WO2018212201A1 - Information processing device and information processing method - Google Patents

Information processing device and information processing method Download PDF

Info

Publication number
WO2018212201A1
WO2018212201A1 PCT/JP2018/018809 JP2018018809W WO2018212201A1 WO 2018212201 A1 WO2018212201 A1 WO 2018212201A1 JP 2018018809 W JP2018018809 W JP 2018018809W WO 2018212201 A1 WO2018212201 A1 WO 2018212201A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
node
nodes
magnetic
information processing
Prior art date
Application number
PCT/JP2018/018809
Other languages
French (fr)
Japanese (ja)
Inventor
野村 光
義茂 鈴木
田村 英一
真嗣 三輪
穣 後藤
ペパー フェルディナンド
Original Assignee
国立大学法人大阪大学
国立研究開発法人情報通信研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学, 国立研究開発法人情報通信研究機構 filed Critical 国立大学法人大阪大学
Priority to JP2019518815A priority Critical patent/JP7108987B2/en
Publication of WO2018212201A1 publication Critical patent/WO2018212201A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device

Definitions

  • the present invention relates to an information processing apparatus and an information processing method.
  • the Neumann computer includes a memory for storing programs and data, and an information processing device.
  • the information processing device provided in the von Neumann computer executes appropriate arithmetic processing according to programs and data stored in the memory.
  • Non-Neumann computers there are non-Neumann computers.
  • a reservoir computer imitating a neural network has been proposed (see, for example, Patent Documents 1 and 2).
  • the operation node constituting the reservoir is composed of negative resistance elements, and information is written by current control on each negative resistance element. Further, even when information is held in a reservoir provided with a negative resistance element as an operation node, current control is required. Therefore, the reservoir computer disclosed in Patent Document 1 has a problem that power consumption cannot be kept low.
  • the computation node constituting the reservoir is configured by a passive silicon photonics chip, and writing of information requires irradiation with laser light or coherent light. Therefore, the reservoir computer disclosed in Patent Document 2 also has a problem that power consumption cannot be kept low.
  • An object of the present invention is to provide an information processing apparatus and an information processing method capable of realizing reservoir computing with low power consumption.
  • An information processing apparatus includes a magnetic material reservoir that includes a plurality of nodes, each of which is made of a magnetic material, each of which is magnetically coupled to at least one other node, and the magnetic material
  • a node selection unit for selecting one or more nodes to write information from a plurality of nodes included in the body reservoir, an information writing unit for writing information to the selected one or more nodes, and after writing the information
  • an information reading unit for reading information obtained by linear combination of each node included in the magnetic substance reservoir.
  • An information processing method includes a plurality of nodes each formed of a magnetic material, and each node is magnetically coupled to at least one other node. Select one or more nodes to which information is to be written, write information to the selected one or more nodes, and after writing the information, read information obtained by linear combination of each node contained in the magnetic reservoir .
  • reservoir computing can be realized with low power consumption.
  • FIG. 6 is a schematic diagram showing a configuration of a minute magnetic substance reservoir 20 according to Embodiment 2.
  • FIG. It is a graph explaining the change method of magnetic anisotropy. It is explanatory drawing explaining the data used for a binary calculation. It is a graph which shows the error rate of each calculation at the time of learning using the Z component of the magnetization state between time 0-1.
  • FIG. 10 is a schematic diagram illustrating a configuration of a minute magnetic substance reservoir according to a third embodiment. It is explanatory drawing explaining the change method of magnetic anisotropy. It is a figure which shows the comparison result with teacher data. It is a figure which shows the comparison result with teacher data. It is a graph which shows the error rate in the exclusive logic calculation at the time of learning using the X component of a magnetization state.
  • FIG. 10 is a schematic diagram showing a configuration of a minute magnetic substance reservoir according to a fourth embodiment.
  • FIG. 10 is a schematic plan view of a minute magnetic substance reservoir according to a fifth embodiment.
  • FIG. 10 is a schematic cross-sectional view of a minute magnetic substance reservoir according to a fifth embodiment.
  • FIG. 1 is a conceptual diagram showing the configuration of the information processing apparatus according to the present embodiment.
  • the information processing apparatus according to the present embodiment is a so-called reservoir computer, and includes an input information cell 10, a minute magnetic substance reservoir 20, a weighted arithmetic element 30, and an output information cell 40.
  • the micro magnetic material reservoir 20 includes a plurality of operation nodes 21, 21,.
  • Each operation node 21 is composed of a minute magnetic material to be described later. Since the magnetostatic interaction acts between the minute magnetic bodies, the operation nodes 21 and 21 are magnetically coupled.
  • the operation node 21 arranged in the upper left corner is adjacent to the two on the right side and the lower side. It shows that the operation nodes 21 and 21 are magnetically coupled. The same applies to the other operation nodes 21.
  • each operation node 21 is magnetically coupled to 2 to 4 other operation nodes 21.
  • FIG. 1 shows a state in which the nearest computation nodes 21 and 21 are magnetically coupled to each other, but the two computation nodes 21 and 21 that are magnetically coupled are not necessarily arranged closest to each other. There is no need to be done.
  • an operation node 21 may be arranged at each vertex of a square lattice, and an operation node 21 is arranged at each vertex of various planar lattices such as a rectangular lattice, a triangular lattice, a hexagonal lattice, and a rhombus lattice. May be.
  • the operation nodes 21 do not have to be arranged on a plane, and may be arranged at each vertex in an arbitrary space lattice. Further, the operation nodes 21 do not have to be periodically arranged, and may be randomly arranged in the same plane or space.
  • the micro magnetic material constituting the computation node 21 is formed of an alloy such as a Ni—Fe alloy, a Ni—Fe—Co alloy, a Co—Fe alloy, or the like.
  • the micromagnetic material is configured so as to have only one easy axis using, for example, shape magnetic anisotropy.
  • FIG. 2 is a schematic view showing an example of a minute magnetic material.
  • the micro magnetic material used for the computation node 21 has, for example, an elliptic cylinder shape, and has a size of about 100 nm in the major axis direction of the ellipse, 50 nm in the minor axis direction, and about 20 nm in the thickness direction.
  • the direction of magnetization exhibits bistability on the easy axis. That is, the magnetization direction in the micromagnetic material is the first direction along the easy magnetization axis (the direction indicated by the white arrow in the figure), or the second direction reversed 180 degrees from the first direction (the black arrow in the figure). It can be configured such that any one of the directions (indicated by a symbol) is taken and the other direction (the direction deviated from the easy axis of magnetization) is not taken.
  • the configuration of the micro magnetic material having only one easy magnetization axis and showing the bistability of the magnetization direction on the easy magnetization axis has been described.
  • the stable direction of magnetization is determined according to the state, it may be a micromagnetic material that does not exhibit bistability, and may be a micromagnetic material that does not have an easy magnetization axis or a micromagnetic material that has multiple easy magnetization axes. There may be.
  • the minute magnetic body having an elliptic cylinder shape has been described, but the shape of the minute magnetic body is not limited to the elliptic cylinder shape.
  • the shape of the cross section orthogonal to the thickness direction may be a circle, a rectangle, a rectangle with rounded corners, or a shape obtained by slightly overlapping two circles.
  • Micromagnetic materials having these shapes are easy to manufacture and have the advantage of easy integration.
  • the input information cell 10 writes information to the operation nodes 21, 21,..., 21 included in the minute magnetic substance reservoir 20.
  • the input information cell 10 writes information to one or more selected operation nodes 21, 21,..., 21 among the plurality of operation nodes 21, 21,. .
  • Information to be written by the input information cell is described by binary values of 0 or 1, for example.
  • the input information cell 10 controls the magnetization direction of the micromagnetic material constituting the computation node 21 to the first direction, for example, and writes “1”.
  • the magnetization direction of the minute magnetic material is controlled to a second direction that is 180 degrees reversed from the first direction.
  • a method for controlling the magnetization direction in a micro magnetic material for example, a method used in a magnetoresistive effect type solid magnetic memory (MRAM: Magnetic Random Access Memory) can be used.
  • MRAM Magnetoresistive effect type solid magnetic memory
  • a method for controlling the magnetization direction used in the MRAM a method using a classic current magnetic field or a method using spin injection magnetization reversal is known.
  • magnetization reversal can be performed by supplying polarized spin current (spin injection), and the magnetization direction of the target micromagnetic material can be controlled.
  • a method of inducing a magnetic response by the electric field effect may be used.
  • an electric field is applied to a structure in which a magnetic layer (ultra-thin ferromagnetic layer) and an insulating layer (potential barrier) are stacked, so that the magnetic layer A technique for modulating the magnetic anisotropy and controlling the magnetization direction of the magnetic layer is disclosed.
  • Such a method may be used to control the magnetization direction of the minute magnetic body constituting the selected computation node 21.
  • the magnetization direction of the minute magnetic body constituting each computation node 21 is minute. Under the influence of magnetostatic interaction from the magnetic material, the state autonomously transits to a state representing the calculation result.
  • the output information cell 40 After information is written by the input information cell 10, the timing at which the magnetization state of the minute magnetic substance reservoir 20 transitions to a state representing the calculation result (for example, timing at which 10 nsec has elapsed after writing information). Read information. Specifically, the output information cell 40 linearly combines the information held in the calculation nodes 21, 21,..., 21 of the minute magnetic substance reservoir 20 through the weighting calculation element 30. Read the information obtained by. For reading out information from each of the operation nodes 21, 21,..., 21, it is possible to use a technique used in the MRAM as in the magnetization direction control technique described above.
  • the weighting calculation element 30 has a function of linearly combining information held in the calculation nodes 21, 21,..., 21 of the minute magnetic substance reservoir 20, and a function of determining a linear weight used in the linear combination by learning. .
  • the weighting calculation element 30 reads the linear weight stored in the memory not shown in the figure, and uses the read linear weight to each of the calculation nodes 21, 21,.
  • the stored information is linearly combined, and the obtained information is output to the output information cell 40.
  • the weighting calculation element 30 may hold the weight by a memory element made of semiconductor, or may hold the weight by a magnetic memory using the position of the domain wall in the magnetic body.
  • the weighting calculation element 30 reads teacher information indicating an ideal output with respect to the input from a memory not shown in the figure, and reproduces the teacher information.
  • the linear weight is determined by learning.
  • the weighting calculation element 30 stores the determined linear weight in the memory described above.
  • the weighting calculation element 30 uses, for example, a least square method (linear regression) so that the residual sum of squares between the value indicated by the information obtained from the minute magnetic substance reservoir 20 and the value indicated by the teacher information is minimized. Linear weights may be determined.
  • linear weights may be regularized by Ridge regression, Lasso regression, Elastic net method, or the like in order to avoid problems due to overlearning.
  • information is written from the input information cell 10 to the minute magnetic material reservoir 20, but a plurality of input nodes 11, 11,..., 11 are provided in the input information cell 10, and the input nodes 11, .., 11 may be used to write information to the operation nodes 21, 21,.
  • a plurality of output nodes 41, 41,..., 41 may be provided in the output information cell 40, and information may be read from the minute magnetic substance reservoir 20 using each of the output nodes 41, 41,.
  • FIG. 3 is a flowchart showing a procedure of processing executed by the information processing apparatus according to this embodiment.
  • the input information cell 10 of the information processing apparatus selects one or a plurality of operation nodes 21, 21,..., 21 to which information is to be written when the operation target information is input and an operation instruction is given (step S101).
  • the input information cell 10 may select at least 10% to 90% of the operation nodes 21, 21,..., 21 out of all the operation nodes 21, 21,.
  • the operation nodes 21, 21,..., 21 selected in step S101 are random. However, it is not always necessary to randomly select the operation nodes 21, 21,..., 21 as long as information can be periodically input so as to be in a high energy state, and the operation node 21 is given periodicity. , 21,..., 21 may be selected.
  • the input information cell 10 writes information to one or a plurality of operation nodes 21, 21,..., 21 selected in step S101 (step S102).
  • the input information cell 10 writes information by controlling the magnetization direction of the minute magnetic body constituting each operation node 21.
  • a method using a classic current magnetic field, a method using spin injection magnetization reversal, a method of inducing a magnetic response by the electric field effect, or the like can be used.
  • the magnetization state of the minute magnetic substance reservoir 20 is changed to a state representing the calculation result (step S103).
  • the magnetization direction of the micro magnetic material constituting the calculation node 21 is affected by the magnetostatic interaction from the micro magnetic material arranged around the calculation node 21 and autonomously transits to a state representing the calculation result. .
  • a process executed by the information processing apparatus a process of waiting for a time (for example, 10 nsec) required for the magnetization direction of the minute magnetic substance reservoir 20 to transition to a state representing a calculation result is performed.
  • the output information cell 40 controls and outputs the information held in the minute magnetic substance reservoir 20 (step S104). Specifically, the output information cell 40 linearly combines the information held in each of the operation nodes 21, 21,... 21 via the weighted operation element 30 and outputs information obtained by the linear combination. Read as information. If there is further input information, the information processing apparatus reads the output information, returns the process to step S102, and continues the calculation.
  • FIG. 4 is a schematic diagram showing the configuration of the minute magnetic substance reservoir 20 used in the performance evaluation.
  • the micro magnetic material reservoir 20 shown in FIG. 4 has 16 ⁇ 16 square lattices (unit cells 200), the first micro magnetic material 201 at the apex of each square lattice, and the second at the center of each square lattice.
  • the micro magnetic body 202 is arranged. That is, in the example of FIG. 4, two micro magnetic bodies 201 and 202 are arranged in one unit cell 200, and a micro magnetic reservoir 20 having 16 ⁇ 16 ⁇ 2 operation nodes 21 is constructed as a whole. ing.
  • the magnetostatic interaction that works between the first micromagnetic body 201 the magnetostatic interaction that works between the first micromagnetic body 201 and the second micromagnetic body 202, and the second micromagnetic body.
  • the magnetostatic interaction acting between 202 is used for computation.
  • the normalized error value (NRMSE: normalized root mean square error) in the NARMA10 task shows a value of 0.8 or less, and the micromagnetic material reservoir according to the present embodiment It has been found that 20 can be used for reservoir computing.
  • FIG. 5 is a schematic diagram showing the configuration of the minute magnetic substance reservoir 20 according to the second embodiment.
  • the micro magnetic material reservoir 20 shown in FIG. 5 has an Nth row (N is an integer of 1 to 10), such as one computation node 21 in the first row, two computation nodes 21, 21,. , 21 are arranged in N.
  • Each computation node 21 is composed of a columnar minute magnetic body having a film thickness of 0.5 nm and a radius of 20 nm, and the distance between adjacent minute magnetic bodies is 10 nm.
  • the operation nodes 21 are grouped in units of rows, and the operation nodes 21 arranged in the second row, the fifth row, and the eighth row are grouped in the groups 1, 3, 6,
  • the operation node 21 arranged in the ninth row is group 2, and the operation node 21 arranged in the first, fourth, seventh, tenth and tenth rows is group 3.
  • the information processing apparatus writes information to the operation node 21 arranged in the first row through the input information cell 10 and shifts the information in the minute magnetic material reservoir 20 to each operation node 21.
  • the magnetic anisotropy of the micro magnetic material constituting the structure was changed.
  • the magnetic anisotropy in the micromagnetic material includes shape magnetic anisotropy, interface magnetic anisotropy, crystal magnetic anisotropy, and the like.
  • the information processing apparatus for example, applies an electric field in the stacking direction to a structure in which a magnetic layer (ultra-thin ferromagnetic layer) and an insulating layer (potential barrier) are stacked, thereby magnetic anisotropy of the micromagnetic material. Can be changed.
  • FIG. 6 is a graph illustrating a method for changing the magnetic anisotropy.
  • the horizontal axis represents time
  • the vertical axis represents magnetic anisotropy, and shows the time change of magnetic anisotropy in the minute magnetic bodies belonging to each group 1 to 3. .
  • +2 is added to the magnetic anisotropy of the micromagnetic material belonging to group 2
  • +4 is added to the magnetic anisotropy of the micromagnetic material belonging to group 3. .
  • the magnetic anisotropy of the minute magnetic materials belonging to all groups is set to “1”. In this case, the information written in the first line is not shifted to the other operation node 21. However, since a magnetic interaction acts between the operation nodes 21, the magnetization state is affected by the influence, and the stabilization direction is determined.
  • the magnetization direction of the operation node 21 is affected by the magnetic interaction with the surrounding nodes.
  • the direction of magnetization is changed greatly from the state before the magnetic anisotropy is changed.
  • the magnetic anisotropy of the micromagnetic material belonging to group 3 set to “1”
  • the magnetic anisotropy of the micromagnetic material belonging to group 1 and group 2 is set to “0”. Therefore, the information written in the first row can be shifted to the operation node 21 in the second row belonging to the group 1 and the operation node 21 in the third row belonging to the group 2.
  • the subsequent time steps of time 2 to 7 and the information held by the operation node 21 in the third row belonging to group 2 in the time step of time 3 to 4 A shift to the operation node 21 can be made.
  • information held in the operation node 21 in the fourth row belonging to the group 3 can be shifted to the operation node 21 in the fifth row belonging to the group 1 in the time step of time 5 to 6.
  • the magnetic anisotropy change rule is stored in advance in a memory not shown in the figure, and the information processing apparatus periodically performs magnetic anisotropy with respect to time according to the change rule stored in the memory. It shall change gender.
  • the minute magnetic substance reservoir 20 is changed to a state where the next information can be input.
  • the performance of the minute magnetic substance reservoir 20 is evaluated by performing a binary operation using a time-dependent input signal.
  • binary operations three types of logical product (AND), logical sum (OR), and exclusive logical sum (XOR) were used.
  • FIG. 7 is an explanatory diagram for explaining data used for binary calculation.
  • a binary state of 0 or 1 is used for input.
  • the binary state input is set to 0 or 1 by setting the polarity of the Z component of the magnetization of the input node (the operation node 21 in the first row shown in FIG. 5) to + or ⁇ .
  • the values A and B shown in FIG. 7 are used for the binary calculation that the minute magnetic substance reservoir 20 learns. That is, assuming that the value input at time n step is A, the data input in the past by n d steps from A is B.
  • the calculation error rate with respect to the input delay amount in the case where the minute magnetic substance reservoir 20 is learned to perform binary calculation with respect to different inputs is obtained.
  • FIGS. 8A to 8C are graphs showing the error rate of each calculation when learning is performed using the Z component of the magnetization state between time 0 and time 1.
  • FIG. in the graphs shown in FIGS. 8A to 8C the horizontal axis represents the delay amount of the input A with respect to the input B, and the vertical axis represents the magnetization of the computation node 21 normalized by the saturation magnetization used for learning of the minute magnetic substance reservoir 20.
  • Significant number of orientations. 8A to 8C show error rates of the logical product operation, the logical sum operation, and the exclusive logical sum operation, respectively. In the logical product operation and the logical sum operation, when the delay amount is less than 4, the error rate is substantially zero.
  • the exclusive OR operation the operation can be learned with a relatively large significant number, but in other cases, the error rate is approximately 0.5 or more, indicating that the operation cannot be sufficiently performed.
  • FIG. 9A to FIG. 9C are graphs showing the error rate of each calculation when learning is performed using the X component of the magnetization state between time 1 and time 2.
  • the horizontal axis represents the delay amount of the input A with respect to the input B
  • the vertical axis represents the magnetization of the computation node 21 normalized by the saturation magnetization used for learning of the minute magnetic substance reservoir 20.
  • Significant number of orientations. 9A to 9C show error rates of the logical product operation, the logical sum operation, and the exclusive logical sum operation, respectively. In the logical product operation and the logical sum operation, when the delay amount is less than 4, the error rate is substantially zero. In addition, in the exclusive logic operation, the error rate is kept low when the delay amount is less than 4, and the operation can be learned with the least significant number when the X component of the magnetization between the time 1 and 2 is used. I found out.
  • FIG. 10 is a graph showing an error rate with respect to an input delay amount.
  • the graph of FIG. 10 shows the input delay time in the case where the minute magnetic substance reservoir 20 is learned to perform the logical product operation, the logical sum operation, and the exclusive logical sum operation with respect to the input at different times. Indicates the error rate.
  • the horizontal axis of the graph represents the amount of delay n d, and the vertical axis represents the error rate.
  • the error rate is substantially zero for data with a delay amount n d up to 3 for each of the logical product operation, logical sum operation, and exclusive OR operation. Was confirmed.
  • an arrangement in which the operation nodes 21 are increased by one in the direction of the column formed by the group is used.
  • an arrangement having a certain number of operation nodes 21 in the column direction may be used.
  • an arrangement having one or two operation nodes 21 in the direction of a column formed by a group may be used.
  • the configuration in which the groups of the operation nodes 21 are arranged for 10 rows is shown, but the number of rows is not limited to 10 rows. For example, it is possible to increase the amount of delay that can be calculated by increasing the number of rows.
  • FIG. 11 is a schematic diagram showing a configuration of the minute magnetic substance reservoir 20 according to the third embodiment.
  • Each computation node 21 is composed of a columnar minute magnetic body having a film thickness of 0.5 nm and a radius of 20 nm, and the distance between adjacent minute magnetic bodies is 10 nm.
  • the operation nodes 21 are grouped in units of rows, and the operation nodes 21 arranged in the second row, the fifth row, and the eighth row are grouped in the groups 1, 3, 6,
  • the operation node 21 arranged in the ninth row is group 2, and the operation node 21 arranged in the first, fourth, seventh, tenth and tenth rows is group 3.
  • the information processing apparatus writes information to one of the operation nodes 21 arranged in the first row through the input information cell 10 and shifts the information in the minute magnetic material reservoir 20 with each operation.
  • the magnetic anisotropy of the minute magnetic body constituting the node 21 was changed.
  • the magnetic anisotropy in the micromagnetic material includes shape magnetic anisotropy, interface magnetic anisotropy, crystal magnetic anisotropy, and the like.
  • the information processing apparatus applies an electric field in the stacking direction to a structure in which a magnetic layer (ultra-thin ferromagnetic layer) and an insulating layer (potential barrier) are stacked, thereby magnetic anisotropy of the micromagnetic material. Can be changed.
  • FIG. 12 is an explanatory diagram for explaining a method of changing the magnetic anisotropy.
  • a black circle indicates a state in which the magnetic anisotropy of the minute magnetic material is adjusted to “1” (a state where K u ⁇ 0)
  • the magnetic anisotropy is adjusted, for example, by applying a voltage to the minute magnetic material.
  • the minute magnetic body indicated by a white circle shows a state in which the magnetic anisotropy is adjusted to “0” in the present embodiment, but the magnetic anisotropy does not have to be completely zero, and has a value close to zero ( Ku ⁇ 0).
  • the magnetic anisotropy of the minute magnetic materials belonging to all groups is set to “1”.
  • the information written in the operation node 21 is not shifted to another operation node 21.
  • the magnetization state is affected by the influence, and the stabilization direction is determined.
  • the magnetic anisotropy of the micromagnetic materials belonging to Group 1 and Group 2 is set to “0” in a state where the magnetic anisotropy of the micromagnetic materials belonging to Group 3 is set to “1”. Therefore, the information written in the first row can be shifted to the operation node 21 in the second row belonging to the group 1 and the operation node 21 in the third row belonging to the group 2.
  • the time steps represented by subsequent Stages 2 to 6 and the information held by the operation node 21 in the third row belonging to Group 2 in the time step in Stage 4 is the operation in the fourth row belonging to Group 3. Shift to node 21.
  • the information held by the computation node 21 in the fourth row belonging to the group 3 can be shifted to the computation node 21 in the fifth row belonging to the group 1.
  • the magnetic anisotropy change rule is stored in advance in a memory not shown in the figure, and the information processing apparatus periodically performs magnetic anisotropy with respect to time according to the change rule stored in the memory. It shall change gender.
  • the minute magnetic substance reservoir 20 is changed to a state where the next information can be input.
  • the performance of the minute magnetic material reservoir 20 is evaluated by performing a binary operation using a time-dependent input signal. Specifically, the exclusive OR XOR (u k , u k-nd ) for the current input u k and the n d previous input u k-nd is trained as a teacher function, which is different from the training time. The performance of the minute magnetic substance reservoir 20 was evaluated by confirming the reproducibility of the teacher data when using the input.
  • training data for 742 type steps is used.
  • the output obtained by the weighted matrix W that has been trained was binarized and compared with the teacher data.
  • test data for 247 time steps is used.
  • FIG. 13A and 13B are diagrams showing comparison results with teacher data.
  • FIG. 13A shows the output data obtained from the response of the micromagnetic material reservoir 20 when new data different from the time of training is input using the weighting matrix W obtained by the pre-training.
  • the vertical axis represents the state of “0” or “1”, and the horizontal axis represents time (step).
  • FIG. 14 is a graph showing an error rate in the exclusive logical operation when learning is performed using the X component of the magnetization state.
  • the horizontal axis represents the delay amount n d
  • the vertical axis represents the effective number of the magnetization direction of the operation node 21 normalized by the saturation magnetization used for learning of the minute magnetic substance reservoir 20. Yes. From the graph shown in FIG. 14, it can be seen that the circuit operates as an XOR function with three or more significant digits and a delay of three.
  • a micro magnetic element when used as a reservoir computer, it has become clear that an exclusive OR operation can be performed using information for the past three. Further, a negative exclusive OR (XNOR) gate can be realized by reversing the polarity of the learned output matrix.
  • XNOR negative exclusive OR
  • the configuration in which the groups of the operation nodes 21 are arranged for 10 rows is shown, but the number of rows is not limited to 10 rows. For example, it is possible to increase the amount of delay that can be calculated by increasing the number of rows.
  • FIG. 15 is a schematic diagram showing the configuration of the minute magnetic substance reservoir 20 according to the fourth embodiment.
  • Each computation node 21 is composed of a columnar minute magnetic body having a film thickness of 0.5 nm and a radius of 20 nm, and the distance between adjacent minute magnetic bodies is 10 nm.
  • the operation nodes 21 are grouped in units of rows, and the operation nodes 21 arranged in the second row, the fifth row, and the eighth row are grouped in the groups 1, 3, 6,
  • the operation node 21 arranged in the ninth row is group 2, and the operation node 21 arranged in the first, fourth, seventh, tenth and tenth rows is group 3.
  • the minute magnetic substance reservoir 20 in which one operation node 21 is arranged in each row as shown in FIG. 15 can function as an operation gate for exclusive OR or the like. I understood that I could do it.
  • FIG. 16 is a schematic plan view of the minute magnetic substance reservoir 20 according to the fifth embodiment
  • FIG. 17 is a schematic sectional view thereof.
  • 16 includes a first layer 20A in which a plurality of operation nodes 21, 21,..., 21 are arranged, and a second layer 20B in which a node 22 for inputting information is arranged. Have.
  • the second layer 20B is disposed adjacent to the upper side of the first layer 20A, for example.
  • the micro magnetic material constituting each of the nodes 21 and 22 is formed of an alloy such as a Ni—Fe alloy, a Ni—Fe—Co alloy, or a Co—Fe alloy.
  • the minute magnetic body which comprises each node 21 and 22 has comprised the elliptical column shape, for example, it is not limited to this.
  • the minute magnetic body constituting each of the nodes 21 and 22 may have a cross-sectional shape that is orthogonal to the thickness direction, a circular shape, a rectangular shape, a rectangular shape with rounded corners, or a slightly overlapping shape of two circles. It may be a shape such as a spheroid.
  • the first layer 20A has, for example, 6 ⁇ 5 unit cells. .., 21 are randomly arranged in each unit cell.
  • the number and arrangement of the operation nodes 21 may be different between units or may be the same.
  • the node 22 may be formed so as to overlap with one of the operation nodes 21, 21,... 21 in a plan view, or may be formed so as not to overlap.
  • the information written in the node 22 of the second layer 20B is propagated to the operation node 21 of the first layer 20A under the influence of the magnetic interaction as in the first to fifth embodiments.
  • the layer including the operation node 21 and the layer including the node 22 to which information is to be written can be manufactured individually, the ease of manufacturing can be improved.
  • the size is smaller than that of a conventional reservoir element using an electric signal or light. And low power consumption can be realized.
  • One of the application fields of the information processing apparatus according to the present embodiment is the machine learning field in which demand is rapidly increasing in recent years. Therefore, its application fields are diverse. As an example, since stand-alone machine learning in a mobile device is possible, even if attention is paid only to this example, the technical and economic effects are great.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Data Mining & Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Neurology (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

This information processing device comprises: a magnetic reservoir that includes a plurality of nodes, each of the nodes being made of a magnetic body, and magnetically coupled to at least one other node; a node selection unit that selects one or more nodes to which information is to be written from among the plurality of nodes included in the magnetic reservoir; an information writing unit that writes information to the one or more selected nodes; and an information reading unit that, after the information is written, reads information attained by linear coupling of each node included in the magnetic reservoir.

Description

情報処理装置及び情報処理方法Information processing apparatus and information processing method
 本発明は、情報処理装置及び情報処理方法に関する。 The present invention relates to an information processing apparatus and an information processing method.
 現在、普及しているコンピュータの多くは、ノイマン型コンピュータである。ノイマン型コンピュータは、プログラムやデータを記憶するメモリと、情報処理デバイスとを備える。ノイマン型コンピュータが備える情報処理デバイスは、メモリに記憶されたプログラムやデータに従って、適宜の演算処理を実行する。 Currently, many of the computers that are widely used are Neumann computers. The Neumann computer includes a memory for storing programs and data, and an information processing device. The information processing device provided in the von Neumann computer executes appropriate arithmetic processing according to programs and data stored in the memory.
 一方、非ノイマン型コンピュータも存在する。非ノイマン型コンピュータの1つとして、ニューラルネットワークを模したリザーバコンピュータが提案されている(例えば、特許文献1及び2を参照)。 On the other hand, there are non-Neumann computers. As one of non-Neumann computers, a reservoir computer imitating a neural network has been proposed (see, for example, Patent Documents 1 and 2).
米国特許出願公開第2014/0214738号明細書US Patent Application Publication No. 2014/0214738 米国特許第9477136号明細書U.S. Pat. No. 9,477,136
 しかしながら、特許文献1に開示されたリザーバコンピュータでは、リザーバを構成する演算ノードが負性抵抗素子により構成されており、各負性抵抗素子に対する電流制御によって情報の書き込みが行われる。また、負性抵抗素子を演算ノードとして備えるリザーバにて情報を保持する場合においても電流制御が必要となる。よって、特許文献1に開示されたリザーバコンピュータでは、消費電力を低く抑えることができないという問題点を有している。 However, in the reservoir computer disclosed in Patent Document 1, the operation node constituting the reservoir is composed of negative resistance elements, and information is written by current control on each negative resistance element. Further, even when information is held in a reservoir provided with a negative resistance element as an operation node, current control is required. Therefore, the reservoir computer disclosed in Patent Document 1 has a problem that power consumption cannot be kept low.
 また、特許文献2に開示されたリザーバコンピュータでは、リザーバを構成する演算ノードが受動型シリコンフォトニクス・チップにより構成されており、情報の書き込みにはレーザ光やコヒーレント光の照射が必要となる。よって、特許文献2に開示されたリザーバコンピュータにおいても、消費電力を低く抑えることができないという問題点を有している。 Further, in the reservoir computer disclosed in Patent Document 2, the computation node constituting the reservoir is configured by a passive silicon photonics chip, and writing of information requires irradiation with laser light or coherent light. Therefore, the reservoir computer disclosed in Patent Document 2 also has a problem that power consumption cannot be kept low.
 本発明は、低消費電力でリザーバコンピューティングを実現することができる情報処理装置及び情報処理方法を提供することを目的とする。 An object of the present invention is to provide an information processing apparatus and an information processing method capable of realizing reservoir computing with low power consumption.
 本発明の一態様に係る情報処理装置は、夫々が磁性体により構成された複数のノードを含み、各ノードが少なくとも1つの他のノードに磁気的に結合されている磁性体リザーバと、該磁性体リザーバに含まれる複数のノードから、情報を書き込むべき1又は複数のノードを選択するノード選択部と、選択した1又は複数のノードに情報を書き込む情報書込部と、前記情報を書き込んだ後に、前記磁性体リザーバに含まれる各ノードの線形結合によって得られる情報を読み出す情報読出部とを備える。 An information processing apparatus according to an aspect of the present invention includes a magnetic material reservoir that includes a plurality of nodes, each of which is made of a magnetic material, each of which is magnetically coupled to at least one other node, and the magnetic material A node selection unit for selecting one or more nodes to write information from a plurality of nodes included in the body reservoir, an information writing unit for writing information to the selected one or more nodes, and after writing the information And an information reading unit for reading information obtained by linear combination of each node included in the magnetic substance reservoir.
 本発明の一態様に係る情報処理方法は、夫々が磁性体により構成された複数のノードを含み、各ノードが少なくとも1つの他のノードに磁気的に結合されている磁性体リザーバに対して、情報を書き込むべき1又は複数のノードを選択し、選択した1又は複数のノードに情報を書き込み、前記情報を書き込んだ後に、前記磁性体リザーバに含まれる各ノードの線形結合によって得られる情報を読み出す。 An information processing method according to one aspect of the present invention includes a plurality of nodes each formed of a magnetic material, and each node is magnetically coupled to at least one other node. Select one or more nodes to which information is to be written, write information to the selected one or more nodes, and after writing the information, read information obtained by linear combination of each node contained in the magnetic reservoir .
 上記一態様によれば、低消費電力でリザーバコンピューティングを実現することができる。 According to the above aspect, reservoir computing can be realized with low power consumption.
本実施の形態に係る情報処理装置の構成を示す概念図である。It is a conceptual diagram which shows the structure of the information processing apparatus which concerns on this Embodiment. 微小磁性体の一例を示す模式図である。It is a schematic diagram which shows an example of a micro magnetic body. 本実施の形態に係る情報処理装置が実行する処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process which the information processing apparatus which concerns on this Embodiment performs. 性能評価で用いた微小磁性体リザーバの構成を示す模式図である。It is a schematic diagram which shows the structure of the micro magnetic substance reservoir used by performance evaluation. 実施の形態2に係る微小磁性体リザーバ20の構成を示す模式図である。6 is a schematic diagram showing a configuration of a minute magnetic substance reservoir 20 according to Embodiment 2. FIG. 磁気異方性の変更方法を説明するグラフである。It is a graph explaining the change method of magnetic anisotropy. バイナリ演算に用いるデータを説明する説明図である。It is explanatory drawing explaining the data used for a binary calculation. 時間0~1の間の磁化状態のZ成分を用いて学習した場合の各演算のエラーレートを示すグラフである。It is a graph which shows the error rate of each calculation at the time of learning using the Z component of the magnetization state between time 0-1. 時間0~1の間の磁化状態のZ成分を用いて学習した場合の各演算のエラーレートを示すグラフである。It is a graph which shows the error rate of each calculation at the time of learning using the Z component of the magnetization state between time 0-1. 時間0~1の間の磁化状態のZ成分を用いて学習した場合の各演算のエラーレートを示すグラフである。It is a graph which shows the error rate of each calculation at the time of learning using the Z component of the magnetization state between time 0-1. 時間1~2の間の磁化状態のX成分を用いて学習した場合の各演算のエラーレートを示すグラフである。6 is a graph showing an error rate of each calculation when learning is performed using an X component of a magnetization state between times 1 and 2; 時間1~2の間の磁化状態のX成分を用いて学習した場合の各演算のエラーレートを示すグラフである。6 is a graph showing an error rate of each calculation when learning is performed using an X component of a magnetization state between times 1 and 2; 時間1~2の間の磁化状態のX成分を用いて学習した場合の各演算のエラーレートを示すグラフである。6 is a graph showing an error rate of each calculation when learning is performed using an X component of a magnetization state between times 1 and 2; 入力の遅延量に対するエラーレートを示すグラフである。It is a graph which shows the error rate with respect to the delay amount of input. 実施の形態3に係る微小磁性体リザーバの構成を示す模式図である。FIG. 10 is a schematic diagram illustrating a configuration of a minute magnetic substance reservoir according to a third embodiment. 磁気異方性の変更方法を説明する説明図である。It is explanatory drawing explaining the change method of magnetic anisotropy. 教師データとの比較結果を示す図である。It is a figure which shows the comparison result with teacher data. 教師データとの比較結果を示す図である。It is a figure which shows the comparison result with teacher data. 磁化状態のX成分を用いて学習した場合の排他的論路演算におけるエラーレートを示すグラフである。It is a graph which shows the error rate in the exclusive logic calculation at the time of learning using the X component of a magnetization state. 実施の形態4に係る微小磁性体リザーバの構成を示す模式図である。FIG. 10 is a schematic diagram showing a configuration of a minute magnetic substance reservoir according to a fourth embodiment. 実施の形態5に係る微小磁性体リザーバの模式的平面図である。FIG. 10 is a schematic plan view of a minute magnetic substance reservoir according to a fifth embodiment. 実施の形態5に係る微小磁性体リザーバの模式的断面図である。FIG. 10 is a schematic cross-sectional view of a minute magnetic substance reservoir according to a fifth embodiment.
 以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。
(実施の形態1)
 図1は本実施の形態に係る情報処理装置の構成を示す概念図である。本実施の形態に係る情報処理装置は、所謂リザーバコンピュータであり、入力情報セル10、微小磁性体リザーバ20、重み付け演算素子30、及び出力情報セル40を備える。
Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof.
(Embodiment 1)
FIG. 1 is a conceptual diagram showing the configuration of the information processing apparatus according to the present embodiment. The information processing apparatus according to the present embodiment is a so-called reservoir computer, and includes an input information cell 10, a minute magnetic substance reservoir 20, a weighted arithmetic element 30, and an output information cell 40.
 微小磁性体リザーバ20には、複数の演算ノード21,21,…,21が含まれている。各演算ノード21は、後述する微小磁性体により構成されている。微小磁性体間に静磁気相互作用が働くことにより、演算ノード21,21間は磁気的に結合されている。図1の例では、マトリクス状に配置された4行×5列の演算ノード21,21,…,21のうち、左上隅に配置された演算ノード21は、右側及び下側に隣接する2つの演算ノード21,21に磁気的に結合されていることを示している。他の演算ノード21についても同様であり、図1の例では、各演算ノード21は2~4個の他の演算ノード21に磁気的に結合されていることを示している。 The micro magnetic material reservoir 20 includes a plurality of operation nodes 21, 21,. Each operation node 21 is composed of a minute magnetic material to be described later. Since the magnetostatic interaction acts between the minute magnetic bodies, the operation nodes 21 and 21 are magnetically coupled. In the example of FIG. 1, among the 4 rows × 5 columns of operation nodes 21, 21,..., 21 arranged in a matrix, the operation node 21 arranged in the upper left corner is adjacent to the two on the right side and the lower side. It shows that the operation nodes 21 and 21 are magnetically coupled. The same applies to the other operation nodes 21. In the example of FIG. 1, each operation node 21 is magnetically coupled to 2 to 4 other operation nodes 21.
 なお、図1の例では、最近接の演算ノード21,21同士が磁気的に結合された状態を示しているが、磁気的に結合される2つの演算ノード21,21は必ずしも最近接に配置される必要はない。 The example of FIG. 1 shows a state in which the nearest computation nodes 21 and 21 are magnetically coupled to each other, but the two computation nodes 21 and 21 that are magnetically coupled are not necessarily arranged closest to each other. There is no need to be done.
 また、図1の例では、4行×5列のマトリクス状に演算ノード21,21,…,21を配置した構成を示したが、演算ノード21の配置は図1の例に限定されるものではない。例えば、図1に示すように正方格子の各頂点に演算ノード21が配置されていてもよく、矩形格子、三角格子、六角格子、菱形格子等の各種平面格子の各頂点に演算ノード21が配置されていてもよい。また、演算ノード21は平面上に配置される必要はなく、任意の空間格子における各頂点に配置されていてもよい。さらに、演算ノード21は周期的に配置される必要はなく、同一平面内若しくは空間内にランダムに配置されてもよい。 In the example of FIG. 1, the configuration in which the operation nodes 21, 21,..., 21 are arranged in a matrix of 4 rows × 5 columns is shown, but the arrangement of the operation nodes 21 is limited to the example of FIG. is not. For example, as shown in FIG. 1, an operation node 21 may be arranged at each vertex of a square lattice, and an operation node 21 is arranged at each vertex of various planar lattices such as a rectangular lattice, a triangular lattice, a hexagonal lattice, and a rhombus lattice. May be. Further, the operation nodes 21 do not have to be arranged on a plane, and may be arranged at each vertex in an arbitrary space lattice. Further, the operation nodes 21 do not have to be periodically arranged, and may be randomly arranged in the same plane or space.
 演算ノード21を構成する微小磁性体は、例えば、Ni-Fe系合金、Ni-Fe-Co系合金、Co-Fe系合金などの合金により形成される。微小磁性体は、例えば、形状磁気異方性を利用して、磁化容易軸を1つだけ有するように構成されている。図2は微小磁性体の一例を示す模式図である。演算ノード21に用いられる微小磁性体は、例えば楕円柱形状をなし、楕円の長軸方向に100nm、短軸方向に50nm、厚み方向に20nm程度の大きさを有する。このような形状の微小磁性体において、磁化容易軸は楕円の長軸方向と一致する方向に1つだけ形成される。特に、微小磁性体が磁化容易軸に沿って細長い形状であれば、磁化容易軸上において磁化の向きが双安定性を示す。すなわち、微小磁性体における磁化方向は、磁化容易軸に沿う第1方向(図中の白抜き矢符で示す方向)、又は第1方向から180度反転した第2方向(図中の黒塗矢符で示す方向)の何れかの方向をとり、他の方向(磁化容易軸からずれた方向)はとらないように構成することができる。 The micro magnetic material constituting the computation node 21 is formed of an alloy such as a Ni—Fe alloy, a Ni—Fe—Co alloy, a Co—Fe alloy, or the like. The micromagnetic material is configured so as to have only one easy axis using, for example, shape magnetic anisotropy. FIG. 2 is a schematic view showing an example of a minute magnetic material. The micro magnetic material used for the computation node 21 has, for example, an elliptic cylinder shape, and has a size of about 100 nm in the major axis direction of the ellipse, 50 nm in the minor axis direction, and about 20 nm in the thickness direction. In such a micro magnetic material, only one easy axis is formed in a direction that coincides with the major axis direction of the ellipse. In particular, if the minute magnetic body is elongated along the easy axis, the direction of magnetization exhibits bistability on the easy axis. That is, the magnetization direction in the micromagnetic material is the first direction along the easy magnetization axis (the direction indicated by the white arrow in the figure), or the second direction reversed 180 degrees from the first direction (the black arrow in the figure). It can be configured such that any one of the directions (indicated by a symbol) is taken and the other direction (the direction deviated from the easy axis of magnetization) is not taken.
 なお、図2では、微小磁性体の一例として、磁化容易軸を1つだけ有し、磁化容易軸上において磁化の向きが双安定性を示す微小磁性体の構成を説明したが、周囲の磁化状態に応じて磁化の安定方向が定まる限りにおいて、双安定性を示さない微小磁性体であってもよく、磁化容易軸が存在しない微小磁性体、又は磁化容易軸が複数存在する微小磁性体であってもよい。また、図2では、楕円柱形状をなす微小磁性体について説明したが、微小磁性体の形状は楕円柱形状に限定されるものではない。例えば、厚み方向と直交する断面の形状が円形、長方形、角が丸められた長方形、2つの円を僅かに重ねた形状であってもよい。これらの形状を有する微小磁性体は製造が容易であり、集積化が容易であるという利点を有する。 In FIG. 2, as an example of the micro magnetic material, the configuration of the micro magnetic material having only one easy magnetization axis and showing the bistability of the magnetization direction on the easy magnetization axis has been described. As long as the stable direction of magnetization is determined according to the state, it may be a micromagnetic material that does not exhibit bistability, and may be a micromagnetic material that does not have an easy magnetization axis or a micromagnetic material that has multiple easy magnetization axes. There may be. In addition, in FIG. 2, the minute magnetic body having an elliptic cylinder shape has been described, but the shape of the minute magnetic body is not limited to the elliptic cylinder shape. For example, the shape of the cross section orthogonal to the thickness direction may be a circle, a rectangle, a rectangle with rounded corners, or a shape obtained by slightly overlapping two circles. Micromagnetic materials having these shapes are easy to manufacture and have the advantage of easy integration.
 微小磁性体リザーバ20が備える演算ノード21,21,…,21への情報の書き込みは、入力情報セル10が行う。入力情報セル10は、微小磁性体リザーバ20が備える複数の演算ノード21,21,…,21のうち、選択した1又は複数の演算ノード21,21,…,21に対して情報の書き込みを行う。入力情報セルが書き込むべき情報は、例えば0又は1のバイナリの値により記述される。入力情報セル10は、選択した演算ノード21に「0」を書き込む場合、当該演算ノード21を構成する微小磁性体の磁化方向を例えば前述の第1方向に制御し、「1」を書き込む場合、微小磁性体の磁化方向を第1方向とは180度反転した第2方向に制御する。 The input information cell 10 writes information to the operation nodes 21, 21,..., 21 included in the minute magnetic substance reservoir 20. The input information cell 10 writes information to one or more selected operation nodes 21, 21,..., 21 among the plurality of operation nodes 21, 21,. . Information to be written by the input information cell is described by binary values of 0 or 1, for example. When writing “0” to the selected computation node 21, the input information cell 10 controls the magnetization direction of the micromagnetic material constituting the computation node 21 to the first direction, for example, and writes “1”. The magnetization direction of the minute magnetic material is controlled to a second direction that is 180 degrees reversed from the first direction.
 微小磁性体における磁化方向の制御手法には、例えば、磁気抵抗効果型固体磁気メモリ(MRAM : Magnetic Random Access Memory)で利用される手法を用いることができる。MRAMで利用される磁化方向の制御手法として、古典的な電流磁場を用いる手法やスピン注入磁化反転を用いる手法が知られている。前者では、目的の微小磁性体の極近傍に配置した配線に電流を流すことにより磁場を発生させ、発生させた磁場により磁化方向を制御することができる。後者では、偏極スピン電流の供給(スピン注入)によって磁化反転を行い、目的の微小磁性体の磁化方向を制御することができる。ただし、前者では、磁性体のサイズが小さくなるほど必要な電流が大きくなるというデメリット、配線からの漏れ磁場により目的の微小磁性体に近接する他の微小磁性体に書き込みエラーが発生する可能性があるというデメリットが存在する。このため、本実施の形態では、後者のスピン注入磁化反転の手法を用いることが好ましい。 As a method for controlling the magnetization direction in a micro magnetic material, for example, a method used in a magnetoresistive effect type solid magnetic memory (MRAM: Magnetic Random Access Memory) can be used. As a method for controlling the magnetization direction used in the MRAM, a method using a classic current magnetic field or a method using spin injection magnetization reversal is known. In the former, it is possible to generate a magnetic field by flowing a current through a wiring arranged in the very vicinity of the target micromagnetic material, and to control the magnetization direction by the generated magnetic field. In the latter, magnetization reversal can be performed by supplying polarized spin current (spin injection), and the magnetization direction of the target micromagnetic material can be controlled. However, in the former, there is a demerit that the required current increases as the size of the magnetic material decreases, and a write error may occur in another micro magnetic material close to the target micro magnetic material due to a leakage magnetic field from the wiring. There are disadvantages. For this reason, in the present embodiment, it is preferable to use the latter method of spin injection magnetization reversal.
 また、古典的な電流磁場を用いる手法、スピン注入磁化反転を用いる手法に代えて、電界効果によって磁気的な応答を誘起する手法を用いてもよい。例えば、国際公開第2009/133650号には、磁性層(超薄膜強磁性層)と絶縁層(ポテンシャル障壁)とを積層した構造体に対して積層方向に電界を印加することより、磁性層の磁気異方性を変調し、磁性層の磁化方向を制御する手法が開示されている。このような手法を用いて、選択した演算ノード21を構成する微小磁性体の磁化方向を制御してもよい。 Further, instead of the classical current magnetic field method or the spin injection magnetization reversal method, a method of inducing a magnetic response by the electric field effect may be used. For example, in International Publication No. 2009/133650, an electric field is applied to a structure in which a magnetic layer (ultra-thin ferromagnetic layer) and an insulating layer (potential barrier) are stacked, so that the magnetic layer A technique for modulating the magnetic anisotropy and controlling the magnetization direction of the magnetic layer is disclosed. Such a method may be used to control the magnetization direction of the minute magnetic body constituting the selected computation node 21.
 上述した磁化制御手法により、選択された演算ノード21,21,…,21に対して情報が書き込まれた後、各演算ノード21を構成する微小磁性体の磁化方向は、周囲に配置された微小磁性体からの静磁気相互作用の影響を受け、自律的に演算結果を表す状態へ遷移する。 After the information is written to the selected computation nodes 21, 21,..., 21 by the above-described magnetization control method, the magnetization direction of the minute magnetic body constituting each computation node 21 is minute. Under the influence of magnetostatic interaction from the magnetic material, the state autonomously transits to a state representing the calculation result.
 出力情報セル40は、入力情報セル10によって情報が書き込まれた後、微小磁性体リザーバ20の磁化状態が演算結果を表す状態に遷移したタイミング(例えば、情報の書き込み後10nsecが経過したタイミング)で情報の読み出しを行う。具体的には、出力情報セル40は、重み付け演算素子30を介すことにより、微小磁性体リザーバ20の各演算ノード21,21,…,21に保持されている情報を線形結合し、線形結合によって得られる情報を読み出す。
 なお、各演算ノード21,21,…,21からの情報の読み出しには、前述した磁化方向の制御手法と同様に、MRAMで利用される手法を用いることが可能である。
In the output information cell 40, after information is written by the input information cell 10, the timing at which the magnetization state of the minute magnetic substance reservoir 20 transitions to a state representing the calculation result (for example, timing at which 10 nsec has elapsed after writing information). Read information. Specifically, the output information cell 40 linearly combines the information held in the calculation nodes 21, 21,..., 21 of the minute magnetic substance reservoir 20 through the weighting calculation element 30. Read the information obtained by.
For reading out information from each of the operation nodes 21, 21,..., 21, it is possible to use a technique used in the MRAM as in the magnetization direction control technique described above.
 重み付け演算素子30は、微小磁性体リザーバ20の各演算ノード21,21,…,21に保持されている情報を線形結合する機能と、線形結合で用いる線形重みを学習により決定する機能とを備える。重み付け演算素子30は、出力指示が外部から与えられた場合、図に示していないメモリに記憶されている線形重みを読み出し、読み出した線形重みを用いて各演算ノード21,21,…,21に保持されている情報の線形結合を行い、得られた情報を出力情報セル40へ出力する。なお、重み付け演算素子30は、半導体によるメモリ素子により重み付けを保持してもよく、磁性体中のドメインウォールの位置を利用した磁性メモリにより重み付けを保持してもよい。 The weighting calculation element 30 has a function of linearly combining information held in the calculation nodes 21, 21,..., 21 of the minute magnetic substance reservoir 20, and a function of determining a linear weight used in the linear combination by learning. . When the output instruction is given from the outside, the weighting calculation element 30 reads the linear weight stored in the memory not shown in the figure, and uses the read linear weight to each of the calculation nodes 21, 21,. The stored information is linearly combined, and the obtained information is output to the output information cell 40. The weighting calculation element 30 may hold the weight by a memory element made of semiconductor, or may hold the weight by a magnetic memory using the position of the domain wall in the magnetic body.
 一方、線形重みに対する学習指示が外部から与えられた場合、重み付け演算素子30は、入力に対して理想的な出力を示す教師情報を図に示していないメモリから読み出し、当該教師情報を再現するように線形重みを学習により決定する。重み付け演算素子30は、決定した線形重みを前述したメモリに記憶させる。重み付け演算素子30は、例えば、最小二乗法(線形回帰)を用いて、微小磁性体リザーバ20より得られる情報が示す値と教師情報が示す値との間の残差二乗和が最小となるように線形重みを決定してもよい。また、微小磁性体リザーバ20が備える演算ノード21の数が多すぎる場合、過学習による問題を回避するために、Ridge回帰、Lasso回帰、又はElastic netの手法などにより線形重みを正則化してもよい。更に、再帰的最小二乗法やいわゆるFORCE学習法などを用いて、学習過程をバッジ処理ではなく、リアルタイム処理で行うことも可能である。 On the other hand, when a learning instruction for linear weight is given from the outside, the weighting calculation element 30 reads teacher information indicating an ideal output with respect to the input from a memory not shown in the figure, and reproduces the teacher information. The linear weight is determined by learning. The weighting calculation element 30 stores the determined linear weight in the memory described above. The weighting calculation element 30 uses, for example, a least square method (linear regression) so that the residual sum of squares between the value indicated by the information obtained from the minute magnetic substance reservoir 20 and the value indicated by the teacher information is minimized. Linear weights may be determined. Further, when the number of operation nodes 21 included in the minute magnetic substance reservoir 20 is too large, linear weights may be regularized by Ridge regression, Lasso regression, Elastic net method, or the like in order to avoid problems due to overlearning. . Furthermore, it is possible to perform the learning process by real-time processing instead of badge processing by using a recursive least square method or a so-called FORCE learning method.
 なお、本実施の形態では、入力情報セル10から微小磁性体リザーバ20へ情報を書き込む構成としたが、入力情報セル10に複数の入力ノード11,11,…,11を設け、入力ノード11,11,…,11を通じて演算ノード21,21,…,21に情報を書き込む構成としてもよい。また、出力情報セル40に複数の出力ノード41,41,…,41を設け、出力ノード41,41,…,41のそれぞれを用いて、微小磁性体リザーバ20から情報を読み出す構成としてもよい。 In the present embodiment, information is written from the input information cell 10 to the minute magnetic material reservoir 20, but a plurality of input nodes 11, 11,..., 11 are provided in the input information cell 10, and the input nodes 11, .., 11 may be used to write information to the operation nodes 21, 21,. In addition, a plurality of output nodes 41, 41,..., 41 may be provided in the output information cell 40, and information may be read from the minute magnetic substance reservoir 20 using each of the output nodes 41, 41,.
 以下、本実施の形態に係る情報処理装置の動作について説明する。
 図3は本実施の形態に係る情報処理装置が実行する処理の手順を示すフローチャートである。情報処理装置の入力情報セル10は、演算対象の情報が入力され、演算指示が与えられた場合、情報を書き込むべき1又は複数の演算ノード21,21,…,21を選択する(ステップS101)。ここで、入力情報セル10は、全演算ノード21,21,…,21のうち、10%~90%程度の演算ノード21,21,…,21をランダムに選択すればよい。
Hereinafter, the operation of the information processing apparatus according to the present embodiment will be described.
FIG. 3 is a flowchart showing a procedure of processing executed by the information processing apparatus according to this embodiment. The input information cell 10 of the information processing apparatus selects one or a plurality of operation nodes 21, 21,..., 21 to which information is to be written when the operation target information is input and an operation instruction is given (step S101). . Here, the input information cell 10 may select at least 10% to 90% of the operation nodes 21, 21,..., 21 out of all the operation nodes 21, 21,.
 例えば、図1に示す演算ノード21のうち、特定の行(又は列)に並ぶ演算ノード21,21,…,21のみを選択して情報を書き込んだ場合、これらの演算ノード21,21,…,21の近傍だけで磁化方向が安定化する可能性がある。この場合、書き込んだ情報が他の演算ノード21,21,…,21に伝搬しないので、リザーバとして機能させることができない。よって、ステップS101で選択する演算ノード21,21,…,21はランダムであることが好ましい。ただし、エネルギー的に高い状態となるように周期的に情報を入力できるのであれば、必ずしもランダムに演算ノード21,21,…,21を選択する必要はなく、周期性を持たせて演算ノード21,21,…,21を選択してもよい。 For example, when only the computation nodes 21, 21,..., 21 arranged in a specific row (or column) are selected from the computation nodes 21 shown in FIG. 1 and information is written, these computation nodes 21, 21,. , 21 may stabilize the magnetization direction. In this case, the written information does not propagate to the other computation nodes 21, 21,..., 21 and cannot function as a reservoir. Therefore, it is preferable that the operation nodes 21, 21,..., 21 selected in step S101 are random. However, it is not always necessary to randomly select the operation nodes 21, 21,..., 21 as long as information can be periodically input so as to be in a high energy state, and the operation node 21 is given periodicity. , 21,..., 21 may be selected.
 次いで、入力情報セル10は、ステップS101で選択した1又は複数の演算ノード21,21,…,21に対して情報を書き込む(ステップS102)。入力情報セル10は、各演算ノード21を構成する微小磁性体の磁化方向を制御することにより、情報の書き込みを行う。磁化方向の制御には、古典的な電流磁場を用いる手法、スピン注入磁化反転を用いる手法、電界効果により磁気的な応答を誘起する手法等を用いることができる。 Next, the input information cell 10 writes information to one or a plurality of operation nodes 21, 21,..., 21 selected in step S101 (step S102). The input information cell 10 writes information by controlling the magnetization direction of the minute magnetic body constituting each operation node 21. For controlling the magnetization direction, a method using a classic current magnetic field, a method using spin injection magnetization reversal, a method of inducing a magnetic response by the electric field effect, or the like can be used.
 次いで、微小磁性体リザーバ20の磁化状態を演算結果を表す状態に遷移させる(ステップS103)。演算ノード21を構成する微小磁性体の磁化方向は、当該演算ノード21の周囲に配置された微小磁性体からの静磁気相互作用の影響を受けて、自律的に演算結果を表す状態へ遷移する。情報処理装置が実行する処理としては、微小磁性体リザーバ20の磁化方向が演算結果を表す状態へ遷移するのに要する時間(例えば10nsec)だけ待機する処理を行う。 Next, the magnetization state of the minute magnetic substance reservoir 20 is changed to a state representing the calculation result (step S103). The magnetization direction of the micro magnetic material constituting the calculation node 21 is affected by the magnetostatic interaction from the micro magnetic material arranged around the calculation node 21 and autonomously transits to a state representing the calculation result. . As a process executed by the information processing apparatus, a process of waiting for a time (for example, 10 nsec) required for the magnetization direction of the minute magnetic substance reservoir 20 to transition to a state representing a calculation result is performed.
 次いで、出力情報セル40は、微小磁性体リザーバ20に保持されている情報を制御出力する(ステップS104)。具体的には、出力情報セル40は、重み付け演算素子30を介すことにより、各演算ノード21,21,…,21に保持されている情報を線形結合し、線形結合によって得られる情報を出力情報として読み出す。更に入力情報が存在する場合、情報処理装置は、出力情報を読み出した後、ステップS102へ処理を戻して演算を継続する。 Next, the output information cell 40 controls and outputs the information held in the minute magnetic substance reservoir 20 (step S104). Specifically, the output information cell 40 linearly combines the information held in each of the operation nodes 21, 21,... 21 via the weighted operation element 30 and outputs information obtained by the linear combination. Read as information. If there is further input information, the information processing apparatus reads the output information, returns the process to step S102, and continues the calculation.
 なお、図3のフローチャートではシーケンシャルな手順を示したが、ステップS101からS104のセットを複数用意し、これらのセットを非同期に実行してもよい。 In addition, although the sequential procedure was shown in the flowchart of FIG. 3, a plurality of sets of steps S101 to S104 may be prepared and these sets may be executed asynchronously.
 以下、本実施の形態に係る情報処理装置の性能評価について開示する。
 図4は性能評価で用いた微小磁性体リザーバ20の構成を示す模式図である。図4に示す微小磁性体リザーバ20は、16×16個の正方格子(ユニットセル200)を有し、各正方格子の頂点に第1の微小磁性体201、各正方格子の中心に第2の微小磁性体202を配置した構成を有している。すなわち、図4の例では、1つのユニットセル200内に2つの微小磁性体201,202が配置され、全体として、16×16×2個の演算ノード21を有する微小磁性体リザーバ20が構築されている。この例では、第1の微小磁性体201間に働く静磁気相互作用、第1の微小磁性体201と第2の微小磁性体202との間に働く静磁気相互作用、第2の微小磁性体202間に働く静磁気相互作用が演算に利用される。
Hereinafter, performance evaluation of the information processing apparatus according to the present embodiment will be disclosed.
FIG. 4 is a schematic diagram showing the configuration of the minute magnetic substance reservoir 20 used in the performance evaluation. The micro magnetic material reservoir 20 shown in FIG. 4 has 16 × 16 square lattices (unit cells 200), the first micro magnetic material 201 at the apex of each square lattice, and the second at the center of each square lattice. The micro magnetic body 202 is arranged. That is, in the example of FIG. 4, two micro magnetic bodies 201 and 202 are arranged in one unit cell 200, and a micro magnetic reservoir 20 having 16 × 16 × 2 operation nodes 21 is constructed as a whole. ing. In this example, the magnetostatic interaction that works between the first micromagnetic body 201, the magnetostatic interaction that works between the first micromagnetic body 201 and the second micromagnetic body 202, and the second micromagnetic body. The magnetostatic interaction acting between 202 is used for computation.
 図4に示す例において、16ビットの情報を書き込む場合、16×16×2個の演算ノード21のうち、例えば16個の演算ノード21(全ノードのうち3.125%の演算ノード21)をランダムに選択して情報を書き込めばよい。 In the example shown in FIG. 4, when writing 16-bit information, out of 16 × 16 × 2 operation nodes 21, for example, 16 operation nodes 21 (3.125% of all operation nodes 21). Information can be written by selecting at random.
 本実施の形態では、図4に示す微小磁性体リザーバ20において、全ノードのうち30%の演算ノード21,21,…,21をランダムに選択し、NARMA10(Nonlinear Auto-Regressive Moving Average 10)タスクを実行することにより、性能評価を行った。なお、各演算ノード21における微小磁性体の磁化方向は、4次のRunge-Kutta法を用いて、Landau-Lifshitz方程式を解くことにより計算した。 In this embodiment, in the small magnetic material reservoir 20 shown in FIG. 4, 30% of the computation nodes 21, 21,..., 21 are selected at random, and the NARMA 10 (NonlinearonAuto-Regressive Moving Average 10) task is selected. The performance was evaluated by executing In addition, the magnetization direction of the micro magnetic material in each operation node 21 was calculated by solving the Landau-Lifshitz equation using the fourth-order Runge-Kutta method.
 発明者らによる計算結果に依れば、NARMA10タスクにおける規格化されたエラー値(NRMSE : normalized root mean square error)は、0.8以下の値を示し、本実施の形態に係る微小磁性体リザーバ20をリザーバコンピューティングに利用できることが分かった。 According to the calculation results by the inventors, the normalized error value (NRMSE: normalized root mean square error) in the NARMA10 task shows a value of 0.8 or less, and the micromagnetic material reservoir according to the present embodiment It has been found that 20 can be used for reservoir computing.
(実施の形態2)
 実施の形態2では、実施の形態1とは演算ノード21の配置が異なる微小磁性体リザーバ20の検証結果について説明する。
(Embodiment 2)
In the second embodiment, a verification result of the minute magnetic substance reservoir 20 in which the arrangement of the operation nodes 21 is different from that in the first embodiment will be described.
 図5は実施の形態2に係る微小磁性体リザーバ20の構成を示す模式図である。図5に示す微小磁性体リザーバ20は、1行目に1つの演算ノード21、2行目に2つの演算ノード21,21、…といったように、N行目(Nは1~10の整数)にN個の演算ノード21,21,…,21を配置した構成を有している。なお、各演算ノード21は、膜厚0.5nm、半径20nmの円柱状の微小磁性体により構成されており、隣り合う微小磁性体間の距離は10nmとした。また、本実施の形態では、行単位で演算ノード21のグループ分けを行い、2行目、5行目、8行目に配置された演算ノード21をグループ1、3行目、6行目、9行目に配置された演算ノード21をグループ2、1行目、4行目、7行目、10行目に配置された演算ノード21をグループ3とした。 FIG. 5 is a schematic diagram showing the configuration of the minute magnetic substance reservoir 20 according to the second embodiment. The micro magnetic material reservoir 20 shown in FIG. 5 has an Nth row (N is an integer of 1 to 10), such as one computation node 21 in the first row, two computation nodes 21, 21,. , 21 are arranged in N. Each computation node 21 is composed of a columnar minute magnetic body having a film thickness of 0.5 nm and a radius of 20 nm, and the distance between adjacent minute magnetic bodies is 10 nm. In the present embodiment, the operation nodes 21 are grouped in units of rows, and the operation nodes 21 arranged in the second row, the fifth row, and the eighth row are grouped in the groups 1, 3, 6, The operation node 21 arranged in the ninth row is group 2, and the operation node 21 arranged in the first, fourth, seventh, tenth and tenth rows is group 3.
 本実施の形態に係る情報処理装置は、入力情報セル10を通じて、1行目に配置されている演算ノード21に情報を書き込み、微小磁性体リザーバ20において情報をシフトさせるために、各演算ノード21を構成する微小磁性体の磁気異方性を変更した。なお、微小磁性体における磁気異方性には、形状磁気異方性、界面磁気異方性、結晶磁気異方性などが含まれる。情報処理装置は、例えば、磁性層(超薄膜強磁性層)と絶縁層(ポテンシャル障壁)とを積層した構造体に対して積層方向に電界を印加することより、微小磁性体の磁気異方性を変更することができる。 The information processing apparatus according to the present embodiment writes information to the operation node 21 arranged in the first row through the input information cell 10 and shifts the information in the minute magnetic material reservoir 20 to each operation node 21. The magnetic anisotropy of the micro magnetic material constituting the structure was changed. The magnetic anisotropy in the micromagnetic material includes shape magnetic anisotropy, interface magnetic anisotropy, crystal magnetic anisotropy, and the like. The information processing apparatus, for example, applies an electric field in the stacking direction to a structure in which a magnetic layer (ultra-thin ferromagnetic layer) and an insulating layer (potential barrier) are stacked, thereby magnetic anisotropy of the micromagnetic material. Can be changed.
 図6は磁気異方性の変更方法を説明するグラフである。図6に示すグラフは、横軸が時間を表し、縦軸が磁気異方性を表しており、グループ1~3の各グループに属する微小磁性体における磁気異方性の時間変化を示している。なお、グラフの煩雑さを避けるために、グループ2に属する微小磁性体の磁気異方性には+2を加算し、グループ3に属する微小磁性体の磁気異方性には+4を加算している。 FIG. 6 is a graph illustrating a method for changing the magnetic anisotropy. In the graph shown in FIG. 6, the horizontal axis represents time, and the vertical axis represents magnetic anisotropy, and shows the time change of magnetic anisotropy in the minute magnetic bodies belonging to each group 1 to 3. . In order to avoid complication of the graph, +2 is added to the magnetic anisotropy of the micromagnetic material belonging to group 2, and +4 is added to the magnetic anisotropy of the micromagnetic material belonging to group 3. .
 時間0~1のタイムステップでは、全てのグループに属する微小磁性体の磁気異方性を「1」としている。この場合、1行目に書き込まれた情報は他の演算ノード21へはシフトしない。ただし、各演算ノード21間には磁気的相互作用が働くため、磁化の状態はその影響を受け、安定化する向きが決定される。 In the time step from time 0 to 1, the magnetic anisotropy of the minute magnetic materials belonging to all groups is set to “1”. In this case, the information written in the first line is not shifted to the other operation node 21. However, since a magnetic interaction acts between the operation nodes 21, the magnetization state is affected by the influence, and the stabilization direction is determined.
 演算ノード21,21間の磁気的結合には起因しない磁気異方性を実効的に「0」に近づけることにより、その演算ノード21の磁化の向きが周囲のノードとの磁気的相互作用の影響を受け、磁気異方性を変化させる前の状態から磁化の向きが大きく変化するようにする。 By effectively bringing the magnetic anisotropy not caused by the magnetic coupling between the operation nodes 21 and 21 close to “0”, the magnetization direction of the operation node 21 is affected by the magnetic interaction with the surrounding nodes. The direction of magnetization is changed greatly from the state before the magnetic anisotropy is changed.
 続く時間1~2のタイムステップでは、グループ3に属する微小磁性体の磁気異方性を「1」とした状態にて、グループ1及びグループ2に属する微小磁性体の磁気異方性を「0」としているので、1行目に書き込まれた情報は、グループ1に属する2行目の演算ノード21及びグループ2属する3行目の演算ノード21にシフトし得る。続く時間2~7のタイムステップについても同様であり、時間3~4のタイムステップで、グループ2に属する3行目の演算ノード21が保持している情報は、グループ3に属する4行目の演算ノード21へシフトし得る。また、時間5~6のタイムステップで、グループ3に属する4行目の演算ノード21が保持している情報は、グループ1に属する5行目の演算ノード21へシフトし得る。このように、タイムステップ毎に磁気異方性を変化させることにより、1行目の演算ノード21に入力された情報を各演算ノード21へ伝搬させることが可能となる。なお、磁気異方性の変更規則は図に示していないメモリに予め記憶されているものとし、情報処理装置は、メモリに記憶されている変更規則に従って、時間に対して周期的に磁気異方性を変化させるものとする。 In the subsequent time step of time 1-2, with the magnetic anisotropy of the micromagnetic material belonging to group 3 set to “1”, the magnetic anisotropy of the micromagnetic material belonging to group 1 and group 2 is set to “0”. Therefore, the information written in the first row can be shifted to the operation node 21 in the second row belonging to the group 1 and the operation node 21 in the third row belonging to the group 2. The same applies to the subsequent time steps of time 2 to 7, and the information held by the operation node 21 in the third row belonging to group 2 in the time step of time 3 to 4 A shift to the operation node 21 can be made. In addition, information held in the operation node 21 in the fourth row belonging to the group 3 can be shifted to the operation node 21 in the fifth row belonging to the group 1 in the time step of time 5 to 6. In this way, by changing the magnetic anisotropy at each time step, it is possible to propagate the information input to the operation node 21 in the first row to each operation node 21. It is assumed that the magnetic anisotropy change rule is stored in advance in a memory not shown in the figure, and the information processing apparatus periodically performs magnetic anisotropy with respect to time according to the change rule stored in the memory. It shall change gender.
 また、時間0から時間6の状態に磁気異方性を変化させることにより、微小磁性体リザーバ20を次の情報を入力可能な状態に遷移させる。 Also, by changing the magnetic anisotropy from the time 0 to the time 6 state, the minute magnetic substance reservoir 20 is changed to a state where the next information can be input.
 実施の形態2では、時間に依存した入力信号を用いてバイナリ演算を行うことにより、微小磁性体リザーバ20の性能を評価した。バイナリ演算としては、論理積(AND)、論理和(OR)、及び排他的論理和(XOR)の3種類を用いた。図7はバイナリ演算に用いるデータを説明する説明図である。入力には0又は1のバイナリ状態を用いる。バイナリ状態の入力は、入力ノード(図5に示す1行目の演算ノード21)の磁化のZ成分の極性を+又は-に設定することで、0又は1に設定する。微小磁性体リザーバ20が学習するバイナリ演算には、図7に示すA及びBの値を用いる。すなわち、時間nstepにおいて入力された値をAとしたとき、Aからnd ステップだけ過去に入力されたデータをBとする。 In the second embodiment, the performance of the minute magnetic substance reservoir 20 is evaluated by performing a binary operation using a time-dependent input signal. As binary operations, three types of logical product (AND), logical sum (OR), and exclusive logical sum (XOR) were used. FIG. 7 is an explanatory diagram for explaining data used for binary calculation. A binary state of 0 or 1 is used for input. The binary state input is set to 0 or 1 by setting the polarity of the Z component of the magnetization of the input node (the operation node 21 in the first row shown in FIG. 5) to + or −. The values A and B shown in FIG. 7 are used for the binary calculation that the minute magnetic substance reservoir 20 learns. That is, assuming that the value input at time n step is A, the data input in the past by n d steps from A is B.
 実施の形態2では、微小磁性体リザーバ20を異なる入力に対してバイナリ演算を行うように学習した場合における、入力の遅延量に対する演算エラーレートを求めた。 In the second embodiment, the calculation error rate with respect to the input delay amount in the case where the minute magnetic substance reservoir 20 is learned to perform binary calculation with respect to different inputs is obtained.
 図8A~図8Cは時間0~1の間の磁化状態のZ成分を用いて学習した場合の各演算のエラーレートを示すグラフである。図8A~図8Cに示すグラフにおいて、横軸は入力Bに対する入力Aの遅延量を表し、縦軸は微小磁性体リザーバ20の学習に用いた飽和磁化により規格化された演算ノード21の磁化の向きの有効数字を示している。図8A~図8Cは、それぞれ論理積演算、論理和演算、及び排他的論理和演算のエラーレートを示している。論理積演算及び論理和演算では、遅延量が4未満ではエラーレートは略0となる。これに対し、排他的論理和演算では、比較的大きな有効数字で演算を学習可能であるが、それ以外ではエラーレートが概ね0.5以上となり、十分に学習できていないことを示している。 8A to 8C are graphs showing the error rate of each calculation when learning is performed using the Z component of the magnetization state between time 0 and time 1. FIG. In the graphs shown in FIGS. 8A to 8C, the horizontal axis represents the delay amount of the input A with respect to the input B, and the vertical axis represents the magnetization of the computation node 21 normalized by the saturation magnetization used for learning of the minute magnetic substance reservoir 20. Significant number of orientations. 8A to 8C show error rates of the logical product operation, the logical sum operation, and the exclusive logical sum operation, respectively. In the logical product operation and the logical sum operation, when the delay amount is less than 4, the error rate is substantially zero. On the other hand, in the exclusive OR operation, the operation can be learned with a relatively large significant number, but in other cases, the error rate is approximately 0.5 or more, indicating that the operation cannot be sufficiently performed.
 図9A~図9Cは時間1~2の間の磁化状態のX成分を用いて学習した場合の各演算のエラーレートを示すグラフである。図9A~図9Cに示すグラフにおいて、横軸は入力Bに対する入力Aの遅延量を表し、縦軸は微小磁性体リザーバ20の学習に用いた飽和磁化により規格化された演算ノード21の磁化の向きの有効数字を示している。図9A~図9Cは、それぞれ論理積演算、論理和演算、及び排他的論理和演算のエラーレートを示している。論理積演算及び論理和演算では、遅延量が4未満ではエラーレートは略0となる。また、排他的論理演算においても、遅延量が4未満ではエラーレートが低く抑えられており、時間1~2の間の磁化のX成分を用いた場合、最も少ない有効数字で演算を学習可能であることが分かった。 FIG. 9A to FIG. 9C are graphs showing the error rate of each calculation when learning is performed using the X component of the magnetization state between time 1 and time 2. In the graphs shown in FIGS. 9A to 9C, the horizontal axis represents the delay amount of the input A with respect to the input B, and the vertical axis represents the magnetization of the computation node 21 normalized by the saturation magnetization used for learning of the minute magnetic substance reservoir 20. Significant number of orientations. 9A to 9C show error rates of the logical product operation, the logical sum operation, and the exclusive logical sum operation, respectively. In the logical product operation and the logical sum operation, when the delay amount is less than 4, the error rate is substantially zero. In addition, in the exclusive logic operation, the error rate is kept low when the delay amount is less than 4, and the operation can be learned with the least significant number when the X component of the magnetization between the time 1 and 2 is used. I found out.
 図10は入力の遅延量に対するエラーレートを示すグラフである。図10のグラフは、微小磁性体リザーバ20を異なる時間の入力に対して論理積演算、論理和演算、及び排他的論理和演算の各演算を行うように学習した場合における、入力の遅延時間に対するエラーレートを示している。グラフの横軸は遅延量nd を示し、縦軸はエラーレートを示している。図10のグラフから明らかなように、論理積演算、論理和演算、及び排他的論理和演算の各演算に対し、遅延量nd が3までのデータに対してエラーレートが略0になることが確認された。 FIG. 10 is a graph showing an error rate with respect to an input delay amount. The graph of FIG. 10 shows the input delay time in the case where the minute magnetic substance reservoir 20 is learned to perform the logical product operation, the logical sum operation, and the exclusive logical sum operation with respect to the input at different times. Indicates the error rate. The horizontal axis of the graph represents the amount of delay n d, and the vertical axis represents the error rate. As is apparent from the graph of FIG. 10, the error rate is substantially zero for data with a delay amount n d up to 3 for each of the logical product operation, logical sum operation, and exclusive OR operation. Was confirmed.
 以上の結果により、微小磁性体素子をリザーバコンピュータとして用いた場合、過去の3個分の情報を用いて、論理積演算、論理和演算、排他的論理和演算が可能であることが明らかとなった。また、学習した出力用マトリックスの極性を反転すれば、否定論理積演算(NAND)、否定論理和演算(NOR)、否定排他的論理和演算(XNOR)ゲートの実現も可能である。 From the above results, it is clear that when a micro magnetic element is used as a reservoir computer, a logical product operation, a logical sum operation, and an exclusive logical sum operation can be performed using information for the past three pieces. It was. Further, by inverting the polarity of the learned output matrix, it is possible to realize a negative logical product (NAND), negative logical sum (NOR), or negative exclusive logical sum (XNOR) gate.
 なお、本実施の形態では、グループのなす列の方向に演算ノード21が1つずつ増加するような配置を用いたが、列の方向に演算ノード21を一定数だけ有する配置であってもよい。例えば、グループのなす列の方向に1つ又は2つの演算ノード21を有する配置であってもよい。 In the present embodiment, an arrangement in which the operation nodes 21 are increased by one in the direction of the column formed by the group is used. However, an arrangement having a certain number of operation nodes 21 in the column direction may be used. . For example, an arrangement having one or two operation nodes 21 in the direction of a column formed by a group may be used.
 また、本実施の形態では、演算ノード21のグループを10行分配置した構成を示したが、行数は10行に限定されるものではない。例えば、行数を増加させることによって、演算可能な遅延量を増加させることが可能となる。 In the present embodiment, the configuration in which the groups of the operation nodes 21 are arranged for 10 rows is shown, but the number of rows is not limited to 10 rows. For example, it is possible to increase the amount of delay that can be calculated by increasing the number of rows.
(実施の形態3)
 実施の形態3では、各行に2個の演算ノード21,21を配置した微小磁性体リザーバ20の検証結果について説明する。
(Embodiment 3)
In the third embodiment, a verification result of the minute magnetic substance reservoir 20 in which two operation nodes 21 and 21 are arranged in each row will be described.
 図11は実施の形態3に係る微小磁性体リザーバ20の構成を示す模式図である。図11に示す微小磁性体リザーバ20は、1行目~N行目(図11に示す例ではN=10)の各行に2個の演算ノード21,21を配置した構成を有している。なお、各演算ノード21は、膜厚0.5nm、半径20nmの円柱状の微小磁性体により構成されており、隣り合う微小磁性体間の距離は10nmとした。また、本実施の形態では、行単位で演算ノード21のグループ分けを行い、2行目、5行目、8行目に配置された演算ノード21をグループ1、3行目、6行目、9行目に配置された演算ノード21をグループ2、1行目、4行目、7行目、10行目に配置された演算ノード21をグループ3とした。 FIG. 11 is a schematic diagram showing a configuration of the minute magnetic substance reservoir 20 according to the third embodiment. The minute magnetic substance reservoir 20 shown in FIG. 11 has a configuration in which two operation nodes 21 and 21 are arranged in each of the first to Nth rows (N = 10 in the example shown in FIG. 11). Each computation node 21 is composed of a columnar minute magnetic body having a film thickness of 0.5 nm and a radius of 20 nm, and the distance between adjacent minute magnetic bodies is 10 nm. In the present embodiment, the operation nodes 21 are grouped in units of rows, and the operation nodes 21 arranged in the second row, the fifth row, and the eighth row are grouped in the groups 1, 3, 6, The operation node 21 arranged in the ninth row is group 2, and the operation node 21 arranged in the first, fourth, seventh, tenth and tenth rows is group 3.
 本実施の形態に係る情報処理装置は、入力情報セル10を通じて、1行目に配置されている一方の演算ノード21に情報を書き込み、微小磁性体リザーバ20において情報をシフトさせるために、各演算ノード21を構成する微小磁性体の磁気異方性を変更した。なお、微小磁性体における磁気異方性には、形状磁気異方性、界面磁気異方性、結晶磁気異方性などが含まれる。情報処理装置は、例えば、磁性層(超薄膜強磁性層)と絶縁層(ポテンシャル障壁)とを積層した構造体に対して積層方向に電界を印加することより、微小磁性体の磁気異方性を変更することができる。 The information processing apparatus according to the present embodiment writes information to one of the operation nodes 21 arranged in the first row through the input information cell 10 and shifts the information in the minute magnetic material reservoir 20 with each operation. The magnetic anisotropy of the minute magnetic body constituting the node 21 was changed. The magnetic anisotropy in the micromagnetic material includes shape magnetic anisotropy, interface magnetic anisotropy, crystal magnetic anisotropy, and the like. The information processing apparatus, for example, applies an electric field in the stacking direction to a structure in which a magnetic layer (ultra-thin ferromagnetic layer) and an insulating layer (potential barrier) are stacked, thereby magnetic anisotropy of the micromagnetic material. Can be changed.
 図12は磁気異方性の変更方法を説明する説明図である。図12において、黒丸は微小磁性体の磁気異方性を「1」に調整した状態(Ku ≠0の状態)、白丸は微小磁性体の磁気異方性を「0」に調整した状態(Ku =0の状態)を表している。磁気異方性の調整は、例えば微小磁性体に対して電圧を印加することにより実施される。白丸で示す微小磁性体は、本実施の形態では磁気異方性を「0」に調整した状態を示しているが、磁気異方性は完全にゼロである必要はなく、ゼロに近い値(Ku≒0)であってもよい。 FIG. 12 is an explanatory diagram for explaining a method of changing the magnetic anisotropy. In FIG. 12, a black circle indicates a state in which the magnetic anisotropy of the minute magnetic material is adjusted to “1” (a state where K u ≠ 0), and a white circle indicates a state in which the magnetic anisotropy of the minute magnetic material is adjusted to “0” ( K u = 0 state). The magnetic anisotropy is adjusted, for example, by applying a voltage to the minute magnetic material. The minute magnetic body indicated by a white circle shows a state in which the magnetic anisotropy is adjusted to “0” in the present embodiment, but the magnetic anisotropy does not have to be completely zero, and has a value close to zero ( Ku≈0).
 Stage0で表されるタイムステップでは、全てのグループに属する微小磁性体の磁気異方性を「1」としている。この場合、演算ノード21に書き込まれた情報は他の演算ノード21へはシフトしない。ただし、各演算ノード21間には磁気的相互作用が働くため、磁化の状態はその影響を受け、安定化する向きが決定される。 In the time step represented by Stage 0, the magnetic anisotropy of the minute magnetic materials belonging to all groups is set to “1”. In this case, the information written in the operation node 21 is not shifted to another operation node 21. However, since a magnetic interaction acts between the operation nodes 21, the magnetization state is affected by the influence, and the stabilization direction is determined.
 続くStage1で表されるタイムステップでは、グループ3に属する微小磁性体の磁気異方性を「1」とした状態にて、グループ1及びグループ2に属する微小磁性体の磁気異方性を「0」としているので、1行目に書き込まれた情報は、グループ1に属する2行目の演算ノード21及びグループ2属する3行目の演算ノード21にシフトし得る。続くStage2~6で表されるタイムステップについても同様であり、Stage4のタイムステップで、グループ2に属する3行目の演算ノード21が保持している情報は、グループ3に属する4行目の演算ノード21へシフトし得る。また、Stage5のタイムステップで、グループ3に属する4行目の演算ノード21が保持している情報は、グループ1に属する5行目の演算ノード21へシフトし得る。このように、タイムステップ毎に磁気異方性を変化させることにより、1行目の演算ノード21に入力された情報を各演算ノード21へ伝搬させることが可能となる。なお、磁気異方性の変更規則は図に示していないメモリに予め記憶されているものとし、情報処理装置は、メモリに記憶されている変更規則に従って、時間に対して周期的に磁気異方性を変化させるものとする。 In the subsequent time step represented by Stage 1, the magnetic anisotropy of the micromagnetic materials belonging to Group 1 and Group 2 is set to “0” in a state where the magnetic anisotropy of the micromagnetic materials belonging to Group 3 is set to “1”. Therefore, the information written in the first row can be shifted to the operation node 21 in the second row belonging to the group 1 and the operation node 21 in the third row belonging to the group 2. The same applies to the time steps represented by subsequent Stages 2 to 6, and the information held by the operation node 21 in the third row belonging to Group 2 in the time step in Stage 4 is the operation in the fourth row belonging to Group 3. Shift to node 21. In addition, in the time step of Stage 5, the information held by the computation node 21 in the fourth row belonging to the group 3 can be shifted to the computation node 21 in the fifth row belonging to the group 1. In this way, by changing the magnetic anisotropy at each time step, it is possible to propagate the information input to the operation node 21 in the first row to each operation node 21. It is assumed that the magnetic anisotropy change rule is stored in advance in a memory not shown in the figure, and the information processing apparatus periodically performs magnetic anisotropy with respect to time according to the change rule stored in the memory. It shall change gender.
 また、Stage0からStage6の状態に磁気異方性を変化させることにより、微小磁性体リザーバ20を次の情報が入力可能な状態に遷移させる。 Further, by changing the magnetic anisotropy from the Stage 0 to the Stage 6 state, the minute magnetic substance reservoir 20 is changed to a state where the next information can be input.
 実施の形態3では、時間に依存した入力信号を用いてバイナリ演算を行うことにより、微小磁性体リザーバ20の性能を評価した。具体的には、現在の入力uk と、nd 個前の入力uk-ndとに対する排他的論理和XOR(uk ,uk-nd)を教師関数としてトレーニングし、トレーニング時とは異なる入力を用いた場合における教師データの再現性を確認することによって、微小磁性体リザーバ20の性能を評価した。 In the third embodiment, the performance of the minute magnetic material reservoir 20 is evaluated by performing a binary operation using a time-dependent input signal. Specifically, the exclusive OR XOR (u k , u k-nd ) for the current input u k and the n d previous input u k-nd is trained as a teacher function, which is different from the training time. The performance of the minute magnetic substance reservoir 20 was evaluated by confirming the reproducibility of the teacher data when using the input.
 微小磁性体リザーバ20のトレーニングにおいて、各タイムステップにおけるリザーバの状態Mk から教師データyk (=XOR(uk ,uk-nd))に最も近い出力ok を得る重み付け行列Wを最小二乗法を用いて算出した。本実施の形態では、742タイプステップ分のトレーニングデータを用いた。 In the training of the minute magnetic reservoir 20, the teacher data y k (= XOR (u k , u k-nd)) minimize obtain closest output o k to the weighting matrix W two to state M k of the reservoir at each time step Calculated using multiplication. In this embodiment, training data for 742 type steps is used.
 トレーニング時とは異なる入力を使用し、トレーニング済みの重み付け行列Wにより得られる出力をバイナリ化して教師データと比較した。本実施の形態では、247タイムステップ分のテスト用データを用いた。 ∙ Using the input different from that at the time of training, the output obtained by the weighted matrix W that has been trained was binarized and compared with the teacher data. In the present embodiment, test data for 247 time steps is used.
 図13A及び図13Bは教師データとの比較結果を示す図である。図13Aは、事前トレーニングにより得られる重み付け行列Wを使用し、トレーニング時とは異なる新たなデータを入力した場合の微小磁性体リザーバ20の応答から得られる出力データを示している。縦軸は「0」又は「1」の状態を表し、横軸は時間(ステップ)を表している。なお、この例では、現在の入力uk と、2個前(すなわちnd =2)の入力uk-2とに対する排他的論理和XOR(uk ,uk-2)を教師関数としてトレーニングした結果を示している。図13Aに示す出力結果は、図13Bに示す教師データに完全に一致していることが分かる。 13A and 13B are diagrams showing comparison results with teacher data. FIG. 13A shows the output data obtained from the response of the micromagnetic material reservoir 20 when new data different from the time of training is input using the weighting matrix W obtained by the pre-training. The vertical axis represents the state of “0” or “1”, and the horizontal axis represents time (step). In this example, an exclusive OR XOR (u k , u k-2 ) for the current input u k and the previous input u k-2 (ie, n d = 2) is trained as a teacher function. Shows the results. It can be seen that the output result shown in FIG. 13A completely matches the teacher data shown in FIG. 13B.
 図14は磁化状態のX成分を用いて学習した場合の排他的論路演算におけるエラーレートを示すグラフである。図14に示すグラフにおいて、横軸は遅延量nd を表し、縦軸は微小磁性体リザーバ20の学習に用いた飽和磁化により規格化された演算ノード21の磁化の向きの有効数字を示している。図14に示すグラフからは、有効数字3桁以上で遅延3までのXOR関数として動作していることが分かる。 FIG. 14 is a graph showing an error rate in the exclusive logical operation when learning is performed using the X component of the magnetization state. In the graph shown in FIG. 14, the horizontal axis represents the delay amount n d , and the vertical axis represents the effective number of the magnetization direction of the operation node 21 normalized by the saturation magnetization used for learning of the minute magnetic substance reservoir 20. Yes. From the graph shown in FIG. 14, it can be seen that the circuit operates as an XOR function with three or more significant digits and a delay of three.
 以上のように、本実施の形態では、微小磁性体素子をリザーバコンピュータとして用いた場合、過去の3個分の情報を用いて、排他的論理和演算が可能であることが明らかとなった。また、学習した出力用マトリックスの極性を反転すれば、否定排他的論理和演算(XNOR)ゲートの実現も可能である。 As described above, in the present embodiment, when a micro magnetic element is used as a reservoir computer, it has become clear that an exclusive OR operation can be performed using information for the past three. Further, a negative exclusive OR (XNOR) gate can be realized by reversing the polarity of the learned output matrix.
 なお、本実施の形態では、演算ノード21のグループを10行分配置した構成を示したが、行数は10行に限定されるものではない。例えば、行数を増加させることによって、演算可能な遅延量を増加させることが可能となる。 In the present embodiment, the configuration in which the groups of the operation nodes 21 are arranged for 10 rows is shown, but the number of rows is not limited to 10 rows. For example, it is possible to increase the amount of delay that can be calculated by increasing the number of rows.
(実施の形態4)
 実施の形態4では、各行に1個の演算ノード21を配置した微小磁性体リザーバ20の構成について説明する。
(Embodiment 4)
In the fourth embodiment, the configuration of the minute magnetic substance reservoir 20 in which one operation node 21 is arranged in each row will be described.
 図15は実施の形態4に係る微小磁性体リザーバ20の構成を示す模式図である。図15に示す微小磁性体リザーバ20は、1行目~N行目(図15に示す例ではN=10)の各行に1個の演算ノード21を配置した構成を有している。なお、各演算ノード21は、膜厚0.5nm、半径20nmの円柱状の微小磁性体により構成されており、隣り合う微小磁性体間の距離は10nmとした。また、本実施の形態では、行単位で演算ノード21のグループ分けを行い、2行目、5行目、8行目に配置された演算ノード21をグループ1、3行目、6行目、9行目に配置された演算ノード21をグループ2、1行目、4行目、7行目、10行目に配置された演算ノード21をグループ3とした。 FIG. 15 is a schematic diagram showing the configuration of the minute magnetic substance reservoir 20 according to the fourth embodiment. The micro magnetic material reservoir 20 shown in FIG. 15 has a configuration in which one operation node 21 is arranged in each of the first to Nth rows (N = 10 in the example shown in FIG. 15). Each computation node 21 is composed of a columnar minute magnetic body having a film thickness of 0.5 nm and a radius of 20 nm, and the distance between adjacent minute magnetic bodies is 10 nm. In the present embodiment, the operation nodes 21 are grouped in units of rows, and the operation nodes 21 arranged in the second row, the fifth row, and the eighth row are grouped in the groups 1, 3, 6, The operation node 21 arranged in the ninth row is group 2, and the operation node 21 arranged in the first, fourth, seventh, tenth and tenth rows is group 3.
 発明者らの検討に依れば、図15に示すように各行に1個の演算ノード21を配置した微小磁性体リザーバ20であっても、排他的論理和等の演算ゲートとして機能させることができることが分かった。 According to the study by the inventors, even the minute magnetic substance reservoir 20 in which one operation node 21 is arranged in each row as shown in FIG. 15 can function as an operation gate for exclusive OR or the like. I understood that I could do it.
(実施の形態5)
 実施の形態1~4では、演算ノード21を格子状に配置した微小磁性体リザーバ20の構成について説明したが、演算ノード21は必ずしも周期的に配置される必要はなく、同一平面内若しくは空間内にランダムに配置されてもよい。
 実施の形態5では、演算ノード21をランダムに配置した微小磁性体リザーバ20の構成について説明する。
(Embodiment 5)
In the first to fourth embodiments, the configuration of the minute magnetic substance reservoir 20 in which the calculation nodes 21 are arranged in a lattice shape has been described. However, the calculation nodes 21 do not necessarily need to be periodically arranged, and may be within the same plane or space. May be arranged randomly.
In the fifth embodiment, the configuration of the minute magnetic substance reservoir 20 in which the operation nodes 21 are randomly arranged will be described.
 図16は実施の形態5に係る微小磁性体リザーバ20の模式的平面図、図17はその模式的断面図である。図16に示す微小磁性体リザーバ20は、複数の演算ノード21,21,…,21が配置される第1層20Aと、情報を入力するためのノード22が配置される第2層20Bとを有する。第2層20Bは、例えば第1層20Aの上側に隣接して配置される。各ノード21,22を構成する微小磁性体は、Ni-Fe系合金、Ni-Fe-Co系合金、Co-Fe系合金などの合金により形成される。各ノード21,22を構成する微小磁性体は、例えば楕円柱形状をなしているが、これに限定されるものではない。例えば、各ノード21,22を構成する微小磁性体は、厚み方向と直交する断面の形状が円形、長方形、角が丸められた長方形、2つの円を僅かに重ねた形状であってもよく、回転楕円体などの形状であってもよい。 FIG. 16 is a schematic plan view of the minute magnetic substance reservoir 20 according to the fifth embodiment, and FIG. 17 is a schematic sectional view thereof. 16 includes a first layer 20A in which a plurality of operation nodes 21, 21,..., 21 are arranged, and a second layer 20B in which a node 22 for inputting information is arranged. Have. The second layer 20B is disposed adjacent to the upper side of the first layer 20A, for example. The micro magnetic material constituting each of the nodes 21 and 22 is formed of an alloy such as a Ni—Fe alloy, a Ni—Fe—Co alloy, or a Co—Fe alloy. Although the minute magnetic body which comprises each node 21 and 22 has comprised the elliptical column shape, for example, it is not limited to this. For example, the minute magnetic body constituting each of the nodes 21 and 22 may have a cross-sectional shape that is orthogonal to the thickness direction, a circular shape, a rectangular shape, a rectangular shape with rounded corners, or a slightly overlapping shape of two circles. It may be a shape such as a spheroid.
 第1層20Aは例えば6×5個のユニットセルを有する。各ユニットセルには、1又は複数個の演算ノード21,21,…,21がランダムに配置される。演算ノード21の個数及び配置は、ユニット間で相違してもよく、同一であってもよい。 The first layer 20A has, for example, 6 × 5 unit cells. .., 21 are randomly arranged in each unit cell. The number and arrangement of the operation nodes 21 may be different between units or may be the same.
 第2層20Bには、1又は複数のノード22,22,…,22が形成される。ノード22は、平面視において演算ノード21,21,…,21の1つと重なるように形成されてもよく、重ならないように形成されてもよい。 1 or a plurality of nodes 22, 22, ..., 22 are formed in the second layer 20B. The node 22 may be formed so as to overlap with one of the operation nodes 21, 21,... 21 in a plan view, or may be formed so as not to overlap.
 第2層20Bのノード22に書き込まれた情報は、実施の形態1~実施の形態5と同様に、磁気的相互作用の影響を受けて、第1層20Aの演算ノード21に伝搬する。また、演算ノード21,21,…,21を構成する各微小磁性体の磁化方向は、周囲に配置された微小磁性体からの静磁気相互作用の影響を受けて、自律的に演算結果を表す状態へ遷移する。 The information written in the node 22 of the second layer 20B is propagated to the operation node 21 of the first layer 20A under the influence of the magnetic interaction as in the first to fifth embodiments. In addition, the magnetization direction of each micro magnetic material constituting the operation nodes 21, 21,... Transition to the state.
 以上のように、実施の形態5では、演算ノード21を含む層と、情報が書き込まれるべきノード22を含む層とを個別に製造することができるので、製造容易性を高めることができる。 As described above, in the fifth embodiment, since the layer including the operation node 21 and the layer including the node 22 to which information is to be written can be manufactured individually, the ease of manufacturing can be improved.
 以上のように、本実施の形態に係る情報処理装置では、磁性体がもつ物理的性質を直接的に演算に用いているので、電気信号又は光を用いた従来のリザーバ素子と比較し、小型化及び低消費電力化を実現することができる。本実施の形態に係る情報処理装置の適応分野の1つは、近年急速に需要が高まっている機械学習分野である。そのため、その応用分野は多岐にわたる。一例として、モバイルデバイスにおけるスタンドアロンな機械学習が可能となるため、この一例だけに注目しても技術的及び経済的な効果は大きい。 As described above, in the information processing apparatus according to the present embodiment, since the physical properties of the magnetic material are directly used for calculation, the size is smaller than that of a conventional reservoir element using an electric signal or light. And low power consumption can be realized. One of the application fields of the information processing apparatus according to the present embodiment is the machine learning field in which demand is rapidly increasing in recent years. Therefore, its application fields are diverse. As an example, since stand-alone machine learning in a mobile device is possible, even if attention is paid only to this example, the technical and economic effects are great.
 今回開示された実施の形態は、全ての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 10 入力情報セル(ノード選択部、情報書込部)
 20 微小磁性体リザーバ
 21 演算ノード
 30 重み付け演算素子(学習部)
 40 出力情報セル(情報読出部)
10 Input information cells (node selection unit, information writing unit)
20 Micro Magnetic Reservoir 21 Operation Node 30 Weighting Operation Element (Learning Unit)
40 Output information cell (information reading unit)

Claims (10)

  1.  夫々が磁性体により構成された複数のノードを含み、各ノードが少なくとも1つの他のノードに磁気的に結合されている磁性体リザーバと、
     該磁性体リザーバに含まれる複数のノードから、情報を書き込むべき1又は複数のノードを選択するノード選択部と、
     選択した1又は複数のノードに情報を書き込む情報書込部と、
     前記情報を書き込んだ後に、前記磁性体リザーバに含まれる各ノードの線形結合によって得られる情報を読み出す情報読出部と
     を備える情報処理装置。
    A magnetic reservoir, each including a plurality of nodes made of magnetic material, each node being magnetically coupled to at least one other node;
    A node selection unit for selecting one or more nodes to which information is to be written from a plurality of nodes included in the magnetic substance reservoir;
    An information writing unit for writing information to one or more selected nodes;
    An information processing apparatus comprising: an information reading unit that reads information obtained by linear combination of each node included in the magnetic substance reservoir after writing the information.
  2.  前記ノード選択部は、前記磁性体リザーバに含まれる複数のノードから、2つ以上のノードをランダムに選択する
     請求項1に記載の情報処理装置。
    The information processing apparatus according to claim 1, wherein the node selection unit randomly selects two or more nodes from a plurality of nodes included in the magnetic substance reservoir.
  3.  前記1又は複数のノードに書き込んだ情報に対して理想的な出力を示す教師情報を再現するように、前記線形結合における線形重みを学習する学習部
     を備える請求項1又は請求項2に記載の情報処理装置。
    The learning unit according to claim 1 or 2, further comprising: a learning unit that learns linear weights in the linear combination so as to reproduce teacher information indicating an ideal output with respect to information written in the one or more nodes. Information processing device.
  4.  前記磁性体は、1つの磁化容易軸を有しており、
     前記情報書込部は、前記ノード選択部により選択されたノードを構成する磁性体の磁化方向を制御することにより、情報の書き込みを行う
     請求項1から請求項3の何れか1つに記載の情報処理装置。
    The magnetic body has one easy magnetization axis,
    4. The information writing unit according to claim 1, wherein the information writing unit writes information by controlling a magnetization direction of a magnetic material that constitutes a node selected by the node selection unit. 5. Information processing device.
  5.  前記情報を書き込んだ後、各ノードを構成する磁性体の磁化方向は、前記磁性体リザーバに含まれる他のノードを構成する磁性体の磁化方向に応じて自律的に定まる
     請求項4に記載の情報処理装置。
    5. The magnetization direction of the magnetic material constituting each node is autonomously determined according to the magnetization direction of the magnetic material constituting another node included in the magnetic material reservoir after the information is written. Information processing device.
  6.  前記ノードは、矩形格子、三角格子、六角格子、又は菱形格子の格子点上に配置されている
     請求項1から請求項4の何れか1つに記載の情報処理装置。
    The information processing apparatus according to any one of claims 1 to 4, wherein the node is arranged on a lattice point of a rectangular lattice, a triangular lattice, a hexagonal lattice, or a rhombus lattice.
  7.  前記ノードは、非周期的に配置されている
     請求項1から請求項4の何れか1つに記載の情報処理装置。
    The information processing apparatus according to any one of claims 1 to 4, wherein the nodes are arranged aperiodically.
  8.  前記磁性体リザーバは、情報を書き込むべきノードを含む第1層と、前記ノードに書き込まれた情報に応じて、磁化方向が自律的に定まる磁性体により構成された複数のノードを含む第2層とを備える
     請求項1から請求項7の何れか1つに記載の情報処理装置。
    The magnetic reservoir includes a first layer including a node to which information is to be written, and a second layer including a plurality of nodes configured by a magnetic material whose magnetization direction is autonomously determined according to information written to the node. The information processing apparatus according to any one of claims 1 to 7.
  9.  各ノードの磁気異方性を、設定された規則に従って、時間に対して周期的に変化させる
     請求項1から請求項8の何れか1つに記載の情報処理装置。
    The information processing apparatus according to claim 1, wherein the magnetic anisotropy of each node is periodically changed with respect to time according to a set rule.
  10.  夫々が磁性体により構成された複数のノードを含み、各ノードが少なくとも1つの他のノードに磁気的に結合されている磁性体リザーバに対して、情報を書き込むべき1又は複数のノードを選択し、
     選択した1又は複数のノードに情報を書き込み、
     前記情報を書き込んだ後に、前記磁性体リザーバに含まれる各ノードの線形結合によって得られる情報を読み出す
     情報処理方法。
    Select one or more nodes to which information is to be written for a magnetic reservoir, each containing a plurality of nodes made of magnetic material, each node being magnetically coupled to at least one other node ,
    Write information to one or more selected nodes,
    An information processing method of reading information obtained by linear combination of each node included in the magnetic substance reservoir after writing the information.
PCT/JP2018/018809 2017-05-15 2018-05-15 Information processing device and information processing method WO2018212201A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019518815A JP7108987B2 (en) 2017-05-15 2018-05-15 Information processing device and information processing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-096692 2017-05-15
JP2017096692 2017-05-15
JP2018-010013 2018-01-24
JP2018010013 2018-01-24

Publications (1)

Publication Number Publication Date
WO2018212201A1 true WO2018212201A1 (en) 2018-11-22

Family

ID=64274444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018809 WO2018212201A1 (en) 2017-05-15 2018-05-15 Information processing device and information processing method

Country Status (2)

Country Link
JP (1) JP7108987B2 (en)
WO (1) WO2018212201A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151254A1 (en) * 2018-01-31 2019-08-08 国立大学法人東京大学 Information processing device
JP2020042845A (en) * 2019-11-25 2020-03-19 Tdk株式会社 Operation method of reservoir element
WO2020105139A1 (en) * 2018-11-21 2020-05-28 Tdk株式会社 Reservoir element and neuromorphic element
WO2020105136A1 (en) * 2018-11-21 2020-05-28 Tdk株式会社 Reservoir element and neuromorphic element
WO2020208674A1 (en) * 2019-04-08 2020-10-15 Tdk株式会社 Magnetic element, magnetic memory, reservoir element, recognizer and method for manufacturing magnetic element
WO2021205581A1 (en) 2020-04-08 2021-10-14 富士通株式会社 Information processing system, information processing device, information processing method, and information processing program
WO2022163782A1 (en) * 2021-01-29 2022-08-04 国立研究開発法人産業技術総合研究所 Information processing apparatus and method for controlling information processing apparatus
US11665976B2 (en) 2018-09-12 2023-05-30 Tdk Corporation Reservoir element and neuromorphic element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203038A1 (en) * 2013-06-19 2014-12-24 Aselsan Elektronik Sanayi Ve Ticaret Anonim Sirketi System and method for implementing reservoir computing in magnetic resonance imaging device using elastography techniques
US20170116515A1 (en) * 2015-10-26 2017-04-27 International Business Machines Corporation Tunable optical neuromorphic network

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203038A1 (en) * 2013-06-19 2014-12-24 Aselsan Elektronik Sanayi Ve Ticaret Anonim Sirketi System and method for implementing reservoir computing in magnetic resonance imaging device using elastography techniques
US20170116515A1 (en) * 2015-10-26 2017-04-27 International Business Machines Corporation Tunable optical neuromorphic network

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KUSUGAWA, HIROSHI: "Review about NAND/NOR logic arithmetic element composed of Ni-Fe/Si02/Ni-Fe laminated film", LECTURE ABSTRACTS OF THE 2016 (159TH) AUTUMN LECTURE CONFERENCE OF THE JAPAN INSTITUTE OF METALS, 7 September 2016 (2016-09-07), pages 303, ISSN: 1342-5730 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151254A1 (en) * 2018-01-31 2019-08-08 国立大学法人東京大学 Information processing device
JP2019134100A (en) * 2018-01-31 2019-08-08 国立大学法人 東京大学 Information processing device
JP7109046B2 (en) 2018-01-31 2022-07-29 国立大学法人 東京大学 Information processing device
US11665976B2 (en) 2018-09-12 2023-05-30 Tdk Corporation Reservoir element and neuromorphic element
WO2020105139A1 (en) * 2018-11-21 2020-05-28 Tdk株式会社 Reservoir element and neuromorphic element
WO2020105136A1 (en) * 2018-11-21 2020-05-28 Tdk株式会社 Reservoir element and neuromorphic element
WO2020208674A1 (en) * 2019-04-08 2020-10-15 Tdk株式会社 Magnetic element, magnetic memory, reservoir element, recognizer and method for manufacturing magnetic element
CN112789734A (en) * 2019-04-08 2021-05-11 Tdk株式会社 Magnetic element, magnetic memory, reserve cell element, identifier, and method for manufacturing magnetic element
JPWO2020208674A1 (en) * 2019-04-08 2021-05-20 Tdk株式会社 Manufacturing method of magnetic element, magnetic memory, reservoir element, recognition machine and magnetic element
JP2020042845A (en) * 2019-11-25 2020-03-19 Tdk株式会社 Operation method of reservoir element
WO2021205581A1 (en) 2020-04-08 2021-10-14 富士通株式会社 Information processing system, information processing device, information processing method, and information processing program
WO2022163782A1 (en) * 2021-01-29 2022-08-04 国立研究開発法人産業技術総合研究所 Information processing apparatus and method for controlling information processing apparatus

Also Published As

Publication number Publication date
JP7108987B2 (en) 2022-07-29
JPWO2018212201A1 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
WO2018212201A1 (en) Information processing device and information processing method
Grollier et al. Neuromorphic spintronics
Collins Computing with quantum knots
Vourkas et al. Memristor-based nanoelectronic computing circuits and architectures
Nomura et al. Reservoir computing with dipole-coupled nanomagnets
Yang et al. Integrated neuromorphic computing networks by artificial spin synapses and spin neurons
Wang et al. Memristor-based synapse design and training scheme for neuromorphic computing architecture
Wang et al. Fundamental physics and applications of skyrmions: A review
US11169732B2 (en) Computing device
US11514301B2 (en) Magnetic domain wall drift for an artificial leaky integrate-and-fire neuron
Chen et al. Nanoscale room-temperature multilayer skyrmionic synapse for deep spiking neural networks
CN112767980B (en) Spin orbit torque magnetic random storage unit, spin orbit torque magnetic random storage array and Hamming distance calculation method
Vidamour et al. Quantifying the computational capability of a nanomagnetic reservoir computing platform with emergent magnetisation dynamics
Chakraborty et al. Input-aware flow-based computing on memristor crossbars with applications to edge detection
Chen et al. Spintronic devices for high-density memory and neuromorphic computing–A review
Hu et al. Magnetic skyrmions and domain walls for logical and neuromorphic computing
Ismael Salinas et al. Spintronic materials and devices towards an artificial neural network: accomplishments and the last mile
Das et al. Bilayer-skyrmion-based design of neuron and synapse for spiking neural network
Shim et al. Ising spin model using spin-hall effect (she) induced magnetization reversal in magnetic-tunnel-junction
Staudigl et al. Fault injection in native logic-in-memory computation on neuromorphic hardware
Blachowicz et al. Domain wall nucleation, propagation and annihilation in coupled bent ferromagnetic nanofibers with rotating local input fields
Ender et al. Reinforcement learning to reduce failures in SOT-MRAM switching
Vatajelu et al. Resistive and spintronic RAMs: device, simulation, and applications
Verma et al. Comparative analysis of spin based memories for neuromorphic computing
Wang Topological electronics: from infinity to six

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18803064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019518815

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18803064

Country of ref document: EP

Kind code of ref document: A1