WO2018211548A1 - Antenna device - Google Patents

Antenna device Download PDF

Info

Publication number
WO2018211548A1
WO2018211548A1 PCT/JP2017/018140 JP2017018140W WO2018211548A1 WO 2018211548 A1 WO2018211548 A1 WO 2018211548A1 JP 2017018140 W JP2017018140 W JP 2017018140W WO 2018211548 A1 WO2018211548 A1 WO 2018211548A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
solenoid
planar loop
loop antenna
antennas
Prior art date
Application number
PCT/JP2017/018140
Other languages
French (fr)
Japanese (ja)
Inventor
卓 関田
敦司 土屋
Original Assignee
Smk-Logomotion株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smk-Logomotion株式会社 filed Critical Smk-Logomotion株式会社
Priority to PCT/JP2017/018140 priority Critical patent/WO2018211548A1/en
Publication of WO2018211548A1 publication Critical patent/WO2018211548A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the present invention relates to an antenna device using a solenoid antenna, and more particularly to an antenna device for performing short-range wireless communication by an electromagnetic induction method.
  • RFID or NFC generally employs an electromagnetic induction method in which a transmission side coil constituting an antenna of one communication terminal serving as an initiator and a reception side coil constituting an antenna of the other communication terminal serving as a target are electromagnetically coupled.
  • an excitation current is passed through the transmission coil of the initiator to generate a magnetic field, and the magnetic flux of the magnetic field lines passing through the reception coil of the target is changed according to the excitation current. Then, an induction current representing an exciting current is generated in the receiving coil.
  • an electromagnetic induction type RFID communication or NFC communication electronic authentication, electronic payment, and other data communication can be performed at high speed between a communication terminal such as a smartphone or an IC card and a communication terminal equipped with a reader / writer.
  • an active communication terminal having a power supply supplies power to operate each circuit in the passive communication terminal to a passive communication terminal such as an IC card having no power supply, and performs data communication with the passive communication terminal having no power supply. Can do.
  • Communication terminals that communicate with each other by RFID communication or NFC communication often have a relatively thin and flat outer shape, such as a tag attached to the surface of an article, an IC card to be carried, and a smartphone.
  • a flat loop antenna antenna device suitable for wiring on a printed wiring board or a magnetic sheet disposed along a flat plane in a housing is known (Patent Literature 1, Patent Literature 1). 2).
  • Patent Document 3 an antenna device that is used as an antenna for RFID communication by fixing a spiral coil to a flat printed wiring board itself to form a solenoid antenna is known.
  • planar loop antenna that occupies a large mounting area on the printed wiring board and the solenoid antenna formed by using the printed wiring board have restrictions on the mounting space for mounting other electronic components on the printed wiring board.
  • an antenna device 100 in which a solenoid antenna 101 that has a high volumetric efficiency and does not take a mounting area is mounted in parallel on a printed wiring board 102 housed in a casing of a flat mobile phone 110 is also mounted. (Patent Document 4).
  • the antenna device of the solenoid antenna described in Patent Document 3 is also formed using a flat printed wiring board, so that the mounting surface on the printed wiring board is occupied and the magnetic field radiated from the solenoid antenna is Flat communication with a solenoid antenna from the direction perpendicular to the planar loop antenna when the antenna on the other side that is electromagnetically coupled is the strongest in the planar direction of the communication terminal that is parallel to the substrate, that is, the flat shape, and is electromagnetically coupled.
  • the end face of the device is brought closer, and operability for performing RFID communication and NFC communication is lacking.
  • the antenna device 100 of the solenoid antenna described in Patent Document 4 is configured so that the flat surface of the casing of the mobile phone 110 parallel to the printed wiring board 102 on which the solenoid antenna 101 is mounted is connected to the other side parallel to the planar loop antenna.
  • the solenoid antenna 101 and a planar loop antenna (not shown) parallel to the central axis of the winding of the solenoid antenna 101 are electromagnetically coupled in proximity to the plane of the communication device casing. That is, the lines of magnetic force emanating from one end of the solenoid antenna 101 converge at the other end via the side of the solenoid antenna 101, and a part of the lines of magnetic force is a plane parallel to the central axis of the winding of the solenoid antenna 101. Therefore, even if the solenoid antenna and the planar loop antenna are arranged in parallel to each other, they are electromagnetically coupled.
  • the magnetic field generated by the solenoid antenna 101 decreases as the distance from one end of the solenoid antenna 101 decreases, and is strongest in the direction of the central axis of the winding of the solenoid antenna 101 as described above, and as the crossing angle with the central axis increases.
  • the magnetic flux density B in the planar loop antenna formed on a plane orthogonal to the central axis of the winding of the solenoid antenna 101 is low, and the mutual inductance is reduced, the communication distance is shortened, and the communication quality is lowered.
  • the magnetic flux density B of the magnetic field generated by the solenoid antenna 101 is proportional to the excitation current flowing through the winding of the solenoid antenna 101, the magnetic flux density B in the planar loop antenna can be increased by increasing the excitation current Iex.
  • the upper limit of the excitation current Iex is limited, and the above-described problems of communication distance and communication quality cannot be essentially improved.
  • An object of the present invention is to provide an antenna device capable of mutual communication at a predetermined communication distance without impairing the above.
  • Another object of the present invention is to provide an antenna device that performs electromagnetic induction communication with a planar loop antenna formed on a plane parallel to the printed wiring board without reducing the mounting density of the printed wiring board on which the solenoid antenna is mounted. To do.
  • An object of the present invention is to provide an antenna device capable of performing the above communication.
  • an antenna device is an antenna device electromagnetically coupled to a planar loop antenna, wherein the antenna device is arranged in a virtual plane parallel to a plane on which the planar loop antenna is formed at a predetermined interval.
  • a plurality of solenoid antennas arranged along the plane loop antenna, and a projection area obtained by projecting the area surrounded by the planar loop antenna onto the virtual plane is unified to either the divergence side or the convergence side of the magnetic field lines. It is characterized by facing each end.
  • the divergence from all the plurality of solenoid antennas The magnetic field lines penetrate the planar loop antenna in the same direction, and the magnetic flux density B in the planar loop antenna is the sum of the magnetic flux densities B generated in the planar loop antenna by each of the plurality of solenoid antennas.
  • a large induction current that changes in accordance with the excitation current can be generated in the planar loop antenna without increasing the excitation current flowing through the antenna.
  • the antenna device according to claim 2 is characterized in that each other end of the plurality of solenoid antennas is disposed outside the projection area.
  • the other ends of the plurality of solenoid antennas are arranged outside the projection area, the lines of magnetic force that diverge from each other end or converge at each other end do not pass through the plane loop antenna, and the inside of the plane loop antenna Does not decrease.
  • the antenna device according to claim 3 or 5 is characterized in that a plurality of solenoid antennas are mounted on a printed wiring board along a virtual plane.
  • the plurality of solenoid antennas are mounted along a printed wiring board parallel to the plane on which the planar loop antenna is formed, and an operation of bringing one surface of the housing covering the printed wiring board close to the plane on which the planar loop antenna is formed.
  • the solenoid antenna and the planar loop antenna are electromagnetically coupled.
  • the antenna device according to claim 4 is characterized in that a plurality of solenoid antennas are accommodated in a flat casing along a virtual plane.
  • the plurality of solenoid antennas are accommodated in the casing with the central axis of the winding along the flat surface of the casing.
  • the flat surface of the casing is parallel to the plane on which the planar loop antenna is formed, and the solenoid antenna and the planar loop antenna are electromagnetically coupled by operating the flat surface of the casing close to the plane on which the planar loop antenna is formed. .
  • the antenna device according to claim 6 is characterized in that the plurality of solenoid antennas are accommodated in a flat casing along a virtual plane of the NFC communication device operating in the active mode.
  • the plurality of solenoid antennas are accommodated along the flat surface of the flat casing of the NFC communication device, and an excitation current flows from the power source of the NFC communication device operating in the active mode to the plurality of solenoid antennas.
  • An induced current corresponding to the excitation current flows through a planar loop antenna formed on a plane parallel to the housing.
  • the antenna device according to claim 7 is characterized in that a plurality of solenoid antennas are mounted on a printed wiring board along a virtual plane of the NFC communication device.
  • the plurality of solenoid antennas are mounted on a printed wiring board along the flat surface of the casing of the NFC communication device, and the flat surface of the casing is brought into close contact with the plane on which the planar loop antenna is formed.
  • the loop antenna is electromagnetically coupled.
  • the antenna device according to claim 8 is characterized in that two solenoid antennas are arranged orthogonal to each other on a virtual plane.
  • One end of two solenoid antennas unified on either the diverging side or the converging side of the magnetic field lines can be approached from the orthogonal direction, and the two are close to the projection area projected on the virtual plane.
  • Each end of the solenoid antenna can be easily exposed.
  • the excitation current flowing through the solenoid antenna does not increase, and the planar loop antenna formed on the plane parallel to the central axis of the solenoid antenna winding does not impair the communication quality.
  • Mutual communication is possible at a communication distance.
  • a volume-efficient solenoid antenna can be mounted in a flat casing on a printed wiring board parallel to the flat plane, and the flat casing can be miniaturized.
  • the volume efficient solenoid antenna can be accommodated in the flat casing in parallel to the flat plane, and the flat casing can be miniaturized.
  • the flat surface of the housing is formed as a flat loop antenna in the same manner as a communication device having a flat loop antenna.
  • Mutual communication can be performed with an operation that makes the user feel close to the surface.
  • the solenoid antenna can be mounted in parallel to the flat surface on the printed wiring board accommodated in the case along the flat surface of the case of the NFC communication device.
  • a printed wiring board and a plurality of solenoid antennas can be efficiently accommodated in a simple housing.
  • one end of the two solenoid antennas can easily face the projection area where the planar loop antenna is projected, and the two solenoids The antenna can be electromagnetically coupled to the planar loop antenna.
  • FIG. 1 is a plan view showing an antenna device 1 according to an embodiment of the present invention and a memory card 50 on which a planar loop antenna 51 is formed. It is a top view which shows the state which the antenna apparatus 1 and the planar loop antenna 51 electromagnetically couple.
  • FIG. 3 is a schematic diagram showing the state shown in FIG. 2 cut along an XZ plane intersecting a planar loop antenna 51. It is explanatory drawing which shows the state which the antenna apparatus 1 and the planar loop antenna 51 electromagnetically couple. 3 is a partially omitted perspective view showing the relationship between a smartphone 10 housing an antenna device 1 and a memory card 50. FIG. It is explanatory drawing which shows the state which the antenna device 30 and the spiral planar loop antenna 52 electromagnetically couple.
  • FIG. 2 is a partially cutaway plan view showing a conventional antenna device 100 configured from a solenoid antenna 101 housed in a mobile phone 110.
  • the antenna device 1 has a power source among communication terminals such as an IC card and a smartphone having a short-range wireless communication function of RFID (Radio Frequency identifier) and NFC (Near Field Communication).
  • the memory card 50 is electromagnetically coupled with the planar loop antenna 51 mounted on the smartphone 10 which is an NFC communication device operable in the active mode and mounted on the memory card 50 which is a passive communication terminal of the NFC communication device. And electronic authentication, electronic payment, and other data communications.
  • the directions of X, Y, and Z in the description of each part are the directions of X, Y, and Z that are orthogonal to each other shown in these drawings.
  • the antenna device 1 includes two solenoid antennas 2a and 2b mounted on the printed wiring board 30 orthogonal to each other along the bottom surface of the printed wiring board 30 parallel to the XY plane. Is done.
  • the printed wiring board 30 on which the antenna device 1 is mounted is accommodated along the flat direction in the flat insulating case 11 along the direction of the XY plane of the smartphone 10, and as shown in FIG.
  • the memory card 50 communicates with the bottom surface of the insulating case 11 of the smartphone 10 and the surface of the opposing memory card 50 in contact with or close to each other and mounted in parallel on the bottom surface of the insulating case 11.
  • the solenoid antennas 2a and 2b and the planar loop antenna 51 formed in a plane parallel to the surface of the memory card 50 are electromagnetically coupled.
  • the plane on which the planar loop antenna 51 parallel to the XY plane is formed is PL, and the two solenoid antennas 2a and 2b are separated from the plane PL when communicating with the memory card 50. It is accommodated in the insulating case 11 of the smartphone 10 so as to be arranged along a virtual plane PL ′ parallel to the Z direction with a predetermined interval.
  • Each solenoid antenna 2a, 2b is formed by spirally winding a winding made of a copper wire on the outer peripheral surface of a cylindrical ferrite core.
  • a winding around a ferrite core having a relative permeability ⁇ s of 1000 to 2000, each solenoid antenna 2a, 2b generates a very high magnetic field while having a total length of 1 to 1.5 cm and a small capacity.
  • a magnetic field having a certain magnetic flux density B is also generated on the side of the central axis of the windings of the solenoid antennas 2a and 2b.
  • Both ends of the windings of the solenoid antennas 2a and 2b are connected to a signal source 3 for flowing an exciting current Iex through the windings. Accordingly, the solenoid antennas 2a and 2b are connected in parallel to the signal source 3, and when the modulation signal modulated by the communication data is superimposed on the excitation current Iex flowing from the signal source 3, the solenoid antennas 2a and 2b A modulation signal synchronized with the winding flows.
  • both ends of the solenoid antenna 2 are the diverging side or the converging side is determined by the winding direction of the winding and the direction of the exciting current flowing in the winding according to the so-called right-handed screw law.
  • the solenoid antenna 2a arranged along the X direction has the exciting current Iex flowing clockwise in the ⁇ X direction.
  • the solenoid antenna 2b arranged along the Y direction flows the excitation current Iex counterclockwise in the Y direction (the right end) is the divergent side and the other end (the left end) in the ⁇ X direction is the convergence side.
  • the one end (lower end) in the ⁇ Y direction is the divergent side, and the other end (upper end) in the Y direction is the converging side.
  • an orthogonal arrangement is provided along the virtual plane PL ′ in the projection area AR (area shown by hatching in FIGS. 4 and 5) obtained by projecting the area surrounded by the planar loop antenna 51 onto the virtual plane PL ′.
  • One end of each of the two solenoid antennas 2a and 2b is exposed, and the winding direction of the winding or the direction of the excitation current Iex flowing in the winding is adjusted so that all of the one end facing the projection area AR diverges. Unified to the side.
  • a plane loop in which a plane plane parallel to the solenoid antennas 2a and 2b is formed in PL on one side (Z direction) of the diverging side of the two solenoid antennas 2a and 2b is formed.
  • the magnetic lines of force radiated from the two solenoid antennas 2a and 2b penetrate in the same direction ( ⁇ Z direction).
  • the other end on the convergence side where the magnetic lines of force of the two solenoid antennas 2a and 2b converge is disposed outside the projection area AR of the planar loop antenna 51, so that Z converges on the planar loop antenna 51.
  • the magnetic field lines directed in the direction do not penetrate the planar loop antenna 51.
  • the magnetic field component Hz radiated by the two solenoid antennas 2a and 2b is not canceled by the magnetic field component -Hz in the opposite direction, and the two solenoid antennas 2a, A high magnetic field is added to the magnetic field radiated by 2b, and the mutual inductance between the antenna device 1 including the two solenoid antennas 2a and 2b and the planar loop antenna 51 can be increased.
  • the planar loop antenna 51 is supplied with the exciting current Iex flowing through the winding for each solenoid antenna 2a, 2b, and the induced current Iind, which is the sum of the induced currents generated in the planar loop antenna 51, flows to each solenoid antenna 2a, 2b. Even if the upper limit of the excitation current Iex flowing through the windings of N is limited, data communication between the smartphone 10 and the memory card 50 can be performed without impairing communication quality.
  • the two solenoid antennas 2a and 2b are required.
  • An antenna comprising two solenoid antennas 2a and 2b orthogonal to each other in the X and Y directions so that one end unified on the divergent side faces the projection area AR and the other end is disposed outside the projection area AR.
  • the L-shaped protrusion is formed from the bottom surface of the insulating case 11 of the smartphone 10 as shown in FIG.
  • the portion 12 is provided so as to contact the memory card 50 that is approached from the oblique directions of the X and -Y directions, and is positioned at the relative position shown in FIG.
  • the memory card 50 is brought close to a part of the insulating case 11 of the smartphone 10. You may display the guide mark which shows.
  • the memory card 50 includes a planar loop antenna 51 formed of a conductor pattern spirally formed on an insulating substrate along the periphery of the rectangular memory card 50, and modulates / demodulates a signal flowing through the planar loop antenna 51, A logic circuit 53 for performing data communication and a memory 54 connected to the logic circuit 53 are provided.
  • the logic circuit 53 and the memory 54 are integrated on an IC chip 55 and mounted on the memory card 50.
  • the IC chip 55 operates using the induced electromotive force generated in the planar loop antenna 51 by being electromagnetically coupled to the antenna device 1 as a power source.
  • the exciting current Iex on which the modulation signal modulated by the communication data is superimposed is sent from the signal source 3 on the smartphone 10 side to the two solenoid antennas 2a and 2b at the position shown in FIG. 2, the two solenoid antennas 2a
  • the induced current Iind corresponding to the exciting current Iex flows clockwise through the planar loop antenna 51 that is electromagnetically coupled to 2b. Since the magnetic flux density B generated in the planar loop antenna 51 is proportional to the excitation current Iex, and the induced current Iind is proportional to the magnetic flux density B generated in the planar loop antenna 51, the induced current input to the logic circuit 53.
  • Iind is proportional to the excitation current Iex, and the communication data is demodulated from the modulation signal superimposed on the induction current Iind.
  • the logic circuit 53 reads predetermined specific data from the memory 54 to be connected, passes the excitation current Iex modulated with the specific data to the planar loop antenna 51, and supplies the excitation current to the two solenoid antennas 2a and 2b that are electromagnetically coupled. An induced current Iind proportional to Iex is generated.
  • a demodulation circuit (not shown) on the smartphone 10 side demodulates the unique data from the modulation signal superimposed on the induced current Iind of the two solenoid antennas 2a and 2b, and performs electronic authentication, electronic payment, Perform other data communications.
  • the impedance and voltage phase of the antenna device 1 of the smartphone 10 are changed by changing the impedance on the memory card 50 side with the specific data. It can also be performed by a load modulation method to be changed.
  • the surface of the memory card 50 parallel to the planar loop antenna 51 and the two solenoid antennas 2a and 2b are accommodated at a position where the planar loop antenna 51 and the two solenoid antennas 2a and 2b of the antenna device 1 are electromagnetically coupled. Since the bottom surfaces of the smartphones 10 facing each other are parallel to each other, the user can perform data between the two by a simple operation of bringing the surface of the flat memory card 50 close together while holding the bottom surface of the flat smartphone 10. Communication can be performed.
  • the planar loop antenna does not have to be rectangular along the periphery of the memory card 50 like the planar loop antenna 51 shown in the above-described embodiment, and is a circular or elliptical shape, or a conductor pattern as shown in FIG. May be a planar loop antenna 52 formed in a spiral shape.
  • the planar loop antennas 51 and 52 are formed of spiral conductive lines or conductor patterns whose outermost contours are not closed, so the boundary of the region surrounded by the planar loop antennas 51 and 52 is not clear.
  • the region is surrounded by the outermost conductive line or conductor pattern of the spiral conductive line or conductor pattern excluding the lead line drawn from the planar loop antennas 51 and 52. Therefore, the above-described projection area AR obtained by projecting the area surrounded by the planar loop antennas 51 and 52 onto the virtual plane PL ′ is an area displayed with diagonal lines in FIGS.
  • each end of the plurality of solenoid antennas 2a, 2b unified on either the divergence side or the convergence side of the magnetic field lines is allowed to face the projection area AR is when the one end is not necessarily disposed inside the projection area AR.
  • the position is not limited to the projection area AR and is close to the projection area AR. This is because the lines of magnetic force radiated from the plurality of solenoid antennas 2a and 2b penetrate the planar loop antennas 51 and 52 in the same direction as long as they are at least close to the projection area AR.
  • the two solenoid antennas 2a and 2b are arranged orthogonally on the virtual plane PL ′ along the flat direction of the flat casing, but as shown in FIG. You may arrange
  • the antenna device 1 is not limited to two, but includes three or more solenoid antennas 2, and one end of each solenoid antenna 2 unified on either the diverging side or the converging side of the lines of magnetic force faces the projection area AR. May be.
  • Suitable for antenna devices that perform data communication between RFID communication devices and NFC communication devices by electromagnetic coupling with planar loop antennas.
  • Antenna device Solenoid antenna 10 Smartphone (NFC communication device) 11 Insulation case (housing) 30 Printed Wiring Board 51 Planar Loop Antenna 52 Spiral Plane Loop Antenna PL Plane PL ′ where Planar Loop Antenna is Formed Virtual Planar AR Projection Area

Abstract

Provided is an antenna device with which, even if a plane in which a planar loop antenna for electromagnetic coupling is formed is in parallel with a central axis direction of a solenoid antenna, mutual communication can be achieved at a predetermined communication distance without degradation of communication quality. Respective one ends of a plurality of solenoid antennas are uniformly disposed on the diverging side or the converging side of magnetic lines of force, and are arranged to face a projected area obtained by projecting an area surrounded by the planar loop antenna onto a virtual plane, and the magnetic lines of force radiated from all of the plurality of solenoid antennas are caused to pass through the planar loop antenna in the same direction. In this way, a large induced current that changes in accordance with an exciting current can be generated in the planar loop antenna, and communication quality is not degraded even if the planar loop antenna is located laterally of and in parallel with the solenoid antennas.

Description

アンテナ装置Antenna device
 本発明は、ソレノイドアンテナを用いたアンテナ装置に関し、更に詳しくは、電磁誘導方式で近距離無線通信を行うためのアンテナ装置に関する。 The present invention relates to an antenna device using a solenoid antenna, and more particularly to an antenna device for performing short-range wireless communication by an electromagnetic induction method.
 近年、RFID(Radio Frequency identifier)やNFC(Near Field Communication)と呼ばれる近距離無線通信機能を有するICカード、スマートフォン等の通信端末の普及がすすんでいる。RFIDやNFCでは、一般にイニシエータとなる一方の通信端末のアンテナを構成する送信側コイルとターゲットとなる他方の通信端末のアンテナを構成する受信側コイルを電磁結合させる電磁誘導方式が採用されている。電磁誘導方式を採用したRFID通信やNFC通信では、イニシエータの送信側コイルに励磁電流を流して磁界を発生させ、ターゲットの受信側コイルを通過する磁力線の磁束を励磁電流に応じて変化させることにより、受信側コイルに励磁電流を表す誘導電流を発生させる。 In recent years, communication terminals such as smart cards and smart cards having a short-range wireless communication function called RFID (Radio Frequency identifier) and NFC (Near Field Communication) are in widespread use. RFID or NFC generally employs an electromagnetic induction method in which a transmission side coil constituting an antenna of one communication terminal serving as an initiator and a reception side coil constituting an antenna of the other communication terminal serving as a target are electromagnetically coupled. In RFID communication and NFC communication using an electromagnetic induction method, an excitation current is passed through the transmission coil of the initiator to generate a magnetic field, and the magnetic flux of the magnetic field lines passing through the reception coil of the target is changed according to the excitation current. Then, an induction current representing an exciting current is generated in the receiving coil.
 この電磁誘導方式によるRFID通信やNFC通信によれば、スマートフォンやICカード等の通信端末とリーダ/ライタを備えた通信端末間で電子認証、電子決済、その他のデータ通信を高速に行うことができ、また、電源を有するアクティブ通信端末から電源を持たないICカード等のパッシブ通信端末にパッシブ通信端末内の各回路を動作させる電源を給電し、電源を持たないパッシブ通信端末ともデータ通信を行うことができる。 According to this electromagnetic induction type RFID communication or NFC communication, electronic authentication, electronic payment, and other data communication can be performed at high speed between a communication terminal such as a smartphone or an IC card and a communication terminal equipped with a reader / writer. In addition, an active communication terminal having a power supply supplies power to operate each circuit in the passive communication terminal to a passive communication terminal such as an IC card having no power supply, and performs data communication with the passive communication terminal having no power supply. Can do.
 RFID通信やNFC通信で相互に通信する通信端末は、物品の表面に貼り付けられるタグや携帯するICカード、スマートフォンなどのように比較的薄型で扁平な外形であることが多く、扁平な筐体内に配置するアンテナとして、筐体内の扁平な平面に沿って配置されるプリント配線基板や磁性シート上に配線するのに適した平面ループアンテナのアンテナ装置が知られている(特許文献1、特許文献2)。 Communication terminals that communicate with each other by RFID communication or NFC communication often have a relatively thin and flat outer shape, such as a tag attached to the surface of an article, an IC card to be carried, and a smartphone. As an antenna to be disposed on a flat loop antenna antenna device suitable for wiring on a printed wiring board or a magnetic sheet disposed along a flat plane in a housing is known (Patent Literature 1, Patent Literature 1). 2).
 また、扁平なプリント配線基板自体に螺旋状のコイルを固定してソレノイドアンテナを形成し、RFID通信用のアンテナとして用いたアンテナ装置も知られている(特許文献3)。 Also, an antenna device that is used as an antenna for RFID communication by fixing a spiral coil to a flat printed wiring board itself to form a solenoid antenna is known (Patent Document 3).
 更に、プリント配線基板上に広い実装面積を専有する平面ループアンテナや、プリント配線基板を用いて形成したソレノイドアンテナは、プリント配線基板上に他の電子部品を実装する実装スペースに制約が生じるので、図8に示すように、容積効率がよく、実装面積をとらないソレノイドアンテナ101を扁平な携帯電話機110の筐体内に収容されるプリント配線基板102上に平行に配置して実装したアンテナ装置100も開示されている(特許文献4)。 Furthermore, the planar loop antenna that occupies a large mounting area on the printed wiring board and the solenoid antenna formed by using the printed wiring board have restrictions on the mounting space for mounting other electronic components on the printed wiring board. As shown in FIG. 8, an antenna device 100 in which a solenoid antenna 101 that has a high volumetric efficiency and does not take a mounting area is mounted in parallel on a printed wiring board 102 housed in a casing of a flat mobile phone 110 is also mounted. (Patent Document 4).
特開2008-42761号公報JP 2008-42761 A 特開2014-64267号公報JP 2014-64267 A 特表2009-503940号公報Special table 2009-503940 特表2016-506102号公報Special table 2016-506102 gazette
 特許文献1や特許文献2に記載の平面ループアンテナのアンテナ装置では、プリント配線基板上に多重の螺旋状の導電パターンやコイルを形成する必要があり、プリント配線基板上に広い実装面積を要するので、高密度実装の障害となる。 In the antenna device of the planar loop antenna described in Patent Literature 1 and Patent Literature 2, it is necessary to form multiple spiral conductive patterns and coils on the printed wiring board, and a large mounting area is required on the printed wiring board. It becomes an obstacle to high-density mounting.
 また、特許文献3に記載のソレノイドアンテナのアンテナ装置も、扁平なプリント配線基板を用いて形成するので、プリント配線基板上の実装面を専有するとともに、ソレノイドアンテナから放射される磁界は、プリント配線基板と平行、つまり扁平形状の通信端末の扁平方向で最も強く、電磁結合する相手側のアンテナが平面ループアンテナである場合には、平面ループアンテナに直交する方向からソレノイドアンテナを備えた扁平な通信機器の端面を接近させることとなり、RFID通信やNFC通信を行う操作性に欠ける。 In addition, the antenna device of the solenoid antenna described in Patent Document 3 is also formed using a flat printed wiring board, so that the mounting surface on the printed wiring board is occupied and the magnetic field radiated from the solenoid antenna is Flat communication with a solenoid antenna from the direction perpendicular to the planar loop antenna when the antenna on the other side that is electromagnetically coupled is the strongest in the planar direction of the communication terminal that is parallel to the substrate, that is, the flat shape, and is electromagnetically coupled. The end face of the device is brought closer, and operability for performing RFID communication and NFC communication is lacking.
 そこで、特許文献4に記載のソレノイドアンテナのアンテナ装置100は、ソレノイドアンテナ101が実装されたプリント配線基板102と平行な携帯電話機110の筐体の扁平面を、平面ループアンテナに平行な相手側の通信機器の筐体の平面に近接させて、ソレノイドアンテナ101と、ソレノイドアンテナ101の巻線の中心軸に平行な図示しない平面ループアンテナとを電磁結合させている。すなわち、ソレノイドアンテナ101の一端から発散される磁力線は、ソレノイドアンテナ101の側方を経由して他端で収束し、その一部の磁力線は、ソレノイドアンテナ101の巻線の中心軸に平行な平面に形成される平面ループアンテナ内を通過するので、ソレノイドアンテナと平面ループアンテナが互いに平行に配置されていても、電磁結合する。 Therefore, the antenna device 100 of the solenoid antenna described in Patent Document 4 is configured so that the flat surface of the casing of the mobile phone 110 parallel to the printed wiring board 102 on which the solenoid antenna 101 is mounted is connected to the other side parallel to the planar loop antenna. The solenoid antenna 101 and a planar loop antenna (not shown) parallel to the central axis of the winding of the solenoid antenna 101 are electromagnetically coupled in proximity to the plane of the communication device casing. That is, the lines of magnetic force emanating from one end of the solenoid antenna 101 converge at the other end via the side of the solenoid antenna 101, and a part of the lines of magnetic force is a plane parallel to the central axis of the winding of the solenoid antenna 101. Therefore, even if the solenoid antenna and the planar loop antenna are arranged in parallel to each other, they are electromagnetically coupled.
 しかしながら、ソレノイドアンテナ101で発生する磁界は、ソレノイドアンテナ101の一端から離れるほど減少するとともに、上述のようにソレノイドアンテナ101の巻線の中心軸方向で最も強く、中心軸との交差角度が大きくなるほど弱くなり、ソレノイドアンテナ101の巻線の中心軸に直交する平面に形成される平面ループアンテナ内の磁束密度Bは低く、相互インダクタンスが低下して通信距離が短くなったり、通信品質が低下する。 However, the magnetic field generated by the solenoid antenna 101 decreases as the distance from one end of the solenoid antenna 101 decreases, and is strongest in the direction of the central axis of the winding of the solenoid antenna 101 as described above, and as the crossing angle with the central axis increases. The magnetic flux density B in the planar loop antenna formed on a plane orthogonal to the central axis of the winding of the solenoid antenna 101 is low, and the mutual inductance is reduced, the communication distance is shortened, and the communication quality is lowered.
 ソレノイドアンテナ101で発生する磁界の磁束密度Bは、ソレノイドアンテナ101の巻線に流れる励磁電流に比例するので、励磁電流Iexを上昇させれば平面ループアンテナ内の磁束密度Bも上昇させることができるが、高い励磁電流Iexを巻線に流すと発熱の危険があることから励磁電流Iexの上限が限られ、上述の通信距離や通信品質の問題を本質的に改善することはできなかった。 Since the magnetic flux density B of the magnetic field generated by the solenoid antenna 101 is proportional to the excitation current flowing through the winding of the solenoid antenna 101, the magnetic flux density B in the planar loop antenna can be increased by increasing the excitation current Iex. However, if a high excitation current Iex is passed through the winding, there is a risk of heat generation, so the upper limit of the excitation current Iex is limited, and the above-described problems of communication distance and communication quality cannot be essentially improved.
 本発明は、このような従来の問題点を考慮してなされたものであり、ソレノイドアンテナの中心軸方向に対して電磁結合する平面ループアンテナが形成される平面が平行していても、通信品質を損なうことなく、所定の通信距離で相互の通信が可能なアンテナ装置を提供することを目的とする。 The present invention has been made in consideration of such conventional problems, and even if the plane on which the planar loop antenna that electromagnetically couples to the central axis direction of the solenoid antenna is parallel, the communication quality is improved. An object of the present invention is to provide an antenna device capable of mutual communication at a predetermined communication distance without impairing the above.
 また、ソレノイドアンテナを実装するプリント配線基板の実装密度を低下させることなく、プリント配線基板に平行な平面に形成される平面ループアンテナと電磁誘導方式の通信を行うアンテナ装置を提供することを目的とする。 Another object of the present invention is to provide an antenna device that performs electromagnetic induction communication with a planar loop antenna formed on a plane parallel to the printed wiring board without reducing the mounting density of the printed wiring board on which the solenoid antenna is mounted. To do.
 また、扁平な筐体内に容積効率のよいソレノイドアンテナを扁平面に平行に収容しても、通信品質を損なうことなく、筐体の扁平面を平面ループアンテナが形成される平面に接近させて相互の通信を行うことが可能なアンテナ装置を提供することを目的とする。 Even if a volume-efficient solenoid antenna is accommodated in a flat casing parallel to the flat plane, the flat plane of the casing is brought close to the plane on which the planar loop antenna is formed without impairing communication quality. An object of the present invention is to provide an antenna device capable of performing the above communication.
 上述の目的を達成するため、請求項1に記載のアンテナ装置は、平面ループアンテナと電磁結合するアンテナ装置であって、平面ループアンテナが形成される平面と所定間隔を隔てて平行な仮想平面に沿ってそれぞれ配置される複数のソレノイドアンテナからなり、平面ループアンテナで囲まれる領域を仮想平面上に投影させた投影領域に、磁力線の発散側又は収束側のいずれかに統一した複数のソレノイドアンテナの各一端を臨ませることを特徴とする。 In order to achieve the above-described object, an antenna device according to claim 1 is an antenna device electromagnetically coupled to a planar loop antenna, wherein the antenna device is arranged in a virtual plane parallel to a plane on which the planar loop antenna is formed at a predetermined interval. A plurality of solenoid antennas arranged along the plane loop antenna, and a projection area obtained by projecting the area surrounded by the planar loop antenna onto the virtual plane is unified to either the divergence side or the convergence side of the magnetic field lines. It is characterized by facing each end.
 磁力線の発散側又は収束側のいずれかに統一した複数のソレノイドアンテナの各一端が平面ループアンテナで囲まれる領域を仮想平面上に投影させた投影領域に臨むので、複数の全てのソレノイドアンテナから発散される磁力線は平面ループアンテナ内を同一方向に貫き、平面ループアンテナ内の磁束密度Bは、複数の各ソレノイドアンテナが平面ループアンテナ内に発生する磁束密度Bの総和となり、各ソレノイドアンテナの巻線に流す励磁電流を上昇させることなく、平面ループアンテナに励磁電流に応じて変化する大きな誘導電流を発生させることができる。 Since one end of a plurality of solenoid antennas unified to either the divergent side or the converging side of the magnetic field lines faces the projected area where the area surrounded by the planar loop antenna is projected on the virtual plane, the divergence from all the plurality of solenoid antennas The magnetic field lines penetrate the planar loop antenna in the same direction, and the magnetic flux density B in the planar loop antenna is the sum of the magnetic flux densities B generated in the planar loop antenna by each of the plurality of solenoid antennas. A large induction current that changes in accordance with the excitation current can be generated in the planar loop antenna without increasing the excitation current flowing through the antenna.
 請求項2に記載のアンテナ装置は、複数のソレノイドアンテナの各他端を投影領域から離れた外側に配設することを特徴とする。 The antenna device according to claim 2 is characterized in that each other end of the plurality of solenoid antennas is disposed outside the projection area.
 複数のソレノイドアンテナの各他端は投影領域から離れた外側に配設されるので、各他端から発散若しくは各他端に収束する磁力線が平面ループアンテナを通過することがなく、平面ループアンテナ内に発生する磁束密度Bが低下しない。 Since the other ends of the plurality of solenoid antennas are arranged outside the projection area, the lines of magnetic force that diverge from each other end or converge at each other end do not pass through the plane loop antenna, and the inside of the plane loop antenna Does not decrease.
 請求項3又は請求項5に記載のアンテナ装置は、複数のソレノイドアンテナが、仮想平面に沿ったプリント配線基板に実装されることを特徴とする。 The antenna device according to claim 3 or 5 is characterized in that a plurality of solenoid antennas are mounted on a printed wiring board along a virtual plane.
 複数のソレノイドアンテナは、平面ループアンテナが形成される平面に平行なプリント配線基板に沿って実装され、プリント配線基板を覆う筐体の一面を、平面ループアンテナが形成される平面に接近させる操作で、ソレノイドアンテナと平面ループアンテナが電磁結合する。 The plurality of solenoid antennas are mounted along a printed wiring board parallel to the plane on which the planar loop antenna is formed, and an operation of bringing one surface of the housing covering the printed wiring board close to the plane on which the planar loop antenna is formed. The solenoid antenna and the planar loop antenna are electromagnetically coupled.
 請求項4に記載のアンテナ装置は、複数のソレノイドアンテナが、仮想平面に沿った扁平な筐体に収容されていることを特徴とする。 The antenna device according to claim 4 is characterized in that a plurality of solenoid antennas are accommodated in a flat casing along a virtual plane.
 複数のソレノイドアンテナは、巻線の中心軸が筐体の扁平面に沿った姿勢で筐体内に収容される。 The plurality of solenoid antennas are accommodated in the casing with the central axis of the winding along the flat surface of the casing.
 筐体の扁平面は、平面ループアンテナが形成される平面と平行となり、筐体の扁平面を、平面ループアンテナが形成される平面に接近させる操作で、ソレノイドアンテナと平面ループアンテナが電磁結合する。 The flat surface of the casing is parallel to the plane on which the planar loop antenna is formed, and the solenoid antenna and the planar loop antenna are electromagnetically coupled by operating the flat surface of the casing close to the plane on which the planar loop antenna is formed. .
 請求項6に記載のアンテナ装置は、複数のソレノイドアンテナは、アクティブモードで動作するNFC通信デバイスの仮想平面に沿って扁平な筐体に収容されていることを特徴とする。 The antenna device according to claim 6 is characterized in that the plurality of solenoid antennas are accommodated in a flat casing along a virtual plane of the NFC communication device operating in the active mode.
 複数のソレノイドアンテナは、NFC通信デバイスの扁平な筐体の扁平面に沿って収容され、アクティブモードで動作するNFC通信デバイスの電源から複数のソレノイドアンテナに励磁電流が流れ、NFC通信デバイスの扁平な筐体に平行な平面に形成される平面ループアンテナに励磁電流に応じた誘導電流が流れる。 The plurality of solenoid antennas are accommodated along the flat surface of the flat casing of the NFC communication device, and an excitation current flows from the power source of the NFC communication device operating in the active mode to the plurality of solenoid antennas. An induced current corresponding to the excitation current flows through a planar loop antenna formed on a plane parallel to the housing.
 請求項7に記載のアンテナ装置は、複数のソレノイドアンテナが、NFC通信デバイスの仮想平面に沿ったプリント配線基板に実装されることを特徴とする。 The antenna device according to claim 7 is characterized in that a plurality of solenoid antennas are mounted on a printed wiring board along a virtual plane of the NFC communication device.
 複数のソレノイドアンテナは、NFC通信デバイスの筐体の扁平面に沿ったプリント配線基板に実装され、筐体の扁平面を、平面ループアンテナが形成される平面に接近させる操作で、ソレノイドアンテナと平面ループアンテナが電磁結合する。 The plurality of solenoid antennas are mounted on a printed wiring board along the flat surface of the casing of the NFC communication device, and the flat surface of the casing is brought into close contact with the plane on which the planar loop antenna is formed. The loop antenna is electromagnetically coupled.
 請求項8に記載のアンテナ装置は、2本のソレノイドアンテナが仮想平面上に互いに直交して配設されることを特徴とする。 The antenna device according to claim 8 is characterized in that two solenoid antennas are arranged orthogonal to each other on a virtual plane.
 磁力線の発散側又は収束側のいずれかに統一した2本のソレノイドアンテナの各一端を直交方向から接近させることができ、平面ループアンテナを仮想平面上に投影させた投影領域に接近させた2本のソレノイドアンテナの各一端を容易に臨ませることができる。 One end of two solenoid antennas unified on either the diverging side or the converging side of the magnetic field lines can be approached from the orthogonal direction, and the two are close to the projection area projected on the virtual plane. Each end of the solenoid antenna can be easily exposed.
 請求項1の発明によれば、ソレノイドアンテナに流れる励磁電流を上昇させずに、ソレノイドアンテナの巻線の中心軸に平行な平面に形成される平面ループアンテナと通信品質を損なうことなく、所定の通信距離で相互の通信が可能となる。 According to the first aspect of the present invention, the excitation current flowing through the solenoid antenna does not increase, and the planar loop antenna formed on the plane parallel to the central axis of the solenoid antenna winding does not impair the communication quality. Mutual communication is possible at a communication distance.
 請求項2の発明によれば、より効果的にソレノイドアンテナに流れる励磁電流を上昇させずに、平面ループアンテナとの通信品質を損なうことなく、所定の通信距離で相互の通信が可能となる。 According to the invention of claim 2, it is possible to communicate with each other at a predetermined communication distance without increasing the excitation current flowing through the solenoid antenna more effectively and without impairing the communication quality with the planar loop antenna.
 請求項3又は請求項5の発明によれば、扁平な筐体内に容積効率のよいソレノイドアンテナを扁平面に平行なプリント配線基板に実装することができ、扁平な筐体を小型化できる。 According to the invention of claim 3 or claim 5, a volume-efficient solenoid antenna can be mounted in a flat casing on a printed wiring board parallel to the flat plane, and the flat casing can be miniaturized.
 請求項4の発明によれば、扁平な筐体内に容積効率のよいソレノイドアンテナを扁平面に平行に収容することができ、扁平な筐体を小型化できる。 According to the invention of claim 4, the volume efficient solenoid antenna can be accommodated in the flat casing in parallel to the flat plane, and the flat casing can be miniaturized.
 扁平な筐体内にソレノイドアンテナを備えた通信機器であっても、平面ループアンテナを備えた通信機器と同様に、筐体の扁平面を平面ループアンテナの形成面に接近させる操作で相互の通信を行うことができ、通信を行うための操作に違和感がない。 Even in a communication device equipped with a solenoid antenna in a flat housing, mutual communication can be performed by operating the flat surface of the housing close to the plane of the flat loop antenna, just like a communication device equipped with a planar loop antenna. It can be performed, and there is no sense of incongruity in the operation for performing communication.
 請求項6の発明によれば、扁平な筐体内にソレノイドアンテナを備えたNFC通信デバイスであっても、平面ループアンテナを備えた通信機器と同様に、筐体の扁平面を平面ループアンテナの形成面に接近させる違和感のない操作で相互の通信を行うことができる。 According to the invention of claim 6, even in an NFC communication device having a solenoid antenna in a flat housing, the flat surface of the housing is formed as a flat loop antenna in the same manner as a communication device having a flat loop antenna. Mutual communication can be performed with an operation that makes the user feel close to the surface.
 請求項7の発明によれば、NFC通信デバイスの筐体の扁平面に沿って筐体内に収容されるプリント配線基板にソレノイドアンテナを扁平面に平行に実装することができ、NFC通信デバイスの扁平な筐体内にプリント配線基板と複数のソレノイドアンテナを効率的に収容できる。 According to the invention of claim 7, the solenoid antenna can be mounted in parallel to the flat surface on the printed wiring board accommodated in the case along the flat surface of the case of the NFC communication device. A printed wiring board and a plurality of solenoid antennas can be efficiently accommodated in a simple housing.
 請求項8の発明によれば、平面ループアンテナの大きさや形状にかかわらず、2本のソレノイドアンテナの一端を平面ループアンテナを投影させた投影領域に容易に臨ませることができ、2本のソレノイドアンテナを平面ループアンテナと電磁結合させることができる。 According to the invention of claim 8, regardless of the size and shape of the planar loop antenna, one end of the two solenoid antennas can easily face the projection area where the planar loop antenna is projected, and the two solenoids The antenna can be electromagnetically coupled to the planar loop antenna.
本願発明の一実施の形態に係るアンテナ装置1と、平面ループアンテナ51が形成されたメモリーカード50を示す平面図である。1 is a plan view showing an antenna device 1 according to an embodiment of the present invention and a memory card 50 on which a planar loop antenna 51 is formed. アンテナ装置1と平面ループアンテナ51が電磁結合する状態を示す平面図である。It is a top view which shows the state which the antenna apparatus 1 and the planar loop antenna 51 electromagnetically couple. 図2に示す状態を、平面ループアンテナ51に交差するX-Z平面で切断して示す模式図である。FIG. 3 is a schematic diagram showing the state shown in FIG. 2 cut along an XZ plane intersecting a planar loop antenna 51. アンテナ装置1と平面ループアンテナ51が電磁結合する状態を示す説明図である。It is explanatory drawing which shows the state which the antenna apparatus 1 and the planar loop antenna 51 electromagnetically couple. アンテナ装置1を収容したスマートフォン10とメモリーカード50の関係を示す部分省略斜視図である。3 is a partially omitted perspective view showing the relationship between a smartphone 10 housing an antenna device 1 and a memory card 50. FIG. アンテナ装置30と渦巻き状の平面ループアンテナ52が電磁結合する状態を示す説明図である。It is explanatory drawing which shows the state which the antenna device 30 and the spiral planar loop antenna 52 electromagnetically couple. 第2実施の形態に係るアンテナ装置20と平面ループアンテナ51が電磁結合する状態を示す説明図である。It is explanatory drawing which shows the state which the antenna apparatus 20 which concerns on 2nd Embodiment, and the planar loop antenna 51 electromagnetically couple. 携帯電話機110に収容されたソレノイドアンテナ101から構成される従来のアンテナ装置100を示す部分破断平面図である。FIG. 2 is a partially cutaway plan view showing a conventional antenna device 100 configured from a solenoid antenna 101 housed in a mobile phone 110.
 本発明に第1実施の形態に係るアンテナ装置1は、RFID(Radio Frequency identifier)やNFC(Near Field Communication)の近距離無線通信機能を有するICカード、スマートフォン等の通信端末のうち、電源を有するアクティブモードで動作可能なNFC通信デバイスであるスマートフォン10に搭載され、NFC通信デバイスのパッシブ通信端末であるメモリーカード50に搭載された平面ループアンテナ51と電磁誘導方式で電磁結合させて、メモリーカード50と電子認証、電子決済、その他のデータ通信を行う。 The antenna device 1 according to the first embodiment of the present invention has a power source among communication terminals such as an IC card and a smartphone having a short-range wireless communication function of RFID (Radio Frequency identifier) and NFC (Near Field Communication). The memory card 50 is electromagnetically coupled with the planar loop antenna 51 mounted on the smartphone 10 which is an NFC communication device operable in the active mode and mounted on the memory card 50 which is a passive communication terminal of the NFC communication device. And electronic authentication, electronic payment, and other data communications.
 以下、このアンテナ装置1を、図1乃至図5を用いて説明する。各部の説明におけるX、Y、Zの各方向は、これらの図中に示す互いに直交するX、Y、Zの各方向である。 Hereinafter, the antenna device 1 will be described with reference to FIGS. 1 to 5. The directions of X, Y, and Z in the description of each part are the directions of X, Y, and Z that are orthogonal to each other shown in these drawings.
 図1に示すように、アンテナ装置1は、X-Y平面に平行なプリント配線基板30の底面に沿って互いに直交してプリント配線基板30に実装される2本のソレノイドアンテナ2a、2bから構成される。アンテナ装置1が実装されたプリント配線基板30は、スマートフォン10のX-Y平面の方向に沿って扁平な絶縁ケース11内に扁平な方向に沿って収容され、図5に示すように、スマートフォン10とメモリーカード50との通信は、スマートフォン10の絶縁ケース11の扁平面である底面と、対向するメモリーカード50の表面間を接触若しくは近接させ、絶縁ケース11の底面に平行に実装される2本のソレノイドアンテナ2a、2bとメモリーカード50の表面と平行な平面に形成される平面ループアンテナ51を電磁結合させる。 As shown in FIG. 1, the antenna device 1 includes two solenoid antennas 2a and 2b mounted on the printed wiring board 30 orthogonal to each other along the bottom surface of the printed wiring board 30 parallel to the XY plane. Is done. The printed wiring board 30 on which the antenna device 1 is mounted is accommodated along the flat direction in the flat insulating case 11 along the direction of the XY plane of the smartphone 10, and as shown in FIG. The memory card 50 communicates with the bottom surface of the insulating case 11 of the smartphone 10 and the surface of the opposing memory card 50 in contact with or close to each other and mounted in parallel on the bottom surface of the insulating case 11. The solenoid antennas 2a and 2b and the planar loop antenna 51 formed in a plane parallel to the surface of the memory card 50 are electromagnetically coupled.
 すなわち、図3に示すように、X-Y平面に平行な平面ループアンテナ51が形成される平面をPLとして、2本のソレノイドアンテナ2a、2bは、メモリーカード50との通信時に、平面PLからZ方向に所定間隔を隔てて平行な仮想平面PL’に沿って配置されるように、スマートフォン10の絶縁ケース11内に収容されている。 That is, as shown in FIG. 3, the plane on which the planar loop antenna 51 parallel to the XY plane is formed is PL, and the two solenoid antennas 2a and 2b are separated from the plane PL when communicating with the memory card 50. It is accommodated in the insulating case 11 of the smartphone 10 so as to be arranged along a virtual plane PL ′ parallel to the Z direction with a predetermined interval.
 各ソレノイドアンテナ2a、2bは、円柱状のフェライトコアの外周面に銅電線からなる巻線を螺旋状に巻回して形成される。比透磁率μsが1000乃至2000のフェライトコアの周囲に巻線を巻回することによって、各ソレノイドアンテナ2a、2bは、全長が1乃至1.5cmと小容量でありながら、極めて高い磁界を発生し、ソレノイドアンテナ2a、2bの巻線の中心軸の側方にも、一定の大きさの磁束密度Bの磁界が生じる。 Each solenoid antenna 2a, 2b is formed by spirally winding a winding made of a copper wire on the outer peripheral surface of a cylindrical ferrite core. By winding a winding around a ferrite core having a relative permeability μs of 1000 to 2000, each solenoid antenna 2a, 2b generates a very high magnetic field while having a total length of 1 to 1.5 cm and a small capacity. A magnetic field having a certain magnetic flux density B is also generated on the side of the central axis of the windings of the solenoid antennas 2a and 2b.
 各ソレノイドアンテナ2a、2bの巻線の両端は、巻線に励磁電流Iexを流す信号源3に接続している。従って、各ソレノイドアンテナ2a、2bは信号源3に平列に接続され、信号源3から流れる励磁電流Iexに通信データで変調した変調信号を重畳させた場合には、各ソレノイドアンテナ2a、2bの巻線に同期した変調信号が流れる。 Both ends of the windings of the solenoid antennas 2a and 2b are connected to a signal source 3 for flowing an exciting current Iex through the windings. Accordingly, the solenoid antennas 2a and 2b are connected in parallel to the signal source 3, and when the modulation signal modulated by the communication data is superimposed on the excitation current Iex flowing from the signal source 3, the solenoid antennas 2a and 2b A modulation signal synchronized with the winding flows.
 ソレノイドアンテナ2の巻線に励磁電流Iexが流れると、その一端から無限数の磁力線が発散し、ソレノイドアンテナ2の側方を通過して他端に収束する。ソレノイドアンテナ2の両端が発散側と収束側のいずれになるかは、いわゆる右ねじの法則に従い、巻線の巻回方向と巻線に流れる励磁電流の方向により定まる。例えば、図中に示す2本のソレノイドアンテナ2a、2bのうち、X方向に沿って配置されるソレノイドアンテナ2aは、-X方向に向かって時計回りに励磁電流Iexが流れるので、X方向の一端(右端)が発散側と、-X方向の他端(左端)が収束側となり、Y方向に沿って配置されるソレノイドアンテナ2bは、Y方向に向かって反時計回りに励磁電流Iexが流れるので、-Y方向の一端(下端)が発散側と、Y方向の他端(上端)が収束側となる。 When the exciting current Iex flows through the winding of the solenoid antenna 2, an infinite number of magnetic field lines diverge from one end of the solenoid antenna 2, and passes through the side of the solenoid antenna 2 and converges to the other end. Whether both ends of the solenoid antenna 2 are the diverging side or the converging side is determined by the winding direction of the winding and the direction of the exciting current flowing in the winding according to the so-called right-handed screw law. For example, among the two solenoid antennas 2a and 2b shown in the figure, the solenoid antenna 2a arranged along the X direction has the exciting current Iex flowing clockwise in the −X direction. The solenoid antenna 2b arranged along the Y direction flows the excitation current Iex counterclockwise in the Y direction (the right end) is the divergent side and the other end (the left end) in the −X direction is the convergence side. The one end (lower end) in the −Y direction is the divergent side, and the other end (upper end) in the Y direction is the converging side.
 本実施の形態では、平面ループアンテナ51で囲まれる領域を仮想平面PL’に投影させた投影領域AR(図4、図5において斜線で表示する領域)に、仮想平面PL’に沿って直交配置される2本のソレノイドアンテナ2a、2bのいずれか一端を臨ませるとともに、巻線の巻回方向若しくは巻線に流れる励磁電流Iexの方向を調整して、投影領域ARに臨むその一端が全て発散側に統一している。 In the present embodiment, an orthogonal arrangement is provided along the virtual plane PL ′ in the projection area AR (area shown by hatching in FIGS. 4 and 5) obtained by projecting the area surrounded by the planar loop antenna 51 onto the virtual plane PL ′. One end of each of the two solenoid antennas 2a and 2b is exposed, and the winding direction of the winding or the direction of the excitation current Iex flowing in the winding is adjusted so that all of the one end facing the projection area AR diverges. Unified to the side.
 これにより、図3に示すように、2本のソレノイドアンテナ2a、2bの発散側の一端の側方(Z方向)で、ソレノイドアンテナ2a、2bと平行な平面平面をPLに形成された平面ループアンテナ51内には、2本のソレノイドアンテナ2a、2bから放射される磁力線が同方向(-Z方向)に貫通する。一方、2本のソレノイドアンテナ2a、2bの磁力線が収束する収束側の他端は、平面ループアンテナ51の投影領域ARから離れた外側に配設されているので、平面ループアンテナ51に収束するZ方向に向かう磁力線が平面ループアンテナ51を貫通することはない。その結果、平面ループアンテナ51において、2本のソレノイドアンテナ2a、2bにより放射される磁界成分Hzがその反対方向の磁界成分-Hzにより打ち消されてしまうということがなく、2本のソレノイドアンテナ2a、2bが放射する磁界を加えた高い磁界が発生し、2本のソレノイドアンテナ2a、2bからなるアンテナ装置1と平面ループアンテナ51間の相互インダクタンスを大きくすることができる。 As a result, as shown in FIG. 3, a plane loop in which a plane plane parallel to the solenoid antennas 2a and 2b is formed in PL on one side (Z direction) of the diverging side of the two solenoid antennas 2a and 2b is formed. In the antenna 51, the magnetic lines of force radiated from the two solenoid antennas 2a and 2b penetrate in the same direction (−Z direction). On the other hand, the other end on the convergence side where the magnetic lines of force of the two solenoid antennas 2a and 2b converge is disposed outside the projection area AR of the planar loop antenna 51, so that Z converges on the planar loop antenna 51. The magnetic field lines directed in the direction do not penetrate the planar loop antenna 51. As a result, in the planar loop antenna 51, the magnetic field component Hz radiated by the two solenoid antennas 2a and 2b is not canceled by the magnetic field component -Hz in the opposite direction, and the two solenoid antennas 2a, A high magnetic field is added to the magnetic field radiated by 2b, and the mutual inductance between the antenna device 1 including the two solenoid antennas 2a and 2b and the planar loop antenna 51 can be increased.
 従って、平面ループアンテナ51には、各ソレノイドアンテナ2a、2b毎に巻線に励磁電流Iexを流して平面ループアンテナ51に発生する誘導電流の総和の誘導電流Iindが流れ、各ソレノイドアンテナ2a、2bの巻線に流れる励磁電流Iexの上限が限られていても、通信品質を損なうことなく、スマートフォン10とメモリーカード50とのデータ通信を行うことができる。 Therefore, the planar loop antenna 51 is supplied with the exciting current Iex flowing through the winding for each solenoid antenna 2a, 2b, and the induced current Iind, which is the sum of the induced currents generated in the planar loop antenna 51, flows to each solenoid antenna 2a, 2b. Even if the upper limit of the excitation current Iex flowing through the windings of N is limited, data communication between the smartphone 10 and the memory card 50 can be performed without impairing communication quality.
 上述のとおり、複数の全てのソレノイドアンテナ2から放射される磁力線を、平面ループアンテナ51内に同一方向に貫通させる為には、発散側若しくは収束側に統一した全てのソレノイドアンテナ2a、2bの一端を平面ループアンテナ51を投影させた投影領域ARに臨ませるとともに、他端を投影領域ARから離れた外側に配設する必要があるが、本実施の形態では、2本のソレノイドアンテナ2a、2bをX、Y方向に直交に配置するので、発散側に統一した各一端が接近して確実に投影領域ARに臨ませることができ、また、収束側に統一した他端は必然的に投影領域ARから離れた位置に配設される。 As described above, in order to penetrate the magnetic field lines radiated from all the plurality of solenoid antennas 2 in the same direction in the planar loop antenna 51, one end of all the solenoid antennas 2a and 2b unified on the diverging side or the convergence side. Must face the projection area AR on which the planar loop antenna 51 is projected, and the other end is disposed outside the projection area AR. In this embodiment, the two solenoid antennas 2a and 2b are required. Are arranged orthogonally to the X and Y directions so that one end unified to the divergent side can approach and reliably face the projection area AR, and the other end unified to the convergence side is necessarily the projection area. Arranged at a position away from the AR.
 このように発散側に統一した一端を投影領域ARに臨ませ、他端を投影領域ARの外側に配設するためにX、Y方向で直交させた2本のソレノイドアンテナ2a、2bからなるアンテナ装置1に、平面ループアンテナ51を電磁結合させるには、図1に示すように、X、-Y方向の斜めの方向からメモリーカード50の平面ループアンテナ51を接近させることが望ましく、本実施の形態では、2本のソレノイドアンテナ2a、2bと平面ループアンテナ51が電磁結合する図2に示す位置で相対位置決めするため、図5に示すように、スマートフォン10の絶縁ケース11の底面からL状突部12を突設し、X、-Y方向の斜めの方向から接近させるメモリーカード50を当接させて図2に示す相対位置で位置決めしている。 An antenna comprising two solenoid antennas 2a and 2b orthogonal to each other in the X and Y directions so that one end unified on the divergent side faces the projection area AR and the other end is disposed outside the projection area AR. In order to electromagnetically couple the planar loop antenna 51 to the apparatus 1, it is desirable to bring the planar loop antenna 51 of the memory card 50 close to the apparatus 1 from an oblique direction in the X and -Y directions, as shown in FIG. In the embodiment, since the two solenoid antennas 2a and 2b and the flat loop antenna 51 are relatively positioned at the position shown in FIG. 2, the L-shaped protrusion is formed from the bottom surface of the insulating case 11 of the smartphone 10 as shown in FIG. The portion 12 is provided so as to contact the memory card 50 that is approached from the oblique directions of the X and -Y directions, and is positioned at the relative position shown in FIG.
 また、図2に示すような電磁結合位置で、複数のソレノイドアンテナ2a、2bと平面ループアンテナ51とを相対位置決めするために、スマートフォン10の絶縁ケース11の一部にメモリーカード50を近接させる位置を示すガイドマークを表示してもよい。 Further, in order to relatively position the plurality of solenoid antennas 2a, 2b and the planar loop antenna 51 at the electromagnetic coupling position as shown in FIG. 2, the memory card 50 is brought close to a part of the insulating case 11 of the smartphone 10. You may display the guide mark which shows.
 メモリーカード50は、矩形のメモリーカード50の周縁に沿って絶縁基板上にスパイラル状に形成された導体パターンからなる平面ループアンテナ51と、平面ループアンテナ51に流れる信号を変復調し、スマートフォン10側とデータ通信を行うロジック回路53と、ロジック回路53に接続するメモリー54を備え、ロジック回路53とメモリー54はICチップ55に集積化されてメモリーカード50に搭載されている。ICチップ55は、アンテナ装置1と電磁結合することにより平面ループアンテナ51に発生する誘導起電力を電源として動作する。 The memory card 50 includes a planar loop antenna 51 formed of a conductor pattern spirally formed on an insulating substrate along the periphery of the rectangular memory card 50, and modulates / demodulates a signal flowing through the planar loop antenna 51, A logic circuit 53 for performing data communication and a memory 54 connected to the logic circuit 53 are provided. The logic circuit 53 and the memory 54 are integrated on an IC chip 55 and mounted on the memory card 50. The IC chip 55 operates using the induced electromotive force generated in the planar loop antenna 51 by being electromagnetically coupled to the antenna device 1 as a power source.
 図2に示す位置で、スマートフォン10側の信号源3から2本のソレノイドアンテナ2a、2bへ、それぞれ通信データで変調した変調信号を重畳させた励磁電流Iexを流すと、2本のソレノイドアンテナ2a、2bに電磁結合する平面ループアンテナ51に、励磁電流Iexに応じた誘導電流Iindが図中の時計回りに流れる。平面ループアンテナ51内に発生する磁束密度Bは、励磁電流Iexに比例し、誘導電流Iindは、平面ループアンテナ51内に発生する磁束密度Bに比例するので、ロジック回路53に入力される誘導電流Iindは励磁電流Iexに比例し、誘導電流Iindに重畳する変調信号から上記通信データが復調される。また、ロジック回路53は、接続するメモリ54から所定の固有データを読み出し、固有データで変調した励磁電流Iexを平面ループアンテナ51に流し、電磁結合する2本のソレノイドアンテナ2a、2bへそれぞれ励磁電流Iexに比例する誘導電流Iindを発生させる。スマートフォン10側の図示しない復調回路は、2本のソレノイドアンテナ2a、2bの誘導電流Iindに重畳する変調信号から固有データを復調し、スマートフォン10とメモリーカード50との間で電子認証、電子決済、その他のデータ通信を行う。 When the exciting current Iex on which the modulation signal modulated by the communication data is superimposed is sent from the signal source 3 on the smartphone 10 side to the two solenoid antennas 2a and 2b at the position shown in FIG. 2, the two solenoid antennas 2a The induced current Iind corresponding to the exciting current Iex flows clockwise through the planar loop antenna 51 that is electromagnetically coupled to 2b. Since the magnetic flux density B generated in the planar loop antenna 51 is proportional to the excitation current Iex, and the induced current Iind is proportional to the magnetic flux density B generated in the planar loop antenna 51, the induced current input to the logic circuit 53. Iind is proportional to the excitation current Iex, and the communication data is demodulated from the modulation signal superimposed on the induction current Iind. In addition, the logic circuit 53 reads predetermined specific data from the memory 54 to be connected, passes the excitation current Iex modulated with the specific data to the planar loop antenna 51, and supplies the excitation current to the two solenoid antennas 2a and 2b that are electromagnetically coupled. An induced current Iind proportional to Iex is generated. A demodulation circuit (not shown) on the smartphone 10 side demodulates the unique data from the modulation signal superimposed on the induced current Iind of the two solenoid antennas 2a and 2b, and performs electronic authentication, electronic payment, Perform other data communications.
 尚、アクティブモードで動作するスマートフォン10からパッシブ通信端末であるメモリーカード50とのデータ通信は、メモリーカード50側のインピーダンスを固有データで変化させてスマートフォン10のアンテナ装置1の電圧の振幅や位相を変化させる負荷変調方式で行うこともできる。 In the data communication between the smartphone 10 operating in the active mode and the memory card 50 which is a passive communication terminal, the impedance and voltage phase of the antenna device 1 of the smartphone 10 are changed by changing the impedance on the memory card 50 side with the specific data. It can also be performed by a load modulation method to be changed.
 ここで平面ループアンテナ51とアンテナ装置1の2本のソレノイドアンテナ2a、2bとが電磁結合する位置で、平面ループアンテナ51に平行なメモリーカード50の表面と2本のソレノイドアンテナ2a、2bを収容するスマートフォン10の底面は、互いに平行な姿勢で対向するので、ユーザーは、扁平なスマートフォン10の底面をかざした状態で、扁平なメモリーカード50の表面を近接させる簡単な操作で、両者間のデータ通信を行うことができる。 Here, the surface of the memory card 50 parallel to the planar loop antenna 51 and the two solenoid antennas 2a and 2b are accommodated at a position where the planar loop antenna 51 and the two solenoid antennas 2a and 2b of the antenna device 1 are electromagnetically coupled. Since the bottom surfaces of the smartphones 10 facing each other are parallel to each other, the user can perform data between the two by a simple operation of bringing the surface of the flat memory card 50 close together while holding the bottom surface of the flat smartphone 10. Communication can be performed.
 平面ループアンテナは、上述の実施の形態で示す平面ループアンテナ51のようにメモリーカード50の周縁に沿った矩形状である必要はなく、円形や楕円形、若しくは図6に示すように、導体パターンを渦巻き状に形成した平面ループアンテナ52であってもよい。 The planar loop antenna does not have to be rectangular along the periphery of the memory card 50 like the planar loop antenna 51 shown in the above-described embodiment, and is a circular or elliptical shape, or a conductor pattern as shown in FIG. May be a planar loop antenna 52 formed in a spiral shape.
 尚、平面ループアンテナ51、52は、最も外側の輪郭が閉じていないスパイラル状の導電線若しくは導体パターンで形成されるので、平面ループアンテナ51、52で囲まれる領域の境界は明確ではないが、本発明では、平面ループアンテナ51、52から引き出される引き出し線を除くスパイラル状の導電線若しくは導体パターンの最も外側の導電線若しくは導体パターンで囲まれる領域とする。従って、平面ループアンテナ51、52で囲まれる領域を仮想平面PL’上に投影させた上述の投影領域ARは、図4乃至図7において斜線で表示する領域となる。 The planar loop antennas 51 and 52 are formed of spiral conductive lines or conductor patterns whose outermost contours are not closed, so the boundary of the region surrounded by the planar loop antennas 51 and 52 is not clear. In the present invention, the region is surrounded by the outermost conductive line or conductor pattern of the spiral conductive line or conductor pattern excluding the lead line drawn from the planar loop antennas 51 and 52. Therefore, the above-described projection area AR obtained by projecting the area surrounded by the planar loop antennas 51 and 52 onto the virtual plane PL ′ is an area displayed with diagonal lines in FIGS.
 また、投影領域ARに、磁力線の発散側又は収束側のいずれかに統一した複数のソレノイドアンテナ2a、2bの各一端を臨ませるとは、必ずしも各一端を投影領域ARの内側に配置する場合に限らず、投影領域ARに近接する投影領域ARの外側の位置であってもよい。少なくとも投影領域ARに近接していれば、複数のソレノイドアンテナ2a、2bから放射される磁力線が平面ループアンテナ51、52に同一方向で貫通するからである。 Further, the fact that each end of the plurality of solenoid antennas 2a, 2b unified on either the divergence side or the convergence side of the magnetic field lines is allowed to face the projection area AR is when the one end is not necessarily disposed inside the projection area AR. The position is not limited to the projection area AR and is close to the projection area AR. This is because the lines of magnetic force radiated from the plurality of solenoid antennas 2a and 2b penetrate the planar loop antennas 51 and 52 in the same direction as long as they are at least close to the projection area AR.
 更に、投影領域ARに臨ませた複数のソレノイドアンテナ2a、2bの一端に対して他側の他端は、少なくとも前記一端より投影領域ARの外側に配設されていれば、平面ループアンテナ51、52に逆方向の磁力線は貫通しない。 Furthermore, if the other end on the other side of one end of the plurality of solenoid antennas 2a, 2b facing the projection area AR is disposed at least outside the projection area AR from the one end, the planar loop antenna 51, No magnetic field lines in the reverse direction pass through 52.
 上述の実施の形態では、2本のソレノイドアンテナ2a、2bを扁平な筐体の扁平方向に沿った仮想平面PL’上に直交させて配置しているが、図7に示すように、仮想平面PL’上に巻線の中心軸が互いに平行となるように配置してもよい。 In the above-described embodiment, the two solenoid antennas 2a and 2b are arranged orthogonally on the virtual plane PL ′ along the flat direction of the flat casing, but as shown in FIG. You may arrange | position so that the central axis of winding may become mutually parallel on PL '.
 また、アンテナ装置1は、2本に限らず、3本以上のソレノイドアンテナ2から構成し、磁力線の発散側又は収束側のいずれかに統一した各ソレノイドアンテナ2の一端を投影領域ARに臨ませてもよい。 In addition, the antenna device 1 is not limited to two, but includes three or more solenoid antennas 2, and one end of each solenoid antenna 2 unified on either the diverging side or the converging side of the lines of magnetic force faces the projection area AR. May be.
 平面ループアンテナと電磁結合してRFID通信機器やNFC通信機器間のデータ通信を行うアンテナ装置に適している。 Suitable for antenna devices that perform data communication between RFID communication devices and NFC communication devices by electromagnetic coupling with planar loop antennas.
1 アンテナ装置
2 ソレノイドアンテナ
10 スマートフォン(NFC通信デバイス)
11 絶縁ケース(筐体)
30 プリント配線基板
51 平面ループアンテナ
52 渦巻き状平面ループアンテナ
PL 平面ループアンテナが形成される平面
PL’ 仮想平面
AR 投影領域
1 Antenna device 2 Solenoid antenna 10 Smartphone (NFC communication device)
11 Insulation case (housing)
30 Printed Wiring Board 51 Planar Loop Antenna 52 Spiral Plane Loop Antenna PL Plane PL ′ where Planar Loop Antenna is Formed Virtual Planar AR Projection Area

Claims (8)

  1.  平面ループアンテナと電磁結合するアンテナ装置であって、
     前記平面ループアンテナが形成される平面と所定間隔を隔てて平行な仮想平面に沿ってそれぞれ配置される複数のソレノイドアンテナからなり、
     前記平面ループアンテナで囲まれる領域を前記仮想平面上に投影させた投影領域に、磁力線の発散側又は収束側のいずれかに統一した前記複数のソレノイドアンテナの各一端を臨ませることを特徴とするアンテナ装置。
    An antenna device electromagnetically coupled to a planar loop antenna,
    A plurality of solenoid antennas respectively disposed along a virtual plane parallel to the plane on which the planar loop antenna is formed at a predetermined interval;
    One end of each of the plurality of solenoid antennas unified on either the divergence side or the convergence side of the magnetic field lines faces the projection area obtained by projecting the area surrounded by the planar loop antenna onto the virtual plane. Antenna device.
  2.  前記複数のソレノイドアンテナの各他端を前記投影領域から離れた外側に配設することを特徴とする請求項1に記載のアンテナ装置。 The antenna device according to claim 1, wherein each of the other ends of the plurality of solenoid antennas is disposed outside the projection area.
  3.  前記複数のソレノイドアンテナは、前記仮想平面に沿ったプリント配線基板に実装されることを特徴とする請求項1又は請求項2のいずれか1項に記載のアンテナ装置。 3. The antenna device according to claim 1, wherein the plurality of solenoid antennas are mounted on a printed wiring board along the virtual plane.
  4.  前記複数のソレノイドアンテナは、前記仮想平面に沿った扁平な筐体に収容されていることを特徴とする請求項1又は請求項2のいずれか1項に記載のアンテナ装置。 3. The antenna device according to claim 1, wherein the plurality of solenoid antennas are accommodated in a flat housing along the virtual plane.
  5.  前記複数のソレノイドアンテナは、前記仮想平面に沿ったプリント配線基板に実装されることを特徴とする請求項4に記載のアンテナ装置。 The antenna device according to claim 4, wherein the plurality of solenoid antennas are mounted on a printed wiring board along the virtual plane.
  6.  前記複数のソレノイドアンテナは、アクティブモードで動作するNFC通信デバイスの前記仮想平面に沿って扁平な筐体に収容されていることを特徴とする請求項1又は請求項2のいずれか1項に記載のアンテナ装置。 The said several solenoid antenna is accommodated in the housing | casing flat along the said virtual plane of the NFC communication device which operate | moves in an active mode, Either of Claim 1 or Claim 2 characterized by the above-mentioned. Antenna device.
  7.  前記複数のソレノイドアンテナは、前記NFC通信デバイスの前記仮想平面に沿ったプリント配線基板に実装されることを特徴とする請求項6に記載のアンテナ装置。 The antenna device according to claim 6, wherein the plurality of solenoid antennas are mounted on a printed wiring board along the virtual plane of the NFC communication device.
  8.  2本のソレノイドアンテナが前記仮想平面上に互いに直交して配設されることを特徴とする請求項1又は請求項2のいずれか1項に記載のアンテナ装置。 The antenna device according to any one of claims 1 and 2, wherein two solenoid antennas are arranged orthogonal to each other on the virtual plane.
PCT/JP2017/018140 2017-05-15 2017-05-15 Antenna device WO2018211548A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018140 WO2018211548A1 (en) 2017-05-15 2017-05-15 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018140 WO2018211548A1 (en) 2017-05-15 2017-05-15 Antenna device

Publications (1)

Publication Number Publication Date
WO2018211548A1 true WO2018211548A1 (en) 2018-11-22

Family

ID=64273585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018140 WO2018211548A1 (en) 2017-05-15 2017-05-15 Antenna device

Country Status (1)

Country Link
WO (1) WO2018211548A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086993A (en) * 2012-10-26 2014-05-12 Tokai Rika Co Ltd Communication area formation device
WO2014072075A1 (en) * 2012-11-12 2014-05-15 Premo, Sl Three-dimensional antenna
WO2015098794A1 (en) * 2013-12-26 2015-07-02 株式会社村田製作所 Antenna device and electronic appliance
JP2016059123A (en) * 2014-09-08 2016-04-21 株式会社日本自動車部品総合研究所 Noncontact power supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086993A (en) * 2012-10-26 2014-05-12 Tokai Rika Co Ltd Communication area formation device
WO2014072075A1 (en) * 2012-11-12 2014-05-15 Premo, Sl Three-dimensional antenna
WO2015098794A1 (en) * 2013-12-26 2015-07-02 株式会社村田製作所 Antenna device and electronic appliance
JP2016059123A (en) * 2014-09-08 2016-04-21 株式会社日本自動車部品総合研究所 Noncontact power supply device

Similar Documents

Publication Publication Date Title
JP5673906B1 (en) Communication terminal
JP4894960B2 (en) Electronics
JP4883125B2 (en) antenna
US9627128B2 (en) Antenna module, communication device and method of manufacturing antenna module
JP5435130B2 (en) Communication terminal device and antenna device
KR100842141B1 (en) Small loop antenna for induction reader/writer
JP5737426B2 (en) ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE
JP4894945B2 (en) antenna
JP2012105451A (en) Antenna, electric power transmission device, and electric power reception device
JP4883208B2 (en) ANTENNA DEVICE AND COMMUNICATION DEVICE HAVING THE SAME
JP6172407B2 (en) ANTENNA DEVICE, CARD TYPE INFORMATION MEDIUM, AND COMMUNICATION TERMINAL DEVICE
JP2013009071A (en) Antenna coil
JP5152395B2 (en) ANTENNA, ANTENNA DEVICE, AND COMMUNICATION DEVICE
JP6183688B2 (en) ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE
WO2018211548A1 (en) Antenna device
JP6264504B2 (en) Antennas and electronics
JP4807464B1 (en) Antenna device
JP6549436B2 (en) Antenna device
JP2017069737A (en) Antenna device
JP6428990B1 (en) ANTENNA DEVICE AND ELECTRONIC DEVICE
KR101730262B1 (en) Antenna apparatus and electronic device including thereof
JP5152396B1 (en) ANTENNA, ANTENNA DEVICE, AND COMMUNICATION DEVICE
JP6566184B1 (en) ANTENNA DEVICE AND ELECTRONIC DEVICE
JP2012085333A (en) Antenna and portable phone terminal
JP2021048530A (en) Coil antenna, antenna device, and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP