WO2018211941A1 - Secondary battery and method for manufacturing same - Google Patents

Secondary battery and method for manufacturing same Download PDF

Info

Publication number
WO2018211941A1
WO2018211941A1 PCT/JP2018/017054 JP2018017054W WO2018211941A1 WO 2018211941 A1 WO2018211941 A1 WO 2018211941A1 JP 2018017054 W JP2018017054 W JP 2018017054W WO 2018211941 A1 WO2018211941 A1 WO 2018211941A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
electrode assembly
battery according
precursor
exterior body
Prior art date
Application number
PCT/JP2018/017054
Other languages
French (fr)
Japanese (ja)
Inventor
堀江 拓也
昌史 樋口
雄二 水口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018211941A1 publication Critical patent/WO2018211941A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a secondary battery and a manufacturing method thereof.
  • the secondary battery has a structure in which an electrode assembly including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, and an electrolyte are enclosed in an exterior body.
  • an electrode assembly including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, and an electrolyte are enclosed in an exterior body.
  • lithium ions move between the positive electrode and the negative electrode through the electrolyte, and the battery is charged and discharged.
  • the electrode assembly is accommodated in the exterior body, the electrolyte is injected into the exterior body, the inside of the exterior body is sealed, and the secondary battery precursor is obtained, and then the initial charge is performed. It is common.
  • a solid-electrolyte interface coating (hereinafter referred to as “SEI coating”) is formed on the negative electrode surface to prevent decomposition of electrolyte components on the negative electrode surface when used as a secondary battery, It is known to extend the life of batteries.
  • Patent Document 1 discloses a technique for suppressing the influence of gas generated when a secondary battery is used (that is, during repeated charging and discharging) by making the structure of the secondary battery unique. Yes. Specifically, Patent Document 1 discloses that a rectangular battery element obtained by winding or laminating one or more positive electrodes and negative electrodes through a separator is housed in an outer package made of a laminate film, and heat-sealed after injecting a nonaqueous electrolyte. Discloses a secondary battery 510 obtained by hermetically sealing. More specifically, in Patent Document 1, as a structure of a secondary battery as a final product, as shown in FIG.
  • a space that becomes a gas pocket 502 is provided adjacent to a space 501 that houses a battery element.
  • a secondary battery 510 is disclosed.
  • an easily peelable portion 504 having a peel strength lower than that of the surroundings exists in a part of the heat seal portion 503 between both spaces.
  • gas generated by charging and discharging for 500 cycles or more moves to the gas pocket, so that long-term cycle stability is improved.
  • the inventors of the present invention collect the gas generated in the initial charging step by making the structure of the secondary battery precursor unique in the method of manufacturing a secondary battery, thereby preventing charging unevenness due to bubbles. Tried to prevent technology.
  • an electrode assembly 601 including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode and having a rectangular shape in a plan view has a dimension larger than that of the rectangular shape as shown in FIG. 13A.
  • a large exterior body 603 is accommodated, and an electrolyte is injected into the exterior body.
  • the secondary battery precursor 610 obtained by sealing the opening of the exterior body to form the seal portion 604 is initially charged.
  • the secondary battery precursor 610 has a gas pocket 602 that contacts the entire rectangular side of the electrode assembly 601.
  • the secondary battery precursor 610 is disposed such that the gas pocket 602 is positioned above the accommodating portion of the electrode assembly 601 in the vertical direction as shown in FIG. 13B.
  • the gas generated in the initial charging step is collected in the gas pocket 602, and uneven charging due to bubbles is prevented.
  • FIG. 13C after sealing the boundary between the accommodating portion of the electrode assembly 601 in the secondary battery precursor and the gas pocket 602 to form the seal portion 605, the gas pocket 602 is separated.
  • the secondary battery precursor 600 can be obtained.
  • an electrode assembly 701 having a notch in a plan view is accommodated in a rectangular exterior body 703 having a size larger than that of the electrode assembly.
  • the electrode assembly 701 includes a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode.
  • a seal portion 704a is formed in the exterior body 703 according to the shape of the electrode assembly 701, and a portion corresponding to the notch in the secondary battery is cut.
  • a seal portion 704a may be formed on an exterior body that has been cut in advance so as to correspond to the shape of the electrode assembly 701.
  • the secondary battery precursor 710 normally has a gas pocket 702 at the upper end of the maximum height portion 701 a of the electrode assembly 701 in the secondary battery precursor 710.
  • the height is the height of the electrode assembly 701 in the secondary battery precursor when used in the initial charging step. Since the electrode assembly 701 has a cutout portion, the electrode assembly 701 includes two or more components having different heights, that is, a maximum height portion 701a and a non-maximum height portion 701b.
  • the secondary battery precursor 710 is disposed such that the gas pocket 702 is located above the maximum height portion 701a of the electrode assembly 701 as shown in FIG. 14C.
  • the gas pocket 702 is By separating, the secondary battery 700 is obtained.
  • the gas generated in the maximum height portion 701a of the electrode assembly 701 in the initial charging step is stored in the gas pocket 702 as shown in FIG. 14C. It is collected and charging unevenness due to bubbles is prevented. However, as shown in FIG. 14C, the gas generated in the non-maximum height portion 701b causes a gas pool in the upper portion 720 of the non-maximum height portion 701b. could not be prevented sufficiently.
  • An object of the present invention is to provide a method of manufacturing a secondary battery that can more fully prevent uneven charging due to bubbles in the entire secondary battery even when the secondary battery has a notch.
  • Another object of the present invention is to provide a secondary battery in which uneven charging due to air bubbles is more sufficiently prevented in the entire secondary battery even when the secondary battery has a notch.
  • the present invention Initial charging of a secondary battery precursor including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, and having a notch in a plan view and an electrolyte sealed in an exterior body
  • a method of manufacturing a secondary battery including a step of:
  • the present invention relates to a method for manufacturing a secondary battery, in which the initial charging is performed while releasing gas generated in the electrode assembly in at least a notch portion of the electrode assembly in the secondary battery precursor.
  • the present invention also provides An electrode assembly including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode and an electrolyte are enclosed in an exterior body, and a secondary battery having a notch in a plan view,
  • the present invention relates to a secondary battery having a first seal part containing an electrolyte component in at least a part of a side A adjacent to the notch among the sides constituting the outer edge of the secondary battery in plan view.
  • the method for manufacturing a secondary battery of the present invention even if the secondary battery and the electrode assembly included in the secondary battery have a notch, charging unevenness due to bubbles in the entire secondary battery precursor is achieved.
  • the initial charging can be performed while preventing the above problem more sufficiently. For this reason, in the initial charging step, charging unevenness due to bubbles is more sufficiently prevented over the entire surface of the negative electrode surface, so that the SEI film is formed with a more uniform thickness.
  • precipitation of lithium is more sufficiently prevented, so that safety is improved and a decrease in battery capacity is prevented.
  • FIG. 3 is a schematic plan view of a secondary battery for explaining a secondary battery and a missing step for obtaining the secondary battery in the first embodiment of the present invention.
  • FIG. It is a schematic plan view of the secondary battery for demonstrating the missing process for obtaining the secondary battery and the said secondary battery in the 2nd embodiment of this invention. It is a typical top view of the exterior body containing an electrode assembly which shows the accommodation process to the exterior body of the electrode assembly in the manufacturing method of the secondary battery which concerns on the 3rd embodiment of this invention.
  • FIG. It is a schematic plan view of the secondary battery for demonstrating the missing process for obtaining the secondary battery and the said secondary battery in the 3rd embodiment of this invention.
  • FIG. It is a typical top view of the exterior body containing an electrode assembly which shows the accommodation process to the exterior body of the electrode assembly in the manufacturing method of the secondary battery concerning the 4th embodiment of the present invention.
  • FIG. It is a schematic plan view of the secondary battery for demonstrating the missing process for obtaining the secondary battery and the said secondary battery in the 4th embodiment of this invention.
  • FIG. It is a typical top view of the exterior body containing an electrode assembly which shows the accommodation process to the exterior body of the electrode assembly in the manufacturing method of the secondary battery concerning the 5th embodiment of the present invention.
  • FIG. It is a schematic plan view of the secondary battery for demonstrating the missing process for obtaining the secondary battery and the said secondary battery in the 5th embodiment of this invention.
  • FIG. It is a typical top view of the exterior body containing an electrode assembly which shows the accommodation process to the exterior body of the electrode assembly in the manufacturing method of the secondary battery concerning the 6th embodiment of the present invention.
  • FIG. It is a schematic plan view of the secondary battery for demonstrating the missing process for obtaining the secondary battery and the said secondary battery in the 6th embodiment of this invention.
  • FIG. 1 It is a schematic plan view of the secondary battery for demonstrating the missing process for obtaining the secondary battery and the said secondary battery in the 7th embodiment of this invention. It is a typical top view of the exterior body containing an electrode assembly which shows the accommodation process to the exterior body of the electrode assembly in the manufacturing method of the secondary battery concerning the 8th embodiment of the present invention.
  • Secondary battery precursor for explaining a secondary battery precursor, an injection process for obtaining the secondary battery precursor, and an initial charging process using the secondary battery precursor in the eighth embodiment of the present invention FIG.
  • FIG. 1 It is a schematic plan view of the secondary battery for demonstrating the missing process for obtaining the secondary battery and the said secondary battery in the 8th embodiment of this invention.
  • FIG. 1 shows the accommodation process to the exterior body of the electrode assembly in the manufacturing method of the rechargeable battery concerning the 9th embodiment of the present invention.
  • Secondary battery precursor for explaining a secondary battery precursor, an injection process for obtaining the secondary battery precursor, and an initial charging process using the secondary battery precursor in the ninth embodiment of the present invention.
  • FIG. It is a typical top view of a secondary battery for explaining the omission process for obtaining the secondary battery in the 9th embodiment of the present invention, and the secondary battery concerned.
  • FIG. 10 It is a typical top view of the exterior body containing an electrode assembly which shows the accommodation process to the exterior body of the electrode assembly in the manufacturing method of the secondary battery which concerns on the 10th embodiment of this invention.
  • Secondary battery precursor for explaining a secondary battery precursor, an injection process for obtaining the secondary battery precursor, and an initial charging process using the secondary battery precursor in the tenth embodiment of the present invention.
  • FIG. It is a schematic plan view of the secondary battery for demonstrating the missing process for obtaining the secondary battery and the said secondary battery in the 10th embodiment of this invention.
  • tool for demonstrating an example of the restraining method of a secondary battery precursor is shown.
  • FIG. 14 is a schematic plan view of a secondary battery and a gas pocket for explaining a secondary battery using the secondary battery precursor of FIG. 13B and a missing step for obtaining the secondary battery. It is a typical top view of the exterior body containing an electrode assembly which shows another example of the accommodation process to the exterior body of an electrode assembly.
  • 14B is a schematic plan view of the exterior body including the electrode assembly, showing a process of adapting the exterior body to the electrode assembly shape using the exterior body including the electrode assembly of FIG. 14A. 14B for explaining a secondary battery precursor using an outer package including the electrode assembly of FIG. 14B, an injection process for obtaining the secondary battery precursor, and an initial charging process using the secondary battery precursor.
  • It is a schematic plan view of a secondary battery precursor. It is a typical top view of a secondary battery and a gas pocket for demonstrating the missing process for obtaining the secondary battery using the secondary battery precursor of FIG. 14C, and the said secondary battery.
  • the present invention provides a method for manufacturing a secondary battery.
  • the term “secondary battery” refers to a battery that can be repeatedly charged and discharged. Therefore, the “secondary battery” is not excessively bound by the name, and may include, for example, “electric storage device”.
  • the “secondary battery precursor” to be described later refers to an intermediate body or intermediate structure of a secondary battery obtained by enclosing the electrode assembly and the electrolyte in an exterior body before the initial charging step.
  • the “electrode assembly” is an electrode structure including a positive electrode, a negative electrode, and a separator.
  • initial charging is performed while letting the gas generated in the electrode assembly escape at least to the notch of the electrode assembly. That is, the initial charging process is performed while causing at least a portion of the secondary battery precursor corresponding to the notch of the electrode assembly to function as a so-called gas pocket.
  • the gas generated in the electrode assembly in the secondary battery precursor in the initial charging step is collected in the notch.
  • the gas can escape at least to the notch portion of the electrode assembly in the secondary battery precursor.
  • the boundary between the electrode assembly and the electrode assembly is simply sealed (sometimes referred to as “at least the corresponding portion of the secondary battery precursor”).
  • at least the notch corresponding portion of the secondary battery precursor is removed. Since at least the boundary between the electrode assembly and the portion corresponding to the notch portion of the secondary battery precursor includes two sheets constituting the outer package and the electrolyte between the two sheets, it is formed by the seal.
  • the seal portion includes an electrolyte component. Such a seal portion containing an electrolyte component is referred to as a “first seal portion”.
  • an electrode assembly and an electrolyte which will be described later, are enclosed in an exterior body.
  • Encapsulation means that the electrode assembly and electrolyte are sealed after being inserted into the outer package.
  • the secondary battery precursor can be manufactured by a process of accommodating the electrode assembly in the exterior body and a step of injecting the electrolyte into the exterior body.
  • the electrode assembly 1 is housed in the exterior body 3 and the outer edge region of the exterior body 3 is injected with an electrolyte. Leave the inlet for sealing.
  • the seal portion formed by the seal in this step does not contain an electrolyte component, and is different from the above “first seal portion” containing the electrolyte component.
  • Such a seal portion that does not contain an electrolyte component is referred to as a “second seal portion” and is denoted by reference numeral “1a” in the drawing.
  • 1A to 10A include “FIGS. 1A, 2A, 3A,..., And FIG.
  • FIGS. 3C-5C include FIGS. 3C, 4C and 5C.
  • sealing is usually performed on at least three outer peripheral areas of the outer package 3 as shown in FIGS. 1A to 10A when the outer package 3 has a rectangular shape in plan view.
  • the outer package 3 is composed of two separated films, but the two films may be continuous.
  • the electrode assembly 1 includes a positive electrode, a negative electrode, and a separator, and the positive electrode and the negative electrode are alternately arranged via the separator.
  • the two external terminals 5 included in the electrode assembly 1 are usually connected to electrodes (positive electrode or negative electrode) via current collecting leads, and as a result, are led out from the exterior body.
  • the electrode assembly 1 may have a planar laminated structure in which a plurality of electrode units (electrode constituent layers) including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode are laminated in a planar shape.
  • the structure of the electrode assembly is not limited to a planar laminated structure.
  • a winding structure in which an electrode unit (electrode constituent layer) including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode is wound in a roll shape.
  • the electrode assembly may have a so-called stack and folding structure in which a positive electrode, a separator, and a negative electrode are stacked on a long film and then folded.
  • the electrode assembly 1 preferably has a planar laminated structure from the viewpoint of more sufficiently preventing uneven charging due to bubbles in the entire secondary battery precursor.
  • the electrode assembly 1 has a notch 10 in plan view.
  • the plan view is a state when an object (for example, an electrode assembly, a secondary battery precursor or a secondary battery) is placed and viewed from directly above its thickness (height) direction, It is a plan view and agreement.
  • the notch 10 is a portion that can be recognized from the electrode assembly and the secondary battery, and has an initial shape of the electrode assembly and the secondary battery in a plan view (for example, an irregular shape that the electrode assembly and the secondary battery have) Is a portion in which a part of the rectangle is finally lost.
  • the notch 10 is a portion remaining after subtracting the irregular shapes of the electrode assembly and the secondary battery from the minimum rectangular shape.
  • the initial shape before the formation of the notch is usually rectangular.
  • the rectangular shape usually includes a rectangular shape and a square shape.
  • 1A to 10A have a rectangular shape (particularly rectangular shape), but are not particularly limited.
  • a rectangular shape square shape
  • a triangular shape a fan shape
  • a semicircular shape a circular shape, etc. may be sufficient.
  • the electrode assembly 1 When the electrode assembly 1 has the cutout portion 10 in a plan view, the overall shape (different shape) of the electrode assembly 1 is reflected, and the secondary battery 100 as the final product is also shown in FIGS. 1C to 10C. As shown in FIG. 4, the cutout portion 10 is provided in a plan view.
  • the notch 10 is literally a notch, and thus is a portion where nothing exists.
  • 1C to 10C include “FIG. 1C, FIG. 2C, FIG. 3C,..., And FIG. 10C”, and the secondary battery and the secondary battery according to the first to tenth embodiments of the present invention, respectively. It is a typical top view of a secondary battery for explaining the below-mentioned missing process for obtaining a battery.
  • the sealing method in the housing step is not particularly limited as long as the electrolyte does not leak from the formed seal portion.
  • the sealing may be achieved by a heat sealing method.
  • the sealing may be achieved by a laser welding method.
  • the boundary 11 (including 11x and 11y) between the electrode assembly 1 and the cutout portion 10 in the outer package 3 is not sealed, but is shown in FIGS. 7A to 10A.
  • the seal portion formed by the seal in this step is a seal portion 1a that does not contain an electrolyte component. If the entire boundary is sealed, the gas generated in the initial charging process described later cannot be released to the notch 10 and charging unevenness cannot be sufficiently prevented.
  • the following methods (m1) to (m2) are preferred: (M1) When the boundary 11 is defined by a plurality of line segments, as shown in FIGS. 7A to 9A, a method of sealing at least a part of one line segment among the plurality of line segments; or ( m2) A method in which, when the boundary 11 is defined by a plurality of line segments, a part of each of the two line segments among the plurality of line segments is sealed as shown in FIG. 10A.
  • the method (m1) is more preferable. .
  • the method (m1) as shown in FIGS. 7A and 9A, at least a part of one longest line segment 11x is sealed among the plurality of line segments.
  • the method (m1), as shown in FIGS. 7A and 9A at least a part of one longest line segment 11x is sealed, and thereafter
  • the secondary battery precursor obtained through the injecting step is initially charged by arranging the longest line segment 11x so as to be substantially parallel to the vertical direction.
  • the exterior body 3 usually has a rectangular shape in plan view as shown in FIGS. 1A to 10A.
  • the dimensions of the exterior body 3 are the initial shape of the electrode assembly 1 before the formation of the notch (hereinafter simply referred to as “electrode assembly”). It may have dimensions that are substantially the same as the dimensions of the rectangular shape (referred to as “the initial shape of the solid 1”).
  • the dimension of the exterior body 3 is substantially the same as the rectangular dimension as the initial shape of the electrode assembly 1, as shown in FIGS. 1D and 6D. When the width is not considered, the dimensions in both the width direction and the vertical direction are substantially the same.
  • FIGS. 1A, 2A, 6A, 7A, 8A, and 10A the dimensions of the exterior body 3 are the initial shape of the electrode assembly 1 before the formation of the notch (hereinafter simply referred to as “electrode assembly”). It may have dimensions that are substantially the same as the dimensions of the rectangular shape (referred to as “the initial shape of the solid 1”).
  • 1D and 6D are views for explaining an electrode assembly, a cutout portion and a missing portion, and an arrangement thereof in an exterior body including the electrode assembly in the first embodiment and the sixth embodiment of the present invention, respectively. It is a typical plane arrangement view of an exterior body containing an electrode assembly. The outer edge in these figures corresponds to the exterior body.
  • the dimensions of the exterior body 3 may also be larger than the rectangular dimension as the initial shape of the electrode assembly 1, as shown in FIGS. 3A, 4A, 5A and 9A. That the dimension of the exterior body 3 is larger than the rectangular dimension as the initial shape of the electrode assembly 1 is because the dimension in at least one of the width direction and the longitudinal direction is larger. As shown in FIGS. 3D, 4D, 5D, and 9D, in the plan view of the exterior body that includes the electrode assembly, an excess portion 20 is generated in addition to the housing portion 1 and the cutout portion 10 of the electrode assembly. Say. 3D, FIG. 4D, and FIG.
  • 5D respectively show the electrode assembly, the cutout portion, the surplus portion, and the lack in the exterior body including the electrode assembly in the third embodiment, the fourth embodiment, and the fifth embodiment of the present invention. It is a typical plane arrangement view of the exterior body containing an electrode assembly for explaining a portion and those arrangements. The outer edge in these figures corresponds to the exterior body.
  • the missing portion 30 includes the cutout portion corresponding portion 10a and the surplus portion 20 in the outer package 3 and the secondary battery precursor 50, and when the surplus portion does not occur, the missing portion 30 includes only the cutout portion corresponding portion 10a. Also good.
  • the missing part 30 is a part that should be missing in the missing process, and does not constitute a secondary battery as a final product.
  • the missing part 30 is a part that can be recognized from the secondary battery precursor in the manufacturing method of the secondary battery, and in order to obtain the expected shape of the secondary battery (shape of the electrode assembly) in plan view, It is a part that finally loses a part from the shape (for example, rectangular shape) of the battery precursor.
  • the missing part 30 is usually a part that is left by subtracting the irregular shape of the electrode assembly from the shape (for example, rectangular shape) of the secondary battery precursor.
  • the dimension of the exterior body 3 is larger than the rectangular dimension as the initial shape of the electrode assembly 1 from the viewpoint of more sufficiently preventing uneven charging due to bubbles in the entire secondary battery precursor in the initial charging step. It is preferable to have.
  • a surplus portion of the exterior body 3 (hereinafter, simply referred to as “a” is caused by the fact that the dimension of the exterior body 3 is larger than the rectangular dimension as the initial shape of the electrode assembly 1). This is because the “excess portion of the outer package 3” 20) can function as a gas pocket in the initial charging step, like the notch corresponding portion 10a of the secondary battery precursor 50.
  • the arrangement of the electrode assembly 1 in the outer package 3 is a surplus of the outer package 3 from the viewpoint of further prevention of charging unevenness in the initial charging process and more efficient impregnation of the electrolyte into the electrode assembly in the injection process.
  • the arrangement is preferably such that the portion 20 is continuous with the notch corresponding portion 10a of the secondary battery precursor 50 in plan view.
  • the following embodiments n1 and n2 are more preferable, and the embodiment n2 is most preferable. :
  • an electrolyte is injected into the outer package 3 containing the electrode assembly 1 from the injection port, and the outer package 3
  • the injection port can be further sealed to obtain the secondary battery precursor 50. Since the seal portion formed by the seal in this step is positioned at the injection port, it is a seal portion that does not contain an electrolyte component, and is indicated by “1b”. Even if the electrolyte is attached to the inlet, the initial charging step is not performed, and therefore the seal portion formed by the seal in this step is a seal portion that does not contain an electrolyte component.
  • 1B to 10B respectively show the secondary battery precursor, the injection step for obtaining the secondary battery precursor, and the initial stage using the secondary battery precursor in the first to tenth embodiments of the present invention. It is a typical top view of a secondary battery precursor for explaining a charge process.
  • the injection method is not particularly limited as long as the injection of the electrolyte into the outer package and the impregnation of the electrolyte into the electrode assembly are achieved.
  • a method of guiding the electrolyte into the exterior body using a nozzle or the like can be mentioned.
  • the sealing of the inlet is performed while maintaining the inside of the exterior body in a reduced pressure state to form the seal portion 1b. This is because the removal of air from the inside of the exterior body is promoted.
  • the sealing method in the injection process may be the same as the sealing method in the housing process.
  • the atmospheric pressure inside the outer package at the time of sealing is usually in the range of 1 kPa to 20 kPa, preferably in the range of 5 kPa to 12 kPa.
  • the notch corresponding portion 10a that is, the notch corresponding portion 10a when the surplus portion 20 is not formed; or the surplus portion 20 is formed.
  • the two films constituting the outer package 3 are in contact with each other so as to be detachable from each other with or without an electrolyte. Therefore, at least the exterior body 3 is present in the notch corresponding portion 10 a and the surplus portion 20 in the secondary battery precursor 50.
  • the secondary battery precursor 50 may have a step portion in a side view.
  • the step portion is a discontinuous portion of the upper surface that is configured by two upper surfaces having different heights in a side view, and the height of the steps locally changes between the two upper surfaces.
  • the side view is a state when an object (for example, a secondary battery precursor) is placed and viewed from the side in the thickness (height) direction, and is in agreement with the side view.
  • the initial charging step is an initial charging step of the secondary battery precursor performed for the purpose of forming an SEI film on the negative electrode surface, and is also referred to as an initial charging step, a conditioning step, or a formation step.
  • the SEI coating is formed by reducing and decomposing the additive contained in the electrolyte in the present step on the negative electrode surface, and prevents further decomposition of the additive on the negative electrode surface during use as a secondary battery.
  • the SEI coating typically includes one or more materials selected from the group consisting of LiF, Li 2 CO 3 , LiOH, and LiOCOOR (R represents a monovalent organic group such as an alkyl group).
  • initial charging is performed using at least the secondary battery precursor 50 having the notch corresponding portion 10a (preferably the secondary battery precursor 50 having the notch corresponding portion 10a and the surplus portion 20). .
  • initial charging can be performed while letting the gas generated in the electrode assembly in the secondary battery precursor 50 escape to at least the notch corresponding part 10a (preferably the notch corresponding part 10a and the surplus part 20).
  • the initial charging step is performed while at least the notch corresponding portion 10a (preferably the notch corresponding portion 10a and the surplus portion 20) of the secondary battery precursor functions as a so-called gas pocket.
  • the gas generated in the electrode assembly in the initial charging step is collected at least in the notch corresponding portion 10a (preferably the sum of the notch corresponding portion 10a and the surplus portion 20).
  • the gas can be released to at least the notch corresponding portion 10a (preferably the total portion of the notch corresponding portion 10a and the surplus portion 20).
  • the arrangement of the secondary battery precursor 50 is not particularly limited, and initial charging may be performed in a state where the secondary battery precursor 50 is placed on a horizontal plane.
  • the placement is placement with the surface (plane) having the maximum area constituting the appearance of the object (for example, the secondary battery precursor) as the bottom surface.
  • the missing portion 30 at least the notch corresponding portion 10a, preferably the notch corresponding portion 10a and the surplus portion 20
  • the secondary battery precursor 50 is another portion. It is preferable to arrange the secondary battery precursor 50 and perform initial charging so as to be relatively higher than that.
  • the missing portion 30 (at least the notch corresponding portion 10a, preferably the notch corresponding portion 10a and the surplus portion 20) of the secondary battery precursor 50. Will function more fully as a gas pocket. As a result, charging unevenness due to bubbles is more sufficiently prevented over the entire surface of the negative electrode surface.
  • Sides constituting the outer edge of the secondary battery precursor 50 are sides 50a to 50f as shown in FIGS. 1B to 10B (hereinafter, refer to the drawings for the sides) showing the plan views of the secondary battery precursor 50. That is.
  • the side that does not define the missing portion 30 is a side that does not include the side that defines the outer edge of the missing portion 30 among the sides that constitute the outer edge of the secondary battery precursor 50.
  • the sides 50a and 50b include Can be mentioned.
  • the side that includes the side that defines the missing part 30 at a minimum includes the side that defines the outer edge of the missing part 30 among the sides that constitute the outer edge of the secondary battery precursor 50, but the length of the side.
  • the side having the smallest ratio (ratio to the total length of the side) is, for example, the side 50c.
  • the minimum is the minimum among the sides constituting the outer edge of the secondary battery precursor 50.
  • the secondary battery precursor 50 has a side that does not define the missing portion 30 of the missing step as a side constituting the outer edge of the secondary battery precursor 50 in plan view, FIG. 1B to FIG. 3B and FIG. As shown in FIGS. 5B to 10B, the side where the missing portion 30 is not defined is arranged so as to be lower than the other sides.
  • the secondary battery precursor 50 has two or more sides that do not define the missing part 30 of the missing process, further prevention of uneven charging in the initial charging process and application of the electrolyte to the electrode assembly in the injection process From the viewpoint of a balance with more efficient impregnation, as shown in FIGS. 1B to 3B, FIG. 5B, and FIGS.
  • the shortest side among the sides not defining the missing portion 30 is more than the other sides. Is preferably arranged so as to be low. This is because the secondary battery precursor obtained in the above-described injection step is used for the initial charging step as it is in the arrangement (orientation) in the injection step.
  • the secondary battery precursor 50 does not have a side that does not define the missing portion 30 of the missing step as a side constituting the outer edge of the secondary battery precursor 50 in a plan view, as shown in FIG. 4B.
  • the side including the side defining the missing portion 30 at the minimum is arranged so as to be lower than the other sides.
  • arranging one side p constituting the outer edge of the secondary battery precursor 50 to be lower than the other side means that the side p is parallel to the horizontal plane and from the other side. Is positioned at the lowest position, meaning that the secondary battery precursor 50 is at least inclined, preferably upright, and erected.
  • the initial charging is usually preferably performed while restraining the secondary battery precursor. Since the restraint is tightening from the outside by pressure for the secondary battery precursor, in other words, pressurization to the surface of the secondary battery precursor, in a broad sense, “tightening” or “pressurization”. I can also say.
  • the method for constraining the secondary battery precursor is not particularly limited as long as pressurization in the stacking direction (thickness direction) of the electrode assembly in the secondary battery precursor is achieved.
  • FIG. A method using tools is mentioned. Specifically, as shown in FIG. 11, initial charging is performed while restraining the secondary battery precursor 50 by applying a restraining force in the thickness direction z of the electrode in the secondary battery precursor 50 by the restraining jig 200. Do. According to such a method, bubbles are further prevented from adhering to the electrode surface of the secondary battery precursor 50, and the formation of the SEI film having a uniform thickness is promoted.
  • the restraining jig 200 applies a restraining force in the z direction to the one or more secondary battery precursors 50 via the restraining plate 205 between the movable plate 202 and the fixed plate 203 by the rotation of the bolt 201. It is supposed to be.
  • the binding force (that is, the pressure on the surface of the secondary battery precursor) is not particularly limited as long as the gas generated in this step is prevented from adhering to the negative electrode surface, and is usually a pressure higher than atmospheric pressure.
  • the binding force is usually in the range of 0.1 MPa or more and 1.0 MPa or less, and preferably in the range of 0.1 MPa or more and 0.5 MPa or less from the viewpoint of further preventing the gas from adhering to the negative electrode surface. .
  • the secondary battery precursor is preferably maintained at a temperature in the range of 25 ° C. or higher and 100 ° C. or lower, more preferably 35 ° C. or higher and 90 ° C., from the viewpoint of further preventing gas from adhering to the negative electrode surface. It is maintained at a temperature within the following range, more preferably 40 ° C. or more and 85 ° C. or less. Specifically, the ambient (atmosphere) temperature where the secondary battery precursor is arranged in this step may be maintained within the above range.
  • the gas generated in the electrode assembly in the secondary battery precursor 50 is at least a notch portion (notch portion corresponding portion 10a, preferably notch portion corresponding portion 10a and surplus portion 20). )
  • charging may be performed at least once.
  • charge and discharge is performed at least once.
  • One charge / discharge includes one charge and one subsequent discharge. If charging / discharging is performed twice or more, the charging-discharging is repeated the corresponding number of times.
  • the initial charging performed while releasing the generated gas may be performed at least during the first charging, and is preferably performed during all charging and discharging.
  • the charging method may be a constant current charging method or a constant voltage charging method, or a combination thereof. For example, constant voltage charging and constant voltage charging may be repeated during one charge.
  • the charging conditions are not particularly limited as long as the SEI film is formed. From the viewpoint of further improving the uniformity of the thickness of the SEI film, it is preferable to perform constant voltage charging after performing constant current charging. When performing constant voltage charging after performing constant current charging, it is preferable to employ the following charging conditions from the viewpoint of further improving the uniformity of the SEI film thickness.
  • the temperature at the time of charge should just be in the range similar to the temperature of the above-mentioned secondary battery precursor.
  • Constant current charging method Constant current charging is performed until a voltage value of 1 V or more and 6 V or less, particularly 3 V or more and 5 V or less at a constant current value of 0.01 CA or more and 3 CA or less, particularly 0.05 CA or more and 2 CA or less.
  • 1CA is a current value when the rated capacity of the secondary battery is discharged in 1 hour.
  • Constant voltage charging method The constant voltage charging is performed until the voltage value achieved by the constant current charging reaches a predetermined value smaller than the constant current value at the time of constant current charging or until a predetermined time elapses.
  • the discharge method may be a constant current discharge method, a constant voltage discharge method, or a combination thereof.
  • the discharge conditions are not particularly limited as long as the SEI film is formed. From the viewpoint of further improving the uniformity of the thickness of the SEI film, it is preferable to perform constant current discharge. When performing constant current discharge, it is preferable to employ the following discharge conditions from the viewpoint of further improving the uniformity of the SEI film thickness.
  • the temperature at the time of discharge may be in the same range as the temperature of the secondary battery precursor described above, or may be a temperature lower than that at the time of charging.
  • Constant current discharge method Constant current discharge is performed at a constant current value of 0.1 CA or more and 3 CA or less, particularly 0.2 CA or more and 2 CA or less until a voltage value of 1 V or more and 4 V or less, particularly 2 V or more and 3.5 V or less.
  • a missing process is usually performed.
  • the boundary for performing sealing in this step is normally the boundary between the notch corresponding part 10a and the electrode assembly 1 when the missing part 30 is composed of only the notch corresponding part 10a, and the missing part 30 is notched.
  • the portion corresponding portion 10 a and the surplus portion 20 it is a boundary between the total portion and the electrode assembly 1.
  • the seal part containing the electrolyte component is referred to as a “first seal part”, and is denoted by reference numeral “1c” in the drawing.
  • the sealing method in the missing step may be the same as the sealing method in the housing step.
  • the secondary battery 100 is usually obtained by removing at least the notch 10 in the secondary battery precursor 50.
  • the part to be lost in this step is normally the notch corresponding part 10a when the missing part 30 is composed of only the notch corresponding part 10a, and the missing part 30 is from the notch corresponding part 10a and the surplus part 20. Is the sum of those parts.
  • the omission method is not particularly limited as long as electrolyte leakage from the obtained secondary battery 100 does not occur, and examples thereof include a method of cutting with a cutter or the like.
  • An aging process may be performed.
  • the aging process may be performed after the missing process, or after the initial charging process and before the missing process.
  • the aging step and the missing step are performed in this order.
  • the aging process is a process of stabilizing the SEI film by leaving the secondary battery after the initial charging process in an open circuit state.
  • the aging process is also called an aging process.
  • the temperature of the secondary battery is not particularly limited, and may be maintained within a range of 15 ° C. or more and 80 ° C. or less, for example.
  • the secondary battery is preferably maintained at a temperature in the range of 20 ° C. or more and 70 ° C. or less, more preferably 25 ° C. or more and 60 ° C. or less, from the viewpoint of further stabilization of the SEI coating.
  • the temperature can be maintained within the above range by leaving the secondary battery in a space set at a constant temperature.
  • the standing time in the aging step is not particularly limited as long as the stabilization of the SEI film is promoted, and is usually 1 hour or more and 30 days or less, and preferably 5 hours or more and 14 days or less from the viewpoint of further stabilization of the SEI film. More preferably, it is in the range of 10 hours or more and 7 days or less.
  • the secondary battery 100 of the present invention is manufactured by removing the missing portion 30 after sealing in the missing step in the above-described method. Therefore, as shown in FIGS. 1C to 10C, the secondary battery 100 has at least a part of the side A adjacent to the notch 10 in the sides constituting the outer edge of the secondary battery 100 in a plan view.
  • the first seal portion 1c containing an electrolyte component is included. This means that when the secondary battery has a notch, the secondary battery precursor of the secondary battery was subjected to initial charging and then sealed, and at least the notch corresponding part was missing. Therefore, the portion corresponding to the notch portion of the secondary battery precursor functions as a gas pocket in the initial charging step.
  • the side A corresponds to the planar view shape of the notch 10 and may have, for example, a straight line shape, a curved line shape, or a mixed form thereof. It may be.
  • the side A may be formed by two or more continuous sides, and each side may have the above-mentioned form selected independently. Two consecutive straight-form sides may be distinguished by forming an angle between them. The angle is the smaller of the angles formed by the two linear sides. The angle may be greater than 0 ° and less than 180 °, usually 30 ° to 150 °, particularly 60 ° to 120 °. Two consecutive curved edges may be distinguished by forming an inflection point between them.
  • One continuous straight line side and one curved line side may be distinguished from the boundary between the straight line form and the curved line that are clearly distinguished.
  • the secondary battery 100 may have the first seal portion 1c on the entire side A adjacent to the notch portion.
  • the secondary battery 100 may have a first seal portion 1c in a part of the side A adjacent to the notch portion 10.
  • the secondary battery 100 includes, for example, a secondary battery as shown in FIGS. 3C to 5C and 9C. It is preferable to have the 1st seal
  • the side B having the first seal portion 1c of the secondary battery may be at least one side B, usually one side B, of the two sides B continuous with the side A.
  • the side B where the secondary battery has the first seal portion 1c may have the first seal portion 1c as a part thereof, or the first seal portion 1c as a whole (all). Preferably, it has the 1st seal
  • the first seal portion 1c on the side A and the first seal portion on the side B It is preferable that 1c is continuous.
  • the secondary battery 100 may include the first seal portion 1c on one of the sides B that are continuous with the side A.
  • the first seal portion on the side A and the first seal portion on the side B are continuously formed. Preferably it is.
  • the secondary battery 100 has a side that constitutes the outer edge of the secondary battery as shown in FIG. 4C, for example.
  • the first seal portion 1 c on the side C further continuous with the side B.
  • the presence of the first seal portion 1c in the side C indicates the presence of a surplus portion in the secondary battery precursor 50, and the surplus portion functions as a gas pocket, whereby charging unevenness in the initial charging process is more sufficiently prevented.
  • the side C where the secondary battery has the first seal portion 1c may have the first seal portion 1c as a part thereof, or the first seal portion 1c as a whole (all).
  • the secondary battery 100 has the 1st seal
  • the first seal portion 1c on the side B and the first seal portion 1c on the side C are provided. It is preferable that it is continuous.
  • the secondary battery 100 may have the first seal portion 1 c on all of one side C continuous with the side B.
  • the first seal portion on the side B and the first seal portion on the side C are continuous. preferable.
  • the secondary battery 100 normally includes a second part that does not contain an electrolyte component in a part other than the part having the first seal portion 1c among the sides constituting the outer edge of the secondary battery. It has seal parts 1a and 1b.
  • the secondary battery 100 has an outer edge of the secondary battery as shown in FIGS. 7C to 10C from the viewpoint of forming a SEI film having a more uniform thickness based on further improvement of the stability of the electrode assembly in the injection process. It is preferable to have the 2nd seal
  • the side A is defined by a plurality of line segments, for example, as shown in (p1) FIG. 7C to FIG.
  • the seal portion 1a may be included, or (p2) the second seal portion 1a may be provided in a part of each of the two line segments as shown in FIG. 10C. Good.
  • the embodiment (p1) is preferable for the secondary battery 100.
  • the second seal portion 1a is provided on at least a part of one longest line segment among the plurality of line segments. It is more preferable.
  • the first seal portion 1c contains an electrolyte component
  • the second seal portions 1a and 1b do not contain an electrolyte component.
  • the phrase “the first seal portion 1c contains an electrolyte component” means that the electrolyte component is contained and sandwiched between two exterior body sheets constituting the first seal portion 1c.
  • a molten component for a flexible pouch
  • a molten (metal) component for a hard case
  • An electrolyte component is contained therein.
  • the fact that the second seal part 1a, 1b does not contain an electrolyte component means that no electrolyte component is contained between the two exterior body sheets constituting the second seal part 1a, 1b, but strictly contains It does not mean that it is not made, but means that it is relatively hardly contained as compared with the first seal part 1c.
  • the content of the electrolyte component can be confirmed by subjecting the molten component in the seal portion to elemental analysis.
  • the ratio R of the total amount (total number) of atoms for example, Li atom, F atom, P atom and B atom
  • the ratio R in the second seal portions 1a and 1b is usually 1/5 or less, particularly 1/10 or less, of the ratio R in the first seal portion 1c.
  • the positive electrode is composed of at least a positive electrode material layer and a positive electrode current collector (foil), and it is sufficient that the positive electrode material layer is provided on at least one surface of the positive electrode current collector.
  • a positive electrode material layer may be provided on both surfaces of the positive electrode current collector, or a positive electrode material layer may be provided on one surface of the positive electrode current collector.
  • a positive electrode preferable from the viewpoint of further increasing the capacity of the secondary battery is provided with a positive electrode material layer on both surfaces of the positive electrode current collector.
  • the positive electrode material layer contains a positive electrode active material.
  • the negative electrode is composed of at least a negative electrode material layer and a negative electrode current collector (foil), and it is sufficient that the negative electrode material layer is provided on at least one surface of the negative electrode current collector.
  • a negative electrode material layer may be provided on both surfaces of the negative electrode current collector, or a negative electrode material layer may be provided on one surface of the negative electrode current collector.
  • a negative electrode preferable from the viewpoint of further increasing the capacity of the secondary battery is provided with a negative electrode material layer on both surfaces of the negative electrode current collector.
  • the negative electrode material layer contains a negative electrode active material.
  • the positive electrode active material included in the positive electrode material layer and the negative electrode active material included in the negative electrode material layer are materials directly involved in the transfer of electrons in the secondary battery, and are the main materials of the positive and negative electrodes that are responsible for charge / discharge, that is, the battery reaction. is there. More specifically, ions are brought into the electrolyte due to the “positive electrode active material included in the positive electrode material layer” and the “negative electrode active material included in the negative electrode material layer”, and the ions are interposed between the positive electrode and the negative electrode. Then, the electrons are transferred and the electrons are delivered and charged and discharged. As will be described later, the positive electrode material layer and the negative electrode material layer are particularly preferably layers capable of occluding and releasing lithium ions.
  • the secondary battery according to the present invention corresponds to a so-called “lithium ion battery”.
  • the positive electrode active material of the positive electrode material layer is made of, for example, a granular material, and it is preferable that a binder is included in the positive electrode material layer for sufficient contact between the particles and shape retention. Furthermore, it is also preferable that a conductive additive is included in the positive electrode material layer in order to facilitate the transmission of electrons that promote the battery reaction.
  • the negative electrode active material of the negative electrode material layer is made of, for example, a granular material, and it is preferable that a binder is included for sufficient contact and shape retention between the particles, and smooth transmission of electrons that promote the battery reaction. In order to do so, a conductive aid may be included in the negative electrode material layer.
  • the positive electrode material layer and the negative electrode material layer can also be referred to as “positive electrode composite material layer” and “negative electrode composite material layer”, respectively.
  • the positive electrode active material is preferably a material that contributes to occlusion and release of lithium ions.
  • the positive electrode active material is preferably, for example, a lithium-containing composite oxide.
  • the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese, and iron. That is, in the positive electrode material layer of the secondary battery according to the present invention, such a lithium transition metal composite oxide is preferably included as a positive electrode active material.
  • the positive electrode active material may be lithium cobaltate, lithium nickelate, lithium manganate, lithium iron phosphate, or a part of those transition metals replaced with another metal. Although such a positive electrode active material may be included as a single species, two or more types may be included in combination.
  • the positive electrode active material contained in the positive electrode material layer is lithium cobalt oxide.
  • the binder that can be included in the positive electrode material layer is not particularly limited, but includes polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and Mention may be made of at least one selected from the group consisting of polytetrafluoroethylene and the like.
  • the conductive auxiliary agent that can be included in the positive electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth.
  • the binder of the positive electrode material layer is polyvinylidene fluoride
  • the conductive additive of the positive electrode material layer is carbon black.
  • the binder and conductive additive of the positive electrode material layer are a combination of polyvinylidene fluoride and carbon black.
  • the negative electrode active material is preferably a material that contributes to occlusion and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, or lithium alloys.
  • Examples of various carbon materials of the negative electrode active material include graphite (natural graphite, artificial graphite), hard carbon, soft carbon, diamond-like carbon, and the like.
  • graphite is preferable in that it has high electron conductivity and excellent adhesion to the negative electrode current collector.
  • Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and the like.
  • the lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium.
  • Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn It may be a binary, ternary or higher alloy of a metal such as La and lithium.
  • a binary, ternary or higher alloy of a metal such as La and lithium.
  • Such an oxide is preferably amorphous in its structural form. This is because deterioration due to non-uniformity such as crystal grain boundaries or defects is less likely to be caused.
  • the negative electrode active material of the negative electrode material layer is artificial graphite.
  • the binder that can be included in the negative electrode material layer is not particularly limited, but is at least one selected from the group consisting of styrene butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide resin, and polyamideimide resin. Can be mentioned.
  • the binder contained in the negative electrode material layer is styrene butadiene rubber.
  • the conductive aid that can be included in the negative electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth.
  • Examples thereof include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives.
  • the component resulting from the thickener component for example, carboxymethylcellulose used at the time of battery manufacture may be contained in the negative electrode material layer.
  • the negative electrode active material and the binder in the negative electrode material layer are a combination of artificial graphite and styrene butadiene rubber.
  • the positive electrode current collector and the negative electrode current collector used for the positive electrode and the negative electrode are members that contribute to collecting and supplying electrons generated in the active material due to the battery reaction.
  • a current collector may be a sheet-like metal member and may have a porous or perforated form.
  • the current collector may be a metal foil, a punching metal, a net or an expanded metal.
  • the positive electrode current collector used for the positive electrode is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and may be, for example, an aluminum foil.
  • the negative electrode current collector used for the negative electrode is preferably made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel and the like, and may be, for example, a copper foil.
  • the separator is a member provided from the viewpoint of preventing short circuit due to contact between the positive and negative electrodes and holding the electrolyte.
  • the separator can be said to be a member that allows ions to pass while preventing electronic contact between the positive electrode and the negative electrode.
  • the separator is a porous or microporous insulating member and has a film form due to its small thickness.
  • a polyolefin microporous film may be used as the separator.
  • the microporous membrane used as the separator may include, for example, only polyethylene (PE) or only polypropylene (PP) as the polyolefin.
  • the separator may be a laminate composed of “a microporous membrane made of PE” and “a microporous membrane made of PP”.
  • the surface of the separator may be covered with an inorganic particle coat layer and / or an adhesive layer.
  • the surface of the separator may have adhesiveness.
  • Electrolyte helps the movement of metal ions released from the electrodes (positive and negative electrodes).
  • the electrolyte may be a “non-aqueous” electrolyte, such as an organic electrolyte and an organic solvent, or may be a “aqueous” electrolyte containing water.
  • the secondary battery of the present invention is preferably a non-aqueous electrolyte secondary battery in which an electrolyte containing a “non-aqueous” solvent and a solute is used as an electrolyte.
  • the electrolyte may have a form such as liquid or gel (in the present specification, “liquid” non-aqueous electrolyte is also referred to as “non-aqueous electrolyte solution”).
  • a solvent containing at least carbonate is preferable.
  • Such carbonates may be cyclic carbonates and / or chain carbonates.
  • examples of the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC). be able to.
  • examples of the chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dipropyl carbonate (DPC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DPC dipropyl carbonate
  • a combination of cyclic carbonates and chain carbonates is used as the non-aqueous electrolyte, for example, a mixture of ethylene carbonate and diethyl carbonate.
  • Li salts such as LiPF 6 and LiBF 4 are preferably used.
  • Electrolytes particularly non-aqueous electrolytes contain additives such as vinylene carbonate, 1,3-propane sultone, and fluorinated ethylene carbonate.
  • additives such as vinylene carbonate, 1,3-propane sultone, and fluorinated ethylene carbonate.
  • any current collecting lead used in the field of secondary batteries can be used.
  • a current collecting lead may be made of a material capable of achieving electron movement, and is usually made of a conductive material such as aluminum, nickel, iron, copper, and stainless steel.
  • the form of the current collecting lead is not particularly limited, and may be, for example, a linear shape or a plate shape.
  • any external terminal used in the field of secondary batteries can be used.
  • Such an external terminal may be made of a material capable of achieving electron movement, and is usually made of a conductive material such as aluminum, nickel, iron, copper, and stainless steel.
  • the form of the external terminal 5 is not particularly limited, and is usually plate-shaped.
  • the external terminal 5 may be electrically and directly connected to the substrate, or may be electrically and indirectly connected to the substrate via another device.
  • the current collecting lead can also be used as an external terminal.
  • the exterior body is preferably a flexible pouch (soft bag), but may be a hard case (hard housing).
  • the flexible pouch is usually formed from a laminate film, and sealing is achieved by heat-sealing the peripheral edge.
  • the laminate film a film obtained by laminating a metal foil and a polymer film is generally used.
  • a film having a three-layer structure including an outer layer polymer film / metal foil / inner layer polymer film is exemplified.
  • the outer layer polymer film is for preventing damage to the metal foil due to permeation and contact of moisture and the like, and polymers such as polyamide and polyester can be suitably used.
  • the metal foil is for preventing the permeation of moisture and gas, and a foil of copper, aluminum, stainless steel or the like can be suitably used.
  • the inner layer polymer film is for protecting the metal foil from the electrolyte accommodated therein, and for melting and sealing at the time of heat sealing, and polyolefin or acid-modified polyolefin can be suitably used.
  • the thickness of the laminate film is not particularly limited, and is preferably 1 ⁇ m or more and 1 mm or less, for example.
  • the hard case is usually formed from a metal plate, and sealing is achieved by irradiating the peripheral edge with a laser.
  • a metal plate a metal material made of aluminum, nickel, iron, copper, stainless steel or the like is common.
  • the thickness of a metal plate is not specifically limited, For example, 1 micrometer or more and 1 mm or less are preferable.
  • the secondary battery manufactured by the method of the present invention can be used in various fields where power storage is assumed. Although only illustrative, secondary batteries manufactured by the method of the present invention, particularly non-aqueous electrolyte secondary batteries, are used in the electrical / information / communication field (for example, mobile phones, smartphones, smart phones) where mobile devices are used.
  • Mobile devices such as watches, notebook computers, digital cameras, activity meters, arm computers, and electronic paper), home and small industrial applications (eg, power tools, golf carts, home / care / industrial robots) , Large industrial applications (eg, forklifts, elevators, bay harbor cranes), transportation systems (eg, hybrid vehicles, electric cars, buses, trains, electric assist bicycles, electric motorcycles), power system applications (eg, , Various power generation, road conditioner, smart grid, general household installation type storage Areas), IoT areas such system, and can be used for space-deepwater applications (e.g., spacecraft, areas such as submersible).
  • home and small industrial applications eg, power tools, golf carts, home / care / industrial robots
  • Large industrial applications eg, forklifts, elevators, bay harbor cranes
  • transportation systems eg, hybrid vehicles, electric cars, buses, trains, electric assist bicycles, electric motorcycles
  • power system applications eg, Various power generation, road conditioner, smart grid, general household installation type

Abstract

The present invention provides a method which is for manufacturing a secondary battery, and which is capable of more sufficiently preventing uneven charging caused by bubbles in the secondary battery as a whole even when the secondary battery has a notched part. This method for manufacturing a secondary battery includes a step for performing initial charging of a secondary battery precursor 50 obtained by sealing, in an exterior body, an electrolyte and an electrode assembly 1 that has a notched part in a plan view and that includes a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode. In the secondary battery precursor 50, the initial charging is carried out while a gas generated in the electrode assembly 1 is removed at least to a notched part 10 of the electrode assembly 1.

Description

二次電池およびその製造方法Secondary battery and manufacturing method thereof
 本発明は二次電池およびその製造方法に関する。 The present invention relates to a secondary battery and a manufacturing method thereof.
 従来、種々の電子機器の電源として、二次電池が用いられている。二次電池は、正極、負極および正極と負極との間に配置されたセパレータを含む電極組立体および電解質が外装体に封入された構造を有している。特にリチウムイオン二次電池においては、電解質を介してリチウムイオンが正極と負極との間で移動して電池の充放電が行われる。 Conventionally, secondary batteries have been used as power sources for various electronic devices. The secondary battery has a structure in which an electrode assembly including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, and an electrolyte are enclosed in an exterior body. In particular, in a lithium ion secondary battery, lithium ions move between the positive electrode and the negative electrode through the electrolyte, and the battery is charged and discharged.
 二次電池の製造に際しては、電極組立体を外装体に収容し、電解質を外装体に注入し、外装体の内部を封止して、二次電池前駆体を得た後、初期充電を行うのが一般的である。初期充電により、負極表面に固体電解質界面(Solid Electrolyte Interface)被膜(以下、「SEI被膜」という)を形成して、二次電池としての使用時における負極表面での電解質成分の分解を防止し、電池の長寿命化を図ることが知られている。 In manufacturing the secondary battery, the electrode assembly is accommodated in the exterior body, the electrolyte is injected into the exterior body, the inside of the exterior body is sealed, and the secondary battery precursor is obtained, and then the initial charge is performed. It is common. By initial charging, a solid-electrolyte interface coating (hereinafter referred to as “SEI coating”) is formed on the negative electrode surface to prevent decomposition of electrolyte components on the negative electrode surface when used as a secondary battery, It is known to extend the life of batteries.
 しかしながら、初期充電工程では電解質成分の分解に伴いガスが発生し、当該ガスが負極表面に気泡として付着する。このため、気泡による充電ムラが起こり、SEI被膜の形成が部分的に阻害され、SEI被膜に厚みムラが生じる。SEI被膜に厚みムラが生じると、二次電池としての使用時における充放電により、SEI被膜が薄い部分の周辺でリチウムが析出し、安全性に問題が生じる可能性があった。また、リチウムの析出による反応面積の縮小およびリチウムイオンの消費のため、電池容量が低下するという問題が生じた。 However, in the initial charging process, gas is generated as the electrolyte components are decomposed, and the gas adheres to the negative electrode surface as bubbles. For this reason, charging unevenness due to bubbles occurs, formation of the SEI film is partially inhibited, and thickness unevenness occurs in the SEI film. If the SEI film is uneven in thickness, lithium may be deposited around the thin portion of the SEI film due to charge / discharge during use as a secondary battery, which may cause a safety problem. Further, there is a problem that the battery capacity is reduced due to the reduction of the reaction area due to the deposition of lithium and the consumption of lithium ions.
 他方、特許文献1においては、二次電池の構造を特有のものとすることにより、二次電池の使用時(すなわち、繰り返しの充放電時)に発生したガスの影響を抑える技術が知られている。詳しくは、特許文献1は、一つ以上の正極および負極を、セパレータを介して捲回または積層した矩形状の電池要素をラミネートフィルムからなる外装体に収納し、非水電解質の注入後にヒートシールで密閉封止して得られる二次電池510を開示する。より詳しくは、特許文献1は、最終製品としての二次電池の構造として、図12に示すように、電池要素を収納するスペース501に隣接する形でガスポケット502となるスペースが設けられている二次電池510を開示する。二次電池510においては、両スペース間のヒートシール部位503の一部に剥離強度が周囲よりも低い易剥離箇所504が存在する。このような二次電池においては、500サイクル以上の充放電により発生したガスはガスポケットに移動するため、長期サイクル安定性が向上する。 On the other hand, Patent Document 1 discloses a technique for suppressing the influence of gas generated when a secondary battery is used (that is, during repeated charging and discharging) by making the structure of the secondary battery unique. Yes. Specifically, Patent Document 1 discloses that a rectangular battery element obtained by winding or laminating one or more positive electrodes and negative electrodes through a separator is housed in an outer package made of a laminate film, and heat-sealed after injecting a nonaqueous electrolyte. Discloses a secondary battery 510 obtained by hermetically sealing. More specifically, in Patent Document 1, as a structure of a secondary battery as a final product, as shown in FIG. 12, a space that becomes a gas pocket 502 is provided adjacent to a space 501 that houses a battery element. A secondary battery 510 is disclosed. In the secondary battery 510, an easily peelable portion 504 having a peel strength lower than that of the surroundings exists in a part of the heat seal portion 503 between both spaces. In such a secondary battery, gas generated by charging and discharging for 500 cycles or more moves to the gas pocket, so that long-term cycle stability is improved.
特開2016-9677号公報Japanese Unexamined Patent Publication No. 2016-9679 特表2016-506606号公報Special table 2016-506606
 本発明の発明者等は、二次電池の製造方法において、二次電池前駆体の構造を特有のものとすることにより、初期充電工程で発生したガスを捕集して、気泡による充電ムラを防止する技術を試みた。まず、正極、負極および該正極と該負極との間に配置されたセパレータを含み、かつ平面視において矩形状を有する電極組立体601を、図13Aに示すように、前記矩形状よりも寸法が大きい外装体603に収容させ、当該外装体に電解質を注入する。次いで、図13Bに示すように、外装体の開口部を封止してシール部604を形成して得られた二次電池前駆体610の初期充電を行う。詳しくは、二次電池前駆体610は、電極組立体601の矩形状の一辺全体と接するガスポケット602を有する。初期充電工程においては、二次電池前駆体610は、図13Bに示すように鉛直方向において電極組立体601の収容部の上方にガスポケット602が位置するように、配置される。これにより、初期充電工程で発生したガスは、ガスポケット602に捕集され、気泡による充電ムラが防止される。その後、図13Cに示すように、二次電池前駆体における電極組立体601の収容部とガスポケット602との境界を封止してシール部605を形成した後、ガスポケット602を分離することにより、二次電池前駆体600を得ることができる。 The inventors of the present invention collect the gas generated in the initial charging step by making the structure of the secondary battery precursor unique in the method of manufacturing a secondary battery, thereby preventing charging unevenness due to bubbles. Tried to prevent technology. First, an electrode assembly 601 including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode and having a rectangular shape in a plan view has a dimension larger than that of the rectangular shape as shown in FIG. 13A. A large exterior body 603 is accommodated, and an electrolyte is injected into the exterior body. Next, as shown in FIG. 13B, the secondary battery precursor 610 obtained by sealing the opening of the exterior body to form the seal portion 604 is initially charged. Specifically, the secondary battery precursor 610 has a gas pocket 602 that contacts the entire rectangular side of the electrode assembly 601. In the initial charging step, the secondary battery precursor 610 is disposed such that the gas pocket 602 is positioned above the accommodating portion of the electrode assembly 601 in the vertical direction as shown in FIG. 13B. As a result, the gas generated in the initial charging step is collected in the gas pocket 602, and uneven charging due to bubbles is prevented. Thereafter, as shown in FIG. 13C, after sealing the boundary between the accommodating portion of the electrode assembly 601 in the secondary battery precursor and the gas pocket 602 to form the seal portion 605, the gas pocket 602 is separated. The secondary battery precursor 600 can be obtained.
 そこで、本発明の発明者等は、二次電池前駆体の構造に関する上記技術を用いて、特許文献2に示すような切り欠き部を有する二次電池を製造する場合において、気泡による充電ムラを局所的に防止できないという新たな問題が生じることを見い出した。詳しくは、まず、図14Aに示すように、平面視において切り欠き部を有する電極組立体701を、当該電極組立体よりも寸法が大きい矩形状の外装体703に収容させる。電極組立体701は、正極、負極および該正極と該負極との間に配置されたセパレータを含む。 Therefore, the inventors of the present invention, when manufacturing a secondary battery having a notch as shown in Patent Document 2 using the above-described technology relating to the structure of the secondary battery precursor, causes charging unevenness due to bubbles. We have found that a new problem arises that cannot be prevented locally. Specifically, first, as shown in FIG. 14A, an electrode assembly 701 having a notch in a plan view is accommodated in a rectangular exterior body 703 having a size larger than that of the electrode assembly. The electrode assembly 701 includes a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode.
 次いで、図14Bに示すように、電極組立体701の形状に応じて外装体703にシール部704aを形成し、二次電池における前記切り欠き部に対応する部分を裁断する。別法として、電極組立体701の形状に対応するように予め裁断した外装体に対して、図14Bに示すように、シール部704aを形成してもよい。 Next, as shown in FIG. 14B, a seal portion 704a is formed in the exterior body 703 according to the shape of the electrode assembly 701, and a portion corresponding to the notch in the secondary battery is cut. Alternatively, as shown in FIG. 14B, a seal portion 704a may be formed on an exterior body that has been cut in advance so as to correspond to the shape of the electrode assembly 701.
 その後、外装体に電解質を注入し、図14Cに示すように、外装体の開口部の封止によりシール部704bを形成して二次電池前駆体710を得て、当該二次電池前駆体710の初期充電を行う。詳しくは、二次電池前駆体710は通常、当該二次電池前駆体710における電極組立体701の最大高さ部701aの上端部にガスポケット702を有する。高さとは、初期充電工程時に供されるときの二次電池前駆体における電極組立体701の高さのことである。電極組立体701は、切り欠き部を有するために、高さが異なる2以上の構成部分を有し、すなわち最大高さ部701aおよび非最大高さ部701bを含む。初期充電工程においては、二次電池前駆体710は、図14Cに示すように電極組立体701の最大高さ部701aの上方にガスポケット702が位置するように、配置される。 Thereafter, an electrolyte is injected into the exterior body, and as shown in FIG. 14C, a seal portion 704b is formed by sealing an opening of the exterior body to obtain a secondary battery precursor 710, and the secondary battery precursor 710 is obtained. Perform initial charging. Specifically, the secondary battery precursor 710 normally has a gas pocket 702 at the upper end of the maximum height portion 701 a of the electrode assembly 701 in the secondary battery precursor 710. The height is the height of the electrode assembly 701 in the secondary battery precursor when used in the initial charging step. Since the electrode assembly 701 has a cutout portion, the electrode assembly 701 includes two or more components having different heights, that is, a maximum height portion 701a and a non-maximum height portion 701b. In the initial charging step, the secondary battery precursor 710 is disposed such that the gas pocket 702 is located above the maximum height portion 701a of the electrode assembly 701 as shown in FIG. 14C.
 初期充電工程後は、図14Dに示すように、二次電池前駆体における電極組立体701の収容部とガスポケット602との境界を封止してシール部705を形成した後、ガスポケット702を分離することにより、二次電池700を得る。 After the initial charging step, as shown in FIG. 14D, after sealing the boundary between the accommodating portion of the electrode assembly 701 in the secondary battery precursor and the gas pocket 602 to form the seal portion 705, the gas pocket 702 is By separating, the secondary battery 700 is obtained.
 このような技術により切り欠き部を有する二次電池を製造する場合、初期充電工程において、電極組立体701の最大高さ部701aで発生したガスは、図14Cに示すように、ガスポケット702に捕集され、気泡による充電ムラが防止される。しかしながら、非最大高さ部701bで発生したガスは、図14Cに示すように、非最大高さ部701bの上方部720でガス溜まりを生じさせるため、非最大高さ部701bにおいて気泡による充電ムラを十分に防止できなかった。 When manufacturing a secondary battery having a notch by such a technique, the gas generated in the maximum height portion 701a of the electrode assembly 701 in the initial charging step is stored in the gas pocket 702 as shown in FIG. 14C. It is collected and charging unevenness due to bubbles is prevented. However, as shown in FIG. 14C, the gas generated in the non-maximum height portion 701b causes a gas pool in the upper portion 720 of the non-maximum height portion 701b. Could not be prevented sufficiently.
 本発明は、二次電池が切り欠き部を有する場合であっても、二次電池全体において気泡による充電ムラをより十分に防止することができる、二次電池の製造方法を提供することを目的とする。 An object of the present invention is to provide a method of manufacturing a secondary battery that can more fully prevent uneven charging due to bubbles in the entire secondary battery even when the secondary battery has a notch. And
 本発明はまた、二次電池が切り欠き部を有する場合であっても、二次電池全体において気泡による充電ムラがより十分に防止される二次電池を提供することを目的とする。 Another object of the present invention is to provide a secondary battery in which uneven charging due to air bubbles is more sufficiently prevented in the entire secondary battery even when the secondary battery has a notch.
 本発明は、
 正極、負極および該正極と該負極との間に配置されたセパレータを含み、かつ平面視において切り欠き部を有する電極組立体および電解質が外装体に封入されている二次電池前駆体を初期充電する工程を含む二次電池の製造方法であって、
 前記二次電池前駆体内において、前記電極組立体で発生するガスを、少なくとも前記電極組立体の切り欠き部に逃がしながら、前記初期充電を行う、二次電池の製造方法、に関する。
The present invention
Initial charging of a secondary battery precursor including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, and having a notch in a plan view and an electrolyte sealed in an exterior body A method of manufacturing a secondary battery including a step of:
The present invention relates to a method for manufacturing a secondary battery, in which the initial charging is performed while releasing gas generated in the electrode assembly in at least a notch portion of the electrode assembly in the secondary battery precursor.
 本発明はまた、
 正極、負極および該正極と該負極との間に配置されたセパレータを含む電極組立体および電解質が外装体に封入されており、平面視において切り欠き部を有する二次電池であって、
 平面視において前記二次電池の外縁を構成する辺のうち、前記切り欠き部と隣接する辺Aの少なくとも一部に、電解質成分を含有する第1シール部を有する、二次電池、に関する。
The present invention also provides
An electrode assembly including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode and an electrolyte are enclosed in an exterior body, and a secondary battery having a notch in a plan view,
The present invention relates to a secondary battery having a first seal part containing an electrolyte component in at least a part of a side A adjacent to the notch among the sides constituting the outer edge of the secondary battery in plan view.
 本発明の二次電池の製造方法によれば、二次電池および当該二次電池に含まれる電極組立体が切り欠き部を有する場合であっても、二次電池前駆体全体において気泡による充電ムラをより十分に防止しながら初期充電を行うことができる。このため、初期充電工程において、負極表面の全面にわたって、気泡による充電ムラがより十分に防止されるので、SEI被膜がより均一な厚みで形成される。その結果として、二次電池としての使用時における充放電によっても、リチウムの析出がより十分に防止されるので、安全性が向上し、また電池容量の低下が防止される。 According to the method for manufacturing a secondary battery of the present invention, even if the secondary battery and the electrode assembly included in the secondary battery have a notch, charging unevenness due to bubbles in the entire secondary battery precursor is achieved. The initial charging can be performed while preventing the above problem more sufficiently. For this reason, in the initial charging step, charging unevenness due to bubbles is more sufficiently prevented over the entire surface of the negative electrode surface, so that the SEI film is formed with a more uniform thickness. As a result, even when charging and discharging during use as a secondary battery, precipitation of lithium is more sufficiently prevented, so that safety is improved and a decrease in battery capacity is prevented.
本発明の第1実施態様に係る二次電池の製造方法における電極組立体の外装体への収容工程を示す、電極組立体を含む外装体の模式的平面図である。It is a typical top view of the exterior body containing an electrode assembly which shows the accommodation process to the exterior body of the electrode assembly in the manufacturing method of the secondary battery which concerns on the 1st embodiment of this invention. 本発明の第1実施態様における二次電池前駆体、当該二次電池前駆体を得るための注入工程および当該二次電池前駆体を用いた初期充電工程を説明するための、二次電池前駆体の模式的平面図である。Secondary battery precursor for explaining a secondary battery precursor, an injection step for obtaining the secondary battery precursor, and an initial charging step using the secondary battery precursor in the first embodiment of the present invention FIG. 本発明の第1実施態様における二次電池および当該二次電池を得るための欠落工程を説明するための、二次電池の模式的平面図である。FIG. 3 is a schematic plan view of a secondary battery for explaining a secondary battery and a missing step for obtaining the secondary battery in the first embodiment of the present invention. 本発明の第1実施態様において、電極組立体を含む外装体における電極組立体、切り欠き部および欠落部およびそれらの配置を説明するための、電極組立体を含む外装体の模式的平面配置図である。In the first embodiment of the present invention, a schematic plan layout diagram of an exterior body including an electrode assembly for explaining an electrode assembly, a cutout portion and a lacking portion, and an arrangement thereof in the exterior body including the electrode assembly. It is. 本発明の第2実施態様に係る二次電池の製造方法における電極組立体の外装体への収容工程を示す、電極組立体を含む外装体の模式的平面図である。It is a typical top view of the exterior body containing an electrode assembly which shows the accommodation process to the exterior body of the electrode assembly in the manufacturing method of the secondary battery which concerns on the 2nd embodiment of this invention. 本発明の第2実施態様における二次電池前駆体、当該二次電池前駆体を得るための注入工程および当該二次電池前駆体を用いた初期充電工程を説明するための、二次電池前駆体の模式的平面図である。Secondary battery precursor for explaining a secondary battery precursor, an injection process for obtaining the secondary battery precursor, and an initial charging process using the secondary battery precursor in the second embodiment of the present invention FIG. 本発明の第2実施態様における二次電池および当該二次電池を得るための欠落工程を説明するための、二次電池の模式的平面図である。It is a schematic plan view of the secondary battery for demonstrating the missing process for obtaining the secondary battery and the said secondary battery in the 2nd embodiment of this invention. 本発明の第3実施態様に係る二次電池の製造方法における電極組立体の外装体への収容工程を示す、電極組立体を含む外装体の模式的平面図である。It is a typical top view of the exterior body containing an electrode assembly which shows the accommodation process to the exterior body of the electrode assembly in the manufacturing method of the secondary battery which concerns on the 3rd embodiment of this invention. 本発明の第3実施態様における二次電池前駆体、当該二次電池前駆体を得るための注入工程および当該二次電池前駆体を用いた初期充電工程を説明するための、二次電池前駆体の模式的平面図である。Secondary battery precursor for explaining a secondary battery precursor, an injection process for obtaining the secondary battery precursor, and an initial charging process using the secondary battery precursor in the third embodiment of the present invention FIG. 本発明の第3実施態様における二次電池および当該二次電池を得るための欠落工程を説明するための、二次電池の模式的平面図である。It is a schematic plan view of the secondary battery for demonstrating the missing process for obtaining the secondary battery and the said secondary battery in the 3rd embodiment of this invention. 本発明の第3実施態様において、電極組立体を含む外装体における電極組立体、切り欠き部、余剰部および欠落部およびそれらの配置を説明するための、電極組立体を含む外装体の模式的平面配置図である。In the third embodiment of the present invention, the electrode assembly, the cutout portion, the surplus portion and the missing portion in the exterior body including the electrode assembly, and the layout of the exterior body including the electrode assembly for explaining the arrangement thereof. FIG. 本発明の第4実施態様に係る二次電池の製造方法における電極組立体の外装体への収容工程を示す、電極組立体を含む外装体の模式的平面図である。It is a typical top view of the exterior body containing an electrode assembly which shows the accommodation process to the exterior body of the electrode assembly in the manufacturing method of the secondary battery concerning the 4th embodiment of the present invention. 本発明の第4実施態様における二次電池前駆体、当該二次電池前駆体を得るための注入工程および当該二次電池前駆体を用いた初期充電工程を説明するための、二次電池前駆体の模式的平面図である。Secondary battery precursor for explaining a secondary battery precursor, an injection process for obtaining the secondary battery precursor, and an initial charging process using the secondary battery precursor in the fourth embodiment of the present invention FIG. 本発明の第4実施態様における二次電池および当該二次電池を得るための欠落工程を説明するための、二次電池の模式的平面図である。It is a schematic plan view of the secondary battery for demonstrating the missing process for obtaining the secondary battery and the said secondary battery in the 4th embodiment of this invention. 本発明の第4実施態様において、電極組立体を含む外装体における電極組立体、切り欠き部、余剰部および欠落部およびそれらの配置を説明するための、電極組立体を含む外装体の模式的平面配置図である。In the fourth embodiment of the present invention, a schematic diagram of an exterior body including an electrode assembly for explaining an electrode assembly, a notch, a surplus part, a missing part, and an arrangement thereof in the exterior body including the electrode assembly. FIG. 本発明の第5実施態様に係る二次電池の製造方法における電極組立体の外装体への収容工程を示す、電極組立体を含む外装体の模式的平面図である。It is a typical top view of the exterior body containing an electrode assembly which shows the accommodation process to the exterior body of the electrode assembly in the manufacturing method of the secondary battery concerning the 5th embodiment of the present invention. 本発明の第5実施態様における二次電池前駆体、当該二次電池前駆体を得るための注入工程および当該二次電池前駆体を用いた初期充電工程を説明するための、二次電池前駆体の模式的平面図である。Secondary battery precursor for explaining a secondary battery precursor, an injection process for obtaining the secondary battery precursor, and an initial charging process using the secondary battery precursor in the fifth embodiment of the present invention FIG. 本発明の第5実施態様における二次電池および当該二次電池を得るための欠落工程を説明するための、二次電池の模式的平面図である。It is a schematic plan view of the secondary battery for demonstrating the missing process for obtaining the secondary battery and the said secondary battery in the 5th embodiment of this invention. 本発明の第5実施態様において、電極組立体を含む外装体における電極組立体、切り欠き部、余剰部および欠落部およびそれらの配置を説明するための、電極組立体を含む外装体の模式的平面配置図である。In the fifth embodiment of the present invention, the electrode assembly, the cutout portion, the surplus portion and the missing portion in the exterior body including the electrode assembly, and the schematic view of the exterior body including the electrode assembly for explaining the arrangement thereof. FIG. 本発明の第6実施態様に係る二次電池の製造方法における電極組立体の外装体への収容工程を示す、電極組立体を含む外装体の模式的平面図である。It is a typical top view of the exterior body containing an electrode assembly which shows the accommodation process to the exterior body of the electrode assembly in the manufacturing method of the secondary battery concerning the 6th embodiment of the present invention. 本発明の第6実施態様における二次電池前駆体、当該二次電池前駆体を得るための注入工程および当該二次電池前駆体を用いた初期充電工程を説明するための、二次電池前駆体の模式的平面図である。Secondary battery precursor for explaining a secondary battery precursor, an injection process for obtaining the secondary battery precursor, and an initial charging process using the secondary battery precursor in the sixth embodiment of the present invention FIG. 本発明の第6実施態様における二次電池および当該二次電池を得るための欠落工程を説明するための、二次電池の模式的平面図である。It is a schematic plan view of the secondary battery for demonstrating the missing process for obtaining the secondary battery and the said secondary battery in the 6th embodiment of this invention. 本発明の第6実施態様において、電極組立体を含む外装体における電極組立体、切り欠き部および欠落部およびそれらの配置を説明するための、電極組立体を含む外装体の模式的平面配置図である。In the sixth embodiment of the present invention, a schematic plan layout diagram of an exterior body including an electrode assembly for explaining an electrode assembly, a cutout portion and a lacking portion, and an arrangement thereof in the exterior body including the electrode assembly. It is. 本発明の第7実施態様に係る二次電池の製造方法における電極組立体の外装体への収容工程を示す、電極組立体を含む外装体の模式的平面図である。It is a typical top view of the exterior body containing an electrode assembly which shows the accommodation process to the exterior body of the electrode assembly in the manufacturing method of the secondary battery concerning the 7th embodiment of the present invention. 本発明の第7実施態様における二次電池前駆体、当該二次電池前駆体を得るための注入工程および当該二次電池前駆体を用いた初期充電工程を説明するための、二次電池前駆体の模式的平面図である。Secondary battery precursor for explaining a secondary battery precursor, an injection process for obtaining the secondary battery precursor, and an initial charging process using the secondary battery precursor in the seventh embodiment of the present invention FIG. 本発明の第7実施態様における二次電池および当該二次電池を得るための欠落工程を説明するための、二次電池の模式的平面図である。It is a schematic plan view of the secondary battery for demonstrating the missing process for obtaining the secondary battery and the said secondary battery in the 7th embodiment of this invention. 本発明の第8実施態様に係る二次電池の製造方法における電極組立体の外装体への収容工程を示す、電極組立体を含む外装体の模式的平面図である。It is a typical top view of the exterior body containing an electrode assembly which shows the accommodation process to the exterior body of the electrode assembly in the manufacturing method of the secondary battery concerning the 8th embodiment of the present invention. 本発明の第8実施態様における二次電池前駆体、当該二次電池前駆体を得るための注入工程および当該二次電池前駆体を用いた初期充電工程を説明するための、二次電池前駆体の模式的平面図である。Secondary battery precursor for explaining a secondary battery precursor, an injection process for obtaining the secondary battery precursor, and an initial charging process using the secondary battery precursor in the eighth embodiment of the present invention FIG. 本発明の第8実施態様における二次電池および当該二次電池を得るための欠落工程を説明するための、二次電池の模式的平面図である。It is a schematic plan view of the secondary battery for demonstrating the missing process for obtaining the secondary battery and the said secondary battery in the 8th embodiment of this invention. 本発明の第9実施態様に係る二次電池の製造方法における電極組立体の外装体への収容工程を示す、電極組立体を含む外装体の模式的平面図である。It is a typical top view of the exterior body containing an electrode assembly which shows the accommodation process to the exterior body of the electrode assembly in the manufacturing method of the rechargeable battery concerning the 9th embodiment of the present invention. 本発明の第9実施態様における二次電池前駆体、当該二次電池前駆体を得るための注入工程および当該二次電池前駆体を用いた初期充電工程を説明するための、二次電池前駆体の模式的平面図である。Secondary battery precursor for explaining a secondary battery precursor, an injection process for obtaining the secondary battery precursor, and an initial charging process using the secondary battery precursor in the ninth embodiment of the present invention FIG. 本発明の第9実施態様における二次電池および当該二次電池を得るための欠落工程を説明するための、二次電池の模式的平面図である。It is a typical top view of a secondary battery for explaining the omission process for obtaining the secondary battery in the 9th embodiment of the present invention, and the secondary battery concerned. 本発明の第10実施態様に係る二次電池の製造方法における電極組立体の外装体への収容工程を示す、電極組立体を含む外装体の模式的平面図である。It is a typical top view of the exterior body containing an electrode assembly which shows the accommodation process to the exterior body of the electrode assembly in the manufacturing method of the secondary battery which concerns on the 10th embodiment of this invention. 本発明の第10実施態様における二次電池前駆体、当該二次電池前駆体を得るための注入工程および当該二次電池前駆体を用いた初期充電工程を説明するための、二次電池前駆体の模式的平面図である。Secondary battery precursor for explaining a secondary battery precursor, an injection process for obtaining the secondary battery precursor, and an initial charging process using the secondary battery precursor in the tenth embodiment of the present invention FIG. 本発明の第10実施態様における二次電池および当該二次電池を得るための欠落工程を説明するための、二次電池の模式的平面図である。It is a schematic plan view of the secondary battery for demonstrating the missing process for obtaining the secondary battery and the said secondary battery in the 10th embodiment of this invention. 二次電池前駆体の拘束方法の一例を説明するための拘束治具の模式的斜視図を示す。The typical perspective view of the restraining jig | tool for demonstrating an example of the restraining method of a secondary battery precursor is shown. 従来技術における二次電池を説明するための、二次電池の模式的平面図である。It is a schematic plan view of the secondary battery for demonstrating the secondary battery in a prior art. 電極組立体の外装体への収容工程の一例を示す、電極組立体を含む外装体の模式的平面図である。It is a typical top view of the exterior body containing an electrode assembly which shows an example of the accommodation process to the exterior body of an electrode assembly. 図13Aの電極組立体を含む外装体を用いた二次電池前駆体、当該二次電池前駆体を得るための注入工程および当該二次電池前駆体を用いた初期充電工程を説明するための、二次電池前駆体の模式的平面図である。A secondary battery precursor using the outer package including the electrode assembly of FIG. 13A, an injection process for obtaining the secondary battery precursor, and an initial charging process using the secondary battery precursor, It is a schematic plan view of a secondary battery precursor. 図13Bの二次電池前駆体を用いた二次電池および当該二次電池を得るための欠落工程を説明するための、二次電池およびガスポケットの模式的平面図である。FIG. 14 is a schematic plan view of a secondary battery and a gas pocket for explaining a secondary battery using the secondary battery precursor of FIG. 13B and a missing step for obtaining the secondary battery. 電極組立体の外装体への収容工程の別の一例を示す、電極組立体を含む外装体の模式的平面図である。It is a typical top view of the exterior body containing an electrode assembly which shows another example of the accommodation process to the exterior body of an electrode assembly. 図14Aの電極組立体を含む外装体を用いた外装体の電極組立体形状への適合工程を示す、電極組立体を含む外装体の模式的平面図である。FIG. 14B is a schematic plan view of the exterior body including the electrode assembly, showing a process of adapting the exterior body to the electrode assembly shape using the exterior body including the electrode assembly of FIG. 14A. 図14Bの電極組立体を含む外装体を用いた二次電池前駆体、当該二次電池前駆体を得るための注入工程および当該二次電池前駆体を用いた初期充電工程を説明するための、二次電池前駆体の模式的平面図である。14B for explaining a secondary battery precursor using an outer package including the electrode assembly of FIG. 14B, an injection process for obtaining the secondary battery precursor, and an initial charging process using the secondary battery precursor. It is a schematic plan view of a secondary battery precursor. 図14Cの二次電池前駆体を用いた二次電池および当該二次電池を得るための欠落工程を説明するための、二次電池およびガスポケットの模式的平面図である。It is a typical top view of a secondary battery and a gas pocket for demonstrating the missing process for obtaining the secondary battery using the secondary battery precursor of FIG. 14C, and the said secondary battery.
[二次電池の製造方法]
 本発明は二次電池の製造方法を提供する。本明細書中、「二次電池」という用語は充電および放電の繰り返しが可能な電池のことを指している。従って、「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、「蓄電デバイス」なども包含し得る。後述する「二次電池前駆体」とは、初期充電工程前に、電極組立体および電解質を外装体に封入して得られる、二次電池の中間体または中間構造物のことである。「電極組立体」とは、正極、負極およびセパレータを含む電極構造物のことである。
[Method for producing secondary battery]
The present invention provides a method for manufacturing a secondary battery. In this specification, the term “secondary battery” refers to a battery that can be repeatedly charged and discharged. Therefore, the “secondary battery” is not excessively bound by the name, and may include, for example, “electric storage device”. The “secondary battery precursor” to be described later refers to an intermediate body or intermediate structure of a secondary battery obtained by enclosing the electrode assembly and the electrolyte in an exterior body before the initial charging step. The “electrode assembly” is an electrode structure including a positive electrode, a negative electrode, and a separator.
 本発明においては、二次電池前駆体内において、電極組立体で発生するガスを、少なくとも当該電極組立体の切り欠き部に逃がしながら、初期充電を行う。すなわち、二次電池前駆体における少なくとも電極組立体の切り欠き部に対応する部分を、いわゆるガスポケットとして機能させながら、初期充電工程を行う。これにより、二次電池前駆体内において初期充電工程により電極組立体で発生するガスはその切り欠き部に捕集される。その結果として、二次電池前駆体内において当該ガスを少なくとも電極組立体の切り欠き部に逃がすことができる。 In the present invention, in the secondary battery precursor, initial charging is performed while letting the gas generated in the electrode assembly escape at least to the notch of the electrode assembly. That is, the initial charging process is performed while causing at least a portion of the secondary battery precursor corresponding to the notch of the electrode assembly to function as a so-called gas pocket. As a result, the gas generated in the electrode assembly in the secondary battery precursor in the initial charging step is collected in the notch. As a result, the gas can escape at least to the notch portion of the electrode assembly in the secondary battery precursor.
 このように本発明においては、上記の方法で初期充電を行った後、後で詳述するように、平面視において、二次電池前駆体における少なくとも電極組立体の切り欠き部に対応する部分(以下、単に「二次電池前駆体の少なくとも切り欠き部対応部分」ということがある)と電極組立体との境界をシールする。その後、二次電池前駆体の少なくとも切り欠き部対応部分を欠落させる。二次電池前駆体の少なくとも切り欠き部対応部分と電極組立体との境界近傍は外装体を構成する2枚のシートおよび当該2枚のシート間にある電解質を含むため、上記シールにより形成されるシール部には電解質成分が含まれる。このように電解質成分を含有するシール部を「第1シール部」と呼ぶものとする。 As described above, in the present invention, after the initial charging is performed by the above method, as will be described in detail later, in a plan view, at least a portion corresponding to the notch portion of the electrode assembly in the secondary battery precursor ( Hereinafter, the boundary between the electrode assembly and the electrode assembly is simply sealed (sometimes referred to as “at least the corresponding portion of the secondary battery precursor”). Thereafter, at least the notch corresponding portion of the secondary battery precursor is removed. Since at least the boundary between the electrode assembly and the portion corresponding to the notch portion of the secondary battery precursor includes two sheets constituting the outer package and the electrolyte between the two sheets, it is formed by the seal. The seal portion includes an electrolyte component. Such a seal portion containing an electrolyte component is referred to as a “first seal portion”.
 以下、本発明の二次電池の製造方法に使用される二次電池前駆体および当該方法を構成する各工程について、幾つかの実施態様を示す図面を用いて詳しく説明する。本明細書中、図面における各種の要素は、本発明の理解のために模式的かつ例示的に示したにすぎず、外観および寸法比などは実物と異なり得る。本明細書で直接的または間接的に用いる“上下方向”、“左右方向”および“表裏方向”はそれぞれ、特記しない限り、図中における上下方向、左右方向および表裏方向に対応した方向に相当する。同じ符号または記号は、特記しない限り、形状が異なること以外、同じ部材または同じ意味内容を示すものとする。 Hereinafter, the secondary battery precursor used in the method for manufacturing a secondary battery according to the present invention and each process constituting the method will be described in detail with reference to the drawings showing some embodiments. In the present specification, various elements in the drawings are merely schematically and exemplarily shown for understanding of the present invention, and the appearance and size ratio may be different from the actual ones. The “vertical direction”, “left / right direction”, and “front / back direction” used directly or indirectly in the present specification correspond to directions corresponding to the vertical direction, left / right direction, and front / back direction in the drawings unless otherwise specified. . Unless otherwise specified, the same symbol or symbol indicates the same member or the same meaning content except that the shape is different.
(二次電池前駆体)
 本発明において使用される二次電池前駆体は、後述の電極組立体および電解質が外装体に封入されている。封入とは、電極組立体および電解質が外装体内に挿入された後、密封されているという意味である。
(Secondary battery precursor)
In the secondary battery precursor used in the present invention, an electrode assembly and an electrolyte, which will be described later, are enclosed in an exterior body. Encapsulation means that the electrode assembly and electrolyte are sealed after being inserted into the outer package.
 二次電池前駆体は、電極組立体の外装体への収容工程および電解質の外装体への注入工程により製造することができる。 The secondary battery precursor can be manufactured by a process of accommodating the electrode assembly in the exterior body and a step of injecting the electrolyte into the exterior body.
・電極組立体の外装体への収容工程
 収容工程においては、例えば図1A~図10Aに示すように、電極組立体1を外装体3に収容させ、外装体3の外縁領域を、電解質を注入するための注入口を残してシールする。本工程でシールにより形成されるシール部は電解質成分を含有することはなく、電解質成分を含有する上記の「第1シール部」とは異なる。このように電解質成分を含有しないシール部を「第2シール部」と呼ぶものとし、図中、符号「1a」で示す。図1A~図10Aは、「図1A、図2A、図3A、・・・、および図10A」を包含し、それぞれ本発明の第1実施態様~第10実施態様に係る二次電池の製造方法における電極組立体の外装体への収容工程を示す、電極組立体を含む外装体の模式的平面図である。例えば、「図3C~図5C」は図3C、図4Cおよび図5Cを包含する。
In the housing process, for example, as shown in FIGS. 1A to 10A, the electrode assembly 1 is housed in the exterior body 3 and the outer edge region of the exterior body 3 is injected with an electrolyte. Leave the inlet for sealing. The seal portion formed by the seal in this step does not contain an electrolyte component, and is different from the above “first seal portion” containing the electrolyte component. Such a seal portion that does not contain an electrolyte component is referred to as a “second seal portion” and is denoted by reference numeral “1a” in the drawing. 1A to 10A include “FIGS. 1A, 2A, 3A,..., And FIG. 10A”, and the secondary battery manufacturing method according to the first to tenth embodiments of the present invention, respectively. It is a typical top view of the exterior body containing the electrode assembly which shows the accommodation process to the exterior body of the electrode assembly in FIG. For example, “FIGS. 3C-5C” include FIGS. 3C, 4C and 5C.
 収容工程において、シールは通常、外装体3が平面視において矩形状である場合、図1A~図10Aに示すように、外装体3の少なくとも三方の外周領域に対して行われる。特に図2Aに示すように、外装体3における注入口を有する側から外部端子5が導出される場合には、外部端子の導出部分近傍までシールし、シール部1aを形成することが好ましい。なお、図1A~図10Aにおいて外装体3は分離された2つのフィルムからなっているが、当該2つのフィルムは連続していてもよい。外装体3を構成する2つのフィルムが連続し、当該フィルムを折り返して外装体を構成する場合、外装体における当該フィルムが折り返された一方の外周領域でのシール部の形成は省略されてもよい。 In the housing step, sealing is usually performed on at least three outer peripheral areas of the outer package 3 as shown in FIGS. 1A to 10A when the outer package 3 has a rectangular shape in plan view. In particular, as shown in FIG. 2A, when the external terminal 5 is led out from the side of the exterior body 3 having the injection port, it is preferable to seal up to the vicinity of the lead-out portion of the external terminal to form the seal portion 1a. 1A to 10A, the outer package 3 is composed of two separated films, but the two films may be continuous. When the two films constituting the outer package 3 are continuous and the film is folded to form the outer package, the formation of the seal portion in one outer peripheral region of the outer package where the film is folded may be omitted. .
 電極組立体1は、正極、負極およびセパレータを含み、正極と負極とがセパレータを介して交互に配置されている。電極組立体1が有する2つの外部端子5は通常、集電リードを介して電極(正極または負極)に連結され、結果として外装体から外部に導出されている。電極組立体1は、正極、負極および正極と負極との間に配置されたセパレータを含む複数の電極ユニット(電極構成層)を平面状に積層した平面積層構造を有していてもよい。電極組立体の構造は平面積層構造に限定されず、例えば、正極、負極および正極と負極との間に配置されたセパレータを含む電極ユニット(電極構成層)をロール状に巻回した巻回構造(ジェリーロール型)を有していてもよい。また例えば、電極組立体は、正極、セパレータおよび負極を長いフィルム上に積層してから折りたたんだ、いわゆるスタックアンドフォールディング型構造を有していてもよい。初期充電工程において二次電池前駆体全体における気泡による充電ムラをより十分に防止する観点から、電極組立体1は平面積層構造を有することが好ましい。 The electrode assembly 1 includes a positive electrode, a negative electrode, and a separator, and the positive electrode and the negative electrode are alternately arranged via the separator. The two external terminals 5 included in the electrode assembly 1 are usually connected to electrodes (positive electrode or negative electrode) via current collecting leads, and as a result, are led out from the exterior body. The electrode assembly 1 may have a planar laminated structure in which a plurality of electrode units (electrode constituent layers) including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode are laminated in a planar shape. The structure of the electrode assembly is not limited to a planar laminated structure. For example, a winding structure in which an electrode unit (electrode constituent layer) including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode is wound in a roll shape. (Jelly roll type) may be included. For example, the electrode assembly may have a so-called stack and folding structure in which a positive electrode, a separator, and a negative electrode are stacked on a long film and then folded. In the initial charging step, the electrode assembly 1 preferably has a planar laminated structure from the viewpoint of more sufficiently preventing uneven charging due to bubbles in the entire secondary battery precursor.
 電極組立体1は、平面視において、切り欠き部10を有する。平面視とは、対象物(例えば、電極組立体、二次電池前駆体または二次電池)を載置してその厚み(高さ)方向の真上から見たときの状態のことであり、平面図と同意である。切り欠き部10は、電極組立体および二次電池から認識され得る部分であって、平面視において電極組立体および二次電池の初期の形状(例えば、電極組立体および二次電池が有する異形状を含む最小の矩形状)からその一部を最終的に欠損させた部分のことである。切り欠き部10は当該最小の矩形状から電極組立体および二次電池の異形状を差し引いて残る部分である。切り欠き部形成前の初期の形状は通常、矩形状である。矩形状は通常、長方形状および正方形状を包含する。切り欠き部の平面視形状は、図1A~図10Aにおいて、矩形状(特に長方形状)を有しているが、特に限定されず、例えば、矩形状(正方形状)、三角形状、扇形形状、半円形状、円形状等であってもよい。 The electrode assembly 1 has a notch 10 in plan view. The plan view is a state when an object (for example, an electrode assembly, a secondary battery precursor or a secondary battery) is placed and viewed from directly above its thickness (height) direction, It is a plan view and agreement. The notch 10 is a portion that can be recognized from the electrode assembly and the secondary battery, and has an initial shape of the electrode assembly and the secondary battery in a plan view (for example, an irregular shape that the electrode assembly and the secondary battery have) Is a portion in which a part of the rectangle is finally lost. The notch 10 is a portion remaining after subtracting the irregular shapes of the electrode assembly and the secondary battery from the minimum rectangular shape. The initial shape before the formation of the notch is usually rectangular. The rectangular shape usually includes a rectangular shape and a square shape. 1A to 10A have a rectangular shape (particularly rectangular shape), but are not particularly limited. For example, a rectangular shape (square shape), a triangular shape, a fan shape, A semicircular shape, a circular shape, etc. may be sufficient.
 電極組立体1が平面視において切り欠き部10を有することにより、当該電極組立体1の全体形状(異形状)が反映されて、最終製品としての二次電池100もまた、図1C~図10Cに示すように、平面視において切り欠き部10を有するようになる。例えば、電極組立体1および二次電池100のいずれにおいても、切り欠き部10は、文字通り、切り欠かれているため、何も存在しない部分である。図1C~図10Cは、「図1C、図2C、図3C、・・・、および図10C」を包含し、それぞれ本発明の第1実施態様~第10実施態様における二次電池および当該二次電池を得るための後述の欠落工程を説明するための、二次電池の模式的平面図である。 When the electrode assembly 1 has the cutout portion 10 in a plan view, the overall shape (different shape) of the electrode assembly 1 is reflected, and the secondary battery 100 as the final product is also shown in FIGS. 1C to 10C. As shown in FIG. 4, the cutout portion 10 is provided in a plan view. For example, in both the electrode assembly 1 and the secondary battery 100, the notch 10 is literally a notch, and thus is a portion where nothing exists. 1C to 10C include “FIG. 1C, FIG. 2C, FIG. 3C,..., And FIG. 10C”, and the secondary battery and the secondary battery according to the first to tenth embodiments of the present invention, respectively. It is a typical top view of a secondary battery for explaining the below-mentioned missing process for obtaining a battery.
 収容工程におけるシール方法は、形成されたシール部から電解質が漏出しない限り特に限定されない。例えば、外装体が後述のフレキシブルパウチである場合、シールはヒートシール法により達成されてよい。また例えば、外装体が後述のハードケースである場合、シールはレーザー溶接法により達成されてよい。 The sealing method in the housing step is not particularly limited as long as the electrolyte does not leak from the formed seal portion. For example, when the exterior body is a flexible pouch described later, the sealing may be achieved by a heat sealing method. For example, when the exterior body is a hard case described later, the sealing may be achieved by a laser welding method.
 図1A~図6Aに示す収容工程においては、外装体3における電極組立体1と切り欠き部10との境界11(11xおよび11yを含む)をシールしていないが、図7A~図10Aに示すように、当該境界の一部をさらにシールすることが好ましい。後述の注入工程において、電極組立体の安定性が向上し、かつ電解質が電極組立体に、より効率よく含浸されるためである。本工程でシールにより形成されるシール部は電解質成分を含有しないシール部1aである。境界の全部をシールすると、後述の初期充電工程において発生するガスを切り欠き部10に逃がすことができず、充電ムラを十分に防止できない。 In the housing process shown in FIGS. 1A to 6A, the boundary 11 (including 11x and 11y) between the electrode assembly 1 and the cutout portion 10 in the outer package 3 is not sealed, but is shown in FIGS. 7A to 10A. Thus, it is preferable to further seal a part of the boundary. This is because the stability of the electrode assembly is improved and the electrolyte is more efficiently impregnated in the electrode assembly in the injection step described later. The seal portion formed by the seal in this step is a seal portion 1a that does not contain an electrolyte component. If the entire boundary is sealed, the gas generated in the initial charging process described later cannot be released to the notch 10 and charging unevenness cannot be sufficiently prevented.
 電極組立体1と切り欠き部10との境界11(11xおよび11yを含む)の一部をシールするに際しては、初期充電工程における充電ムラのさらなる防止ならびに注入工程における電極組立体の安定性のさらなる向上および電解質の電極組立体へのより効率的な含浸の観点からは、以下の方法(m1)~(m2)が好ましい:
(m1)境界11が複数の線分により規定される場合において、図7A~図9Aに示すように、当該複数の線分のうち、1つの線分の少なくとも一部をシールする方法;または
(m2)境界11が複数の線分により規定される場合において、図10Aに示すように、当該複数の線分のうち、2つの線分のそれぞれの一部をシールする方法。
When sealing a part of the boundary 11 (including 11x and 11y) between the electrode assembly 1 and the notch 10, further prevention of charging unevenness in the initial charging process and further stability of the electrode assembly in the injection process From the viewpoint of improvement and more efficient impregnation of the electrolyte into the electrode assembly, the following methods (m1) to (m2) are preferred:
(M1) When the boundary 11 is defined by a plurality of line segments, as shown in FIGS. 7A to 9A, a method of sealing at least a part of one line segment among the plurality of line segments; or ( m2) A method in which, when the boundary 11 is defined by a plurality of line segments, a part of each of the two line segments among the plurality of line segments is sealed as shown in FIG. 10A.
 初期充電工程における充電ムラのさらなる防止ならびに注入工程における電極組立体の安定性のさらなる向上および電解質の電極組立体へのより効率的な含浸の観点から、より好ましくは上記(m1)の方法である。同様の観点から、さらに好ましくは上記(m1)の方法において、図7Aおよび図9Aに示すように、当該複数の線分のうち、1つの最長線分11xの少なくとも一部をシールする。同様の観点から、最も好ましくは上記(m1)の方法において、図7Aおよび図9Aに示すように、当該複数の線分のうち、1つの最長線分11xの少なくとも一部をシールし、かつその後注入工程を経て得られた二次電池前駆体を、当該最長線分11xが鉛直方向に略平行になるように配置して初期充電する。 From the viewpoint of further preventing uneven charging in the initial charging step, further improving the stability of the electrode assembly in the injection step, and more efficiently impregnating the electrode assembly with the electrolyte, the method (m1) is more preferable. . From the same viewpoint, more preferably, in the method (m1), as shown in FIGS. 7A and 9A, at least a part of one longest line segment 11x is sealed among the plurality of line segments. From the same viewpoint, most preferably, in the method (m1), as shown in FIGS. 7A and 9A, at least a part of one longest line segment 11x is sealed, and thereafter The secondary battery precursor obtained through the injecting step is initially charged by arranging the longest line segment 11x so as to be substantially parallel to the vertical direction.
 外装体3は通常、平面視において、図1A~図10Aに示すように、矩形状を有している。外装体3の寸法は、図1A、図2A、図6A、図7A、図8Aおよび図10Aに示すように、切り欠き部形成前の電極組立体1の初期の形状(以下、単に「電極組立体1の初期形状」という)としての矩形状の寸法と略同等の寸法を有していてもよい。外装体3の寸法が電極組立体1の初期形状としての矩形状の寸法と略同等の寸法を有しているとは、図1Dおよび図6Dに示すように、外装体に形成されるシール部の幅を考慮しなかった場合に、幅方向および縦方向の両方向の寸法が略同等であることをいう。図1Dおよび図6Dはそれぞれ、本発明の第1実施態様および第6実施態様において、電極組立体を含む外装体における電極組立体、切り欠き部よび欠落部およびそれらの配置を説明するための、電極組立体を含む外装体の模式的平面配置図である。これらの図における外縁は外装体に相当する。第7実施態様および第8実施態様において、電極組立体を含む外装体における電極組立体、切り欠き部よび欠落部およびそれらの配置を説明するための、電極組立体を含む外装体の模式的平面配置図は、図1Dと同様である。 The exterior body 3 usually has a rectangular shape in plan view as shown in FIGS. 1A to 10A. As shown in FIGS. 1A, 2A, 6A, 7A, 8A, and 10A, the dimensions of the exterior body 3 are the initial shape of the electrode assembly 1 before the formation of the notch (hereinafter simply referred to as “electrode assembly”). It may have dimensions that are substantially the same as the dimensions of the rectangular shape (referred to as “the initial shape of the solid 1”). The dimension of the exterior body 3 is substantially the same as the rectangular dimension as the initial shape of the electrode assembly 1, as shown in FIGS. 1D and 6D. When the width is not considered, the dimensions in both the width direction and the vertical direction are substantially the same. FIGS. 1D and 6D are views for explaining an electrode assembly, a cutout portion and a missing portion, and an arrangement thereof in an exterior body including the electrode assembly in the first embodiment and the sixth embodiment of the present invention, respectively. It is a typical plane arrangement view of an exterior body containing an electrode assembly. The outer edge in these figures corresponds to the exterior body. In 7th embodiment and 8th embodiment, the schematic plane of the exterior body containing an electrode assembly for demonstrating the electrode assembly in the exterior body containing an electrode assembly, a notch part, a missing part, and those arrangement | positioning The layout is the same as FIG. 1D.
 外装体3の寸法はまた、図3A、図4A、図5Aおよび図9Aに示すように、電極組立体1の初期形状としての矩形状の寸法よりも大きな寸法を有していてもよい。外装体3の寸法が電極組立体1の初期形状としての矩形状の寸法よりも大きな寸法を有しているとは、幅方向および縦方向の少なくとも一方の方向の寸法がより大きいために、例えば図3D、図4D、図5Dおよび図9Dに示すように、電極組立体を含む外装体の平面視において、電極組立体の収容部1および切り欠き部10以外に、余剰部20が生じることをいう。図3D、図4Dおよび図5Dはそれぞれ、本発明の第3実施態様、第4実施態様および第5実施態様において、電極組立体を含む外装体における電極組立体、切り欠き部、余剰部よび欠落部およびそれらの配置を説明するための、電極組立体を含む外装体の模式的平面配置図である。これらの図における外縁は外装体に相当する。第9実施態様において、電極組立体を含む外装体における電極組立体、切り欠き部、余剰部よび欠落部およびそれらの配置を説明するための、電極組立体を含む外装体の模式的平面配置図は、図3Dと同様である。なお、欠落部30は外装体3および二次電池前駆体50における切り欠き部対応部分10aおよび余剰部20を包含し、余剰部が生じない場合においては切り欠き部対応部分10aのみからなっていてもよい。欠落部30は欠落工程において欠落されるべき部分であって、最終製品としての二次電池を構成するものではない。欠落部30は、二次電池の製造方法において二次電池前駆体から認識され得る部分であり、平面視において、予定する二次電池の形状(電極組立体の形状)を得るために、二次電池前駆体が有する形状(例えば矩形状)からその一部を最終的に欠損させる部分のことである。欠落部30は通常、二次電池前駆体が有する形状(例えば矩形状)から電極組立体の異形状を差し引いて残る部分である。 The dimensions of the exterior body 3 may also be larger than the rectangular dimension as the initial shape of the electrode assembly 1, as shown in FIGS. 3A, 4A, 5A and 9A. That the dimension of the exterior body 3 is larger than the rectangular dimension as the initial shape of the electrode assembly 1 is because the dimension in at least one of the width direction and the longitudinal direction is larger. As shown in FIGS. 3D, 4D, 5D, and 9D, in the plan view of the exterior body that includes the electrode assembly, an excess portion 20 is generated in addition to the housing portion 1 and the cutout portion 10 of the electrode assembly. Say. 3D, FIG. 4D, and FIG. 5D respectively show the electrode assembly, the cutout portion, the surplus portion, and the lack in the exterior body including the electrode assembly in the third embodiment, the fourth embodiment, and the fifth embodiment of the present invention. It is a typical plane arrangement view of the exterior body containing an electrode assembly for explaining a portion and those arrangements. The outer edge in these figures corresponds to the exterior body. In the ninth embodiment, a schematic plan layout diagram of an exterior body including an electrode assembly for explaining an electrode assembly, a notch, a surplus part and a missing part in the exterior body including the electrode assembly, and an arrangement thereof. Is the same as FIG. 3D. Note that the missing portion 30 includes the cutout portion corresponding portion 10a and the surplus portion 20 in the outer package 3 and the secondary battery precursor 50, and when the surplus portion does not occur, the missing portion 30 includes only the cutout portion corresponding portion 10a. Also good. The missing part 30 is a part that should be missing in the missing process, and does not constitute a secondary battery as a final product. The missing part 30 is a part that can be recognized from the secondary battery precursor in the manufacturing method of the secondary battery, and in order to obtain the expected shape of the secondary battery (shape of the electrode assembly) in plan view, It is a part that finally loses a part from the shape (for example, rectangular shape) of the battery precursor. The missing part 30 is usually a part that is left by subtracting the irregular shape of the electrode assembly from the shape (for example, rectangular shape) of the secondary battery precursor.
 外装体3の寸法は、初期充電工程において二次電池前駆体全体における気泡による充電ムラをより十分に防止する観点からは、電極組立体1の初期形状としての矩形状の寸法よりも大きな寸法を有していることが好ましい。図3D、図4Dおよび図5Dに示すように、外装体3の寸法が電極組立体1の初期形状としての矩形状の寸法よりも大きいことに起因する外装体3の余剰部(以下、単に「外装体3の余剰部」という)20が、初期充電工程において、二次電池前駆体50の切り欠き部対応部分10aと同様に、ガスポケットとして機能し得るためである。このとき、外装体3内における電極組立体1の配置は、初期充電工程における充電ムラのさらなる防止および注入工程における電解質の電極組立体へのより効率的な含浸の観点から、外装体3の余剰部20が図3D、図4Dおよび図5Dに示すように平面視において二次電池前駆体50の切り欠き部対応部分10aと連続するような、配置であることが好ましい。このとき、初期充電工程における充電ムラのさらなる防止および注入工程における電解質の電極組立体へのより効率的な含浸の観点から、以下の実施態様n1およびn2がさらに好ましくは、実施態様n2が最も好ましい: The dimension of the exterior body 3 is larger than the rectangular dimension as the initial shape of the electrode assembly 1 from the viewpoint of more sufficiently preventing uneven charging due to bubbles in the entire secondary battery precursor in the initial charging step. It is preferable to have. As shown in FIGS. 3D, 4D, and 5D, a surplus portion of the exterior body 3 (hereinafter, simply referred to as “a” is caused by the fact that the dimension of the exterior body 3 is larger than the rectangular dimension as the initial shape of the electrode assembly 1). This is because the “excess portion of the outer package 3” 20) can function as a gas pocket in the initial charging step, like the notch corresponding portion 10a of the secondary battery precursor 50. At this time, the arrangement of the electrode assembly 1 in the outer package 3 is a surplus of the outer package 3 from the viewpoint of further prevention of charging unevenness in the initial charging process and more efficient impregnation of the electrolyte into the electrode assembly in the injection process. 3D, FIG. 4D, and FIG. 5D, the arrangement is preferably such that the portion 20 is continuous with the notch corresponding portion 10a of the secondary battery precursor 50 in plan view. At this time, from the viewpoint of further preventing uneven charging in the initial charging step and more efficient impregnation of the electrolyte into the electrode assembly in the injection step, the following embodiments n1 and n2 are more preferable, and the embodiment n2 is most preferable. :
(n1)その後注入工程を経て得られた二次電池前駆体を、余剰部20が切り欠き部対応部分10aよりも高位となるように、配置して初期充電する;
(n2)その後注入工程を経て得られた二次電池前駆体を、余剰部20が切り欠き部対応部分10aよりも高位となり、かつ電極組立体1と切り欠き部対応部分10aとの境界11のうち最長線分11xが鉛直方向に略平行になるように、配置して初期充電する。
(N1) The secondary battery precursor obtained through the injection step is then placed and initially charged so that the surplus portion 20 is higher than the notch corresponding portion 10a;
(N2) After that, in the secondary battery precursor obtained through the injection step, the surplus portion 20 is higher than the notch corresponding portion 10a and the boundary 11 between the electrode assembly 1 and the notch corresponding portion 10a. Among them, the longest line segment 11x is arranged so as to be substantially parallel to the vertical direction and is initially charged.
・電解質の外装体への注入工程
 注入工程においては、例えば図1B~図10Bに示すように、電極組立体1が収容された外装体3に注入口から電解質を注入し、外装体3の当該注入口をさらにシールして、二次電池前駆体50を得ることができる。本工程でシールにより形成されるシール部は注入口に位置付けられるため、電解質成分を含有しないシール部であり、「1b」で示される。注入口にたとえ電解質が付着していたとしても、初期充電工程を経るわけではないので、本工程でシールにより形成されるシール部は電解質成分を含有しないシール部である。図1B~図10Bはそれぞれ、本発明の第1実施態様~第10実施態様における二次電池前駆体、当該二次電池前駆体を得るための注入工程および当該二次電池前駆体を用いた初期充電工程を説明するための、二次電池前駆体の模式的平面図である。
-Injection process of electrolyte into outer package In the injection process, for example, as shown in FIGS. 1B to 10B, an electrolyte is injected into the outer package 3 containing the electrode assembly 1 from the injection port, and the outer package 3 The injection port can be further sealed to obtain the secondary battery precursor 50. Since the seal portion formed by the seal in this step is positioned at the injection port, it is a seal portion that does not contain an electrolyte component, and is indicated by “1b”. Even if the electrolyte is attached to the inlet, the initial charging step is not performed, and therefore the seal portion formed by the seal in this step is a seal portion that does not contain an electrolyte component. FIGS. 1B to 10B respectively show the secondary battery precursor, the injection step for obtaining the secondary battery precursor, and the initial stage using the secondary battery precursor in the first to tenth embodiments of the present invention. It is a typical top view of a secondary battery precursor for explaining a charge process.
 注入方法は、電解質の外装体への注入および電解質の電極組立体への含浸が達成される限り特に限定されない。例えば、ノズル等を用いて電解質を外装体内へ誘導する方法等が挙げられる。 The injection method is not particularly limited as long as the injection of the electrolyte into the outer package and the impregnation of the electrolyte into the electrode assembly are achieved. For example, a method of guiding the electrolyte into the exterior body using a nozzle or the like can be mentioned.
 注入口のシールは外装体内部を減圧状態に維持しながら行い、シール部1bを形成することが好ましい。外装体内部からの空気の除去が促進されるためである。 It is preferable that the sealing of the inlet is performed while maintaining the inside of the exterior body in a reduced pressure state to form the seal portion 1b. This is because the removal of air from the inside of the exterior body is promoted.
 注入工程におけるシール方法は収容工程におけるシール方法と同様であってもよい。 The sealing method in the injection process may be the same as the sealing method in the housing process.
 シール時における外装体内部の気圧は通常、1kPa以上20kPa以下の範囲内であり、好ましくは5kPa以上12kPa以下の範囲内である。 The atmospheric pressure inside the outer package at the time of sealing is usually in the range of 1 kPa to 20 kPa, preferably in the range of 5 kPa to 12 kPa.
 このようにして製造された二次電池前駆体50における少なくとも切り欠き部対応部分10a(すなわち、余剰部20が形成されない場合においては切り欠き部対応部分10a;または余剰部20が形成される場合においては切り欠き部対応部分10aおよび余剰部20の合計部分)においては、外装体3を構成する2つのフィルムが、電解質を介してまたは介することなく、相互に離接可能に接触している。従って、二次電池前駆体50における切り欠き部対応部分10aおよび余剰部20には少なくとも外装体3が存在する。 In the secondary battery precursor 50 manufactured in this way, at least the notch corresponding portion 10a (that is, the notch corresponding portion 10a when the surplus portion 20 is not formed; or the surplus portion 20 is formed). In the notch corresponding portion 10a and the surplus portion 20), the two films constituting the outer package 3 are in contact with each other so as to be detachable from each other with or without an electrolyte. Therefore, at least the exterior body 3 is present in the notch corresponding portion 10 a and the surplus portion 20 in the secondary battery precursor 50.
 二次電池前駆体50は側面視において段差部を有していていもよい。段差部とは、側面視において互いに高さの異なる2つの上面により構成され、当該2つの上面の間でそれらの高さが局所的に変化する、上面の不連続部分のことである。側面視とは、対象物(例えば、二次電池前駆体)を載置してその厚み(高さ)方向の真横から見たときの状態のことであり、側面図と同意である。 The secondary battery precursor 50 may have a step portion in a side view. The step portion is a discontinuous portion of the upper surface that is configured by two upper surfaces having different heights in a side view, and the height of the steps locally changes between the two upper surfaces. The side view is a state when an object (for example, a secondary battery precursor) is placed and viewed from the side in the thickness (height) direction, and is in agreement with the side view.
(初期充電工程)
 初期充電工程は、負極表面にSEI被膜を形成することを目的として行われる二次電池前駆体の最初の充電工程であり、初期充電工程、コンディショニング工程またはフォーメーション工程とも呼ばれる。SEI被膜は、本工程において電解質に含まれる添加剤が負極表面で還元分解することにより形成され、二次電池としての使用時における負極表面での当該添加剤のさらなる分解を防止する。SEI被膜は通常、LiF、LiCO、LiOHおよびLiOCOOR(Rは1価有機基、例えば、アルキル基を示す)からなる群から選択される1種以上の物質を含む。このようなSEI被膜が負極表面により均一に形成されることにより、二次電池において電解質成分の分解が防止され、二次電池の容量安定化および長寿命化を達成することができる。
(Initial charging process)
The initial charging step is an initial charging step of the secondary battery precursor performed for the purpose of forming an SEI film on the negative electrode surface, and is also referred to as an initial charging step, a conditioning step, or a formation step. The SEI coating is formed by reducing and decomposing the additive contained in the electrolyte in the present step on the negative electrode surface, and prevents further decomposition of the additive on the negative electrode surface during use as a secondary battery. The SEI coating typically includes one or more materials selected from the group consisting of LiF, Li 2 CO 3 , LiOH, and LiOCOOR (R represents a monovalent organic group such as an alkyl group). By forming such a SEI film uniformly on the negative electrode surface, the decomposition of the electrolyte component in the secondary battery is prevented, and the capacity of the secondary battery can be stabilized and the life can be extended.
 本発明においては、少なくとも切り欠き部対応部分10aを有する二次電池前駆体50(好ましくは切り欠き部対応部分10aおよび余剰部20を有する二次電池前駆体50)を用いて、初期充電を行う。これにより、二次電池前駆体50内において電極組立体で発生するガスを少なくとも切り欠き部対応部分10a(好ましくは切り欠き部対応部分10aおよび余剰部20)に逃がしながら、初期充電を行うことができる。すなわち、二次電池前駆体における少なくとも切り欠き部対応部分10a(好ましくは切り欠き部対応部分10aおよび余剰部20)を、いわゆるガスポケットとして機能させながら、初期充電工程を行う。これにより、初期充電工程において電極組立体で発生するガスは少なくとも切り欠き部対応部分10a(好ましくは切り欠き部対応部分10aおよび余剰部20の合計部分)に捕集される。その結果として当該ガスを、少なくとも切り欠き部対応部分10a(好ましくは切り欠き部対応部分10aおよび余剰部20の合計部分)に逃がすことができる。 In the present invention, initial charging is performed using at least the secondary battery precursor 50 having the notch corresponding portion 10a (preferably the secondary battery precursor 50 having the notch corresponding portion 10a and the surplus portion 20). . Thereby, initial charging can be performed while letting the gas generated in the electrode assembly in the secondary battery precursor 50 escape to at least the notch corresponding part 10a (preferably the notch corresponding part 10a and the surplus part 20). it can. That is, the initial charging step is performed while at least the notch corresponding portion 10a (preferably the notch corresponding portion 10a and the surplus portion 20) of the secondary battery precursor functions as a so-called gas pocket. As a result, the gas generated in the electrode assembly in the initial charging step is collected at least in the notch corresponding portion 10a (preferably the sum of the notch corresponding portion 10a and the surplus portion 20). As a result, the gas can be released to at least the notch corresponding portion 10a (preferably the total portion of the notch corresponding portion 10a and the surplus portion 20).
 本工程においては、二次電池前駆体50の配置は特に制限されず、二次電池前駆体50が水平面に載置された状態で初期充電を行ってもよい。載置は、対象物(例えば、二次電池前駆体)の外観を構成する最大面積の面(平面)を底面にした載置である。初期充電工程における充電ムラのさらなる防止の観点からは、二次電池前駆体50における欠落部30(少なくとも切り欠き部対応部分10a、好ましくは切り欠き部対応部分10aおよび余剰部20)が他の部分よりも比較的高位となるように、当該二次電池前駆体50を配置して初期充電を行うことが好ましい。初期充電工程における二次電池前駆体50の上記のような配置により、二次電池前駆体50の欠落部30(少なくとも切り欠き部対応部分10a、好ましくは切り欠き部対応部分10aおよび余剰部20)がガスポケットとしてより十分に機能するようになる。その結果、負極表面の全面にわたって、気泡による充電ムラがより十分に防止される。 In this step, the arrangement of the secondary battery precursor 50 is not particularly limited, and initial charging may be performed in a state where the secondary battery precursor 50 is placed on a horizontal plane. The placement is placement with the surface (plane) having the maximum area constituting the appearance of the object (for example, the secondary battery precursor) as the bottom surface. From the viewpoint of further preventing uneven charging in the initial charging step, the missing portion 30 (at least the notch corresponding portion 10a, preferably the notch corresponding portion 10a and the surplus portion 20) of the secondary battery precursor 50 is another portion. It is preferable to arrange the secondary battery precursor 50 and perform initial charging so as to be relatively higher than that. Due to the above arrangement of the secondary battery precursor 50 in the initial charging step, the missing portion 30 (at least the notch corresponding portion 10a, preferably the notch corresponding portion 10a and the surplus portion 20) of the secondary battery precursor 50. Will function more fully as a gas pocket. As a result, charging unevenness due to bubbles is more sufficiently prevented over the entire surface of the negative electrode surface.
 詳しくは、二次電池前駆体50を、平面視において当該二次電池前駆体50の外縁を構成する辺(例えば4つの辺)のうち、欠落工程の欠落部30を規定しない辺または欠落部30を規定する辺を最小に含む辺が他の辺よりも低位となるように、配置させる。二次電池前駆体50の外縁を構成する辺は、二次電池前駆体50の平面図を示す図1B~図10B(以下、辺について当該図を参照のこと)に示すような辺50a~50fのことである。欠落部30を規定しない辺とは、二次電池前駆体50の外縁を構成する辺のうち、欠落部30の外縁を規定する辺を含まない辺のことであり、例えば、辺50a、50bが挙げられる。欠落部30を規定する辺を最小に含む辺とは、二次電池前駆体50の外縁を構成する辺のうち、欠落部30の外縁を規定する辺を一部に含むものの、その長さの比率(当該辺の全長に対する比率)が最小である辺のことであり、例えば、辺50cが挙げられる。最小とは、当該二次電池前駆体50の外縁を構成する辺の中での最小である。 Specifically, the side or missing part 30 of the secondary battery precursor 50 that does not define the missing part 30 of the missing process among the sides (for example, four sides) constituting the outer edge of the secondary battery precursor 50 in plan view. Are arranged so that the side including the side defining the minimum is lower than the other sides. Sides constituting the outer edge of the secondary battery precursor 50 are sides 50a to 50f as shown in FIGS. 1B to 10B (hereinafter, refer to the drawings for the sides) showing the plan views of the secondary battery precursor 50. That is. The side that does not define the missing portion 30 is a side that does not include the side that defines the outer edge of the missing portion 30 among the sides that constitute the outer edge of the secondary battery precursor 50. For example, the sides 50a and 50b include Can be mentioned. The side that includes the side that defines the missing part 30 at a minimum includes the side that defines the outer edge of the missing part 30 among the sides that constitute the outer edge of the secondary battery precursor 50, but the length of the side. The side having the smallest ratio (ratio to the total length of the side) is, for example, the side 50c. The minimum is the minimum among the sides constituting the outer edge of the secondary battery precursor 50.
 例えば、二次電池前駆体50が、平面視において、当該二次電池前駆体50の外縁を構成する辺として、欠落工程の欠落部30を規定しない辺を有する場合、図1B~図3Bおよび図5B~図10Bに示すように、当該欠落部30を規定しない辺が他の辺よりも低位となるように配置させる。このような場合において、二次電池前駆体50が欠落工程の欠落部30を規定しない辺を2つ以上有するとき、初期充電工程における充電ムラのさらなる防止と注入工程における電解質の電極組立体へのより効率的な含浸とのバランスの観点から、図1B~図3B、図5B、および図7B~図10Bに示すように、当該欠落部30を規定しない辺のうち最も短い辺が他の辺よりも低位となるように配置させることが好ましい。上記した注入工程で得られた二次電池前駆体は当該注入工程での配置(配向)でそのまま初期充電工程に供されるためである。 For example, when the secondary battery precursor 50 has a side that does not define the missing portion 30 of the missing step as a side constituting the outer edge of the secondary battery precursor 50 in plan view, FIG. 1B to FIG. 3B and FIG. As shown in FIGS. 5B to 10B, the side where the missing portion 30 is not defined is arranged so as to be lower than the other sides. In such a case, when the secondary battery precursor 50 has two or more sides that do not define the missing part 30 of the missing process, further prevention of uneven charging in the initial charging process and application of the electrolyte to the electrode assembly in the injection process From the viewpoint of a balance with more efficient impregnation, as shown in FIGS. 1B to 3B, FIG. 5B, and FIGS. 7B to 10B, the shortest side among the sides not defining the missing portion 30 is more than the other sides. Is preferably arranged so as to be low. This is because the secondary battery precursor obtained in the above-described injection step is used for the initial charging step as it is in the arrangement (orientation) in the injection step.
 また例えば、二次電池前駆体50が、平面視において、当該二次電池前駆体50の外縁を構成する辺として、欠落工程の欠落部30を規定しない辺を有さない場合、図4Bに示すように、当該欠落部30を規定する辺を最小に含む辺が他の辺よりも低位となるように配置させる。 Further, for example, when the secondary battery precursor 50 does not have a side that does not define the missing portion 30 of the missing step as a side constituting the outer edge of the secondary battery precursor 50 in a plan view, as shown in FIG. 4B. As described above, the side including the side defining the missing portion 30 at the minimum is arranged so as to be lower than the other sides.
 なお、例えば二次電池前駆体50の外縁を構成する1つの辺pが他の辺よりもより低位となるように配置させるとは、当該辺pを、水平面に平行で、かつ他の辺よりも最下位に位置付けて、二次電池前駆体50を少なくとも傾斜させ、好ましくは直立させて、立設するという意味である。 For example, arranging one side p constituting the outer edge of the secondary battery precursor 50 to be lower than the other side means that the side p is parallel to the horizontal plane and from the other side. Is positioned at the lowest position, meaning that the secondary battery precursor 50 is at least inclined, preferably upright, and erected.
 本発明において初期充電は通常、二次電池前駆体を拘束しながら行うことが好ましい。拘束は、二次電池前駆体にとって、圧力による外界からの締め付けであり、換言すれば、二次電池前駆体表面への加圧であるので、広義には、“締め付け”または“加圧”と言うこともできる。 In the present invention, the initial charging is usually preferably performed while restraining the secondary battery precursor. Since the restraint is tightening from the outside by pressure for the secondary battery precursor, in other words, pressurization to the surface of the secondary battery precursor, in a broad sense, “tightening” or “pressurization”. I can also say.
 二次電池前駆体の拘束方法は、二次電池前駆体内の電極組立体の積層方向(厚み方向)での加圧が達成される限り特に限定されず、例えば、図11に示すように拘束治具を用いる方法が挙げられる。詳しくは、図11に示すように、拘束治具200により、二次電池前駆体50における電極の厚み方向zで拘束力を付与することにより二次電池前駆体50を拘束しながら、初期充電を行う。このような方法によれば、二次電池前駆体50の電極表面において気泡の付着がより一層、防止され、均一な厚みのSEI被膜の形成が促進される。拘束治具200は、ボルト201の回転により、z方向の拘束力を可動板202と固定板203との間で、拘束板205を介して、1以上の二次電池前駆体50に対して付与するようになっている。 The method for constraining the secondary battery precursor is not particularly limited as long as pressurization in the stacking direction (thickness direction) of the electrode assembly in the secondary battery precursor is achieved. For example, as shown in FIG. A method using tools is mentioned. Specifically, as shown in FIG. 11, initial charging is performed while restraining the secondary battery precursor 50 by applying a restraining force in the thickness direction z of the electrode in the secondary battery precursor 50 by the restraining jig 200. Do. According to such a method, bubbles are further prevented from adhering to the electrode surface of the secondary battery precursor 50, and the formation of the SEI film having a uniform thickness is promoted. The restraining jig 200 applies a restraining force in the z direction to the one or more secondary battery precursors 50 via the restraining plate 205 between the movable plate 202 and the fixed plate 203 by the rotation of the bolt 201. It is supposed to be.
 拘束力(すなわち二次電池前駆体表面への圧力)は、本工程で発生するガスの負極表面への付着が防止される限り特に限定されず、通常は大気圧よりも高い圧力である。詳しくは、拘束力は通常、0.1MPa以上1.0MPa以下の範囲内であり、ガスの負極表面への付着のさらなる防止の観点から好ましくは0.1MPa以上0.5MPa以下の範囲内である。 The binding force (that is, the pressure on the surface of the secondary battery precursor) is not particularly limited as long as the gas generated in this step is prevented from adhering to the negative electrode surface, and is usually a pressure higher than atmospheric pressure. Specifically, the binding force is usually in the range of 0.1 MPa or more and 1.0 MPa or less, and preferably in the range of 0.1 MPa or more and 0.5 MPa or less from the viewpoint of further preventing the gas from adhering to the negative electrode surface. .
 本工程において二次電池前駆体は、ガスの負極表面への付着のさらなる防止の観点から25℃以上100℃以下の範囲内の温度に維持されることが好ましく、より好ましくは35℃以上90℃以下の範囲内、さらに好ましくは40℃以上85℃以下の温度に維持される。詳しくは、本工程で二次電池前駆体が配置される周囲(雰囲気)の温度が上記範囲内に維持されればよい。 In this step, the secondary battery precursor is preferably maintained at a temperature in the range of 25 ° C. or higher and 100 ° C. or lower, more preferably 35 ° C. or higher and 90 ° C., from the viewpoint of further preventing gas from adhering to the negative electrode surface. It is maintained at a temperature within the following range, more preferably 40 ° C. or more and 85 ° C. or less. Specifically, the ambient (atmosphere) temperature where the secondary battery precursor is arranged in this step may be maintained within the above range.
 本工程では、上記のように、二次電池前駆体50内において電極組立体で発生するガスを少なくともその切り欠き部(切り欠き部対応部分10a、好ましくは切り欠き部対応部分10aおよび余剰部20)に逃がしながら、初期充電を行う。初期充電工程では、充電を少なくとも1回行えばよい。通常は1回以上の充放電を行う。1回の充放電は、1回の充電およびその後の1回の放電を含む。充放電を2回以上行う場合、充電-放電を当該回数だけ繰り返す。発生ガスを逃がしながら行う初期充電は少なくとも1回目の充電の間中、行えばよく、好ましくは全ての充放電の間中、行う。 In this step, as described above, the gas generated in the electrode assembly in the secondary battery precursor 50 is at least a notch portion (notch portion corresponding portion 10a, preferably notch portion corresponding portion 10a and surplus portion 20). ) To perform initial charging. In the initial charging step, charging may be performed at least once. Usually, charge and discharge is performed at least once. One charge / discharge includes one charge and one subsequent discharge. If charging / discharging is performed twice or more, the charging-discharging is repeated the corresponding number of times. The initial charging performed while releasing the generated gas may be performed at least during the first charging, and is preferably performed during all charging and discharging.
 充電方法は、定電流充電方法または定電圧充電方法であっても、またはこれらの組み合わせであってもよい。例えば、一度の充電の間に定電圧充電と定電圧充電を繰り返してもよい。充電条件は、SEI被膜が形成される限り特に限定されない。SEI被膜の厚みの均一性のさらなる向上の観点からは、定電流充電を行った後、定電圧充電を行うことが好ましい。定電流充電を行った後、定電圧充電を行う場合、SEI被膜厚みの均一性のさらなる向上の観点から、以下の充電条件を採用することが好ましい。なお、充電時の温度は、上記した二次電池前駆体の温度と同様の範囲内であればよい。 The charging method may be a constant current charging method or a constant voltage charging method, or a combination thereof. For example, constant voltage charging and constant voltage charging may be repeated during one charge. The charging conditions are not particularly limited as long as the SEI film is formed. From the viewpoint of further improving the uniformity of the thickness of the SEI film, it is preferable to perform constant voltage charging after performing constant current charging. When performing constant voltage charging after performing constant current charging, it is preferable to employ the following charging conditions from the viewpoint of further improving the uniformity of the SEI film thickness. In addition, the temperature at the time of charge should just be in the range similar to the temperature of the above-mentioned secondary battery precursor.
 定電流充電方法:
 0.01CA以上3CA以下、特に0.05CA以上2CA以下の一定の電流値で1V以上6V以下、特に3V以上5V以下の電圧値になるまで定電流充電を行う。ここで、1CAとはその二次電池の定格容量を1時間で放電する時の電流値のことである。
 定電圧充電方法:
 定電流充電により達成された電圧値で、定電流充電時の一定の電流値よりも小さい所定の値になるまで、または一定時間が経過するまで定電圧充電を行う。
Constant current charging method:
Constant current charging is performed until a voltage value of 1 V or more and 6 V or less, particularly 3 V or more and 5 V or less at a constant current value of 0.01 CA or more and 3 CA or less, particularly 0.05 CA or more and 2 CA or less. Here, 1CA is a current value when the rated capacity of the secondary battery is discharged in 1 hour.
Constant voltage charging method:
The constant voltage charging is performed until the voltage value achieved by the constant current charging reaches a predetermined value smaller than the constant current value at the time of constant current charging or until a predetermined time elapses.
 放電方法は通常、定電流放電方法または定電圧放電方法であっても、またはこれらの組み合わせであってもよい。放電条件は、SEI被膜が形成される限り特に限定されない。SEI被膜の厚みの均一性のさらなる向上の観点からは、定電流放電を行うことが好ましい。定電流放電を行う場合、SEI被膜厚みの均一性のさらなる向上の観点から、以下の放電条件を採用することが好ましい。なお、放電時の温度は、上記した二次電池前駆体の温度と同様の範囲内であってもよいし、充電時よりも低い温度であってもよい。 The discharge method may be a constant current discharge method, a constant voltage discharge method, or a combination thereof. The discharge conditions are not particularly limited as long as the SEI film is formed. From the viewpoint of further improving the uniformity of the thickness of the SEI film, it is preferable to perform constant current discharge. When performing constant current discharge, it is preferable to employ the following discharge conditions from the viewpoint of further improving the uniformity of the SEI film thickness. In addition, the temperature at the time of discharge may be in the same range as the temperature of the secondary battery precursor described above, or may be a temperature lower than that at the time of charging.
 定電流放電方法:
 0.1CA以上3CA以下、特に0.2CA以上2CA以下の一定の電流値で1V以上4V以下、特に2V以上3.5V以下の電圧値になるまで定電流放電を行う。
Constant current discharge method:
Constant current discharge is performed at a constant current value of 0.1 CA or more and 3 CA or less, particularly 0.2 CA or more and 2 CA or less until a voltage value of 1 V or more and 4 V or less, particularly 2 V or more and 3.5 V or less.
 これらの充放電は後述の2つの外部端子を用いて行えばよい。 These charging / discharging may be performed using two external terminals described later.
(欠落工程)
 初期充電工程の後、通常は欠落工程を行う。欠落工程では、図1C~図10Cに示すように、平面視おいて、二次電池前駆体50における少なくとも切り欠き部10と電極組立体1との境界をシールする。本工程においてシールを行う境界は通常、欠落部30が切り欠き部対応部分10aのみからなる場合には当該切り欠き部対応部分10aと電極組立体1との境界であり、欠落部30が切り欠き部対応部分10aおよび余剰部20からなる場合にはそれらの合計部分と電極組立体1との境界である。本工程において、二次電池前駆体50の欠落部30と電極組立体1との境界近傍は外装体3を構成する2枚のシートおよび当該2枚のシート間にある電解質を含むため、上記シールにより形成されるシール部には電解質成分が含まれる。このように電解質成分を含有するシール部を「第1シール部」と呼ぶものとし、図中、符号「1c」で示す。
(Missing process)
After the initial charging process, a missing process is usually performed. In the missing step, as shown in FIGS. 1C to 10C, at least the boundary between the notch 10 and the electrode assembly 1 in the secondary battery precursor 50 is sealed in plan view. The boundary for performing sealing in this step is normally the boundary between the notch corresponding part 10a and the electrode assembly 1 when the missing part 30 is composed of only the notch corresponding part 10a, and the missing part 30 is notched. In the case of the portion corresponding portion 10 a and the surplus portion 20, it is a boundary between the total portion and the electrode assembly 1. In this step, since the vicinity of the boundary between the missing part 30 of the secondary battery precursor 50 and the electrode assembly 1 includes two sheets constituting the outer package 3 and the electrolyte between the two sheets, the seal An electrolyte component is contained in the seal portion formed by the above. Thus, the seal part containing the electrolyte component is referred to as a “first seal part”, and is denoted by reference numeral “1c” in the drawing.
 欠落工程におけるシール方法は収容工程におけるシール方法と同様であってもよい。 The sealing method in the missing step may be the same as the sealing method in the housing step.
 本工程においてシールを行った後は通常、二次電池前駆体50における少なくとも切り欠き部10を欠落させて、二次電池100を得る。本工程において欠落させる部分は通常、欠落部30が切り欠き部対応部分10aのみからなる場合には当該切り欠き部対応部分10aであり、欠落部30が切り欠き部対応部分10aおよび余剰部20からなる場合にはそれらの合計部分である。 After the sealing is performed in this step, the secondary battery 100 is usually obtained by removing at least the notch 10 in the secondary battery precursor 50. The part to be lost in this step is normally the notch corresponding part 10a when the missing part 30 is composed of only the notch corresponding part 10a, and the missing part 30 is from the notch corresponding part 10a and the surplus part 20. Is the sum of those parts.
 欠落方法は、得られる二次電池100からの電解質の漏出が起こらない限り特に限定されず、例えば、カッター等によりカットする方法が挙げられる。 The omission method is not particularly limited as long as electrolyte leakage from the obtained secondary battery 100 does not occur, and examples thereof include a method of cutting with a cutter or the like.
(エージング工程)
 エージング工程を行ってもよい。エージング工程の実施時期は欠落工程の後であってもよいし、または初期充電工程の後であって欠落工程の前であってもよい。好ましくは初期充電工程を行った後、エージング工程および欠落工程をこの順序で行う。エージング工程は初期充電工程後の二次電池を開回路状態で放置することでSEI被膜を安定化させる工程である。エージング工程は熟成工程とも呼ばれる。
(Aging process)
An aging process may be performed. The aging process may be performed after the missing process, or after the initial charging process and before the missing process. Preferably, after the initial charging step, the aging step and the missing step are performed in this order. The aging process is a process of stabilizing the SEI film by leaving the secondary battery after the initial charging process in an open circuit state. The aging process is also called an aging process.
 エージング工程において二次電池の温度は特に限定されず、例えば15℃以上80℃以下の範囲内に維持されてもよい。二次電池は、SEI被膜のさらなる安定化の観点から20℃以上70℃以下の範囲内の温度に維持されることが好ましく、より好ましくは25℃以上60℃以下の温度に維持される。詳しくは、二次電池を一定温度に設定された空間に放置することで温度を上記範囲内に維持することができる。 In the aging process, the temperature of the secondary battery is not particularly limited, and may be maintained within a range of 15 ° C. or more and 80 ° C. or less, for example. The secondary battery is preferably maintained at a temperature in the range of 20 ° C. or more and 70 ° C. or less, more preferably 25 ° C. or more and 60 ° C. or less, from the viewpoint of further stabilization of the SEI coating. Specifically, the temperature can be maintained within the above range by leaving the secondary battery in a space set at a constant temperature.
 エージング工程において放置時間はSEI被膜の安定化が促進される限り特に限定されず、通常は1時間以上30日以下であり、上記SEI被膜のさらなる安定化の観点から好ましくは5時間以上14日以下の範囲内であり、より好ましくは10時間以上7日以下の範囲内である。 The standing time in the aging step is not particularly limited as long as the stabilization of the SEI film is promoted, and is usually 1 hour or more and 30 days or less, and preferably 5 hours or more and 14 days or less from the viewpoint of further stabilization of the SEI film. More preferably, it is in the range of 10 hours or more and 7 days or less.
[二次電池]
 本発明の二次電池100においては、上記した方法において欠落工程でシールした後、欠落部30を欠落させることにより製造される。このため、二次電池100は、図1C~図10Cに示すように、平面視において、二次電池100の外縁を構成する辺のうち、切り欠き部10と隣接する辺Aの少なくとも一部に、電解質成分を含有する第1シール部1cを有する。このことは、二次電池が切り欠き部を有する場合、二次電池の二次電池前駆体を初期充電に供した後、シールし、少なくとも切り欠き部対応部分を欠落させたことを意味する。従って、初期充電工程において二次電池前駆体の切り欠き部対応部分はガスポケットとして機能している。辺Aは、切り欠き部10の平面視形状に対応するものであり、例えば、直線形態を有していてもよし、曲線形態を有していてもよいし、またはこれらの混合形態を有していてもよい。辺Aは連続する2本以上の辺で形成されていてもよく、各辺は独立して選択された上記形態を有していてもよい。連続する2本の直線形態の辺はそれらの間に角度が形成されることにより区別されてよい。当該角度は当該2本の直線形状の辺により形成される角度のうち小さい方の角度である。当該角度は0°超180°未満であってよく、通常は30°以上150°以下、特に60°以上120°以下である。連続する2本の曲線形態の辺はそれらの間に変曲点が形成されることにより区別されてよい。連続する1本の直線形態の辺と1本の曲線形態の辺とは、明らかに判別される直線形態と曲線形態との境界より区別されてよい。
[Secondary battery]
The secondary battery 100 of the present invention is manufactured by removing the missing portion 30 after sealing in the missing step in the above-described method. Therefore, as shown in FIGS. 1C to 10C, the secondary battery 100 has at least a part of the side A adjacent to the notch 10 in the sides constituting the outer edge of the secondary battery 100 in a plan view. The first seal portion 1c containing an electrolyte component is included. This means that when the secondary battery has a notch, the secondary battery precursor of the secondary battery was subjected to initial charging and then sealed, and at least the notch corresponding part was missing. Therefore, the portion corresponding to the notch portion of the secondary battery precursor functions as a gas pocket in the initial charging step. The side A corresponds to the planar view shape of the notch 10 and may have, for example, a straight line shape, a curved line shape, or a mixed form thereof. It may be. The side A may be formed by two or more continuous sides, and each side may have the above-mentioned form selected independently. Two consecutive straight-form sides may be distinguished by forming an angle between them. The angle is the smaller of the angles formed by the two linear sides. The angle may be greater than 0 ° and less than 180 °, usually 30 ° to 150 °, particularly 60 ° to 120 °. Two consecutive curved edges may be distinguished by forming an inflection point between them. One continuous straight line side and one curved line side may be distinguished from the boundary between the straight line form and the curved line that are clearly distinguished.
 例えば、図1C~図6Cに示すように、二次電池100は、切り欠き部10と隣接する辺Aの全部に、第1シール部1cを有してもよい。 For example, as shown in FIGS. 1C to 6C, the secondary battery 100 may have the first seal portion 1c on the entire side A adjacent to the notch portion.
 また例えば、図7C~図10Cに示すように、二次電池100は、切り欠き部10と隣接する辺Aの一部に、第1シール部1cを有してもよい。 For example, as shown in FIGS. 7C to 10C, the secondary battery 100 may have a first seal portion 1c in a part of the side A adjacent to the notch portion 10.
 二次電池100は、初期充電工程における充電ムラのより十分な防止に基づくより均一な厚みのSEI被膜の形成の観点から、例えば図3C~図5Cおよび図9Cに示すように、二次電池の外縁を構成する辺のうち、辺Aと連続する辺Bに、第1シール部1cを有することが好ましい。辺Bにおける第1シール部1cの存在は二次電池前駆体50における余剰部の存在を示し、当該余剰部がガスポケットとして機能することにより、初期充電工程における充電ムラがより十分に防止されるためである。二次電池が第1シール部1cを有する辺Bは、辺Aと連続する2つの辺Bのうち、少なくとも1つの辺B、通常は1つの辺Bであってもよい。二次電池が第1シール部1cを有する辺Bは、その一部として、第1シール部1cを有していてもよいし、またはその全体(全部)として第1シール部1cを有していてもよく、好ましくはその全体(全部)として第1シール部1cを有している。二次電池100においては、より一層、均一な厚みのSEI被膜の形成の観点から、例えば図3C~図5Cに示すように、辺Aの第1シール部1cと、辺Bの第1シール部1cとが連続していることが好ましい。 From the viewpoint of forming a SEI film having a more uniform thickness based on the sufficient prevention of charging unevenness in the initial charging process, the secondary battery 100 includes, for example, a secondary battery as shown in FIGS. 3C to 5C and 9C. It is preferable to have the 1st seal | sticker part 1c in the edge | side B which continues the edge | side A among the edges which comprise an outer edge. The presence of the first seal portion 1c on the side B indicates the presence of a surplus portion in the secondary battery precursor 50, and the surplus portion functions as a gas pocket, whereby charging unevenness in the initial charging step is more sufficiently prevented. Because. The side B having the first seal portion 1c of the secondary battery may be at least one side B, usually one side B, of the two sides B continuous with the side A. The side B where the secondary battery has the first seal portion 1c may have the first seal portion 1c as a part thereof, or the first seal portion 1c as a whole (all). Preferably, it has the 1st seal | sticker part 1c as the whole (all). In the secondary battery 100, from the viewpoint of forming an SEI film having a more uniform thickness, for example, as shown in FIGS. 3C to 5C, the first seal portion 1c on the side A and the first seal portion on the side B It is preferable that 1c is continuous.
 例えば、二次電池100は、図3C~図5Cおよび図9Cに示すように、辺Aと連続する辺Bのうち、1つの辺の全部に、第1シール部1cを有してもよい。このとき、より一層、均一な厚みのSEI被膜の形成の観点から、例えば図3C~図5Cに示すように、辺Aの第1シール部と、辺Bの第1シール部とが連続していることが好ましい。 For example, as shown in FIGS. 3C to 5C and FIG. 9C, the secondary battery 100 may include the first seal portion 1c on one of the sides B that are continuous with the side A. At this time, from the viewpoint of forming the SEI film having a more uniform thickness, for example, as shown in FIGS. 3C to 5C, the first seal portion on the side A and the first seal portion on the side B are continuously formed. Preferably it is.
 二次電池100は、初期充電工程における充電ムラのより十分な防止に基づくより均一な厚みのSEI被膜の形成の観点から、例えば図4Cに示すように、二次電池の外縁を構成する辺のうち、辺Bとさらに連続する辺Cに、第1シール部1cを有することが好ましい。辺Cにおける第1シール部1cの存在は二次電池前駆体50における余剰部の存在を示し、当該余剰部がガスポケットとして機能することにより、初期充電工程における充電ムラがより十分に防止されるためである。二次電池が第1シール部1cを有する辺Cは、その一部として、第1シール部1cを有していてもよいし、またはその全体(全部)として第1シール部1cを有していてもよく、好ましくはその全体(全部)として第1シール部1cを有している。二次電池100においては、より一層、均一な厚みのSEI被膜の形成の観点から、例えば図4Cに示すように、辺Bの第1シール部1cと、辺Cの第1シール部1cとが連続していることが好ましい。 From the viewpoint of forming a SEI film having a more uniform thickness based on a sufficient prevention of charging unevenness in the initial charging process, the secondary battery 100 has a side that constitutes the outer edge of the secondary battery as shown in FIG. 4C, for example. Of these, it is preferable to have the first seal portion 1 c on the side C further continuous with the side B. The presence of the first seal portion 1c in the side C indicates the presence of a surplus portion in the secondary battery precursor 50, and the surplus portion functions as a gas pocket, whereby charging unevenness in the initial charging process is more sufficiently prevented. Because. The side C where the secondary battery has the first seal portion 1c may have the first seal portion 1c as a part thereof, or the first seal portion 1c as a whole (all). Preferably, it has the 1st seal | sticker part 1c as the whole (all). In the secondary battery 100, from the viewpoint of forming a SEI film having a more uniform thickness, for example, as shown in FIG. 4C, the first seal portion 1c on the side B and the first seal portion 1c on the side C are provided. It is preferable that it is continuous.
 例えば、二次電池100は、図4Cに示すように、辺Bと連続する1つの辺Cの全部に、第1シール部1cを有してもよい。このとき、より一層、均一な厚みのSEI被膜の形成の観点から、例えば図4Cに示すように、辺Bの第1シール部と、辺Cの第1シール部とが連続していることが好ましい。 For example, as shown in FIG. 4C, the secondary battery 100 may have the first seal portion 1 c on all of one side C continuous with the side B. At this time, from the viewpoint of forming the SEI film having a more uniform thickness, for example, as shown in FIG. 4C, the first seal portion on the side B and the first seal portion on the side C are continuous. preferable.
 二次電池100は通常、例えば図1c~図10cに示すように、二次電池の外縁を構成する辺のうち、第1シール部1cを有する部分以外の部分に、電解質成分を含有しない第2シール部1a、1bを有している。 As shown in FIGS. 1c to 10c, for example, the secondary battery 100 normally includes a second part that does not contain an electrolyte component in a part other than the part having the first seal portion 1c among the sides constituting the outer edge of the secondary battery. It has seal parts 1a and 1b.
 二次電池100は、注入工程における電極組立体の安定性のさらなる向上に基づくより一層、均一な厚みのSEI被膜の形成の観点から、図7C~図10Cに示すように、二次電池の外縁を構成する辺のうち、辺Aの一部に、電解質成分を含有しない第2シール部1aを有していることが好ましい。 The secondary battery 100 has an outer edge of the secondary battery as shown in FIGS. 7C to 10C from the viewpoint of forming a SEI film having a more uniform thickness based on further improvement of the stability of the electrode assembly in the injection process. It is preferable to have the 2nd seal | sticker part 1a which does not contain an electrolyte component in a part of edge | side A among the edges which comprise.
 このとき、辺Aが複数の線分により規定される場合、例えば、(p1)図7C~図9Cに示すように、当該複数の線分のうち、1つの線分の少なくとも一部に第2シール部1aを有してもよいし、または(p2)図10Cに示すように、当該複数の線分のうち、2つの線分のそれぞれの一部に第2シール部1aを有してもよい。二次電池100は、より一層、均一な厚みのSEI被膜の形成の観点から、上記(p1)の実施態様が好ましい。同様の観点から、上記(p1)の実施態様の中でも、図7Cおよび図9Cに示すように、当該複数の線分のうち、1つの最長線分の少なくとも一部に第2シール部1aを有することがより好ましい。 At this time, when the side A is defined by a plurality of line segments, for example, as shown in (p1) FIG. 7C to FIG. The seal portion 1a may be included, or (p2) the second seal portion 1a may be provided in a part of each of the two line segments as shown in FIG. 10C. Good. From the viewpoint of forming a SEI film having a uniform thickness, the embodiment (p1) is preferable for the secondary battery 100. From the same viewpoint, among the embodiments of (p1) above, as shown in FIGS. 7C and 9C, the second seal portion 1a is provided on at least a part of one longest line segment among the plurality of line segments. It is more preferable.
 二次電池100においては、上記したように、第1シール部1cは電解質成分を含有し、第2シール部1a、1bは電解質成分を含有しない。第1シール部1cは電解質成分を含有するとは、第1シール部1cを構成する2つの外装体シートの間に電解質成分が含有および挟持されているという意味である。第1シール部1cにおいては、例えば、2つの外装体シート間にある封止(接着)のための溶融成分(接着成分)(フレキシブルパウチの場合)または溶融(金属)成分(ハードケースの場合)中に電解質成分が含有されている。第2シール部1a、1bは電解質成分を含有しないとは、第2シール部1a、1bを構成する2つの外装体シートの間に電解質成分が含有されていないという意味であるが、厳密に含有されていないというわけではなく、第1シール部1cと比較すると、相対的にほとんど含有されていないという意味である。 In the secondary battery 100, as described above, the first seal portion 1c contains an electrolyte component, and the second seal portions 1a and 1b do not contain an electrolyte component. The phrase “the first seal portion 1c contains an electrolyte component” means that the electrolyte component is contained and sandwiched between two exterior body sheets constituting the first seal portion 1c. In the first seal portion 1c, for example, a molten component (adhesive component) (for a flexible pouch) or a molten (metal) component (for a hard case) for sealing (adhesion) between two exterior body sheets. An electrolyte component is contained therein. The fact that the second seal part 1a, 1b does not contain an electrolyte component means that no electrolyte component is contained between the two exterior body sheets constituting the second seal part 1a, 1b, but strictly contains It does not mean that it is not made, but means that it is relatively hardly contained as compared with the first seal part 1c.
 電解質成分の含有状態は、シール部の溶融成分を元素分析に供することにより確認できる。例えば、融着成分(接着成分)中における全原子の量(数)に対する電解質成分由来の原子(例えば、Li原子、F原子、P原子およびB原子)の合計量(合計数)の割合Rを求める。例えば、第2シール部1a、1bにおける当該割合Rは通常、第1シール部1cにおける当該割合Rの5分の1以下、特に10分の1以下である。 The content of the electrolyte component can be confirmed by subjecting the molten component in the seal portion to elemental analysis. For example, the ratio R of the total amount (total number) of atoms (for example, Li atom, F atom, P atom and B atom) derived from the electrolyte component to the amount (number) of all atoms in the fusion component (adhesion component) Ask. For example, the ratio R in the second seal portions 1a and 1b is usually 1/5 or less, particularly 1/10 or less, of the ratio R in the first seal portion 1c.
[二次電池の構成部材]
 正極は少なくとも正極材層および正極集電体(箔)から構成されており、正極集電体の少なくとも片面に正極材層が設けられていればよい。例えば、正極は、正極集電体の両面に正極材層が設けられていてもよいし、または正極集電体の片面に正極材層が設けられていてもよい。二次電池のさらなる高容量化の観点から好ましい正極は正極集電体の両面に正極材層が設けられている。正極材層には正極活物質が含まれている。
[Components of secondary battery]
The positive electrode is composed of at least a positive electrode material layer and a positive electrode current collector (foil), and it is sufficient that the positive electrode material layer is provided on at least one surface of the positive electrode current collector. For example, in the positive electrode, a positive electrode material layer may be provided on both surfaces of the positive electrode current collector, or a positive electrode material layer may be provided on one surface of the positive electrode current collector. A positive electrode preferable from the viewpoint of further increasing the capacity of the secondary battery is provided with a positive electrode material layer on both surfaces of the positive electrode current collector. The positive electrode material layer contains a positive electrode active material.
