheet 500L1 having a cholesteric liquid crystal layer was obtained.
  • the wavelength selection reflection sheet 3 was produced by sticking the sheet
  • the reflectance of the produced wavelength selective reflection sheet 3 with respect to light having a wavelength of 500 nm is 90% at the maximum value in the plane and 4% at the minimum value.
  • the sheet 3 had a reflectance distribution in the plane.
  • the location where the reflectance in the surface of the wavelength selection reflection sheet 3 was the maximum was circular and distributed in a lattice shape (see FIG. 7).
  • the dye filter was taken out from the backlight unit of a commercially available liquid crystal television (JS7000FXZA, manufactured by Samsung), and used as an absorbent sheet 1.
  • JS7000FXZA commercially available liquid crystal television
  • UV-3150 ultraviolet-visible near-infrared spectrophotometer
  • the prepared cycloolefin-based resin solution 101 was cast on a stainless steel casting support (support temperature 22 ° C.). Stripped in a state where the amount of residual solvent in the cycloolefin-based resin solution 101 is approximately 20% by mass, gripped at both ends in the width direction of the film with a tenter, and in a state where the amount of residual solvent was 5-10% by mass, It dried, extending
  • the obtained absorbent sheet 2 had a thickness of 60 ⁇ m and a width of 1480 mm. When measured in the same manner as the absorbent sheet 1, the maximum absorption wavelength of the produced absorbent sheet 2 was 493 nm.
  • An absorbent sheet 3 was prepared in the same manner as the absorbent sheet 2 except that the dye was changed to FDG-002 (manufactured by Yamada Chemical Co., Ltd.) in the preparation of the cycloolefin-based resin solution 101.
  • the maximum absorption wavelength of the produced absorbent sheet was 550 nm.
  • Example 1 A commercially available liquid crystal television (Samsung, JS7000FXZA) was disassembled, and the backlight unit was taken out. To the extracted backlight unit, a wavelength selective reflection sheet 1 (selective reflection center wavelength 600 nm) and an absorption sheet 1 (maximum absorption wavelength 583 nm), a reflector, a direct type LED, an absorption sheet 1, a wavelength selective reflection sheet 1, and The backlight unit 101 of Example 1 was obtained by additionally arranging the diffusing plates in order. The wavelength selective reflection sheet 1 was arranged so that the position where the reflectance at 583 nm was the maximum coincided with the optical axis of all the direct LEDs.
  • Example 2 In the backlight unit 101 of Example 1, the backlight unit 102 of Example 2 was obtained by using the wavelength selective reflection sheet 2 instead of the wavelength selective reflection sheet 1.
  • Example 3 In the backlight unit 101 of Example 1, the wavelength selective reflection sheet 3 is used instead of the wavelength selective reflection sheet 1, and the absorption sheet 2 (maximum absorption wavelength 493 nm) is used instead of the absorption sheet 1. 3 backlight units 103 were obtained.
  • the backlight unit 202 of the comparative example 2 was obtained by extracting the wavelength selection reflection sheet 1 and the absorption sheet 1 from the backlight unit 101 of the example 1.
  • the backlight unit 203 of the comparative example 3 was obtained by replacing the absorption sheet 1 with the absorption sheet 3 (maximum absorption wavelength 525 nm).
  • the headings in the table are the reflectance R ( ⁇ max 1) of light having the maximum absorption wavelength ⁇ max 1 in the wavelength range of 460 to 520 nm of the absorption sheet of the wavelength selection reflection sheet, and 540 of the absorption sheet of the wavelength selection reflection sheet.
  • the reflectance R ( ⁇ max 2) of light having the maximum absorption wavelength ⁇ max 2 within the wavelength range of ⁇ 620 nm is collectively represented as R ( ⁇ max ),
  • Rmax The reflectance R ( ⁇ max 1) of light having the maximum absorption wavelength ⁇ max 1 in the wavelength range of 460 to 520 nm of the absorption sheet of the wavelength selection reflection sheet, and 540 of the absorption sheet of the wavelength selection reflection sheet.

Abstract

The present invention addresses the problem of providing a direct-type backlight unit, the emission spectrum thereof having been made a narrow band, and a liquid crystal display device that uses this backlight unit and has high color purity. This problem is solved with a backlight unit having: a reflection element; a wavelength-selective reflection sheet with wavelength selectivity; a plurality of light sources; and an absorption element that is positioned between the wavelength-selective reflection sheet and the reflection element, wherein the absorption element has a maximum light absorption in the wavelength range 460-520nm and/or 540-620nm, a cholesteric liquid crystal layer selectively reflects light that the absorption element absorbs, the wavelength-selective reflection sheet has a reflectance distribution within a surface, and the reflectance is in accordance with the positions of the light sources.

Description

バックライトユニットおよび液晶表示装置Backlight unit and liquid crystal display device
 本発明は、液晶表示装置等に用いられるバックライトユニット、および、このバックライトユニットを用いる液晶表示装置に関する。 The present invention relates to a backlight unit used in a liquid crystal display device and the like, and a liquid crystal display device using the backlight unit.
 LCD(Liquid Crystal Display(液晶表示装置))は、消費電力が小さく、省スペースの画像表示装置として年々その用途が広がっている。
 また、近年の液晶表示装置において、性能改善として、さらなる高ダイナミックレンジ化、省電力化、および、色再現性向上等が求められている。特に、高ダイナミックレンジ化と省電力化との両立の観点からは、いわゆる直下型とよばれるバックライト形態が好ましく用いられている。
LCD (Liquid Crystal Display) has low power consumption, and its use is expanding year by year as a space-saving image display device.
In recent liquid crystal display devices, as a performance improvement, further higher dynamic range, power saving, color reproducibility improvement and the like are required. In particular, from the viewpoint of achieving both a high dynamic range and power saving, a so-called direct-type backlight configuration is preferably used.
 LCDの色再現性向上の手段として、特許文献1には、LCDの光源から視認部最表面に到る光路中に配置される、特定波長の光を選択的に吸収する機能を有するディスプレイ用光学フィルターが開示されている。
 このような光学フィルターを用い、バックライトにおける色三原色以外の不要な発光、例えば、特許文献1に記載される440~510nmの波長域内の光または570~605nmの波長域内の光を選択的に吸収することで、バックライトの発光スペクトルを狭帯域化し、ディスプレイの色純度を向上させて、色再現域を拡大できる。
As means for improving the color reproducibility of an LCD, Patent Document 1 discloses a display optical device having a function of selectively absorbing light of a specific wavelength, which is arranged in an optical path from the light source of the LCD to the outermost surface of the viewing portion. A filter is disclosed.
By using such an optical filter, unnecessary light emission other than the three primary colors of the backlight, for example, light in the wavelength range of 440 to 510 nm or light in the wavelength range of 570 to 605 nm described in Patent Document 1 is selectively absorbed. By doing so, the emission spectrum of the backlight can be narrowed, the color purity of the display can be improved, and the color reproduction range can be expanded.
 ところが、このような光学フィルターにおいて光を吸収する吸収材料として用いられる色素等は、吸収帯域が広い。
 そのため、光学フィルターをLCDの光源から視認部最表面までの光路中に配置すると、不要な波長域の光を吸収するのみならず、LCDのカラー表示に必要な色三原色の光も同時に吸収してしまう。そのため、このような光学フィルターを用いると、色再現域の向上は図れる反面、同時に、ディスプレイの効率を低下させてしまう。
However, a dye or the like used as an absorbing material that absorbs light in such an optical filter has a wide absorption band.
Therefore, if the optical filter is placed in the optical path from the light source of the LCD to the outermost surface of the visual recognition part, it not only absorbs light in an unnecessary wavelength range, but also absorbs light of the three primary colors necessary for color display of the LCD at the same time. End up. Therefore, when such an optical filter is used, the color reproduction range can be improved, but at the same time, the efficiency of the display is lowered.
 これに対し、特許文献2には、特定の波長の光を吸収する光吸収要素に、特定の波長の光を選択的に反射するコレステリック液晶層を併用することで、光吸収要素に吸収される光の帯域を制限する方法が開示されている。 On the other hand, in Patent Document 2, a light absorbing element that absorbs light of a specific wavelength is combined with a cholesteric liquid crystal layer that selectively reflects light of a specific wavelength to be absorbed by the light absorbing element. A method for limiting the bandwidth of light is disclosed.
特開2002-40233号公報JP 2002-40233 A 国際公開第2015-098906号International Publication No. 2015-098906
 しかしながら、本発明者らは、検討の結果、光吸収要素とコレステリック液晶層とを併用した構成では、コレステリック液晶層による反射帯域が広く、バックライトにおける発光スペクトルの狭帯域化に際して、ディスプレイの効率が犠牲になっていることを見出した。 However, as a result of investigations, the inventors of the present invention have a configuration in which the light absorbing element and the cholesteric liquid crystal layer are used in combination. I found out that I was sacrificed.
 本発明の目的は、このような従来技術の問題点を解決することにあり、発光スペクトルを狭帯域化したバックライトユニット、および、このバックライトユニットを用いる、色純度が高く、色再現域の広い液晶表示装置(LCD)を提供することにある。 An object of the present invention is to solve such problems of the prior art, and a backlight unit having a narrow emission spectrum, and a high color purity and color reproduction range using the backlight unit. The object is to provide a wide liquid crystal display (LCD).
 発明者らは、鋭意検討した結果、余分な波長の光を吸収する吸収要素と、特定の波長の光を選択的に反射する波長選択反射シートとを併用すると共に、波長選択反射シートの面内に反射率が異なる部分を設け、かつ、波長選択反射シートの面内における反射率を光源の発光位置に対応するように配置することで、波長選択反射シートの実効的な反射帯域を狭くすることができ、その結果、ディスプレイの効率低下を最小限に留め、色純度を向上させることができることを見出した。 As a result of intensive studies, the inventors have used both an absorption element that absorbs light with an extra wavelength and a wavelength selective reflection sheet that selectively reflects light with a specific wavelength, and in the plane of the wavelength selective reflection sheet. In order to narrow the effective reflection band of the wavelength selective reflection sheet, a portion with different reflectance is provided and the reflectance in the plane of the wavelength selective reflection sheet corresponds to the light emission position of the light source. As a result, it has been found that the decrease in display efficiency can be minimized and the color purity can be improved.
 すなわち、本発明は、以下の構成により、課題を解決する。
 [1] 反射要素と、特定の波長の光を選択的に反射する波長選択反射シートと、反射要素と波長選択反射シートとの間に配置される複数の光源と、反射要素と波長選択反射シートとの間に配置される吸収要素とを有し、
 吸収要素は、460~520nmの波長域内に最大吸光波長を有する、540~620nmの波長域内に最大吸光波長を有する、および、460~520nmの波長域内と540~620nmの波長域内との、一方に最大吸光波長を有し、他方に2番目に大きな吸光波長を有する、のいずれかを満たし、
 波長選択反射シートは、吸収要素が吸収する波長域内の光を選択的に反射するものであり、さらに、面内に反射率が異なる部分を有し、かつ、面内における反射率が、光源の配置に応じたものである、バックライトユニット。
 [2] 波長選択反射シートの反射率は、光源の光軸上が最大である、[1]に記載のバックライトユニット。
 [3] 波長選択反射シートは、透明な領域および開口の少なくとも一方を有する、[1]または[2]に記載のバックライトユニット。
 [4] 波長選択反射シートは、反射面内に反射率が異なる部分を有する、[1]~[3]のいずれかに記載のバックライトユニット。
 [5] 波長選択反射シートの、吸収要素の460~520nmの波長域内における最大吸光波長λmax1の光の反射率をR(λmax1)、波長選択反射シートの、吸収要素の540~620nmの波長域内における最大吸光波長λmax2の光の反射率をR(λmax2)、波長選択反射シートの、460~520nmの波長域内における最大反射波長の光の反射率をRmax1、および、波長選択反射シートの、540~620nmの波長域内における最大反射波長の光の反射率をRmax2、とした際に、波長選択反射シートは、下記の式
  Rmax1×0.8≦R(λmax1)、および、Rmax2×0.8≦R(λmax2)の少なくとも一方を満たす、[1]~[4]のいずれかに記載のバックライトユニット。
 [6] 波長選択反射シートは、コレステリック液晶相を固定してなる反射層を有する、[1]~[5]のいずれかに記載のバックライトユニット。
 [7] [1]~[6]のいずれかに記載されるバックライトユニットを有する、液晶表示装置。
That is, this invention solves a subject with the following structures.
[1] A reflection element, a wavelength selection reflection sheet that selectively reflects light of a specific wavelength, a plurality of light sources disposed between the reflection element and the wavelength selection reflection sheet, a reflection element, and a wavelength selection reflection sheet And an absorbent element arranged between
The absorption element has a maximum absorption wavelength in the wavelength range of 460 to 520 nm, a maximum absorption wavelength in the wavelength range of 540 to 620 nm, and one of the wavelength range of 460 to 520 nm and the wavelength range of 540 to 620 nm. One of the maximum absorption wavelength and the second largest absorption wavelength on the other,
The wavelength selective reflection sheet selectively reflects light in the wavelength range that is absorbed by the absorbing element, and further has a portion with a different reflectance in the surface, and the reflectance in the surface is that of the light source. Backlight unit according to the arrangement.
[2] The backlight unit according to [1], wherein the reflectance of the wavelength selective reflection sheet is maximum on the optical axis of the light source.
[3] The backlight unit according to [1] or [2], wherein the wavelength selective reflection sheet has at least one of a transparent region and an opening.
[4] The backlight unit according to any one of [1] to [3], wherein the wavelength selective reflection sheet has portions having different reflectances in the reflection surface.
[5] The reflectance of light having the maximum absorption wavelength λ max 1 in the wavelength range of 460 to 520 nm of the absorption element of the wavelength selective reflection sheet is R (λ max 1), and the absorption element of the wavelength selection reflection sheet is 540 to 620 nm. R (λ max 2) is the reflectance of light having the maximum absorption wavelength λ max 2 in the wavelength range of Rmax 1, and R max 1 is the reflectance of light having the maximum reflection wavelength in the wavelength range of 460 to 520 nm of the wavelength selective reflection sheet. When the reflectance of light having the maximum reflection wavelength in the wavelength range of 540 to 620 nm of the wavelength selective reflection sheet is R max 2, the wavelength selective reflection sheet has the following formula: R max 1 × 0.8 ≦ R The backlight unit according to any one of [1] to [4], which satisfies at least one of (λ max 1) and R max 2 × 0.8 ≦ R (λ max 2).
[6] The backlight unit according to any one of [1] to [5], wherein the wavelength selective reflection sheet has a reflection layer formed by fixing a cholesteric liquid crystal phase.
[7] A liquid crystal display device comprising the backlight unit according to any one of [1] to [6].
 本発明によれば、発光スペクトルを狭帯域化した直下型バックライトユニット、および、このバックライトユニットを用いる色純度の高い液晶表示装置を提供できる。 According to the present invention, it is possible to provide a direct type backlight unit having a narrow emission spectrum and a liquid crystal display device having high color purity using the backlight unit.
図1は、本発明のバックライトユニットの一例を示す概念図である。FIG. 1 is a conceptual diagram showing an example of a backlight unit of the present invention. 図2は、本発明のバックライトユニットの波長選択反射シートの一例を示す概念図である。FIG. 2 is a conceptual diagram showing an example of the wavelength selective reflection sheet of the backlight unit of the present invention. 図3は、図1に示すバックライトユニットの構成を説明するための概念的な斜視図である。FIG. 3 is a conceptual perspective view for explaining the configuration of the backlight unit shown in FIG. 図4は、コレステリック液晶層の作用を説明するための概念図である。FIG. 4 is a conceptual diagram for explaining the operation of the cholesteric liquid crystal layer. 図5は、コレステリック液晶層の作用を説明するための概念図である。FIG. 5 is a conceptual diagram for explaining the operation of the cholesteric liquid crystal layer. 図6は、本発明のバックライトユニットの波長選択反射シートの別の例を示す概念図である。FIG. 6 is a conceptual diagram showing another example of the wavelength selective reflection sheet of the backlight unit of the present invention. 図7は、本発明のバックライトユニットの波長選択反射シートの別の例を概念的に示す平面図である。FIG. 7 is a plan view conceptually showing another example of the wavelength selective reflection sheet of the backlight unit of the present invention. 図8は、本発明のバックライトユニットの波長選択反射シートの別の例を示す概念図である。FIG. 8 is a conceptual diagram showing another example of the wavelength selective reflection sheet of the backlight unit of the present invention. 図9は、本発明のバックライトユニットの別の例を示す概念図である。FIG. 9 is a conceptual diagram showing another example of the backlight unit of the present invention. 図10は、波長変換シートの一例を示す概念図である。FIG. 10 is a conceptual diagram illustrating an example of a wavelength conversion sheet. 図11は、本発明のバックライトユニットの別の例を示す概念図である。FIG. 11 is a conceptual diagram showing another example of the backlight unit of the present invention. 図12は、実施例を説明するための概念図である。FIG. 12 is a conceptual diagram for explaining the embodiment.
 以下、本発明のバックライトユニットおよび液晶表示装置について、添付の図面に示される好適実施例を基に詳細に説明する。 Hereinafter, the backlight unit and the liquid crystal display device of the present invention will be described in detail on the basis of preferred embodiments shown in the accompanying drawings.
 なお、以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明は、そのような実施態様に限定されるものではない。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、「(メタ)アクリレート」は、「アクリレートおよびメタクリレートのいずれか一方または双方」の意味で使用される。
 本明細書において、「同一」は、技術分野で一般的に許容される誤差範囲を含むものとする。また、本明細書において、「全部」、「いずれも」または「全面」などというとき、100%である場合のほか、技術分野で一般的に許容される誤差範囲を含み、例えば99%以上、95%以上、または90%以上である場合を含むものとする。
In addition, although description of the component requirements described below may be made | formed based on the typical embodiment of this invention, this invention is not limited to such an embodiment.
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
In this specification, “(meth) acrylate” is used to mean “one or both of acrylate and methacrylate”.
In this specification, “same” includes an error range generally allowed in the technical field. In addition, in the present specification, when “all”, “any” or “entire surface” is used, it includes an error range generally allowed in the technical field in addition to the case of 100%, for example, 99% or more, The case of 95% or more, or 90% or more is included.
 また、これに制限されるものではないが、本明細書において、可視光とは、400~700nmの波長域の光であり、その中で、青色光とは、400~500nmの波長域の光であり、緑色光とは、500nmを超え600nm以下の波長域の光のことであり、赤色光とは、600nmを超え700nm以下の波長域の光のことである。 Although not limited thereto, in this specification, visible light is light having a wavelength range of 400 to 700 nm, and blue light is light having a wavelength range of 400 to 500 nm. The green light is light having a wavelength range of more than 500 nm and not more than 600 nm, and the red light is light having a wavelength range of more than 600 nm and not more than 700 nm.
 図1に、本発明のバックライトユニットの一例を概念的に示す。
 図1に示すバックライトユニット10は、LCD(液晶表示装置)等のバックライトとして用いられるもので、反射板12と、光源14と、吸収シート15と、波長選択反射シート16と、拡散板18と、プリズムシート20aおよび20bと、反射偏光板24とを有する。
FIG. 1 conceptually shows an example of the backlight unit of the present invention.
A backlight unit 10 shown in FIG. 1 is used as a backlight of an LCD (Liquid Crystal Display) or the like, and includes a reflection plate 12, a light source 14, an absorption sheet 15, a wavelength selection reflection sheet 16, and a diffusion plate 18. And prism sheets 20 a and 20 b and a reflective polarizing plate 24.
 本発明のバックライトユニット10は、吸収シート15および波長選択反射シート16を有する以外は、基本的に、公知の直下型バックライトである。
 従って、拡散板18、プリズムシート20aおよび20b、ならびに、反射偏光板24等は、いずれも、LCDのバックライトユニットに用いられる公知の光学部材である。また、プリズムシート20aとプリズムシート20bとは、公知のバックライトユニットと同様、プリズムの稜線を直交して配置される。
 なお、本発明のバックライトユニット10において、拡散板18、プリズムシート20aおよび20b、ならびに、反射偏光板24等の光学部材は、必要に応じて設けられるもので、必須の構成要件ではない。すなわち、本発明のバックライトユニットは、これらの光学部材の1以上を有さなくてもよい。
 また、バックライトユニット10は、図示した部材以外にも、LED基板、配線および放熱機構の1以上など、LCDのバックライトなどの公知の照明装置に設けられる、公知の各種の部材を有してもよい。
The backlight unit 10 of the present invention is basically a known direct type backlight except that it has an absorption sheet 15 and a wavelength selective reflection sheet 16.
Accordingly, the diffusing plate 18, the prism sheets 20a and 20b, the reflective polarizing plate 24, and the like are all known optical members used for the backlight unit of the LCD. In addition, the prism sheet 20a and the prism sheet 20b are arranged so that the prism ridges are orthogonal to each other, as in a known backlight unit.
In the backlight unit 10 of the present invention, optical members such as the diffuser plate 18, the prism sheets 20a and 20b, and the reflective polarizing plate 24 are provided as necessary and are not essential constituent elements. That is, the backlight unit of the present invention may not have one or more of these optical members.
Further, the backlight unit 10 includes various known members that are provided in a known illumination device such as an LCD backlight, such as one or more of an LED substrate, wiring, and heat dissipation mechanism, in addition to the illustrated members. Also good.
[反射板]
 反射板12は、本発明における反射要素である。反射板12は、光源14が照射して波長選択反射シート16等で反射された光等を反射して、光源14が照射した光の利用効率を向上させるためのものである。
 反射板12には、制限はなく、LCDのバックライトなどに利用される公知の反射板が、全て、利用可能である。反射板12の反射面の主素材は、樹脂であっても金属であってもよい。反射時のエネルギー損失が少ないことから、反射板12は、樹脂で形成されるのが好ましい。反射板12が樹脂で形成される場合は、一例として微細発泡樹脂が好適に用いられる。また、反射板12には、誘電体多層膜が形成されていてもよい。反射板12の反射特性は、鏡面反射性であっても、拡散反射性であっても構わない。
[a reflector]
The reflecting plate 12 is a reflecting element in the present invention. The reflection plate 12 is for reflecting light or the like irradiated by the light source 14 and reflected by the wavelength selective reflection sheet 16 or the like to improve the utilization efficiency of the light emitted by the light source 14.
There is no restriction | limiting in the reflecting plate 12, All the well-known reflecting plates utilized for the backlight of LCD, etc. can be utilized. The main material of the reflecting surface of the reflecting plate 12 may be resin or metal. Since the energy loss at the time of reflection is small, the reflecting plate 12 is preferably formed of a resin. When the reflecting plate 12 is formed of a resin, a fine foam resin is preferably used as an example. In addition, a dielectric multilayer film may be formed on the reflecting plate 12. The reflection characteristic of the reflecting plate 12 may be specular reflection or diffuse reflection.
 なお、バックライトユニット10においては、好ましくは、光源14は、1つの最大面が開放し、開放面と対向する面が反射板12となっている筐体内に配置される。この際において、光源14が配置される筐体は、内側面が反射板(光反射面)であるのが好ましい。 In the backlight unit 10, the light source 14 is preferably disposed in a housing in which one maximum surface is open and the surface facing the open surface is the reflection plate 12. In this case, it is preferable that the inner surface of the housing in which the light source 14 is disposed is a reflecting plate (light reflecting surface).
[光源]
 反射板12の光反射面には、光源14が配置される。なお、以下の説明では、図1における上方すなわち光の照射方向を『上』とも言う。従って、反射板12は、上面が光反射面であり、光源14は、反射板12の上面に配置される。
 光源14は、反射板12の上面に、二次元的に配置(配列)される。また、光源14の上には、吸収シート15が配置され、吸収シート15の上には波長選択反射シート16が配置される。すなわち、光源14は、反射板12と波長選択反射シート16との間に配置される。また、二次元的に配置(配列)された光源14の間を反射板12が覆っている構成も、本発明に含まれる。
[light source]
A light source 14 is disposed on the light reflecting surface of the reflecting plate 12. In the following description, the upper direction in FIG. 1, that is, the light irradiation direction is also referred to as “upper”. Therefore, the upper surface of the reflecting plate 12 is a light reflecting surface, and the light source 14 is disposed on the upper surface of the reflecting plate 12.
The light source 14 is two-dimensionally arranged (arranged) on the upper surface of the reflector 12. An absorption sheet 15 is disposed on the light source 14, and a wavelength selective reflection sheet 16 is disposed on the absorption sheet 15. That is, the light source 14 is disposed between the reflecting plate 12 and the wavelength selective reflection sheet 16. Moreover, the structure which the reflecting plate 12 has covered between the light sources 14 arrange | positioned (arrayed) two-dimensionally is also included in this invention.
 本発明のバックライトユニット10において、光源14の配置は、LCDに用いられる一般的な直下型バックライトと同様でよい。
 従って、光源14の配置は、規則的でも、不規則でもよいが、通常は、規則的である。また、光源14の配置密度は、反射板12の面方向に、均一でも、配置密度の変動があってもよい。
 なお、面方向とは、シート状物(板状物、フィルム状物)の最大面すなわち主面の面方向である。
In the backlight unit 10 of the present invention, the arrangement of the light sources 14 may be the same as that of a general direct type backlight used in an LCD.
Accordingly, the arrangement of the light sources 14 may be regular or irregular, but is usually regular. Further, the arrangement density of the light sources 14 may be uniform in the surface direction of the reflection plate 12 or may vary in the arrangement density.
In addition, a surface direction is the surface direction of the largest surface, ie, main surface, of a sheet-like thing (a plate-like thing, a film-like thing).
 光源14には、制限はなく、LCDの直下型バックライトに用いられる公知の光源が、各種、利用可能である。光源14としては、一例として、LED(Light Emitting Diode(発光ダイオード))等が例示される。
 また、ローカルディミングを好適に行える点で、光源14としては、直下型光源として複数のLEDを2次元的に配置した構成が好適に利用される。
There is no restriction | limiting in the light source 14, Various well-known light sources used for the direct type | mold backlight of LCD can be utilized. An example of the light source 14 is an LED (Light Emitting Diode).
In addition, a configuration in which a plurality of LEDs are two-dimensionally arranged as a direct light source is preferably used as the light source 14 in that local dimming can be suitably performed.
 光源14は、白色光源でも、青色光源などの色味を有する光を照射する光源でもよい。図示例のバックライトユニット10の光源14は、一例として、白色光源である。
 青色光源等は、通常、後述するバックライトユニットが波長変換要素を有する構成で用いられる。また、白色光を照射する場合には、光源14として、青色光源、緑色光源および赤色光源を配列することで、全体として白色光を照射するようにしてもよい。
The light source 14 may be a white light source or a light source that emits light having a color such as a blue light source. As an example, the light source 14 of the illustrated backlight unit 10 is a white light source.
A blue light source or the like is usually used in a configuration in which a backlight unit described later has a wavelength conversion element. Moreover, when irradiating white light, as a light source 14, you may make it irradiate white light as a whole by arranging a blue light source, a green light source, and a red light source.
 [吸収シート]
 光源14の上には、吸収シート15が設けられる。吸収シート15は、本発明における吸収要素である。
 吸収シート15は、所定の波長帯域の光を吸収する光吸収シートである。本発明において、吸収シート15は、460~520nmの波長域内に最大吸光波長を有する、540~620nmの波長域内に最大吸光波長を有する、および、460~520nmの波長域内と540~620nmの波長域内との、一方の波長域内に最大吸光波長を有し、他方の波長域内に2番目に大きな吸光波長を有する、のいずれかを満たす。
 なお、最大吸光波長とは、吸光度が最大値となる波長であり、別の観点から言い換えると、吸収極大波長である。
[Absorption sheet]
An absorption sheet 15 is provided on the light source 14. The absorbent sheet 15 is an absorbent element in the present invention.
The absorption sheet 15 is a light absorption sheet that absorbs light in a predetermined wavelength band. In the present invention, the absorption sheet 15 has a maximum absorption wavelength in a wavelength range of 460 to 520 nm, a maximum absorption wavelength in a wavelength range of 540 to 620 nm, and a wavelength range of 460 to 520 nm and a wavelength range of 540 to 620 nm. And having the maximum absorption wavelength in one wavelength range and having the second largest absorption wavelength in the other wavelength range.
The maximum absorption wavelength is a wavelength at which the absorbance is a maximum value, and in other words, an absorption maximum wavelength.
 すなわち、吸収シート15が、460~520nmの波長域内に最大吸光波長を有する場合には、吸収シート15の最大吸光波長をλmaxとすると、吸収シート15は、『460nm<λmax<520nm』を満たす。
 この際において、吸収シート15の最大吸光波長は、475nm<λmax<510nnmを満たすのが好ましく、480nm<λmax<505nmを満たすのがより好ましい。
That is, when the absorption sheet 15 has a maximum absorption wavelength in the wavelength range of 460 to 520 nm, assuming that the maximum absorption wavelength of the absorption sheet 15 is λ max , the absorption sheet 15 satisfies “460 nm <λ max <520 nm”. Fulfill.
At this time, the maximum absorption wavelength of the absorption sheet 15 preferably satisfies 475 nm <λ max <510 nm, and more preferably satisfies 480 nm <λ max <505 nm.
 あるいは、吸収シート15が、540~620nmの波長域内に最大吸光波長を有する場合には、吸収シート15の最大吸光波長をλmaxとすると、吸収シート15は、『540nm<λmax<620nm』を満たす。
 この際においては、吸収シート15の最大吸光波長は、570nm<λmax<605nmを満たすのが好ましく、580nm<λmax<600nmを満たすのがより好ましい。
Alternatively, the absorbent sheet 15, if it has a maximum absorption wavelength in the wavelength range of 540 ~ 620nm, and the maximum absorption wavelength of the absorbent sheet 15 and λ max, the absorbent sheet 15, the "540nm <λ max <620nm" Fulfill.
In this case, the maximum absorption wavelength of the absorbent sheet 15 preferably satisfies 570 nm <λ max <605 nm, and more preferably satisfies 580 nm <λ max <600 nm.
 また、本発明のバックライトユニットは、最大吸光波長λmaxが『460nm<λmax<520nm』を満たす吸収シート15と、最大吸光波長λmaxが『540nm<λmax<620nm』を満たす吸収シート15との、両方を有してもよい。 The backlight unit of the present invention, the absorbent sheet 15 to meet the maximum absorption wavelength lambda max is the absorbent sheet 15 satisfying "460nm <λ max <520nm" maximum absorbance wavelength lambda max is the "540nm <λ max <620nm" You may have both.
 あるいは、吸収シート15は、例えば、複数の吸収材料を併用する方法、および、最大吸光波長が異なる吸収材料を含む層を積層する方法等により、1枚の吸収シート15で、460~520nmの波長域内と540~620nmの波長域内との、一方の波長域に最大吸光波長を有し、他方の波長域に2番目に大きい吸光波長を有するものであってもよい。なお、吸収材料としては、顔料、染料および色素等が例示される。
 この際において、好ましい波長範囲は、上記と同様である。
Alternatively, the absorption sheet 15 is a single absorption sheet 15 having a wavelength of 460 to 520 nm, for example, by a method using a plurality of absorption materials in combination and a method of laminating layers containing absorption materials having different maximum absorption wavelengths. It may have a maximum absorption wavelength in one wavelength region and a second largest absorption wavelength in the other wavelength region of the wavelength region and the wavelength region of 540 to 620 nm. Examples of the absorbing material include pigments, dyes and pigments.
In this case, a preferable wavelength range is the same as described above.
 本発明のバックライトユニット10において、吸収シート15は、反射板12と波長選択反射シート16との間であれば、任意の位置に配置可能である。
 従って、例えば、吸収シート15と波長選択反射シート16とを、吸収シート15を光源14側にして積層して設けてもよい。あるいは、反射板12の上面に吸収シート15を設け、吸収シート15の上に光源14を設けてもよい。すなわち、反射板12が吸収シート15を兼ねてもよい。
 また、吸収シート15は、バックライトユニット10の面方向の全域を覆うように設ける構成にも限定はされない。例えば、複数枚の吸収シート15を、互いに離間して、反射板12と波長選択反射シート16との間の任意の位置に設けた構成でもよい。
In the backlight unit 10 of the present invention, the absorbing sheet 15 can be disposed at any position as long as it is between the reflecting plate 12 and the wavelength selective reflecting sheet 16.
Therefore, for example, the absorption sheet 15 and the wavelength selective reflection sheet 16 may be provided so as to be laminated with the absorption sheet 15 on the light source 14 side. Alternatively, the absorbing sheet 15 may be provided on the upper surface of the reflecting plate 12, and the light source 14 may be provided on the absorbing sheet 15. That is, the reflection plate 12 may also serve as the absorption sheet 15.
Moreover, the structure provided so that the absorption sheet 15 may cover the whole surface direction of the backlight unit 10 is not limited. For example, the structure which provided the some absorption sheet 15 in the arbitrary positions between the reflecting plate 12 and the wavelength selection reflection sheet 16 mutually spaced apart may be sufficient.
 吸収シート15は、吸収特性として、460~520nmおよび540~620nm少なくとも一方の波長域内に、吸光度が0.1以上の吸収域を有するのが好ましく、吸光度が1以上の吸収域を有するのがより好ましく、吸光度が2以上の吸収域を有するのがさらに好ましい。
 ここで、吸光度A=-log10(透過率)である。
The absorption sheet 15 preferably has an absorption region with an absorbance of 0.1 or more in an at least one wavelength region of 460 to 520 nm and 540 to 620 nm, and more preferably has an absorption region with an absorbance of 1 or more. Preferably, it has an absorption region with an absorbance of 2 or more.
Here, absorbance A = −log 10 (transmittance).
 吸収シート15は、ディスプレイの三原色表示に使用される青色光、緑色光および赤色光の発光ピーク付近の吸収が小さいのが好ましい。具体的には、440~455nmにおける最大吸光度Ab、525~540nmにおける最大吸光度Ag、630~650nmにおける最大吸光度Arが小さいのが好ましい。吸収シート15の吸収最大波長における吸光度Aに対する、Ab、AgおよびArの比の平均値は、0.2以下であるのが好ましく、0.1以下であるのがより好ましく、0.05以下であるのがさらに好ましい。 It is preferable that the absorption sheet 15 has a small absorption in the vicinity of emission peaks of blue light, green light, and red light used for displaying the three primary colors of the display. Specifically, it is preferable that the maximum absorbance Ab at 440 to 455 nm, the maximum absorbance Ag at 525 to 540 nm, and the maximum absorbance Ar at 630 to 650 nm are small. The average value of the ratio of Ab, Ag, and Ar to the absorbance A at the absorption maximum wavelength of the absorbent sheet 15 is preferably 0.2 or less, more preferably 0.1 or less, and 0.05 or less. More preferably.
 このような吸収シート15は、重合性化合物を含む組成物に光を吸収する吸収材料(光吸収材料、吸収性化合物)を投入して、シート状に成型して重合性化合物を硬化することで吸収材料を含むシートを形成する方法、透明な樹脂基板に吸収材料を含む塗料(塗布組成物)を塗布して乾燥することで、樹脂基板に吸収材料を含む層を形成する方法等、公知の方法で作製することができる。 Such an absorption sheet 15 is obtained by introducing an absorbing material (light absorbing material, absorbing compound) that absorbs light into a composition containing a polymerizable compound, molding the sheet into a sheet shape, and curing the polymerizable compound. A method for forming a sheet containing an absorbent material, a method for forming a layer containing an absorbent material on a resin substrate by applying a coating material (coating composition) containing the absorbent material on a transparent resin substrate and drying it, etc. Can be produced by a method.
 吸収シート15(吸収材料を含む層)に用いられる吸収材料としては、フタロシアニン、シアニン、ジイモニウム、クアテリレン、ジチオールNi錯体、インドアニリン、アゾメチン錯体、アミノアントラキノン、ナフタロシアニン、オキソノール、スクアリウム、および、クロコニウム色素等が好適に例示される。具体例としては、「ケミカルレビューズ(Chenmical Reviews)」 1992年発行 92巻 No.6 1197~1226ページ、「JOEMハンドブック2 ダイオードレーザーに対する染料の吸収スペクトル(Absorption Spectra Of Dyes for Diode Lasers JOEM Handbook 2)」(ぶんしん出版社、1990年発行)、および、「光ディスク用赤外吸収色素の開発」(ファインケミカル 23巻 No.3 1999年発行)等に記載される、上記の波長域内に最大吸光波長を有する色素が挙げられる。
 これ以外の具体例として、
 ジイモニウム色素:特開2008-069260号公報[0072]~[0115]、
 シアニン色素:特開2009-108267号公報[0020]~[0051]、
 フタロシアニン色素:特開2013-182028号公報[0010]~[0019]が挙げられる。
Examples of the absorbent material used for the absorbent sheet 15 (layer including the absorbent material) include phthalocyanine, cyanine, diimonium, quaterylene, dithiol Ni complex, indoaniline, azomethine complex, aminoanthraquinone, naphthalocyanine, oxonol, squalium, and croconium dye. Etc. are preferably exemplified. As a specific example, “Chemical Reviews” published in 1992, vol. 6 pp. 1971-2226, “JOEM Handbook 2 Absorption Spectra Of Dies for Lasers JOE Handbook 2” (Bunshin Publishing Co., Ltd., published in 1990), and “Infrared Absorbing Dye for Optical Discs” No. 3 ”(Fine Chemical, Vol. 23, No. 3 issued in 1999) and the like, and dyes having a maximum absorption wavelength in the above wavelength range.
As another specific example,
Diimonium dye: JP 2008-0669260 A [0072] to [0115],
Cyanine dyes: JP-A-2009-108267 [0020] to [0051],
Phthalocyanine dyes: JP-A-2013-182028 [0010] to [0019].
 460~520nmの波長域に最大吸光波長を有し、かつ半値幅が50nm以下である吸光度のピークを有する吸収材料(染料または色素)としては、スクアリリウム系、アゾメチン系、シアニン系、オキソノール系、アントラキノン系、アゾ系、および、ベンジリデン系等の化合物が好ましく用いられる。アゾ染料としては、GB539703号、同575691号、US2956879号、および、堀口博著「総説合成染料」三共出版などに記載の多くのアゾ染料を使用することができる。
 波長が460~520nmの範囲に最大吸光波長を有し、かつ半値幅が50nm以下である吸光度のピークを持つ吸収材料の例を以下に示す。
Absorbing materials (dyes or pigments) having a maximum absorption wavelength in the wavelength range of 460 to 520 nm and a peak of absorbance with a half width of 50 nm or less include squarylium, azomethine, cyanine, oxonol, anthraquinone Compounds such as azo-type, azo-type, and benzylidene-type are preferably used. As the azo dye, many azo dyes described in GB539970, 575691, US29556879, and “Review Review Synthetic Dye” by Sankyo Publishing by Horiguchi Hiroshi can be used.
Examples of an absorbing material having a maximum absorption wavelength in the wavelength range of 460 to 520 nm and having an absorbance peak with a half width of 50 nm or less are shown below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 540~620nmの波長域に最大吸光波長を有し、かつ半値幅が50nm以下である吸光度のピークを持つ吸収材料(染料または色素)としては、シアニン系、スクアリリウム系、アゾメチン系、キサンテン系、オキソノール系およびアゾ系等の化合物が好ましく、シアニン系およびオキソノール系等の色素がさらに好ましく用いられる。
 波長が540~620nmの範囲に最大吸光波長を有し、かつ半値幅が50nm以下である吸光度のピークを持つ吸収材料の例を以下に示す。
Absorbing materials (dyes or pigments) having a maximum absorption wavelength in the wavelength range of 540 to 620 nm and a peak of absorbance with a half-width of 50 nm or less include cyanine-based, squarylium-based, azomethine-based, xanthene-based, oxonol And azo compounds are preferred, and cyanine and oxonol dyes are more preferred.
An example of an absorbing material having a maximum absorption wavelength in the wavelength range of 540 to 620 nm and an absorbance peak having a half-value width of 50 nm or less is shown below.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 シアニン染料の合成については、特開平7-230671号公報、欧州特許0778493号および米国特許5459265号の各明細書の記載を参照できる。アゾ染料の合成については、英国特許539703号、同575691号、米国特許2956879号の各明細書、および、堀口博著、総説・合成染料(三共出版、昭和43年発行)の記載を参照できる。アゾメチン染料の合成については、特開昭62-3250号、特開平4-178646号、および、同5-323501号の各公報の記載を参照できる。オキソノール染料は、特開平7-230671号公報、ならびに、欧州特許0778493号および米国特許5459265号の各明細書の記載を参照して合成できる。メロシアニン染料の合成については、米国特許2170806号明細書、ならびに、特開昭55-155350号および同55-161232号の各公報の記載を参照できる。アントラキノン染料の合成については、英国特許710060号および米国特許3575704号の各明細書、特開昭48-5425号公報、ならびに、堀口博著、総説・合成染料(三共出版、昭和43年発行)の記載を参照できる。
 その他の染料に関しても、エフ・エム・ハーマー(F.M. Harmer)著「ヘテロサイクリック・コンパウンズ-シアニンダイズ・アンド・リレイテッド・コンパウンズ(Heterocyclic Compounds-Cyanine Dyes and Related Compounds)」、ジョン・ウィリー・アンド・サンズ(John Wiley and Sons)、ニューヨーク、ロンドン、1964年;
 ディー・エム・スターマー(D.M. Sturmer)著「ヘテロサイクリック・コンパウンズ-スペシャル・トピックス・イン・ヘテロサイクリック・ケミストリー(Heterocyclic Compounds-Special Topics in Heterocyclic Chemistry)」第18章、第14節、482~515頁、ジョン・ウィリー・アンド・サンズ(John Wiley and Sons)、ニューヨーク、ロンドン、1977年;
「ロッズ・ケミストリー・オブ・カーボン・コンパウンズ(Rodd’ Chemistry of Carbon Compounds)」第2版、第4巻、パートB、第15章、369~422頁、エスセビア・サイエンス・パブリック・カンパニーインク(Elsevier SciencePublishing Company Inc.)、ニューヨーク、1977年;
 特開平5-88293号および同6-313939号の各公報;等の記載を参照して合成できる。
For the synthesis of cyanine dyes, reference can be made to the descriptions in JP-A-7-230671, European Patent 0778493 and US Pat. No. 5,459,265. Regarding the synthesis of azo dyes, reference can be made to the specifications of British Patent Nos. 539703, 575691 and US Pat. No. 2,956,879, as well as descriptions by Hiroshi Horiguchi, a review / synthetic dye (Sankyo Publishing, published in 1968). For the synthesis of azomethine dyes, the descriptions in JP-A Nos. 62-3250, 4-178646, and 5-323501 can be referred to. The oxonol dye can be synthesized with reference to the descriptions in JP-A-7-230671 and the specifications of European Patent 0778493 and US Pat. No. 5,459,265. For the synthesis of merocyanine dyes, reference can be made to the descriptions in US Pat. No. 2,170,806 and JP-A Nos. 55-155350 and 55-161232. Regarding the synthesis of anthraquinone dyes, the specifications of British Patent 710060 and US Pat. No. 3,575,704, JP-A-48-5425, and Hiroshi Horiguchi, Review / Synthetic dyes (Sankyo Publishing, published in 1968) See description.
As for other dyes, FM Harmer, “Heterocyclic Compounds-Cyanine Dies and Related Compounds”, John Willy, also known as F.M. Harmer, “Heterocyclic Compounds-Cyanine Compounds and Related Compounds”. And John Wiley and Sons, New York, London, 1964;
D.M. Sturmer, “Heterocyclic Compounds in Special Cyclics in Heterocyclic Chemistry, Section 14”, Section 18 of Heterocyclic Compounds-Special Topics in Heterocyclic Chemistry. 482-515, John Wiley and Sons, New York, London, 1977;
“Rodd's Chemistry of Carbon Compounds” 2nd edition, Volume 4, Part B, Chapter 15, pages 369-422, Elsevier Science Publishing, Inc. (Elsevier Science Publishing) Company Inc.), New York, 1977;
It can be synthesized with reference to the descriptions in JP-A-5-88293 and JP-A-6-313939.
 染料としては、以上のような2種類以上の色素を組み合わせて用いることができる。また、460~520nmの波長域と540~620nmとの波長域の両方の波長域で最大吸光波長を有する色素を用いることもできる。
 例えば、色素を後述のような会合体の状態にすると、一般に波長が長波長側にシフトして、ピークがシャープになる。そのため、波長が460~520nmの範囲に最大吸光波長を持つ色素には、その会合体が540~620nmの範囲に最大吸光波長を持つものもある。吸収材料が部分的に会合体を形成した状態で使用すると、波長が460~520nmの範囲と波長が540~620nmの範囲の両方に最大吸光波長を得ることができる。そのような色素の例を以下に示す。
As the dye, two or more kinds of pigments as described above can be used in combination. A dye having a maximum absorption wavelength in both the wavelength range of 460 to 520 nm and the wavelength range of 540 to 620 nm can also be used.
For example, when the dye is in an aggregated state as described below, the wavelength generally shifts to the longer wavelength side and the peak becomes sharp. For this reason, some dyes having the maximum absorption wavelength in the range of 460 to 520 nm include those whose aggregates have the maximum absorption wavelength in the range of 540 to 620 nm. When the absorbent material is used in a state in which an aggregate is partially formed, the maximum absorption wavelength can be obtained in both the wavelength range of 460 to 520 nm and the wavelength range of 540 to 620 nm. Examples of such dyes are shown below.
Figure JPOXMLDOC01-appb-C000004

 
Figure JPOXMLDOC01-appb-C000004

 
 その他の吸収材料の例としては、特開2000-321419号公報、特開2002-122729号公報、および、特許4504496号公報に記載の色素化合物を挙げることができ、これらの公報の記載内容は本発明に組み込まれる。 Examples of other absorbing materials include dye compounds described in JP-A No. 2000-32419, JP-A No. 2002-122729, and Japanese Patent No. 45044496. Incorporated into the invention.
 吸収材料を含む層における染料の含有量は、吸収材料を含む層の総質量に対して0.001~0.05質量%であるのが好ましく、0.001~0.01質量%であるのがより好ましい。 The content of the dye in the layer containing the absorbent material is preferably 0.001 to 0.05% by mass, and preferably 0.001 to 0.01% by mass with respect to the total mass of the layer containing the absorbent material. Is more preferable.
-半値幅-
 460~520nmの波長域に最大吸光波長を有する吸収シート15、および/または、540~620nmの波長域に最大吸光波長を有する吸収シート15等において、光の吸収スペクトルは、青色光、緑色光および赤色光に影響を与えないよう選択的に光をカットするために、シャープであるのが好ましい。
 具体的には、460~520nmの波長域に最大吸光波長を有する吸収シート15の吸収スペクトルの半値幅(最大吸光波長での吸光度の半分の吸光度を示す波長域の幅)が50nm以下であるのが好ましく、5~40nmであるのがより好ましく、10~30nmであるのがさらに好ましい。
 540~620nmの波長域に最大吸光波長を有する吸収シート15の吸収スペクトルの半値幅は50nm以下であるのが好ましく、5~40nmであるのがより好ましく、10~30nmであるのがさらに好ましい。
-Half width-
In the absorption sheet 15 having the maximum absorption wavelength in the wavelength range of 460 to 520 nm and / or the absorption sheet 15 having the maximum absorption wavelength in the wavelength range of 540 to 620 nm, the absorption spectrum of light has blue light, green light, and In order to selectively cut the light so as not to affect the red light, it is preferably sharp.
Specifically, the half width of the absorption spectrum of the absorption sheet 15 having the maximum absorption wavelength in the wavelength range of 460 to 520 nm (the width of the wavelength range indicating the half of the absorbance at the maximum absorption wavelength) is 50 nm or less. Is preferably 5 to 40 nm, more preferably 10 to 30 nm.
The half width of the absorption spectrum of the absorbent sheet 15 having the maximum absorption wavelength in the wavelength range of 540 to 620 nm is preferably 50 nm or less, more preferably 5 to 40 nm, and even more preferably 10 to 30 nm.
 半値幅をこのような範囲とする手段としては、最大吸光波長の異なる複数の染料および/または顔料を、吸収材料を含む層に含有させる手段、および、染料の会合体を吸収材料を含む層に含有させる手段等が挙げられる。
 具体的には、染料としてメチン染料(例えば、シアニン、メロシアニン、オキソノール、ピロメテン、スチリル、アリーリデン)、ジフェニルメタン染料、トリフェニルメタン染料、キサンテン染料、スクアリリウム染料、クロコニウム染料、アジン染料、アクリジン染料、チアジン染料、および、オキサジン染料などを選択することができる。これらの染料は、会合体で用いることが好ましい。
As means for setting the full width at half maximum in such a range, there are means for containing a plurality of dyes and / or pigments having different maximum absorption wavelengths in the layer containing the absorbing material, and a dye aggregate in the layer containing the absorbing material. Examples of the means include.
Specifically, methine dyes (for example, cyanine, merocyanine, oxonol, pyromethene, styryl, arylidene), diphenylmethane dye, triphenylmethane dye, xanthene dye, squarylium dye, croconium dye, azine dye, acridine dye, thiazine dye And oxazine dyes and the like can be selected. These dyes are preferably used in aggregates.
 会合状態の染料は、いわゆるJバンドを形成してシャープな吸収スペクトルピークを示す。染料の会合とJバンドについては各種文献(例えば、Photographic Science and engineering Vol. 18, No.323-335(1974))に記載がある。J会合状態の染料の最大吸光波長は、溶液状態の染料の最大吸光波長よりも長波側に移動する。従って、吸収材料を含む層に含まれる染料が会合状態であるか、非会合状態であるかは、最大吸光波長を測定することで容易に判断できる。会合状態の染料は、最大吸光波長の移動が30nm以上であるのが好ましく、40nm以上であるのがより好ましく、45nm以上であるのがさらに好ましい。 The dye in an associated state forms a so-called J band and shows a sharp absorption spectrum peak. The association of dyes and the J band are described in various literatures (for example, Photographic Science and engineering Vol. 18, No. 323-335 (1974)). The maximum absorption wavelength of the dye in the J-association state moves to the longer wave side than the maximum absorption wavelength of the dye in the solution state. Therefore, whether the dye contained in the layer containing the absorbing material is in an associated state or a non-associated state can be easily determined by measuring the maximum absorption wavelength. The dye in an associated state preferably has a maximum absorption wavelength shift of 30 nm or more, more preferably 40 nm or more, and even more preferably 45 nm or more.
 会合状態で使用する染料は、メチン染料が好ましく、シアニン染料またはオキソノール染料がより好ましい。これらの染料には、水に溶解するだけで会合体が形成する化合物もあるが、一般的には染料の水溶液にゼラチンまたは塩(塩化バリウム、塩化カルシウム、塩化ナトリウム等)を添加して会合体を形成することができる。会合体の形成方法としては染料の水溶液にゼラチンを添加する方法が特に好ましい。最大吸光波長の異なる複数の染料をそれぞれゼラチンを添加した水溶液中に分散した後、それらを混合して最大吸光波長の異なる複数の会合体を含有する試料を作製することができる。また、染料によっては、ゼラチンを添加した水溶液に複数の染料を分散させるだけで、それぞれの会合体を形成することができる。
 染料の会合体は、染料の固体微粒子分散物として形成することもできる。固体微粒子分散物にするためには、公知の分散機を用いることができる。分散機の例には、ボールミル、振動ボールミル、遊星ボールミル、サンドミル、コロイドミル、ジェットミル、および、ローラミル等が含まれる。分散機については、特開昭52-92716号公報および国際公開第88/074794号に記載がある。縦型または横型の媒体分散機が好ましい。
The dye used in the association state is preferably a methine dye, more preferably a cyanine dye or an oxonol dye. Some of these dyes can form aggregates only by dissolving in water, but in general, gelatin or a salt (barium chloride, calcium chloride, sodium chloride, etc.) is added to an aqueous solution of the dye to form an aggregate. Can be formed. As a method for forming the aggregate, a method of adding gelatin to an aqueous dye solution is particularly preferable. A plurality of dyes having different maximum absorption wavelengths can be dispersed in an aqueous solution to which gelatin is added, and then mixed to prepare a sample containing a plurality of aggregates having different maximum absorption wavelengths. Depending on the dye, each aggregate can be formed by simply dispersing a plurality of dyes in an aqueous solution to which gelatin is added.
The dye aggregate can also be formed as a solid fine particle dispersion of the dye. In order to obtain a solid fine particle dispersion, a known disperser can be used. Examples of the disperser include a ball mill, a vibrating ball mill, a planetary ball mill, a sand mill, a colloid mill, a jet mill, and a roller mill. The disperser is described in JP-A-52-92716 and International Publication No. 88/074794. A vertical or horizontal medium disperser is preferred.
 -添加剤-
 その他、吸収材料を含む層には、赤外線吸収剤あるいは紫外線吸収剤などの添加剤を添加してもよく、特開2008-203436号公報の[0031]に記載のものを用いることができる。
-Additive-
In addition, an additive such as an infrared absorber or an ultraviolet absorber may be added to the layer containing the absorbing material, and those described in JP-A-2008-203436, [0031] can be used.
 -バインダー-
 吸収材料を含む吸収シート15および吸収シート15における吸収材料を含む層は、吸収材料の安定性および反射特性の制御などのため吸収材料を含む層はポリマーバインダーを含んでもよい。
 ポリマーバインダーとしては当業者に公知のバインダーを用いることができるが、分散操作をより容易に行うために水系のバインダーを用いることが好ましい。水系のバインダーとしてはゼラチン、ポリビニルアルコール、ポリアクリルアミド、および、ポリエチレングリコール等があげられる。
-binder-
The absorbent sheet 15 containing the absorbent material and the layer containing the absorbent material in the absorbent sheet 15 may contain a polymer binder in order to control the stability and reflection characteristics of the absorbent material.
As the polymer binder, a binder known to those skilled in the art can be used, but an aqueous binder is preferably used in order to perform the dispersion operation more easily. Examples of the aqueous binder include gelatin, polyvinyl alcohol, polyacrylamide, and polyethylene glycol.
 吸収シート15において、吸収材料を含む層の厚さは、目的とする吸収度、吸収材料の種類等に応じて、目的とする吸光特性を得られる厚さを、適宜、設定すればよい。 In the absorbent sheet 15, the thickness of the layer containing the absorbent material may be set as appropriate to obtain a desired light absorption characteristic according to the target absorbance, the type of the absorbent material, and the like.
 吸収シート15に含まれる吸収材料は、目的とする波長域の光を吸収すれば、発光特性を有していても構わない。吸収シート15に含まれる吸収材料が発光特性を有する場合の発光中心波長は、520nm以上550nm未満、もしくは、620nm以上であるのが好ましい。 The absorbing material included in the absorbing sheet 15 may have a light emitting characteristic as long as it absorbs light in a target wavelength range. It is preferable that the emission center wavelength when the absorbing material included in the absorbing sheet 15 has a light emitting characteristic is 520 nm or more and less than 550 nm or 620 nm or more.
[波長選択反射シート]
 吸収シート15の上には、波長選択反射シート16が設けられる。
 波長選択反射シート16は、特定の波長の光を選択的に反射するシート状物である。図示例の波長選択反射シート16は、特定の波長の光を選択的に反射する反射層として、コレステリック液晶層30を有することにより、特定の波長の光を選択的に反射する。
[Wavelength selective reflection sheet]
A wavelength selective reflection sheet 16 is provided on the absorption sheet 15.
The wavelength selective reflection sheet 16 is a sheet-like object that selectively reflects light having a specific wavelength. The wavelength selective reflection sheet 16 in the illustrated example has a cholesteric liquid crystal layer 30 as a reflective layer that selectively reflects light having a specific wavelength, and thus selectively reflects light having a specific wavelength.
 本発明のバックライトユニット10において、波長選択反射シート16は、ブラッグ反射層を含むのが好ましい。
 ブラッグ反射層は、層の厚さ方向に屈折率の変調を有する層である。ブラッグ反射層は、その屈折率変調に対して直交する成分を有する光が入射した際に、各屈折率界面において透過光および反射光が生じ、これらが互いに干渉し、その結果、入射光の一部が反射される。また、ブラッグ反射層における選択反射は、一般に、後述するブラッグの法則に従う。従って、多層構造における個々の層の厚さを制御することで、反射波長を選択できる。
 ブラッグ反射層の一例としては、誘電体多層膜、および、コレステリック液晶相を固定してなる層(コレステリック液晶層)等が挙げられ、このなかでもコレステリック液晶層は好適に用いられる。
 本発明のバックライトユニット10において、波長選択反射シート16は、少なくとも一部にブラッグ反射層を含むのが好ましいが、ブラッグ反射層からなるのがより好ましく、または、全面がブラッグ反射層からなる反射層を有するのがより好ましい。
In the backlight unit 10 of the present invention, the wavelength selective reflection sheet 16 preferably includes a Bragg reflection layer.
The Bragg reflection layer is a layer having a refractive index modulation in the thickness direction of the layer. In the Bragg reflection layer, when light having a component orthogonal to the refractive index modulation is incident, transmitted light and reflected light are generated at each refractive index interface, and they interfere with each other. Part is reflected. The selective reflection in the Bragg reflection layer generally follows Bragg's law, which will be described later. Therefore, the reflection wavelength can be selected by controlling the thickness of each layer in the multilayer structure.
Examples of the Bragg reflection layer include a dielectric multilayer film and a layer formed by fixing a cholesteric liquid crystal phase (cholesteric liquid crystal layer). Among these, a cholesteric liquid crystal layer is preferably used.
In the backlight unit 10 of the present invention, the wavelength selective reflection sheet 16 preferably includes at least a part of a Bragg reflection layer, more preferably a Bragg reflection layer, or a reflection whose entire surface is a Bragg reflection layer. More preferably, it has a layer.
 ブラッグ反射層の厚さには制限はないが、100μm以下であるのが好ましく、30μm以下であるのがより好ましく、10μm以下であるのがさらに好ましい。
 波長選択反射シート16にブラッグ反射層を用いることで100μm以下の薄い層で、十分な波長選択反射の効果を発現することができる。
Although there is no restriction | limiting in the thickness of a Bragg reflective layer, it is preferable that it is 100 micrometers or less, It is more preferable that it is 30 micrometers or less, It is further more preferable that it is 10 micrometers or less.
By using a Bragg reflection layer for the wavelength selective reflection sheet 16, a sufficient wavelength selective reflection effect can be achieved with a thin layer of 100 μm or less.
 具合的には、波長選択反射シート16は、吸収シート15が吸収する波長域内の波長の光を、選択的に反射する。
 より具体的には、波長選択反射シート16(コレステリック液晶層30)は、吸収シート15が『460nm<λmax<520nm』を満たすものである場合には、460~520nmの波長域内の光を選択的に反射する。なお、前述のように、『λmax』は、吸収シートの最大吸光波長である。
 波長選択反射シート16は、吸収シート15が『540nm<λmax<600nm』を満たすものである場合には、540~600nmの波長域内の光を選択的に反射する。
 バックライトユニット10が、『460nm<λmax<520nm』を満たす吸収シート15と、『540nm<λmax<620nm』を満たす吸収シート15との、両方を有する場合には、波長選択反射シート16は、460~520nmの波長域内の光、および、540~600nmの波長域内の光の、両方を選択的に反射する。
 さらに、波長選択反射シート16は、吸収シート15が、460~520nmの波長域内と540~600nmの波長域内との、一方の波長域内に最大吸光波長を有し、他方の波長域内に2番目に大きな吸光波長を有する場合にも、460~520nmの波長域内の光、および、540~600nmの波長域内の光の、両方を選択的に反射する。
Specifically, the wavelength selective reflection sheet 16 selectively reflects light having a wavelength within the wavelength range absorbed by the absorption sheet 15.
More specifically, the wavelength selective reflection sheet 16 (cholesteric liquid crystal layer 30) selects light in the wavelength range of 460 to 520 nm when the absorption sheet 15 satisfies “460 nm <λ max <520 nm”. Reflectively. As described above, “λ max ” is the maximum absorption wavelength of the absorption sheet.
The wavelength selective reflection sheet 16 selectively reflects light in the wavelength range of 540 to 600 nm when the absorption sheet 15 satisfies “540 nm <λ max <600 nm”.
When the backlight unit 10 has both the absorption sheet 15 satisfying “460 nm <λ max <520 nm” and the absorption sheet 15 satisfying “540 nm <λ max <620 nm”, the wavelength selective reflection sheet 16 is It selectively reflects both light in the wavelength range of 460 to 520 nm and light in the wavelength range of 540 to 600 nm.
Further, the wavelength selective reflection sheet 16 has the absorption sheet 15 having a maximum absorption wavelength in one of the wavelength range of 460 to 520 nm and the wavelength range of 540 to 600 nm, and second in the other wavelength range. Even when it has a large absorption wavelength, it selectively reflects both light in the wavelength range of 460 to 520 nm and light in the wavelength range of 540 to 600 nm.
 図示例のバックライトユニット10において、波長選択反射シート16は、透明なシート状の支持体28の一方の主面(最大面)に、複数のコレステリック液晶層30を互いに離間して保持してなる構成を有する。
 従って、波長選択反射シート16は、コレステリック液晶層30の位置では、所定の波長域の光を選択的に反射するが、支持体28のみの部分では、光を殆ど反射しない。好ましくは、支持体28のみの部分の反射率は、10%以下であるのが好ましく、8%以下であるのがより好ましい。
 なお、本発明において、ある波長λの光に対する反射率(光反射率)は、波長選択反射シート16の分光透過率t(λ)を測定し、1-t(λ)の形で算出される。
 分光透過率t(λ)は、公知の方法で測定すればよく、一例として紫外可視近赤外分光光度計(例えば、島津製作所製、UV-3150)で測定できる。また、波長選択反射シート16が高ヘイズである場合、例えばJIS K 7136に基づくヘイズ値が15以上の場合には、t(λ)は積分球を用いた測定による全光透過率を用いる。一例として、紫外可視近赤外分光光度計(例えば、日本分光社製、V7200)を用いて測定できる。
In the illustrated backlight unit 10, the wavelength selective reflection sheet 16 is formed by holding a plurality of cholesteric liquid crystal layers 30 on one main surface (maximum surface) of a transparent sheet-like support 28 so as to be separated from each other. It has a configuration.
Therefore, the wavelength selective reflection sheet 16 selectively reflects light in a predetermined wavelength region at the position of the cholesteric liquid crystal layer 30, but hardly reflects light only at the support 28. Preferably, the reflectance of only the support 28 is preferably 10% or less, and more preferably 8% or less.
In the present invention, the reflectance (light reflectance) for light of a certain wavelength λ is calculated in the form of 1-t (λ) by measuring the spectral transmittance t (λ) of the wavelength selective reflection sheet 16. .
The spectral transmittance t (λ) may be measured by a known method. For example, the spectral transmittance t (λ) can be measured with an ultraviolet-visible near-infrared spectrophotometer (for example, UV-3150 manufactured by Shimadzu Corporation). When the wavelength selective reflection sheet 16 has a high haze, for example, when the haze value based on JIS K 7136 is 15 or more, t (λ) uses the total light transmittance measured by using an integrating sphere. As an example, it can be measured using an ultraviolet visible near infrared spectrophotometer (for example, V7200 manufactured by JASCO Corporation).
 また、図示例の波長選択反射シート16においては、図1および図3に概念的に示すように、各コレステリック液晶層30は、光源14の光軸上に設けられる。コレステリック液晶層30は、面内の反射特性は均一である。すなわち、波長選択反射シート16は、光源14の光軸における反射率が最大となる。なお、図3においては、光源14とコレステリック液晶層30との位置関係を明確に示すために、吸収シート15は省略している。
 一例として、コレステリック液晶層30は、図3に示すように、平面形状が円形で、中心を光源14の光軸に一致する。あるいは、コレステリック液晶層30は、平面形状が三角形、四角形、および、それ以上の多角形のいずれかで、中心を光源14の光軸に一致してもよい。なお、平面形状とは、波長選択反射シート16の面方向と直交する方向から見た際の形状である(平面図における形状)。
Further, in the illustrated wavelength selective reflection sheet 16, each cholesteric liquid crystal layer 30 is provided on the optical axis of the light source 14 as conceptually shown in FIGS. 1 and 3. The cholesteric liquid crystal layer 30 has uniform in-plane reflection characteristics. That is, the wavelength selective reflection sheet 16 has the maximum reflectance at the optical axis of the light source 14. In FIG. 3, the absorbent sheet 15 is omitted in order to clearly show the positional relationship between the light source 14 and the cholesteric liquid crystal layer 30.
As an example, as shown in FIG. 3, the cholesteric liquid crystal layer 30 has a circular planar shape and the center coincides with the optical axis of the light source 14. Alternatively, the cholesteric liquid crystal layer 30 may have any one of a triangular shape, a quadrangular shape, and a polygonal shape having a planar shape that coincides with the optical axis of the light source 14. In addition, a planar shape is a shape at the time of seeing from the direction orthogonal to the surface direction of the wavelength selection reflection sheet 16 (shape in a top view).
 すなわち、波長選択反射シート16は、面内に反射率が異なる部分を有し、かつ、面内の反射率は、光源14の配置に応じたものである。
 言い換えれば、波長選択反射シート16は、面内に、光源14の配置に応じた反射率分布を有する。
That is, the wavelength selective reflection sheet 16 has portions with different reflectivities in the surface, and the in-plane reflectivity depends on the arrangement of the light sources 14.
In other words, the wavelength selective reflection sheet 16 has a reflectance distribution according to the arrangement of the light sources 14 in the plane.
 本発明のバックライトユニット10は、発光に不要な波長域の光を吸収する吸収シート15と、このような光源14の配置に応じた反射率分布を有する波長選択反射シート16とを有することにより、バックライトの発光スペクトルを狭帯域化し、LCDによって色域を広げた色純度の高い画像表示を可能にするバックライトユニットを実現している。 The backlight unit 10 of the present invention includes an absorption sheet 15 that absorbs light in a wavelength range unnecessary for light emission, and a wavelength selective reflection sheet 16 having a reflectance distribution according to the arrangement of the light source 14. A backlight unit is realized that narrows the emission spectrum of the backlight and enables image display with high color purity by expanding the color gamut using the LCD.
 周知のように、LCDにおいて、色純度を高くして、色域が広い表示を行うためには、色三原色以外の不要な波長域の光を有さない、半値幅が狭い青色光、緑色光および赤色光による白色光を、バックライトから照射するのが好ましい。すなわち、色純度が高い青色光、緑色光および赤色光による白色光を、バックライトから照射するのが好ましい。
 しかしながら、現在のライトユニットが照射する白色光は、不要な波長域の光を含んでおり、この不要な波長域の光が、表示の色純度を下げる原因となっている。
As is well known, in order to display a wide color gamut with high color purity in LCDs, blue light and green light with a narrow half-value width that do not have light in unnecessary wavelength ranges other than the three primary colors. It is preferable to irradiate white light by red light from the backlight. That is, it is preferable to irradiate the backlight with white light having high color purity such as blue light, green light, and red light.
However, the white light emitted by the current light unit includes light in an unnecessary wavelength range, and the light in the unnecessary wavelength range causes a decrease in color purity of display.
 これに対して、特許文献1に示されるように、バックライトユニットに、不要な波長域の光を吸収する光学フィルターを配置することにより、不要な波長域の光を吸収して、バックライトの発光スペクトルを狭帯域化することで、表示の色純度を向上できる。
 しかしながら、光学フィルターにおいて吸収材料として用いられている色素は、吸収帯域が広い。そのため、光学フィルターを用いる構成では、不要な波長域の光を吸収するのみならず、LCDのカラー表示に必要な色三原色の光も同時に吸収してしまい、ディスプレイの効率を低下させてしまうという問題が有る。
On the other hand, as shown in Patent Document 1, an optical filter that absorbs light in an unnecessary wavelength region is disposed in the backlight unit, thereby absorbing light in an unnecessary wavelength region and By narrowing the emission spectrum, the color purity of the display can be improved.
However, a dye used as an absorbing material in an optical filter has a wide absorption band. Therefore, the configuration using the optical filter not only absorbs light in an unnecessary wavelength range, but also absorbs light of three primary colors necessary for color display of the LCD at the same time, thereby reducing the efficiency of the display. There is.
 特許文献2に記載されるように、光学フィルター(光吸収要素)と、特定の波長の光を選択的に反射する波長選択反射層を併用することで、光学フィルターによるカラー表示に必要な波長の光の吸収を抑えて、不要な波長の光を効率よく吸収して、発光のスペクトルを狭帯域化することが可能になる。
 例えば、光学フィルターで吸収したい光の波長(最大吸光波長)が600nmである場合に、600nm近傍の光を選択的に反射する波長選択反射層を用い、光学フィルターを光源と波長選択反射層との間に配置する。
 この構成を有するバックライトユニットでは、光源から照射されて、光学フィルターを透過した光が波長選択反射層に入射すると、600nmの近傍の光のみが波長選択反射層によって反射され、それ以外の光は透過する。従って、600nmの近傍の光以外は照射に供されるが、600nm近傍の光は、波長選択反射層によって反射されて、再度、光学フィルターを通過して、吸収される。また、光学フィルターで吸収されなかった600nm近傍の光は、光源の下の反射板で反射され、再度、光学フィルターを透過して、吸収される。
 すなわち、この構成によれば、除去したい600nm近傍の光は、波長選択反射層による反射によって、何度も光学フィルターを透過するため、不要な600nm近傍の光を効率良く光学フィルターで吸収して、バックライトの発光スペクトルを狭帯域化し、ディスプレイの色純度を向上できる。
As described in Patent Document 2, by using an optical filter (light absorbing element) and a wavelength selective reflection layer that selectively reflects light of a specific wavelength, a wavelength necessary for color display by the optical filter can be obtained. It is possible to suppress light absorption, efficiently absorb light having an unnecessary wavelength, and narrow the emission spectrum.
For example, when the wavelength of light to be absorbed by the optical filter (maximum absorption wavelength) is 600 nm, a wavelength selective reflection layer that selectively reflects light in the vicinity of 600 nm is used, and the optical filter is composed of a light source and a wavelength selective reflection layer. Place between.
In the backlight unit having this configuration, when the light irradiated from the light source and transmitted through the optical filter enters the wavelength selective reflection layer, only the light in the vicinity of 600 nm is reflected by the wavelength selective reflection layer, and the other light is To Penetrate. Accordingly, light other than light in the vicinity of 600 nm is used for irradiation, but light in the vicinity of 600 nm is reflected by the wavelength selective reflection layer, and again passes through the optical filter and is absorbed. In addition, light in the vicinity of 600 nm that has not been absorbed by the optical filter is reflected by the reflecting plate under the light source, and is again transmitted through the optical filter and absorbed.
That is, according to this configuration, light in the vicinity of 600 nm that is desired to be removed passes through the optical filter many times due to reflection by the wavelength selective reflection layer. Therefore, unnecessary light in the vicinity of 600 nm is efficiently absorbed by the optical filter, The emission spectrum of the backlight can be narrowed to improve the color purity of the display.
 ところが、本発明者らは、検討の結果、光学フィルターと光吸収要素と波長選択反射層とを併用した構成においては、波長選択反射層における吸収帯域の狭帯域化が十分ではなく、バックライトにおける発光スペクトルの狭帯域化に際して、ディスプレイの効率が犠牲になっていることを見出した。 However, as a result of the study, the inventors of the present invention have not sufficiently narrowed the absorption band in the wavelength selective reflection layer in the configuration in which the optical filter, the light absorption element, and the wavelength selective reflection layer are used in combination. It has been found that the efficiency of the display is sacrificed when the emission spectrum is narrowed.
 すなわち、従来より知られている波長選択反射層は、薄膜における光の干渉を利用している。干渉による選択反射は,一般にブラッグの法則と呼ばれる以下の関係式の制約を受ける。
 2・d・sinθ=n・λ
 ここでdは薄膜の厚み、θは入射光の入射角度(層の面方向と光線とが成す角度)、λは波長、nは整数を表す。
That is, the conventionally known wavelength selective reflection layer uses light interference in a thin film. The selective reflection due to interference is restricted by the following relational expression generally called Bragg's law.
2 ・ d ・ sinθ = n ・ λ
Here, d is the thickness of the thin film, θ is the incident angle of the incident light (angle formed by the plane direction of the layer and the light beam), λ is the wavelength, and n is an integer.
 バックライトユニットにおいて、光源から照射される光は拡散光である。そのため、波長選択反射層に入射する光は、入射角度が幅広く、そのために実効的な反射波長域が広くなってしまう。
 具体的には、反射選択反射層に光が斜めに入射すると、反射選択反射層の法線(垂線)に対する光の入射角度に応じて、反射選択反射層が反射する光の波長が短波長側にシフトする、いわゆる短波長シフトが生じる。短波長シフトは、反射選択反射層の法線と光の入射方向とが成す角度が大きい程、大きくなる。なお、以下の説明においては、大きな角度で入射とは、入射面の法線(垂線)に対する角度が大きい事を示す。
 そのため、波長選択反射層は、大きな角度で光が斜めに入射した場合には、目的とする除去したい波長域の光を反射せずに、除去したい波長域よりも短波長側の必要な光を反射してしまう。
 その結果、吸収させたい光のみならず、必要な光も、波長選択反射層で反射されて光学フィルターに入射することを繰り返し、光学フィルターによって吸収されてしまう。すなわち、従来の波長選択反射層と光学フィルターとを併用する構成では、波長選択反射層による光学フィルターにおける吸収帯域の狭帯域化が十分でなく、バックライトにおける発光スペクトルの狭帯域化に際して、ディスプレイの効率が犠牲になっている。
In the backlight unit, the light emitted from the light source is diffused light. Therefore, the light incident on the wavelength selective reflection layer has a wide incident angle, and therefore the effective reflection wavelength range is widened.
Specifically, when light is incident on the reflection selective reflection layer at an angle, the wavelength of the light reflected by the reflection selection reflection layer is shorter on the short wavelength side according to the incident angle of the light with respect to the normal line (perpendicular line) of the reflection selection reflection layer. A so-called short wavelength shift occurs. The short wavelength shift increases as the angle between the normal line of the reflection selective reflection layer and the light incident direction increases. In the following description, “incident at a large angle” means that the angle with respect to the normal (perpendicular) of the incident surface is large.
Therefore, the wavelength selective reflection layer does not reflect the light in the desired wavelength range to be removed when light is incident obliquely at a large angle, and does not reflect the necessary light on the shorter wavelength side than the desired wavelength range. It will be reflected.
As a result, not only light to be absorbed but also necessary light is repeatedly reflected by the wavelength selective reflection layer and incident on the optical filter, and is absorbed by the optical filter. That is, in the configuration in which the conventional wavelength selective reflection layer and the optical filter are used in combination, the absorption band narrowing in the optical filter by the wavelength selective reflection layer is not sufficient, and when narrowing the emission spectrum in the backlight, Efficiency is sacrificed.
 実効的な反射波長域を狭くする方法として、バックライトユニット内の光を集光することで、波長選択反射層への光の入射角度を制限する方法が挙げられるが、システムが煩雑になり実用的ではない。 As a method of narrowing the effective reflection wavelength range, there is a method of limiting the incident angle of light to the wavelength selective reflection layer by condensing the light in the backlight unit, but the system becomes complicated and practical. Not right.
 これに対して、本発明のバックライトユニット10は、コレステリック液晶層30を有する波長選択反射シート16が、光源14の配置に応じた反射率分布を有する。図示例においては、前述のように、コレステリック液晶層30は、複数が互いに離間して、光源14の光軸上に配置される。
 従って、光源14から照射されて波長選択反射シート16に大きな角度で斜めに入射する光は、コレステリック液晶層30の存在しない、支持体28のみの領域に入射するので、波長選択反射シート16に大きな角度で斜めに入射した光の多くは、波長選択反射シート16で反射されることなく、通過する。
 その結果、本発明のバックライトユニット10によれば、コレステリック液晶層30の実効的な反射帯域を狭くすることができ、その結果、バックライトユニット(LCD)の効率低下を最小限に留めて、バックライトの発光スペクトルを狭帯域化し、LCDによる画像表示の色域を広げ、色純度を向上させることができる。
On the other hand, in the backlight unit 10 of the present invention, the wavelength selective reflection sheet 16 having the cholesteric liquid crystal layer 30 has a reflectance distribution according to the arrangement of the light sources 14. In the illustrated example, as described above, a plurality of cholesteric liquid crystal layers 30 are arranged on the optical axis of the light source 14 while being separated from each other.
Accordingly, light that is irradiated from the light source 14 and obliquely incident on the wavelength selective reflection sheet 16 at a large angle is incident on the region of only the support 28 where the cholesteric liquid crystal layer 30 is not present. Most of the light incident obliquely at an angle passes without being reflected by the wavelength selective reflection sheet 16.
As a result, according to the backlight unit 10 of the present invention, the effective reflection band of the cholesteric liquid crystal layer 30 can be narrowed, and as a result, the decrease in efficiency of the backlight unit (LCD) is minimized, The emission spectrum of the backlight can be narrowed, the color gamut of image display by LCD can be expanded, and the color purity can be improved.
 波長選択反射シート16において、コレステリック液晶層30(特定の波長の光を選択的に反射する反射層)の大きさには、制限は無い。ここで言う大きさとは、面方向の大きさである。
 コレステリック液晶層30が大きいほど、不要な波長域の光を削減できる。その反面、コレステリック液晶層30が大きいほど、コレステリック液晶層30に斜めに入射した光による短波長シフトによって、必要な波長域の光のコレステリック液晶層30による反射および吸収シート15での吸収が多くなる。
 従って、コレステリック液晶層30の大きさは、バックライトユニット10の大きさ、光源14とコレステリック液晶層30との距離、光源14の発光指向性等に応じて、好ましい大きさを、適宜、設定すればよい。この点に関しては、後述する波長選択反射シート32の高反射率領域34aも同様である。
In the wavelength selective reflection sheet 16, the size of the cholesteric liquid crystal layer 30 (a reflective layer that selectively reflects light of a specific wavelength) is not limited. The size referred to here is the size in the surface direction.
As the cholesteric liquid crystal layer 30 is larger, light in an unnecessary wavelength region can be reduced. On the other hand, the larger the cholesteric liquid crystal layer 30 is, the more the reflection of the light in the necessary wavelength region by the cholesteric liquid crystal layer 30 and the absorption in the absorption sheet 15 are caused by the short wavelength shift caused by the light obliquely incident on the cholesteric liquid crystal layer 30. .
Therefore, the size of the cholesteric liquid crystal layer 30 is appropriately set according to the size of the backlight unit 10, the distance between the light source 14 and the cholesteric liquid crystal layer 30, the light emission directivity of the light source 14, and the like. That's fine. In this regard, the same applies to the high reflectance region 34a of the wavelength selective reflection sheet 32 described later.
 前述のように、波長選択反射シート16は、460~520nmの波長域内の光、および/または、540~620nmの波長域内の光を、選択的に反射する。
 ここで、波長選択反射シート16は、吸収シート15における最大吸光波長の光を、高い反射率で反射するのが好ましい。例えば、吸収シート15における最大吸光波長が600nmである場合には、波長選択反射シート16は、600nmの光を高い反射率で反射するのが好ましい。特に、波長選択反射シート16は、吸収シート15における最大吸光波長の光を、自身の最大反射波長の光の反射率の80%以上の反射率で反射するのが好ましい。
As described above, the wavelength selective reflection sheet 16 selectively reflects light in the wavelength range of 460 to 520 nm and / or light in the wavelength range of 540 to 620 nm.
Here, it is preferable that the wavelength selective reflection sheet 16 reflects the light having the maximum absorption wavelength in the absorption sheet 15 with a high reflectance. For example, when the maximum absorption wavelength in the absorption sheet 15 is 600 nm, the wavelength selective reflection sheet 16 preferably reflects light of 600 nm with a high reflectance. In particular, the wavelength selective reflection sheet 16 preferably reflects the light having the maximum absorption wavelength in the absorption sheet 15 with a reflectance of 80% or more of the reflectance of the light having the maximum reflection wavelength.
 具体的には、前述のように吸収シート15の最大吸光波長をλmaxとして、波長選択反射シート16の最大反射波長における反射率をRmax、波長選択反射シート16の波長λmaxにおける反射率をR(λmax)とする。
 この際において、吸収シート15が、『460nm<λmax<520nm』を満たす吸収シート、もしくは、『540nm<λmax<620nm』を満たす吸収シートである場合には、波長選択反射シート16は、
     Rmax×0.8≦R(λmax
を持たすものであるのが好ましい。
Specifically, as described above, the maximum absorption wavelength of the absorption sheet 15 is λ max , the reflectance at the maximum reflection wavelength of the wavelength selective reflection sheet 16 is R max , and the reflectance at the wavelength λ max of the wavelength selective reflection sheet 16 is Let R (λ max ).
In this case, when the absorption sheet 15 is an absorption sheet satisfying “460 nm <λ max <520 nm” or an absorption sheet satisfying “540 nm <λ max <620 nm”, the wavelength selective reflection sheet 16 is:
R max × 0.8 ≦ R (λ max )
It is preferable to have
 また、前述のように、バックライトユニット10は、『460nm<λmax<520nm』を満たす吸収シート15と、『540nm<λmax<620nm』を満たす吸収シート15との、両方を有する場合、および、1枚の吸収シート15で、460~520nmの波長域内と540~620nmの波長域内との、一方の波長域内に最大吸光波長を有し、他方の波長域内に2番目に大きい吸光波長を有する場合も有る。
 この際においては、吸収シート15の460~520nmの波長域内における最大吸光波長をλmax1、波長選択反射シート16の波長λmax1での反射率をR(λmax1)、
 吸収シート15の540~620nmの波長域内における最大吸光波長をλmax2、波長選択反射シート16の波長λmax2での反射率をR(λmax2)、
 波長選択反射シート16の460~520nmの波長域内における最大反射波長の光の反射率をRmax1、および、
 波長選択反射シート16の540~620nmの波長域内における最大反射波長の光の反射率をRmax2、として、
  Rmax1×0.8≦R(λmax1)、および、Rmax2×0.8≦R(λmax2)
の少なくとも一方を満たすのが好ましく、両方を満たすのがより好ましい。
 すなわち、吸収シート15が、前述のように、『460nm<λmax<520nm』を満たす吸収シート、または、『540nm<λmax<620nm』を満たす吸収シートである場合には、上記2式のうちの対応する波長域の式を満たすのが好ましい。
In addition, as described above, the backlight unit 10 includes both the absorption sheet 15 satisfying “460 nm <λ max <520 nm” and the absorption sheet 15 satisfying “540 nm <λ max <620 nm”, and One absorption sheet 15 has a maximum absorption wavelength in one wavelength range of 460 to 520 nm and a wavelength range of 540 to 620 nm, and has the second largest absorption wavelength in the other wavelength range. There are cases.
In this case, the maximum absorption wavelength in the wavelength range of 460 to 520 nm of the absorption sheet 15 is λ max 1, and the reflectance at the wavelength λ max 1 of the wavelength selective reflection sheet 16 is R (λ max 1),
The maximum absorption wavelength in the wavelength range of 540 to 620 nm of the absorption sheet 15 is λ max 2, and the reflectance at the wavelength λ max 2 of the wavelength selective reflection sheet 16 is R (λ max 2),
R max 1 represents the reflectance of light having the maximum reflection wavelength in the wavelength range of 460 to 520 nm of the wavelength selective reflection sheet 16;
Assuming that the reflectance of light having the maximum reflection wavelength in the wavelength range of 540 to 620 nm of the wavelength selective reflection sheet 16 is R max 2,
R max 1 × 0.8 ≦ R (λ max 1) and R max 2 × 0.8 ≦ R (λ max 2)
It is preferable to satisfy at least one of these, and it is more preferable to satisfy both.
That is, when the absorbing sheet 15 is an absorbing sheet satisfying “460 nm <λ max <520 nm” or an absorbing sheet satisfying “540 nm <λ max <620 nm” as described above, It is preferable to satisfy the corresponding wavelength range equation.
 前述のように、波長選択反射シート16は、図1および図2に示すように、支持体28にコレステリック液晶層30を設けた構成を有する。 As described above, the wavelength selective reflection sheet 16 has a configuration in which the cholesteric liquid crystal layer 30 is provided on the support 28 as shown in FIGS.
 <支持体>
 波長選択反射シート16の支持体28は、コレステリック液晶層30を支持するものである。
<Support>
The support 28 of the wavelength selective reflection sheet 16 supports the cholesteric liquid crystal layer 30.
 支持体28は単層であっても、多層であってもよい。単層である場合の支持体28としては、ガラス、トリアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリカーボネート、ポリ塩化ビニル、アクリル、および、ポリオレフィン等からなる支持体が挙げられる。多層である場合の支持体28の例としては、前述の単層の支持体のいずれかなどを基板として含み、この基板の表面に他の層を設けたものなどが挙げられる。 The support 28 may be a single layer or a multilayer. Examples of the support 28 in the case of a single layer include a support made of glass, triacetyl cellulose (TAC), polyethylene terephthalate (PET), polycarbonate, polyvinyl chloride, acrylic, polyolefin, and the like. As an example of the support 28 in the case of a multilayer, a substrate including any one of the above-mentioned single-layer supports as a substrate and another layer provided on the surface of the substrate can be cited.
 また、支持体28の膜厚には制限はなく、充分な透明性を有し、かつ、コレステリック液晶層30を支持できる厚さを、形成材料等に応じて、適宜、設定すればよい。具体的には、支持体28の厚さは、10~300μmが好ましく、12~100μmがより好ましく、12~50μmがさらに好ましい。
 支持体28は、透明であるのが好ましい。具体的には、支持体28は、JIS K 7361に準拠して測定する全光線透過率が90%以上であるのが好ましい。
Further, the thickness of the support 28 is not limited, and a thickness that has sufficient transparency and can support the cholesteric liquid crystal layer 30 may be appropriately set according to the forming material and the like. Specifically, the thickness of the support 28 is preferably 10 to 300 μm, more preferably 12 to 100 μm, and even more preferably 12 to 50 μm.
The support 28 is preferably transparent. Specifically, the support 28 preferably has a total light transmittance of 90% or more as measured in accordance with JIS K 7361.
 なお、支持体28は、コレステリック液晶層30が無い部分には、開口(貫通孔)を有してもよい。この点に関しては、後述する、コレステリック液晶層34が面内に反射率が異なる部分を有する構成において、反射率が低い部分に関しても同様である。 The support 28 may have an opening (through hole) in a portion where the cholesteric liquid crystal layer 30 is not provided. Regarding this point, the same applies to a portion having a low reflectance in a configuration in which the cholesteric liquid crystal layer 34 has a portion having a different reflectance in the plane, which will be described later.
 なお、支持体28とコレステリック液晶層30との間には、下地層を設けてもよい。下地層は樹脂層であるのが好ましく、透明樹脂層であるのがより好ましい。下地層の例としては、コレステリック液晶層30を形成する際の液晶化合物の配向を調節するための配向膜、および、支持体28とコレステリック液晶層30との接着特性を改善するための層、などが挙げられる。 A base layer may be provided between the support 28 and the cholesteric liquid crystal layer 30. The underlayer is preferably a resin layer, and more preferably a transparent resin layer. Examples of the underlayer include an alignment film for adjusting the alignment of the liquid crystal compound when forming the cholesteric liquid crystal layer 30, and a layer for improving the adhesion characteristics between the support 28 and the cholesteric liquid crystal layer 30. Is mentioned.
 <コレステリック液晶層>
 コレステリック液晶層30(後述するコレステリック液晶層34)は、コレステリック液晶相を固定してなる層である。すなわち、コレステリック液晶層30は、コレステリック構造を有する液晶材料からなる層である。
 前述のように、コレステリック液晶層30は、反射に波長選択反射性を有するものであり、460~520nmの波長域内の光、および、540~620nmの波長域内の光の、少なくとも一方を選択的に反射する。
 なお、以下のコレステリック液晶層30の説明は、後述する図6に示すコレステリック液晶層34等も同様である。
<Cholesteric liquid crystal layer>
The cholesteric liquid crystal layer 30 (cholesteric liquid crystal layer 34 described later) is a layer formed by fixing a cholesteric liquid crystal phase. That is, the cholesteric liquid crystal layer 30 is a layer made of a liquid crystal material having a cholesteric structure.
As described above, the cholesteric liquid crystal layer 30 has wavelength selective reflectivity for reflection, and selectively selects at least one of light in the wavelength range of 460 to 520 nm and light in the wavelength range of 540 to 620 nm. reflect.
The following description of the cholesteric liquid crystal layer 30 is the same for the cholesteric liquid crystal layer 34 shown in FIG.
 周知のように、コレステリック液晶相は、反射に波長選択性を有し、かつ、左円偏光および右円偏光のいずれかを反射する。すなわち、一例として、コレステリック液晶相が、青色光に選択反射中心波長を有する左円偏光を反射するものであれば、このコレステリック液晶相を固定してなるコレステリック液晶層は、青色の左円偏光の一部のみを反射して、それ以外の光を透過する。 As is well known, the cholesteric liquid crystal phase has wavelength selectivity in reflection, and reflects either left circularly polarized light or right circularly polarized light. That is, as an example, if the cholesteric liquid crystal phase reflects left circularly polarized light having a selective reflection center wavelength in blue light, the cholesteric liquid crystal layer formed by fixing the cholesteric liquid crystal phase has blue left circularly polarized light. Only a part is reflected and the other light is transmitted.
 <<コレステリック液晶相>>
 コレステリック液晶相は、特定の波長において選択反射性を示すことが知られている。選択反射の中心波長λは、コレステリック液晶相における螺旋構造のピッチP(=螺旋の周期)に依存し、コレステリック液晶相の平均屈折率nとλ=n×Pの関係に従う。そのため、この螺旋構造のピッチを調節することによって、コレステリック液晶層の選択反射波長(選択反射中心波長)を調節することができる。コレステリック液晶相のピッチは、コレステリック液晶層の形成の際、重合性液晶化合物と共に用いるキラル剤の種類、またはその添加濃度に依存するため、これらを調節することによって所望のピッチを得ることができる。
 なお、ピッチの調節については富士フイルム研究報告No.50(2005年)p.60-63に詳細な記載がある。螺旋のセンスおよびピッチの測定法については「液晶化学実験入門」日本液晶学会編 シグマ出版2007年出版、46頁、および「液晶便覧」液晶便覧編集委員会 丸善 196頁に記載の方法を用いることができる。
<< Cholesteric liquid crystal phase >>
It is known that the cholesteric liquid crystal phase exhibits selective reflectivity at a specific wavelength. The central wavelength λ of selective reflection depends on the pitch P (= spiral period) of the helical structure in the cholesteric liquid crystal phase, and follows the relationship between the average refractive index n of the cholesteric liquid crystal phase and λ = n × P. Therefore, the selective reflection wavelength (selective reflection center wavelength) of the cholesteric liquid crystal layer can be adjusted by adjusting the pitch of the spiral structure. Since the pitch of the cholesteric liquid crystal phase depends on the kind of chiral agent used together with the polymerizable liquid crystal compound or the concentration of the chiral agent when forming the cholesteric liquid crystal layer, a desired pitch can be obtained by adjusting these.
Regarding the pitch adjustment, Fujifilm Research Report No. 50 (2005) p. There is a detailed description in 60-63. For the measurement of spiral sense and pitch, it is possible to use the method described in “Introduction to Liquid Crystal Chemistry Experiments”, edited by the Japanese Liquid Crystal Society, Sigma Publishing 2007, page 46, and “Liquid Crystal Handbook”, Liquid Crystal Handbook Editorial Committee Maruzen 196 pages. it can.
 コレステリック液晶相は、走査型電子顕微鏡(SEM(Scanning Electron Microscope))によって観測されるコレステリック液晶層30の断面図において、明部と暗部との縞模様を与える。この明部と暗部の繰り返しの、明部2つおよび暗部2が、螺旋1ピッチに相当する。このことから、ピッチは、SEM断面図から測定することができる。コレステリック液晶層30においては、上記縞模様の各線の法線がコレステリック液晶相の螺旋軸方向となる。 The cholesteric liquid crystal phase gives a stripe pattern of a bright part and a dark part in a cross-sectional view of the cholesteric liquid crystal layer 30 observed by a scanning electron microscope (SEM (Scanning Electron Microscope)). The two bright parts and the dark part 2 in the repetition of the bright part and the dark part correspond to one pitch of the spiral. From this, the pitch can be measured from the SEM sectional view. In the cholesteric liquid crystal layer 30, the normal line of each line of the striped pattern is the spiral axis direction of the cholesteric liquid crystal phase.
 なお、コレステリック液晶相の反射光は右円偏光または左円偏光である。すなわち、コレステリック液晶層30は、右円偏光および左円偏光のいずれかを反射する。反射光が右円偏光であるか左円偏光であるかは、コレステリック液晶相の螺旋の捩れ方向による。コレステリック液晶相による円偏光の選択反射は、コレステリック液晶相の螺旋の捩れ方向が右の場合は右円偏光を反射し、螺旋の捩れ方向が左の場合は左円偏光を反射する。
 なお、コレステリック液晶相の旋回の方向は、コレステリック液晶層30を形成する液晶化合物の種類または添加されるキラル剤の種類によって調節できる。
The reflected light of the cholesteric liquid crystal phase is right circularly polarized light or left circularly polarized light. That is, the cholesteric liquid crystal layer 30 reflects either right-handed circularly polarized light or left-handed circularly polarized light. Whether the reflected light is right-handed circularly polarized light or left-handed circularly polarized light depends on the twist direction of the cholesteric liquid crystal phase. The selective reflection of circularly polarized light by the cholesteric liquid crystal phase reflects right circularly polarized light when the twist direction of the spiral of the cholesteric liquid crystal phase is right, and reflects left circularly polarized light when the twist direction of the spiral is left.
The direction of rotation of the cholesteric liquid crystal phase can be adjusted by the type of liquid crystal compound forming the cholesteric liquid crystal layer 30 or the type of chiral agent added.
 また、選択反射を示す選択反射帯域(円偏光反射帯域)の半値幅Δλ(nm)は、コレステリック液晶相のΔnと螺旋のピッチPとに依存し、Δλ=Δn×Pの関係に従う。そのため、選択反射帯域の幅の制御は、Δnを調節して行うことができる。Δnは、コレステリック液晶層30を形成する液晶化合物の種類およびその混合比率、ならびに、配向固定時の温度により調節できる。反射波長域の半値幅は波長選択反射シート16の用途に応じて調節され、例えば10~500nmであればよい。
 反射波長域の半値幅は狭いのが好ましい。反射波長域の半値幅は、好ましくは10~80nmであり、より好ましくは10~50nmであり、さらに好ましくは10~30nmである。
 選択反射の中心波長λを変えずに、反射波長域の半値幅を狭くするためには、コレステリック液晶相のΔnを小さくし、螺旋構造のピッチPを増やせばよい。
 コレステリック液晶相のΔnは、0.15以下が好ましく、0.12以下がより好ましく、0.1以下がさらに好ましく、0.09以下が特に好ましい。
Further, the half width Δλ (nm) of the selective reflection band (circular polarization reflection band) indicating selective reflection depends on Δn of the cholesteric liquid crystal phase and the pitch P of the helix, and follows the relationship of Δλ = Δn × P. Therefore, the width of the selective reflection band can be controlled by adjusting Δn. Δn can be adjusted by the type and mixing ratio of the liquid crystal compound forming the cholesteric liquid crystal layer 30 and the temperature at which the orientation is fixed. The half-value width of the reflection wavelength region is adjusted according to the use of the wavelength selective reflection sheet 16, and may be, for example, 10 to 500 nm.
The half-value width of the reflection wavelength region is preferably narrow. The full width at half maximum of the reflection wavelength region is preferably 10 to 80 nm, more preferably 10 to 50 nm, and still more preferably 10 to 30 nm.
In order to reduce the half-value width of the reflection wavelength region without changing the central wavelength λ of selective reflection, Δn of the cholesteric liquid crystal phase may be reduced and the pitch P of the spiral structure may be increased.
Δn of the cholesteric liquid crystal phase is preferably 0.15 or less, more preferably 0.12 or less, further preferably 0.1 or less, and particularly preferably 0.09 or less.
 <<コレステリック液晶層の作製方法>>
 コレステリック液晶層30は、コレステリック液晶相を固定して得ることができる。
 コレステリック液晶相を固定した構造は、コレステリック液晶相となっている液晶化合物の配向が保持されている構造であればよく、典型的には、重合性液晶化合物をコレステリック液晶相の配向状態としたうえで、紫外線照射および加熱等によって重合、硬化して、流動性が無い層を形成して、同時に、外場または外力によって配向形態に変化を生じさせることない状態に変化した構造であればよい。
 なお、コレステリック液晶相を固定した構造においては、コレステリック液晶相の光学的性質が保持されていれば十分であり、液晶化合物は、液晶性を示さなくてもよい。例えば、重合性液晶化合物は、硬化反応により高分子量化して、液晶性を失っていてもよい。
<< Method for Producing Cholesteric Liquid Crystal Layer >>
The cholesteric liquid crystal layer 30 can be obtained by fixing a cholesteric liquid crystal phase.
The structure in which the cholesteric liquid crystal phase is fixed may be a structure in which the alignment of the liquid crystal compound that is the cholesteric liquid crystal phase is maintained. Typically, the polymerizable liquid crystal compound is in an alignment state of the cholesteric liquid crystal phase. Thus, any structure may be used as long as it is polymerized and cured by ultraviolet irradiation and heating to form a layer having no fluidity, and at the same time, the orientation state is not changed by an external field or an external force.
In the structure in which the cholesteric liquid crystal phase is fixed, it is sufficient that the optical properties of the cholesteric liquid crystal phase are maintained, and the liquid crystal compound may not exhibit liquid crystallinity. For example, the polymerizable liquid crystal compound may have a high molecular weight by a curing reaction and lose liquid crystallinity.
 コレステリック液晶相を固定してなるコレステリック液晶層30の形成に用いる材料としては、一例として、液晶化合物を含む液晶組成物が挙げられる。液晶化合物は重合性液晶化合物であるのが好ましい。
 コレステリック液晶層30の形成に用いる液晶化合物を含む液晶組成物は、さらに界面活性剤を含むのが好ましい。また、コレステリック液晶層の形成に用いる液晶組成物は、さらにキラル剤、重合開始剤を含んでいてもよい。
As an example of the material used for forming the cholesteric liquid crystal layer 30 formed by fixing the cholesteric liquid crystal phase, a liquid crystal composition containing a liquid crystal compound can be given. The liquid crystal compound is preferably a polymerizable liquid crystal compound.
The liquid crystal composition containing a liquid crystal compound used for forming the cholesteric liquid crystal layer 30 preferably further contains a surfactant. The liquid crystal composition used for forming the cholesteric liquid crystal layer may further contain a chiral agent and a polymerization initiator.
--重合性液晶化合物--
 重合性液晶化合物は、棒状液晶化合物であっても、円盤状液晶化合物であってもよいが、棒状液晶化合物であるのが好ましい。
 コレステリック液晶相を形成する棒状の重合性液晶化合物の例としては、棒状ネマチック液晶化合物が挙げられる。棒状ネマチック液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、および、アルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。
--Polymerizable liquid crystal compound--
The polymerizable liquid crystal compound may be a rod-like liquid crystal compound or a disk-like liquid crystal compound, but is preferably a rod-like liquid crystal compound.
Examples of the rod-like polymerizable liquid crystal compound that forms the cholesteric liquid crystal phase include a rod-like nematic liquid crystal compound. Examples of rod-like nematic liquid crystal compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines. , Phenyldioxanes, tolanes, and alkenylcyclohexylbenzonitriles are preferably used. Not only low-molecular liquid crystal compounds but also high-molecular liquid crystal compounds can be used.
 重合性液晶化合物は、重合性基を液晶化合物に導入することで得られる。重合性基の例には、不飽和重合性基、エポキシ基およびアジリジニル基が含まれ、不飽和重合性基が好ましく、エチレン性不飽和重合性基がより好ましい。重合性基は種々の方法で、液晶化合物の分子中に導入できる。
 重合性液晶化合物が有する重合性基の個数は、好ましくは1~6個、より好ましくは1~3個である。
 重合性液晶化合物の例は、Makromol.Chem.,190巻、2255頁(1989年)、Advanced Materials 5巻、107頁(1993年)、米国特許第4683327号明細書、同5622648号明細書、同5770107号明細書、国際公開第95/22586号、同第95/24455号、同第97/00600号、同第98/23580号、同第98/52905号、特開平1-272551号公報、同6-16616号公報、同7-110469号公報、同11-80081号公報、および、特開2001-328973号公報などに記載の化合物が含まれる。2種類以上の重合性液晶化合物を併用してもよい。2種類以上の重合性液晶化合物を併用すると、配向温度を低下させることができる。
The polymerizable liquid crystal compound can be obtained by introducing a polymerizable group into the liquid crystal compound. Examples of the polymerizable group include an unsaturated polymerizable group, an epoxy group, and an aziridinyl group, preferably an unsaturated polymerizable group, and more preferably an ethylenically unsaturated polymerizable group. The polymerizable group can be introduced into the molecule of the liquid crystal compound by various methods.
The number of polymerizable groups possessed by the polymerizable liquid crystal compound is preferably 1 to 6, more preferably 1 to 3.
Examples of polymerizable liquid crystal compounds are described in Makromol. Chem. 190, 2255 (1989), Advanced Materials 5, 107 (1993), US Pat. Nos. 4,683,327, 5,622,648, and 5,770,107, International Publication No. 95/22586. No. 95/24455, No. 97/00600, No. 98/23580, No. 98/52905, JP-A-1-272551, JP-A-6-16616, and JP-A-7-110469. 11-80081 and JP-A 2001-328773, and the like. Two or more kinds of polymerizable liquid crystal compounds may be used in combination. When two or more kinds of polymerizable liquid crystal compounds are used in combination, the alignment temperature can be lowered.
 重合性液晶化合物の具体例としては、下記式(1)~(11)に示す化合物が挙げられる。 Specific examples of the polymerizable liquid crystal compound include compounds represented by the following formulas (1) to (11).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006

[化合物(11)において、X1は2~5(整数)である]
Figure JPOXMLDOC01-appb-C000006

[In the compound (11), X 1 is 2 to 5 (integer)]
 また、上記以外の重合性液晶化合物としては、特開昭57-165480号公報に開示されているようなコレステリック液晶相を有する環式オルガノポリシロキサン化合物等を用いることができる。さらに、前述の高分子液晶化合物としては、液晶を呈するメソゲン基を主鎖、側鎖、あるいは主鎖および側鎖の両方の位置に導入した高分子、コレステリル基を側鎖に導入した高分子コレステリック液晶、特開平9-133810号公報に開示されているような液晶性高分子、および、特開平11-293252号公報に開示されているような液晶性高分子等を用いることができる。 Further, as polymerizable liquid crystal compounds other than the above, cyclic organopolysiloxane compounds having a cholesteric liquid crystal phase as disclosed in JP-A-57-165480 can be used. Further, the above-mentioned polymer liquid crystal compound includes a polymer in which a mesogenic group exhibiting liquid crystal is introduced into the main chain, a side chain, or both positions of the main chain and the side chain, and a polymer cholesteric in which a cholesteryl group is introduced into the side chain. Liquid crystal, a liquid crystalline polymer as disclosed in JP-A-9-133810, a liquid crystalline polymer as disclosed in JP-A-11-293252, and the like can be used.
 また、液晶組成物中の重合性液晶化合物の添加量は、液晶組成物の固形分質量(溶剤を除いた質量)に対して、75~99.9質量%が好ましく、80~99質量%がより好ましく、85~90質量%がさらに好ましい。 The addition amount of the polymerizable liquid crystal compound in the liquid crystal composition is preferably 75 to 99.9% by mass, and 80 to 99% by mass with respect to the solid content mass (mass excluding the solvent) of the liquid crystal composition. More preferred is 85 to 90% by mass.
--界面活性剤--
 コレステリック液晶層30を形成する際に用いる液晶組成物は、界面活性剤を含有してもよい。
 界面活性剤は、安定的にまたは迅速にプレーナー配向のコレステリック液晶相とするために寄与する配向制御剤として機能できる化合物が好ましい。界面活性剤としては、例えば、シリコ-ン系界面活性剤およびフッ素系界面活性剤が挙げられ、フッ素系界面活性剤が好ましく例示される。
--Surfactant--
The liquid crystal composition used when forming the cholesteric liquid crystal layer 30 may contain a surfactant.
The surfactant is preferably a compound that can function as an alignment control agent that contributes to stably or rapidly producing a planar alignment cholesteric liquid crystal phase. Examples of the surfactant include a silicone-based surfactant and a fluorine-based surfactant, and a fluorine-based surfactant is preferably exemplified.
 界面活性剤の具体例としては、特開2014-119605号公報の段落[0082]~[0090]に記載の化合物、特開2012-203237号公報の段落[0031]~[0034]に記載の化合物、特開2005-99248号公報の段落[0092]および[0093]中に例示されている化合物、特開2002-129162号公報の段落[0076]~[0078]および段落[0082]~[0085]中に例示されている化合物、ならびに、特開2007-272185号公報の段落[0018]~[0043]等に記載のフッ素(メタ)アクリレート系ポリマー、などが挙げられる。
 なお、界面活性剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 フッ素系界面活性剤として、特開2014-119605号公報の段落[0082]~[0090]に記載の化合物が好ましい。
Specific examples of the surfactant include compounds described in paragraphs [0082] to [0090] of JP-A No. 2014-119605, and compounds described in paragraphs [0031] to [0034] of JP-A No. 2012-203237. , Compounds exemplified in paragraphs [0092] and [0093] of JP-A-2005-99248, paragraphs [0076] to [0078] and paragraphs [0082] to [0085] of JP-A 2002-129162 And the compounds exemplified therein, and fluorine (meth) acrylate polymers described in paragraphs [0018] to [0043] of JP-A-2007-272185, and the like.
In addition, surfactant may be used individually by 1 type and may use 2 or more types together.
As the fluorine-based surfactant, compounds described in paragraphs [0082] to [0090] of JP-A No. 2014-119605 are preferable.
 液晶組成物中における、界面活性剤の添加量は、重合性液晶化合物の全質量に対して0.01~10質量%が好ましく、0.01~5質量%がより好ましく、0.02~1質量%がさらに好ましい。 The addition amount of the surfactant in the liquid crystal composition is preferably 0.01 to 10% by mass, more preferably 0.01 to 5% by mass, and more preferably 0.02 to 1% with respect to the total mass of the polymerizable liquid crystal compound. More preferred is mass%.
--キラル剤(光学活性化合物)--
 キラル剤はコレステリック液晶相の螺旋構造を誘起する機能を有する。キラル剤は、化合物によって誘起する螺旋の捩れ方向または螺旋ピッチが異なるため、目的に応じて選択すればよい。
 キラル剤には、特に制限はなく、公知の化合物(例えば、液晶デバイスハンドブック、第3章4-3項、TN(Twisted Nematic)、STN(Super Twisted Nematic)用カイラル剤、199頁、日本学術振興会第142委員会編、1989に記載)、イソソルビド、および、イソマンニド誘導体等を用いることができる。
 キラル剤は、一般に不斉炭素原子を含むが、不斉炭素原子を含まない軸性不斉化合物および面性不斉化合物等もキラル剤として用いることができる。軸性不斉化合物および面性不斉化合物の例には、ビナフチル、ヘリセン、パラシクロファン、および、これらの誘導体が含まれる。キラル剤は、重合性基を有していてもよい。キラル剤と液晶化合物とがいずれも重合性基を有する場合は、重合性キラル剤と重合性液晶化合物との重合反応により、重合性液晶化合物から誘導される繰り返し単位と、キラル剤から誘導される繰り返し単位とを有するポリマーを形成することができる。この態様では、重合性キラル剤が有する重合性基は、重合性液晶化合物が有する重合性基と、同種の基であるのが好ましい。従って、キラル剤の重合性基も、不飽和重合性基、エポキシ基またはアジリジニル基であるのが好ましく、不飽和重合性基であるのがより好ましく、エチレン性不飽和重合性基であるのがさらに好ましい。
 また、キラル剤は、液晶化合物であってもよい。
--Chiral agent (optically active compound)-
The chiral agent has a function of inducing a helical structure of a cholesteric liquid crystal phase. The chiral agent may be selected according to the purpose because the twist direction or the spiral pitch of the spiral induced by the compound is different.
The chiral agent is not particularly limited, and is a known compound (for example, liquid crystal device handbook, chapter 3-4-3, chiral agent for TN (Twisted Nematic), STN (Super Twisted Nematic), 199 pages, Japan Science Foundation) 142th Committee, edited by 1989), isosorbide, isomannide derivatives, and the like can be used.
A chiral agent generally contains an asymmetric carbon atom, but an axially asymmetric compound and a planar asymmetric compound that do not contain an asymmetric carbon atom can also be used as the chiral agent. Examples of the axial asymmetric compound and the planar asymmetric compound include binaphthyl, helicene, paracyclophane, and derivatives thereof. The chiral agent may have a polymerizable group. When both the chiral agent and the liquid crystal compound have a polymerizable group, they are derived from the repeating unit derived from the polymerizable liquid crystal compound and the chiral agent by a polymerization reaction between the polymerizable chiral agent and the polymerizable liquid crystal compound. A polymer having repeating units can be formed. In this embodiment, the polymerizable group possessed by the polymerizable chiral agent is preferably the same group as the polymerizable group possessed by the polymerizable liquid crystal compound. Accordingly, the polymerizable group of the chiral agent is also preferably an unsaturated polymerizable group, an epoxy group or an aziridinyl group, more preferably an unsaturated polymerizable group, and an ethylenically unsaturated polymerizable group. Further preferred.
The chiral agent may be a liquid crystal compound.
 キラル剤が光異性化基を有する場合には、塗布、配向後に活性光線などのフォトマスク照射によって、発光波長に対応した所望の反射波長のパターンを形成することができるので好ましい。光異性化基としては、フォトクロッミック性を示す化合物の異性化部位、アゾ基、アゾキシ基、および、シンナモイル基が好ましい。具体的な化合物として、特開2002-80478号公報、特開2002-80851号公報、特開2002-179668号公報、特開2002-179669号公報、特開2002-179670号公報、特開2002-179681号公報、特開2002-179682号公報、特開2002-338575号公報、特開2002-338668号公報、特開2003-313189号公報、および、特開2003-313292号公報等に記載の化合物を用いることができる。 It is preferable that the chiral agent has a photoisomerizable group because a pattern having a desired reflection wavelength corresponding to the emission wavelength can be formed by photomask irradiation such as actinic rays after coating and orientation. As the photoisomerization group, an isomerization site, an azo group, an azoxy group, and a cinnamoyl group of a compound exhibiting photochromic properties are preferable. Specific examples of the compound include JP2002-80478, JP200280851, JP2002-179668, JP2002-179669, JP2002-179670, and JP2002. Compounds described in JP-A No. 179681, JP-A No. 2002-179682, JP-A No. 2002-338575, JP-A No. 2002-338668, JP-A No. 2003-313189, JP-A No. 2003-313292, etc. Can be used.
 液晶組成物における、キラル剤の含有量は、重合性液晶化合物量の0.01~200モル%が好ましく、1~30モル%がより好ましい。 The content of the chiral agent in the liquid crystal composition is preferably 0.01 to 200 mol%, more preferably 1 to 30 mol%, based on the amount of the polymerizable liquid crystal compound.
--重合開始剤--
 液晶組成物が重合性化合物を含む場合は、重合開始剤を含有しているのが好ましい。紫外線照射により重合反応を進行させる態様では、使用する重合開始剤は、紫外線照射によって重合反応を開始可能な光重合開始剤であるのが好ましい。光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許第2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書記載)、多核キノン化合物(米国特許第3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許第4239850号明細書記載)、ならびに、オキサジアゾール化合物(米国特許第4212970号明細書記載)等が挙げられる。
 液晶組成物中の光重合開始剤の含有量は、重合性液晶化合物の含有量に対して0.1~20質量%であるのが好ましく、0.5~12質量%であるのがより好ましい。
--Polymerization initiator--
When the liquid crystal composition contains a polymerizable compound, it preferably contains a polymerization initiator. In the embodiment in which the polymerization reaction is advanced by ultraviolet irradiation, the polymerization initiator to be used is preferably a photopolymerization initiator that can start the polymerization reaction by ultraviolet irradiation. Examples of photopolymerization initiators include α-carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), α-hydrocarbon substituted aromatics. Group acyloin compounds (described in US Pat. No. 2,722,512), polynuclear quinone compounds (described in US Pat. Nos. 3,046,127 and 2,951,758), a combination of triarylimidazole dimer and p-aminophenyl ketone (US patent) No. 3549367), acridine and phenazine compounds (JP-A-60-105667, US Pat. No. 4,239,850), oxadiazole compounds (US Pat. No. 4,221,970) and the like Can be mentioned.
The content of the photopolymerization initiator in the liquid crystal composition is preferably 0.1 to 20% by mass, more preferably 0.5 to 12% by mass with respect to the content of the polymerizable liquid crystal compound. .
--架橋剤--
 液晶組成物は、硬化後の膜強度向上、耐久性向上のため、任意に架橋剤を含有していてもよい。架橋剤としては、紫外線、熱、湿気等で硬化するものが好適に使用できる。
 架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えばトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート等の多官能アクリレート化合物;グリシジル(メタ)アクリレート、エチレングリコールジグリシジルエーテル等のエポキシ化合物;2,2-ビスヒドロキシメチルブタノール-トリス[3-(1-アジリジニル)プロピオネート]、4,4-ビス(エチレンイミノカルボニルアミノ)ジフェニルメタン等のアジリジン化合物;ヘキサメチレンジイソシアネート、ビウレット型イソシアネート等のイソシアネート化合物;オキサゾリン基を側鎖に有するポリオキサゾリン化合物;ビニルトリメトキシシラン、N-(2-アミノエチル)3-アミノプロピルトリメトキシシラン等のアルコキシシラン化合物などが挙げられる。また、架橋剤の反応性に応じて公知の触媒を用いることができ、膜強度および耐久性向上に加えて生産性を向上させることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 架橋剤の含有量は、液晶組成物の固形分質量に対して、3~20質量%が好ましく、5~15質量%がより好ましい。架橋剤の含有量が上記範囲内であれば、架橋密度向上の効果が得られやすく、コレステリック液晶相の安定性がより向上する。
-Crosslinking agent-
The liquid crystal composition may optionally contain a crosslinking agent in order to improve the film strength after curing and improve the durability. As the cross-linking agent, one that can be cured by ultraviolet rays, heat, moisture, or the like can be suitably used.
There is no restriction | limiting in particular as a crosslinking agent, According to the objective, it can select suitably, For example, polyfunctional acrylate compounds, such as a trimethylol propane tri (meth) acrylate and pentaerythritol tri (meth) acrylate; Glycidyl (meth) acrylate , Epoxy compounds such as ethylene glycol diglycidyl ether; aziridine compounds such as 2,2-bishydroxymethylbutanol-tris [3- (1-aziridinyl) propionate], 4,4-bis (ethyleneiminocarbonylamino) diphenylmethane; hexa Isocyanate compounds such as methylene diisocyanate and biuret type isocyanate; polyoxazoline compounds having an oxazoline group in the side chain; vinyltrimethoxysilane, N- (2-aminoethyl) 3-aminopropylto Alkoxysilane compounds such as methoxy silane. Moreover, a well-known catalyst can be used according to the reactivity of a crosslinking agent, and productivity can be improved in addition to membrane strength and durability improvement. These may be used individually by 1 type and may use 2 or more types together.
The content of the crosslinking agent is preferably 3 to 20% by mass and more preferably 5 to 15% by mass with respect to the solid content mass of the liquid crystal composition. If content of a crosslinking agent is in the said range, the effect of a crosslinking density improvement will be easy to be acquired, and stability of a cholesteric liquid crystal phase will improve more.
--その他の添加剤--
 液晶組成物中には、必要に応じて、さらに、重合禁止剤、酸化防止剤、紫外線吸収剤、光安定化剤、色材、および、金属酸化物微粒子等を、光学的性能等を低下させない範囲で添加することができる。
-Other additives-
In the liquid crystal composition, if necessary, a polymerization inhibitor, an antioxidant, an ultraviolet absorber, a light stabilizer, a coloring material, and metal oxide fine particles, etc., do not deteriorate the optical performance or the like. It can be added in a range.
 コレステリック液晶層30を形成する際には、液晶組成物は、液体として用いられるのが好ましい。
 液晶組成物は溶剤を含んでいてもよい。溶剤としては、特に制限はなく、目的に応じて適宜選択することができるが、有機溶剤が好ましく用いられる。
 有機溶剤としては、特に制限はなく、目的に応じて適宜選択することができる。有機剤としては、例えば、メチルエチルケトン、メチルイソブチルケトン等のケトン類、アルキルハライド類、アミド類、スルホキシド類、ヘテロ環化合物、炭化水素類、エステル類、および、エーテル類などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、環境への負荷を考慮した場合にはケトン類が好ましい。上述の単官能重合性モノマーなどの上述の成分が溶剤として機能していてもよい。
When the cholesteric liquid crystal layer 30 is formed, the liquid crystal composition is preferably used as a liquid.
The liquid crystal composition may contain a solvent. There is no restriction | limiting in particular as a solvent, Although it can select suitably according to the objective, An organic solvent is used preferably.
There is no restriction | limiting in particular as an organic solvent, According to the objective, it can select suitably. Examples of the organic agent include ketones such as methyl ethyl ketone and methyl isobutyl ketone, alkyl halides, amides, sulfoxides, heterocyclic compounds, hydrocarbons, esters, and ethers. These may be used individually by 1 type and may use 2 or more types together. Among these, ketones are preferable in consideration of environmental load. The above-described components such as the above-described monofunctional polymerizable monomer may function as a solvent.
 コレステリック液晶層30を形成する際には、コレステリック液晶層の形成面に液晶組成物を塗布して、液晶化合物をコレステリック液晶相の状態に配向した後、液晶化合物を硬化して、コレステリック液晶層30とする。
 すなわち、支持体28にコレステリック液晶層30を形成する場合には、支持体28に液晶組成物を塗布して、液晶化合物をコレステリック液晶相の状態に配向した後、液晶化合物を硬化して、コレステリック液晶相を固定してなるコレステリック液晶層30を形成する。
 液晶組成物の塗布は、インクジェットおよびスクロール印刷等の印刷法、ならびに、スピンコート、バーコートおよびスプレー塗布等のシート状物に液体を一様に塗布できる公知の方法が全て利用可能である。
When the cholesteric liquid crystal layer 30 is formed, a liquid crystal composition is applied to the surface on which the cholesteric liquid crystal layer is formed, the liquid crystal compound is aligned in a cholesteric liquid crystal phase, the liquid crystal compound is cured, and the cholesteric liquid crystal layer 30 is formed. And
That is, when the cholesteric liquid crystal layer 30 is formed on the support 28, the liquid crystal composition is applied to the support 28, the liquid crystal compound is aligned in a cholesteric liquid crystal phase, the liquid crystal compound is cured, and the cholesteric liquid crystal layer 30 is then cured. A cholesteric liquid crystal layer 30 formed by fixing the liquid crystal phase is formed.
For the application of the liquid crystal composition, a printing method such as ink jet and scroll printing, and a known method that can uniformly apply a liquid to a sheet-like material such as spin coating, bar coating, and spray coating can be used.
 塗布された液晶組成物は、必要に応じて乾燥および/または加熱され、その後、硬化され、コレステリック液晶層を形成する。この乾燥および/または加熱の工程で、液晶組成物中の重合性液晶化合物がコレステリック液晶相に配向すればよい。加熱を行う場合、加熱温度は、200℃以下が好ましく、130℃以下がより好ましい。 The applied liquid crystal composition is dried and / or heated as necessary, and then cured to form a cholesteric liquid crystal layer. In this drying and / or heating step, the polymerizable liquid crystal compound in the liquid crystal composition may be aligned in the cholesteric liquid crystal phase. When heating, the heating temperature is preferably 200 ° C. or lower, more preferably 130 ° C. or lower.
 配向させた液晶化合物は、必要に応じて、さらに重合される。重合は、熱重合、および、光照射による光重合のいずれでもよいが、光重合が好ましい。光照射は、紫外線を用いるのが好ましい。照射エネルギーは、20~50J/cm2が好ましく、100~1500mJ/cm2がより好ましい。光重合反応を促進するため、加熱条件下または窒素雰囲気下で光照射を実施してもよい。照射紫外線波長は250~430nmが好ましい。 The aligned liquid crystal compound is further polymerized as necessary. The polymerization may be either thermal polymerization or photopolymerization by light irradiation, but photopolymerization is preferred. It is preferable to use ultraviolet rays for light irradiation. The irradiation energy is preferably 20 to 50 J / cm 2 and more preferably 100 to 1500 mJ / cm 2 . In order to accelerate the photopolymerization reaction, light irradiation may be performed under heating conditions or in a nitrogen atmosphere. The irradiation ultraviolet wavelength is preferably 250 to 430 nm.
 前述のように、コレステリック液晶相を固定してなるコレステリック液晶層は、SEMで観察する断面図において、明部と暗部とを交互に積層した縞模様が観察される。
 ここで、本発明において、コレステリック液晶層30は、断面における明部および暗部が、波打ち構造を有するのが好ましい。以下の説明において、コレステリック液晶層30の明部および暗部は、コレステリック液晶層30の断面のSEM観察によって観察されるものである。
As described above, the cholesteric liquid crystal layer formed by fixing the cholesteric liquid crystal phase has a striped pattern in which bright portions and dark portions are alternately stacked in a cross-sectional view observed with an SEM.
Here, in the present invention, the cholesteric liquid crystal layer 30 preferably has a wavy structure in the bright and dark portions in the cross section. In the following description, the bright part and the dark part of the cholesteric liquid crystal layer 30 are observed by SEM observation of the cross section of the cholesteric liquid crystal layer 30.
 図4に、一般的なコレステリック液晶層30の断面を概念的に示す。
 図4に示すように、支持体28上に配置されたコレステリック液晶層30の断面では、通常、明部Bと暗部Dとの縞模様が観察される。すなわち、コレステリック液晶相を固定してなるコレステリック液晶層30の断面では、明部Bと暗部Dとを交互に積層した層状構造が観察される。
 前述のように、2つの明部と2つの暗部とが、コレステリック液晶相の螺旋1ピッチ分に相当する。
 一般的に、明部Bおよび暗部Dの縞模様(層状構造)は、図4に示すように、支持体28の表面すなわちコレステリック液晶層30の形成面と平行となるように形成される。このような態様の場合、コレステリック液晶相の液晶化合物の螺旋軸は、支持体28の表面に直交した状態で揃ってるため、コレステリック液晶層30は、鏡面反射性を示す。すなわち、コレステリック液晶相を固定してなるコレステリック液晶層30の法線方向から光が入射される場合、法線方向に光は反射されるが、斜め方向には光は反射されにくく、拡散反射性に劣る(図4中の矢印参照)。
FIG. 4 conceptually shows a cross section of a general cholesteric liquid crystal layer 30.
As shown in FIG. 4, in the cross section of the cholesteric liquid crystal layer 30 disposed on the support 28, a stripe pattern of bright portions B and dark portions D is usually observed. That is, in the cross section of the cholesteric liquid crystal layer 30 in which the cholesteric liquid crystal phase is fixed, a layered structure in which bright portions B and dark portions D are alternately stacked is observed.
As described above, the two bright portions and the two dark portions correspond to one pitch of the spiral of the cholesteric liquid crystal phase.
Generally, the stripe pattern (layered structure) of the bright part B and the dark part D is formed to be parallel to the surface of the support 28, that is, the formation surface of the cholesteric liquid crystal layer 30, as shown in FIG. In such an embodiment, the spiral axes of the liquid crystal compound in the cholesteric liquid crystal phase are aligned in a state orthogonal to the surface of the support 28, and thus the cholesteric liquid crystal layer 30 exhibits specular reflectivity. That is, when light is incident from the normal direction of the cholesteric liquid crystal layer 30 formed by fixing the cholesteric liquid crystal phase, the light is reflected in the normal direction, but the light is not easily reflected in the oblique direction, and is diffusely reflective. (See arrow in FIG. 4).
 これに対して、図5に断面を概念的に示すように、コレステリック液晶相を固定してなるコレステリック液晶層30の明部Bおよび暗部Dが波打ち構造(凹凸構造)を有する場合には、コレステリック液晶相の液晶化合物の螺旋軸が傾いている領域を有する。そのため、波打ち構造を有するコレステリック液晶層30に対して、コレステリック液晶層30の法線方向から光が入射されると、図5に示すように、液晶化合物の螺旋軸が傾いている領域があるため、入射光の一部が斜め方向に反射される(図7中の矢印参照)。
 つまり、コレステリック液晶相を固定してなるコレステリック液晶層30が波打ち構造を有することにより、コレステリック液晶層30は、拡散反射性を有する。そのため、波打ち構造を有するコレステリック液晶層30を形成することで、波長選択反射シート16に入射した光を好適に拡散反射させて、吸収シート15による不要な波長域の光の吸収効率を向上できる点で好ましい。
On the other hand, when the bright part B and the dark part D of the cholesteric liquid crystal layer 30 in which the cholesteric liquid crystal phase is fixed have a wavy structure (uneven structure) as conceptually shown in FIG. The liquid crystal compound has a region in which the spiral axis of the liquid crystal compound is inclined. Therefore, when light is incident on the cholesteric liquid crystal layer 30 having a wavy structure from the normal direction of the cholesteric liquid crystal layer 30, there is a region where the spiral axis of the liquid crystal compound is inclined as shown in FIG. A part of the incident light is reflected in an oblique direction (see the arrow in FIG. 7).
That is, the cholesteric liquid crystal layer 30 formed by fixing the cholesteric liquid crystal phase has a waved structure, so that the cholesteric liquid crystal layer 30 has diffuse reflectivity. Therefore, by forming the cholesteric liquid crystal layer 30 having a waved structure, the light incident on the wavelength selective reflection sheet 16 can be appropriately diffusely reflected, and the absorption efficiency of light in an unnecessary wavelength region by the absorption sheet 15 can be improved. Is preferable.
 波打ち構造を有するコレステリック液晶層30では、波打ち構造が成す連続線において、支持体28におけるコレステリック液晶層30の形成面に対する傾斜角度が0°となる山(頂部)および谷(底部)が、複数、特定される。
 ここで、良好な拡散反射性を得られる等の点で、コレステリック液晶層30は、隣接する山と谷とに挟まれた波打ち構造の明部Bまたは暗部Dが成す連続線の支持体28の表面すなわちコレステリック液晶層30の形成面に対する角度が、5°以上となる領域を、複数、有するのが好ましい。
In the cholesteric liquid crystal layer 30 having a wavy structure, a plurality of peaks (tops) and valleys (bottoms) at which the inclination angle of the support 28 with respect to the formation surface of the cholesteric liquid crystal layer 30 is 0 ° in the continuous line formed by the wavy structure, Identified.
Here, the cholesteric liquid crystal layer 30 has a continuous line support 28 formed by a bright portion B or a dark portion D having a wave structure sandwiched between adjacent peaks and valleys in that good diffuse reflectance can be obtained. It is preferable to have a plurality of regions where the angle with respect to the surface, that is, the formation surface of the cholesteric liquid crystal layer 30 is 5 ° or more.
 また、同様の理由で、コレステリック液晶層30は、明部Bおよび暗部Dの波打ち構造におけるピーク間距離(波の周期)の平均が1~50μmであるのが好ましい。 For the same reason, the cholesteric liquid crystal layer 30 preferably has an average peak-to-peak distance (wave period) of 1 to 50 μm in the wavy structure of the bright part B and the dark part D.
 このような明部Bと暗部Dとが波打ち構造を有するコレステリック液晶層30は、一例として、以下のように形成できる。
 すなわち、一般的なコレステリック液晶相を固定してなるコレステリック液晶層30は、支持体28すなわちコレステリック液晶層30の形成面にラビング処理等を施して、配向規制力を付与して形成する。
 これに対して、明部Bおよび暗部Dが波打ち構造を有するコレステリック液晶層30は、コレステリック液晶層30の形成面に、配向規制力を付与しないか、もしくは、弱い配向規制力を付与した状態とすることで、形成できる。例えば、コレステリック液晶層30の形成面(支持体28または下地層)にラビング処理を実施しない、もしくは弱いラビング処理を行なう程度として、適切な配向規制力を付与することで、上述した好ましい波打ち構造を有するコレステリック液晶層30を形成できる。
The cholesteric liquid crystal layer 30 having such a bright part B and dark part D having a waved structure can be formed as follows, for example.
That is, the cholesteric liquid crystal layer 30 in which a general cholesteric liquid crystal phase is fixed is formed by subjecting the support 28, that is, the surface on which the cholesteric liquid crystal layer 30 is formed, to a rubbing treatment or the like to give an alignment regulating force.
On the other hand, the cholesteric liquid crystal layer 30 in which the bright part B and the dark part D have a waved structure does not impart an alignment regulating force to the formation surface of the cholesteric liquid crystal layer 30, or a state in which a weak alignment regulating force is imparted. By doing so, it can be formed. For example, the above preferred waved structure can be obtained by applying an appropriate alignment regulating force to such an extent that the rubbing treatment is not performed on the formation surface (the support 28 or the base layer) of the cholesteric liquid crystal layer 30 or the weak rubbing treatment is performed. The cholesteric liquid crystal layer 30 can be formed.
 前述のように、コレステリック液晶層30は、反射に波長選択反射性を有するものであり、460~520nmの波長域内の光、および、540~620nmの波長域内の光の、少なくとも一方を選択的に反射する。 As described above, the cholesteric liquid crystal layer 30 has wavelength selective reflectivity for reflection, and selectively selects at least one of light in the wavelength range of 460 to 520 nm and light in the wavelength range of 540 to 620 nm. reflect.
 コレステリック液晶層30が、460~520nmの波長域内の光を選択的に反射する場合には、コレステリック液晶層30は、一例として、460~520nmの波長域内に選択反射中心波長を有する。
 コレステリック液晶層30が、540~620nmの波長域内の光を選択的に反射する場合には、コレステリック液晶層30は、一例として、540~620nmの波長域内に選択反射中心波長を有する。
 コレステリック液晶層30が、460~520nmの波長域内の光、および、540~600nmの波長域内の光の、両方を選択的に反射す反射層である場合には、コレステリック液晶層30は、一例として、460~520nmの波長域内に選択反射中心波長を有するコレステリック液晶層と、540~600nmの波長域内に選択反射中心波長を有するコレステリック液晶層とを有する。
When the cholesteric liquid crystal layer 30 selectively reflects light in the wavelength range of 460 to 520 nm, as an example, the cholesteric liquid crystal layer 30 has a selective reflection center wavelength in the wavelength range of 460 to 520 nm.
When the cholesteric liquid crystal layer 30 selectively reflects light in the wavelength range of 540 to 620 nm, for example, the cholesteric liquid crystal layer 30 has a selective reflection center wavelength in the wavelength range of 540 to 620 nm.
When the cholesteric liquid crystal layer 30 is a reflective layer that selectively reflects both light in the wavelength range of 460 to 520 nm and light in the wavelength range of 540 to 600 nm, the cholesteric liquid crystal layer 30 is, for example, A cholesteric liquid crystal layer having a selective reflection center wavelength in a wavelength range of 460 to 520 nm and a cholesteric liquid crystal layer having a selective reflection center wavelength in a wavelength range of 540 to 600 nm are included.
 前述のように、コレステリック液晶層30は、吸収シート15が吸収する波長域内の光を選択的に反射する。
 コレステリック液晶層30の選択反射中心波長と吸収シート15の最大吸光波長(『λmax』)との関係には、特に制限はない。しかしながら、より好適に発光スペクトルの狭帯域化が図れる等の点で、コレステリック液晶層30の選択反射中心波長と、吸収シート15の最大吸光波長とは、近いのが好ましい。
 具体的には、コレステリック液晶層30の選択反射中心波長と、吸収シート15の最大吸光波長との差は、±100nm以下が好ましく、±50nm以下がより好ましく、±30nm以下がさらに好ましく、コレステリック液晶層30の選択反射中心波長と吸収シート15の最大吸光波長とが一致しているのが特に好ましい。
As described above, the cholesteric liquid crystal layer 30 selectively reflects light in the wavelength range absorbed by the absorption sheet 15.
There is no particular limitation on the relationship between the selective reflection center wavelength of the cholesteric liquid crystal layer 30 and the maximum absorption wavelength (“λ max ”) of the absorption sheet 15. However, it is preferable that the selective reflection center wavelength of the cholesteric liquid crystal layer 30 and the maximum absorption wavelength of the absorption sheet 15 are close to each other in that the emission spectrum can be narrowed more preferably.
Specifically, the difference between the selective reflection center wavelength of the cholesteric liquid crystal layer 30 and the maximum absorption wavelength of the absorbing sheet 15 is preferably ± 100 nm or less, more preferably ± 50 nm or less, further preferably ± 30 nm or less, and cholesteric liquid crystal It is particularly preferable that the selective reflection center wavelength of the layer 30 matches the maximum absorption wavelength of the absorption sheet 15.
 波長選択反射シート16の反射帯域は、吸収シート15の吸収帯域よりも狭い方が好ましい。具体的には、吸収シート15の最大吸収波長に対し吸光度が10%の値を取る波長幅に対して、波長選択反射シート16の反射帯域の半値幅が、狭いのが好ましい。 The reflection band of the wavelength selective reflection sheet 16 is preferably narrower than the absorption band of the absorption sheet 15. Specifically, it is preferable that the half width of the reflection band of the wavelength selective reflection sheet 16 is narrower than the wavelength width in which the absorbance takes a value of 10% with respect to the maximum absorption wavelength of the absorption sheet 15.
 なお、図示例の波長選択反射シート16は、1枚の支持体28にコレステリック液晶層30を形成している。
 ここで、コレステリック液晶層30が、複数層のコレステリック液晶層を有する場合には、波長選択反射シート16は、1枚の支持体28に複数層のコレステリック液晶層を形成したものでもよく、あるいは、支持体28にコレステリック液晶層30を形成したものを、複数枚、作製して、貼着することで、波長選択反射シート16としてもよい。
 また、波長選択反射シート16は、支持体28にコレステリック液晶層30を形成した小型のシートを、複数枚、作製して、この小型のシートを、別の透明なシート状物に貼着することで、波長選択反射シート16を構成してもよい。
In the illustrated wavelength selective reflection sheet 16, a cholesteric liquid crystal layer 30 is formed on a single support 28.
Here, when the cholesteric liquid crystal layer 30 has a plurality of cholesteric liquid crystal layers, the wavelength selective reflection sheet 16 may be one in which a plurality of cholesteric liquid crystal layers are formed on one support 28, or A plurality of the cholesteric liquid crystal layers 30 formed on the support 28 may be produced and adhered to form the wavelength selective reflection sheet 16.
Further, the wavelength selective reflection sheet 16 is produced by preparing a plurality of small sheets in which the cholesteric liquid crystal layer 30 is formed on the support 28, and sticking the small sheets to another transparent sheet. Thus, the wavelength selective reflection sheet 16 may be configured.
 コレステリック液晶層30は、右円偏光を反射するものでも、左円偏光を反射するものでも、右円偏光を反射するコレステリック液晶層と、左円偏光を反射するコレステリック液晶層との両方を有するものでもよい。 The cholesteric liquid crystal layer 30 has both a cholesteric liquid crystal layer that reflects right circularly polarized light and a cholesteric liquid crystal layer that reflects right circularly polarized light. But you can.
 コレステリック液晶層30の膜厚には、特に制限はなく、必要な反射率が得られる膜厚を、選択反射中心波長等に応じて、適宜、設定すればよい。この点に関しては、後述するコレステリック液晶層34も同様である。
 例えば、前述のように、コレステリック液晶層30の選択反射中心波長は、コレステリック液晶相の螺旋のピッチで決まるため、選択反射中心波長が長いコレステリック液晶層30ほど、目的とする反射率を得るために必要な膜厚が厚くなる。また、コレステリック液晶層30による反射率は、コレステリック液晶相の螺旋のピッチ数(螺旋の旋回数)が多いほど、すなわちコレステリック液晶層の膜厚が厚くなるほど、高くなる。
The film thickness of the cholesteric liquid crystal layer 30 is not particularly limited, and the film thickness that provides the required reflectance may be set as appropriate according to the selective reflection center wavelength and the like. This also applies to the cholesteric liquid crystal layer 34 described later.
For example, as described above, the selective reflection center wavelength of the cholesteric liquid crystal layer 30 is determined by the helical pitch of the cholesteric liquid crystal phase, so that the cholesteric liquid crystal layer 30 having a longer selective reflection center wavelength has a desired reflectance. The required film thickness increases. Further, the reflectance by the cholesteric liquid crystal layer 30 increases as the number of spiral pitches of the cholesteric liquid crystal phase (the number of spiral turns) increases, that is, as the film thickness of the cholesteric liquid crystal layer increases.
 以下に、図1に示すバックライトユニット10の作用を説明することで、本発明のバックライトユニットについて、より詳細に説明する。
 本例では、一例として、吸収シート15は、600nmに最大吸光波長を有し、また、波長選択反射シート16は、600nmに選択反射中心波長を有するコレステリック層30を有する。
Hereinafter, the operation of the backlight unit 10 shown in FIG. 1 will be described to describe the backlight unit of the present invention in more detail.
In this example, as an example, the absorption sheet 15 has a maximum absorption wavelength at 600 nm, and the wavelength selective reflection sheet 16 has a cholesteric layer 30 having a selective reflection center wavelength at 600 nm.
 図1に示すバックライトユニット10では、光源14が照射した光は、まず、吸収シート15に入射して、600nm近傍の光が吸収される。
 吸収シート15を透過した光は、次いで、波長選択反射シート16に入射する。
 波長選択反射シート16に入射した光のうち、コレステリック液晶層30に入射した光は、600nm近傍の光(右円偏光および/または左円偏光)のみが選択的に反射され、それ以外の波長域の光は、コレステリック液晶層30を透過する。
 また、波長選択反射シート16に入射した光のうち、支持体28のみの領域に入射した光は、そのまま波長選択反射シート16を透過する。
In the backlight unit 10 shown in FIG. 1, the light emitted from the light source 14 first enters the absorption sheet 15, and light in the vicinity of 600 nm is absorbed.
The light transmitted through the absorption sheet 15 then enters the wavelength selective reflection sheet 16.
Of the light incident on the wavelength selective reflection sheet 16, the light incident on the cholesteric liquid crystal layer 30 is selectively reflected only in the vicinity of 600 nm (right circularly polarized light and / or left circularly polarized light), and other wavelength regions. Light passes through the cholesteric liquid crystal layer 30.
Of the light incident on the wavelength selective reflection sheet 16, the light incident on the region of the support 28 only is transmitted through the wavelength selective reflection sheet 16 as it is.
 コレステリック液晶層30で反射された600nm近傍の光は、再度、吸収シート15に入射して吸収される。また、吸収シート15を透過した600nm近傍の光は、反射板12で反射されて、再度、吸収シート15に入射して吸収される。吸収シート15で吸収されなかった600nm近傍の光は、再度、コレステリック液晶層30で反射され、吸収シート15に入射することを繰り返して、効率よく、吸収シート15で吸収される。 The light near 600 nm reflected by the cholesteric liquid crystal layer 30 enters the absorption sheet 15 again and is absorbed. The light in the vicinity of 600 nm that has passed through the absorption sheet 15 is reflected by the reflection plate 12 and is incident on the absorption sheet 15 again and absorbed. Light in the vicinity of 600 nm that has not been absorbed by the absorption sheet 15 is again reflected by the cholesteric liquid crystal layer 30 and incident on the absorption sheet 15, and is efficiently absorbed by the absorption sheet 15.
 前述のように、コレステリック液晶層30は、光源14の光軸上に設けられる。従って、光源14から照射されて、波長選択反射シート16に大きな角度で斜めに入射する光は、ほとんどコレステリック液晶層30には入射しない。すなわち、コレステリック液晶層30は、短波長シフトを生じることなく、目的とする600nm近傍の光のみを、適正に反射する。
 他方、光源14から照射され、波長選択反射シート16に大きな角度で斜めに入射した光は、大部分が支持体28のみの領域に入射するので、反射されることはなく、そのまま、透過する。
 すなわち、本発明のバックライトユニット10は、波長選択反射シート16が面内に光源14の配置に応じた反射率分布を有することにより、波長選択反射シート16の実効的な反射帯域を狭くすることができ、その結果、ディスプレイの効率低下を最小限に留め、さらに、不要な波長域の光のみを除去して好適に発光スペクトルを狭帯域化して、色域を広げ、LCDによって色純度の高い表示を行うことができる。
As described above, the cholesteric liquid crystal layer 30 is provided on the optical axis of the light source 14. Therefore, the light irradiated from the light source 14 and obliquely incident on the wavelength selective reflection sheet 16 at a large angle hardly enters the cholesteric liquid crystal layer 30. In other words, the cholesteric liquid crystal layer 30 properly reflects only light of a target near 600 nm without causing a short wavelength shift.
On the other hand, most of the light emitted from the light source 14 and obliquely incident on the wavelength selective reflection sheet 16 at a large angle is incident on the region of the support 28 alone, and thus is not reflected and is transmitted as it is.
That is, the backlight unit 10 of the present invention narrows the effective reflection band of the wavelength selective reflection sheet 16 because the wavelength selective reflection sheet 16 has a reflectance distribution according to the arrangement of the light sources 14 in the plane. As a result, the display efficiency can be kept to a minimum, and only the light in the unnecessary wavelength band is removed to suitably narrow the emission spectrum, widen the color gamut, and the LCD has high color purity. Display can be made.
 波長選択反射シート16を透過した光は、拡散板18ならびにプリズムシート20aおよび20bによってさらに均一化され、所定方向の偏光のみが反射偏光板24を透過して、バックライトユニット10から照射される。
 なお、反射偏光板24で反射された光は、波長選択反射シート16および反射板12等で反射され、先と同様にして、再度、反射偏光板24に入射する。
The light transmitted through the wavelength selective reflection sheet 16 is further uniformized by the diffusion plate 18 and the prism sheets 20a and 20b, and only polarized light in a predetermined direction is transmitted through the reflective polarizing plate 24 and irradiated from the backlight unit 10.
The light reflected by the reflective polarizing plate 24 is reflected by the wavelength selective reflection sheet 16, the reflective plate 12, and the like, and enters the reflective polarizing plate 24 again in the same manner as described above.
 図1および図2に示す波長選択反射シート16は、透明な支持体28に、光源14の光軸に一致して、互いに離間するコレステリック液晶層30を形成することで、波長選択反射シート16の面内に反射率が異なる部分を有し、かつ、面内の反射率が光源14の配置に応じた構成を有する。
 本発明は、これに限定はされず、波長選択反射シートは、コレステリック液晶層の面内に反射率が異なる部分を有することにより、波長選択反射シートの面内に、反射率が異なる部分を有し、かつ、面内の反射率が光源14の配置に応じた構成を有するものでもよい。すなわち、本発明のバックライトユニットにおいて、波長選択反射シートは、コレステリック液晶層が、光源14の配置に応じた反射率分布を有するものでもよい。
The wavelength selective reflection sheet 16 shown in FIGS. 1 and 2 is formed on the transparent support 28 by forming cholesteric liquid crystal layers 30 that coincide with the optical axis of the light source 14 and are separated from each other. The surface has a portion with different reflectivity, and the in-plane reflectivity has a configuration corresponding to the arrangement of the light source 14.
The present invention is not limited to this, and the wavelength selective reflection sheet has a portion with different reflectance in the plane of the wavelength selective reflection sheet by having a portion with different reflectance in the plane of the cholesteric liquid crystal layer. In addition, the in-plane reflectance may be configured according to the arrangement of the light source 14. That is, in the backlight unit of the present invention, the wavelength selective reflection sheet may have a cholesteric liquid crystal layer having a reflectance distribution according to the arrangement of the light sources 14.
 すなわち、本発明のバックライトユニットにおいて、波長選択反射シートは、前述の波長選択反射シート16のように、特定の波長を選択的に反射する反射層を離散的に設けることで、面内に光源の配置に応じた反射率分布を設けたものであってもよく、あるいは、反射面内に反射率分布を有する反射層を有することにより、波長選択反射シートの面内に光源の配置に応じた反射率分布を設けたものであってもよい。 That is, in the backlight unit of the present invention, the wavelength selective reflection sheet is provided with a light source in an in-plane by discretely providing a reflective layer that selectively reflects a specific wavelength, like the wavelength selective reflection sheet 16 described above. The reflectance distribution according to the arrangement of the light source may be provided, or the reflection layer having the reflectance distribution in the reflection surface may be provided so that the wavelength selection reflection sheet can be provided in accordance with the arrangement of the light sources. A reflection distribution may be provided.
 図6および図7に、その一例を示す。
 図6および図7に示す波長選択反射シート32は、先と同様の支持体28に、コレステリック液晶層34を形成してなるものである。なお、図7は、コレステリック液晶層34を面方向と直交する方向から見た平面図である。
An example is shown in FIGS.
The wavelength selective reflection sheet 32 shown in FIGS. 6 and 7 is obtained by forming a cholesteric liquid crystal layer 34 on the same support 28 as described above. FIG. 7 is a plan view of the cholesteric liquid crystal layer 34 as seen from a direction orthogonal to the plane direction.
 コレステリック液晶層34は、前述のコレステリック液晶層30と同様、460~520nmの波長域内の光、および/または、540~620nmの波長域内の光を、選択的に反射するものである。
 ここで、コレステリック液晶層34は、高反射率領域34aと、それ以外の領域で、高反射率領域34aよりも反射率が低い低反射率領域34bとを有する。高反射率領域34aおよび低反射率領域34bは、選択的な反射波長は同じである。
 高反射率領域34aは、円形の平面形状を有するもので、前述のコレステリック液晶層30と同様、中心を光源14の光軸に一致する。従って、波長選択反射シート32も、反射率は、光源14の光軸上が最大となる。
 なお、高反射率領域34aの平面形状は、前述のコレステリック液晶層30に準じる。
The cholesteric liquid crystal layer 34 selectively reflects light in the wavelength range of 460 to 520 nm and / or light in the wavelength range of 540 to 620 nm, like the cholesteric liquid crystal layer 30 described above.
Here, the cholesteric liquid crystal layer 34 includes a high reflectance region 34a and a low reflectance region 34b having a lower reflectance than the high reflectance region 34a in other regions. The high reflectance region 34a and the low reflectance region 34b have the same selective reflection wavelength.
The high reflectivity region 34 a has a circular planar shape, and its center coincides with the optical axis of the light source 14 as in the case of the cholesteric liquid crystal layer 30 described above. Therefore, the reflectance of the wavelength selective reflection sheet 32 is also maximized on the optical axis of the light source 14.
Note that the planar shape of the high reflectance region 34 a conforms to the cholesteric liquid crystal layer 30 described above.
 波長選択反射シート32は、このような高反射率領域34aおよび低反射率領域34bを有するコレステリック液晶層34を有することにより、面内に反射率が異なる部分を有し、かつ、光源14の配置に応じた面内の反射率を有する。
 すなわち、波長選択反射シート32は、このような高反射率領域34aおよび低反射率領域34bからなるコレステリック液晶層34を有することにより、面内に、光源14の配置に応じた反射率分布を有する。
The wavelength selective reflection sheet 32 includes the cholesteric liquid crystal layer 34 having such a high reflectance region 34a and the low reflectance region 34b, thereby having portions having different reflectances in the plane, and the arrangement of the light source 14. It has in-plane reflectivity according to.
That is, the wavelength selective reflection sheet 32 has a cholesteric liquid crystal layer 34 composed of such a high reflectance region 34a and a low reflectance region 34b, and thus has a reflectance distribution corresponding to the arrangement of the light source 14 in the plane. .
 前述のように、高反射率領域34aは、光源14の光軸に中心を一致して設けられる。従って、光源14から照射されて、波長選択反射シート32に大きな角度で斜めに入射する光は、ほとんど高反射率領域34aには入射しない。従って、コレステリック液晶層30は、短波長シフトを生じることなく、目的とする波長域の光のみを、適正に反射する。
 他方、光源14から照射され、波長選択反射シート32に大きな角度で斜めに入射した光は、大部分が低反射率領域34bに入射する。低反射率領域34bは、反射率が低いので、短波長シフトが生じて、必要な波長域の光が反射されても、反射される光の量は少ない。
 従って、この構成でも、実質的に、波長選択反射シート32の実効的な反射帯域を狭くすることができ、その結果、ディスプレイの効率低下を最小限に留め、さらに、不要な波長域の光のみを除去して好適に発光スペクトルを狭帯域化して、色域を広げ、LCDによって色純度の高い表示を行うことができる。
As described above, the high reflectance region 34 a is provided with its center aligned with the optical axis of the light source 14. Therefore, the light irradiated from the light source 14 and obliquely incident on the wavelength selective reflection sheet 32 at a large angle hardly enters the high reflectance region 34a. Accordingly, the cholesteric liquid crystal layer 30 appropriately reflects only light in the target wavelength range without causing a short wavelength shift.
On the other hand, most of the light irradiated from the light source 14 and obliquely incident on the wavelength selective reflection sheet 32 at a large angle is incident on the low reflectance region 34b. Since the low reflectance region 34b has a low reflectance, a short wavelength shift occurs, and even if light in a necessary wavelength region is reflected, the amount of reflected light is small.
Accordingly, even in this configuration, the effective reflection band of the wavelength selective reflection sheet 32 can be substantially narrowed. As a result, the efficiency of the display is minimized, and only light in an unnecessary wavelength band is obtained. And the emission spectrum is preferably narrowed to broaden the color gamut and display with high color purity can be performed by the LCD.
 高反射率領域34aと低反射率領域34bとの反射率の差には、特に制限はない。
 高反射率領域34aは、不要な波長域の光を除去するためには、ある程度の反射率が必要である。他方、低反射率領域34bは、短波長シフトを生じる可能性が高いので、反射率は低い方が好ましい。
 この点を考慮すると、高反射率領域34aと低反射率領域34bとの反射率の差は、40%以上であるのが好ましく、70%以上であるのがより好ましく、90%以上であるのがさらに好ましい。
There is no particular limitation on the difference in reflectance between the high reflectance region 34a and the low reflectance region 34b.
The high reflectivity region 34a needs a certain reflectivity in order to remove light in an unnecessary wavelength region. On the other hand, since the low reflectance region 34b is likely to cause a short wavelength shift, it is preferable that the reflectance is low.
Considering this point, the difference in reflectance between the high reflectance region 34a and the low reflectance region 34b is preferably 40% or more, more preferably 70% or more, and 90% or more. Is more preferable.
 面内に反射率分布を有するコレステリック液晶層34は、図6および図7に示すように、高反射率領域34aと低反射率領域34bとを有する構成に限定はされない。すなわち、波長選択反射シートは、面内に光源14の位置に応じた反射率分布を有するものであれば、各種の構成のコレステリック液晶層が利用可能である。
 例えば、反射率が、面方向の光源14の光軸上で最大になり、光軸から面方向に離間するにしたがって、漸次、低下するように反射率が変化する反射率分布を有するコレステリック液晶層も利用可能である。この際において、光軸から離間する方向の反射率の低下は、連続的でも段階的でもよい。
The cholesteric liquid crystal layer 34 having an in-plane reflectance distribution is not limited to a configuration having a high reflectance region 34a and a low reflectance region 34b as shown in FIGS. That is, as long as the wavelength selective reflection sheet has a reflectance distribution according to the position of the light source 14 in the plane, cholesteric liquid crystal layers having various configurations can be used.
For example, a cholesteric liquid crystal layer having a reflectance distribution in which the reflectance is maximized on the optical axis of the light source 14 in the plane direction and gradually changes as the distance from the optical axis increases in the plane direction. Is also available. At this time, the decrease in reflectance in the direction away from the optical axis may be continuous or stepwise.
 なお、コレステリック液晶層34の波長率分布は、前述の反射率の測定方法を用いて、コレステリック液晶層34の反射率の測定を面方向で二次元的に行うことで、測定すればよい。 The wavelength ratio distribution of the cholesteric liquid crystal layer 34 may be measured by measuring the reflectance of the cholesteric liquid crystal layer 34 two-dimensionally in the plane direction using the above-described reflectance measurement method.
 <反射層における反射率分布の形成>
 波長選択反射シートが反射率分布を有する反射層を有する場合に、反射層における反射率分布の形成は、反射層の形成材料に応じた公知の方法で行えばよい。一例として、反射層の積層数を部分的に変更する方法、反射層の厚さを部分的に変更する方法、および、反射層の形成材料を部分的に変更する方法、等が例示される。
<Formation of reflectance distribution in reflective layer>
When the wavelength selective reflection sheet has a reflective layer having a reflectance distribution, the reflectance distribution in the reflective layer may be formed by a known method according to the material for forming the reflective layer. As an example, a method of partially changing the number of layers of the reflective layer, a method of partially changing the thickness of the reflective layer, a method of partially changing the forming material of the reflective layer, and the like are exemplified.
 前述のように、反射層としてコレステリック液晶層34を形成する場合には、コレステリック液晶層34の面内に反射率分布を形成する方法として、コレステリック液晶層34の厚さを、目的とする反射率分布に応じて、部分的に変更する方法が例示される。
 前述のように、コレステリック液晶層は、膜厚が厚い程、すなわちコレステリック液晶相の螺旋のピッチ数が多い程、反射率が高くなる。従って、コレステリック液晶層34の膜厚を、目的とする反射率分布に応じて変更することにより、コレステリック液晶層34の面内において、反射率分布を形成できる。
 なお、コレステリック液晶層34の厚さを部分的に変える場合には、例えば、右円偏光を反射するコレステリック液晶層を均一な膜厚で形成し、その上に、左円偏光を反射するコレステリック液晶層を、必要に応じて部分的に厚さを変えて、部分的にあるいは全面的に形成する、等の構成でもよい。
As described above, when the cholesteric liquid crystal layer 34 is formed as the reflective layer, the thickness of the cholesteric liquid crystal layer 34 is set to the target reflectance as a method for forming the reflectance distribution in the plane of the cholesteric liquid crystal layer 34. A method of partially changing according to the distribution is exemplified.
As described above, the reflectivity of the cholesteric liquid crystal layer increases as the film thickness increases, that is, as the number of spiral pitches of the cholesteric liquid crystal phase increases. Therefore, the reflectance distribution can be formed in the plane of the cholesteric liquid crystal layer 34 by changing the film thickness of the cholesteric liquid crystal layer 34 in accordance with the target reflectance distribution.
When the thickness of the cholesteric liquid crystal layer 34 is partially changed, for example, a cholesteric liquid crystal layer that reflects right circularly polarized light is formed with a uniform thickness, and a cholesteric liquid crystal that reflects left circularly polarized light is formed thereon. The layer may be configured to be partially or entirely formed by changing the thickness partially as necessary.
 コレステリック液晶層34の厚さを変更する方法としては、一例として、前述の液晶組成物の塗布を、スクロール印刷およびインクジェット等の印刷法で行って塗布厚を調節する方法、および、液晶組成物の塗布をスプレー塗布で行って塗布量によって塗布厚を調節する方法、が例示される。 As a method of changing the thickness of the cholesteric liquid crystal layer 34, as an example, a method of adjusting the coating thickness by applying the above-described liquid crystal composition by a printing method such as scroll printing and inkjet, and a liquid crystal composition An example is a method in which coating is performed by spray coating and the coating thickness is adjusted by the coating amount.
 また、コレステリック液晶層34の厚さを、目的とする反射率分布に応じて、部分的に変更する方法としては、図8に概念的に示すように、支持体28(コレステリック液晶層の形成面)に透明な突起28aを設けて、突起28aを覆うようにコレステリック液晶層4を形成する方法も利用可能である。
 この際においては、例えば、破線で示す突起28aを包埋する厚さまで右円偏光を反射するコレステリック液晶層を形成し、その上に、左円偏光を反射するコレステリック液晶層を形成する等の構成でもよい。
Further, as a method of partially changing the thickness of the cholesteric liquid crystal layer 34 in accordance with the target reflectance distribution, as shown conceptually in FIG. 8, the support 28 (formation surface of the cholesteric liquid crystal layer is formed). A method of forming a cholesteric liquid crystal layer 4 so as to cover the protrusion 28a by providing a transparent protrusion 28a on the surface 28) can also be used.
In this case, for example, a cholesteric liquid crystal layer that reflects right circularly polarized light is formed to a thickness that embeds the protrusion 28a indicated by a broken line, and a cholesteric liquid crystal layer that reflects left circularly polarized light is formed thereon. But you can.
 コレステリック液晶層34の面内に反射率分布を形成する別の方法として、コレステリック液晶層34を形成するコレステリック液晶相の配向度を部分的に変更する方法が例示される。
 コレステリック液晶相における反射率は、コレステリック液晶相の配向度が高いほど高い。したがって、コレステリック液晶相の配向度を部分的に変更することにより、コレステリック液晶層34の反射面内に反射率分布を形成できる。
 コレステリック液晶相の配向度を部分的に変更する方法としては、コレステリック液晶層の形成時における加熱温度を部分的に変更する方法、マスキング等によってコレステリック液晶層の形成時における液晶化合物を硬化するための紫外線の照射量(すなわち露光量)を部分的に変更する方法等が例示される。
As another method for forming the reflectance distribution in the plane of the cholesteric liquid crystal layer 34, a method for partially changing the degree of orientation of the cholesteric liquid crystal phase forming the cholesteric liquid crystal layer 34 is exemplified.
The reflectance in the cholesteric liquid crystal phase is higher as the degree of orientation of the cholesteric liquid crystal phase is higher. Therefore, a reflectance distribution can be formed in the reflecting surface of the cholesteric liquid crystal layer 34 by partially changing the degree of orientation of the cholesteric liquid crystal phase.
As a method for partially changing the degree of orientation of the cholesteric liquid crystal phase, a method for partially changing the heating temperature at the time of forming the cholesteric liquid crystal layer, a method for curing the liquid crystal compound at the time of forming the cholesteric liquid crystal layer by masking, etc. Examples thereof include a method of partially changing the irradiation amount (that is, the exposure amount) of ultraviolet rays.
 さらに、コレステリック液晶層34の面内に反射率分布を形成する別の方法として、組成の異なる液晶化合物によるコレステリック液晶層を、パターニングして形成することで、1層のコレステリック液晶層30を形成する方法が例示される。
 例えば、コレステリック液晶層は、液晶化合物のΔn(複屈折)が大きい程、反射率が高くなる。従って、互いにΔnが異なる液晶化合物を含有する、複数種の液晶組成物を調製し、各液晶組成物をパターニングして塗布して、コレステリック液晶層を形成することにより、面内に反射率分布を形成できる。
 また、キラル剤の含有量が異なると、選択反射中心波長が変化するので、目的とする波長の光の反射率は変化する。従って、キラル剤の含有量が異なる複数種の液晶組成物を調製し、各液晶組成物をパターニングして塗布して、コレステリック液晶層を形成することにより、波長選択反射シート16の連続する反射面内に反射率分布を形成できる。
Further, as another method for forming the reflectance distribution in the plane of the cholesteric liquid crystal layer 34, a single cholesteric liquid crystal layer 30 is formed by patterning cholesteric liquid crystal layers made of liquid crystal compounds having different compositions. A method is illustrated.
For example, the reflectivity of the cholesteric liquid crystal layer increases as the Δn (birefringence) of the liquid crystal compound increases. Accordingly, a plurality of types of liquid crystal compositions containing liquid crystal compounds having different Δn from each other are prepared, and each liquid crystal composition is patterned and applied to form a cholesteric liquid crystal layer. Can be formed.
Further, when the content of the chiral agent is different, the selective reflection center wavelength is changed, so that the reflectance of light having a target wavelength is changed. Accordingly, a plurality of types of liquid crystal compositions having different chiral agent contents are prepared, and each liquid crystal composition is patterned and applied to form a cholesteric liquid crystal layer. A reflectance distribution can be formed inside.
 複数の液晶組成物をパターニングして支持体28に塗布する方法としては、スクロール印刷およびインクジェット等の印刷法を利用する方法等が例示される。 Examples of the method of patterning a plurality of liquid crystal compositions and applying them to the support 28 include methods using a printing method such as scroll printing and ink jet.
 以上の例は、波長選択反射シート16が、特定の波長を選択的に反射する反射層としてコレステリック液晶層を有する例であるが、本発明は、これに限定はされない。
 例えば、コレステリック液晶層に変えて、支持体28に誘電体多層膜を形成した構成でも、コレステリック液晶層と同様にして、光の一部を反射し一部を透過する、連続する反射面内に反射率分布を有する輝度均一化シートを形成できる。
Although the above example is an example in which the wavelength selective reflection sheet 16 has a cholesteric liquid crystal layer as a reflective layer that selectively reflects a specific wavelength, the present invention is not limited to this.
For example, even in a configuration in which a dielectric multilayer film is formed on the support 28 instead of the cholesteric liquid crystal layer, in the same manner as the cholesteric liquid crystal layer, a part of light is reflected and a part of light is transmitted within a continuous reflecting surface. A luminance uniforming sheet having a reflectance distribution can be formed.
 図9に、本発明のバックライトユニットの別の態様の一例を概念的に示す。
 図9に示すバックライトユニット35は、さらに、波長変換シート36を有する。
 すなわち、本発明のバックライトユニットは、例えば、光源として、青色光等の所定の波長域の光(第1の波長を含む光)を照射する光源を用い、光源が照射した光の一部を波長変換要素によって吸収して、緑色光および赤色光等の光源が照射する光とは異なる波長域の光を照射することにより、白色光を照射するものでもよい。
FIG. 9 conceptually shows an example of another aspect of the backlight unit of the present invention.
The backlight unit 35 shown in FIG. 9 further has a wavelength conversion sheet 36.
That is, the backlight unit of the present invention uses, for example, a light source that emits light in a predetermined wavelength region such as blue light (light including the first wavelength) as a light source, and a part of the light emitted by the light source is used. White light may be irradiated by irradiating light of a wavelength region different from light irradiated by a light source such as green light and red light after being absorbed by the wavelength conversion element.
 図9に示すバックライトユニット35は、波長変換シート36を有し、かつ、光源14Bが前述の光源14と異なる以外は、前述のバックライトユニット10と同じ部材を多く用いるので、同じ部材には同じ符号を付し、以下の説明は、異なる部位を主に行う。 The backlight unit 35 shown in FIG. 9 has the wavelength conversion sheet 36 and uses many of the same members as the above-described backlight unit 10 except that the light source 14B is different from the above-described light source 14. The same reference numerals are given, and the following description mainly focuses on different parts.
[光源]
 光源14Bは、単色の光を照射する光源であり、一例として青色光を照射する。光源14Bも、前述の光源14と同様のものが、各種、利用可能である。
[light source]
The light source 14B is a light source that emits monochromatic light, and emits blue light as an example. As the light source 14B, various types similar to the light source 14 described above can be used.
[波長変換シート]
 バックライトユニット35においては、光源14と波長選択反射シート16との間に波長変換シート36を有する。
 波長変換シート36は、光源14Bが照射した青色光を入射され、一部を吸収して波長変換し、別の波長の1種以上の光を照射する、公知の波長変換シートである。
 図10に、波長変換シート36の構成を概念的に示す。波長変換シート36は、波長変換層40と、波長変換層40を挟持して支持する支持体42とを有する。
[Wavelength conversion sheet]
The backlight unit 35 includes a wavelength conversion sheet 36 between the light source 14 and the wavelength selective reflection sheet 16.
The wavelength conversion sheet 36 is a known wavelength conversion sheet that receives the blue light irradiated by the light source 14B, absorbs a part thereof, converts the wavelength, and irradiates one or more kinds of light having different wavelengths.
FIG. 10 conceptually shows the configuration of the wavelength conversion sheet 36. The wavelength conversion sheet 36 includes a wavelength conversion layer 40 and a support 42 that supports the wavelength conversion layer 40 while sandwiching it.
 <波長変換層>
 波長変換層40は、一例として、多数の蛍光体を硬化性の樹脂等のマトリックス中に分散してなる蛍光層であり、前述のように、波長変換層40に入射した光の波長を変換して出射する機能を有するものである。
 一例として、光源14Bから照射された青色光が波長変換層40に入射すると、波長変換層40は、内部に含有する蛍光体の効果により、この青色光の少なくとも一部を赤色光および緑色光に波長変換して出射する。
 なお、波長変換層40が発現する波長変換の機能は、青色光を赤色光および緑色光に波長変換する構成に限定はされず、入射光の少なくとも一部を異なる波長の光に変換するものであればよい。
<Wavelength conversion layer>
For example, the wavelength conversion layer 40 is a fluorescent layer in which a large number of phosphors are dispersed in a matrix such as a curable resin, and converts the wavelength of light incident on the wavelength conversion layer 40 as described above. And has a function of emitting light.
As an example, when the blue light irradiated from the light source 14B enters the wavelength conversion layer 40, the wavelength conversion layer 40 converts at least a part of the blue light into red light and green light due to the effect of the phosphor contained therein. The wavelength is converted and emitted.
The wavelength conversion function expressed by the wavelength conversion layer 40 is not limited to a configuration that converts the wavelength of blue light into red light and green light, but converts at least part of incident light into light of different wavelengths. I just need it.
 <<蛍光体>>
 蛍光体は、少なくとも、入射する励起光により励起され蛍光を発光する。
 蛍光層に含有される蛍光体の種類には特に限定はなく、求められる波長変換の性能等に応じて、種々の公知の蛍光体を適宜選択すればよい。
 このような蛍光体の例として、例えば有機蛍光染料および有機蛍光顔料の他、リン酸塩、アルミン酸塩および金属酸化物等に希土類イオンをドープした蛍光体、金属硫化物および金属窒化物等の半導体性の物質に賦活性のイオンをドープした蛍光体、ならびに、量子ドットとして知られる量子閉じ込め効果を利用した蛍光体等が例示される。中でも、発光スペクトル幅が狭く、ディスプレイに用いた場合の色再現性に優れた光源が実現でき、かつ、発光量子効率に優れる量子ドットは、本発明では好適に用いられる。
 すなわち、本発明において、波長変換層40としては、量子ドットを樹脂等のマトリックスに分散してなる量子ドット層が、好適に用いられる。また、波長変換シート36において、好ましい態様として、波長変換層40は量子ドット層である。
<< phosphor >>
The phosphor is excited at least by incident excitation light and emits fluorescence.
The kind of the phosphor contained in the phosphor layer is not particularly limited, and various known phosphors may be appropriately selected according to the required wavelength conversion performance.
Examples of such phosphors include, for example, phosphors, aluminates and metal oxides doped with rare earth ions in addition to organic fluorescent dyes and organic fluorescent pigments, metal sulfides and metal nitrides, etc. Illustrative are phosphors doped with activating ions in a semiconducting substance, and phosphors utilizing the quantum confinement effect known as quantum dots. Among them, a quantum dot having a narrow emission spectrum width, capable of realizing a light source excellent in color reproducibility when used in a display, and excellent in light emission quantum efficiency is preferably used in the present invention.
That is, in the present invention, as the wavelength conversion layer 40, a quantum dot layer formed by dispersing quantum dots in a matrix such as a resin is preferably used. In the wavelength conversion sheet 36, as a preferred embodiment, the wavelength conversion layer 40 is a quantum dot layer.
 量子ドットについては、例えば特開2012-169271号公報の段落[0060]~[0066]を参照することができるが、ここに記載のものに限定されるものではない。また、量子ドットは、市販品を何ら制限なく用いることができる。量子ドットの発光波長は、通常、粒子の組成、サイズにより調節することができる。 Regarding the quantum dots, for example, paragraphs [0060] to [0066] of JP 2012-169271 A can be referred to, but are not limited to those described here. As the quantum dots, commercially available products can be used without any limitation. The emission wavelength of the quantum dots can usually be adjusted by the composition and size of the particles.
 量子ドットは、マトリックス中に均一に分散されるのが好ましいが、マトリックス中に偏りをもって分散されてもよい。また、量子ドットは、1種のみを用いてもよいし、2種以上を併用してもよい。
 2種以上の量子ドットを併用する場合には、発光光の波長が異なる2種以上の量子ドットを使用してもよい。
The quantum dots are preferably dispersed uniformly in the matrix, but may be dispersed with a bias in the matrix. Moreover, only 1 type may be used for a quantum dot and it may use 2 or more types together.
When using 2 or more types of quantum dots together, you may use 2 or more types of quantum dots from which the wavelength of emitted light differs.
 具体的には、公知の量子ドットには、600nmを超え680nmの範囲の波長域に発光中心波長を有する量子ドット(A)、500nmを超え600nmの範囲の波長域に発光中心波長を有する量子ドット(B)、400nm~500nmの波長域に発光中心波長を有する量子ドット(C)がある。量子ドット(A)は、励起光により励起され赤色光を発光し、量子ドット(B)は緑色光を、量子ドット(C)は青色光を発光する。
 例えば、量子ドット(A)と量子ドット(B)とを含む量子ドット層に励起光として青色光を入射させると、量子ドット(A)により発光される赤色光、量子ドット(B)により発光される緑色光、および、量子ドット層を透過した青色光により、白色光を具現化することができる。または、量子ドット(A)、(B)、および(C)を含む量子ドット層に励起光として紫外線を入射させることにより、量子ドット(A)により発光される赤色光、量子ドット(B)により発光される緑色光、および量子ドット(C)により発光される青色光により、白色光を具現化することができる。
Specifically, the known quantum dots include a quantum dot (A) having an emission center wavelength in a wavelength range of more than 600 nm and in a range of 680 nm, and a quantum dot having an emission center wavelength in a wavelength range of more than 500 nm and 600 nm. (B) There is a quantum dot (C) having an emission center wavelength in a wavelength region of 400 nm to 500 nm. The quantum dots (A) are excited by excitation light to emit red light, the quantum dots (B) emit green light, and the quantum dots (C) emit blue light.
For example, when blue light is incident as excitation light on a quantum dot layer including quantum dots (A) and (B), red light emitted from the quantum dots (A) and light emitted from the quantum dots (B) are emitted. White light can be realized by green light and blue light transmitted through the quantum dot layer. Alternatively, by making ultraviolet light enter the quantum dot layer including the quantum dots (A), (B), and (C) as excitation light, the red light emitted from the quantum dots (A) and the quantum dots (B) White light can be realized by the emitted green light and the blue light emitted by the quantum dots (C).
 また、量子ドットとして、形状がロッド状で指向性を持ち偏光を発する、いわゆる量子ロッド、および、テトラポッド型量子ドット等を用いてもよい。 Further, as the quantum dots, so-called quantum rods having a rod shape and directivity and emitting polarized light, tetrapod quantum dots, or the like may be used.
 <<マトリックス>>
 前述のように、波長変換シート36において、波長変換層40は、樹脂等をマトリックスとして、量子ドット等を分散してなるものである。
 ここで、マトリックスは、量子ドット層に用いられる公知のものが各種利用可能であるが、少なくとも2種以上の重合性化合物を含む重合性組成物(塗布組成物)を硬化させてなるものが好ましい。なお、少なくとも2種以上併用する重合性化合物の重合性基は、同一であっても異なっていてもよく、好ましくは、この少なくとも2種の化合物は少なくとも1つ以上の共通の重合性基を有することが好ましい。
 重合性基の種類は、特に限定されないが、好ましくは、(メタ)アクリレート基、ビニル基、エポキシ基、および、オキセタニル基等が例示され、より好ましくは、(メタ)アクリレート基であり、さらに好ましくは、アクリレート基である。
<< Matrix >>
As described above, in the wavelength conversion sheet 36, the wavelength conversion layer 40 is formed by dispersing quantum dots or the like using a resin or the like as a matrix.
Here, various known matrices used for the quantum dot layer can be used as the matrix, but those obtained by curing a polymerizable composition (coating composition) containing at least two or more polymerizable compounds are preferable. . The polymerizable group of the polymerizable compound used in combination of at least two may be the same or different. Preferably, the at least two compounds have at least one common polymerizable group. It is preferable.
The kind of the polymerizable group is not particularly limited, but preferably, a (meth) acrylate group, a vinyl group, an epoxy group, an oxetanyl group, etc. are exemplified, more preferably a (meth) acrylate group, and still more preferably. Is an acrylate group.
 波長変換層40を形成するマトリックス、言い換えれば、波長変換層40となる重合性組成物は、必要に応じて、粘度調節剤および溶剤等の必要な成分を含んでもよい。なお、波長変換層40となる重合性組成物とは、言い換えれば、波長変換層40を形成するための重合性組成物である。 The matrix that forms the wavelength conversion layer 40, in other words, the polymerizable composition that becomes the wavelength conversion layer 40 may contain necessary components such as a viscosity modifier and a solvent, if necessary. The polymerizable composition that becomes the wavelength conversion layer 40 is, in other words, a polymerizable composition for forming the wavelength conversion layer 40.
--粘度調節剤--
 重合性組成物は、必要に応じて粘度調節剤を含んでいてもよい。粘度調節剤は、粒径が5~300nmであるフィラーが好ましい。また、粘度調節剤はチキソトロピー性を付与するためのチキソトロピー剤であるのも好ましい。チキソトロピー剤としては、ヒュームドシリカおよびアルミナ等が例示される。
--Viscosity modifier--
The polymerizable composition may contain a viscosity modifier as necessary. The viscosity modifier is preferably a filler having a particle size of 5 to 300 nm. The viscosity modifier is preferably a thixotropic agent for imparting thixotropic properties. Examples of thixotropic agents include fumed silica and alumina.
--溶剤--
 波長変換層40となる重合性組成物は、必要に応じて溶剤を含んでいてもよい。この場合に使用される溶剤の種類および添加量は、特に限定されない。例えば溶剤として、有機溶剤を一種または二種以上混合して用いることができる。
--solvent--
The polymerizable composition to be the wavelength conversion layer 40 may contain a solvent as necessary. In this case, the type and amount of the solvent used are not particularly limited. For example, one or a mixture of two or more organic solvents can be used as the solvent.
 --その他の成分--
 その他、波長変換層40となる重合性組成物は、必要に応じて、トリフルオロエチル(メタ)アクリレートおよびペンタフルオロエチル(メタ)アクリレート等のフッ素原子を有する化合物、2,2,6,6-テトラメチル-4-ピペリジルベンゾエートおよびN-(2,2,6,6-テトラメチル-4-ピペリジル)ドデシルコハク酸イミド等のヒンダードアミン化合物、界面活性剤、ならびに、シランカップリング剤等を含有してもよい。
-Other ingredients-
In addition, the polymerizable composition to be the wavelength conversion layer 40 may be a compound having a fluorine atom such as trifluoroethyl (meth) acrylate and pentafluoroethyl (meth) acrylate, 2, 2, 6, 6- Contains hindered amine compounds such as tetramethyl-4-piperidylbenzoate and N- (2,2,6,6-tetramethyl-4-piperidyl) dodecylsuccinimide, surfactants, silane coupling agents, etc. Also good.
 波長変換層40において、マトリックスとなる樹脂の量は、波長変換層40が含む機能性材料の種類等に応じて、適宜、決定すればよい。
 図示例においては、波長変換層40が量子ドット層であるので、マトリックスとなる樹脂は、量子ドット層の全量100質量部に対して、90~99.9質量部が好ましく、92~99質量部がより好ましい。
In the wavelength conversion layer 40, the amount of the resin serving as a matrix may be appropriately determined according to the type of functional material included in the wavelength conversion layer 40 and the like.
In the illustrated example, since the wavelength conversion layer 40 is a quantum dot layer, the resin serving as a matrix is preferably 90 to 99.9 parts by mass, and 92 to 99 parts by mass with respect to 100 parts by mass of the total amount of the quantum dot layer. Is more preferable.
 波長変換層40の厚さも、波長変換層40の種類および波長変換シート36の用途等に応じて、適宜、決定すればよい。
 図示例においては、波長変換層40が量子ドット層であるので、取り扱い性および発光特性の点で、波長変換層40の厚さは、5~200μmが好ましく、10~150μmがより好ましい。
The thickness of the wavelength conversion layer 40 may be appropriately determined according to the type of the wavelength conversion layer 40 and the application of the wavelength conversion sheet 36.
In the illustrated example, since the wavelength conversion layer 40 is a quantum dot layer, the thickness of the wavelength conversion layer 40 is preferably 5 to 200 μm, and more preferably 10 to 150 μm, from the viewpoint of handleability and light emission characteristics.
 <支持体>
 支持体42は、波長変換層40および波長変換層40となる重合性組成物を支持可能であるフィルム状物(シート状物)が、各種、利用可能である。
 好ましくは、支持体42は、支持基板の表面に、酸素等が透過しないガスバリア層を形成してなる、いわゆるガスバリアフィルムであるのが好ましい。すなわち、支持体42は、波長変換層40の主面を覆って、波長変換層40の主面から、水分および酸素等の波長変換層40を劣化させる物質が浸入することを抑制するための部材としても作用するのが好ましい。
<Support>
As the support 42, various film-like materials (sheet-like materials) that can support the wavelength conversion layer 40 and the polymerizable composition that becomes the wavelength conversion layer 40 can be used.
The support 42 is preferably a so-called gas barrier film in which a gas barrier layer that does not allow oxygen or the like to pass through is formed on the surface of the support substrate. That is, the support 42 covers the main surface of the wavelength conversion layer 40 and is a member for suppressing the intrusion of a substance that degrades the wavelength conversion layer 40 such as moisture and oxygen from the main surface of the wavelength conversion layer 40. It is also preferable to act.
 前述のように、図9に示すバックライトユニット35では、光源14Bは、青色光を照射する。
 光源14Bが照射した青色光は、波長変換シート36に入射する。青色光が波長変換シート36に入射すると、波長変換シート36が青色光の一部を吸収して、緑色光および赤色光を照射する。これにより、波長変換シート36からは、青色光、緑色光および赤色光が混合された白色光が照射される。
As described above, in the backlight unit 35 shown in FIG. 9, the light source 14B emits blue light.
The blue light irradiated by the light source 14B enters the wavelength conversion sheet 36. When blue light enters the wavelength conversion sheet 36, the wavelength conversion sheet 36 absorbs part of the blue light and irradiates green light and red light. Thereby, the wavelength conversion sheet 36 emits white light in which blue light, green light, and red light are mixed.
 これ以降は、前述のバックライトユニット10と同様であり、波長変換シート36から照射された白色光は、次いで、吸収シート15によって、例えば、前述と同様に600nm近傍の光が吸収される。
 吸収シート15を透過した光は、次いで、波長選択反射シート16に入射する。波長選択反射シート16のコレステリック液晶層30に入射した光は、600nm近傍の光のみが選択的に反射され、それ以外の波長域の光は、コレステリック液晶層30を透過する。
 波長選択反射シート16で反射された600nm近傍の光は、先と同様に、吸収シート15による吸収、反射板12による反射、および、コレステリック液晶層30による反射を繰り返し、吸収シート15に効率よく吸収される。また、波長選択反射シート16に、大きな角度で斜めに入射する光は、コレステリック液晶層30には入射せず、波長選択反射シート16の支持体28のみの領域に入射して、波長選択反射シート16を透過する。
 これにより、波長選択反射シート16の実効的な反射帯域を狭くすることができ、その結果、ディスプレイの効率低下を最小限に留め、さらに、不要な波長域の光のみを除去して好適に発光スペクトルを狭帯域化して、色域を広げ、LCDによって色純度の高い表示を行うことができる。
The subsequent steps are the same as those of the backlight unit 10 described above, and the white light irradiated from the wavelength conversion sheet 36 is then absorbed by the absorption sheet 15 in the vicinity of 600 nm, for example, as described above.
The light transmitted through the absorption sheet 15 then enters the wavelength selective reflection sheet 16. As for the light incident on the cholesteric liquid crystal layer 30 of the wavelength selective reflection sheet 16, only light in the vicinity of 600 nm is selectively reflected, and light in other wavelength regions is transmitted through the cholesteric liquid crystal layer 30.
The light in the vicinity of 600 nm reflected by the wavelength selective reflection sheet 16 repeats absorption by the absorption sheet 15, reflection by the reflection plate 12, and reflection by the cholesteric liquid crystal layer 30 as before, and efficiently absorbs the light in the absorption sheet 15. Is done. Further, light that is incident on the wavelength selective reflection sheet 16 obliquely at a large angle does not enter the cholesteric liquid crystal layer 30 but enters only the support 28 of the wavelength selective reflection sheet 16, and the wavelength selective reflection sheet. 16 is transmitted.
As a result, the effective reflection band of the wavelength selective reflection sheet 16 can be narrowed, and as a result, the display efficiency can be minimized, and only the light in the unnecessary wavelength region can be removed to suitably emit light. The spectrum can be narrowed to widen the color gamut and display with high color purity can be performed by the LCD.
 波長選択反射シート16を透過した光は、拡散板18によって、面方向の輝度を均一化され、さらに、プリズムシート20aおよび20bによってさらに均一化され、所定方向の偏光のみが反射偏光板24を透過して、バックライトユニット35から照射される。
 なお、反射偏光板24で反射された光は、波長選択反射シート16および反射板12等で反射され、先と同様にして、再度、反射偏光板24に入射する。
The light transmitted through the wavelength selective reflection sheet 16 is made uniform in luminance in the surface direction by the diffusion plate 18 and further made uniform by the prism sheets 20 a and 20 b, and only polarized light in a predetermined direction is transmitted through the reflective polarizing plate 24. Then, the light is emitted from the backlight unit 35.
The light reflected by the reflective polarizing plate 24 is reflected by the wavelength selective reflection sheet 16, the reflective plate 12, and the like, and enters the reflective polarizing plate 24 again in the same manner as described above.
 本発明のバックライトユニットにおいては、波長選択反射シート16は、白色光が入射される位置に配置する必要がある。
 従って、本発明のバックライトユニットが波長変換シート36を有する場合には、波長変換シート36は、反射板12と波長選択反射シート16との間に配置される。
 なお、本発明のバックライトユニットが波長変換シート36を有する場合には、吸収シート15と波長変換シート36とが、反射板12と波長選択反射シート16との間に配置されれば、吸収シート15と波長変換シート36との位置関係には、制限は無い。従って、図9に示す例とは逆に、波長変換シート36を吸収シート15の上に配置してもよい。
In the backlight unit of the present invention, the wavelength selective reflection sheet 16 needs to be disposed at a position where white light is incident.
Therefore, when the backlight unit of the present invention includes the wavelength conversion sheet 36, the wavelength conversion sheet 36 is disposed between the reflection plate 12 and the wavelength selection reflection sheet 16.
When the backlight unit of the present invention includes the wavelength conversion sheet 36, the absorption sheet 15 and the wavelength conversion sheet 36 are disposed between the reflection plate 12 and the wavelength selective reflection sheet 16 if the absorption sheet 15 and the wavelength conversion sheet 36 are disposed. There is no limitation on the positional relationship between the wavelength conversion sheet 15 and the wavelength conversion sheet 36. Therefore, contrary to the example shown in FIG. 9, the wavelength conversion sheet 36 may be disposed on the absorption sheet 15.
 ここで、光源14Bからの青色の発光は、面内において均一化される前に波長変換シートに入射される。すなわち、面内の位置に応じて、波長変換シートに入射される青色光の強度が異なる。
 従って、波長変換シート36が、波長選択反射シート16よりも光源14B側に配置される本発明のバックライトユニットにおいては、青色光の強度が高い部分のみに波長変換シートを面方向に互いに離間して配置する構成とすることができる。青色光の強度が高い部分のみに部分配置することで、バックライトユニットの発光を白色としたまま、量子ドットの使用量を低減することができる。このような構成においては、波長変換シートは光源14Bに対応して、光源14Bと同一の周期で配置されるのが好ましい。このような構成の一例として図11に示すバックライトユニット54のように、小型の波長変換シート36sを、各光源14Bに対応して設ける構成にすることもできる。
Here, the blue light emitted from the light source 14B is incident on the wavelength conversion sheet before being uniformed in the plane. That is, the intensity of the blue light incident on the wavelength conversion sheet varies depending on the position in the plane.
Therefore, in the backlight unit of the present invention in which the wavelength conversion sheet 36 is disposed on the light source 14B side with respect to the wavelength selective reflection sheet 16, the wavelength conversion sheets are separated from each other in the plane direction only in a portion where the intensity of blue light is high. Can be arranged. By partially arranging only the portion where the intensity of the blue light is high, the amount of quantum dots used can be reduced while the backlight unit emits white light. In such a configuration, it is preferable that the wavelength conversion sheet is disposed in the same cycle as the light source 14B in correspondence with the light source 14B. As an example of such a configuration, a small wavelength conversion sheet 36s can be provided corresponding to each light source 14B as in the backlight unit 54 shown in FIG.
 本発明のLCD(液晶表示装置)は、このような本発明のバックライトユニットをバックライトとして用いるLCDである。
 本発明のLCDは、本発明のバックライトユニットを用いる以外は、偏光子、薄膜トランジスタ(TFT(Thin Film Transistor))、液晶セル、透明電極、および、カラーフィルター等を有する、公知のLCDと同様の構成を有するものである。
 前述のように、本発明のバックライトユニットは、発光スペクトルを狭帯域化したバックライトを照射できる。従って、このバックライトユニットを用いる、本発明のLCDは、色純度が高く、色再現域の広いLCDである。
The LCD (liquid crystal display device) of the present invention is an LCD using such a backlight unit of the present invention as a backlight.
The LCD of the present invention is the same as the known LCD having a polarizer, a thin film transistor (TFT), a liquid crystal cell, a transparent electrode, a color filter, etc., except that the backlight unit of the present invention is used. It has a configuration.
As described above, the backlight unit of the present invention can irradiate a backlight whose emission spectrum is narrowed. Therefore, the LCD of the present invention using this backlight unit is an LCD having high color purity and a wide color reproduction range.
 以上、本発明のバックライトユニットおよび液晶表示装置について詳細に説明したが、本発明は上述の例に限定はされず、本発明の要旨を逸脱しない範囲において、各種の改良や変更を行ってもよいのは、もちろんである。 As described above, the backlight unit and the liquid crystal display device of the present invention have been described in detail. However, the present invention is not limited to the above-described examples, and various improvements and modifications may be made without departing from the gist of the present invention. Of course it is good.
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、試薬、使用量、物質量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the features of the present invention will be described more specifically with reference to examples. The materials, reagents, used amounts, substance amounts, ratios, processing details, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
 <透明支持体1の作製>
 下記の成分をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルロースアセテート溶液を調製した。
<Preparation of transparent support 1>
The following components were put into a mixing tank and stirred while heating to dissolve each component to prepare a cellulose acetate solution.
 (セルロースアセテート溶液組成)
 酢化度60.7~61.1%のセルロースアセテート  100質量部
 トリフェニルホスフェート              7.8質量部
 ビフェニルジフェニルホスフェート          3.9質量部
 メチレンクロライド                 336質量部
 メタノール                      29質量部
 1-ブタノール                    11質量部
(Cellulose acetate solution composition)
Cellulose acetate having an acetylation degree of 60.7 to 61.1% 100 parts by weight Triphenyl phosphate 7.8 parts by weight Biphenyl diphenyl phosphate 3.9 parts by weight Methylene chloride 336 parts by weight Methanol 29 parts by weight 1-butanol 11 parts by weight
 別のミキシングタンクに、下記のレターデーション上昇剤(A)16質量部、メチレンクロライド92質量部およびメタノール8質量部を投入し、加熱しながら攪拌して、レターデーション上昇剤溶液を調製した。セルロースアセテート溶液474質量部にレターデーション上昇剤溶液25質量部を混合し、充分に攪拌してドープを調製した。レターデーション上昇剤の添加量は、セルロースアセテート100質量部に対して、6質量部であった。 In another mixing tank, 16 parts by mass of the following retardation increasing agent (A), 92 parts by mass of methylene chloride and 8 parts by mass of methanol were added and stirred while heating to prepare a retardation increasing agent solution. A dope was prepared by mixing 474 parts by mass of the cellulose acetate solution with 25 parts by mass of the retardation increasing agent solution and stirring sufficiently. The addition amount of the retardation increasing agent was 6 parts by mass with respect to 100 parts by mass of cellulose acetate.
 レターデーション上昇剤(A)
Figure JPOXMLDOC01-appb-C000007
Retardation increasing agent (A)
Figure JPOXMLDOC01-appb-C000007
 得られたドープを、バンド延伸機を用いて流延した。バンド上での膜面温度が40℃となってから、70℃の温風で1分乾燥し、バンドからフィルムを140℃の乾燥風で10分乾燥し、残留溶剤量が0.3質量%、厚さが40μmのトリアセチルセルロースフィルムを作製した。
 このフィルムを、透明支持体1とする。
The obtained dope was cast using a band stretching machine. After the film surface temperature on the band reaches 40 ° C., the film is dried with warm air of 70 ° C. for 1 minute, and the film from the band is dried with 140 ° C. drying air for 10 minutes, and the residual solvent amount is 0.3% by mass. A triacetyl cellulose film having a thickness of 40 μm was prepared.
This film is referred to as a transparent support 1.
 <下塗り層付き透明支持体1の作製>
 透明支持体1の表面に、下記の組成の下塗り層塗布液を#16のワイヤーバーコーターで塗布した。その後、60℃で60秒、さらに90℃で150秒乾燥して下塗り層を形成して、下塗り層付き透明支持体1を作製した。
(下塗り層塗布液)
 下記の変性ポリビニルアルコール            10質量部
 水                         370質量部
 メタノール                     120質量部
 グルタルアルデヒド                 0.5質量部
<Preparation of transparent support 1 with undercoat layer>
An undercoat layer coating solution having the following composition was applied to the surface of the transparent support 1 with a # 16 wire bar coater. Then, it dried at 60 degreeC for 60 second, and also at 90 degreeC for 150 second, the undercoat layer was formed, and the transparent support body 1 with an undercoat layer was produced.
(Undercoat layer coating solution)
The following modified polyvinyl alcohol 10 parts by mass Water 370 parts by mass Methanol 120 parts by mass Glutaraldehyde 0.5 parts by mass
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 <コレステリック液晶層用塗布液600R1の調製>
 下記に示す成分を、25℃に保温された容器中にて、攪拌、溶解させ、コレステリック液晶層用塗布液600R1を調製した。
 メチルエチルケトン                 145質量部
 下記の棒状液晶化合物の混合物            100質量部
 IRGACURE OXE01(BASF社製)    1.5質量部
 下記構造のキラル剤A               4.87質量部
 下記構造の界面活性剤 F1           0.067質量部
 下記構造の界面活性剤 F2           0.027質量部
<Preparation of coating solution 600R1 for cholesteric liquid crystal layer>
The components shown below were stirred and dissolved in a container kept at 25 ° C. to prepare a cholesteric liquid crystal layer coating solution 600R1.
Methyl ethyl ketone 145 parts by weight Mixture of the following rod-like liquid crystal compounds 100 parts by weight IRGACURE OXE01 (manufactured by BASF) 1.5 parts by weight Chiral agent A having the following structure 4.87 parts by weight Surfactant having the following structure F1 0.067 parts by weight Below Surfactant with structure F2 0.027 parts by mass
 棒状液晶化合物の混合物
Figure JPOXMLDOC01-appb-C000009

キラル剤A
Figure JPOXMLDOC01-appb-C000010

界面活性剤F1
Figure JPOXMLDOC01-appb-C000011

界面活性剤F2
Figure JPOXMLDOC01-appb-C000012
Mixture of rod-like liquid crystal compounds
Figure JPOXMLDOC01-appb-C000009

Chiral agent A
Figure JPOXMLDOC01-appb-C000010

Surfactant F1
Figure JPOXMLDOC01-appb-C000011

Surfactant F2
Figure JPOXMLDOC01-appb-C000012
 コレステリック液晶層用塗布液600R1は、選択反射中心波長が600nmで、右円偏光を反射するコレステリック液晶層を形成する材料である。 The cholesteric liquid crystal layer coating liquid 600R1 is a material that forms a cholesteric liquid crystal layer that reflects right-handed circularly polarized light with a selective reflection center wavelength of 600 nm.
 <コレステリック液晶層用塗布液600L1の調製>
 下記に示す成分を、25℃に保温された容器中にて、攪拌、溶解させ、コレステリック液晶層用塗布液600L1を調製した。
 メチルエチルケトン                  45質量部
 上記棒状液晶化合物の混合物             100質量部
 IRGACURE OXE01 (BASF社製)   1.5質量部
 下記構造のキラル剤B               7.21質量部
 界面活性剤 F1                0.067質量部
 界面活性剤 F2                0.027質量部
<Preparation of coating solution 600L1 for cholesteric liquid crystal layer>
The components shown below were stirred and dissolved in a container kept at 25 ° C. to prepare a cholesteric liquid crystal layer coating solution 600L1.
Methyl ethyl ketone 45 parts by weight Mixture of the above rod-shaped liquid crystal compounds 100 parts by weight IRGACURE OXE01 (BASF) 1.5 parts by weight Chiral agent B having the following structure 7.21 parts by weight Surfactant F1 0.067 parts by weight Surfactant F2 0 .027 parts by mass
キラル剤B
Figure JPOXMLDOC01-appb-C000013
Chiral agent B
Figure JPOXMLDOC01-appb-C000013
 コレステリック液晶層用塗布液600L1は、選択反射中心波長で600nmの左円偏光を反射するコレステリック液晶層を形成する材料である。 The cholesteric liquid crystal layer coating liquid 600L1 is a material for forming a cholesteric liquid crystal layer that reflects left circularly polarized light having a selective reflection center wavelength of 600 nm.
 <シート600R1の作製>
 下塗り層付き透明支持体1の表面を、ラビングロールで搬送方向に平行な方向にクリアランス2mm、1000回転/分で回転させてラビング処理を行った。
 次いで、調製したコレステリック液晶層用塗布液600R1を、#11のワイヤーバーコーターで塗布した。95℃で60秒乾燥した後、130℃に加熱しながら500mJ/cm2で露光して、選択反射中心波長が600nmで右円偏光を反射するコレステリック液晶層を有するシート600R1を作製した。
 <シート600L1の作製>
 下塗り層付き透明支持体1の表面を、ラビングロールで搬送方向に平行な方向にクリアランス2mm、1000回転/分で回転させてラビング処理を行った。
 次いで、調製したコレステリック液晶層用塗布液600L1を、#3.2のワイヤーバーコーターで塗布した。95℃で60秒乾燥した後、130℃に加熱しながら500mJ/cm2で露光して、選択反射中心波長が600nmで左円偏光を反射するコレステリック液晶層を有するシート600L1を作製した。
<Preparation of Sheet 600R1>
The surface of the transparent support 1 with an undercoat layer was rubbed by rotating it with a rubbing roll in a direction parallel to the conveying direction at a clearance of 2 mm and 1000 rpm.
Next, the prepared coating liquid 600R1 for cholesteric liquid crystal layer was applied with a # 11 wire bar coater. After drying at 95 ° C. for 60 seconds, exposure was performed at 500 mJ / cm 2 while heating at 130 ° C. to prepare a sheet 600R1 having a cholesteric liquid crystal layer that reflects right circularly polarized light with a selective reflection center wavelength of 600 nm.
<Production of Sheet 600L1>
The surface of the transparent support 1 with an undercoat layer was rubbed by rotating it with a rubbing roll in a direction parallel to the conveying direction at a clearance of 2 mm and 1000 rpm.
Subsequently, the prepared coating liquid 600L1 for cholesteric liquid crystal layer was applied with a wire bar coater of # 3.2. After drying at 95 ° C. for 60 seconds, exposure was performed at 500 mJ / cm 2 while heating at 130 ° C. to prepare a sheet 600L1 having a cholesteric liquid crystal layer that reflects left circularly polarized light with a selective reflection center wavelength of 600 nm.
 <波長選択反射シート1の作製>
 作製したシート600R1と600L1とを、コレステリック層同士を対面して、粘着剤(綜研化学社製、SK2057)で貼着し、コレステリック液晶硬化層Aを得た。
 得られたコレステリック液晶硬化層Aを直径25mmの円形に、複数枚、切り出した。
 切り出したコレステリック液晶硬化層Aを、粘着剤(綜研化学社製、SK2057)によって、透明な基材に貼着することで、支持体にコレステリック液晶層を設けた波長選択反射シート1を作製した。円形に切り出したコレステリック液晶硬化層Aは、中心が、実施例で用いる液晶テレビの直下型LEDの光軸上に位置するように、一定間隔で格子状に配列した(図7参照)。
 紫外可視近赤外分光光度計(島津製作所製、UV-3150)によって測定したところ、作製した波長選択反射シート1の波長600nmの光に対する反射率は、面内の最大値で75%、最小値で4%で、波長選択反射シート1の面内に反射率分布を有していた。また、波長選択反射シート1の面内における反射率が最大の箇所は、円形で、格子状に分布していた(図7参照)。
<Preparation of wavelength selective reflection sheet 1>
The produced sheets 600R1 and 600L1 were bonded with an adhesive (SK2057, manufactured by Soken Chemical Co., Ltd.) with the cholesteric layers facing each other to obtain a cholesteric liquid crystal cured layer A.
A plurality of obtained cholesteric liquid crystal cured layers A were cut into a circle having a diameter of 25 mm.
The cut-off cholesteric liquid crystal cured layer A was adhered to a transparent substrate with an adhesive (manufactured by Soken Chemical Co., Ltd., SK2057), thereby producing a wavelength selective reflection sheet 1 in which a cholesteric liquid crystal layer was provided on a support. The cholesteric liquid crystal cured layer A cut out in a circular shape was arranged in a lattice pattern at regular intervals so that the center is positioned on the optical axis of the direct type LED of the liquid crystal television used in the example (see FIG. 7).
When measured with an ultraviolet-visible near-infrared spectrophotometer (manufactured by Shimadzu Corporation, UV-3150), the reflectance of the produced wavelength selective reflection sheet 1 with respect to light having a wavelength of 600 nm is 75% at the maximum value in the plane, and the minimum value. 4%, and had a reflectance distribution in the plane of the wavelength selective reflection sheet 1. Moreover, the location where the reflectance in the surface of the wavelength selection reflection sheet 1 was the maximum was circular and distributed in a lattice shape (see FIG. 7).
 <シート600R2の作製>
 下塗り層付き透明支持体1の表面を、ラビングロールで搬送方向に平行な方向にクリアランス2mm、1000回転/分で回転させてラビング処理を行った。
 次いで、調製したコレステリック液晶層用塗布液600R1を、#11のワイヤーバーコーターで塗布した。95℃で60秒乾燥した。
 その後、所定のパターンで黒インクが印刷されたOHPシートをマスクとし、最小で30mJ/cm2、最大で500mJ/cm2、照射されるように、25℃の温度下で、紫外線照射装置を用いてコレステリック液晶層用塗布液600R1に紫外線を照射した。
 その後、マスクを取り外し、130℃に加熱しながら、紫外線照射装置を用いてコレステリック液晶層用塗布液600R1に紫外線を500mJ/cm2、照射して、選択反射中心波長が600nmで右円偏光を反射するコレステリック液晶層を有するシート600R2を作製した。
<Preparation of Sheet 600R2>
The surface of the transparent support 1 with an undercoat layer was rubbed by rotating it with a rubbing roll in a direction parallel to the conveying direction at a clearance of 2 mm and 1000 rpm.
Next, the prepared coating liquid 600R1 for cholesteric liquid crystal layer was applied with a # 11 wire bar coater. Dry at 95 ° C. for 60 seconds.
Thereafter, the OHP sheet black ink is printed in a predetermined pattern as a mask, minimum 30 mJ / cm 2, most 500 mJ / cm 2, so as to irradiate, at a temperature of 25 ° C., using an ultraviolet irradiation device The cholesteric liquid crystal layer coating solution 600R1 was irradiated with ultraviolet rays.
Thereafter, the mask is removed, and while heating to 130 ° C., the UV irradiator is used to irradiate the coating liquid 600R1 for cholesteric liquid crystal layer with 500 mJ / cm 2 of UV light, and the right-handed polarized light is reflected at the selective reflection center wavelength of 600 nm. A sheet 600R2 having a cholesteric liquid crystal layer was prepared.
 <シート600L2の作製>
 下塗り層付き透明支持体1の表面を、ラビングロールで搬送方向に平行な方向にクリアランス2mm、1000回転/分で回転させてラビング処理を行った。
 次いで、調製したコレステリック液晶層用塗布液600L1を、#3.2のワイヤーバーコーターで塗布した。95℃で60秒乾燥した。
 その後、所定のパターンで黒インクが印刷されたOHPシートをマスクとし、最小で30mJ/cm2、最大で500mJ/cm2、照射されるように、25℃の温度下で、紫外線照射装置を用いてコレステリック液晶層用塗布液600R1に紫外線を照射した。
 その後、マスクを取り外し、130℃に加熱しながら、紫外線照射装置を用いてコレステリック液晶層用塗布液600R1に紫外線を500mJ/cm2、照射して、選択反射中心波長が600nmで右円偏光を反射するコレステリック液晶層を有するシート600R2を作製した。
<Preparation of Sheet 600L2>
The surface of the transparent support 1 with an undercoat layer was rubbed by rotating it with a rubbing roll in a direction parallel to the conveying direction at a clearance of 2 mm and 1000 rpm.
Subsequently, the prepared coating liquid 600L1 for cholesteric liquid crystal layer was applied with a wire bar coater of # 3.2. Dry at 95 ° C. for 60 seconds.
Thereafter, the OHP sheet black ink is printed in a predetermined pattern as a mask, minimum 30 mJ / cm 2, most 500 mJ / cm 2, so as to irradiate, at a temperature of 25 ° C., using an ultraviolet irradiation device The cholesteric liquid crystal layer coating solution 600R1 was irradiated with ultraviolet rays.
Thereafter, the mask is removed, and while heating to 130 ° C., the UV irradiator is used to irradiate the coating liquid 600R1 for cholesteric liquid crystal layer with 500 mJ / cm 2 of UV light, and the right-handed polarized light is reflected at the selective reflection center wavelength of 600 nm. A sheet 600R2 having a cholesteric liquid crystal layer was prepared.
 なお、マスクに印刷された黒インクのパターンは、最小で30mJ/cm2、最大で500mJ/cm2の紫外線が照射されるように、最も透過率が高い位置から、同心円状に連続的に透過率が低くなるように、面内に紫外線透過率の分布を設けたものである。
 透過率の高い領域、言い換えると紫外線照射量が最大となる領域は、中心が、実施例で用いる液晶テレビの直下型LEDの光軸と一致するように一定間隔で格子状に設けた(図7参照)。
The pattern of black ink printed on the mask, minimum 30 mJ / cm 2, as UV 500 mJ / cm 2 at maximum is irradiated, from the most transmittance higher position, continuously transmitting concentrically The distribution of ultraviolet transmittance is provided in the plane so that the rate is low.
A region having a high transmittance, in other words, a region where the amount of ultraviolet irradiation is maximized, is provided in a grid pattern at regular intervals so that the center coincides with the optical axis of the direct type LED of the liquid crystal television used in the embodiment (FIG. 7). reference).
 <波長選択反射シート2の作製>
 作製したシート600R2と600L2とを、コレステリック層同士を対面して、粘着剤(綜研化学社製、SK2057)で貼着して、波長選択反射シート2を得た。両シートは、マスクの円形の光透過領域が重なるように貼着した。
 波長選択反射シート1と同様に測定したところ、作製した波長選択反射シート2の波長600nmの光に対する反射率は、面内の最大値で75%、最小値で4%で、コレステリック液晶層の面内に反射率分布を有していた。また、波長選択反射シート2は、図12に概念的に示すように、面内の反射率が最大の箇所が格子状に二次元的に分布しており、反射率が最大の箇所から、同心円状に連続的に反射率が低下する反射率分布を有していた。反射率が最大の箇所は、実施例で用いる液晶テレビの直下型LEDの光軸と一致する分布を有していた。なお、図12では、反射率が同心円状に低下することを示すために、同心円を段階的に記載してるが、実際には、反射率の分布は、上記のように連続的である。
<Preparation of wavelength selective reflection sheet 2>
The prepared sheets 600R2 and 600L2 were bonded to each other with an adhesive (SK2057, manufactured by Soken Chemical Co., Ltd.) with the cholesteric layers facing each other to obtain the wavelength selective reflection sheet 2. Both sheets were stuck so that the circular light transmission regions of the mask overlapped.
When measured in the same manner as the wavelength selective reflection sheet 1, the reflectance of the produced wavelength selective reflection sheet 2 with respect to light having a wavelength of 600 nm is 75% at the maximum value in the plane and 4% at the minimum value, and the surface of the cholesteric liquid crystal layer. It had a reflectance distribution inside. Further, as conceptually shown in FIG. 12, the wavelength selective reflection sheet 2 is a two-dimensional distribution in which the maximum in-plane reflectivity is two-dimensionally distributed in a lattice shape, and the concentric circles from the maximum reflectivity. It had a reflectance distribution in which the reflectance continuously decreased. The portion having the highest reflectance had a distribution that coincided with the optical axis of the direct type LED of the liquid crystal television used in the examples. In FIG. 12, concentric circles are described step by step in order to show that the reflectance decreases concentrically, but in reality, the reflectance distribution is continuous as described above.
 <波長選択反射シート3の作製>
 キラル剤Aの量を5.88質量部にし、塗布時のワイヤーバーコーターを#9にした以外は、シート600R01と同様にして、選択反射中心波長が500nmで右円偏光を反射するコレステリック液晶層を有するシート500R1を得た。
 また、キラル剤Bの量を8.86質量部にし、塗布時のワイヤーバーコーターを#2.8にした以外は、シート600L1と同様にして、選択反射中心波長が500nmで左円偏光を反射するコレステリック液晶層を有するシート500L1を得た。
 このようにして得られたシート500R1および500L1を、波長選択反射シート1と同様に貼着し、切り出し、透明基材に貼着することにより、波長選択反射シート3を作製した。
 作製した波長選択反射シート1と同様に測定したところ、作製した波長選択反射シート3の波長500nmの光に対する反射率は、面内の最大値で90%、最小値で4%で、波長選択反射シート3は、面内に反射率分布を有していた。また、波長選択反射シート3の面内における反射率が最大の箇所は、円形で、格子状に分布していた(図7参照)。
<Preparation of wavelength selective reflection sheet 3>
A cholesteric liquid crystal layer that reflects right circularly polarized light with a selective reflection center wavelength of 500 nm in the same manner as the sheet 600R01, except that the amount of the chiral agent A is 5.88 parts by mass and the wire bar coater is # 9 at the time of coating. A sheet 500R1 having the following was obtained.
Further, except that the amount of the chiral agent B is 8.86 parts by mass and the wire bar coater at the time of coating is # 2.8, the selective reflection center wavelength is 500 nm and the left circularly polarized light is reflected in the same manner as the sheet 600L1. A sheet 500L1 having a cholesteric liquid crystal layer was obtained.
Thus, the wavelength selection reflection sheet 3 was produced by sticking the sheet | seat 500R1 and 500L1 which were obtained in the same way as the wavelength selection reflection sheet 1, cutting out, and sticking to a transparent base material.
When measured in the same manner as the produced wavelength selective reflection sheet 1, the reflectance of the produced wavelength selective reflection sheet 3 with respect to light having a wavelength of 500 nm is 90% at the maximum value in the plane and 4% at the minimum value. The sheet 3 had a reflectance distribution in the plane. Moreover, the location where the reflectance in the surface of the wavelength selection reflection sheet 3 was the maximum was circular and distributed in a lattice shape (see FIG. 7).
 <吸収シート1の作製>
 市販の液晶テレビ(Samsung社製JS7000FXZA)のバックライトユニットから色素フィルタを取り出し、吸収シート1とした。
 紫外可視近赤外分光光度計(島津製作所製、UV-3150)によって測定したところ、吸収シート1の最大吸光波長は583nmであった。
<Production of Absorbent Sheet 1>
The dye filter was taken out from the backlight unit of a commercially available liquid crystal television (JS7000FXZA, manufactured by Samsung), and used as an absorbent sheet 1.
When measured with an ultraviolet-visible near-infrared spectrophotometer (manufactured by Shimadzu Corporation, UV-3150), the maximum absorption wavelength of the absorption sheet 1 was 583 nm.
 <吸収シート2の作製>
 下記の成分をミキシングタンクに投入し、攪拌して各成分を溶解し、シクロオレフィン系樹脂溶液101(ドープ)を調製した。
 (シクロオレフィン系樹脂溶液101)
 JSR社製 アートンRX4500          100質量部
 色素(山田化学工業社製、FDB-007)    0.017質量部
 メチレンクロライド               430.1質量部
 エタノール                    17.8質量部
<Production of Absorbent Sheet 2>
The following components were put into a mixing tank and stirred to dissolve each component to prepare cycloolefin resin solution 101 (dope).
(Cycloolefin resin solution 101)
Arton RX4500 100 parts by mass manufactured by JSR Co., Ltd. Dye (manufactured by Yamada Chemical Co., Ltd., FDB-007) 0.017 parts by mass Methylene chloride 430.1 parts by mass Ethanol 17.8 parts by mass
  <<流延>>
 バンド流延装置を用い、調製したシクロオレフィン系樹脂溶液101をステンレス製の流延支持体(支持体温度22℃)に流延した。シクロオレフィン系樹脂溶液101中の残留溶剤量が略20質量%の状態で剥ぎ取り、フィルムの幅方向の両端をテンターで把持し、残留溶剤量が5~10質量%の状態で、120℃の温度下で幅方向に1.10倍(10%)延伸しつつ乾燥した。
 その後、熱処理装置のロール間を搬送しながら130℃で更に乾燥して、吸収シート2を作製した。得られた吸収シート2の厚さは60μm、幅は1480mmであった。
 吸収シート1と同様に測定したところ、作製した吸収シート2の最大吸光波長は493nmであった。
<< Casting >>
Using the band casting apparatus, the prepared cycloolefin-based resin solution 101 was cast on a stainless steel casting support (support temperature 22 ° C.). Stripped in a state where the amount of residual solvent in the cycloolefin-based resin solution 101 is approximately 20% by mass, gripped at both ends in the width direction of the film with a tenter, and in a state where the amount of residual solvent was 5-10% by mass, It dried, extending | stretching 1.10 time (10%) in the width direction under temperature.
Then, it further dried at 130 degreeC, conveying between the rolls of a heat processing apparatus, and produced the absorption sheet 2. FIG. The obtained absorbent sheet 2 had a thickness of 60 μm and a width of 1480 mm.
When measured in the same manner as the absorbent sheet 1, the maximum absorption wavelength of the produced absorbent sheet 2 was 493 nm.
 <吸収シート3の作製>
 シクロオレフィン系樹脂溶液101の調製において、色素をFDG-002(山田化学工業社製)に変更した以外は、吸収シート2と同様に吸収シート3を作製した。
 吸収シート1と同様に測定したところ、作製した吸収シートの最大吸光波長は550nmであった。
<Production of Absorbent Sheet 3>
An absorbent sheet 3 was prepared in the same manner as the absorbent sheet 2 except that the dye was changed to FDG-002 (manufactured by Yamada Chemical Co., Ltd.) in the preparation of the cycloolefin-based resin solution 101.
When measured in the same manner as the absorbent sheet 1, the maximum absorption wavelength of the produced absorbent sheet was 550 nm.
 [実施例1]
 市販の液晶テレビ(Samsung社製、JS7000FXZA)を分解し、バックライトユニットを取り出した。
 取り出したバックライトユニットに、波長選択反射シート1(選択反射中心波長600nm)および吸収シート1(最大吸光波長583nm)を、反射板、直下型LED、吸収シート1、波長選択反射シート1、および、拡散板の順に並ぶように追加して配置することで実施例1のバックライトユニット101を得た。
 なお、波長選択反射シート1は、583nmの反射率が最大となる位置が、全ての直下型LEDの光軸と一致するように配置した。
[Example 1]
A commercially available liquid crystal television (Samsung, JS7000FXZA) was disassembled, and the backlight unit was taken out.
To the extracted backlight unit, a wavelength selective reflection sheet 1 (selective reflection center wavelength 600 nm) and an absorption sheet 1 (maximum absorption wavelength 583 nm), a reflector, a direct type LED, an absorption sheet 1, a wavelength selective reflection sheet 1, and The backlight unit 101 of Example 1 was obtained by additionally arranging the diffusing plates in order.
The wavelength selective reflection sheet 1 was arranged so that the position where the reflectance at 583 nm was the maximum coincided with the optical axis of all the direct LEDs.
 [実施例2]
 実施例1のバックライトユニット101において、波長選択反射シート1の代わりに波長選択反射シート2を使用することで、実施例2のバックライトユニット102を得た。
[Example 2]
In the backlight unit 101 of Example 1, the backlight unit 102 of Example 2 was obtained by using the wavelength selective reflection sheet 2 instead of the wavelength selective reflection sheet 1.
 [実施例3]
 実施例1のバックライトユニット101において、波長選択反射シート1の代わりに波長選択反射シート3を使用し、吸収シート1の代わりに吸収シート2(最大吸光波長493nm)を使用することで、実施例3のバックライトユニット103を得た。
[Example 3]
In the backlight unit 101 of Example 1, the wavelength selective reflection sheet 3 is used instead of the wavelength selective reflection sheet 1, and the absorption sheet 2 (maximum absorption wavelength 493 nm) is used instead of the absorption sheet 1. 3 backlight units 103 were obtained.
 [比較例1]
 実施例1のバックライトユニット101から、波長選択反射シート1を抜き取ることで比較例1のバックライトユニット201を得た。
[Comparative Example 1]
By removing the wavelength selective reflection sheet 1 from the backlight unit 101 of Example 1, the backlight unit 201 of Comparative Example 1 was obtained.
 [比較例2]
 実施例1のバックライトユニット101から、波長選択反射シート1および吸収シート1を抜き取ることで比較例2のバックライトユニット202を得た。
[Comparative Example 2]
The backlight unit 202 of the comparative example 2 was obtained by extracting the wavelength selection reflection sheet 1 and the absorption sheet 1 from the backlight unit 101 of the example 1.
 [比較例3]
 バックライトユニット101において、吸収シート1を吸収シート3(最大吸光波長525nm)に入れ替えることで、比較例3のバックライトユニット203を得た。
[Comparative Example 3]
In the backlight unit 101, the backlight unit 203 of the comparative example 3 was obtained by replacing the absorption sheet 1 with the absorption sheet 3 (maximum absorption wavelength 525 nm).
 [比較例4]
 実施例1のバックライトユニット101において、波長選択反射シート1を面方向に移動して、最大反射率を有する領域を全ての直下型LEDの光軸からずらすことにより、比較例4のバックライトユニット204を得た。
[Comparative Example 4]
In the backlight unit 101 of Example 1, the wavelength selective reflection sheet 1 is moved in the plane direction, and the region having the maximum reflectance is shifted from the optical axis of all the direct LEDs, thereby the backlight unit of Comparative Example 4 204 was obtained.
 [色再現域、輝度の評価]
 作製したバックライトユニットを、バックライトユニットを取り出した市販の液晶テレビに組み込むことで、LCDを作製した。
 作製したLCDで赤、緑および青を全画面表示させ、それぞれの色度および輝度を、分光放射計(トプコンテクノハウス社製、SR-UL1R)を用いて測定した。
 測定された赤、緑および青の色度点をCIE表色系u’v’色度図上で結んで作られる三角形が、BT2020規格の3原色点を結んで作られる三角形と重なる部分の面積を求め、BT2020規格の3原色点を結んで作られる三角形の面積で除して、BT2020規格に対するカバー率を算出した。結果を下記の表に示す。
 表における見出しは、波長選択反射シートの、吸収シートの460~520nmの波長域内における最大吸光波長λmax1の光の反射率R(λmax1)と、波長選択反射シートの、吸収シートの540~620nmの波長域内における最大吸光波長λmax2の光の反射率R(λmax2)とをまとめてR(λmax)とし、
 波長選択反射シートの、460~520nmの波長域内における最大反射波長の光の反射率Rmax1と、波長選択反射シートの、540~620nmの波長域内における最大反射波長の光の反射率Rmax2とをまとめてRmaxとしてある。
 なお、BT2020規格の3原色点はそれぞれ以下のとおりである。
 赤:u’=0.557、v’=0.517、
 緑:u’=0.056、v’=0.587、
 青:u’=0.159、v’=0.126
[Evaluation of color gamut and brightness]
An LCD was manufactured by incorporating the manufactured backlight unit into a commercially available liquid crystal television from which the backlight unit was taken out.
Red, green, and blue were displayed on the full screen of the produced LCD, and the chromaticity and luminance of each were measured using a spectroradiometer (SR-UL1R manufactured by Topcon Technohouse).
Area of the portion where the triangle formed by connecting the measured red, green and blue chromaticity points on the CIE color system u'v 'chromaticity diagram overlaps the triangle formed by connecting the three primary color points of the BT2020 standard The coverage ratio for the BT2020 standard was calculated by dividing the three primary color points of the BT2020 standard by the area of the triangle formed. The results are shown in the table below.
The headings in the table are the reflectance R (λ max 1) of light having the maximum absorption wavelength λ max 1 in the wavelength range of 460 to 520 nm of the absorption sheet of the wavelength selection reflection sheet, and 540 of the absorption sheet of the wavelength selection reflection sheet. The reflectance R (λ max 2) of light having the maximum absorption wavelength λ max 2 within the wavelength range of ˜620 nm is collectively represented as R (λ max ),
The reflectance R max 1 of the light with the maximum reflection wavelength in the wavelength range of 460 to 520 nm of the wavelength selective reflection sheet, and the reflectance R max 2 of the light with the maximum reflection wavelength in the wavelength range of 540 to 620 nm of the wavelength selective reflection sheet. And Rmax .
The three primary color points of the BT2020 standard are as follows.
Red: u ′ = 0.557, v ′ = 0.517,
Green: u ′ = 0.056, v ′ = 0.487,
Blue: u ′ = 0.159, v ′ = 0.126
Figure JPOXMLDOC01-appb-T000014

 以上の結果より、本発明の効果は明らかである。
Figure JPOXMLDOC01-appb-T000014

From the above results, the effects of the present invention are clear.
 LCDに好適に利用可能である。 It can be used suitably for LCD.
 10,35,54 バックライトユニット
 12 反射板
 14,14B 光源
 16,32 波長選択反射シート
 18 拡散板
 20a,20b プリズムシート
 24 反射偏光板
 28,42 支持体
 28a 突起
 30,34 コレステリック液晶層
 34a 高反射率領域
 34b 低反射率領域
 36,36s 波長変換シート
 40 波長変換層
 B 暗部
 D 明部
10, 35, 54 Backlight unit 12 Reflector 14, 14B Light source 16, 32 Wavelength selective reflection sheet 18 Diffuser plate 20a, 20b Prism sheet 24 Reflective polarizing plate 28, 42 Support 28a Protrusion 30, 34 Cholesteric liquid crystal layer 34a High reflection Rate region 34b Low reflectivity region 36, 36s Wavelength conversion sheet 40 Wavelength conversion layer B Dark part D Bright part

Claims (7)

  1.  反射要素と、特定の波長の光を選択的に反射する波長選択反射シートと、前記反射要素と前記波長選択反射シートとの間に配置される複数の光源と、前記反射要素と前記波長選択反射シートとの間に配置される吸収要素とを有し、
     前記吸収要素は、460~520nmの波長域内に最大吸光波長を有する、540~620nmの波長域内に最大吸光波長を有する、および、460~520nmの波長域内と540~620nmの波長域内との、一方に最大吸光波長を有し、他方に2番目に大きな吸光波長を有する、のいずれかを満たし、
     前記波長選択反射シートは、前記吸収要素が吸収する波長域内の光を選択的に反射するものであり、さらに、面内に反射率が異なる部分を有し、かつ、面内における反射率が、前記光源の配置に応じたものである、バックライトユニット。
    A reflection element; a wavelength selective reflection sheet that selectively reflects light of a specific wavelength; a plurality of light sources disposed between the reflection element and the wavelength selective reflection sheet; the reflection element and the wavelength selective reflection; An absorbent element arranged between the sheet and
    The absorbing element has a maximum absorption wavelength in a wavelength range of 460 to 520 nm, a maximum absorption wavelength in a wavelength range of 540 to 620 nm, and one of a wavelength range of 460 to 520 nm and a wavelength range of 540 to 620 nm. Satisfying one of the following, having the maximum absorption wavelength in the
    The wavelength selective reflection sheet selectively reflects light in a wavelength range absorbed by the absorbing element, and further has a portion having a different reflectance in the surface, and the reflectance in the surface is A backlight unit according to the arrangement of the light sources.
  2.  前記波長選択反射シートの反射率は、前記光源の光軸上が最大である、請求項1に記載のバックライトユニット。 The backlight unit according to claim 1, wherein the reflectance of the wavelength selective reflection sheet is maximum on the optical axis of the light source.
  3.  前記波長選択反射シートは、透明な領域および開口の少なくとも一方を有する、請求項1または2に記載のバックライトユニット。 The backlight unit according to claim 1 or 2, wherein the wavelength selective reflection sheet has at least one of a transparent region and an opening.
  4.  前記波長選択反射シートは、反射面内に反射率が異なる部分を有する、請求項1~3のいずれか1項に記載のバックライトユニット。 The backlight unit according to any one of claims 1 to 3, wherein the wavelength selective reflection sheet has a portion having a different reflectance in a reflection surface.
  5.  前記波長選択反射シートの、前記吸収要素の460~520nmの波長域内における最大吸光波長λmax1の光の反射率をR(λmax1)、
     前記波長選択反射シートの、前記吸収要素の540~620nmの波長域内における最大吸光波長λmax2の光の反射率をR(λmax2)、
     前記波長選択反射シートの、460~520nmの波長域内における最大反射波長の光の反射率をRmax1、および、
     前記波長選択反射シートの、540~620nmの波長域内における最大反射波長の光の反射率をRmax2、とした際に、前記波長選択反射シートは、下記の式
      Rmax1×0.8≦R(λmax1)、および、Rmax2×0.8≦R(λmax2)
    の少なくとも一方を満たす、請求項1~4のいずれか1項に記載のバックライトユニット。
    The reflectance of light having the maximum absorption wavelength λ max 1 in the wavelength range of 460 to 520 nm of the absorption element of the wavelength selective reflection sheet is R (λ max 1),
    R (λ max 2) is a reflectance of light having a maximum absorption wavelength λ max 2 in the wavelength range of 540 to 620 nm of the absorption element of the wavelength selective reflection sheet,
    The reflectance of light having the maximum reflection wavelength in the wavelength range of 460 to 520 nm of the wavelength selective reflection sheet is R max 1, and
    When the reflectance of light having the maximum reflection wavelength in the wavelength range of 540 to 620 nm of the wavelength selective reflection sheet is R max 2, the wavelength selective reflection sheet has the following formula: R max 1 × 0.8 ≦ R (λ max 1), and, R max 2 × 0.8 ≦ R (λ max 2)
    The backlight unit according to any one of claims 1 to 4, which satisfies at least one of the following.
  6.  前記波長選択反射シートは、コレステリック液晶相を固定してなる反射層を有する、請求項1~5のいずれか1項に記載のバックライトユニット。 The backlight unit according to any one of claims 1 to 5, wherein the wavelength selective reflection sheet has a reflection layer formed by fixing a cholesteric liquid crystal phase.
  7.  請求項1~6のいずれか1項に記載されるバックライトユニットを有する、液晶表示装置。 A liquid crystal display device comprising the backlight unit according to any one of claims 1 to 6.
PCT/JP2018/019052 2017-05-19 2018-05-17 Backlight unit and liquid crystal display device WO2018212266A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-100336 2017-05-19
JP2017100336 2017-05-19

Publications (1)

Publication Number Publication Date
WO2018212266A1 true WO2018212266A1 (en) 2018-11-22

Family

ID=64274455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019052 WO2018212266A1 (en) 2017-05-19 2018-05-17 Backlight unit and liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2018212266A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021065532A1 (en) * 2019-09-30 2021-04-08
JP2021140890A (en) * 2020-03-03 2021-09-16 富士フイルム株式会社 Planar lighting device
US20230204190A1 (en) * 2020-05-22 2023-06-29 Beijing Ivisual 3d Technology Co., Ltd. Light-emitting module, display module, display screen and display

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309980A (en) * 2005-04-26 2006-11-09 Sony Corp Backlight device and liquid crystal display device
JP2017054051A (en) * 2015-09-11 2017-03-16 エルジー ディスプレイ カンパニー リミテッド Liquid crystal display device
JP2017084761A (en) * 2015-10-23 2017-05-18 デクセリアルズ株式会社 Partial drive-type light source device and image display device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006309980A (en) * 2005-04-26 2006-11-09 Sony Corp Backlight device and liquid crystal display device
JP2017054051A (en) * 2015-09-11 2017-03-16 エルジー ディスプレイ カンパニー リミテッド Liquid crystal display device
JP2017084761A (en) * 2015-10-23 2017-05-18 デクセリアルズ株式会社 Partial drive-type light source device and image display device using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021065532A1 (en) * 2019-09-30 2021-04-08
WO2021065532A1 (en) * 2019-09-30 2021-04-08 富士フイルム株式会社 Light emitting device
JP7190587B2 (en) 2019-09-30 2022-12-15 富士フイルム株式会社 light emitting device
JP2021140890A (en) * 2020-03-03 2021-09-16 富士フイルム株式会社 Planar lighting device
JP7189170B2 (en) 2020-03-03 2022-12-13 富士フイルム株式会社 Planar lighting device
US20230204190A1 (en) * 2020-05-22 2023-06-29 Beijing Ivisual 3d Technology Co., Ltd. Light-emitting module, display module, display screen and display

Similar Documents

Publication Publication Date Title
JP6833023B2 (en) Backlight unit and liquid crystal display
JP6453450B2 (en) Transparent screen
JP6580143B2 (en) Projection system and method for manufacturing intermediate image screen of projection system
JP6481018B2 (en) Transparent screen
CN109154770A (en) Transparent membrane, transparent screen and image display system and transparent poster
WO2018212266A1 (en) Backlight unit and liquid crystal display device
CN1559020A (en) Polarization rotators, articles containing polarization rotators, and methods for making and using the same
JP6194256B2 (en) Projection system and projector
US20190079380A1 (en) Transparent screen and image display system
JP2019204086A (en) Optical laminate, display panel, and display device
JP6193471B2 (en) Projection video display member and projection video display member including projection video display member
WO2016129645A1 (en) Optical member, optical element, liquid crystal display device, and near-eye optical member
WO2007018258A1 (en) Optical device, polarizing plate, retardation film, illuminating device, and liquid crystal display
US11539035B2 (en) Optical device
JP6220738B2 (en) Optical member and display having optical member
JP6676154B2 (en) Transparent screen and image display system
JP2023155243A (en) Surface light source comprising polarizer and liquid crystal display device using the same
JP2004233988A (en) Wide-band cholesteric liquid crystal film, its manufacturing method, circular polarizing plate, linear polarizer, illumination apparatus and liquid crystal display
JP6412258B2 (en) Transparent screen
CN107614965B (en) Back light unit
JP7104803B2 (en) Reflective sheet and light emitting device
JP7333263B2 (en) Wavelength-selective reflective film and backlight unit
JP7189170B2 (en) Planar lighting device
WO2022209954A1 (en) Decorative sheet, display device, and interior for automobile
WO2021060394A1 (en) Optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18801415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP