WO2018212211A1 - Crimped fibers and nonwoven cloth - Google Patents

Crimped fibers and nonwoven cloth Download PDF

Info

Publication number
WO2018212211A1
WO2018212211A1 PCT/JP2018/018855 JP2018018855W WO2018212211A1 WO 2018212211 A1 WO2018212211 A1 WO 2018212211A1 JP 2018018855 W JP2018018855 W JP 2018018855W WO 2018212211 A1 WO2018212211 A1 WO 2018212211A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
crimped fiber
resin
crimped
fiber according
Prior art date
Application number
PCT/JP2018/018855
Other languages
French (fr)
Japanese (ja)
Inventor
真理 矢部
拓実 杉内
南 裕
智明 武部
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US16/613,524 priority Critical patent/US20200071867A1/en
Priority to EP18801410.4A priority patent/EP3626869B1/en
Priority to CN201880032412.XA priority patent/CN110612367A/en
Priority to JP2019518821A priority patent/JPWO2018212211A1/en
Publication of WO2018212211A1 publication Critical patent/WO2018212211A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/32Side-by-side structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/22Formation of filaments, threads, or the like with a crimped or curled structure; with a special structure to simulate wool
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/022Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene

Definitions

  • the present invention relates to crimped fibers and nonwoven fabrics.
  • Patent Document 1 A heat-fusible conjugate fiber has been proposed (Patent Document 1).
  • Patent Document 2 a latent crimpable composite fiber using a core-sheath composite material using polyolefins having different melting points has been proposed (Patent Document 2).
  • This invention is made
  • thermoplastic resin (A) contains the thermoplastic resin (B) and the thermoplastic resin (C), and the thermoplastic resin (A) has a temperature of 25 ° C.
  • the half crystallization time at 25 ° C. of the thermoplastic resin (B) is shorter than the half crystallization time at 25 ° C. of the thermoplastic resin (B).
  • thermoplastic resin (B) has a semi-crystallization time at 25 ° C. of more than 0.01 seconds and not more than 0.06 seconds.
  • thermoplastic resin (C) has a half crystallization time at 25 ° C. of more than 0.06 seconds.
  • melt flow rate (MFR) measured under conditions of a temperature of 190 ° C. and a load of 2.16 kg is 1 g / 10 min to 70 g / 10 min.
  • the melt flow rate (MFR) measured under the conditions of a temperature of 230 ° C. and a load of 2.16 kg is 10 g / 10 min to 500 g / 10 min.
  • the melt flow rate (MFR) measured under the conditions of a temperature of 230 ° C. and a load of 2.16 kg is 10 g / 10 min to 5000 g / 10 min.
  • Tm-D melting point defined as the peak top of the peak observed on the highest temperature side
  • DSC differential scanning calorimeter
  • thermoplastic resin (A) is a polyethylene resin.
  • thermoplastic resin (B) is a polypropylene resin.
  • thermoplastic resin (B) is a propylene homopolymer.
  • the content of the thermoplastic resin (C) in the total of the thermoplastic resin (A), the thermoplastic resin (B), and the thermoplastic resin (C) is 1% or more and 50% or less.
  • a nonwoven fabric comprising the crimped fiber according to any one of [1] to [21].
  • a multilayer nonwoven fabric obtained by laminating two or more layers, wherein at least one layer is the nonwoven fabric described in [22].
  • a highly crimped crimped fiber and a nonwoven fabric made of the crimped fiber can be provided.
  • crimped fiber is used to include composite spun fibers formed by side-by-side nozzles, eccentric core-sheath nozzles, deformed nozzles, or split nozzles, which are combined with different thermoplastic resins.
  • the core-sheath fiber refers to a fiber whose cross section is composed of a “core” of the inner layer portion and a “sheath” of the outer layer portion, and the eccentric core-sheath fiber is the center of gravity position of the inner layer portion in the cross-sectional shape. Means a fiber different from the center of gravity of the entire fiber.
  • the component which contains a thermoplastic resin (A) among the components which comprise a crimped fiber is made into a "1st component", and the component containing a thermoplastic resin (B) and a thermoplastic resin (C) Is the “second component”.
  • the crimped fiber is a side-by-side fiber
  • one component constituting the side-by-side fiber is referred to as a “first component”
  • the other component is referred to as a “second component”.
  • the crimped fiber is a core-sheath fiber
  • one of the component used for the core part of the core-sheath fiber and the component used for the sheath part is referred to as a “first component”, and the other is referred to as a “second component” "
  • one component of the crimped fiber includes a thermoplastic resin (A), and the other component includes a thermoplastic resin (B) and a thermoplastic resin (C), and the thermoplastic
  • the half crystallization time of the resin (A) at 25 ° C is shorter than the half crystallization time of the thermoplastic resin (B) at 25 ° C, and the half crystallization time of the thermoplastic resin (C) at 25 ° C is the heat. It is characterized by being longer than the half crystallization time at 25 ° C. of the plastic resin (B).
  • the first component containing the thermoplastic resin (A) is a semi-crystal at 25 ° C.
  • the difference between the crystallization time and the semi-crystallization time at 25 ° C. of the second component containing the thermoplastic resin (B) and the thermoplastic resin (C) becomes larger, and a crimped fiber having higher crimpability is obtained. Can do.
  • the half crystallization time was measured by the following method. Using FLASH DSC (manufactured by METTLER TOLEDO Co., Ltd.), the sample was heated at 230 ° C. for 2 minutes to melt, then cooled to 25 ° C. at 2000 ° C./second, and heat generation during the isothermal crystallization process at 25 ° C. The amount of change over time was measured. When the integrated value of the calorific value from the start of isothermal crystallization to the completion of crystallization is taken as 100%, the time from the start of isothermal crystallization until the integrated value of the calorific value reaches 50% is taken as the half crystallization time. .
  • melt flow rate (MFR) of the thermoplastic resin (A) is smaller than the MFR of the thermoplastic resin (B), and the MFR of the thermoplastic resin (B) is smaller than the MFR of the thermoplastic resin (C). From the viewpoint of enhancing the crimpability of the crimped fiber.
  • the melt flow rate (MFR) is measured by a measurement method defined in JIS K7210.
  • a temperature of 190 ° C. and a load of 2.16 kg are used for the thermoplastic resin (A).
  • the plastic resin (C) is measured under the conditions of a temperature of 230 ° C. and a load of 2.16 kg.
  • thermoplastic resin (A) Using the differential scanning calorimeter (DSC) of the thermoplastic resin (A), hold it at ⁇ 10 ° C. for 5 minutes in a nitrogen atmosphere and then raise the temperature at 10 ° C./min.
  • the melting point (Tm-D) defined as the peak top of the peak observed in Fig. 2 is lower than the melting point (Tm-D) defined by the above conditions of the thermoplastic resin (B), and the thermoplastic resin (B)
  • the melting point (Tm-D) is preferably higher than the melting point (Tm-D) defined by the above conditions for the thermoplastic resin (C) from the viewpoint of enhancing the crimpability of the crimped fiber.
  • thermoplastic resin (A) used in the present embodiment has a half crystallization time at 25 ° C. shorter than the half crystallization time at 25 ° C. of the thermoplastic resin (B) described later, preferably 0.01 seconds or less. . If the half crystallization time of the thermoplastic resin (A) at 25 ° C is 0.01 seconds or less, a crimped fiber having higher crimpability can be obtained.
  • the melt flow rate (MFR) of the thermoplastic resin (A) is preferably 1 g / 10 min or more, more preferably 5 g / 10 min or more, further preferably 10 g / 10 min or more, still more preferably 15 g / 10 min or more, And preferably it is 70 g / 10min or less, More preferably, it is 45 g / 10min or less, More preferably, it is 30 g / 10min or less, More preferably, it is 20 g / 10min or less.
  • the melt flow rate (MFR) is measured by a measurement method defined in JIS K7210, and is measured under conditions of a temperature of 190 ° C. and a load of 2.16 kg.
  • the melting point (Tm-D) defined as the peak top of the peak observed on the side is preferably 90 ° C. or higher, more preferably 100 ° C. or higher, more preferably 115 ° C. or higher, and preferably 135 ° C. or lower. More preferably, it is 130 ° C. or lower.
  • the thermoplastic resin (A) is not particularly limited as long as the above requirements are satisfied, but is preferably a polyethylene resin using a so-called metallocene catalyst having a narrow molecular weight distribution.
  • the polyethylene resin may be an ethylene homopolymer or a copolymer. In the case of a copolymer, the copolymerization ratio of ethylene units exceeds 50 mol%, preferably 60 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more, and still more preferably 95 mol%. That's it.
  • Examples of the copolymerizable monomer include ⁇ -olefins having 3 to 30 carbon atoms, and specific examples include 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene and the like.
  • Examples of commercially available ethylene homopolymers include the “ASPUN TM ” series (for example, “ASPUN XUS 61800.52 LE” and “ASPUN 6834”) (manufactured by Dow Chemical Co., Ltd.).
  • Commercially available copolymers of ethylene and octene include “Affinity GA1900”, “Affinity GA1950”, “Affinity EG8185”, “Affinity EG8200”, “Engage 8137”, “Engage 8180” manufactured by Dow Chemical Co., Ltd. ”,“ Engage 8400 ”, etc. (all are trade names).
  • the crimpability of the obtained crimped fiber can be improved, but the yarn is easily broken and the spinnability is lowered.
  • the higher the density of the polyethylene resin the higher the crimpability of the crimped fiber obtained, but the yarn breaks easily and the spinnability is lowered.
  • the crimped fiber of the present embodiment by using a component obtained by adding a thermoplastic resin (C) to a thermoplastic resin (B) described later as a second component, yarn breakage is suppressed and spinnability is improved. The crimpability can be further increased.
  • the content of the thermoplastic resin (A) in the first component is preferably 80% by mass or more, more preferably 85% by mass or more, and still more preferably 90% by mass or more, when the first component is 100% by mass. And an upper limit is 100 mass%.
  • thermoplastic resin (B) used in the present embodiment has a half crystallization time at 25 ° C. shorter than the half crystallization time at 25 ° C. of the thermoplastic resin (C) described later, preferably more than 0.01 seconds, More preferably 0.02 seconds or more, further preferably 0.03 seconds or more, still more preferably 0.04 seconds or more, and preferably 0.06 seconds or less, more preferably less than 0.06 seconds, Preferably it is 0.05 second or less.
  • the half crystallization time of the thermoplastic resin (B) at 25 ° C. exceeds 0.01 seconds, a difference from the half crystallization time of the thermoplastic resin (A) at 25 ° C. occurs, and the crimped fibers are crimped. Can increase the sex.
  • the melt flow rate (MFR) of the thermoplastic resin (B) is preferably 10 g / 10 min or more, more preferably 30 g / 10 min or more, and preferably 500 g / 10 min or less.
  • the melt flow rate (MFR) is measured by a measurement method defined in JIS K7210, and is measured under conditions of a temperature of 230 ° C. and a load of 2.16 kg.
  • the melting point (Tm-D) defined as the peak top of the peak observed on the side is preferably 120 ° C. or higher, more preferably 130 ° C. or higher, still more preferably 140 ° C. or higher, and preferably 200 ° C. or lower. More preferably, it is 180 degrees C or less, More preferably, it is 170 degrees C or less.
  • thermoplastic resin (B) will not be specifically limited if the above-mentioned requirements are satisfied, it is preferable that it is a polypropylene resin.
  • the polypropylene resin may be a propylene homopolymer or a copolymer, but is preferably a propylene homopolymer using a so-called metallocene catalyst having a narrow molecular weight distribution.
  • the copolymerization ratio of propylene units is 50 mol% or more, preferably 60 mol% or more, more preferably 70 mol% or more, and 90 mol% or more. It is more preferable that it is 95 mol% or more.
  • the copolymerizable monomer examples include ethylene, ⁇ -olefins having 2 or 4 to 20 carbon atoms such as 1-butene, 1-pentene, 1-hexene, 1-octene and 1-decene, methyl acrylate, etc. Acrylic acid ester, vinyl acetate, and the like are mentioned, and a propylene homopolymer is preferable from the viewpoint of moldability.
  • the thermoplastic resin (B) may contain a polypropylene resin polymerized using a catalyst (for example, a Ziegler-Natta catalyst) other than the metallocene catalyst. These may be used alone or in combination of two or more. Specific examples include a propylene-based resin containing a peroxide.
  • propylene homopolymers examples include the “NOVATEC TM PP” series (for example, “NOVATEC SA03”) (manufactured by Nippon Polypro Co., Ltd.).
  • NOVATEC SA03 a commercial item of the propylene homopolymer containing the peroxide polymerized using a catalyst other than the metallocene catalyst
  • “Moplen” series for example, “Moplen HP461Y”
  • PP3155 For example, trade name, manufactured by ExxonMobil Chemical Co., Ltd.).
  • Metallocene As a commercial item of the polypropylene resin polymerized using the metallocene catalyst, “Metocene” series (for example, “Metocene MF650Y”) (manufactured by Lyondell Basell) and the like can be exemplified. From the viewpoint of adjusting the viscosity, a polypropylene resin polymerized using a metallocene catalyst is preferable.
  • the content of the thermoplastic resin (B) in the second component is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, when the second component is 100% by mass. More preferably, it is 80 mass% or more, Preferably it is 99 mass% or less, More preferably, it is 97 mass% or less, More preferably, it is 95 mass% or less.
  • thermoplastic resin (C) used in this embodiment has a longer half crystallization time at 25 ° C. than that of the thermoplastic resin (B), preferably 0.06 seconds or more, more preferably more than 0.06 seconds.
  • the half crystallization time of the thermoplastic resin (C) at 25 ° C. is 0.06 seconds or more, the half crystallization time of the first component at 25 ° C. and the half crystallization time of the second component at 25 ° C. And the crimpability of the crimped fiber can be further increased.
  • the melt flow rate (MFR) of the thermoplastic resin (C) is preferably 10 g / 10 min or more, more preferably 500 g / 10 min or more, and preferably 5000 g / 10 min or less.
  • MFR is 10 g / 10 min or more, the difference between the MFR of the first component and the MFR of the second component can be further increased, and the crimpability of the crimped fiber can be further increased.
  • the melt flow rate (MFR) is measured by a measurement method defined in JIS K7210, and is measured under conditions of a temperature of 230 ° C. and a load of 2.16 kg.
  • the highest end of the melting endotherm curve obtained by holding at ⁇ 10 ° C. for 5 minutes in a nitrogen atmosphere and then raising the temperature at 10 ° C./min.
  • the melting point (Tm-D) defined as the peak top of the peak observed on the side is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and preferably 100 ° C. or lower. If the melting point (Tm-D) of the thermoplastic resin (C) is 50 ° C. or higher, the difference between the melting point (Tm-D) of the first component and the melting point (Tm-D) of the second component is more Can be bigger.
  • the weight average molecular weight (Mw) of the thermoplastic resin (C) is preferably 30,000 or more, and preferably 150,000 or less, more preferably 60,000 or less.
  • the molecular weight distribution (Mw / Mn) of the thermoplastic resin (C) is preferably less than 3.0, more preferably 2.5 or less, and still more preferably 2.3 or less. If the molecular weight distribution of the thermoplastic resin (C) is within the above range, stickiness in the fiber obtained by spinning is suppressed.
  • the weight average molecular weight is a polystyrene equivalent weight average molecular weight measured with the following apparatus and conditions, and the molecular weight distribution is a value calculated from the number average molecular weight (Mn) measured in the same manner and the above weight average molecular weight.
  • ⁇ GPC measurement device Column: “TOSO GMHHR-H (S) HT” manufactured by Tosoh Corporation Detector: RI detection for liquid chromatogram "WATERS 150C” manufactured by Waters Corporation ⁇ Measurement conditions> Solvent: 1,2,4-trichlorobenzene Measurement temperature: 145 ° C Flow rate: 1.0 mL / min Sample concentration: 2.2 mg / mL Injection volume: 160 ⁇ L Calibration curve: Universal Calibration Analysis program: HT-GPC (Ver.1.0)
  • thermoplastic resin (C) a melting endotherm obtained by using a differential scanning calorimeter (DSC) and holding the sample at ⁇ 10 ° C. for 5 minutes in a nitrogen atmosphere and then raising the temperature at 10 ° C./min.
  • the melting endotherm ( ⁇ HD) obtained from the curve is preferably 0 J / g or more, more preferably 10 J / g or more, still more preferably 20 J / g or more, and preferably 80 J / g or less, more preferably Is 60 J / g or less, more preferably 40 J / g or less.
  • the melting endotherm ( ⁇ HD) is determined by using a differential scanning calorimeter (DSC), holding the sample at ⁇ 10 ° C.
  • thermoplastic resin (C) will not be specifically limited if the above-mentioned requirements are satisfied, It is preferable that it is a polypropylene resin.
  • the polypropylene resin may be a propylene homopolymer or a copolymer. From the viewpoint of suppressing stickiness, a polypropylene resin polymerized using a metallocene catalyst is preferred.
  • the propylene homopolymer include low molecular weight polypropylene, and preferred examples include L-MODU (manufactured by Idemitsu Kosan Co., Ltd.) and Moplen (manufactured by Lyondell Basell Co., Ltd.) synthesized using a metallocene catalyst.
  • the copolymerization ratio of propylene units exceeds 50 mol%, preferably 60 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more, More preferably, it is 95 mol% or more.
  • the copolymerizable monomer is at least one selected from the group consisting of ethylene and an ⁇ -olefin having 4 to 30 carbon atoms. Specific examples include ethylene, 1-butene, 1-pentene, 1-hexene, Examples include 1-octene and 1-decene.
  • the polypropylene resin is a copolymer
  • the polypropylene resin contains at least one structural unit selected from the group consisting of ethylene and an ⁇ -olefin having 4 to 30 carbon atoms, more than 0 mol% and 20 mol% or less. It is preferable.
  • thermoplastic resin (C) is a polypropylene resin
  • the polypropylene resin can be produced using a metallocene catalyst as described in, for example, International Publication No. 2003/087172.
  • a metallocene catalyst as described in, for example, International Publication No. 2003/087172.
  • those using a transition metal compound in which a ligand forms a cross-linked structure via a cross-linking group are preferred, and in particular, a transition metal compound that forms a cross-linked structure via two cross-linking groups and Metallocene catalysts obtained by combining promoters are preferred.
  • (I) General formula (I) [Wherein, M represents a metal element of the Periodic Table Group 3-10 or the lanthanide series, E 1 and E 2 each represent a substituted cyclopentadienyl group, indenyl group, substituted indenyl group, a hetero cyclopentadienyl group A ligand selected from a substituted heterocyclopentadienyl group, an amide group, a phosphide group, a hydrocarbon group, and a silicon-containing group, which forms a cross-linked structure via A 1 and A 2 In addition, they may be the same or different from each other, X represents a ⁇ -bonded ligand, and when there are a plurality of X, the plurality of X may be the same or different, and other X, E 1 , E 2 or Y may be cross-linked.
  • Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different, and may be cross-linked with other Y, E 1 , E 2 or X, and A 1 and A 2 are A divalent bridging group that binds two ligands, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a germanium-containing group, a tin-containing group , -O -, - CO -, - S -, - SO 2 -, - Se -, - NR 1 -, - PR 1 -, - P (O) R 1 -, - BR 1 - or -AlR 1 - R 1 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms or a halogen-containing hydrocarbon group having 1 to 20
  • q is an integer of 1 to 5 and represents [(valence of M) -2], and r represents an integer of 0 to 3.
  • a ligand (1,2 ′) (2,1 ′) double-bridged transition metal compound is preferable.
  • the compound of component (ii-1) include triethylammonium tetraphenylborate, tri-n-butylammonium tetraphenylborate, trimethylammonium tetraphenylborate, tetraethylammonium tetraphenylborate, methyl tetraphenylborate (tri- n-butyl) ammonium, benzyl tetraphenylborate (tri-n-butyl) ammonium, dimethyldiphenylammonium tetraphenylborate, triphenyl (methyl) ammonium tetraphenylborate, trimethylanilinium tetraphenylborate, methylpyridinium tetraphenylborate, tetra Benzylpyridinium phenylborate, methyl tetraphenylborate (2-cyanopyridinium), tetrakis (p
  • Examples of the aluminoxane as the component (ii-2) include known chain aluminoxanes and cyclic aluminoxanes.
  • a polypropylene resin may be produced by using together the organoaluminum compound.
  • the content of the thermoplastic resin (C) in the second component is preferably 1% by mass or more, more preferably 3% by mass or more, when the second component is 100% by mass from the viewpoint of improving crimpability.
  • the amount is preferably 5% by mass or more, and preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, and still more preferably 20% by mass or less.
  • the content of the thermoplastic resin (C) in the second component is 1% by mass or more, the fibers can be made thin, and the flexibility of the nonwoven fabric is improved as the elastic modulus of the fibers decreases.
  • the content of the thermoplastic resin (C) in the total of the thermoplastic resin (A), the thermoplastic resin (B), and the thermoplastic resin (C) is preferably 1 from the viewpoint of improving crimpability. % Or more, more preferably 2% or more, still more preferably 5% or more, and preferably 50% or less, more preferably 30% or less, still more preferably 20% or less.
  • any additive can be blended with at least one of the first component and the second component within a range that does not impair the effects of the present embodiment.
  • additives include foaming agents, crystal nucleating agents, anti-glare stabilizers, UV absorbers, light stabilizers, heat stabilizers, antistatic agents, mold release agents, flame retardants, synthetic oils, waxes, electrical properties Improver, anti-slip agent, anti-blocking agent, viscosity modifier, anti-coloring agent, anti-fogging agent, lubricant, pigment, dye, plasticizer, softener, anti-aging agent, hydrochloric acid absorbent, chlorine scavenger, antioxidant And anti-adhesive agents.
  • the crimped fiber of the present embodiment preferably has a mass ratio of the first component containing the thermoplastic resin (A) and the second component containing the thermoplastic resin (B) and the thermoplastic resin (C). 9 to 1: 1 to 9, more preferably 7 to 3: 3 to 7.
  • the mass ratio between the first component and the second component is within the above range, the crimped nonwoven fabric exhibits crimpability and extensibility.
  • Examples of crimped fibers according to the present embodiment include side-by-side type fibers, core-sheath type fibers, and eccentric core-sheath type fibers, and side-by-side type fibers are preferable.
  • the component containing the thermoplastic resin (A), preferably the component containing the polyethylene resin is inside the crimp. It has been found that there are two cases: a case where the component is located in the crimp, and a case where the component containing the thermoplastic resin (B), preferably the component containing the polypropylene resin is located inside the crimp.
  • the mechanism by which such a phenomenon occurs is not necessarily clear, but is presumed as follows. The mechanism will be described assuming that the thermoplastic resin (A) is a polyethylene resin and the thermoplastic resin (B) is a polypropylene resin.
  • thermoplastic resin (C) if the thermoplastic resin (C) is not added, the spinning speed and spinnability are not improved, so that the spinning speed does not increase and spinning can be performed only at a low speed.
  • the spinning speed is low, when the polyethylene resin is cooled and solidified (crystallized), the density becomes higher than that of the polypropylene resin, so that the shrinkage ratio with the polypropylene resin is different.
  • the fiber is crimped by the difference in shrinkage rate between the two components, a polyethylene resin having a higher shrinkage rate is positioned inside the crimp.
  • orientation crystallization also contributes as a dominant factor of crimping under conditions where the spinning speed is sufficiently high.
  • thermoplastic resin (C) When the thermoplastic resin (C) is added, the spinnability is improved and the spinning speed can be increased.
  • the spinning speed is high, the polypropylene resin solidifies faster than the polyethylene resin when it is cooled and solidified (crystallized), so that there is a difference in the solidification speed with the polyethylene resin.
  • the difference in shrinkage between the two components due to this causes the fiber to shrink, the polypropylene resin having a higher shrinkage is positioned inside the crimp.
  • Such a phenomenon can have a strong influence when a resin in a semi-molten state immediately after being discharged from the die forms crimped fibers.
  • the spinning speed when the spinning speed is sufficiently high, the polypropylene resin is crystallized and fixed before the polyethylene resin, and at that time, the polyethylene resin in a semi-molten state is solidified while being relaxed. May be located outside.
  • the spinning speed when the spinning speed is slow, it takes only a weak molecular orientation below a certain level, so the original crystallization speed is the dominant factor, and the polyethylene resin is inside the crimp and the polypropylene resin is outside the crimp. Will be located.
  • the spinning speed is high, but also when the discharge amount is small, when the resin temperature is low, when the flowability of the resin is low, and when the resin contains a large amount of high molecular weight components, etc.
  • polypropylene resins are not only contracted by crystallization but also contracted by the force of molecular chains that are stretched while being entangled during spinning to be released from stretching and return to their original state. Therefore, unlike a polyethylene resin, in the case of a polypropylene resin, the shrinkage ratio increases as the drawing force applied during spinning increases. Even when the shrinkage rate exceeds the shrinkage rate due to the crystallization of the polyethylene resin, the dominant factor for crimping the fiber changes, and the polypropylene resin having a higher shrinkage rate is located inside the crimp.
  • the crimp fiber of this embodiment is a side-by-side type fiber
  • resin which comprises the inner side of the crimp in the said crimp fiber from the component and thermoplastic resin (A) containing a thermoplastic resin (A)
  • the component which consists of, the component which contains a thermoplastic resin (B), and the component which consists of a thermoplastic resin (B) may be sufficient.
  • crimped fibers As a manufacturing method of the crimped fiber of this embodiment, an example of the manufacturing method of the side-by-side type crimped fiber is shown below.
  • Side-by-side crimped fibers are obtained by melt-extruding at least two component resins using separate extruders and extruding them from a special spinneret as disclosed in US Pat. No. 3,671,379, for example. It is manufactured by a melt spinning method in which a molten resin melt-extruded from separate extruders is fused and discharged to form a fiber, and then cooled and hardened.
  • a desired fiber can be manufactured without a post-processing step such as heating and stretching after spinning, but if necessary, post-processing is performed.
  • the crimping ratio of the fibers may be increased by heating at 100 to 150 ° C., stretching by 1.2 to 5 times, or a combination thereof.
  • the fineness calculated by the measurement method shown below is preferably 0.5 denier or more, and more preferably 0.8 denier, from the viewpoint of balance with the texture, flexibility, and strength of the nonwoven fabric. More preferably, it is 2.5 denier or less, more preferably 2.0 denier or less.
  • the fineness of the crimped fiber is calculated by the following measuring method.
  • Fineness (denier) ⁇ ⁇ ⁇ ⁇ (d / 2) 2 ⁇ 9000
  • the number of crimps is preferably 2/25 mm or more, more preferably 5/25 mm or more, still more preferably 10/25 mm or more, and even more preferably 13/25 mm or more, more More preferably, it is 15 pieces / 25 mm or more.
  • the crimp rate is preferably 1.5% or more, more preferably 3% or more, still more preferably 5% or more, still more preferably 7% or more, and even more preferably 9 % Or more. The number of crimps and the crimp rate can be measured by the method described in the examples.
  • the nonwoven fabric of this embodiment consists of the above-mentioned crimped fiber. As described above, the nonwoven fabric is small in fineness and excellent in spinning stability even under molding conditions where yarn breakage tends to occur. Moreover, the nonwoven fabric of this embodiment may be a multilayer nonwoven fabric formed by laminating two or more layers. In that case, from the viewpoint of surface smoothness, it is preferable that at least one layer of the nonwoven fabric constituting the outer layer of the multilayer nonwoven fabric is a nonwoven fabric composed of the above-described crimped fibers.
  • the manufacturing method of the nonwoven fabric of this embodiment is not specifically limited, A conventionally well-known method is employable.
  • the spunbond method will be shown as an example.
  • the melt-kneaded resin composition is spun, stretched, opened to form continuous long fibers, and the continuous long fibers are continuously deposited on the moving collection surface in a continuous process, A nonwoven fabric is produced by entanglement.
  • a nonwoven fabric can be produced continuously, and since the fibers constituting the nonwoven fabric are continuous continuous fibers that are drawn, the strength is high.
  • the spunbond method a conventionally known method can be adopted.
  • fibers are produced by extruding a molten polymer from a large nozzle having several thousand holes or a small nozzle group having, for example, about 40 holes. can do. After exiting the nozzle, the molten fiber is cooled by a cross-flow chilled air system, then pulled away from the nozzle and drawn by high velocity air.
  • a cross-flow chilled air system There are usually two types of air attenuation methods, both of which use the Venturi effect.
  • the filament is drawn using a suction slot (slot drawing), and is performed at the nozzle width or the machine width.
  • the second method draws the filament through a nozzle or suction gun. Filaments formed in this manner are collected on a screen (wire) or a pore-forming belt to form a web.
  • the web passes through the compression roll, then passes between the heated calender rolls, and the raised portion on one roll is bonded at a portion including an area of about 10% to 40% of the web to form a nonwoven fabric.
  • Fiber products Although it does not specifically limit as a fiber product using the nonwoven fabric of this embodiment, the following fiber products can be mentioned. That is, disposable diaper members, elastic members for diaper covers, elastic members for sanitary products, elastic members for hygiene products, elastic tapes, adhesive plaster, elastic members for clothing, insulation materials for clothing, heat insulation materials for clothing, Protective clothing, hat, mask, gloves, supporter, elastic bandage, poultice base fabric, anti-slip base fabric, vibration absorber, finger sack, clean room air filter, electret processed electret filter, separator, insulation , Coffee bags, food packaging materials, automotive ceiling skin materials, soundproof materials, cushion materials, speaker dustproof materials, air cleaner materials, insulator skins, backing materials, adhesive nonwoven fabric sheets, door trims and other automotive parts, copying machine cleaning Various cleaning materials such as wood, carpet surface and backing materials, agricultural distribution, wood drain Shoes for members, bag for members such as sports shoes skin, industrial sealing material, mention may be made of the wiping material and sheets or the like.
  • MFR Melt flow rate
  • the melting endotherm ( ⁇ H ⁇ D) is a differential scanning calorimeter (manufactured by Perkin Elmer Co., Ltd.) with the line connecting the low temperature side point where there is no change in heat amount and the high temperature side point where there is no change in heat amount as the baseline. , “DSC-7”), and calculating the area surrounded by the line portion including the peak of the melting endothermic curve obtained by DSC measurement and the base line.
  • Weight average molecular weight (Mw), molecular weight distribution (Mw / Mn) measurement The weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured by gel permeation chromatography (GPC) method to determine the molecular weight distribution (Mw / Mn). For the measurement, the following apparatus and conditions were used, and polystyrene-reduced weight average molecular weight and number average molecular weight were obtained.
  • the molecular weight distribution (Mw / Mn) is a value calculated from these weight average molecular weight (Mw) and number average molecular weight (Mn).
  • ⁇ GPC measurement device Column: “TOSO GMHHR-H (S) HT” manufactured by Tosoh Corporation Detector: RI detection for liquid chromatogram "WATERS 150C” manufactured by Waters Corporation ⁇ Measurement conditions> Solvent: 1,2,4-trichlorobenzene Measurement temperature: 145 ° C Flow rate: 1.0 mL / min Sample concentration: 2.2 mg / mL Injection volume: 160 ⁇ L Calibration curve: Universal Calibration Analysis program: HT-GPC (Ver.1.0)
  • Table 2 shows the half-crystallization time, MFR and melting point (Tm-D) of the ethylene resins (A1), (A2), (A3), (A4), (A5) and
  • Anti-slip agent erucic acid amide, trade name: EA-10
  • thermoplastic resin (A) As the thermoplastic resin (A), only the ethylene resin (A1) was used as the first component.
  • the side-by-side crimped fiber was formed using a composite melt spinning machine bicomponent spinning apparatus having two extruders.
  • the first component and the second component are melt-extruded at a resin temperature of 240 ° C. using separate single-screw extruders, and 54 kg per single hole from a side-by-side composite nozzle with a nozzle diameter of 0.60 mm (1795 holes).
  • the melted resin was discharged at a speed of / h so that the mass ratio of the first component: second component was 50:50 and spun to obtain side-by-side crimped fibers.
  • the obtained side-by-side crimped fiber is sucked at an ejector pressure of 5.0 kg / cm 2 while being cooled with air having a cooling temperature of 12.5 ° C. and a wind speed of 0.6 m / sec, and is moved to the moving net surface. I collected it.
  • the fiber bundle collected on the net surface was embossed at a linear pressure of 40 N / mm with a hot roll having a calendar temperature of 110 ° C./110° C. and wound around a take-up roll.
  • Example 2 In Example 1, the first component was changed to a composition composed of 98% by mass of ethylene resin (A1) and 2% by mass of erucamide, and the second component was 78% by mass of propylene homopolymer (B1). Side-by-side crimped fibers and nonwoven fabric were obtained in the same manner as in Example 1 except that the composition was changed to 20% by mass of the propylene polymer (C1) and 2% by mass of erucic acid amide.
  • A1 ethylene resin
  • B1 propylene homopolymer
  • Example 3 In Example 1, the first component was changed from the ethylene resin (A1) to the ethylene resin (A2), the ejector pressure was changed to 4.5 kg / cm 2 , and the calendar temperature was changed to 100 ° C./100° C. In the same manner as in Example 1, side-by-side crimped fibers and nonwoven fabric were obtained.
  • Example 1 Comparative Example 1 In Example 1, except that the second component was changed to a composition consisting of 100% by mass of the propylene homopolymer (B1), the ejector pressure was changed to 2.0 kg / cm 2 , and the calendar temperature was changed to 100 ° C./100° C. Produced side-by-side crimped fibers and nonwoven fabric in the same manner as in Example 1.
  • Test piece having a length of 200 mm and a width of 200 mm was sampled from the obtained nonwoven fabric.
  • the test piece was set on a 1/4 inch wide slit so as to be perpendicular to the slit, and the position of 67 mm (1/3 of the test piece width) from the side of the test piece was pushed 8 mm with a penetrator blade.
  • the resistance value at this time was measured to evaluate the flexibility of the test piece.
  • the feature of this measuring method is that the test piece slips slightly on the test table, and the combined force of the friction force generated thereby and the resistance force (flexibility) at the time of pushing is measured. It shows that the softness
  • test pieces having a length of 220 mm ⁇ width of 100 mm and length of 220 mm ⁇ width of 70 mm were sampled in the machine direction (MD) and the direction perpendicular to the machine direction (TD).
  • Static friction coefficient measurement tester Toyo Seiki Seisakusho Co., Ltd., "Friction measuring machine AN type" Put two non-woven fabrics on the base and place a 1,000g weight on it to set the inclination of the base. The angle was changed at a speed of 2.7 degrees / minute, and the angle when the nonwoven fabric slipped 10 mm was measured.
  • the static friction coefficient was calculated from the weight (1,000 g) of the weight and the angle when the nonwoven fabric slipped 10 mm. In addition, it shows that textures, such as a touch feeling of a nonwoven fabric, are so favorable that the value of a static friction coefficient is small.
  • the side-by-side crimped fiber of the present embodiment can be thinned, and the nonwoven fabric made of the crimped fiber is bulky, highly crimpable, and excellent in flexibility and smoothness. .
  • thermoplastic resin (A) As the thermoplastic resin (A), only the ethylene resin (A3) was used as the first component.
  • a side-by-side crimped fiber was obtained by spinning in the same manner as in Example 1 except that the number of holes in the side-by-side composite nozzle was 6800 holes and the molten resin was discharged at a speed of 265 kg / h per single hole.
  • the obtained side-by-side crimped fiber was sucked at a cabin pressure of 6,300 Pa while being cooled at a cooling temperature of 20 ° C., and collected on the moving net surface.
  • the fiber bundle collected on the net surface was embossed at a linear pressure of 60 N / mm with a hot roll having a calendar temperature of 140 ° C./130° C., and wound around a take-up roll.
  • Comparative Example 2 Side-by-side crimped fibers were obtained in the same manner as in Example 4 except that the propylene homopolymer (B2) was 100% by mass as the second component. Moreover, the nonwoven fabric was obtained like Example 4 except having changed the pressure of the cabin pressure into 3,400 Pa.
  • Example 4 The above measurement and evaluation were performed on the side-by-side crimped fibers and the nonwoven fabric obtained in Example 4 and Comparative Example 2. The results are shown in Table 4.
  • the nonwoven fabric composed of the side-by-side crimped fibers of Example 4 has a good texture such as flexibility and touch feeling as compared to the nonwoven fabric composed of the side-by-side crimped fibers of Comparative Example 2 that does not contain the thermoplastic resin (C). Met.
  • thermoplastic resin (A) As the thermoplastic resin (A), only the ethylene resin (A3) was used as the first component.
  • a side-by-side crimped fiber was obtained by spinning in the same manner as in Example 1 except that the number of holes in the side-by-side composite nozzle was 6800 holes and the molten resin was discharged at a rate of 220 kg / h per single hole.
  • Comparative Example 3 Side-by-side crimped fibers were obtained in the same manner as in Example 5 except that the propylene homopolymer (B2) was 100% by mass as the second component. Moreover, the nonwoven fabric was obtained like Example 5 except having changed the pressure of the cabin pressure into 3,400 Pa.
  • Example 5 The side-by-side crimped fibers and nonwoven fabric obtained in Example 5 and Comparative Example 3 were evaluated by the above-described measurements for fineness, tensile test, handometer test, and bulkiness. The results are shown in Table 5.
  • the nonwoven fabric composed of the side-by-side crimped fibers of Example 5 is superior in flexibility and thicker than the nonwoven fabric composed of the side-by-side crimped fibers of Comparative Example 3 that does not contain the thermoplastic resin (C). We were able to.
  • thermoplastic resin (A) As the thermoplastic resin (A), only the ethylene resin (A4) was used as the first component.
  • the side-by-side crimped fiber was formed using a composite melt spinning machine bicomponent spinning apparatus having two extruders.
  • the first component and the second component are melt-extruded at a resin temperature of 230 ° C. using separate single-screw extruders, and 43 kg per single hole from a side-by-side composite nozzle having a nozzle diameter of 0.60 mm (1795 holes).
  • the ejector pressure is increased while the molten resin is spun by discharging at a speed of / h so that the mass ratio of the first component to the second component is 50:50 and cooled with air at a wind speed of 0.6 m / sec.
  • a side-by-side crimped fiber was obtained by suction at 0 kg / cm 2 .
  • Example 7 In Example 6, the first component was changed from ethylene resin (A4) to ethylene resin (A5), and the ejector pressure was changed to 4.0 kg / cm 2. A type crimped fiber was obtained.
  • Example 8 In Example 6, the first component was changed from the ethylene resin (A4) to the ethylene resin (A6), and the ejector pressure was changed to 2.5 kg / cm 2. A type crimped fiber was obtained.
  • Example 9 the side-by-side type was used in the same manner as in Example 6 except that the first component was changed to a composition consisting of 50% by mass of ethylene resin (A1) and 50% by mass of ethylene resin (A6). A crimped fiber was obtained.
  • Example 10 the first component is changed from the ethylene resin (A4) to the ethylene resin (A1), and the second component is produced as 95% by mass of the propylene homopolymer (B1) and the thermoplastic resin (C).
  • Side by side type in the same manner as in Example 6 except that the composition was changed to 5% by mass of the propylene polymer (C2) obtained in Example 2 and the ejector pressure was changed to 2.0 kg / cm 2. A crimped fiber was obtained.
  • Example 11 In Example 10, the second component was changed to a composition consisting of 90% by mass of the propylene homopolymer (B1) and 10% by mass of the propylene-based polymer (C2). Side-by-side crimped fibers were obtained.
  • Example 12 In Example 10, except that the second component was changed to a composition comprising 80% by mass of the propylene homopolymer (B1) and 20% by mass of the propylene-based polymer (C2), the same procedure as in Example 10 was performed. Side-by-side crimped fibers were obtained.
  • Example 13 In Example 12, the mass ratio of the first component and the second component was changed to 30:70, and the ejector pressure was changed to 2.5 kg / cm 2. A crimped fiber was obtained.
  • Example 14 In Example 10, the second component was changed to a composition consisting of 95% by mass of the propylene homopolymer (B1) and 5% by mass of the propylene polymer (C1), and the ejector pressure was adjusted to 2.5 kg / cm 2 . Side-by-side crimped fibers were obtained in the same manner as in Example 10 except that the changes were made.
  • Example 15 In Example 14, the second component was changed to a composition consisting of 90% by mass of the propylene homopolymer (B1) and 10% by mass of the propylene-based polymer (C1). Side-by-side crimped fibers were obtained.
  • thermoplastic resin (A) As the thermoplastic resin (A), only the ethylene resin (A6) was used as the first component.
  • thermoplastic resin (B) As the thermoplastic resin (B), only the propylene homopolymer (B1) was used as the second component.
  • the side-by-side crimped fiber was formed using a composite melt spinning machine bicomponent spinning apparatus having two extruders.
  • the first component and the second component are melt-extruded at a resin temperature of 230 ° C. using separate single-screw extruders, and 43 kg per single hole from a side-by-side composite nozzle having a nozzle diameter of 0.60 mm (1795 holes).
  • the molten resin was discharged at a speed of / h so that the mass ratio of the first component: second component was 50:50, but spinning could not be performed.
  • Example 9 Comparative Example 5 In Example 9, the second component was changed to a composition composed of 100% by mass of the propylene homopolymer (B1), and the ejector pressure was changed to 1.5 kg / cm 2 in the same manner as in Example 9. Side-by-side crimped fibers were obtained.
  • Example 16 In Example 1, the propylene homopolymer (B1) was 79.5% by mass, the second component was 20% by mass of the propylene polymer (C1) obtained in Production Example 1 as a thermoplastic resin (C), and phthalocyanine blue. Side by side in the same manner as in Example 1 except that the composition was changed to a composition comprising 0.5% by mass of a master batch (propylene compound, MFR: 48 g / 10 min) and the ejector pressure was changed to 3.0 kg / cm 2. A type crimped fiber was obtained.
  • a master batch propylene compound, MFR: 48 g / 10 min
  • the outer side of the crimped fiber was a first component containing an ethylene resin (A1)
  • the inner side of the crimped fiber was a propylene homopolymer ( It was found to be a second component containing B1) and a propylene polymer (C1) (FIG. 1).
  • Example 17 In Example 16, side-by-side crimped fibers were obtained in the same manner as in Example 16 except that the ejector pressure was changed to 2.5 kg / cm 2 .
  • the outer side of the crimped fiber was the first component containing the ethylene resin (A1)
  • the inner side of the crimped fiber was the propylene homopolymer (B1) and the propylene-based heavy polymer. It was found to be a second component containing coalescence (C1) (FIG. 2).
  • Example 18 In Example 16, side-by-side crimped fibers were obtained in the same manner as in Example 16 except that the ejector pressure was changed to 2.0 kg / cm 2 .
  • the outer side of the crimped fiber was the first component containing the ethylene resin (A1)
  • the inner side of the crimped fiber was the propylene homopolymer (B1) and the propylene-based heavy polymer. It was found to be a second component containing coalescence (C1) (FIG. 3).
  • Example 19 side-by-side crimped fibers were obtained in the same manner as in Example 16 except that the ejector pressure was changed to 1.5 kg / cm 2 .
  • the outer side of the crimped fiber was the first component containing the ethylene resin (A1)
  • the inner side of the crimped fiber was the propylene homopolymer (B1) and the propylene-based heavy polymer. It was found to be the second component containing the coalescence (C1) (FIG. 4).
  • Example 20 side-by-side crimped fibers were obtained in the same manner as in Example 16 except that the ejector pressure was changed to 1.0 kg / cm 2 .
  • the outer side of the crimped fiber was a second component containing a propylene homopolymer (B1) and a propylene-based polymer (C1), and the inner side of the crimped fiber was ethylene-based. It turned out that it is the 1st component containing resin (A1) (FIG. 5).
  • Example 21 side-by-side crimped fibers were obtained in the same manner as in Example 16 except that the ejector pressure was changed to 0.5 kg / cm 2 .
  • the outer side of the crimped fiber was a second component containing a propylene homopolymer (B1) and a propylene-based polymer (C1), and the inner side of the crimped fiber was ethylene-based. It turned out that it is the 1st component containing resin (A1) (FIG. 6).
  • FIGS. 1 to 6 Images of the side-by-side crimped fibers obtained in Examples 16 to 21 observed with an optical microscope (200 times magnification) are shown in FIGS. 1 to 6, respectively. 1 to 6, it was confirmed that the side containing the particle component was the second component side to which the phthalocyanine blue masterbatch was added, and the crimped fiber curve was reversed inside and outside due to the difference in ejector pressure. . From this fact, a nonwoven fabric excellent in the balance of texture, flexibility and strength of the nonwoven fabric is expected by changing the crimped components inside and outside the fiber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)

Abstract

One of the components of these crimped fibers contains a thermoplastic resin (A), and the other component contains a thermoplastic resin (B) and a thermoplastic resin (C). The semi-crystallization time of the thermoplastic resin (A) at 25°C is shorter than the semi-crystallization time of the thermoplastic resin (B) at 25°C, and the semi-crystallization time of the thermoplastic resin (C) at 25°C is longer than the semi-crystallization time of the thermoplastic resin (B) at 25°C.

Description

捲縮繊維及び不織布Crimped fiber and non-woven fabric
 本発明は、捲縮繊維及び不織布に関する。 The present invention relates to crimped fibers and nonwoven fabrics.
 不織布に用いたときに、嵩高性と、高い不織布強度、及び、伸縮性を有するように、例えば、融点又は軟化点の異なる3種類の樹脂成分を繊維の短方向断面の特定の位置に配した熱融着性複合繊維が提案されている(特許文献1)。また、融点の異なるポリオレフィンを用いた芯鞘型複合材料を用いた潜在捲縮性複合繊維も提案されている(特許文献2)。 For example, three kinds of resin components having different melting points or softening points are arranged at specific positions in the short-direction cross section of the fiber so as to have bulkiness, high strength of the nonwoven fabric, and stretchability when used for the nonwoven fabric. A heat-fusible conjugate fiber has been proposed (Patent Document 1). In addition, a latent crimpable composite fiber using a core-sheath composite material using polyolefins having different melting points has been proposed (Patent Document 2).
特開2012-251254号公報JP 2012-251254 A 特開2012-158861号公報JP 2012-158861 A
 しかしながら、特許文献1及び2に記載の複合繊維では、捲縮性が十分なものではなかった。 However, the conjugate fibers described in Patent Documents 1 and 2 have not been sufficiently crimped.
 本発明は、このような実情に鑑みてなされたものであり、捲縮性の高い捲縮繊維及び該捲縮繊維からなる不織布を提供することを目的とする。 This invention is made | formed in view of such a situation, and it aims at providing the crimped fiber with high crimpability, and the nonwoven fabric which consists of this crimped fiber.
 本発明者らは、上記の課題を解決するべく鋭意検討した結果、下記の発明により当該課題を解決できることを見出した。 As a result of intensive studies to solve the above problems, the present inventors have found that the problems can be solved by the following invention.
 すなわち、本願開示は、以下に関する。
[1]捲縮繊維の一方の成分が熱可塑性樹脂(A)を含み、他方の成分が熱可塑性樹脂(B)及び熱可塑性樹脂(C)を含み、前記熱可塑性樹脂(A)の25℃における半結晶化時間が前記熱可塑性樹脂(B)の25℃における半結晶化時間よりも短く、前記熱可塑性樹脂(C)の25℃における半結晶化時間が前記熱可塑性樹脂(B)の25℃における半結晶化時間よりも長い、捲縮繊維。
[2]前記熱可塑性樹脂(A)の25℃における半結晶化時間が0.01秒以下である、上記[1]に記載の捲縮繊維。
[3]前記熱可塑性樹脂(B)の25℃における半結晶化時間が0.01秒を超え、0.06秒以下である、上記[1]又は[2]に記載の捲縮繊維。
[4]前記熱可塑性樹脂(C)の25℃における半結晶化時間が0.06秒を超える、上記[1]~[3]のいずれかに記載の捲縮繊維。
[5]前記熱可塑性樹脂(A)のJIS K7210に準拠し、温度190℃、荷重2.16kgの条件で測定したメルトフローレート(MFR)が1g/10min以上70g/10min以下である、上記[1]~[4]のいずれかに記載の捲縮繊維。
[6]前記熱可塑性樹脂(B)のJIS K7210に準拠し、温度230℃、荷重2.16kgの条件で測定したメルトフローレート(MFR)が10g/10min以上500g/10min以下である、上記[1]~[5]のいずれかに記載の捲縮繊維。
[7]前記熱可塑性樹脂(C)のJIS K7210に準拠し、温度230℃、荷重2.16kgの条件で測定したメルトフローレート(MFR)が10g/10min以上5000g/10min以下である、上記[1]~[6]のいずれかに記載の捲縮繊維。
[8]前記熱可塑性樹脂(A)の示差走査型熱量計(DSC)を用いて、窒素雰囲気下-10℃で5分間保持した後10℃/分で昇温させることにより得られる融解吸熱カーブの最も高温側に観測されるピークのピークトップとして定義される融点(Tm-D)が90℃以上135℃以下である、上記[1]~[7]のいずれかに記載の捲縮繊維。
[9]前記熱可塑性樹脂(B)の示差走査型熱量計(DSC)を用いて、窒素雰囲気下-10℃で5分間保持した後10℃/分で昇温させることにより得られる融解吸熱カーブの最も高温側に観測されるピークのピークトップとして定義される融点(Tm-D)が120℃以上200℃以下である、上記[1]~[8]のいずれかに記載の捲縮繊維。
[10]前記熱可塑性樹脂(C)の示差走査型熱量計(DSC)を用いて、窒素雰囲気下-10℃で5分間保持した後10℃/分で昇温させることにより得られる融解吸熱カーブの最も高温側に観測されるピークのピークトップとして定義される融点(Tm-D)が50℃以上100℃以下である、上記[1]~[9]のいずれかに記載の捲縮繊維。
[11]前記熱可塑性樹脂(A)がポリエチレン系樹脂である、上記[1]~[10]のいずれかに記載の捲縮繊維。
[12]前記熱可塑性樹脂(B)がポリプロピレン系樹脂である、上記[1]~[11]のいずれかに記載の捲縮繊維。
[13]前記熱可塑性樹脂(B)がプロピレン単独重合体である、上記[12]に記載の捲縮繊維。
[14]前記熱可塑性樹脂(C)において、示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブから得られる融解吸熱量(ΔH-D)が0J/g以上80J/g以下である、上記[1]~[13]のいずれかに記載の捲縮繊維。
[15]前記熱可塑性樹脂(C)の分子量分布(Mw/Mn)が3.0未満である、上記[1]~[14]のいずれかに記載の捲縮繊維。
[16]前記熱可塑性樹脂(A)、前記熱可塑性樹脂(B)及び前記熱可塑性樹脂(C)の合計に占める前記熱可塑性樹脂(C)の含有量が、1%以上50%以下である、上記[1]~[15]のいずれかに記載の捲縮繊維。
[17]前記捲縮繊維がサイドバイサイド型繊維である、上記[1]~[16]のいずれかに記載の捲縮繊維。
[18]前記捲縮繊維における捲縮の内側を構成する樹脂が、前記熱可塑性樹脂(A)を含むサイドバイサイド型繊維である、上記[17]に記載の捲縮繊維。
[19]前記捲縮繊維における捲縮の内側を構成する樹脂が、前記熱可塑性樹脂(A)からなるサイドバイサイド型繊維である、上記[17]に記載の捲縮繊維。
[20]前記捲縮繊維における捲縮の内側を構成する樹脂が、前記熱可塑性樹脂(B)を含むサイドバイサイド型繊維である、上記[17]に記載の捲縮繊維。
[21]前記捲縮繊維における捲縮の内側を構成する樹脂が、前記熱可塑性樹脂(B)からなるサイドバイサイド型繊維である、上記[17]に記載の捲縮繊維。
[22]上記[1]~[21]のいずれかに記載の捲縮繊維からなる不織布。
[23]2層以上積層してなる多層不織布であって、その少なくとも1層が上記[22]に記載の不織布である多層不織布。
That is, the present disclosure relates to the following.
[1] One component of the crimped fiber contains the thermoplastic resin (A), the other component contains the thermoplastic resin (B) and the thermoplastic resin (C), and the thermoplastic resin (A) has a temperature of 25 ° C. The half crystallization time at 25 ° C. of the thermoplastic resin (B) is shorter than the half crystallization time at 25 ° C. of the thermoplastic resin (B). A crimped fiber that is longer than the half-crystallization time at ° C.
[2] The crimped fiber according to [1], wherein the thermoplastic resin (A) has a semi-crystallization time at 25 ° C. of 0.01 seconds or less.
[3] The crimped fiber according to the above [1] or [2], wherein the thermoplastic resin (B) has a semi-crystallization time at 25 ° C. of more than 0.01 seconds and not more than 0.06 seconds.
[4] The crimped fiber according to any one of [1] to [3] above, wherein the thermoplastic resin (C) has a half crystallization time at 25 ° C. of more than 0.06 seconds.
[5] According to JIS K7210 of the thermoplastic resin (A), the melt flow rate (MFR) measured under conditions of a temperature of 190 ° C. and a load of 2.16 kg is 1 g / 10 min to 70 g / 10 min. [1] A crimped fiber according to any one of [4].
[6] According to JIS K7210 of the thermoplastic resin (B), the melt flow rate (MFR) measured under the conditions of a temperature of 230 ° C. and a load of 2.16 kg is 10 g / 10 min to 500 g / 10 min. The crimped fiber according to any one of 1] to [5].
[7] According to JIS K7210 of the thermoplastic resin (C), the melt flow rate (MFR) measured under the conditions of a temperature of 230 ° C. and a load of 2.16 kg is 10 g / 10 min to 5000 g / 10 min. [1] A crimped fiber according to any one of [6].
[8] Melting endothermic curve obtained by holding the thermoplastic resin (A) using a differential scanning calorimeter (DSC) at −10 ° C. for 5 minutes in a nitrogen atmosphere and then raising the temperature at 10 ° C./min. The crimped fiber according to any one of the above [1] to [7], wherein the melting point (Tm-D) defined as the peak top of the peak observed on the highest temperature side is 90 ° C. or higher and 135 ° C. or lower.
[9] Melting endothermic curve obtained by using a differential scanning calorimeter (DSC) of the thermoplastic resin (B) by holding at −10 ° C. for 5 minutes in a nitrogen atmosphere and then raising the temperature at 10 ° C./min. The crimped fiber according to any one of the above [1] to [8], wherein the melting point (Tm-D) defined as the peak top of the peak observed on the highest temperature side is from 120 ° C to 200 ° C.
[10] Melting endothermic curve obtained by holding the thermoplastic resin (C) using a differential scanning calorimeter (DSC) at −10 ° C. for 5 minutes in a nitrogen atmosphere and then raising the temperature at 10 ° C./min. The crimped fiber according to any one of the above [1] to [9], wherein the melting point (Tm-D) defined as the peak top of the peak observed on the highest temperature side is 50 ° C. or higher and 100 ° C. or lower.
[11] The crimped fiber according to any one of [1] to [10], wherein the thermoplastic resin (A) is a polyethylene resin.
[12] The crimped fiber according to any one of [1] to [11], wherein the thermoplastic resin (B) is a polypropylene resin.
[13] The crimped fiber according to [12], wherein the thermoplastic resin (B) is a propylene homopolymer.
[14] Obtained by using a differential scanning calorimeter (DSC) in the thermoplastic resin (C), holding the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere, and then raising the temperature at 10 ° C./min. The crimped fiber according to any one of the above [1] to [13], wherein the melting endotherm (ΔHD) obtained from the melting endotherm curve is 0 J / g or more and 80 J / g or less.
[15] The crimped fiber according to any one of [1] to [14], wherein the thermoplastic resin (C) has a molecular weight distribution (Mw / Mn) of less than 3.0.
[16] The content of the thermoplastic resin (C) in the total of the thermoplastic resin (A), the thermoplastic resin (B), and the thermoplastic resin (C) is 1% or more and 50% or less. The crimped fiber according to any one of [1] to [15] above.
[17] The crimped fiber according to any one of [1] to [16], wherein the crimped fiber is a side-by-side type fiber.
[18] The crimped fiber according to [17] above, wherein the resin constituting the inside of the crimped fiber is a side-by-side fiber containing the thermoplastic resin (A).
[19] The crimped fiber according to the above [17], wherein the resin constituting the inside of the crimped fiber is a side-by-side type fiber made of the thermoplastic resin (A).
[20] The crimped fiber according to the above [17], wherein the resin constituting the inside of the crimped fiber is a side-by-side fiber containing the thermoplastic resin (B).
[21] The crimped fiber according to the above [17], wherein the resin constituting the inside of the crimped fiber is a side-by-side type fiber made of the thermoplastic resin (B).
[22] A nonwoven fabric comprising the crimped fiber according to any one of [1] to [21].
[23] A multilayer nonwoven fabric obtained by laminating two or more layers, wherein at least one layer is the nonwoven fabric described in [22].
 本発明によれば、捲縮性の高い捲縮繊維及び該捲縮繊維からなる不織布を提供することができる。 According to the present invention, a highly crimped crimped fiber and a nonwoven fabric made of the crimped fiber can be provided.
実施例16で得られたサイドバイサイド型捲縮繊維を光学顕微鏡(倍率200倍)で観察した際の画像である。It is an image at the time of observing the side-by-side type | mold crimp fiber obtained in Example 16 with the optical microscope (200-times multiplication factor). 実施例17で得られたサイドバイサイド型捲縮繊維を光学顕微鏡(倍率200倍)で観察した際の画像である。It is an image at the time of observing the side-by-side type | mold crimp fiber obtained in Example 17 with the optical microscope (200-times multiplication factor). 実施例18で得られたサイドバイサイド型捲縮繊維を光学顕微鏡(倍率200倍)で観察した際の画像である。It is an image at the time of observing the side-by-side crimped fiber obtained in Example 18 with an optical microscope (magnification 200 times). 実施例19で得られたサイドバイサイド型捲縮繊維を光学顕微鏡(倍率200倍)で観察した際の画像である。It is an image at the time of observing the side-by-side type | mold crimp fiber obtained in Example 19 with the optical microscope (200-times multiplication factor). 実施例20で得られたサイドバイサイド型捲縮繊維を光学顕微鏡(倍率200倍)で観察した際の画像である。It is an image at the time of observing the side-by-side type | mold crimp fiber obtained in Example 20 with the optical microscope (200-times multiplication factor). 実施例21で得られたサイドバイサイド型捲縮繊維を光学顕微鏡(倍率200倍)で観察した際の画像である。It is an image at the time of observing the side-by-side type crimped fiber obtained in Example 21 with an optical microscope (magnification 200 times).
 以下、本発明について詳細に説明する。
 本明細書において「捲縮繊維」は、異なる熱可塑性樹脂を組み合わせたサイドバイサイド型ノズル、偏心芯鞘型ノズル、異形ノズル又は分割ノズルでなされる複合紡糸繊維を含む意味で用いる。また、芯鞘型繊維とは、繊維の断面が内層部の「芯」と外層部の「鞘」から成る繊維をいい、偏心芯鞘型繊維とは、その断面形状において、内層部の重心位置が繊維全体の重心位置と異なる繊維をいう。
 また、本明細書において、捲縮繊維を構成する成分のうち、熱可塑性樹脂(A)を含む成分を「第一成分」とし、熱可塑性樹脂(B)及び熱可塑性樹脂(C)を含む成分を「第二成分」とする。本明細書において、捲縮繊維がサイドバイサイド型繊維の場合、該サイドバイサイド型繊維を構成する一方の成分を「第一成分」とし、他方の成分を「第二成分」とする。また、捲縮繊維が芯鞘型繊維の場合、該芯鞘型繊維の芯部分に用いられる成分及び鞘部分に用いられる成分のいずれか一方を「第一成分」とし、他方を「第二成分」とする。
Hereinafter, the present invention will be described in detail.
In the present specification, “crimped fiber” is used to include composite spun fibers formed by side-by-side nozzles, eccentric core-sheath nozzles, deformed nozzles, or split nozzles, which are combined with different thermoplastic resins. The core-sheath fiber refers to a fiber whose cross section is composed of a “core” of the inner layer portion and a “sheath” of the outer layer portion, and the eccentric core-sheath fiber is the center of gravity position of the inner layer portion in the cross-sectional shape. Means a fiber different from the center of gravity of the entire fiber.
Moreover, in this specification, the component which contains a thermoplastic resin (A) among the components which comprise a crimped fiber is made into a "1st component", and the component containing a thermoplastic resin (B) and a thermoplastic resin (C) Is the “second component”. In the present specification, when the crimped fiber is a side-by-side fiber, one component constituting the side-by-side fiber is referred to as a “first component”, and the other component is referred to as a “second component”. Further, when the crimped fiber is a core-sheath fiber, one of the component used for the core part of the core-sheath fiber and the component used for the sheath part is referred to as a “first component”, and the other is referred to as a “second component” "
<捲縮繊維>
 本実施形態の捲縮繊維は、該捲縮繊維の一方の成分が熱可塑性樹脂(A)を含み、他方の成分が熱可塑性樹脂(B)及び熱可塑性樹脂(C)を含み、前記熱可塑性樹脂(A)の25℃における半結晶化時間が前記熱可塑性樹脂(B)の25℃における半結晶化時間よりも短く、前記熱可塑性樹脂(C)の25℃における半結晶化時間が前記熱可塑性樹脂(B)の25℃における半結晶化時間よりも長いことを特徴とする。
 本実施形態では、熱可塑性樹脂(A)、熱可塑性樹脂(B)及び熱可塑性樹脂(C)が上記関係を満たすことにより、熱可塑性樹脂(A)を含む第一成分の25℃における半結晶化時間と、熱可塑性樹脂(B)及び熱可塑性樹脂(C)を含む第二成分の25℃における半結晶化時間との差がより大きくなり、より捲縮性の高い捲縮繊維とすることができる。
<Crimped fiber>
In the crimped fiber of this embodiment, one component of the crimped fiber includes a thermoplastic resin (A), and the other component includes a thermoplastic resin (B) and a thermoplastic resin (C), and the thermoplastic The half crystallization time of the resin (A) at 25 ° C is shorter than the half crystallization time of the thermoplastic resin (B) at 25 ° C, and the half crystallization time of the thermoplastic resin (C) at 25 ° C is the heat. It is characterized by being longer than the half crystallization time at 25 ° C. of the plastic resin (B).
In this embodiment, when the thermoplastic resin (A), the thermoplastic resin (B), and the thermoplastic resin (C) satisfy the above relationship, the first component containing the thermoplastic resin (A) is a semi-crystal at 25 ° C. The difference between the crystallization time and the semi-crystallization time at 25 ° C. of the second component containing the thermoplastic resin (B) and the thermoplastic resin (C) becomes larger, and a crimped fiber having higher crimpability is obtained. Can do.
 なお、本実施形態において、半結晶化時間は下記の方法で測定した。
 FLASH DSC(メトラー・トレド株式会社製)を用い、試料を230℃で2分間加熱して融解させた後、2000℃/秒で25℃まで冷却し、25℃での等温結晶化過程における、発熱量の時間変化を測定した。等温結晶化開始時から結晶化完了時までの発熱量の積分値を100%とした時、等温結晶化開始時から発熱量の積分値が50%となるまでの時間を半結晶化時間とした。
In the present embodiment, the half crystallization time was measured by the following method.
Using FLASH DSC (manufactured by METTLER TOLEDO Co., Ltd.), the sample was heated at 230 ° C. for 2 minutes to melt, then cooled to 25 ° C. at 2000 ° C./second, and heat generation during the isothermal crystallization process at 25 ° C. The amount of change over time was measured. When the integrated value of the calorific value from the start of isothermal crystallization to the completion of crystallization is taken as 100%, the time from the start of isothermal crystallization until the integrated value of the calorific value reaches 50% is taken as the half crystallization time. .
 また、熱可塑性樹脂(A)のメルトフローレート(MFR)は熱可塑性樹脂(B)のMFRよりも小さく、熱可塑性樹脂(B)のMFRは熱可塑性樹脂(C)のMFRよりも小さいことが、捲縮繊維の捲縮性を高める観点から好ましい。
 なお、メルトフローレート(MFR)は、JIS K7210で規定された測定方法により測定され、熱可塑性樹脂(A)については温度190℃、荷重2.16kgの条件で、熱可塑性樹脂(B)及び熱可塑性樹脂(C)については温度230℃、荷重2.16kgの条件で測定される。
Further, the melt flow rate (MFR) of the thermoplastic resin (A) is smaller than the MFR of the thermoplastic resin (B), and the MFR of the thermoplastic resin (B) is smaller than the MFR of the thermoplastic resin (C). From the viewpoint of enhancing the crimpability of the crimped fiber.
The melt flow rate (MFR) is measured by a measurement method defined in JIS K7210. For the thermoplastic resin (A), a temperature of 190 ° C. and a load of 2.16 kg are used. The plastic resin (C) is measured under the conditions of a temperature of 230 ° C. and a load of 2.16 kg.
 熱可塑性樹脂(A)の示差走査型熱量計(DSC)を用いて、窒素雰囲気下-10℃で5分間保持した後10℃/分で昇温させることにより得られる融解吸熱カーブの最も高温側に観測されるピークのピークトップとして定義される融点(Tm-D)は、熱可塑性樹脂(B)の上記条件で定義される融点(Tm-D)よりも低く、熱可塑性樹脂(B)の融点(Tm-D)は、熱可塑性樹脂(C)の上記条件で定義される融点(Tm-D)よりも高いことが、捲縮繊維の捲縮性を高める観点から好ましい。 Using the differential scanning calorimeter (DSC) of the thermoplastic resin (A), hold it at −10 ° C. for 5 minutes in a nitrogen atmosphere and then raise the temperature at 10 ° C./min. The melting point (Tm-D) defined as the peak top of the peak observed in Fig. 2 is lower than the melting point (Tm-D) defined by the above conditions of the thermoplastic resin (B), and the thermoplastic resin (B) The melting point (Tm-D) is preferably higher than the melting point (Tm-D) defined by the above conditions for the thermoplastic resin (C) from the viewpoint of enhancing the crimpability of the crimped fiber.
〔熱可塑性樹脂(A)〕
 本実施形態で用いる熱可塑性樹脂(A)は、25℃における半結晶化時間が後述する熱可塑性樹脂(B)の25℃における半結晶化時間よりも短く、好ましくは0.01秒以下である。熱可塑性樹脂(A)の25℃における半結晶化時間が0.01秒以下であれば、より捲縮性の高い捲縮繊維が得られる。
[Thermoplastic resin (A)]
The thermoplastic resin (A) used in the present embodiment has a half crystallization time at 25 ° C. shorter than the half crystallization time at 25 ° C. of the thermoplastic resin (B) described later, preferably 0.01 seconds or less. . If the half crystallization time of the thermoplastic resin (A) at 25 ° C is 0.01 seconds or less, a crimped fiber having higher crimpability can be obtained.
 上記熱可塑性樹脂(A)のメルトフローレート(MFR)は、好ましくは1g/10min以上、より好ましくは5g/10min以上、さらに好ましくは10g/10min以上、よりさらに好ましくは15g/10min以上であり、そして、好ましくは70g/10min以下、より好ましくは45g/10min以下、さらに好ましくは30g/10min以下、よりさらに好ましくは20g/10min以下である。
 なお、メルトフローレート(MFR)は、JIS K7210で規定された測定方法により測定され、温度190℃、荷重2.16kgの条件で測定される。
The melt flow rate (MFR) of the thermoplastic resin (A) is preferably 1 g / 10 min or more, more preferably 5 g / 10 min or more, further preferably 10 g / 10 min or more, still more preferably 15 g / 10 min or more, And preferably it is 70 g / 10min or less, More preferably, it is 45 g / 10min or less, More preferably, it is 30 g / 10min or less, More preferably, it is 20 g / 10min or less.
The melt flow rate (MFR) is measured by a measurement method defined in JIS K7210, and is measured under conditions of a temperature of 190 ° C. and a load of 2.16 kg.
 上記熱可塑性樹脂(A)の示差走査型熱量計(DSC)を用いて、窒素雰囲気下-10℃で5分間保持した後10℃/分で昇温させることにより得られる融解吸熱カーブの最も高温側に観測されるピークのピークトップとして定義される融点(Tm-D)は、好ましくは90℃以上、より好ましくは100℃以上、さらに好ましくは115℃以上であり、そして、好ましくは135℃以下、より好ましくは130℃以下である。 Using the differential scanning calorimeter (DSC) of the thermoplastic resin (A), the highest end of the melting endotherm curve obtained by holding at −10 ° C. for 5 minutes in a nitrogen atmosphere and then raising the temperature at 10 ° C./min. The melting point (Tm-D) defined as the peak top of the peak observed on the side is preferably 90 ° C. or higher, more preferably 100 ° C. or higher, more preferably 115 ° C. or higher, and preferably 135 ° C. or lower. More preferably, it is 130 ° C. or lower.
 上記熱可塑性樹脂(A)は、上述の要件を満たせば特に限定されないが、分子量分布の狭いいわゆるメタロセン触媒を用いたポリエチレン系樹脂であることが好ましい。ポリエチレン系樹脂としては、エチレン単独重合体であってもよく、共重合体であってもよい。共重合体である場合、エチレン単位の共重合比は50モル%を超え、好ましくは60モル%以上、より好ましくは70モル%以上、更に好ましくは90モル%以上、より更に好ましくは95モル%以上である。共重合可能なモノマーとしては、例えば炭素数3~30のα-オレフィンであり、具体例としては、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン等が挙げられる。 The thermoplastic resin (A) is not particularly limited as long as the above requirements are satisfied, but is preferably a polyethylene resin using a so-called metallocene catalyst having a narrow molecular weight distribution. The polyethylene resin may be an ethylene homopolymer or a copolymer. In the case of a copolymer, the copolymerization ratio of ethylene units exceeds 50 mol%, preferably 60 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more, and still more preferably 95 mol%. That's it. Examples of the copolymerizable monomer include α-olefins having 3 to 30 carbon atoms, and specific examples include 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene and the like.
 エチレン単独重合体の市販品としては、「ASPUNTM」シリーズ(例えば「ASPUN XUS 61800.52 LE」「ASPUN 6834」)(ダウ・ケミカル社製)等を例示できる。また、エチレンとオクテンとの共重合体の市販品としては、ダウ・ケミカル社製の「アフィニティGA1900」、「アフィニティGA1950」、「アフィニティEG8185」、「アフィニティEG8200」、「エンゲージ8137」、「エンゲージ8180」、「エンゲージ8400」等を例示できる(いずれも商品名)。 Examples of commercially available ethylene homopolymers include the “ASPUN ” series (for example, “ASPUN XUS 61800.52 LE” and “ASPUN 6834”) (manufactured by Dow Chemical Co., Ltd.). Commercially available copolymers of ethylene and octene include “Affinity GA1900”, “Affinity GA1950”, “Affinity EG8185”, “Affinity EG8200”, “Engage 8137”, “Engage 8180” manufactured by Dow Chemical Co., Ltd. ”,“ Engage 8400 ”, etc. (all are trade names).
 ポリエチレン系樹脂は、重量平均分子量(Mw)が大きいほど、得られる捲縮繊維の捲縮性を高めることができるが、糸切れしやすくなり、紡糸性を低下させる。また、ポリエチレン系樹脂の密度が高いほど、得られる捲縮繊維の捲縮性を高めることができるが、糸切れしやすくなり、紡糸性を低下させる。これに対し、本実施形態の捲縮繊維において、第二成分として後述する熱可塑性樹脂(B)に熱可塑性樹脂(C)を添加した成分を用いることにより、糸切れが抑制され、紡糸性を高め、さらに捲縮性を高めることができる。 As the weight average molecular weight (Mw) of the polyethylene-based resin is increased, the crimpability of the obtained crimped fiber can be improved, but the yarn is easily broken and the spinnability is lowered. In addition, the higher the density of the polyethylene resin, the higher the crimpability of the crimped fiber obtained, but the yarn breaks easily and the spinnability is lowered. On the other hand, in the crimped fiber of the present embodiment, by using a component obtained by adding a thermoplastic resin (C) to a thermoplastic resin (B) described later as a second component, yarn breakage is suppressed and spinnability is improved. The crimpability can be further increased.
 第一成分における熱可塑性樹脂(A)の含有量は、第一成分を100質量%としたとき、好ましくは80質量%以上、より好ましくは85質量%以上、更に好ましくは90質量%以上であり、そして、上限値は100質量%である。 The content of the thermoplastic resin (A) in the first component is preferably 80% by mass or more, more preferably 85% by mass or more, and still more preferably 90% by mass or more, when the first component is 100% by mass. And an upper limit is 100 mass%.
〔熱可塑性樹脂(B)〕
 本実施形態で用いる熱可塑性樹脂(B)は、25℃における半結晶化時間が後述する熱可塑性樹脂(C)の25℃における半結晶化時間よりも短く、好ましくは0.01秒を超え、より好ましくは0.02秒以上、更に好ましくは0.03秒以上、より更に好ましくは0.04秒以上であり、そして、好ましくは0.06秒以下、より好ましくは0.06秒未満、更に好ましくは0.05秒以下である。熱可塑性樹脂(B)の25℃における半結晶化時間が0.01秒を超えると、前記熱可塑性樹脂(A)の25℃における半結晶化時間との差が生じ、捲縮繊維の捲縮性を高めることができる。
[Thermoplastic resin (B)]
The thermoplastic resin (B) used in the present embodiment has a half crystallization time at 25 ° C. shorter than the half crystallization time at 25 ° C. of the thermoplastic resin (C) described later, preferably more than 0.01 seconds, More preferably 0.02 seconds or more, further preferably 0.03 seconds or more, still more preferably 0.04 seconds or more, and preferably 0.06 seconds or less, more preferably less than 0.06 seconds, Preferably it is 0.05 second or less. When the half crystallization time of the thermoplastic resin (B) at 25 ° C. exceeds 0.01 seconds, a difference from the half crystallization time of the thermoplastic resin (A) at 25 ° C. occurs, and the crimped fibers are crimped. Can increase the sex.
 上記熱可塑性樹脂(B)のメルトフローレート(MFR)は、好ましくは10g/10min以上、より好ましくは30g/10min以上であり、そして、好ましくは500g/10min以下である。
 なお、メルトフローレート(MFR)は、JIS K7210で規定された測定方法により測定され、温度230℃、荷重2.16kgの条件で測定される。
The melt flow rate (MFR) of the thermoplastic resin (B) is preferably 10 g / 10 min or more, more preferably 30 g / 10 min or more, and preferably 500 g / 10 min or less.
The melt flow rate (MFR) is measured by a measurement method defined in JIS K7210, and is measured under conditions of a temperature of 230 ° C. and a load of 2.16 kg.
 上記熱可塑性樹脂(B)の示差走査型熱量計(DSC)を用いて、窒素雰囲気下-10℃で5分間保持した後10℃/分で昇温させることにより得られる融解吸熱カーブの最も高温側に観測されるピークのピークトップとして定義される融点(Tm-D)は、好ましくは120℃以上、より好ましくは130℃以上、更に好ましくは140℃以上であり、そして、好ましくは200℃以下、より好ましくは180℃以下、更に好ましくは170℃以下である。 Using the differential scanning calorimeter (DSC) of the thermoplastic resin (B), the highest end of the melting endotherm curve obtained by holding at −10 ° C. for 5 minutes in a nitrogen atmosphere and then raising the temperature at 10 ° C./min. The melting point (Tm-D) defined as the peak top of the peak observed on the side is preferably 120 ° C. or higher, more preferably 130 ° C. or higher, still more preferably 140 ° C. or higher, and preferably 200 ° C. or lower. More preferably, it is 180 degrees C or less, More preferably, it is 170 degrees C or less.
 上記熱可塑性樹脂(B)は、上述の要件を満たせば特に限定されないが、ポリプロピレン系樹脂であることが好ましい。ポリプロピレン系樹脂としては、プロピレン単独重合体であってもよく、共重合体であってもよいが、分子量分布の狭いいわゆるメタロセン触媒を用いたプロピレン単独重合体であることが好ましい。また、共重合体である場合、プロピレン単位の共重合比は50モル%以上であり、60モル%以上であることが好ましく、70モル%以上であることがより好ましく、90モル%以上であることが更に好ましく、95モル%以上であることが特に好ましい。共重合可能なモノマーとしては、例えば、エチレンや、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセンなどの炭素数2もしくは4~20のα-オレフィン、アクリル酸メチルなどのアクリル酸エステル、酢酸ビニルなどが挙げられるが、成形性の観点からプロピレン単独重合体が好ましい。
 なお、上記熱可塑性樹脂(B)には、メタロセン系触媒以外の触媒(例えば、チーグラー・ナッタ触媒)を用いて重合されたポリプロピレン系樹脂が含まれていてもよい。これらは1種を用いてもよく、2種以上を組み合わせて用いてもよい。
 具体例としては、過酸化物を含むプロピレン系樹脂などが挙げられる。
Although the said thermoplastic resin (B) will not be specifically limited if the above-mentioned requirements are satisfied, it is preferable that it is a polypropylene resin. The polypropylene resin may be a propylene homopolymer or a copolymer, but is preferably a propylene homopolymer using a so-called metallocene catalyst having a narrow molecular weight distribution. In the case of a copolymer, the copolymerization ratio of propylene units is 50 mol% or more, preferably 60 mol% or more, more preferably 70 mol% or more, and 90 mol% or more. It is more preferable that it is 95 mol% or more. Examples of the copolymerizable monomer include ethylene, α-olefins having 2 or 4 to 20 carbon atoms such as 1-butene, 1-pentene, 1-hexene, 1-octene and 1-decene, methyl acrylate, etc. Acrylic acid ester, vinyl acetate, and the like are mentioned, and a propylene homopolymer is preferable from the viewpoint of moldability.
The thermoplastic resin (B) may contain a polypropylene resin polymerized using a catalyst (for example, a Ziegler-Natta catalyst) other than the metallocene catalyst. These may be used alone or in combination of two or more.
Specific examples include a propylene-based resin containing a peroxide.
 プロピレン単独重合体の市販品としては、「NOVATECTM PP」シリーズ(例えば「NOVATEC SA03」)(日本ポリプロ(株)製)等を例示できる。また、メタロセン系触媒以外の触媒を用いて重合された過酸化物を含むプロピレン単独重合体の市販品としては、「Moplen」シリーズ(例えば、「Moplen HP461Y」)(Lyondell Basell社製);PP3155(商品名、ExxonMobil Chemical社製)等を例示できる。
 メタロセン系触媒を用いて重合されたポリプロピレン系樹脂の市販品としては、「Metocene」シリーズ(例えば、「Metocene MF650Y」)(Lyondell Basell社製)等を例示できる。
 なお、粘度調整を行う観点からは、メタロセン系触媒を用いて重合されたポリプロピレン系樹脂が好ましい。
Examples of commercially available propylene homopolymers include the “NOVATEC PP” series (for example, “NOVATEC SA03”) (manufactured by Nippon Polypro Co., Ltd.). Moreover, as a commercial item of the propylene homopolymer containing the peroxide polymerized using a catalyst other than the metallocene catalyst, “Moplen” series (for example, “Moplen HP461Y”) (manufactured by Lyondell Basell); PP3155 ( For example, trade name, manufactured by ExxonMobil Chemical Co., Ltd.).
As a commercial item of the polypropylene resin polymerized using the metallocene catalyst, “Metocene” series (for example, “Metocene MF650Y”) (manufactured by Lyondell Basell) and the like can be exemplified.
From the viewpoint of adjusting the viscosity, a polypropylene resin polymerized using a metallocene catalyst is preferable.
 第二成分における熱可塑性樹脂(B)の含有量は、第二成分を100質量%としたとき、好ましくは50質量%以上、より好ましくは60質量%以上、更に好ましくは70質量%以上、より更に好ましくは80質量%以上であり、そして、好ましくは99質量%以下、より好ましくは97質量%以下、更に好ましくは95質量%以下である。 The content of the thermoplastic resin (B) in the second component is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, when the second component is 100% by mass. More preferably, it is 80 mass% or more, Preferably it is 99 mass% or less, More preferably, it is 97 mass% or less, More preferably, it is 95 mass% or less.
〔熱可塑性樹脂(C)〕
 本実施形態で用いる熱可塑性樹脂(C)は、25℃における半結晶化時間が熱可塑性樹脂(B)よりも長く、好ましくは0.06秒以上、より好ましくは0.06秒を超える。
熱可塑性樹脂(C)の25℃における半結晶化時間が0.06秒以上であると、前記第一成分の25℃における半結晶化時間と、前記第二成分の25℃における半結晶化時間との差をより大きくすることができ、捲縮繊維の捲縮性をより高めることができる。
[Thermoplastic resin (C)]
The thermoplastic resin (C) used in this embodiment has a longer half crystallization time at 25 ° C. than that of the thermoplastic resin (B), preferably 0.06 seconds or more, more preferably more than 0.06 seconds.
When the half crystallization time of the thermoplastic resin (C) at 25 ° C. is 0.06 seconds or more, the half crystallization time of the first component at 25 ° C. and the half crystallization time of the second component at 25 ° C. And the crimpability of the crimped fiber can be further increased.
 上記熱可塑性樹脂(C)のメルトフローレート(MFR)は、好ましくは10g/10min以上であり、より好ましくは500g/10min以上、そして、好ましくは5000g/10min以下である。MFRが、10g/10min以上であれば、前記第一成分のMFRと、前記第二成分のMFRとの差をより大きくすることができ、捲縮繊維の捲縮性をより高めることができる。
 なお、メルトフローレート(MFR)は、JIS K7210で規定された測定方法により測定され、温度230℃、荷重2.16kgの条件で測定される。
The melt flow rate (MFR) of the thermoplastic resin (C) is preferably 10 g / 10 min or more, more preferably 500 g / 10 min or more, and preferably 5000 g / 10 min or less. When the MFR is 10 g / 10 min or more, the difference between the MFR of the first component and the MFR of the second component can be further increased, and the crimpability of the crimped fiber can be further increased.
The melt flow rate (MFR) is measured by a measurement method defined in JIS K7210, and is measured under conditions of a temperature of 230 ° C. and a load of 2.16 kg.
 上記熱可塑性樹脂(C)の示差走査型熱量計(DSC)を用いて、窒素雰囲気下-10℃で5分間保持した後10℃/分で昇温させることにより得られる融解吸熱カーブの最も高温側に観測されるピークのピークトップとして定義される融点(Tm-D)は、好ましくは50℃以上、より好ましくは60℃以上であり、そして、好ましくは100℃以下である。熱可塑性樹脂(C)の融点(Tm-D)が50℃以上であれば、前記第一成分の融点(Tm-D)と、前記第二成分の融点(Tm-D)との差をより大きくすることができる。 Using the differential scanning calorimeter (DSC) of the thermoplastic resin (C), the highest end of the melting endotherm curve obtained by holding at −10 ° C. for 5 minutes in a nitrogen atmosphere and then raising the temperature at 10 ° C./min. The melting point (Tm-D) defined as the peak top of the peak observed on the side is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and preferably 100 ° C. or lower. If the melting point (Tm-D) of the thermoplastic resin (C) is 50 ° C. or higher, the difference between the melting point (Tm-D) of the first component and the melting point (Tm-D) of the second component is more Can be bigger.
 上記熱可塑性樹脂(C)の重量平均分子量(Mw)は、好ましくは30,000以上であり、そして、好ましくは150,000以下、より好ましくは60,000以下である。 The weight average molecular weight (Mw) of the thermoplastic resin (C) is preferably 30,000 or more, and preferably 150,000 or less, more preferably 60,000 or less.
 また、上記熱可塑性樹脂(C)の分子量分布(Mw/Mn)は、好ましくは3.0未満、より好ましくは2.5以下、更に好ましくは2.3以下である。熱可塑性樹脂(C)の分子量分布が上記範囲内であれば、紡糸により得られた繊維におけるべたつきの発生が抑制される。 The molecular weight distribution (Mw / Mn) of the thermoplastic resin (C) is preferably less than 3.0, more preferably 2.5 or less, and still more preferably 2.3 or less. If the molecular weight distribution of the thermoplastic resin (C) is within the above range, stickiness in the fiber obtained by spinning is suppressed.
 上記の重量平均分子量(Mw)及び分子量分布(Mw/Mn)は、ゲルパーミエイションクロマトグラフィ(GPC)測定により求められる。重量平均分子量は、下記の装置及び条件で測定したポリスチレン換算の重量平均分子量であり、分子量分布は、同様にして測定した数平均分子量(Mn)及び上記重量平均分子量より算出した値である。
<GPC測定装置>
カラム     :東ソー(株)製「TOSO GMHHR-H(S)HT」
検出器     :液体クロマトグラム用RI検出 ウォーターズ・コーポレーション製「WATERS 150C」
<測定条件>
 溶媒     :1,2,4-トリクロロベンゼン
 測定温度   :145℃
 流速     :1.0mL/分
 試料濃度   :2.2mg/mL
 注入量    :160μL
 検量線    :Universal Calibration
 解析プログラム:HT-GPC(Ver.1.0)
Said weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) are calculated | required by a gel permeation chromatography (GPC) measurement. The weight average molecular weight is a polystyrene equivalent weight average molecular weight measured with the following apparatus and conditions, and the molecular weight distribution is a value calculated from the number average molecular weight (Mn) measured in the same manner and the above weight average molecular weight.
<GPC measurement device>
Column: “TOSO GMHHR-H (S) HT” manufactured by Tosoh Corporation
Detector: RI detection for liquid chromatogram "WATERS 150C" manufactured by Waters Corporation
<Measurement conditions>
Solvent: 1,2,4-trichlorobenzene Measurement temperature: 145 ° C
Flow rate: 1.0 mL / min Sample concentration: 2.2 mg / mL
Injection volume: 160 μL
Calibration curve: Universal Calibration
Analysis program: HT-GPC (Ver.1.0)
 上記熱可塑性樹脂(C)において、示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブから得られる融解吸熱量(ΔH-D)は、好ましくは0J/g以上、より好ましくは10J/g以上、更に好ましくは20J/g以上であり、そして、好ましくは80J/g以下、より好ましくは60J/g以下、更に好ましくは40J/g以下である。
 なお、本実施形態において、融解吸熱量(ΔH-D)は、示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブのピークを含むラインと熱量変化の無い低温側の点と熱量変化の無い高温側の点とを結んだ線(ベースラインとする)とで囲まれる面積を求めることで算出される。
In the thermoplastic resin (C), a melting endotherm obtained by using a differential scanning calorimeter (DSC) and holding the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere and then raising the temperature at 10 ° C./min. The melting endotherm (ΔHD) obtained from the curve is preferably 0 J / g or more, more preferably 10 J / g or more, still more preferably 20 J / g or more, and preferably 80 J / g or less, more preferably Is 60 J / g or less, more preferably 40 J / g or less.
In this embodiment, the melting endotherm (ΔHD) is determined by using a differential scanning calorimeter (DSC), holding the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere, and then increasing the temperature at 10 ° C./min. Obtain the area surrounded by the line containing the peak of the melting endotherm curve obtained by the process, the line on the low temperature side without any change in calorie, and the line on the high temperature side without any change in calorie (referred to as the base line) It is calculated by.
 上記熱可塑性樹脂(C)は、上述の要件を満たせば特に限定されないが、ポリプロピレン系樹脂であることが好ましい。ポリプロピレン系樹脂としては、プロピレン単独重合体であってもよく、共重合体であってもよい。なお、ベタつきを抑制する観点からは、メタロセン系触媒を用いて重合されたポリプロピレン系樹脂が好ましい。
 プロピレン単独重合体としては、低分子量ポリプロピレンが挙げられ、好ましくは、メタロセン系触媒を用いて合成したL-MODU(出光興産(株)製)、Moplen(Lyondell Basell社製)等が挙げられる。これらは1種を用いてもよく、2種以上を混合して用いてもよい。
 また、ポリプロピレン系樹脂が共重合体である場合、プロピレン単位の共重合比は、50モル%を超え、好ましくは60モル%以上、より好ましくは70モル%以上、更に好ましくは90モル%以上、より更に好ましくは95モル%以上である。共重合可能なモノマーとしては、エチレン及び炭素数4~30のα-オレフィンからなる群より選ばれる少なくとも1つであり、具体例としては、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン等が挙げられる。
 ポリプロピレン系樹脂が共重合体である場合、ポリプロピレン系樹脂は、エチレン及び炭素数4~30のα-オレフィンからなる群より選ばれる少なくとも1つの構成単位を、0モル%を超え20モル%以下含むことが好ましい。
Although the said thermoplastic resin (C) will not be specifically limited if the above-mentioned requirements are satisfied, It is preferable that it is a polypropylene resin. The polypropylene resin may be a propylene homopolymer or a copolymer. From the viewpoint of suppressing stickiness, a polypropylene resin polymerized using a metallocene catalyst is preferred.
Examples of the propylene homopolymer include low molecular weight polypropylene, and preferred examples include L-MODU (manufactured by Idemitsu Kosan Co., Ltd.) and Moplen (manufactured by Lyondell Basell Co., Ltd.) synthesized using a metallocene catalyst. These may be used alone or in combination of two or more.
Further, when the polypropylene resin is a copolymer, the copolymerization ratio of propylene units exceeds 50 mol%, preferably 60 mol% or more, more preferably 70 mol% or more, still more preferably 90 mol% or more, More preferably, it is 95 mol% or more. The copolymerizable monomer is at least one selected from the group consisting of ethylene and an α-olefin having 4 to 30 carbon atoms. Specific examples include ethylene, 1-butene, 1-pentene, 1-hexene, Examples include 1-octene and 1-decene.
When the polypropylene resin is a copolymer, the polypropylene resin contains at least one structural unit selected from the group consisting of ethylene and an α-olefin having 4 to 30 carbon atoms, more than 0 mol% and 20 mol% or less. It is preferable.
(熱可塑性樹脂(C)の製造方法)
 熱可塑性樹脂(C)がポリプロピレン系樹脂の場合、該ポリプロピレン系樹脂は、例えば、国際公開第2003/087172号に記載されているようなメタロセン系触媒を使用して製造することができる。特に、配位子が架橋基を介して架橋構造を形成している遷移金属化合物を用いたものが好ましく、なかでも、2個の架橋基を介して架橋構造を形成している遷移金属化合物と助触媒を組み合わせて得られるメタロセン系触媒が好ましい。
(Method for producing thermoplastic resin (C))
When the thermoplastic resin (C) is a polypropylene resin, the polypropylene resin can be produced using a metallocene catalyst as described in, for example, International Publication No. 2003/087172. In particular, those using a transition metal compound in which a ligand forms a cross-linked structure via a cross-linking group are preferred, and in particular, a transition metal compound that forms a cross-linked structure via two cross-linking groups and Metallocene catalysts obtained by combining promoters are preferred.
 具体的に例示すれば、
(i)一般式(I)
Figure JPOXMLDOC01-appb-C000001

〔式中、Mは周期律表第3~10族又はランタノイド系列の金属元素を示し、E及びEはそれぞれ置換シクロペンタジエニル基、インデニル基、置換インデニル基、ヘテロシクロペンタジエニル基、置換ヘテロシクロペンタジエニル基、アミド基、ホスフィド基、炭化水素基及び珪素含有基の中から選ばれた配位子であって、A及びAを介して架橋構造を形成しており、又それらは互いに同一でも異なっていてもよく、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX、E、E又はYと架橋していてもよい。Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のY,E、E又はXと架橋していてもよく、A及びAは二つの配位子を結合する二価の架橋基であって、炭素数1~20の炭化水素基、炭素数1~20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、-O-、-CO-、-S-、-SO-、-Se-、-NR-、-PR-、-P(O)R-、-BR-又は-AlR-を示し、Rは水素原子、ハロゲン原子、炭素数1~20の炭化水素基又は炭素数1~20のハロゲン含有炭化水素基を示し、それらは互いに同一でも異なっていてもよい。qは1~5の整数で〔(Mの原子価)-2〕を示し、rは0~3の整数を示す。〕
で表される遷移金属化合物、並びに
(ii)(ii-1)該(i)成分の遷移金属化合物又はその派生物と反応してイオン性の錯体を形成しうる化合物及び(ii-2)アルミノキサンからなる群から選ばれる少なくとも一種の成分
を含有する重合用触媒が挙げられる。
For example,
(I) General formula (I)
Figure JPOXMLDOC01-appb-C000001

[Wherein, M represents a metal element of the Periodic Table Group 3-10 or the lanthanide series, E 1 and E 2 each represent a substituted cyclopentadienyl group, indenyl group, substituted indenyl group, a hetero cyclopentadienyl group A ligand selected from a substituted heterocyclopentadienyl group, an amide group, a phosphide group, a hydrocarbon group, and a silicon-containing group, which forms a cross-linked structure via A 1 and A 2 In addition, they may be the same or different from each other, X represents a σ-bonded ligand, and when there are a plurality of X, the plurality of X may be the same or different, and other X, E 1 , E 2 or Y may be cross-linked. Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different, and may be cross-linked with other Y, E 1 , E 2 or X, and A 1 and A 2 are A divalent bridging group that binds two ligands, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a germanium-containing group, a tin-containing group , -O -, - CO -, - S -, - SO 2 -, - Se -, - NR 1 -, - PR 1 -, - P (O) R 1 -, - BR 1 - or -AlR 1 - R 1 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, which may be the same as or different from each other. q is an integer of 1 to 5 and represents [(valence of M) -2], and r represents an integer of 0 to 3. ]
And (ii) (ii-1) a compound capable of reacting with the transition metal compound of component (i) or a derivative thereof to form an ionic complex, and (ii-2) an aluminoxane And a polymerization catalyst containing at least one component selected from the group consisting of:
 上記(i)成分の遷移金属化合物としては、配位子が(1,2’)(2,1’)二重架橋型の遷移金属化合物が好ましく、例えば(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリドが挙げられる。 As the transition metal compound of the component (i), a ligand (1,2 ′) (2,1 ′) double-bridged transition metal compound is preferable. For example, (1,2′-dimethylsilylene) ( 2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride.
 上記(ii-1)成分の化合物の具体例としては、テトラフェニル硼酸トリエチルアンモニウム、テトラフェニル硼酸トリ-n-ブチルアンモニウム、テトラフェニル硼酸トリメチルアンモニウム、テトラフェニル硼酸テトラエチルアンモニウム、テトラフェニル硼酸メチル(トリ-n-ブチル)アンモニウム、テトラフェニル硼酸ベンジル(トリ-n-ブチル)アンモニウム、テトラフェニル硼酸ジメチルジフェニルアンモニウム、テトラフェニル硼酸トリフェニル(メチル)アンモニウム、テトラフェニル硼酸トリメチルアニリニウム、テトラフェニル硼酸メチルピリジニウム、テトラフェニル硼酸ベンジルピリジニウム、テトラフェニル硼酸メチル(2-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)硼酸トリエチルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸トリ-n-ブチルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸トリフェニルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸テトラ-n-ブチルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸テトラエチルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸ベンジル(トリ-n-ブチル)アンモニウム、テトラキス(ペンタフルオロフェニル)硼酸メチルジフェニルアンモニウム、テトラキス(ペンタフルオロフェニル)硼酸トリフェニル(メチル)アンモニウム、テトラキス(ペンタフルオロフェニル)硼酸メチルアニリニウム、テトラキス(ペンタフルオロフェニル)硼酸ジメチルアニリニウム、テトラキス(ペンタフルオロフェニル)硼酸トリメチルアニリニウム、テトラキス(ペンタフルオロフェニル)硼酸メチルピリジニウム、テトラキス(ペンタフルオロフェニル)硼酸ベンジルピリジニウム、テトラキス(ペンタフルオロフェニル)硼酸メチル(2-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)硼酸ベンジル(2-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)硼酸メチル(4-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)硼酸トリフェニルホスホニウム、テトラキス〔ビス(3,5-ジトリフルオロメチル)フェニル〕硼酸ジメチルアニリニウム、テトラフェニル硼酸フェロセニウム、テトラフェニル硼酸銀、テトラフェニル硼酸トリチル、テトラフェニル硼酸テトラフェニルポルフィリンマンガン、テトラキス(ペンタフルオロフェニル)硼酸フェロセニウム、テトラキス(ペンタフルオロフェニル)硼酸(1,1’-ジメチルフェロセニウム)、テトラキス(ペンタフルオロフェニル)硼酸デカメチルフェロセニウム、テトラキス(ペンタフルオロフェニル)硼酸銀、テトラキス(ペンタフルオロフェニル)硼酸トリチル、テトラキス(ペンタフルオロフェニル)硼酸リチウム、テトラキス(ペンタフルオロフェニル)硼酸ナトリウム、テトラキス(ペンタフルオロフェニル)硼酸テトラフェニルポルフィリンマンガン、テトラフルオロ硼酸銀、ヘキサフルオロ燐酸銀、ヘキサフルオロ砒素酸銀、過塩素酸銀、トリフルオロ酢酸銀、トリフルオロメタンスルホン酸銀等を挙げることができる。 Specific examples of the compound of component (ii-1) include triethylammonium tetraphenylborate, tri-n-butylammonium tetraphenylborate, trimethylammonium tetraphenylborate, tetraethylammonium tetraphenylborate, methyl tetraphenylborate (tri- n-butyl) ammonium, benzyl tetraphenylborate (tri-n-butyl) ammonium, dimethyldiphenylammonium tetraphenylborate, triphenyl (methyl) ammonium tetraphenylborate, trimethylanilinium tetraphenylborate, methylpyridinium tetraphenylborate, tetra Benzylpyridinium phenylborate, methyl tetraphenylborate (2-cyanopyridinium), tetrakis (pentafluorophenyl) borate triethyl Ammonium, tetrakis (pentafluorophenyl) borate tri-n-butylammonium, tetrakis (pentafluorophenyl) triphenylammonium borate, tetrakis (pentafluorophenyl) borate tetra-n-butylammonium, tetrakis (pentafluorophenyl) tetraethylammonium borate Benzyl tetrakis (pentafluorophenyl) ammonium borate (tri-n-butyl), methyldiphenylammonium tetrakis (pentafluorophenyl) borate, triphenyl (methyl) ammonium tetrakis (pentafluorophenyl) borate, tetrakis (pentafluorophenyl) boric acid Methylanilinium, tetrakis (pentafluorophenyl) dimethylanilinium borate, tetrakis (pentafluoro) Enyl) trimethylanilinium borate, methyl pyridinium tetrakis (pentafluorophenyl) borate, benzylpyridinium tetrakis (pentafluorophenyl) borate, methyl tetrakis (pentafluorophenyl) borate (2-cyanopyridinium), benzyl tetrakis (pentafluorophenyl) borate (2-cyanopyridinium), methyl tetrakis (pentafluorophenyl) borate (4-cyanopyridinium), triphenylphosphonium tetrakis (pentafluorophenyl) borate, tetrakis [bis (3,5-ditrifluoromethyl) phenyl] dimethylaniline borate Ferrocenium tetraphenylborate, silver tetraphenylborate, trityl tetraphenylborate, tetraphenylporphyrin tetramanganate , Tetrakis (pentafluorophenyl) borate ferrocenium, tetrakis (pentafluorophenyl) borate (1,1′-dimethylferrocenium), tetrakis (pentafluorophenyl) borate decamethylferrocenium, tetrakis (pentafluorophenyl) borate Silver, tetrakis (pentafluorophenyl) trityl borate, tetrakis (pentafluorophenyl) lithium borate, tetrakis (pentafluorophenyl) sodium borate, tetrakis (pentafluorophenyl) borate tetraphenylporphyrin manganese, silver tetrafluoroborate, silver hexafluorophosphate And silver hexafluoroarsenate, silver perchlorate, silver trifluoroacetate, silver trifluoromethanesulfonate, and the like.
 上記(ii-2)成分のアルミノキサンとしては、公知の鎖状アルミノキサンや環状アルミノキサンが挙げられる。 Examples of the aluminoxane as the component (ii-2) include known chain aluminoxanes and cyclic aluminoxanes.
 また、トリメチルアルミニウム、トリエチルアルミニウム、トリイソプロピルアルミニウム、トリイソブチルアルミニウム、ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、メチルアルミニウムジクロリド、エチルアルミニウムジクロリド、ジメチルアルミニウムフルオリド、ジイソブチルアルミニウムヒドリド、ジエチルアルミニウムヒドリド、エチルアルミニウムセスキクロリド等の有機アルミニウム化合物を併用して、ポリプロピレン系樹脂を製造してもよい。 Trimethylaluminum, triethylaluminum, triisopropylaluminum, triisobutylaluminum, dimethylaluminum chloride, diethylaluminum chloride, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum fluoride, diisobutylaluminum hydride, diethylaluminum hydride, ethylaluminum sesquichloride, etc. A polypropylene resin may be produced by using together the organoaluminum compound.
 第二成分における熱可塑性樹脂(C)の含有量は、捲縮性を高める観点から、第二成分を100質量%としたとき、好ましくは1質量%以上、より好ましくは3質量%以上、更に好ましくは5質量%以上であり、そして、好ましくは50質量%以下、より好ましくは40質量%以下、更に好ましくは30質量%以下、より更に好ましくは20質量%以下である。第二成分における熱可塑性樹脂(C)の含有量が1質量%以上であると、繊維の細糸化が可能となり、繊維の弾性率の低下に伴い、不織布の柔軟性が向上する。 The content of the thermoplastic resin (C) in the second component is preferably 1% by mass or more, more preferably 3% by mass or more, when the second component is 100% by mass from the viewpoint of improving crimpability. The amount is preferably 5% by mass or more, and preferably 50% by mass or less, more preferably 40% by mass or less, still more preferably 30% by mass or less, and still more preferably 20% by mass or less. When the content of the thermoplastic resin (C) in the second component is 1% by mass or more, the fibers can be made thin, and the flexibility of the nonwoven fabric is improved as the elastic modulus of the fibers decreases.
 また、前記熱可塑性樹脂(A)、熱可塑性樹脂(B)及び熱可塑性樹脂(C)の合計に占める該熱可塑性樹脂(C)の含有量は、捲縮性を高める観点から、好ましくは1%以上、より好ましくは2%以上、更に好ましくは5%以上であり、そして、好ましくは50%以下、より好ましくは30%以下、更に好ましくは20%以下である。 In addition, the content of the thermoplastic resin (C) in the total of the thermoplastic resin (A), the thermoplastic resin (B), and the thermoplastic resin (C) is preferably 1 from the viewpoint of improving crimpability. % Or more, more preferably 2% or more, still more preferably 5% or more, and preferably 50% or less, more preferably 30% or less, still more preferably 20% or less.
 本実施形態の捲縮繊維は、第一成分及び第二成分の少なくとも一方に、本実施形態の効果を阻害しない範囲内で任意の添加剤を配合することができる。添加剤の具体例としては、発泡剤、結晶核剤、耐侯安定剤、紫外線吸収剤、光安定剤、耐熱安定剤、帯電防止剤、離型剤、難燃剤、合成油、ワックス、電気的性質改良剤、スリップ防止剤、アンチブロッキング剤、粘度調整剤、着色防止剤、防曇剤、滑剤、顔料、染料、可塑剤、軟化剤、老化防止剤、塩酸吸収剤、塩素捕捉剤、酸化防止剤、粘着防止剤等が挙げられる。 In the crimped fiber of the present embodiment, any additive can be blended with at least one of the first component and the second component within a range that does not impair the effects of the present embodiment. Specific examples of additives include foaming agents, crystal nucleating agents, anti-glare stabilizers, UV absorbers, light stabilizers, heat stabilizers, antistatic agents, mold release agents, flame retardants, synthetic oils, waxes, electrical properties Improver, anti-slip agent, anti-blocking agent, viscosity modifier, anti-coloring agent, anti-fogging agent, lubricant, pigment, dye, plasticizer, softener, anti-aging agent, hydrochloric acid absorbent, chlorine scavenger, antioxidant And anti-adhesive agents.
 また、本実施形態の捲縮繊維は、熱可塑性樹脂(A)を含む第一成分と、熱可塑性樹脂(B)及び熱可塑性樹脂(C)を含む第二成分との質量比が、好ましくは9~1:1~9、より好ましくは7~3:3~7である。第一成分と第二成分との質量比が、上記範囲内であることにより、捲縮不織布において、捲縮性及び伸張性が発現される。 In addition, the crimped fiber of the present embodiment preferably has a mass ratio of the first component containing the thermoplastic resin (A) and the second component containing the thermoplastic resin (B) and the thermoplastic resin (C). 9 to 1: 1 to 9, more preferably 7 to 3: 3 to 7. When the mass ratio between the first component and the second component is within the above range, the crimped nonwoven fabric exhibits crimpability and extensibility.
 本実施形態の捲縮繊維としては、サイドバイサイド型繊維、芯鞘型繊維、偏心芯鞘型繊維等が挙げられるが、サイドバイサイド型繊維であることが好ましい。 Examples of crimped fibers according to the present embodiment include side-by-side type fibers, core-sheath type fibers, and eccentric core-sheath type fibers, and side-by-side type fibers are preferable.
 なお、本発明者らが鋭意解析した結果、本実施形態の捲縮繊維においては、紡糸条件等によって、熱可塑性樹脂(A)を含む成分、好ましくはポリエチレン系樹脂を含む成分が捲縮の内側に位置する場合と、熱可塑性樹脂(B)を含む成分、好ましくはポリプロピレン系樹脂を含む成分が捲縮の内側に位置する場合とに分かれることを見出した。
 このような現象が起きるメカニズムは必ずしも明確ではないが、以下の通り推測される。
 なお、当該メカニズムについて熱可塑性樹脂(A)がポリエチレン系樹脂、熱可塑性樹脂(B)がポリプロピレン系樹脂として説明する。
 まず、熱可塑性樹脂(C)が添加されていないと、紡糸速度と紡糸性が改善されないため、紡糸速度が上がらず低速でしか紡糸できない。
 紡糸速度が低速の場合は、ポリエチレン系樹脂は冷却されて固化(結晶化)する際、ポリプロピレン系樹脂と比較して密度がより高くなるため、ポリプロピレン系樹脂との収縮率に差を生じる。このように、二成分間の収縮率の差が支配因子となって繊維が捲縮する場合、より収縮率の高いポリエチレン系樹脂が捲縮の内側に位置することになる。
 一方、紡糸速度が十分に速い条件においては、配向結晶化も捲縮の支配因子として寄与していることが推測される。ポリプロピレン系樹脂とポリエチレン系樹脂との複合繊維の場合、ポリプロピレン系樹脂の分子や結晶の配向状態がポリエチレン系樹脂の分子や結晶の配向状態より高くなることが知られている(繊維機械学会誌「繊維工学」Vol.55, No.5(2002),P.236-242)。これは、一定以上の強い分子配向がかかると、ポリプロピレン系樹脂がポリエチレン系樹脂より速く結晶化する現象が起きることを示唆していると考えられる。
As a result of intensive analysis by the present inventors, in the crimped fiber of the present embodiment, depending on the spinning conditions, the component containing the thermoplastic resin (A), preferably the component containing the polyethylene resin, is inside the crimp. It has been found that there are two cases: a case where the component is located in the crimp, and a case where the component containing the thermoplastic resin (B), preferably the component containing the polypropylene resin is located inside the crimp.
The mechanism by which such a phenomenon occurs is not necessarily clear, but is presumed as follows.
The mechanism will be described assuming that the thermoplastic resin (A) is a polyethylene resin and the thermoplastic resin (B) is a polypropylene resin.
First, if the thermoplastic resin (C) is not added, the spinning speed and spinnability are not improved, so that the spinning speed does not increase and spinning can be performed only at a low speed.
When the spinning speed is low, when the polyethylene resin is cooled and solidified (crystallized), the density becomes higher than that of the polypropylene resin, so that the shrinkage ratio with the polypropylene resin is different. As described above, when the fiber is crimped by the difference in shrinkage rate between the two components, a polyethylene resin having a higher shrinkage rate is positioned inside the crimp.
On the other hand, it is presumed that orientation crystallization also contributes as a dominant factor of crimping under conditions where the spinning speed is sufficiently high. In the case of a composite fiber of a polypropylene resin and a polyethylene resin, it is known that the orientation state of molecules and crystals of the polypropylene resin is higher than the orientation state of molecules and crystals of the polyethylene resin. Textile Engineering "Vol. 55, No. 5 (2002), P. 236-242). This is considered to indicate that when a strong molecular orientation of a certain level or more is applied, a phenomenon that the polypropylene resin crystallizes faster than the polyethylene resin occurs.
 熱可塑性樹脂(C)が添加されている場合、紡糸性が改善され、紡糸速度の高速化が可能である。紡糸速度が速い場合は、ポリプロピレン系樹脂は冷却されて固化(結晶化)する際、ポリエチレン系樹脂より速く固化するため、ポリエチレン系樹脂との固化速度に差を生じる。これによる二成分間の収縮率の差が支配因子となって繊維が収縮する場合、より収縮率の高いポリプロピレン系樹脂が捲縮の内側に位置することになる。
 このような現象は、ダイから吐出された直後の半溶融状態にある樹脂が捲縮繊維を形成する場合に強い影響を及ぼし得る。つまり、紡糸速度が十分に速い場合、ポリプロピレン系樹脂がポリエチレン系樹脂より先に結晶化し固定化されることで、その時点では半溶融状態にあるポリエチレン系樹脂が緩和しながら固化するため捲縮の外側に位置する可能性がある。逆に、紡糸速度が遅い場合は、一定以下の弱い分子配向しかかからないため、本来の結晶化の速さが支配因子となり、ポリエチレン系樹脂が捲縮の内側に、ポリプロピレン系樹脂が捲縮の外側に位置することとなる。
 なお、紡糸速度が速い場合だけでなく、吐出量が少ない場合、樹脂温度が低い場合、樹脂の流動性が低い場合及び樹脂中に高分子量成分が多く含まれる場合等にも、紡糸に当たり樹脂に対する分子配向が強くかかる環境となるため、ポリプロピレン系樹脂が捲縮の内側に来る可能性が高くなると言える。
 また、ポリプロピレン系樹脂は結晶化による収縮だけでなく、紡糸の際に絡まったまま引き延ばされた分子鎖が、延伸から解放されて元に戻ろうとする力によっても収縮する。したがって、ポリエチレン系樹脂とは異なり、ポリプロピレン系樹脂の場合は、紡糸時に適用する延伸力が強いほど収縮率が高くなる。当該収縮率がポリエチレン系樹脂の結晶化による収縮率を凌駕した場合も、繊維が捲縮する支配因子が変わり、より収縮率の高いポリプロピレン系樹脂が捲縮の内側に位置することになる。
When the thermoplastic resin (C) is added, the spinnability is improved and the spinning speed can be increased. When the spinning speed is high, the polypropylene resin solidifies faster than the polyethylene resin when it is cooled and solidified (crystallized), so that there is a difference in the solidification speed with the polyethylene resin. When the difference in shrinkage between the two components due to this causes the fiber to shrink, the polypropylene resin having a higher shrinkage is positioned inside the crimp.
Such a phenomenon can have a strong influence when a resin in a semi-molten state immediately after being discharged from the die forms crimped fibers. In other words, when the spinning speed is sufficiently high, the polypropylene resin is crystallized and fixed before the polyethylene resin, and at that time, the polyethylene resin in a semi-molten state is solidified while being relaxed. May be located outside. On the other hand, when the spinning speed is slow, it takes only a weak molecular orientation below a certain level, so the original crystallization speed is the dominant factor, and the polyethylene resin is inside the crimp and the polypropylene resin is outside the crimp. Will be located.
Not only when the spinning speed is high, but also when the discharge amount is small, when the resin temperature is low, when the flowability of the resin is low, and when the resin contains a large amount of high molecular weight components, etc. It can be said that since the molecular orientation is strongly applied, there is a high possibility that the polypropylene resin will be inside the crimp.
Polypropylene resins are not only contracted by crystallization but also contracted by the force of molecular chains that are stretched while being entangled during spinning to be released from stretching and return to their original state. Therefore, unlike a polyethylene resin, in the case of a polypropylene resin, the shrinkage ratio increases as the drawing force applied during spinning increases. Even when the shrinkage rate exceeds the shrinkage rate due to the crystallization of the polyethylene resin, the dominant factor for crimping the fiber changes, and the polypropylene resin having a higher shrinkage rate is located inside the crimp.
 なお、本実施形態の捲縮繊維がサイドバイサイド型繊維である場合、当該捲縮繊維における捲縮の内側を構成する樹脂としては、熱可塑性樹脂(A)を含む成分、熱可塑性樹脂(A)からなる成分、熱可塑性樹脂(B)を含む成分、熱可塑性樹脂(B)からなる成分のいずれでもよい。 In addition, when the crimp fiber of this embodiment is a side-by-side type fiber, as resin which comprises the inner side of the crimp in the said crimp fiber, from the component and thermoplastic resin (A) containing a thermoplastic resin (A) The component which consists of, the component which contains a thermoplastic resin (B), and the component which consists of a thermoplastic resin (B) may be sufficient.
〔捲縮繊維の製造〕
 本実施形態の捲縮繊維の製造方法として、サイドバイサイド型捲縮繊維の製造方法の一例を、以下に示す。
 サイドバイサイド型捲縮繊維は、少なくとも2成分の樹脂をそれぞれ別々の押出機を用いて樹脂を溶融押出し、たとえば米国特許第3,671,379号に開示されているような特殊な紡糸口金から押し出して、別々の押出機から溶融押し出しされる溶融樹脂を合着させて吐出し繊維状にした後、冷やして固める、溶融紡糸法によって製造される。ここで、上記工程において、紡糸速度が速いほど、得られるサイドバイサイド型捲縮繊維の捲縮性を高めることができ好ましい。
 なお、本実施形態におけるサイドバイサイド型捲縮繊維の製造方法では、紡糸後の加熱や延伸等の後処理工程がなくても、所望の繊維を製造することができるが、必要に応じて、後処理工程を採用してもよく、たとえば、100~150℃の加熱や1.2~5倍の延伸若しくはそれらの組合せ条件によって、繊維の捲縮率を高めてもよい。
[Manufacture of crimped fibers]
As a manufacturing method of the crimped fiber of this embodiment, an example of the manufacturing method of the side-by-side type crimped fiber is shown below.
Side-by-side crimped fibers are obtained by melt-extruding at least two component resins using separate extruders and extruding them from a special spinneret as disclosed in US Pat. No. 3,671,379, for example. It is manufactured by a melt spinning method in which a molten resin melt-extruded from separate extruders is fused and discharged to form a fiber, and then cooled and hardened. Here, in the above process, the higher the spinning speed, the higher the crimpability of the obtained side-by-side crimped fiber, which is preferable.
In addition, in the manufacturing method of the side-by-side type crimped fiber in the present embodiment, a desired fiber can be manufactured without a post-processing step such as heating and stretching after spinning, but if necessary, post-processing is performed. For example, the crimping ratio of the fibers may be increased by heating at 100 to 150 ° C., stretching by 1.2 to 5 times, or a combination thereof.
 本実施形態の捲縮繊維は、不織布の風合いや柔軟性、強度とのバランスの観点から、以下に示す測定方法により計算される繊度が好ましくは0.5デニール以上、より好ましくは0.8デニール以上であり、そして、好ましくは2.5デニール以下、より好ましくは2.0デニール以下である。捲縮繊維の繊度は、以下に示す測定方法により計算される。 In the crimped fiber of the present embodiment, the fineness calculated by the measurement method shown below is preferably 0.5 denier or more, and more preferably 0.8 denier, from the viewpoint of balance with the texture, flexibility, and strength of the nonwoven fabric. More preferably, it is 2.5 denier or less, more preferably 2.0 denier or less. The fineness of the crimped fiber is calculated by the following measuring method.
〔繊度計測〕
 偏光顕微鏡を用いて不織布中の繊維を観察し、ランダムに選んだ100本の繊維直径の平均値(d)を測定し、樹脂の密度(ρ=900,000g/m)を用いて、不織布サンプルの繊度を下式から計算する。
 繊度(デニール)=ρ×π×(d/2)×9000
[Fineness measurement]
The fibers in the nonwoven fabric were observed using a polarizing microscope, the average value (d) of 100 randomly selected fiber diameters was measured, and the density of the resin (ρ = 900,000 g / m 3 ) was used to determine the nonwoven fabric. Calculate the fineness of the sample from the following formula.
Fineness (denier) = ρ × π × (d / 2) 2 × 9000
 本実施形態の捲縮繊維において、捲縮数は好ましくは2個/25mm以上、より好ましくは5個/25mm以上、さらに好ましくは10個/25mm以上、よりさらに好ましくは13個/25mm以上、よりさらに好ましくは15個/25mm以上である。
 また、本実施形態の捲縮繊維において、捲縮率は好ましくは1.5%以上、より好ましくは3%以上、さらに好ましくは5%以上、よりさらに好ましくは7%以上、よりさらに好ましくは9%以上である。
 なお、上記捲縮数及び捲縮率は、実施例に記載の方法により測定することができる。
In the crimped fiber of the present embodiment, the number of crimps is preferably 2/25 mm or more, more preferably 5/25 mm or more, still more preferably 10/25 mm or more, and even more preferably 13/25 mm or more, more More preferably, it is 15 pieces / 25 mm or more.
In the crimped fiber of this embodiment, the crimp rate is preferably 1.5% or more, more preferably 3% or more, still more preferably 5% or more, still more preferably 7% or more, and even more preferably 9 % Or more.
The number of crimps and the crimp rate can be measured by the method described in the examples.
<不織布>
 本実施形態の不織布は、上述の捲縮繊維からなる。該不織布は、上述のように繊度が小さく、糸切れしやすい成形条件においても紡糸安定性に優れるものである。また、本実施形態の不織布は、2層以上積層してなる多層不織布であってもよい。その場合、表面の滑らかさの観点から、多層不織布の外層を構成する不織布の、少なくとも1層が上述の捲縮繊維からなる不織布であることが好ましい。
<Nonwoven fabric>
The nonwoven fabric of this embodiment consists of the above-mentioned crimped fiber. As described above, the nonwoven fabric is small in fineness and excellent in spinning stability even under molding conditions where yarn breakage tends to occur. Moreover, the nonwoven fabric of this embodiment may be a multilayer nonwoven fabric formed by laminating two or more layers. In that case, from the viewpoint of surface smoothness, it is preferable that at least one layer of the nonwoven fabric constituting the outer layer of the multilayer nonwoven fabric is a nonwoven fabric composed of the above-described crimped fibers.
<不織布の製造方法>
 本実施形態の不織布の製造方法は特に限定されず、従来公知の方法を採用することができる。以下、スパンボンド法を例に示す。
 通常、スパンボンド法においては、溶融混練した樹脂組成物を紡糸し、延伸、開繊することによって連続長繊維を形成し、引き続き連続した工程で連続長繊維を移動捕集面上に堆積させ、絡合することによって不織布を製造する。該方法は、不織布を連続的に製造することができ、また、該不織布を構成する繊維が延伸された連続の長繊維であるため、強度が大きい。スパンボンド法としては、従来公知の方法を採用することができ、例えば、数千の孔を有する大ノズルや、或いは例えば、40程度の孔を有する小ノズル群から溶融ポリマーの押出しにより繊維を製造することができる。ノズルを出た後、溶融繊維はクロスフロー冷気システムにより冷却され、次にノズルから引き離され、高速空気により延伸される。通常、2種類の空気減衰方法があり、その両方ともベンチュリー効果を用いる。第一の方法は、吸引スロットを用いてフィラメントを延伸し(スロット延伸)、ノズルの幅又は機械の幅で行う。第二の方法は、ノズル又は吸引銃を通してフィラメントを延伸する。この方法で形成されるフィラメントはスクリーン(ワイヤー)上又は細孔形成ベルト上で収集されウェブを形成する。次に、ウェブは圧縮ロールを通過し、続いて加熱カレンダーロール間を通り、1つのロール上の盛り上がり部分がウェブの10%以上40%以下程度の面積を含む部分で結合して、不織布を形成する。
<Nonwoven Fabric Manufacturing Method>
The manufacturing method of the nonwoven fabric of this embodiment is not specifically limited, A conventionally well-known method is employable. Hereinafter, the spunbond method will be shown as an example.
Usually, in the spunbond method, the melt-kneaded resin composition is spun, stretched, opened to form continuous long fibers, and the continuous long fibers are continuously deposited on the moving collection surface in a continuous process, A nonwoven fabric is produced by entanglement. In this method, a nonwoven fabric can be produced continuously, and since the fibers constituting the nonwoven fabric are continuous continuous fibers that are drawn, the strength is high. As the spunbond method, a conventionally known method can be adopted. For example, fibers are produced by extruding a molten polymer from a large nozzle having several thousand holes or a small nozzle group having, for example, about 40 holes. can do. After exiting the nozzle, the molten fiber is cooled by a cross-flow chilled air system, then pulled away from the nozzle and drawn by high velocity air. There are usually two types of air attenuation methods, both of which use the Venturi effect. In the first method, the filament is drawn using a suction slot (slot drawing), and is performed at the nozzle width or the machine width. The second method draws the filament through a nozzle or suction gun. Filaments formed in this manner are collected on a screen (wire) or a pore-forming belt to form a web. Next, the web passes through the compression roll, then passes between the heated calender rolls, and the raised portion on one roll is bonded at a portion including an area of about 10% to 40% of the web to form a nonwoven fabric. To do.
[繊維製品]
 本実施形態の不織布を用いた繊維製品としては、特に限定されるものではないが、例えば以下の繊維製品を挙げることができる。すなわち、使い捨ておむつ用部材、おむつカバー用伸縮性部材、生理用品用伸縮性部材、衛生製品用伸縮性部材、伸縮性テープ、絆創膏、衣料用伸縮性部材、衣料用絶縁材、衣料用保温材、防護服、帽子、マスク、手袋、サポーター、伸縮性包帯、湿布剤の基布、スベリ止め基布、振動吸収材、指サック、クリーンルーム用エアフィルター、エレクトレット加工を施したエレクトレットフィルター、セパレーター、断熱材、コーヒーバッグ、食品包装材料、自動車用天井表皮材、防音材、クッション材、スピーカー防塵材、エアクリーナー材、インシュレーター表皮、バッキング材、接着不織布シート、ドアトリム等の各種自動車用部材、複写機のクリーニング材等の各種クリーニング材、カーペットの表材や裏材、農業捲布、木材ドレーン、スポーツシューズ表皮等の靴用部材、かばん用部材、工業用シール材、ワイピング材及びシーツ等を挙げることができる。
[Fiber products]
Although it does not specifically limit as a fiber product using the nonwoven fabric of this embodiment, For example, the following fiber products can be mentioned. That is, disposable diaper members, elastic members for diaper covers, elastic members for sanitary products, elastic members for hygiene products, elastic tapes, adhesive plaster, elastic members for clothing, insulation materials for clothing, heat insulation materials for clothing, Protective clothing, hat, mask, gloves, supporter, elastic bandage, poultice base fabric, anti-slip base fabric, vibration absorber, finger sack, clean room air filter, electret processed electret filter, separator, insulation , Coffee bags, food packaging materials, automotive ceiling skin materials, soundproof materials, cushion materials, speaker dustproof materials, air cleaner materials, insulator skins, backing materials, adhesive nonwoven fabric sheets, door trims and other automotive parts, copying machine cleaning Various cleaning materials such as wood, carpet surface and backing materials, agricultural distribution, wood drain Shoes for members, bag for members such as sports shoes skin, industrial sealing material, mention may be made of the wiping material and sheets or the like.
 次に実施例により、本発明を具体的に説明するが、本発明は、これらの例によってなんら限定されるものではない。 Next, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
〔半結晶化時間〕
 FLASH DSC(メトラー・トレド(株)製)を用い、下記方法にて測定した。
(1)試料を230℃で2分間加熱して融解させた後、2000℃/秒で25℃まで冷却し、25℃での等温結晶化過程における、発熱量の時間変化を測定した。
(2)等温結晶化開始時から結晶化完了時までの発熱量の積分値を100%とした時、等温結晶化開始時から発熱量の積分値が50%となるまでの時間を半結晶化時間とした。
[Semi-crystallization time]
Using FLASH DSC (manufactured by METTLER TOLEDO), the measurement was performed by the following method.
(1) The sample was melted by heating at 230 ° C. for 2 minutes, then cooled to 25 ° C. at 2000 ° C./second, and the time change of the calorific value during the isothermal crystallization process at 25 ° C. was measured.
(2) When the integrated value of the calorific value from the start of isothermal crystallization to the completion of crystallization is 100%, the time from the start of isothermal crystallization until the integrated value of the calorific value becomes 50% is semi-crystallized. It was time.
〔メルトフローレート(MFR)〕
 JIS K7210に準拠し、熱可塑性樹脂(A)については温度190℃、荷重2.16kgの条件で、熱可塑性樹脂(B)及び熱可塑性樹脂(C)については、温度230℃、荷重2.16kgの条件で測定した。
[Melt flow rate (MFR)]
According to JIS K7210, the temperature of the thermoplastic resin (A) is 190 ° C. and the load is 2.16 kg, and the temperature of the thermoplastic resin (B) and the thermoplastic resin (C) is 230 ° C. and the load is 2.16 kg. It measured on condition of this.
〔DSC測定〕
 示差走査型熱量計(パーキン・エルマー社製、「DSC-7」)を用い、試料10mgを窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブから融解吸熱量(ΔH-D)として求めた。また、得られた融解吸熱カーブの最も高温側に観測されるピークのピークトップから融点(Tm-D)を求めた。
 なお、融解吸熱量(ΔH-D)は、熱量変化の無い低温側の点と熱量変化の無い高温側の点とを結んだ線をベースラインとして、示差走査型熱量計(パーキン・エルマー社製、「DSC-7」)を用いた、DSC測定により得られた融解吸熱カーブのピークを含むライン部分と当該ベースラインとで囲まれる面積を求めることで算出される。
[DSC measurement]
Using a differential scanning calorimeter (“DSC-7” manufactured by Perkin Elmer Co., Ltd.), 10 mg of a sample was held at −10 ° C. for 5 minutes in a nitrogen atmosphere, and then heated at 10 ° C./min. The melting endotherm was obtained from the melting endothermic curve (ΔHD). Further, the melting point (Tm-D) was determined from the peak top of the peak observed on the highest temperature side of the obtained melting endotherm curve.
Note that the melting endotherm (ΔH−D) is a differential scanning calorimeter (manufactured by Perkin Elmer Co., Ltd.) with the line connecting the low temperature side point where there is no change in heat amount and the high temperature side point where there is no change in heat amount as the baseline. , “DSC-7”), and calculating the area surrounded by the line portion including the peak of the melting endothermic curve obtained by DSC measurement and the base line.
〔重量平均分子量(Mw)、分子量分布(Mw/Mn)測定〕
 ゲルパーミエイションクロマトグラフィ(GPC)法により、重量平均分子量(Mw)及び数平均分子量(Mn)を測定し、分子量分布(Mw/Mn)を求めた。測定には、下記の装置及び条件を使用し、ポリスチレン換算の重量平均分子量及び数平均分子量を得た。分子量分布(Mw/Mn)は、これらの重量平均分子量(Mw)及び数平均分子量(Mn)より算出した値である。
<GPC測定装置>
カラム     :東ソー(株)製「TOSO GMHHR-H(S)HT」
検出器     :液体クロマトグラム用RI検出 ウォーターズ・コーポレーション製「WATERS 150C」
<測定条件>
 溶媒     :1,2,4-トリクロロベンゼン
 測定温度   :145℃
 流速     :1.0mL/分
 試料濃度   :2.2mg/mL
 注入量    :160μL
 検量線    :Universal Calibration
 解析プログラム:HT-GPC(Ver.1.0)
[Weight average molecular weight (Mw), molecular weight distribution (Mw / Mn) measurement]
The weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured by gel permeation chromatography (GPC) method to determine the molecular weight distribution (Mw / Mn). For the measurement, the following apparatus and conditions were used, and polystyrene-reduced weight average molecular weight and number average molecular weight were obtained. The molecular weight distribution (Mw / Mn) is a value calculated from these weight average molecular weight (Mw) and number average molecular weight (Mn).
<GPC measurement device>
Column: “TOSO GMHHR-H (S) HT” manufactured by Tosoh Corporation
Detector: RI detection for liquid chromatogram "WATERS 150C" manufactured by Waters Corporation
<Measurement conditions>
Solvent: 1,2,4-trichlorobenzene Measurement temperature: 145 ° C
Flow rate: 1.0 mL / min Sample concentration: 2.2 mg / mL
Injection volume: 160 μL
Calibration curve: Universal Calibration
Analysis program: HT-GPC (Ver.1.0)
(プロピレン系重合体(C1)〔熱可塑性樹脂(C)〕の製造)
 撹拌機付きの内容積20Lのステンレス製反応器に、n-ヘプタンを20L/hr、トリイソブチルアルミニウムを15mmol/hr、さらに、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリド及びトリイソブチルアルミニウムを質量比1:2:20でプロピレンと事前に接触させて得られた触媒成分を、ジルコニウム換算で6μmol/hrで連続供給した。
 重合温度75℃で気相部水素濃度を24mol%、反応器内の全圧を1.0MPa・Gに保つようプロピレンと水素とを連続供給した。得られた重合溶液に、酸化防止剤をその含有割合が1000質量ppmになるように添加し、次いで溶媒であるn-ヘプタンを除去することにより、プロピレン系重合体(C1)を得た。
 得られたプロピレン系重合体(C1)について上記測定を行った。結果を表1に示す。
(Production of propylene polymer (C1) [thermoplastic resin (C)])
In a stainless steel reactor with an internal volume of 20 L with a stirrer, n-heptane was 20 L / hr, triisobutylaluminum was 15 mmol / hr, dimethylanilinium tetrakispentafluorophenylborate, (1,2'-dimethylsilylene) The catalyst component obtained by previously contacting (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride and triisobutylaluminum at a mass ratio of 1: 2: 20 with propylene is converted into zirconium. At 6 μmol / hr.
Propylene and hydrogen were continuously supplied at a polymerization temperature of 75 ° C. so that the gas phase hydrogen concentration was 24 mol% and the total pressure in the reactor was maintained at 1.0 MPa · G. The propylene polymer (C1) was obtained by adding an antioxidant to the obtained polymerization solution so that the content thereof was 1000 ppm by mass, and then removing n-heptane as a solvent.
The above-mentioned measurement was performed about the obtained propylene polymer (C1). The results are shown in Table 1.
(プロピレン系重合体(C2)〔熱可塑性樹脂(C)〕の製造)
 撹拌機付きの内容積20Lのステンレス製反応器に、n-ヘプタンを20L/hr、トリイソブチルアルミニウムを15mmol/hr、さらに、ジメチルアニリニウムテトラキスペンタフルオロフェニルボレート、(1,2’-ジメチルシリレン)(2,1’-ジメチルシリレン)-ビス(3-トリメチルシリルメチルインデニル)ジルコニウムジクロリド及びトリイソブチルアルミニウムを質量比1:2:20でプロピレンと事前に接触させて得られた触媒成分を、ジルコニウム換算で6μmol/hrで連続供給した。
 重合温度65℃で気相部水素濃度を8mol%、反応器内の全圧を1.0MPa・Gに保つようプロピレンと水素とを連続供給した。得られた重合溶液に、酸化防止剤をその含有割合が1000質量ppmになるように添加し、次いで溶媒であるn-ヘプタンを除去することにより、プロピレン系重合体(C2)を得た。
 得られたプロピレン系重合体(C2)について上記測定を行った。結果を表1に示す。
(Production of propylene polymer (C2) [thermoplastic resin (C)])
In a stainless steel reactor with an internal volume of 20 L with a stirrer, n-heptane was 20 L / hr, triisobutylaluminum was 15 mmol / hr, dimethylanilinium tetrakispentafluorophenylborate, (1,2'-dimethylsilylene) The catalyst component obtained by previously contacting (2,1′-dimethylsilylene) -bis (3-trimethylsilylmethylindenyl) zirconium dichloride and triisobutylaluminum at a mass ratio of 1: 2: 20 with propylene is converted into zirconium. At 6 μmol / hr.
Propylene and hydrogen were continuously supplied at a polymerization temperature of 65 ° C. so that the gas phase hydrogen concentration was 8 mol% and the total pressure in the reactor was maintained at 1.0 MPa · G. The propylene polymer (C2) was obtained by adding an antioxidant to the obtained polymerization solution so that the content thereof was 1000 ppm by mass, and then removing n-heptane as a solvent.
The above-mentioned measurement was performed about the obtained propylene polymer (C2). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 また、以下の例において、下記原料を使用した。 In the following examples, the following raw materials were used.
<熱可塑性樹脂(A)>
エチレン系樹脂(A1):
 「ASPUN XUS 61800.52 LE」(ダウ・ケミカル社製、密度:0.948g/cm
エチレン系樹脂(A2):
 「ULTZEX 20200J」((株)プライムポリマー製)
エチレン系樹脂(A3):
 「ASPUN 6834」(ダウ・ケミカル社製)
エチレン系樹脂(A4):
 「ASPUN 6850」(ダウ・ケミカル社製)
エチレン系樹脂(A5):
 「Engage 8402」(ダウ・ケミカル社製)
エチレン系樹脂(A6):
 「EVOLUE SP50500」((株)プライムポリマー製)
 上述の方法で測定されたエチレン系樹脂(A1)、(A2)、(A3)、(A4)、(A5)及び(A6)の半結晶化時間、MFR及び融点(Tm-D)を表2に示す。
<Thermoplastic resin (A)>
Ethylene-based resin (A1):
“ASPUN XUS 61800.52 LE” (Dow Chemical Co., density: 0.948 g / cm 3 )
Ethylene-based resin (A2):
"ULTZEX 20200J" (manufactured by Prime Polymer Co., Ltd.)
Ethylene resin (A3):
"ASPUN 6834" (manufactured by Dow Chemical)
Ethylene resin (A4):
"ASPUN 6850" (manufactured by Dow Chemical Company)
Ethylene-based resin (A5):
"Engage 8402" (manufactured by Dow Chemical)
Ethylene resin (A6):
“EVOLUE SP50500” (manufactured by Prime Polymer Co., Ltd.)
Table 2 shows the half-crystallization time, MFR and melting point (Tm-D) of the ethylene resins (A1), (A2), (A3), (A4), (A5) and (A6) measured by the above-mentioned method. Shown in
<熱可塑性樹脂(B)>
プロピレン単独重合体(B1):
 「NOVATEC SA03」(日本ポリプロ(株)製)
プロピレン単独重合体(B2):
 「PP3155」(ExxonMobil Chemical社製)
 上述の方法で測定されたプロピレン単独重合体(B1)及び(B2)の半結晶化時間、MFR及び融点(Tm-D)を表2に示す。
<Thermoplastic resin (B)>
Propylene homopolymer (B1):
"NOVATEC SA03" (manufactured by Nippon Polypro Co., Ltd.)
Propylene homopolymer (B2):
“PP3155” (manufactured by ExxonMobil Chemical)
Table 2 shows the half crystallization time, MFR, and melting point (Tm-D) of the propylene homopolymers (B1) and (B2) measured by the above method.
<その他の成分>
スリップ防止剤:エルカ酸アミド、商品名:EA-10
<Other ingredients>
Anti-slip agent: erucic acid amide, trade name: EA-10
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
実施例1
(第一成分の調製)
 熱可塑性樹脂(A)としてエチレン系樹脂(A1)のみを用い、第一成分とした。
Example 1
(Preparation of the first component)
As the thermoplastic resin (A), only the ethylene resin (A1) was used as the first component.
(第二成分の調製)
 熱可塑性樹脂(B)としてプロピレン単独重合体(B1)を80質量%と、熱可塑性樹脂(C)として製造例1で得られたプロピレン系重合体(C1)を20質量%とを配合し、第二成分とした。
(Preparation of the second component)
80% by mass of the propylene homopolymer (B1) as the thermoplastic resin (B) and 20% by mass of the propylene polymer (C1) obtained in Production Example 1 as the thermoplastic resin (C), The second component was used.
(サイドバイサイド型捲縮繊維及び当該捲縮繊維から構成されるスパンボンド不織布の製造)
 サイドバイサイド型捲縮繊維の成形は2機の押し出し機を有する複合溶融紡糸機バイコンポーネント紡糸装置を用いて行った。前記第一成分と第二成分とを別々の単軸押出機を用いて樹脂温度240℃で原料を溶融押出し、ノズル径0.60mmのサイドバイサイド複合ノズル(孔数1795ホール)より、単孔当たり54kg/hの速度で、溶融樹脂を第一成分:第二成分の質量比が50:50となるように吐出させて紡糸し、サイドバイサイド型捲縮繊維を得た。得られたサイドバイサイド型捲縮繊維を、冷却温度12.5℃、風速0.6m/秒の空気で冷却しながら、エジェクター圧力5.0kg/cmで吸引して、移動しているネット面に捕集した。ネット面に捕集された繊維束をカレンダー温度110℃/110℃とした熱ロールで、線圧40N/mmでエンボス加工し、引取りロールに巻き取った。
(Manufacture of side-by-side crimped fibers and spunbond nonwoven fabrics composed of the crimped fibers)
The side-by-side crimped fiber was formed using a composite melt spinning machine bicomponent spinning apparatus having two extruders. The first component and the second component are melt-extruded at a resin temperature of 240 ° C. using separate single-screw extruders, and 54 kg per single hole from a side-by-side composite nozzle with a nozzle diameter of 0.60 mm (1795 holes). The melted resin was discharged at a speed of / h so that the mass ratio of the first component: second component was 50:50 and spun to obtain side-by-side crimped fibers. The obtained side-by-side crimped fiber is sucked at an ejector pressure of 5.0 kg / cm 2 while being cooled with air having a cooling temperature of 12.5 ° C. and a wind speed of 0.6 m / sec, and is moved to the moving net surface. I collected it. The fiber bundle collected on the net surface was embossed at a linear pressure of 40 N / mm with a hot roll having a calendar temperature of 110 ° C./110° C. and wound around a take-up roll.
実施例2
 実施例1において、第一成分をエチレン系樹脂(A1)98質量%と、エルカ酸アミド2質量%とからなる組成物に変更し、第二成分をプロピレン単独重合体(B1)78質量%、プロピレン系重合体(C1)20質量%、及びエルカ酸アミド2質量%とからなる組成物に変更したこと以外は、実施例1と同様にしてサイドバイサイド型捲縮繊維及び不織布を得た。
Example 2
In Example 1, the first component was changed to a composition composed of 98% by mass of ethylene resin (A1) and 2% by mass of erucamide, and the second component was 78% by mass of propylene homopolymer (B1). Side-by-side crimped fibers and nonwoven fabric were obtained in the same manner as in Example 1 except that the composition was changed to 20% by mass of the propylene polymer (C1) and 2% by mass of erucic acid amide.
実施例3
 実施例1において、第一成分をエチレン系樹脂(A1)からエチレン系樹脂(A2)に変更し、エジェクター圧力を4.5kg/cm、カレンダー温度を100℃/100℃に変更したこと以外は、実施例1と同様にしてサイドバイサイド型捲縮繊維及び不織布を得た。
Example 3
In Example 1, the first component was changed from the ethylene resin (A1) to the ethylene resin (A2), the ejector pressure was changed to 4.5 kg / cm 2 , and the calendar temperature was changed to 100 ° C./100° C. In the same manner as in Example 1, side-by-side crimped fibers and nonwoven fabric were obtained.
比較例1
 実施例1において、第二成分をプロピレン単独重合体(B1)100質量%からなる組成物に変更し、エジェクター圧力を2.0kg/cm、カレンダー温度を100℃/100℃に変更したこと以外は、実施例1と同様にしてサイドバイサイド型捲縮繊維及び不織布を得た。
Comparative Example 1
In Example 1, except that the second component was changed to a composition consisting of 100% by mass of the propylene homopolymer (B1), the ejector pressure was changed to 2.0 kg / cm 2 , and the calendar temperature was changed to 100 ° C./100° C. Produced side-by-side crimped fibers and nonwoven fabric in the same manner as in Example 1.
 各例で得られたサイドバイサイド型捲縮繊維及び不織布について、下記の測定及び評価を行った。結果を表3に示す。 The following measurements and evaluations were performed on the side-by-side crimped fibers and nonwoven fabric obtained in each example. The results are shown in Table 3.
〔目付けの測定〕
 得られた不織布の20cm×20cmの質量を測定し、目付け(gsm)を測定した。
[Measurement of basis weight]
A mass of 20 cm × 20 cm of the obtained nonwoven fabric was measured, and a basis weight (gsm) was measured.
〔繊度の測定〕
 偏光顕微鏡を用いて不織布中の繊維を観察し、ランダムに選んだ100本の繊維直径の平均値(d)を測定し、樹脂の密度(ρ=900,000g/m)を用いて、不織布サンプルの繊度を下式から計算した。
 繊度(デニール)=ρ×π×(d/2)×9000
[Measurement of fineness]
The fibers in the nonwoven fabric were observed using a polarizing microscope, the average value (d) of 100 randomly selected fiber diameters was measured, and the density of the resin (ρ = 900,000 g / m 3 ) was used to determine the nonwoven fabric. The fineness of the sample was calculated from the following equation.
Fineness (denier) = ρ × π × (d / 2) 2 × 9000
〔引張試験〕
 得られた不織布から、長さ150mm×幅50mmの試験片を、機械方向(MD)と機械方向に対して垂直方向(TD)についてサンプリングした。引張試験機((株)島津製作所製、オートグラフAG-I)を用いて、初期長Lを100mmに設定し、引張速度300mm/分で伸張し、伸張過程でのひずみと荷重を測定し、不織布が破断するまでの過程における最大強度を不織布強度とした。
[Tensile test]
From the obtained nonwoven fabric, a test piece having a length of 150 mm and a width of 50 mm was sampled in the machine direction (MD) and the direction perpendicular to the machine direction (TD). Tensile tester (manufactured by Shimadzu Corporation, Autograph AG-I) was used to set the initial length L 0 to 100 mm, and stretched at a tensile speed of 300 mm / min, to measure the strain and load at elongation process The maximum strength in the process until the nonwoven fabric breaks was defined as the strength of the nonwoven fabric.
〔ハンドロメーター試験〕
 得られた不織布から、長さ200mm×幅200mmの試験片をサンプリングした。該試験片を幅1/4インチのスリット上にスリットと直角となるようにセットし、試験片の辺から67mm(試験片幅の1/3)の位置をペネトレーターのブレードにて8mm押し込んだ。この時の抵抗値を測定し試験片の柔軟度を評価した。この測定方法の特徴は、試験片が試験台上で若干スリップし、それによって発生する摩擦力と押し込み時の抵抗力(柔軟度)の複合された力が計測されることである。測定により得られた抵抗値の値が小さい程、不織布の柔軟性が良好であることを示す。
[Handometer test]
A test piece having a length of 200 mm and a width of 200 mm was sampled from the obtained nonwoven fabric. The test piece was set on a 1/4 inch wide slit so as to be perpendicular to the slit, and the position of 67 mm (1/3 of the test piece width) from the side of the test piece was pushed 8 mm with a penetrator blade. The resistance value at this time was measured to evaluate the flexibility of the test piece. The feature of this measuring method is that the test piece slips slightly on the test table, and the combined force of the friction force generated thereby and the resistance force (flexibility) at the time of pushing is measured. It shows that the softness | flexibility of a nonwoven fabric is so favorable that the value of the resistance value obtained by the measurement is small.
〔静摩擦係数の測定〕
 得られた不織布から、長さ220mm×幅100mmと長さ220mm×幅70mmの試験片を、機械方向(MD)と機械方向に対して垂直方向(TD)についてサンプリングした。静摩擦係数測定試験機((株)東洋精機製作所製、「摩擦測定機AN型」)台座の上に2枚の重ねた不織布を乗せ、その上に1,000gのおもりを乗せ、台座の傾きを2.7度/分の速度で変化させ、不織布が10mm滑った時の角度を測定した。おもりの質量(1,000g)と不織布が10mm滑った時の角度とから、静摩擦係数を算出した。
 なお、静摩擦係数の値が小さいほど、不織布の手触り感等の風合いが良好であることを示す。
[Measurement of static friction coefficient]
From the obtained nonwoven fabric, test pieces having a length of 220 mm × width of 100 mm and length of 220 mm × width of 70 mm were sampled in the machine direction (MD) and the direction perpendicular to the machine direction (TD). Static friction coefficient measurement tester (Toyo Seiki Seisakusho Co., Ltd., "Friction measuring machine AN type") Put two non-woven fabrics on the base and place a 1,000g weight on it to set the inclination of the base. The angle was changed at a speed of 2.7 degrees / minute, and the angle when the nonwoven fabric slipped 10 mm was measured. The static friction coefficient was calculated from the weight (1,000 g) of the weight and the angle when the nonwoven fabric slipped 10 mm.
In addition, it shows that textures, such as a touch feeling of a nonwoven fabric, are so favorable that the value of a static friction coefficient is small.
〔嵩高さの測定〕
 得られた不織布から、長さ50mm×幅50mmの試験片をサンプリングした。該試験片を10枚重ね、重ねた試験片の上に1.9gの金属板を乗せ、重ねた試験片の厚みを測定した。厚みの数値が高い程、嵩高い不織布であることを示す。
[Measurement of bulkiness]
A specimen having a length of 50 mm and a width of 50 mm was sampled from the obtained nonwoven fabric. Ten test pieces were stacked, a 1.9 g metal plate was placed on the stacked test pieces, and the thickness of the stacked test pieces was measured. It shows that it is a bulky nonwoven fabric, so that the numerical value of thickness is high.
〔捲縮数の測定〕
 JIS L 1015:2010に規定された捲縮数の測定方法に則り、自動捲縮弾性率測定装置を用いて測定した。エンボス加工する前の綿上サンプルから、繊維に張力がかからないようにして繊維1本を抜出し、25mmの試料に0.18mN/texの初荷重を架けた時の長さを測定し、その時の捲縮数を数え、25mm間あたりの捲縮数を求めた。捲縮数が多い程、捲縮性の高い繊維・不織布であることを示す。
(Measurement of crimp number)
It measured using the automatic crimp elastic modulus measuring apparatus according to the measuring method of the crimp number prescribed | regulated to JISL1015: 2010. One fiber was extracted from the sample on cotton before embossing so that the fiber was not tensioned, and the length when an initial load of 0.18 mN / tex was applied to a 25 mm sample was measured. The number of crimps was counted, and the number of crimps per 25 mm was obtained. It shows that it is a fiber and nonwoven fabric with high crimp property, so that there are many crimp numbers.
〔捲縮率の測定〕
 得られたサイドバイサイド型捲縮繊維を引き取りロールより約10cm採取し、その束になった糸より、1本の繊維を分離し、顕微鏡にて1mmあたりの巻数を測定した。測定サンプルを10本とし、平均値を捲縮率とした。捲縮率の値が高い程、繊維が捲縮していることを示し、嵩高い繊維・不織布製品が得られることを示す。
(Measurement of crimp rate)
About 10 cm of the obtained side-by-side crimped fiber was collected from a take-up roll, one fiber was separated from the bundled yarn, and the number of turns per 1 mm was measured with a microscope. Ten measurement samples were used, and the average value was used as the crimp rate. The higher the value of the crimp ratio, the more the fiber is crimped, and the more bulky fiber / nonwoven fabric product is obtained.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本実施形態のサイドバイサイド型捲縮繊維は、細糸化することができ、該捲縮繊維からなる不織布は、嵩高く、捲縮性が高く、かつ、柔軟性及び滑らか性に優れるものであった。 The side-by-side crimped fiber of the present embodiment can be thinned, and the nonwoven fabric made of the crimped fiber is bulky, highly crimpable, and excellent in flexibility and smoothness. .
実施例4
(第一成分の調製)
 熱可塑性樹脂(A)としてエチレン系樹脂(A3)のみを用い、第一成分とした。
Example 4
(Preparation of the first component)
As the thermoplastic resin (A), only the ethylene resin (A3) was used as the first component.
(第二成分の調製)
 熱可塑性樹脂(B)としてプロピレン単独重合体(B2)を80質量%と、熱可塑性樹脂(C)として製造例1で得られたプロピレン系重合体(C1)を20質量%とを配合し、第二成分とした。
(Preparation of the second component)
80% by mass of the propylene homopolymer (B2) as the thermoplastic resin (B) and 20% by mass of the propylene polymer (C1) obtained in Production Example 1 as the thermoplastic resin (C), The second component was used.
(サイドバイサイド型捲縮繊維の製造)
 サイドバイサイド複合ノズルの孔数を6800ホールとし、単孔当たり265kg/hの速度で溶融樹脂を吐出させたこと以外は、実施例1と同様に紡糸し、サイドバイサイド型捲縮繊維を得た。
(Manufacture of side-by-side crimped fibers)
A side-by-side crimped fiber was obtained by spinning in the same manner as in Example 1 except that the number of holes in the side-by-side composite nozzle was 6800 holes and the molten resin was discharged at a speed of 265 kg / h per single hole.
(サイドバイサイド型捲縮繊維から構成されるスパンボンド不織布の製造)
 得られたサイドバイサイド型捲縮繊維を冷却温度20℃で冷却しながら、キャビンプレッシャー6,300Paで吸引して、移動しているネット面に捕集した。ネット面に捕集された繊維束をカレンダー温度140℃/130℃とした熱ロールで、線圧60N/mmでエンボス加工し、引取りロールに巻き取った。
(Manufacture of spunbond nonwoven fabric composed of side-by-side crimped fibers)
The obtained side-by-side crimped fiber was sucked at a cabin pressure of 6,300 Pa while being cooled at a cooling temperature of 20 ° C., and collected on the moving net surface. The fiber bundle collected on the net surface was embossed at a linear pressure of 60 N / mm with a hot roll having a calendar temperature of 140 ° C./130° C., and wound around a take-up roll.
比較例2
 第二成分としてプロピレン単独重合体(B2)を100質量%としたこと以外は、実施例4と同様にしてサイドバイサイド型捲縮繊維を得た。また、キャビンプレッシャーの圧力を3,400Paに変更したこと以外は、実施例4と同様にして不織布を得た。
Comparative Example 2
Side-by-side crimped fibers were obtained in the same manner as in Example 4 except that the propylene homopolymer (B2) was 100% by mass as the second component. Moreover, the nonwoven fabric was obtained like Example 4 except having changed the pressure of the cabin pressure into 3,400 Pa.
 実施例4及び比較例2で得られたサイドバイサイド型捲縮繊維及び不織布について、上述の測定及び評価を行った。結果を表4に示す。 The above measurement and evaluation were performed on the side-by-side crimped fibers and the nonwoven fabric obtained in Example 4 and Comparative Example 2. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例4のサイドバイサイド型捲縮繊維からなる不織布は、熱可塑性樹脂(C)を含まない比較例2のサイドバイサイド型捲縮繊維からなる不織布と比較して、柔軟性及び手触り感等の風合いが良好であった。 The nonwoven fabric composed of the side-by-side crimped fibers of Example 4 has a good texture such as flexibility and touch feeling as compared to the nonwoven fabric composed of the side-by-side crimped fibers of Comparative Example 2 that does not contain the thermoplastic resin (C). Met.
実施例5
(第一成分の調製)
 熱可塑性樹脂(A)としてエチレン系樹脂(A3)のみを用い、第一成分とした。
Example 5
(Preparation of the first component)
As the thermoplastic resin (A), only the ethylene resin (A3) was used as the first component.
(第二成分の調製)
 熱可塑性樹脂(B)としてプロピレン単独重合体(B2)を80質量%と、熱可塑性樹脂(C)として製造例1で得られたプロピレン系重合体(C1)を20質量%とを配合し、第二成分とした。
(Preparation of the second component)
80% by mass of the propylene homopolymer (B2) as the thermoplastic resin (B) and 20% by mass of the propylene polymer (C1) obtained in Production Example 1 as the thermoplastic resin (C), The second component was used.
(サイドバイサイド型捲縮繊維の製造)
 サイドバイサイド複合ノズルの孔数を6800ホールとし、単孔当たり220kg/hの速度で溶融樹脂を吐出させたこと以外は、実施例1と同様に紡糸し、サイドバイサイド型捲縮繊維を得た。
(Manufacture of side-by-side crimped fibers)
A side-by-side crimped fiber was obtained by spinning in the same manner as in Example 1 except that the number of holes in the side-by-side composite nozzle was 6800 holes and the molten resin was discharged at a rate of 220 kg / h per single hole.
(サイドバイサイド型捲縮繊維から構成されるスパンボンド不織布の製造)
 得られたサイドバイサイド型捲縮繊維を冷却温度20℃で冷却しながら、キャビンプレッシャー6,000Paで吸引して、移動しているネット面に捕集した。次いで、連続した3つのオーブンを用い各オーブンの温度を125℃、133℃、133℃の条件で加熱し、ネット面に捕集された繊維束を部分的に熱融着させた。
(Manufacture of spunbond nonwoven fabric composed of side-by-side crimped fibers)
The obtained side-by-side crimped fibers were sucked at a cabin pressure of 6,000 Pa while being cooled at a cooling temperature of 20 ° C. and collected on the moving net surface. Next, using three consecutive ovens, the temperature of each oven was heated under the conditions of 125 ° C., 133 ° C., and 133 ° C., and the fiber bundle collected on the net surface was partially heat-sealed.
比較例3
 第二成分としてプロピレン単独重合体(B2)を100質量%としたこと以外は、実施例5と同様にしてサイドバイサイド型捲縮繊維を得た。また、キャビンプレッシャーの圧力を3,400Paに変更したこと以外は、実施例5と同様にして不織布を得た。
Comparative Example 3
Side-by-side crimped fibers were obtained in the same manner as in Example 5 except that the propylene homopolymer (B2) was 100% by mass as the second component. Moreover, the nonwoven fabric was obtained like Example 5 except having changed the pressure of the cabin pressure into 3,400 Pa.
 実施例5及び比較例3で得られたサイドバイサイド型捲縮繊維及び不織布について、繊度、引張試験、ハンドロメーター試験、及び嵩高さの測定について、上述の測定により評価を行った。結果を表5に示す。 The side-by-side crimped fibers and nonwoven fabric obtained in Example 5 and Comparative Example 3 were evaluated by the above-described measurements for fineness, tensile test, handometer test, and bulkiness. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例5のサイドバイサイド型捲縮繊維からなる不織布は、熱可塑性樹脂(C)を含まない比較例3のサイドバイサイド型捲縮繊維からなる不織布と比較して、柔軟性に優れ、不織布の厚みを厚くすることができた。 The nonwoven fabric composed of the side-by-side crimped fibers of Example 5 is superior in flexibility and thicker than the nonwoven fabric composed of the side-by-side crimped fibers of Comparative Example 3 that does not contain the thermoplastic resin (C). We were able to.
実施例6
(第一成分の調製)
 熱可塑性樹脂(A)としてエチレン系樹脂(A4)のみを用い、第一成分とした。
Example 6
(Preparation of the first component)
As the thermoplastic resin (A), only the ethylene resin (A4) was used as the first component.
(第二成分の調製)
 熱可塑性樹脂(B)としてプロピレン単独重合体(B1)を80質量%と、熱可塑性樹脂(C)として製造例1で得られたプロピレン系重合体(C1)を20質量%とを配合し、第二成分とした。
(Preparation of the second component)
80% by mass of the propylene homopolymer (B1) as the thermoplastic resin (B) and 20% by mass of the propylene polymer (C1) obtained in Production Example 1 as the thermoplastic resin (C), The second component was used.
(サイドバイサイド型捲縮繊維の製造)
 サイドバイサイド型捲縮繊維の成形は2機の押し出し機を有する複合溶融紡糸機バイコンポーネント紡糸装置を用いて行った。前記第一成分と第二成分とを別々の単軸押出機を用いて樹脂温度230℃で原料を溶融押出し、ノズル径0.60mmのサイドバイサイド複合ノズル(孔数1795ホール)より、単孔当たり43kg/hの速度で、溶融樹脂を第一成分:第二成分の質量比が50:50となるように吐出させて紡糸し、風速0.6m/秒の空気で冷却しながら、エジェクター圧力3.0kg/cmで吸引して、サイドバイサイド型捲縮繊維を得た。
(Manufacture of side-by-side crimped fibers)
The side-by-side crimped fiber was formed using a composite melt spinning machine bicomponent spinning apparatus having two extruders. The first component and the second component are melt-extruded at a resin temperature of 230 ° C. using separate single-screw extruders, and 43 kg per single hole from a side-by-side composite nozzle having a nozzle diameter of 0.60 mm (1795 holes). The ejector pressure is increased while the molten resin is spun by discharging at a speed of / h so that the mass ratio of the first component to the second component is 50:50 and cooled with air at a wind speed of 0.6 m / sec. A side-by-side crimped fiber was obtained by suction at 0 kg / cm 2 .
実施例7
 実施例6において、第一成分をエチレン系樹脂(A4)からエチレン系樹脂(A5)に変更し、エジェクター圧力を4.0kg/cmに変更したこと以外は、実施例6と同様にしてサイドバイサイド型捲縮繊維を得た。
Example 7
In Example 6, the first component was changed from ethylene resin (A4) to ethylene resin (A5), and the ejector pressure was changed to 4.0 kg / cm 2. A type crimped fiber was obtained.
実施例8
 実施例6において、第一成分をエチレン系樹脂(A4)からエチレン系樹脂(A6)に変更し、エジェクター圧力を2.5kg/cmに変更したこと以外は、実施例6と同様にしてサイドバイサイド型捲縮繊維を得た。
Example 8
In Example 6, the first component was changed from the ethylene resin (A4) to the ethylene resin (A6), and the ejector pressure was changed to 2.5 kg / cm 2. A type crimped fiber was obtained.
実施例9
 実施例6において、第一成分をエチレン系樹脂(A1)50質量%と、エチレン系樹脂(A6)50質量%とからなる組成物に変更したこと以外は、実施例6と同様にしてサイドバイサイド型捲縮繊維を得た。
Example 9
In Example 6, the side-by-side type was used in the same manner as in Example 6 except that the first component was changed to a composition consisting of 50% by mass of ethylene resin (A1) and 50% by mass of ethylene resin (A6). A crimped fiber was obtained.
実施例10
 実施例6において、第一成分をエチレン系樹脂(A4)からエチレン系樹脂(A1)に変更し、第二成分をプロピレン単独重合体(B1)95質量%と、熱可塑性樹脂(C)として製造例2で得られたプロピレン系重合体(C2)5質量%とからなる組成物に変更し、エジェクター圧力を2.0kg/cmに変更したこと以外は、実施例6と同様にしてサイドバイサイド型捲縮繊維を得た。
Example 10
In Example 6, the first component is changed from the ethylene resin (A4) to the ethylene resin (A1), and the second component is produced as 95% by mass of the propylene homopolymer (B1) and the thermoplastic resin (C). Side by side type in the same manner as in Example 6 except that the composition was changed to 5% by mass of the propylene polymer (C2) obtained in Example 2 and the ejector pressure was changed to 2.0 kg / cm 2. A crimped fiber was obtained.
実施例11
 実施例10において、第二成分をプロピレン単独重合体(B1)90質量%と、プロピレン系重合体(C2)10質量%とからなる組成物に変更したこと以外は、実施例10と同様にしてサイドバイサイド型捲縮繊維を得た。
Example 11
In Example 10, the second component was changed to a composition consisting of 90% by mass of the propylene homopolymer (B1) and 10% by mass of the propylene-based polymer (C2). Side-by-side crimped fibers were obtained.
実施例12
 実施例10において、第二成分をプロピレン単独重合体(B1)80質量%と、プロピレン系重合体(C2)20質量%とからなる組成物に変更したこと以外は、実施例10と同様にしてサイドバイサイド型捲縮繊維を得た。
Example 12
In Example 10, except that the second component was changed to a composition comprising 80% by mass of the propylene homopolymer (B1) and 20% by mass of the propylene-based polymer (C2), the same procedure as in Example 10 was performed. Side-by-side crimped fibers were obtained.
実施例13
 実施例12において、第一成分と第二成分との質量比を30:70に変更し、エジェクター圧力を2.5kg/cmに変更したこと以外は、実施例12と同様にしてサイドバイサイド型捲縮繊維を得た。
Example 13
In Example 12, the mass ratio of the first component and the second component was changed to 30:70, and the ejector pressure was changed to 2.5 kg / cm 2. A crimped fiber was obtained.
実施例14
 実施例10において、第二成分をプロピレン単独重合体(B1)95質量%と、プロピレン系重合体(C1)5質量%とからなる組成物に変更し、エジェクター圧力を2.5kg/cmに変更したこと以外は、実施例10と同様にしてサイドバイサイド型捲縮繊維を得た。
Example 14
In Example 10, the second component was changed to a composition consisting of 95% by mass of the propylene homopolymer (B1) and 5% by mass of the propylene polymer (C1), and the ejector pressure was adjusted to 2.5 kg / cm 2 . Side-by-side crimped fibers were obtained in the same manner as in Example 10 except that the changes were made.
実施例15
 実施例14において、第二成分をプロピレン単独重合体(B1)90質量%と、プロピレン系重合体(C1)10質量%とからなる組成物に変更したこと以外は、実施例14と同様にしてサイドバイサイド型捲縮繊維を得た。
Example 15
In Example 14, the second component was changed to a composition consisting of 90% by mass of the propylene homopolymer (B1) and 10% by mass of the propylene-based polymer (C1). Side-by-side crimped fibers were obtained.
比較例4
(第一成分の調製)
 熱可塑性樹脂(A)としてエチレン系樹脂(A6)のみを用い、第一成分とした。
Comparative Example 4
(Preparation of the first component)
As the thermoplastic resin (A), only the ethylene resin (A6) was used as the first component.
(第二成分の調製)
 熱可塑性樹脂(B)としてプロピレン単独重合体(B1)のみを用い、第二成分とした。
(Preparation of the second component)
As the thermoplastic resin (B), only the propylene homopolymer (B1) was used as the second component.
(サイドバイサイド型捲縮繊維の製造)
 サイドバイサイド型捲縮繊維の成形は2機の押し出し機を有する複合溶融紡糸機バイコンポーネント紡糸装置を用いて行った。前記第一成分と第二成分とを別々の単軸押出機を用いて樹脂温度230℃で原料を溶融押出し、ノズル径0.60mmのサイドバイサイド複合ノズル(孔数1795ホール)より、単孔当たり43kg/hの速度で、溶融樹脂を第一成分:第二成分の質量比が50:50となるように吐出させたが、紡糸することができなかった。
(Manufacture of side-by-side crimped fibers)
The side-by-side crimped fiber was formed using a composite melt spinning machine bicomponent spinning apparatus having two extruders. The first component and the second component are melt-extruded at a resin temperature of 230 ° C. using separate single-screw extruders, and 43 kg per single hole from a side-by-side composite nozzle having a nozzle diameter of 0.60 mm (1795 holes). The molten resin was discharged at a speed of / h so that the mass ratio of the first component: second component was 50:50, but spinning could not be performed.
比較例5
 実施例9において、第二成分をプロピレン単独重合体(B1)100質量%からなる組成物に変更し、エジェクター圧力を1.5kg/cmに変更したこと以外は、実施例9と同様にしてサイドバイサイド型捲縮繊維を得た。
Comparative Example 5
In Example 9, the second component was changed to a composition composed of 100% by mass of the propylene homopolymer (B1), and the ejector pressure was changed to 1.5 kg / cm 2 in the same manner as in Example 9. Side-by-side crimped fibers were obtained.
 実施例6~15及び比較例5で得られたサイドバイサイド型捲縮繊維について、上述の測定及び評価を行った。結果を表6に示す。 The side-by-side crimped fibers obtained in Examples 6 to 15 and Comparative Example 5 were measured and evaluated as described above. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
〔サイドバイサイド型捲縮繊維の観察方法〕
 スライドガラスにのせたサイドバイサイド型捲縮繊維を、速乾性合成封入剤(メルク株式会社製、Entellan)を用いて固定化し、その上からカバーガラスを被せて観察を実施した。観察には光学顕微鏡(OLYMPAS社製、BX51)を用い、暗視野モード、観察倍率200倍にて当該繊維の観察を行った。
[Observation method of side-by-side crimped fibers]
The side-by-side crimped fiber placed on the slide glass was fixed using a quick-drying synthetic encapsulant (manufactured by Merck Co., Ltd., Entellan), and covered with a cover glass for observation. For the observation, an optical microscope (manufactured by OLYMPAS, BX51) was used, and the fibers were observed in a dark field mode and an observation magnification of 200 times.
実施例16
 実施例1において、第二成分を、プロピレン単独重合体(B1)79.5質量%、熱可塑性樹脂(C)として製造例1で得られたプロピレン系重合体(C1)20質量%、フタロシアニンブルーマスターバッチ(プロピレン系化合物、MFR:48g/10min)0.5質量%からなる組成物に変更し、エジェクター圧力を3.0kg/cmに変更したこと以外は、実施例1と同様にしてサイドバイサイド型捲縮繊維を得た。捲縮方向を確認するため光学顕微鏡により得られた捲縮繊維を観察したところ、捲縮繊維の外側がエチレン系樹脂(A1)を含む第一成分、捲縮繊維の内側がプロピレン単独重合体(B1)及びプロピレン系重合体(C1)を含む第二成分であることが分かった(図1)。
Example 16
In Example 1, the propylene homopolymer (B1) was 79.5% by mass, the second component was 20% by mass of the propylene polymer (C1) obtained in Production Example 1 as a thermoplastic resin (C), and phthalocyanine blue. Side by side in the same manner as in Example 1 except that the composition was changed to a composition comprising 0.5% by mass of a master batch (propylene compound, MFR: 48 g / 10 min) and the ejector pressure was changed to 3.0 kg / cm 2. A type crimped fiber was obtained. When the crimped fiber obtained by an optical microscope was observed to confirm the crimped direction, the outer side of the crimped fiber was a first component containing an ethylene resin (A1), and the inner side of the crimped fiber was a propylene homopolymer ( It was found to be a second component containing B1) and a propylene polymer (C1) (FIG. 1).
実施例17
 実施例16において、エジェクター圧力を2.5kg/cmに変更したこと以外は、実施例16と同様にしてサイドバイサイド型捲縮繊維を得た。得られた捲縮繊維について捲縮方向を確認したところ、捲縮繊維の外側がエチレン系樹脂(A1)を含む第一成分、捲縮繊維の内側がプロピレン単独重合体(B1)及びプロピレン系重合体(C1)を含む第二成分であることが分かった(図2)。
Example 17
In Example 16, side-by-side crimped fibers were obtained in the same manner as in Example 16 except that the ejector pressure was changed to 2.5 kg / cm 2 . When the crimped direction of the obtained crimped fiber was confirmed, the outer side of the crimped fiber was the first component containing the ethylene resin (A1), and the inner side of the crimped fiber was the propylene homopolymer (B1) and the propylene-based heavy polymer. It was found to be a second component containing coalescence (C1) (FIG. 2).
実施例18
 実施例16において、エジェクター圧力を2.0kg/cmに変更したこと以外は、実施例16と同様にしてサイドバイサイド型捲縮繊維を得た。得られた捲縮繊維について捲縮方向を確認したところ、捲縮繊維の外側がエチレン系樹脂(A1)を含む第一成分、捲縮繊維の内側がプロピレン単独重合体(B1)及びプロピレン系重合体(C1)を含む第二成分であることが分かった(図3)。
Example 18
In Example 16, side-by-side crimped fibers were obtained in the same manner as in Example 16 except that the ejector pressure was changed to 2.0 kg / cm 2 . When the crimped direction of the obtained crimped fiber was confirmed, the outer side of the crimped fiber was the first component containing the ethylene resin (A1), and the inner side of the crimped fiber was the propylene homopolymer (B1) and the propylene-based heavy polymer. It was found to be a second component containing coalescence (C1) (FIG. 3).
実施例19
 実施例16において、エジェクター圧力を1.5kg/cmに変更したこと以外は、実施例16と同様にしてサイドバイサイド型捲縮繊維を得た。得られた捲縮繊維について捲縮方向を確認したところ、捲縮繊維の外側がエチレン系樹脂(A1)を含む第一成分、捲縮繊維の内側がプロピレン単独重合体(B1)及びプロピレン系重合体(C1)を含む第二成分であることが分かった(図4)。
Example 19
In Example 16, side-by-side crimped fibers were obtained in the same manner as in Example 16 except that the ejector pressure was changed to 1.5 kg / cm 2 . When the crimped direction of the obtained crimped fiber was confirmed, the outer side of the crimped fiber was the first component containing the ethylene resin (A1), and the inner side of the crimped fiber was the propylene homopolymer (B1) and the propylene-based heavy polymer. It was found to be the second component containing the coalescence (C1) (FIG. 4).
実施例20
 実施例16において、エジェクター圧力を1.0kg/cmに変更したこと以外は、実施例16と同様にしてサイドバイサイド型捲縮繊維を得た。得られた捲縮繊維について捲縮方向を確認したところ、捲縮繊維の外側がプロピレン単独重合体(B1)及びプロピレン系重合体(C1)を含む第二成分、捲縮繊維の内側がエチレン系樹脂(A1)を含む第一成分であることが分かった(図5)。
Example 20
In Example 16, side-by-side crimped fibers were obtained in the same manner as in Example 16 except that the ejector pressure was changed to 1.0 kg / cm 2 . When the crimped direction of the obtained crimped fiber was confirmed, the outer side of the crimped fiber was a second component containing a propylene homopolymer (B1) and a propylene-based polymer (C1), and the inner side of the crimped fiber was ethylene-based. It turned out that it is the 1st component containing resin (A1) (FIG. 5).
実施例21
 実施例16において、エジェクター圧力を0.5kg/cmに変更したこと以外は、実施例16と同様にしてサイドバイサイド型捲縮繊維を得た。得られた捲縮繊維について捲縮方向を確認したところ、捲縮繊維の外側がプロピレン単独重合体(B1)及びプロピレン系重合体(C1)を含む第二成分、捲縮繊維の内側がエチレン系樹脂(A1)を含む第一成分であることが分かった(図6)。
Example 21
In Example 16, side-by-side crimped fibers were obtained in the same manner as in Example 16 except that the ejector pressure was changed to 0.5 kg / cm 2 . When the crimped direction of the obtained crimped fiber was confirmed, the outer side of the crimped fiber was a second component containing a propylene homopolymer (B1) and a propylene-based polymer (C1), and the inner side of the crimped fiber was ethylene-based. It turned out that it is the 1st component containing resin (A1) (FIG. 6).
 実施例16~21で得られたサイドバイサイド型捲縮繊維について、光学顕微鏡(倍率200倍)で観察した際の画像をそれぞれ図1~6に示す。図1~6において、粒子成分を含む側が、フタロシアニンブルーマスターバッチを添加した第二成分側であり、捲縮繊維のカーブがエジェクター圧の違いにより内側、外側が逆転していることが確認された。このことから繊維の内側、外側の捲縮成分が変わることで、不織布の風合いや柔軟性、強度のバランスに優れた不織布が期待される。
 
Images of the side-by-side crimped fibers obtained in Examples 16 to 21 observed with an optical microscope (200 times magnification) are shown in FIGS. 1 to 6, respectively. 1 to 6, it was confirmed that the side containing the particle component was the second component side to which the phthalocyanine blue masterbatch was added, and the crimped fiber curve was reversed inside and outside due to the difference in ejector pressure. . From this fact, a nonwoven fabric excellent in the balance of texture, flexibility and strength of the nonwoven fabric is expected by changing the crimped components inside and outside the fiber.

Claims (23)

  1.  捲縮繊維の一方の成分が熱可塑性樹脂(A)を含み、他方の成分が熱可塑性樹脂(B)及び熱可塑性樹脂(C)を含み、
     前記熱可塑性樹脂(A)の25℃における半結晶化時間が前記熱可塑性樹脂(B)の25℃における半結晶化時間よりも短く、前記熱可塑性樹脂(C)の25℃における半結晶化時間が前記熱可塑性樹脂(B)の25℃における半結晶化時間よりも長い、捲縮繊維。
    One component of the crimped fiber contains a thermoplastic resin (A), and the other component contains a thermoplastic resin (B) and a thermoplastic resin (C),
    The half crystallization time of the thermoplastic resin (A) at 25 ° C. is shorter than the half crystallization time of the thermoplastic resin (B) at 25 ° C., and the half crystallization time of the thermoplastic resin (C) at 25 ° C. Which is longer than the half crystallization time at 25 ° C. of the thermoplastic resin (B).
  2.  前記熱可塑性樹脂(A)の25℃における半結晶化時間が0.01秒以下である、請求項1に記載の捲縮繊維。 The crimped fiber according to claim 1, wherein a half-crystallization time of the thermoplastic resin (A) at 25 ° C is 0.01 seconds or less.
  3.  前記熱可塑性樹脂(B)の25℃における半結晶化時間が0.01秒を超え、0.06秒以下である、請求項1又は2に記載の捲縮繊維。 The crimped fiber according to claim 1 or 2, wherein a half-crystallization time of the thermoplastic resin (B) at 25 ° C exceeds 0.01 seconds and is 0.06 seconds or less.
  4.  前記熱可塑性樹脂(C)の25℃における半結晶化時間が0.06秒を超える、請求項1~3のいずれか一項に記載の捲縮繊維。 The crimped fiber according to any one of claims 1 to 3, wherein a half-crystallization time of the thermoplastic resin (C) at 25 ° C exceeds 0.06 seconds.
  5.  前記熱可塑性樹脂(A)のJIS K7210に準拠し、温度190℃、荷重2.16kgの条件で測定したメルトフローレート(MFR)が1g/10min以上70g/10min以下である、請求項1~4のいずれか一項に記載の捲縮繊維。 The melt flow rate (MFR) measured under conditions of a temperature of 190 ° C. and a load of 2.16 kg in accordance with JIS K7210 of the thermoplastic resin (A) is 1 g / 10 min to 70 g / 10 min. Crimped fiber according to any one of the above.
  6.  前記熱可塑性樹脂(B)のJIS K7210に準拠し、温度230℃、荷重2.16kgの条件で測定したメルトフローレート(MFR)が10g/10min以上500g/10min以下である、請求項1~5のいずれか一項に記載の捲縮繊維。 The melt flow rate (MFR) measured under conditions of a temperature of 230 ° C. and a load of 2.16 kg in accordance with JIS K7210 of the thermoplastic resin (B) is 10 g / 10 min or more and 500 g / 10 min or less. Crimped fiber according to any one of the above.
  7.  前記熱可塑性樹脂(C)のJIS K7210に準拠し、温度230℃、荷重2.16kgの条件で測定したメルトフローレート(MFR)が10g/10min以上5000g/10min以下である、請求項1~6のいずれか一項に記載の捲縮繊維。 The melt flow rate (MFR) measured under conditions of a temperature of 230 ° C. and a load of 2.16 kg in accordance with JIS K7210 of the thermoplastic resin (C) is 10 g / 10 min or more and 5000 g / 10 min or less. Crimped fiber according to any one of the above.
  8.  前記熱可塑性樹脂(A)の示差走査型熱量計(DSC)を用いて、窒素雰囲気下-10℃で5分間保持した後10℃/分で昇温させることにより得られる融解吸熱カーブの最も高温側に観測されるピークのピークトップとして定義される融点(Tm-D)が90℃以上135℃以下である、請求項1~7のいずれか一項に記載の捲縮繊維。 Using the differential scanning calorimeter (DSC) of the thermoplastic resin (A), the highest end of the melting endotherm curve obtained by holding at −10 ° C. for 5 minutes in a nitrogen atmosphere and then raising the temperature at 10 ° C./min. The crimped fiber according to any one of claims 1 to 7, wherein a melting point (Tm-D) defined as a peak top of a peak observed on the side is 90 ° C or higher and 135 ° C or lower.
  9.  前記熱可塑性樹脂(B)の示差走査型熱量計(DSC)を用いて、窒素雰囲気下-10℃で5分間保持した後10℃/分で昇温させることにより得られる融解吸熱カーブの最も高温側に観測されるピークのピークトップとして定義される融点(Tm-D)が120℃以上200℃以下である、請求項1~8のいずれか一項に記載の捲縮繊維。 Using the differential scanning calorimeter (DSC) of the thermoplastic resin (B), the highest end of the melting endotherm curve obtained by holding at −10 ° C. for 5 minutes in a nitrogen atmosphere and then raising the temperature at 10 ° C./min. The crimped fiber according to any one of claims 1 to 8, wherein a melting point (Tm-D) defined as a peak top of a peak observed on the side is 120 ° C or higher and 200 ° C or lower.
  10.  前記熱可塑性樹脂(C)の示差走査型熱量計(DSC)を用いて、窒素雰囲気下-10℃で5分間保持した後10℃/分で昇温させることにより得られる融解吸熱カーブの最も高温側に観測されるピークのピークトップとして定義される融点(Tm-D)が50℃以上100℃以下である、請求項1~9のいずれか一項に記載の捲縮繊維。 Using the differential scanning calorimeter (DSC) of the thermoplastic resin (C), the highest end of the melting endotherm curve obtained by holding at −10 ° C. for 5 minutes in a nitrogen atmosphere and then raising the temperature at 10 ° C./min. The crimped fiber according to any one of claims 1 to 9, wherein a melting point (Tm-D) defined as a peak top of a peak observed on the side is 50 ° C or higher and 100 ° C or lower.
  11.  前記熱可塑性樹脂(A)がポリエチレン系樹脂である、請求項1~10のいずれか一項に記載の捲縮繊維。 The crimped fiber according to any one of claims 1 to 10, wherein the thermoplastic resin (A) is a polyethylene resin.
  12.  前記熱可塑性樹脂(B)がポリプロピレン系樹脂である、請求項1~11のいずれか一項に記載の捲縮繊維。 The crimped fiber according to any one of claims 1 to 11, wherein the thermoplastic resin (B) is a polypropylene resin.
  13.  前記熱可塑性樹脂(B)がプロピレン単独重合体である、請求項12に記載の捲縮繊維。 The crimped fiber according to claim 12, wherein the thermoplastic resin (B) is a propylene homopolymer.
  14.  前記熱可塑性樹脂(C)において、示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下-10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブから得られる融解吸熱量(ΔH-D)が0J/g以上80J/g以下である、請求項1~13のいずれか一項に記載の捲縮繊維。 In the thermoplastic resin (C), a melting endotherm obtained by using a differential scanning calorimeter (DSC) and holding the sample at −10 ° C. for 5 minutes in a nitrogen atmosphere and then raising the temperature at 10 ° C./min. The crimped fiber according to any one of claims 1 to 13, wherein a melting endotherm (ΔHD) obtained from the curve is 0 J / g or more and 80 J / g or less.
  15.  前記熱可塑性樹脂(C)の分子量分布(Mw/Mn)が3.0未満である、請求項1~14のいずれか一項に記載の捲縮繊維。 The crimped fiber according to any one of claims 1 to 14, wherein a molecular weight distribution (Mw / Mn) of the thermoplastic resin (C) is less than 3.0.
  16.  前記熱可塑性樹脂(A)、前記熱可塑性樹脂(B)及び前記熱可塑性樹脂(C)の合計に占める前記熱可塑性樹脂(C)の含有量が、1%以上50%以下である、請求項1~15のいずれか一項に記載の捲縮繊維。 The content of the thermoplastic resin (C) in the total of the thermoplastic resin (A), the thermoplastic resin (B), and the thermoplastic resin (C) is 1% or more and 50% or less. The crimped fiber according to any one of 1 to 15.
  17.  前記捲縮繊維がサイドバイサイド型繊維である、請求項1~16のいずれか一項に記載の捲縮繊維。 The crimped fiber according to any one of claims 1 to 16, wherein the crimped fiber is a side-by-side type fiber.
  18.  前記捲縮繊維における捲縮の内側を構成する樹脂が、前記熱可塑性樹脂(A)を含むサイドバイサイド型繊維である、請求項17に記載の捲縮繊維。 The crimped fiber according to claim 17, wherein a resin constituting the inside of the crimp in the crimped fiber is a side-by-side fiber containing the thermoplastic resin (A).
  19.  前記捲縮繊維における捲縮の内側を構成する樹脂が、前記熱可塑性樹脂(A)からなるサイドバイサイド型繊維である、請求項17に記載の捲縮繊維。 The crimped fiber according to claim 17, wherein a resin constituting the inside of the crimp in the crimped fiber is a side-by-side fiber made of the thermoplastic resin (A).
  20.  前記捲縮繊維における捲縮の内側を構成する樹脂が、前記熱可塑性樹脂(B)を含むサイドバイサイド型繊維である、請求項17に記載の捲縮繊維。 The crimped fiber according to claim 17, wherein a resin constituting the inside of the crimp in the crimped fiber is a side-by-side fiber containing the thermoplastic resin (B).
  21.  前記捲縮繊維における捲縮の内側を構成する樹脂が、前記熱可塑性樹脂(B)からなるサイドバイサイド型繊維である、請求項17に記載の捲縮繊維。 The crimped fiber according to claim 17, wherein a resin constituting the inside of the crimp in the crimped fiber is a side-by-side type fiber made of the thermoplastic resin (B).
  22.  請求項1~21のいずれか一項に記載の捲縮繊維からなる不織布。 A nonwoven fabric comprising the crimped fiber according to any one of claims 1 to 21.
  23.  2層以上積層してなる多層不織布であって、その少なくとも1層が請求項22に記載の不織布である多層不織布。 A multilayer nonwoven fabric obtained by laminating two or more layers, wherein at least one layer is the nonwoven fabric according to claim 22.
PCT/JP2018/018855 2017-05-16 2018-05-16 Crimped fibers and nonwoven cloth WO2018212211A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/613,524 US20200071867A1 (en) 2017-05-16 2018-05-16 Crimped fibers and nonwoven fabric
EP18801410.4A EP3626869B1 (en) 2017-05-16 2018-05-16 Crimped fibers and nonwoven cloth
CN201880032412.XA CN110612367A (en) 2017-05-16 2018-05-16 Crimped fiber and nonwoven fabric
JP2019518821A JPWO2018212211A1 (en) 2017-05-16 2018-05-16 Crimped fiber and non-woven fabric

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017097638 2017-05-16
JP2017-097638 2017-05-16
JP2017-238664 2017-12-13
JP2017238664 2017-12-13

Publications (1)

Publication Number Publication Date
WO2018212211A1 true WO2018212211A1 (en) 2018-11-22

Family

ID=64273840

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/014268 WO2018211843A1 (en) 2017-05-16 2018-04-03 Crimped fibers and nonwoven fabric
PCT/JP2018/018855 WO2018212211A1 (en) 2017-05-16 2018-05-16 Crimped fibers and nonwoven cloth

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014268 WO2018211843A1 (en) 2017-05-16 2018-04-03 Crimped fibers and nonwoven fabric

Country Status (5)

Country Link
US (1) US20200071867A1 (en)
EP (1) EP3626869B1 (en)
JP (1) JPWO2018212211A1 (en)
CN (1) CN110612367A (en)
WO (2) WO2018211843A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131946A (en) * 2018-01-31 2019-08-08 ファイバーテクス・パーソナル・ケア・アクティーゼルスカブ Spun-bonded nonwoven fabric comprising crimped fine fibers with improved uniformity
JP2022503858A (en) * 2018-09-28 2022-01-12 ベリー グローバル インコーポレイテッド Self-crimping multi-component fiber and method for producing it
EP3915777A4 (en) * 2019-03-08 2022-11-02 Mitsui Chemicals, Inc. Non-woven fabric laminate, composite laminate, and coating sheet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3671379A (en) 1971-03-09 1972-06-20 Du Pont Composite polyester textile fibers
JPH09291457A (en) * 1996-04-25 1997-11-11 Oji Paper Co Ltd Laminated nonwoven fabric of conjugate long fiber
WO2003087172A1 (en) 2002-04-12 2003-10-23 Idemitsu Petrochemical Co., Ltd. Process for production of modified propylene polymers and modified propylene polymers produced by the process
JP2012158861A (en) 2012-04-17 2012-08-23 Daiwabo Holdings Co Ltd Latently crimped conjugate fiber and fiber aggregate using the same
JP2012251254A (en) 2011-06-01 2012-12-20 Jnc Corp Hot-melt conjugate fiber and nonwoven fabric including the same
WO2014142323A1 (en) * 2013-03-15 2014-09-18 出光興産株式会社 Nonwoven fabric and fiber product
WO2015141750A1 (en) * 2014-03-20 2015-09-24 出光興産株式会社 Crimped fiber and nonwoven fabric
WO2016076421A1 (en) * 2014-11-14 2016-05-19 出光興産株式会社 Method for stirring resin pellets

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2682130B2 (en) * 1989-04-25 1997-11-26 三井石油化学工業株式会社 Flexible long-fiber non-woven fabric
US6054002A (en) * 1996-06-27 2000-04-25 Kimberly-Clark Worldwide, Inc. Method of making a seamless tubular band
CN101313091A (en) * 2005-10-19 2008-11-26 东丽株式会社 Crimped yarn, method for manufacture thereof, and fiber structure
JP6507442B2 (en) * 2013-01-30 2019-05-08 出光興産株式会社 Fiber non-woven
JP6521963B2 (en) * 2014-07-03 2019-05-29 出光興産株式会社 Spunbond nonwoven fabric and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3671379A (en) 1971-03-09 1972-06-20 Du Pont Composite polyester textile fibers
JPH09291457A (en) * 1996-04-25 1997-11-11 Oji Paper Co Ltd Laminated nonwoven fabric of conjugate long fiber
WO2003087172A1 (en) 2002-04-12 2003-10-23 Idemitsu Petrochemical Co., Ltd. Process for production of modified propylene polymers and modified propylene polymers produced by the process
JP2012251254A (en) 2011-06-01 2012-12-20 Jnc Corp Hot-melt conjugate fiber and nonwoven fabric including the same
JP2012158861A (en) 2012-04-17 2012-08-23 Daiwabo Holdings Co Ltd Latently crimped conjugate fiber and fiber aggregate using the same
WO2014142323A1 (en) * 2013-03-15 2014-09-18 出光興産株式会社 Nonwoven fabric and fiber product
WO2015141750A1 (en) * 2014-03-20 2015-09-24 出光興産株式会社 Crimped fiber and nonwoven fabric
WO2016076421A1 (en) * 2014-11-14 2016-05-19 出光興産株式会社 Method for stirring resin pellets

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE TEXTILE MACHINERY SOCIETY OF JAPAN: ''SEN-I KOGAKU, vol. 55, no. 5, 2002, pages 236 - 242
See also references of EP3626869A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019131946A (en) * 2018-01-31 2019-08-08 ファイバーテクス・パーソナル・ケア・アクティーゼルスカブ Spun-bonded nonwoven fabric comprising crimped fine fibers with improved uniformity
JP2022503858A (en) * 2018-09-28 2022-01-12 ベリー グローバル インコーポレイテッド Self-crimping multi-component fiber and method for producing it
JP7497344B2 (en) 2018-09-28 2024-06-10 ベリー グローバル インコーポレイテッド Self-crimping multicomponent fibers and methods for making same
EP3915777A4 (en) * 2019-03-08 2022-11-02 Mitsui Chemicals, Inc. Non-woven fabric laminate, composite laminate, and coating sheet
US12012679B2 (en) 2019-03-08 2024-06-18 Mitsui Chemicals Asahi Life Materials Co., Ltd. Nonwoven fabric layered body, composite layered body, and cover sheet

Also Published As

Publication number Publication date
JPWO2018212211A1 (en) 2020-03-19
EP3626869C0 (en) 2024-04-24
US20200071867A1 (en) 2020-03-05
EP3626869B1 (en) 2024-04-24
WO2018211843A1 (en) 2018-11-22
EP3626869A1 (en) 2020-03-25
EP3626869A4 (en) 2020-11-25
CN110612367A (en) 2019-12-24

Similar Documents

Publication Publication Date Title
JP6618002B2 (en) Crimped fiber and non-woven fabric
JP5722222B2 (en) Spunbond nonwoven and textile products
JP5973920B2 (en) Method for producing spunbond nonwoven fabric and spunbond nonwoven fabric
JP6521963B2 (en) Spunbond nonwoven fabric and method of manufacturing the same
JP6007139B2 (en) Nonwoven fabric and textile products
JP5914367B2 (en) Nonwoven fabric and textile products
WO2018212211A1 (en) Crimped fibers and nonwoven cloth
JPWO2019022004A1 (en) Polypropylene resin composition, and fiber and non-woven fabric using the same
WO2011108504A1 (en) Elastic nonwoven cloth and fiber product
JP2018159158A (en) Spun-bonded nonwoven fabric
JP2018145536A (en) Spun-bonded non-woven fabric
WO2019167871A1 (en) Fibers and non-woven fabric
JP7378419B2 (en) Nonwoven fabric and its manufacturing method
JP2020076178A (en) Nonwoven fabric and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801410

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019518821

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018801410

Country of ref document: EP

Effective date: 20191216