 負極は少なくとも負極材層および負極集電体(箔)から構成されており、負極集電体の少なくとも片面に負極材層が設けられていればよい。例えば、負極は、負極集電体の両面に負極材層が設けられていてもよいし、または負極集電体の片面に負極材層が設けられていてもよい。二次電池のさらなる高容量化の観点から好ましい負極は負極集電体の両面に負極材層が設けられている。負極材層には負極活物質が含まれている。 The negative electrode is composed of at least a negative electrode material layer and a negative electrode current collector (foil), and it is sufficient that the negative electrode material layer is provided on at least one surface of the negative electrode current collector. For example, in the negative electrode, a negative electrode material layer may be provided on both surfaces of the negative electrode current collector, or a negative electrode material layer may be provided on one surface of the negative electrode current collector. A negative electrode preferable from the viewpoint of further increasing the capacity of the secondary battery is provided with a negative electrode material layer on both surfaces of the negative electrode current collector. The negative electrode material layer contains a negative electrode active material.
 正極材層に含まれる正極活物質および負極材層に含まれる負極活物質は、二次電池において電子の受け渡しに直接関与する物質であり、充放電、すなわち電池反応を担う正負極の主物質である。より具体的には、「正極材層に含まれる正極活物質」および「負極材層に含まれる負極活物質」に起因して電解質にイオンがもたらされ、かかるイオンが正極と負極との間で移動して電子の受け渡しが行われて充放電がなされる。後述でも触れるが、正極材層および負極材層は特にリチウムイオンを吸蔵放出可能な層であることが好ましい。つまり、電解質を介してリチウムイオンが正極と負極との間で移動して電池の充放電が行われる二次電池が好ましい。充放電にリチウムイオンが関与する場合、本発明に係る二次電池は、いわゆる“リチウムイオン電池”に相当する。 The positive electrode active material included in the positive electrode material layer and the negative electrode active material included in the negative electrode material layer are materials directly involved in the transfer of electrons in the secondary battery, and are the main materials of the positive and negative electrodes that are responsible for charge / discharge, that is, the battery reaction. is there. More specifically, ions are brought into the electrolyte due to the “positive electrode active material included in the positive electrode material layer” and the “negative electrode active material included in the negative electrode material layer”, and the ions are interposed between the positive electrode and the negative electrode. Then, the electrons are transferred and the electrons are delivered and charged and discharged. As will be described later, the positive electrode material layer and the negative electrode material layer are particularly preferably layers capable of occluding and releasing lithium ions. That is, a secondary battery in which lithium ions move between the positive electrode and the negative electrode through the electrolyte to charge and discharge the battery is preferable. When lithium ions are involved in charging / discharging, the secondary battery according to the present invention corresponds to a so-called “lithium ion battery”.
 正極材層の正極活物質は例えば粒状体から成るところ、粒子同士の十分な接触と形状保持のためにバインダーが正極材層に含まれていることが好ましい。更には、電池反応を推進する電子の伝達を円滑にするために導電助剤が正極材層に含まれていることも好ましい。同様にして、負極材層の負極活物質は例えば粒状体から成るところ、粒子同士の十分な接触と形状保持のためにバインダーが含まれることが好ましく、電池反応を推進する電子の伝達を円滑にするために導電助剤が負極材層に含まれていてもよい。このように、複数の成分が含有されて成る形態ゆえ、正極材層および負極材層はそれぞれ“正極合材層”および“負極合材層”などと称すこともできる。 The positive electrode active material of the positive electrode material layer is made of, for example, a granular material, and it is preferable that a binder is included in the positive electrode material layer for sufficient contact between the particles and shape retention. Furthermore, it is also preferable that a conductive additive is included in the positive electrode material layer in order to facilitate the transmission of electrons that promote the battery reaction. Similarly, the negative electrode active material of the negative electrode material layer is made of, for example, a granular material, and it is preferable that a binder is included for sufficient contact and shape retention between the particles, and smooth transmission of electrons that promote the battery reaction. In order to do so, a conductive aid may be included in the negative electrode material layer. Thus, because of the form in which a plurality of components are contained, the positive electrode material layer and the negative electrode material layer can also be referred to as “positive electrode composite material layer” and “negative electrode composite material layer”, respectively.
 正極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、正極活物質は例えばリチウム含有複合酸化物であることが好ましい。より具体的には、正極活物質は、リチウムと、コバルト、ニッケル、マンガンおよび鉄から成る群から選択される少なくとも1種の遷移金属とを含むリチウム遷移金属複合酸化物であることが好ましい。つまり、本発明に係る二次電池の正極材層においては、そのようなリチウム遷移金属複合酸化物が正極活物質として好ましくは含まれている。例えば、正極活物質はコバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、リン酸鉄リチウム、または、それらの遷移金属の一部を別の金属で置き換えたものであってよい。このような正極活物質は、単独種として含まれてよいものの、二種以上が組み合わされて含まれていてもよい。より好適な態様では正極材層に含まれる正極活物質がコバルト酸リチウムとなっている。 The positive electrode active material is preferably a material that contributes to occlusion and release of lithium ions. From this point of view, the positive electrode active material is preferably, for example, a lithium-containing composite oxide. More specifically, the positive electrode active material is preferably a lithium transition metal composite oxide containing lithium and at least one transition metal selected from the group consisting of cobalt, nickel, manganese, and iron. That is, in the positive electrode material layer of the secondary battery according to the present invention, such a lithium transition metal composite oxide is preferably included as a positive electrode active material. For example, the positive electrode active material may be lithium cobaltate, lithium nickelate, lithium manganate, lithium iron phosphate, or a part of those transition metals replaced with another metal. Although such a positive electrode active material may be included as a single species, two or more types may be included in combination. In a more preferred embodiment, the positive electrode active material contained in the positive electrode material layer is lithium cobalt oxide.
 正極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、ポリフッ化ビリニデン、ビリニデンフルオライド-ヘキサフルオロプロピレン共重合体、ビリニデンフルオライド-テトラフルオロチレン共重合体およびポリテトラフルオロチレンなどから成る群から選択される少なくとも1種を挙げることができる。正極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。より好適な態様では正極材層のバインダーはポリフッ化ビニリデンであり、また、別のより好適な態様では正極材層の導電助剤はカーボンブラックである。さらに好適な態様では、正極材層のバインダーおよび導電助剤が、ポリフッ化ビニリデンとカーボンブラックとの組合せとなっている。 The binder that can be included in the positive electrode material layer is not particularly limited, but includes polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, and Mention may be made of at least one selected from the group consisting of polytetrafluoroethylene and the like. The conductive auxiliary agent that can be included in the positive electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth. Examples thereof include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives. In a more preferred aspect, the binder of the positive electrode material layer is polyvinylidene fluoride, and in another more preferred aspect, the conductive additive of the positive electrode material layer is carbon black. In a more preferred embodiment, the binder and conductive additive of the positive electrode material layer are a combination of polyvinylidene fluoride and carbon black.
 負極活物質は、リチウムイオンの吸蔵放出に資する物質であることが好ましい。かかる観点でいえば、負極活物質は例えば各種の炭素材料、酸化物、または、リチウム合金などであることが好ましい。 The negative electrode active material is preferably a material that contributes to occlusion and release of lithium ions. From this point of view, the negative electrode active material is preferably, for example, various carbon materials, oxides, or lithium alloys.
 負極活物質の各種の炭素材料としては、黒鉛(天然黒鉛、人造黒鉛)、ハードカーボン、ソフトカーボン、ダイヤモンド状炭素などを挙げることができる。特に、黒鉛は電子伝導性が高く、負極集電体との接着性が優れる点などで好ましい。負極活物質の酸化物としては、酸化シリコン、酸化スズ、酸化インジウム、酸化亜鉛および酸化リチウムなどから成る群から選択される少なくとも1種を挙げることができる。負極活物質のリチウム合金は、リチウムと合金形成され得る金属であればよく、例えば、Al、Si、Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、Pt、Te、Zn、Laなどの金属とリチウムとの2元、3元またはそれ以上の合金であってよい。このような酸化物は、その構造形態としてアモルファスとなっていることが好ましい。結晶粒界または欠陥といった不均一性に起因する劣化が引き起こされにくくなるからである。より好適な態様では負極材層の負極活物質が人造黒鉛となっている。 Examples of various carbon materials of the negative electrode active material include graphite (natural graphite, artificial graphite), hard carbon, soft carbon, diamond-like carbon, and the like. In particular, graphite is preferable in that it has high electron conductivity and excellent adhesion to the negative electrode current collector. Examples of the oxide of the negative electrode active material include at least one selected from the group consisting of silicon oxide, tin oxide, indium oxide, zinc oxide, lithium oxide, and the like. The lithium alloy of the negative electrode active material may be any metal that can be alloyed with lithium. For example, Al, Si, Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd, Pt, Te, Zn, It may be a binary, ternary or higher alloy of a metal such as La and lithium. Such an oxide is preferably amorphous in its structural form. This is because deterioration due to non-uniformity such as crystal grain boundaries or defects is less likely to be caused. In a more preferred embodiment, the negative electrode active material of the negative electrode material layer is artificial graphite.
 負極材層に含まれる得るバインダーとしては、特に制限されるわけではないが、スチレンブタジエンゴム、ポリアクリル酸、ポリフッ化ビニリデン、ポリイミド系樹脂およびポリアミドイミド系樹脂から成る群から選択される少なくとも1種を挙げることができる。より好適な実施態様では負極材層に含まれるバインダーはスチレンブタジエンゴムとなっている。負極材層に含まれる得る導電助剤としては、特に制限されるわけではないが、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックおよびアセチレンブラック等のカーボンブラック、黒鉛、カーボンナノチューブおよび気相成長炭素繊維等の炭素繊維、銅、ニッケル、アルミニウムおよび銀等の金属粉末、ならびに、ポリフェニレン誘導体などから選択される少なくとも1種を挙げることができる。なお、負極材層には、電池製造時に使用された増粘剤成分(例えばカルボキシルメチルセルロース)に起因する成分が含まれていてもよい。 The binder that can be included in the negative electrode material layer is not particularly limited, but is at least one selected from the group consisting of styrene butadiene rubber, polyacrylic acid, polyvinylidene fluoride, polyimide resin, and polyamideimide resin. Can be mentioned. In a more preferred embodiment, the binder contained in the negative electrode material layer is styrene butadiene rubber. The conductive aid that can be included in the negative electrode material layer is not particularly limited, but carbon black such as thermal black, furnace black, channel black, ketjen black, and acetylene black, graphite, carbon nanotube, and vapor phase growth. Examples thereof include at least one selected from carbon fibers such as carbon fibers, metal powders such as copper, nickel, aluminum and silver, and polyphenylene derivatives. In addition, the component resulting from the thickener component (for example, carboxymethylcellulose) used at the time of battery manufacture may be contained in the negative electrode material layer.
 さらに好適な態様では、負極材層における負極活物質およびバインダーが人造黒鉛とスチレンブタジエンゴムとの組合せとなっている。 In a more preferred embodiment, the negative electrode active material and the binder in the negative electrode material layer are a combination of artificial graphite and styrene butadiene rubber.
 正極および負極に用いられる正極集電体および負極集電体は電池反応に起因して活物質で発生した電子を集めたり供給したりするのに資する部材である。このような集電体は、シート状の金属部材であってよく、多孔または穿孔の形態を有していてよい。例えば、集電体は金属箔、パンチングメタル、網またはエキスパンドメタル等であってよい。正極に用いられる正極集電体は、アルミニウム、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えばアルミニウム箔であってよい。一方、負極に用いられる負極集電体は、銅、ステンレスおよびニッケル等から成る群から選択される少なくとも1種を含んだ金属箔から成るものが好ましく、例えば銅箔であってよい。 The positive electrode current collector and the negative electrode current collector used for the positive electrode and the negative electrode are members that contribute to collecting and supplying electrons generated in the active material due to the battery reaction. Such a current collector may be a sheet-like metal member and may have a porous or perforated form. For example, the current collector may be a metal foil, a punching metal, a net or an expanded metal. The positive electrode current collector used for the positive electrode is preferably made of a metal foil containing at least one selected from the group consisting of aluminum, stainless steel, nickel and the like, and may be, for example, an aluminum foil. On the other hand, the negative electrode current collector used for the negative electrode is preferably made of a metal foil containing at least one selected from the group consisting of copper, stainless steel, nickel and the like, and may be, for example, a copper foil.
 セパレータは、正負極の接触による短絡防止および電解質保持などの観点から設けられる部材である。換言すれば、セパレータは、正極と負極との間の電子的接触を防止しつつイオンを通過させる部材であるといえる。好ましくは、セパレータは多孔性または微多孔性の絶縁性部材であり、その小さい厚みに起因して膜形態を有している。あくまでも例示にすぎないが、ポリオレフィン製の微多孔膜がセパレータとして用いられてよい。この点、セパレータとして用いられる微多孔膜は、例えば、ポリオレフィンとしてポリエチレン(PE)のみ又はポリプロピレン(PP)のみを含んだものであってよい。更にいえば、セパレータは、“PE製の微多孔膜”と“PP製の微多孔膜”とから構成される積層体であってもよい。セパレータの表面は無機粒子コート層および/または接着層等により覆われていてもよい。セパレータの表面は接着性を有していてもよい。 The separator is a member provided from the viewpoint of preventing short circuit due to contact between the positive and negative electrodes and holding the electrolyte. In other words, the separator can be said to be a member that allows ions to pass while preventing electronic contact between the positive electrode and the negative electrode. Preferably, the separator is a porous or microporous insulating member and has a film form due to its small thickness. Although only illustrative, a polyolefin microporous film may be used as the separator. In this regard, the microporous membrane used as the separator may include, for example, only polyethylene (PE) or only polypropylene (PP) as the polyolefin. Furthermore, the separator may be a laminate composed of “a microporous membrane made of PE” and “a microporous membrane made of PP”. The surface of the separator may be covered with an inorganic particle coat layer and / or an adhesive layer. The surface of the separator may have adhesiveness.
 電解質は電極(正極・負極)から放出された金属イオンの移動を助力する。電解質は有機電解質および有機溶媒などの“非水系”の電解質であっても、または水を含む“水系”の電解質であってもよい。本発明の二次電池は、電解質として“非水系”の溶媒と、溶質とを含む電解質が用いられた非水電解質二次電池が好ましい。電解質は液体状またはゲル状などの形態を有し得る(なお、本明細書において“液体状”の非水電解質は「非水電解質液」とも称される)。 Electrolyte helps the movement of metal ions released from the electrodes (positive and negative electrodes). The electrolyte may be a “non-aqueous” electrolyte, such as an organic electrolyte and an organic solvent, or may be a “aqueous” electrolyte containing water. The secondary battery of the present invention is preferably a non-aqueous electrolyte secondary battery in which an electrolyte containing a “non-aqueous” solvent and a solute is used as an electrolyte. The electrolyte may have a form such as liquid or gel (in the present specification, “liquid” non-aqueous electrolyte is also referred to as “non-aqueous electrolyte solution”).
 具体的な非水電解質の溶媒としては、少なくともカーボネートを含んで成るものが好ましい。かかるカーボネートは、環状カーボネート類および/または鎖状カーボネート類であってもよい。特に制限されるわけではないが、環状カーボネート類としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)およびビニレンカーボネート(VC)から成る群から選択される少なくとも1種を挙げることができる。鎖状カーボネート類としては、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)およびジプロピルカーボネート(DPC)から成る群から選択される少なくも1種を挙げることができる。本発明の1つの好適な実施態様では、非水電解質として環状カーボネート類と鎖状カーボネート類との組合せが用いられ、例えばエチレンカーボネートとジエチルカーボネートとの混合物が用いられる。 As a specific nonaqueous electrolyte solvent, a solvent containing at least carbonate is preferable. Such carbonates may be cyclic carbonates and / or chain carbonates. Although not particularly limited, examples of the cyclic carbonates include at least one selected from the group consisting of propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), and vinylene carbonate (VC). be able to. Examples of the chain carbonates include at least one selected from the group consisting of dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), and dipropyl carbonate (DPC). In one preferred embodiment of the present invention, a combination of cyclic carbonates and chain carbonates is used as the non-aqueous electrolyte, for example, a mixture of ethylene carbonate and diethyl carbonate.
 具体的な非水電解質の溶質としては、例えば、LiPFおよびLiBFなどのLi塩が好ましく用いられる。 As specific nonaqueous electrolyte solutes, for example, Li salts such as LiPF 6 and LiBF 4 are preferably used.
 電解質(特に、非水電解質)には、ビニレンカーボネート、1,3-プロパンスルトン、フッ化エチレンカーボネート等の添加剤が含有される。電解質(特に、非水電解質)へのこれら添加剤の含有により、初期充電時にSEI被膜が形成される。 Electrolytes (particularly non-aqueous electrolytes) contain additives such as vinylene carbonate, 1,3-propane sultone, and fluorinated ethylene carbonate. The inclusion of these additives in the electrolyte (especially the non-aqueous electrolyte) forms a SEI film during initial charging.
 集電リードとしては、二次電池の分野で使用されているあらゆる集電リードが使用可能である。そのような集電リードは、電子の移動が達成され得る材料から構成されればよく、通常はアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料から構成される。集電リードの形態は特に限定されず、例えば、線状であってもよいし、または板状であってもよい。 As the current collecting lead, any current collecting lead used in the field of secondary batteries can be used. Such a current collecting lead may be made of a material capable of achieving electron movement, and is usually made of a conductive material such as aluminum, nickel, iron, copper, and stainless steel. The form of the current collecting lead is not particularly limited, and may be, for example, a linear shape or a plate shape.
 外部端子5としては、二次電池の分野で使用されているあらゆる外部端子が使用可能である。そのような外部端子は、電子の移動が達成され得る材料から構成されればよく、通常はアルミニウム、ニッケル、鉄、銅、ステンレスなどの導電性材料から構成される。外部端子5の形態は特に限定されず、通常は板状である。外部端子5は、基板と電気的かつ直接的に接続されてもよいし、または他のデバイスを介して基板と電気的かつ間接的に接続されてもよい。また、前記集電リードを外部端子として用いることも可能である。 As the external terminal 5, any external terminal used in the field of secondary batteries can be used. Such an external terminal may be made of a material capable of achieving electron movement, and is usually made of a conductive material such as aluminum, nickel, iron, copper, and stainless steel. The form of the external terminal 5 is not particularly limited, and is usually plate-shaped. The external terminal 5 may be electrically and directly connected to the substrate, or may be electrically and indirectly connected to the substrate via another device. The current collecting lead can also be used as an external terminal.
 外装体はフレキシブルパウチ(軟質袋体)であることが好ましいが、ハードケース(硬質筐体)であってもよい。外装体がフレキシブルパウチである場合、フレキシブルパウチは通常、ラミネートフィルムから形成され、周縁部をヒートシールすることにより、封止が達成される。ラミネートフィルムとしては、金属箔とポリマーフィルムを積層したフィルムが一般的であり、具体的には、外層ポリマーフィルム/金属箔/内層ポリマーフィルムから成る3層構成のものが例示される。外層ポリマーフィルムは水分等の透過および接触等による金属箔の損傷を防止するためのものであり、ポリアミドおよびポリエステル等のポリマーが好適に使用できる。金属箔は水分およびガスの透過を防止するためのものであり、銅、アルミニウム、ステンレス等の箔が好適に使用できる。内層ポリマーフィルムは、内部に収納する電解質から金属箔を保護するとともに、ヒートシール時に溶融封口させるためのものであり、ポリオレフィンまたは酸変性ポリオレフィンが好適に使用できる。ラミネートフィルムの厚さは特に限定されず、例えば、1μm以上1mm以下が好ましい。 The exterior body is preferably a flexible pouch (soft bag), but may be a hard case (hard housing). When the exterior body is a flexible pouch, the flexible pouch is usually formed from a laminate film, and sealing is achieved by heat-sealing the peripheral edge. As the laminate film, a film obtained by laminating a metal foil and a polymer film is generally used. Specifically, a film having a three-layer structure including an outer layer polymer film / metal foil / inner layer polymer film is exemplified. The outer layer polymer film is for preventing damage to the metal foil due to permeation and contact of moisture and the like, and polymers such as polyamide and polyester can be suitably used. The metal foil is for preventing the permeation of moisture and gas, and a foil of copper, aluminum, stainless steel or the like can be suitably used. The inner layer polymer film is for protecting the metal foil from the electrolyte accommodated therein, and for melting and sealing at the time of heat sealing, and polyolefin or acid-modified polyolefin can be suitably used. The thickness of the laminate film is not particularly limited, and is preferably 1 μm or more and 1 mm or less, for example.
 外装体がハードケースである場合、ハードケースは通常、金属板から形成され、周縁部をレーザー照射することにより、封止が達成される。金属板としては、アルミニウム、ニッケル、鉄、銅、ステンレスなどからなる金属材料が一般的である。金属板の厚さは特に限定されず、例えば、1μm以上1mm以下が好ましい。 When the exterior body is a hard case, the hard case is usually formed from a metal plate, and sealing is achieved by irradiating the peripheral edge with a laser. As the metal plate, a metal material made of aluminum, nickel, iron, copper, stainless steel or the like is common. The thickness of a metal plate is not specifically limited, For example, 1 micrometer or more and 1 mm or less are preferable.
 本発明の方法により製造される二次電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明の方法により製造される二次電池、特に非水電解質二次電池は、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、スマートウォッチ、ノートパソコン、デジタルカメラ、活動量計、アームコンピューターおよび電子ペーパーなどのモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、IoT分野、ならびに、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)に利用することができる。 The secondary battery manufactured by the method of the present invention can be used in various fields where power storage is assumed. Although only illustrative, secondary batteries manufactured by the method of the present invention, particularly non-aqueous electrolyte secondary batteries, are used in the electrical / information / communication field (for example, mobile phones, smartphones, smart phones) where mobile devices are used. Mobile devices such as watches, notebook computers, digital cameras, activity meters, arm computers, and electronic paper), home and small industrial applications (eg, power tools, golf carts, home / care / industrial robots) , Large industrial applications (eg, forklifts, elevators, bay harbor cranes), transportation systems (eg, hybrid vehicles, electric cars, buses, trains, electric assist bicycles, electric motorcycles), power system applications (eg, , Various power generation, road conditioner, smart grid, general household installation type storage Areas), IoT areas such system, and can be used for space-deepwater applications (e.g., spacecraft, areas such as submersible).
 1:電極組立体
 1a:1b:電解質成分を含有しない第2シール部
 1c:電解質成分を含有する第1シール部
 3:外装体
 5:外部端子
 10:電極組立体または二次電池における切り欠き部
 10a:外装体または二次電池前駆体における切り欠き部対応部分
 11:11x:11y:外装体における電極組立体と切り欠き部との境界
 20:余剰部
 30:欠落部
 50:二次電池前駆体
 50a~50f:二次電池前駆体の外縁を構成する辺
 100:二次電池
 A:二次電池の外縁を構成する辺のうち切り欠き部と隣接する辺
 B:辺Aと連続する辺
 C:辺Bと連続する辺
DESCRIPTION OF SYMBOLS 1: Electrode assembly 1a: 1b: 2nd seal part which does not contain electrolyte component 1c: 1st seal part which contains electrolyte component 3: Exterior body 5: External terminal 10: Notch part in electrode assembly or secondary battery 10a: Notch corresponding part in exterior body or secondary battery precursor 11: 11x: 11y: Boundary between electrode assembly and notch in exterior body 20: Surplus part 30: Missing part 50: Secondary battery precursor 50a to 50f: Sides constituting the outer edge of the secondary battery precursor 100: Secondary battery A: Sides adjacent to the notch among the sides constituting the outer edge of the secondary battery B: Sides continuous with the side A C: Side continuous with side B

Claims (27)

  1.  正極、負極および該正極と該負極との間に配置されたセパレータを含み、かつ平面視において切り欠き部を有する電極組立体および電解質が外装体に封入されている二次電池前駆体を初期充電する工程を含む二次電池の製造方法であって、
     前記二次電池前駆体内において、前記電極組立体で発生するガスを、少なくとも前記電極組立体の切り欠き部に逃がしながら、前記初期充電を行う、二次電池の製造方法。
    Initial charging of a secondary battery precursor including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, and having a notch in a plan view and an electrolyte sealed in an exterior body A method of manufacturing a secondary battery including a step of:
    A method for manufacturing a secondary battery, wherein the initial charging is performed while allowing gas generated in the electrode assembly to escape at least to a notch of the electrode assembly in the secondary battery precursor.
  2.  前記二次電池前駆体における少なくとも前記切り欠き部において、前記外装体を構成する2つのフィルムが、前記電解質を介してまたは介することなく、相互に離接可能に接触している、請求項1に記載の二次電池の製造方法。 2. The film according to claim 1, wherein at least the notch portion of the secondary battery precursor is in contact with the two films constituting the outer package so as to be detachable from each other with or without the electrolyte. The manufacturing method of the secondary battery as described.
  3.  前記電極組立体の平面視における前記切り欠き部は、前記電極組立体の初期の形状からその一部を最終的に欠損させる部分であり、
     前記切り欠き部形成前の電極組立体の前記初期の形状は矩形状である、請求項1または2に記載の二次電池の製造方法。
    The notch portion in plan view of the electrode assembly is a portion that finally loses a part thereof from the initial shape of the electrode assembly,
    The method for manufacturing a secondary battery according to claim 1, wherein the initial shape of the electrode assembly before forming the notch is a rectangular shape.
  4.  前記外装体は平面視において、矩形状を有し、かつ前記切り欠き部形成前の電極組立体の前記初期の形状としての矩形状の寸法と同等の寸法または当該寸法よりも大きな寸法を有する、請求項1~3のいずれかに記載の二次電池の製造方法。 The exterior body has a rectangular shape in plan view, and has a dimension equivalent to or larger than the rectangular dimension as the initial shape of the electrode assembly before forming the notch, The method for producing a secondary battery according to any one of claims 1 to 3.
  5.  前記初期充電工程の後、平面視において前記二次電池前駆体における少なくとも前記切り欠き部と前記電極組立体との境界をシールし、前記二次電池前駆体における少なくとも切り欠き部を欠落させる欠落工程をさらに含む、請求項1~4のいずれかに記載の二次電池の製造方法。 After the initial charging step, a missing step of sealing at least a boundary between the notch portion and the electrode assembly in the secondary battery precursor in plan view and missing at least the notch portion in the secondary battery precursor. The method for producing a secondary battery according to any one of claims 1 to 4, further comprising:
  6.  前記初期充電工程において、平面視で前記二次電池前駆体の外縁を構成する辺のうち、前記欠落工程の欠落部を規定しない辺または前記欠落工程の欠落部を規定する辺を最小に含む辺が他の辺よりも低位となるように、前記二次電池前駆体を配置させる、請求項5に記載の二次電池の製造方法。 In the initial charging step, of the sides constituting the outer edge of the secondary battery precursor in plan view, the side that does not define the missing part of the missing process or the side that defines the missing part of the missing process is minimized. The method for manufacturing a secondary battery according to claim 5, wherein the secondary battery precursor is arranged so that is lower than other sides.
  7.  前記二次電池前駆体の外縁を構成する辺のうち、前記他の辺よりも低位となる辺が前記欠落工程の欠落部を規定しない辺であって、かつ前記欠落工程の欠落部を規定しない辺のうち最も短い辺である、請求項6に記載の二次電池の製造方法。 Of the sides constituting the outer edge of the secondary battery precursor, a side that is lower than the other sides is a side that does not define a missing part of the missing process, and does not define a missing part of the missing process The manufacturing method of the secondary battery according to claim 6, which is the shortest side among the sides.
  8.  前記二次電池前駆体を、
     前記電極組立体を外装体に収容させ、該外装体の外縁領域を、電解質を注入するための注入口を残してシールする収容工程;および
     前記電極組立体が収容された外装体に前記注入口から電解質を注入し、該外装体の前記注入口をさらにシールする注入工程
    により製造する、請求項1~7のいずれかに記載の二次電池の製造方法。
    The secondary battery precursor,
    A housing step of housing the electrode assembly in an exterior body, and sealing an outer edge region of the exterior body leaving an inlet for injecting an electrolyte; and the inlet in the exterior body in which the electrode assembly is accommodated The method for producing a secondary battery according to any one of claims 1 to 7, wherein the production is performed by an injecting step of injecting an electrolyte from the outer body and further sealing the injection port of the outer package.
  9.  前記収容工程において、平面視で前記外装体における前記電極組立体と前記切り欠き部との境界の一部をさらにシールする、請求項8に記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to claim 8, wherein in the housing step, a part of a boundary between the electrode assembly and the notch in the exterior body is further sealed in a plan view.
  10.  前記境界が複数の線分により規定され、該複数の線分のうち、1つの線分の少なくとも一部をシールする、請求項9に記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to claim 9, wherein the boundary is defined by a plurality of line segments, and at least a part of one line segment is sealed among the plurality of line segments.
  11.  前記境界が複数の線分により規定され、該複数の線分のうち、1つの最長線分の少なくとも一部をシールする、請求項9に記載の二次電池の製造方法。 10. The method for manufacturing a secondary battery according to claim 9, wherein the boundary is defined by a plurality of line segments, and at least a part of one longest line segment is sealed among the plurality of line segments.
  12.  前記境界が複数の線分により規定され、該複数の線分のうち、2つの線分のそれぞれの一部をシールする、請求項9に記載の二次電池の製造方法。 The method of manufacturing a secondary battery according to claim 9, wherein the boundary is defined by a plurality of line segments, and a part of each of the two line segments is sealed among the plurality of line segments.
  13.  前記電解質が液体である、請求項1~12のいずれかに記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to any one of claims 1 to 12, wherein the electrolyte is a liquid.
  14.  前記外装体がフレキシブルパウチである、請求項1~13のいずれかに記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to any one of claims 1 to 13, wherein the exterior body is a flexible pouch.
  15.  前記電極組立体が、前記正極、前記負極および前記セパレータを含む複数の電極ユニットを平面状に積層した平面積層構造を有する、請求項1~14のいずれかに記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to any one of claims 1 to 14, wherein the electrode assembly has a planar laminated structure in which a plurality of electrode units including the positive electrode, the negative electrode, and the separator are laminated in a planar shape.
  16.  前記正極および前記負極がリチウムイオンを吸蔵放出可能な層を有する、請求項1~15のいずれかに記載の二次電池の製造方法。 The method for manufacturing a secondary battery according to any one of claims 1 to 15, wherein the positive electrode and the negative electrode have a layer capable of inserting and extracting lithium ions.
  17.  前記二次電池がモバイル機器用二次電池である、請求項1~16のいずれかに記載の二次電池の製造方法。 The method for producing a secondary battery according to any one of claims 1 to 16, wherein the secondary battery is a secondary battery for mobile devices.
  18.  正極、負極および該正極と該負極との間に配置されたセパレータを含む電極組立体および電解質が外装体に封入されており、平面視において切り欠き部を有する二次電池であって、
     平面視において前記二次電池の外縁を構成する辺のうち、前記切り欠き部と隣接する辺Aの少なくとも一部に、電解質成分を含有する第1シール部を有する、二次電池。
    An electrode assembly including a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode and an electrolyte are enclosed in an exterior body, and a secondary battery having a notch in a plan view,
    A secondary battery having a first seal part containing an electrolyte component in at least a part of a side A adjacent to the notch among the sides constituting the outer edge of the secondary battery in plan view.
  19.  前記二次電池の外縁を構成する辺のうち、前記辺Aと連続する辺Bに、第1シール部を有する、請求項18に記載の二次電池。 The secondary battery according to claim 18, further comprising a first seal portion on a side B continuous with the side A among sides constituting an outer edge of the secondary battery.
  20.  前記辺Aの第1シール部と、前記辺Bの第1シール部とが連続している、請求項19に記載の二次電池。 The secondary battery according to claim 19, wherein the first seal part on the side A and the first seal part on the side B are continuous.
  21.  前記二次電池の外縁を構成する辺のうち、前記辺Bとさらに連続する辺Cに、第1シール部を有する、請求項19または20に記載の二次電池。 21. The secondary battery according to claim 19 or 20, further comprising a first seal portion on a side C further continuous with the side B among sides constituting an outer edge of the secondary battery.
  22.  前記辺Bの第1シール部と、前記辺Cの第1シール部とが連続している、請求項21に記載の二次電池。 The secondary battery according to claim 21, wherein the first seal part of the side B and the first seal part of the side C are continuous.
  23.  前記二次電池の外縁を構成する辺のうち、第1シール部を有する部分以外の部分に、電解質成分を含有しない第2シール部を有する、請求項18~22のいずれかに記載の二次電池。 The secondary battery according to any one of claims 18 to 22, further comprising a second seal part that does not contain an electrolyte component in a part other than a part having the first seal part among sides constituting an outer edge of the secondary battery. battery.
  24.  前記二次電池の外縁を構成する辺のうち、前記辺Aの一部に、電解質成分を含有しない第2シール部を有する、請求項18~23のいずれかに記載の二次電池。 The secondary battery according to any one of claims 18 to 23, wherein a part of the side A among the sides constituting the outer edge of the secondary battery has a second seal part that does not contain an electrolyte component.
  25.  前記辺Aが複数の線分により規定され、該複数の線分のうち、1つの線分の少なくとも一部に第2シール部を有する、請求項24に記載の二次電池。 The secondary battery according to claim 24, wherein the side A is defined by a plurality of line segments, and a second seal portion is provided on at least a part of one line segment among the plurality of line segments.
  26.  前記辺Aが複数の線分により規定され、該複数の線分のうち、1つの最長線分の少なくとも一部に第2シール部を有する、請求項24に記載の二次電池。 The secondary battery according to claim 24, wherein the side A is defined by a plurality of line segments, and a second seal portion is provided on at least a part of one longest line segment among the plurality of line segments.
  27.  前記辺Aが複数の線分により規定され、該複数の線分のうち、2つの線分のそれぞれの一部に第2シール部を有する、請求項24に記載の二次電池。 The secondary battery according to claim 24, wherein the side A is defined by a plurality of line segments, and a second seal portion is provided in a part of each of the two line segments among the plurality of line segments.
PCT/JP2018/017054 2017-05-19 2018-04-26 Secondary battery and method for manufacturing same WO2018211941A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-100110 2017-05-19
JP2017100110 2017-05-19

Publications (1)

Publication Number Publication Date
WO2018211941A1 true WO2018211941A1 (en) 2018-11-22

Family

ID=64273626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017054 WO2018211941A1 (en) 2017-05-19 2018-04-26 Secondary battery and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2018211941A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303589A (en) * 2003-03-31 2004-10-28 Sanyo Electric Co Ltd Laminated battery, manufacturing method of the same, and l-shaped mold for manufacturing the same
JP2007184242A (en) * 2005-12-29 2007-07-19 Samsung Sdi Co Ltd Pouch type lithium secondary battery and its manufacturing method
JP2012022992A (en) * 2010-07-16 2012-02-02 Sony Corp Battery and method for manufacturing the same
JP2014502025A (en) * 2010-12-02 2014-01-23 エルジー・ケム・リミテッド Method for degassing secondary battery using centrifugal force
JP2015518256A (en) * 2012-05-07 2015-06-25 エルジー ケム. エルティーディ. Non-standard battery cell and battery module including the same
JP2015536036A (en) * 2013-09-26 2015-12-17 エルジー・ケム・リミテッド Electrode assembly and secondary battery manufacturing method
JP2016009677A (en) * 2014-06-26 2016-01-18 株式会社カネカ Lithium ion secondary battery and method for manufacturing the same
JP2016506606A (en) * 2013-03-04 2016-03-03 エルジー・ケム・リミテッド Battery cell with missing portion and battery pack including the same
JP2016506610A (en) * 2013-03-22 2016-03-03 エルジー・ケム・リミテッド Secondary battery with improved energy density

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303589A (en) * 2003-03-31 2004-10-28 Sanyo Electric Co Ltd Laminated battery, manufacturing method of the same, and l-shaped mold for manufacturing the same
JP2007184242A (en) * 2005-12-29 2007-07-19 Samsung Sdi Co Ltd Pouch type lithium secondary battery and its manufacturing method
JP2012022992A (en) * 2010-07-16 2012-02-02 Sony Corp Battery and method for manufacturing the same
JP2014502025A (en) * 2010-12-02 2014-01-23 エルジー・ケム・リミテッド Method for degassing secondary battery using centrifugal force
JP2015518256A (en) * 2012-05-07 2015-06-25 エルジー ケム. エルティーディ. Non-standard battery cell and battery module including the same
JP2016506606A (en) * 2013-03-04 2016-03-03 エルジー・ケム・リミテッド Battery cell with missing portion and battery pack including the same
JP2016506610A (en) * 2013-03-22 2016-03-03 エルジー・ケム・リミテッド Secondary battery with improved energy density
JP2015536036A (en) * 2013-09-26 2015-12-17 エルジー・ケム・リミテッド Electrode assembly and secondary battery manufacturing method
JP2016009677A (en) * 2014-06-26 2016-01-18 株式会社カネカ Lithium ion secondary battery and method for manufacturing the same

Similar Documents

Publication Publication Date Title
WO2017209052A1 (en) Secondary battery
WO2018154989A1 (en) Secondary battery and method for producing same
US20190348647A1 (en) Secondary battery
US11670802B2 (en) Method of manufacturing secondary battery including releasing gas generated during initial charging from opening of outer package
US11417912B2 (en) Secondary battery and method of manufacturing the same
JP6682203B2 (en) Secondary battery manufacturing method
CN110050376B (en) Secondary battery
JP2020092038A (en) Secondary battery and manufacturing method thereof
WO2018155210A1 (en) Secondary battery and method for producing secondary battery
US11417868B2 (en) Manufacturing method for secondary battery
US11387493B2 (en) Secondary battery
US11411241B2 (en) Secondary battery
JP6866922B2 (en) How to manufacture a secondary battery
WO2018211941A1 (en) Secondary battery and method for manufacturing same
JP6885410B2 (en) Secondary battery
WO2018163775A1 (en) Secondary battery production method
WO2018154987A1 (en) Secondary battery and method for producing same
US11929467B2 (en) Secondary battery
WO2018180167A1 (en) Secondary battery production method
WO2018105277A1 (en) Secondary battery
WO2018173700A1 (en) Secondary battery manufacturing method and manufacturing device
WO2018100846A1 (en) Secondary battery and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18801389

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP