WO2018211355A1 - Display device and method for manufacturing same - Google Patents

Display device and method for manufacturing same Download PDF

Info

Publication number
WO2018211355A1
WO2018211355A1 PCT/IB2018/053169 IB2018053169W WO2018211355A1 WO 2018211355 A1 WO2018211355 A1 WO 2018211355A1 IB 2018053169 W IB2018053169 W IB 2018053169W WO 2018211355 A1 WO2018211355 A1 WO 2018211355A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductive layer
substrate
region
display device
Prior art date
Application number
PCT/IB2018/053169
Other languages
French (fr)
Japanese (ja)
Inventor
永田貴章
作石達哉
横山浩平
神保安弘
中野賢
山下晃央
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2019518593A priority Critical patent/JPWO2018211355A1/en
Publication of WO2018211355A1 publication Critical patent/WO2018211355A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • One embodiment of the present invention relates to a display device and a manufacturing method thereof.
  • one embodiment of the present invention is not limited to the above technical field.
  • Technical fields of one embodiment of the present invention include a semiconductor device, a display device, a light-emitting device, an electronic device, a lighting device, an input device (for example, a touch sensor), an input / output device (for example, a touch panel), and a driving method thereof. As an example, a method for producing them can be given.
  • a semiconductor device refers to any device that can function by utilizing semiconductor characteristics.
  • a transistor, a semiconductor circuit, an arithmetic device, a memory device, or the like is one embodiment of a semiconductor device.
  • An imaging device, an electro-optical device, a power generation device (including a thin film solar cell, an organic thin film solar cell, and the like) and an electronic device may include a semiconductor device.
  • a display device to which an organic EL (Electro Luminescence) element is applied and a display device to which a liquid crystal element is applied are known.
  • a light-emitting device including a light-emitting element such as a light-emitting diode (LED: Light Emitting Diode), an electronic paper that performs display by an electrophoresis method, and the like can be given as examples of the display device.
  • the basic structure of the organic EL element is such that a layer containing a light-emitting organic compound is sandwiched between a pair of electrodes. Light emission can be obtained from the light-emitting organic compound by applying a voltage to this element.
  • a display device to which such an organic EL element is applied can realize a thin, lightweight, high-contrast display device with low power consumption.
  • Patent Document 1 describes an example of a display device using an organic EL element.
  • a display device having an organic EL element can be manufactured by forming an organic EL element or the like on a manufacturing substrate and then sealing the sealing substrate together.
  • Patent Document 2 after forming an organic EL element on a manufacturing substrate, a spacer is formed on the outer peripheral side of the organic EL element, and a sealing resin is applied to a portion surrounded by the spacer to thereby form a sealing substrate. to paste together.
  • the display device manufactured by this method has a dam fill structure in which the spacer is a dam material and the sealing resin is a fill material.
  • a manufacturing process of a display device is complicated as compared with a case where sealing is performed without providing a dam material.
  • An object of one embodiment of the present invention is to simplify a method for manufacturing a display device. Another object of one embodiment of the present invention is to provide a method for manufacturing a display device with low cost and high productivity. Another object of one embodiment of the present invention is to provide a method for manufacturing a large display device. Another object of one embodiment of the present invention is to provide a method for manufacturing a lightweight display device. Another object of one embodiment of the present invention is to provide a method for manufacturing a thin display device. Another object of one embodiment of the present invention is to provide a method for manufacturing a display device with excellent impact resistance. Another object of one embodiment of the present invention is to provide a method for manufacturing a display device with reduced power consumption.
  • Another object of one embodiment of the present invention is to provide a method for manufacturing a display device with high operation speed. Another object of one embodiment of the present invention is to provide a method for manufacturing a display device with high reliability. Another object of one embodiment of the present invention is to provide a method for manufacturing a display device capable of displaying a high-quality image. Another object of one embodiment of the present invention is to provide a novel method for manufacturing a display device.
  • Another object of one embodiment of the present invention is to provide a low-cost display device. Another object of one embodiment of the present invention is to provide a large display device. Another object of one embodiment of the present invention is to provide a lightweight display device. Another object of one embodiment of the present invention is to provide a thin display device. Another object of one embodiment of the present invention is to provide a display device with excellent impact resistance. Another object of one embodiment of the present invention is to provide a display device with reduced power consumption. Another object of one embodiment of the present invention is to provide a display device with high operation speed. Another object of one embodiment of the present invention is to provide a highly reliable display device. Another object of one embodiment of the present invention is to provide a display device capable of displaying a high-quality image. Another object of one embodiment of the present invention is to provide a novel display device.
  • One embodiment of the present invention includes a first substrate, a second substrate, a light-emitting element, an adhesive layer, and an organic layer.
  • the light-emitting element, the adhesive layer, and the organic layer include: The organic layer is provided between the first substrate and the second substrate, the organic layer has a region in contact with the adhesive layer, the first region where the light-emitting element is provided over the first substrate, and the second substrate A light-emitting element having a light-emitting layer, a first conductive layer, and a second conductive layer, and the organic layer is made of the same material as that of the light-emitting layer. And a display device provided between the first region and the second region.
  • the adhesive layer may be provided in contact with the second region, and the organic layer may be provided in contact with a boundary portion between the adhesive layer and the second region.
  • an organic layer may be provided in the area
  • an external input terminal and an external input terminal may be provided in a 2nd area
  • a transistor may be provided, the transistor may be provided in the first region, and the first conductive layer may be electrically connected to one of a source and a drain of the transistor.
  • the adhesive layer may have a curable adhesive.
  • a colored layer may be provided in the first region.
  • the third conductive layer includes the third conductive layer, the third conductive layer includes a region in contact with the first light-emitting layer, and the third conductive layer is formed using the same material as the second conductive layer. You may have.
  • the first conductive layer may have a function as a pixel electrode of the light-emitting element
  • the second conductive layer may have a function as a common electrode of the light-emitting element
  • the first substrate includes a step of forming a transistor and a first conductive layer over the first substrate, and a region overlapping with the transistor and the first conductive layer.
  • the step of forming the organic layer so as to have a region overlapping with the third conductive layer, the surface of the first substrate on which the transistor is formed, and the second substrate are bonded together using an adhesive layer.
  • the second substrate or the adhesive layer provided in a region overlapping with the third conductive layer after making a cut in a portion of the second substrate overlapping with the first conductive layer and the organic layer And the organic layer may be separated.
  • the surface of the first substrate on which the transistor is formed may be bonded to the second substrate using an adhesive layer having a curable adhesive.
  • the surface of the first substrate on which the transistor is formed and the surface of the second substrate on which the colored layer is formed May be pasted together.
  • a method for manufacturing a display device can be simplified. Alternatively, according to one embodiment of the present invention, a method for manufacturing a display device with low cost and high productivity can be provided. Alternatively, according to one embodiment of the present invention, a method for manufacturing a large display device can be provided. Alternatively, according to one embodiment of the present invention, a method for manufacturing a lightweight display device can be provided. Alternatively, according to one embodiment of the present invention, a method for manufacturing a thin display device can be provided. Alternatively, according to one embodiment of the present invention, a method for manufacturing a display device with excellent impact resistance can be provided. Alternatively, according to one embodiment of the present invention, a method for manufacturing a display device with reduced power consumption can be provided.
  • a method for manufacturing a display device with high operating speed can be provided.
  • a method for manufacturing a highly reliable display device can be provided.
  • a method for manufacturing a display device capable of displaying a high-quality image can be provided.
  • a novel method for manufacturing a display device can be provided.
  • a low-cost display device can be provided.
  • a large display device can be provided.
  • a lightweight display device can be provided.
  • a thin display device can be provided.
  • a display device with excellent impact resistance can be provided.
  • a display device with reduced power consumption can be provided.
  • a display device with high operation speed can be provided.
  • a highly reliable display device can be provided.
  • a display device capable of displaying a high-quality image can be provided.
  • a novel display device can be provided.
  • FIG. 4A and 4B are a top view and a cross-sectional view illustrating a structure example of a display device.
  • Sectional drawing which shows the structural example of a display apparatus.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device.
  • Sectional drawing which shows the structural example of a display apparatus.
  • Sectional drawing which shows the structural example of a display apparatus.
  • Sectional drawing which shows the structural example of a display apparatus.
  • FIG. drawing which shows the structural example of a display apparatus.
  • FIG. drawing which shows the structural example of a display apparatus.
  • FIG. drawing which shows the structural example of a display
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device.
  • FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device.
  • the perspective view which shows the structural example of a touchscreen. Sectional drawing which shows the structural example of a touchscreen.
  • FIG. 14 illustrates an example of an electronic device. 4A and 4B illustrate a method for manufacturing a display device in Embodiment 1. The image displayed by the display apparatus in Example 1.
  • FIG. 4A and 4B illustrate a method for manufacturing a display device in Embodiment 1. The image displayed by the display apparatus in Example 1.
  • ordinal numbers such as “first” and “second” are used for avoiding confusion between components, and are not limited numerically.
  • the terms “film” and “layer” can be interchanged with each other.
  • the term “conductive layer” may be changed to the term “conductive film”.
  • the term “insulating film” may be changed to the term “insulating layer” in some cases.
  • a transistor is a kind of semiconductor element, and can realize amplification of current and voltage, switching operation for controlling conduction or non-conduction, and the like.
  • the transistors in this specification include an IGFET (Insulated Gate Field Effect Transistor) and a thin film transistor (TFT: Thin Film Transistor).
  • source and drain may be switched when transistors having different polarities are employed, or when the direction of current changes during circuit operation. Therefore, in this specification, the terms “source” and “drain” can be used interchangeably.
  • “electrically connected” includes a case of being connected through “something having an electric action”.
  • the “thing having some electric action” is not particularly limited as long as it can exchange electric signals between connection targets.
  • “things having some electric action” include electrodes, wirings, switching elements such as transistors, resistance elements, coils, capacitive elements, and other elements having various functions.
  • a display device has a function of displaying (outputting) an image or the like on a display surface. Therefore, the display device is an embodiment of the output device.
  • the touch sensor has a function of detecting that a detection target such as a finger or a stylus touches, presses, or approaches. Moreover, you may have the function to detect the positional information. Therefore, the touch sensor is an aspect of the input device.
  • the touch sensor can be configured to have one or more sensor elements.
  • a substrate having a touch sensor may be referred to as a touch sensor panel or simply a touch sensor.
  • a touch sensor panel substrate for example, an FPC or TCP connector attached, or a substrate on which an IC is mounted by a COG method, etc. is referred to as a touch sensor panel module, a touch sensor. It may be called a module, a sensor module, or simply a touch sensor.
  • a touch panel that is one embodiment of a display device has a function of displaying (outputting) an image or the like on a display surface, and a detection target such as a finger or a stylus touches, presses, or approaches the display surface. And a function as a touch sensor for detecting the above. Accordingly, the touch panel is an embodiment of an input / output device.
  • the touch panel can be configured to include a display device and a touch sensor panel.
  • the display device can have a function as a touch sensor inside or on the surface thereof.
  • a display device of one embodiment of the present invention after formation of a transistor, a display element, and the like over a manufacturing substrate, an adhesive layer is applied to the entire surface of the manufacturing substrate where the transistor, the display element, and the like are formed, A sealing substrate is attached. That is, the size of the sealing substrate can be made equal to the size of the manufacturing substrate. Next, a part of the sealing substrate and a part of the adhesive layer are separated by making a cut in the sealing substrate. Thereafter, an external input terminal such as an FPC is formed in the separated portion.
  • an external input terminal such as an FPC is formed in the separated portion.
  • an adhesive layer is applied to the entire surface of the manufacturing substrate. Therefore, the manufacturing process of the display device can be simplified as compared with a case where an adhesive layer is applied to a part of the manufacturing substrate as a dam fill structure or the like. Further, in the case where an adhesive layer is applied to part of a manufacturing substrate, a screen mask or the like used for application of the adhesive layer needs to be changed when the arrangement of various elements such as a transistor on the manufacturing substrate is changed. On the other hand, when the adhesive layer is applied to the entire surface of the manufacturing substrate, if the size of the manufacturing substrate is the same, even if the arrangement of various elements such as transistors on the manufacturing substrate changes, the screen mask or the like does not change. Good. Therefore, in the case of manufacturing a large display device in particular, it is possible to provide a method for manufacturing a display device with low cost and high productivity.
  • FIG. 1A is a top view illustrating a structure example of a display device 10 which is a display device of one embodiment of the present invention.
  • the display device 10 includes a display area 11 and a driver circuit area 12.
  • the display area 11 is provided with pixels
  • the drive circuit area 12 is provided with circuits necessary for driving the display device 10 such as a gate driver and a source driver.
  • the display device 10 is provided with an external input terminal for transmitting an external signal or potential to the drive circuit region 12.
  • FIG. 1A shows an example in which an FPC 13 is provided as an external input terminal. In the following drawings, an example in which an FPC is provided as an external input terminal is shown.
  • FIG. 1B is a cross-sectional view illustrating a configuration example of the display device 10.
  • FIG. 1B shows a top emission structure to which a color filter method is applied as a configuration example of the display device 10.
  • FIG. 1B corresponds to a cross-sectional view taken along dashed-dotted line A1-A2 in FIG.
  • the display device 10 includes a substrate 201, an insulating layer 205, a transistor 301, a transistor 302, a transistor 303, a capacitor 305, an insulating layer 312, an insulating layer 313, an insulating layer 314, an insulating layer 315, a light emitting element 304, an organic layer 322a, and a conductive layer.
  • a layer 323a, a connection region 306, an adhesive layer 317, a coloring layer 325, a light-blocking layer 326, a substrate 211, and an insulating layer 215 are included.
  • the transistor 301 is provided in the driver circuit region 12, and the transistor 302, the transistor 303, the capacitor 305, and the light-emitting element 304 are provided in the display region 11.
  • the colored layer means a so-called color filter.
  • the insulating layer 205 is provided over the substrate 201, and the transistor 301, the transistor 302, the transistor 303, and the capacitor 305 are provided over the insulating layer 205.
  • the transistor 301 includes a conductive layer 411, an insulating layer 311, a semiconductor layer 412, a conductive layer 413, and a conductive layer 414.
  • the transistor 302 includes a conductive layer 421, an insulating layer 311, a semiconductor layer 422, a conductive layer 423, and a conductive layer 424.
  • the transistor 303 includes a conductive layer 431, an insulating layer 311, a semiconductor layer 432, a conductive layer 433, and a conductive layer 434.
  • the capacitor 305 includes a conductive layer 424, an insulating layer 311, and a conductive layer 451.
  • the conductive layer 411 functions as the gate of the transistor 301.
  • the conductive layer 421 functions as the gate of the transistor 302.
  • the conductive layer 431 functions as the gate of the transistor 303.
  • the conductive layer 451 functions as one electrode of the capacitor 305.
  • the insulating layer 311 functions as a gate insulating layer of the transistor 301, the transistor 302, and the transistor 303 and a dielectric layer of the capacitor 305.
  • the conductive layer 413 functions as one of a source and a drain of the transistor 301.
  • the conductive layer 414 functions as the other of the source and the drain of the transistor 301.
  • the conductive layer 423 functions as one of a source and a drain of the transistor 302.
  • the conductive layer 424 functions as the other of the source and the drain of the transistor 302 and the other electrode of the capacitor 305.
  • the conductive layer 433 functions as one of a source and a drain of the transistor 303.
  • the conductive layer 434 functions as the other of the source and the drain of the transistor 303.
  • the conductive layer 411 and the semiconductor layer 412, the conductive layer 421 and the semiconductor layer 422, the conductive layer 431 and the semiconductor layer 432, and the conductive layer 451 and the conductive layer 424 each have a region overlapping with the insulating layer 311 interposed therebetween.
  • the transistors 301, 302, and 303 may have different structures.
  • the structure of the transistor 301 included in the driver circuit region 12 may be different from the structures of the transistor 302 and the transistor 303 included in the display region 11.
  • An insulating layer 312 is provided so as to cover the transistor 301, the transistor 302, the transistor 303, and the capacitor 305, and an insulating layer 313 is provided over the insulating layer 312. Note that one of the insulating layer 312 and the insulating layer 313 may be omitted. In addition to the insulating layer 312 and the insulating layer 313, an insulating layer may be further formed.
  • An insulating layer 314 is provided over the insulating layer 313.
  • the insulating layer 314 functions as an interlayer insulating layer that separates the layer in which the transistor 301, the transistor 302, the transistor 303, and the capacitor 305 are provided from the layer in which the light-emitting element 304 is provided.
  • the insulating layer 314 is preferably planarized, but may not be planarized.
  • the light-emitting element 304, the insulating layer 315, the organic layer 322a, and the conductive layer 323a are provided.
  • the insulating layer 312, the insulating layer 313, and the insulating layer 314 be formed using a material in which impurities such as water or hydrogen hardly diffuse. Accordingly, it is possible to effectively suppress the diffusion of impurities from the outside into the transistor, and the reliability of the display device 10 can be improved.
  • the light-emitting element 304 includes a conductive layer 321, a light-emitting layer 322, and a conductive layer 323.
  • the light-emitting element 304 may include an optical adjustment layer 324 as illustrated in FIG.
  • the light emitting element 304 emits light to the substrate 211 side.
  • the optical adjustment layer means a so-called microcavity.
  • the aperture ratio of the display region 11 can be increased as compared with the case where the light-emitting element 304 is provided in the same layer as the transistor, the capacitor, and the like.
  • One of the conductive layers 321 and 323 has a function as an anode, and the other has a function as a cathode.
  • a voltage higher than the threshold voltage of the light-emitting element 304 is applied between the conductive layer 321 and the conductive layer 323, holes are injected into the light-emitting layer 322 from the anode side and electrons are injected from the cathode side.
  • the injected electrons and holes are recombined in the light emitting layer 322, and the light emitting material contained in the light emitting layer 322 emits light.
  • the conductive layer 321 is electrically connected to the conductive layer 434. These are connected directly or via another conductive layer.
  • the conductive layer 321 functions as a pixel electrode, and one conductive layer 321 is provided for each light-emitting element 304. Two adjacent conductive layers 321 are electrically insulated by an insulating layer 315. Note that in FIG. 1B, only one light-emitting element 304 is illustrated.
  • the light emitting layer 322 is a layer containing a light emitting material.
  • a light emitting diode (LED), an organic EL element, an inorganic EL element, or the like may be used as the light emitting element 304.
  • the organic layer 322a is an inorganic layer.
  • the light-emitting layer 322 includes at least one light-emitting layer.
  • the conductive layer 323 functions as a common electrode. That is, one conductive layer 323 is provided in common for the plurality of light-emitting elements 304. A constant potential can be supplied to the conductive layer 323.
  • one embodiment of the present invention is not limited to the color filter method, and a color separation method, a color conversion method, a quantum dot method, or the like may be applied.
  • the display device 10 having the structure illustrated in FIG. 1B includes a transistor 301, a transistor 302, a transistor 303, a capacitor 305, a light-emitting element 304, an organic layer 322a, a conductive layer 323a, and the like between the substrate 201 and the substrate 211. Is provided. Note that details of the organic layer 322a and the conductive layer 323a will be described later.
  • the insulating layer 205 and the insulating layer 215 it is preferable to use an insulating film which does not easily transmit impurities, that is, has a high barrier property.
  • the insulating layer 205 and the insulating layer 215 it is preferable to use an insulating film with high moisture resistance, that is, with a low water vapor transmission amount. Thereby, it is possible to prevent impurities such as water from entering various elements provided between the insulating layer 205 and the insulating layer 215 and to improve the reliability of the display device 10.
  • the highly moisture-proof insulating film examples include inorganic insulating films such as a film containing nitrogen and silicon such as a silicon nitride film and a silicon nitride oxide film, and a film containing nitrogen and aluminum such as an aluminum nitride film.
  • inorganic insulating films such as a film containing nitrogen and silicon such as a silicon nitride film and a silicon nitride oxide film, and a film containing nitrogen and aluminum such as an aluminum nitride film.
  • a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, or the like may be used.
  • Two or more of the above insulating films may be stacked. For example, a two-layer structure of a silicon nitride film and a silicon oxide film can be used.
  • the moisture permeation amount of the highly moisture-proof insulating film is 1 ⁇ 10 ⁇ 5 [g / (m 2 ⁇ day)] or less, preferably 1 ⁇ 10 ⁇ 6 [g / (m 2 ⁇ day)] or less, More preferably, it is 1 ⁇ 10 ⁇ 7 [g / (m 2 ⁇ day)] or less, and further preferably 1 ⁇ 10 ⁇ 8 [g / (m 2 ⁇ day)] or less.
  • the adhesive layer 317 various curable adhesives such as an ultraviolet curable adhesive, a reactive curable adhesive, a thermosetting adhesive, and an anaerobic adhesive can be used.
  • a curable adhesive as the adhesive layer 317, it is possible to suppress peeling of each layer or the like included in the light-emitting element 304. Further, leakage of the adhesive layer 317 to the outside of the display device 10 can be suppressed. As described above, the reliability of the display device 10 can be improved.
  • an adhesive sheet or the like may be used as the adhesive layer 317.
  • the adhesive layer 317 may contain a desiccant.
  • a substance that adsorbs moisture by chemical adsorption such as an alkaline earth metal oxide (calcium oxide, barium oxide, or the like) can be used.
  • a substance that adsorbs moisture by physical adsorption such as zeolite or silica gel, may be used. It is preferable that a desiccant is contained because impurities such as moisture can be prevented from entering the functional element and the reliability of the display device 10 is improved.
  • the adhesive layer 317 includes a filler having a high refractive index or a light scattering member
  • a filler having a high refractive index or a light scattering member light extraction efficiency from the light emitting element can be improved.
  • titanium oxide, barium oxide, zeolite, zirconium, or the like can be used.
  • the colored layer 325 is provided so that the light-emitting region of the light-emitting element 304, that is, the conductive layer 321, the light-emitting layer 322, and the conductive layer 323 are all overlapped with the region where the light-emitting layer 322 emits light. Light emitted from the light-emitting layer 322 is extracted to the substrate 211 side through the colored layer 325. That is, the display device 10 illustrated in FIG. 1B has a top emission structure.
  • the light-emitting layer 322 can be a light-emitting layer that emits white light.
  • the colored layer 325 is a colored layer that transmits light in a specific wavelength band.
  • a color filter that transmits light in a wavelength band such as red, green, blue, or yellow can be used.
  • a material that can be used for the colored layer 325 a metal material, a resin material, a resin material containing a pigment or a dye, or the like can be given.
  • light of each color such as red, green, blue, or yellow can be extracted even when the light-emitting layer 322 is provided in common for the plurality of light-emitting elements 304. Accordingly, the definition of the pixel including the light emitting element 304 can be increased.
  • the conductive layer 321 and the conductive layer 323 are formed.
  • the optical distance between them can be adjusted according to the color of light to be extracted, and light can be extracted efficiently.
  • the color gamut that can be displayed by the display device 10 can be expanded, and the power consumption can be further reduced.
  • the colored layer 325 is provided between the adjacent light shielding layers 326.
  • the light-blocking layer 326 blocks light from the light-emitting elements 304 provided in adjacent pixels and suppresses color mixing between the adjacent light-emitting elements 304.
  • light leakage can be suppressed by providing the end portion of the colored layer 325 so as to overlap the light shielding layer 326.
  • a material that blocks light from the light-emitting element 304 can be used.
  • a black matrix can be formed using a metal material or a resin material containing a pigment or a dye.
  • the light shielding layer 326 is preferably provided in a region other than the display region 11 such as the drive circuit region 12 because unintended light leakage due to guided light or the like can be suppressed.
  • the display device 10 may have an overcoat (not shown).
  • the overcoat can prevent diffusion of impurities and the like contained in the colored layer 325 to the light emitting element 304.
  • the overcoat is made of a material that transmits light from the light emitting element 304.
  • an inorganic insulating film such as a silicon nitride film or a silicon oxide film, or an organic insulating film such as an acrylic film or a polyimide film can be used, and a stacked structure of an organic insulating film and an inorganic insulating film may be used.
  • the connection region 306 includes a conductive layer 307 and a conductive layer 355.
  • the conductive layer 307 and the conductive layer 355 are electrically connected.
  • the conductive layer 307 can be formed using the same material and step as the source and drain of the transistor.
  • the conductive layer 355 can be formed using the same material and the same process as the conductive layer 321.
  • the conductive layer 355 is electrically connected to the FPC 13 that transmits a signal and a potential from the outside to the drive circuit region 12 through a connection body 319.
  • connection body 319 various anisotropic conductive films (ACF: Anisotropic Conductive Film), anisotropic conductive pastes (ACP: Anisotropic Conductive Paste), and the like can be used.
  • ACF Anisotropic Conductive Film
  • ACP Anisotropic Conductive Paste
  • the conductive layer 355, the connection body 319, and the FPC 13 are provided in a region over the substrate 201 that does not overlap with the substrate 211.
  • a region that does not overlap the substrate 211 in the substrate 201 is referred to as a region 400.
  • the organic layer 322a and the conductive layer 323a are provided so as to be in contact with a boundary portion between the region 400 and the adhesive layer 317. Further, as described above, the organic layer 322 a and the conductive layer 323 a are provided so as to overlap with the substrate 211. Although details will be described later, the organic layer 322a is formed using the same material and the same process as the light-emitting layer 322, and the conductive layer 323a is formed using the same material and the same process as the conductive layer 323.
  • the organic layer 322a can be provided from a boundary portion between the region 400 and the adhesive layer 317 to a region that is 0.1 mm away from the boundary portion in a direction perpendicular to the boundary portion and away from the region 400.
  • the value x shown in FIG. 1B can be set to 0.1 mm.
  • the value of x may be less than 0.1 mm or greater than 0.1 mm.
  • the value of x may be 1 ⁇ m or 10 ⁇ m.
  • the value of x may be 0.2 mm, 0.5 mm, or 1 mm.
  • the value of x is preferably 2 mm or less.
  • the conductive layer 323a can be provided so as to cover the organic layer 322a. Further, the conductive layer 323a can be provided so that an end portion of the organic layer 322a is exposed. In addition, as illustrated in FIG. 2, the conductive layer 323a may be omitted.
  • a material having a flat surface can be used for the substrate 201 and the substrate 211.
  • the substrate 201 and the substrate 211 can be formed using a material that transmits visible light.
  • materials such as glass, quartz, ceramic, sapphire, and organic resin can be used.
  • the substrate 201 may not be formed using a material that transmits visible light.
  • thin substrates may be used as the substrate 201 and the substrate 211. Thereby, weight reduction and thickness reduction of the display apparatus 10 can be achieved.
  • the substrate 201 and the substrate 211 a material having high toughness may be used. Thereby, it is possible to realize a display device that is excellent in impact resistance and is not easily damaged. For example, by using a resin substrate, or a thin metal substrate or alloy substrate, a display device that is lighter and less likely to be damaged can be realized as compared with the case of using a glass substrate.
  • Metal materials and alloy materials are preferable because they have high thermal conductivity and can easily conduct heat to the entire substrate, which can suppress a local temperature increase of the display device 10.
  • the thickness of the substrate using a metal material or an alloy material is preferably 10 ⁇ m or more and 200 ⁇ m or less, and more preferably 20 ⁇ m or more and 50 ⁇ m or less.
  • the material constituting the metal substrate or the alloy substrate is not particularly limited.
  • aluminum, copper, nickel, or an alloy of a metal such as an aluminum alloy or stainless steel can be preferably used.
  • Examples of the material constituting the semiconductor substrate include silicon.
  • the substrate 201 and the substrate 211 may have a stacked structure of a metal substrate and a layer having a high thermal emissivity (for example, a metal oxide or a ceramic material can be used).
  • the structure of the transistor included in the display device 10 is not particularly limited. For example, a planar transistor, a staggered transistor, or an inverted staggered transistor may be used. Further, a top-gate or bottom-gate transistor structure may be employed. Alternatively, gate electrodes may be provided above and below the channel.
  • crystallinity of the semiconductor material used for the transistor there is no particular limitation on the crystallinity of the semiconductor material used for the transistor, and either an amorphous semiconductor or a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, or a semiconductor partially including a crystal region) is used. May be used. It is preferable to use a crystalline semiconductor because deterioration of transistor characteristics can be suppressed.
  • the semiconductor material used for the transistor there is no particular limitation on the semiconductor material used for the transistor, and for example, a Group 14 element, a compound semiconductor, or a metal oxide can be used for the semiconductor layer.
  • a semiconductor containing silicon, a semiconductor containing gallium arsenide, a metal oxide containing indium, or the like can be used.
  • a metal oxide is a metal oxide in a broad expression.
  • Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), and oxide semiconductors (also referred to as oxide semiconductors or simply OS).
  • oxide semiconductors also referred to as oxide semiconductors or simply OS.
  • the metal oxide may be referred to as an oxide semiconductor. That is, when a metal oxide has at least one of an amplifying function, a rectifying function, and a switching function, the metal oxide can be referred to as a metal oxide semiconductor, or OS for short.
  • OS FET it can be said to be a transistor including a metal oxide or an oxide semiconductor.
  • metal oxides containing nitrogen may be collectively referred to as metal oxides.
  • a metal oxide containing nitrogen may be referred to as a metal oxynitride.
  • CAAC c-axis aligned crystal
  • CAC Cloud-aligned Composite
  • a CAC-OS or a CAC-metal oxide has a conductive function in part of a material and an insulating function in part of the material, and the whole material is a semiconductor. It has the function of.
  • the conductive function is a function of flowing electrons (or holes) serving as carriers
  • the insulating function is an electron serving as carriers. It is a function that does not flow.
  • a function of switching (a function of turning on / off) can be imparted to CAC-OS or CAC-metal oxide by causing the conductive function and the insulating function to act complementarily.
  • CAC-OS or CAC-metal oxide by separating each function, both functions can be maximized.
  • CAC-OS or CAC-metal oxide includes a conductive region and an insulating region.
  • the conductive region has the above-described conductive function
  • the insulating region has the above-described insulating function.
  • the conductive region and the insulating region may be separated at the nanoparticle level.
  • the conductive region and the insulating region may be unevenly distributed in the material, respectively.
  • the conductive region may be observed with the periphery blurred and connected in a cloud shape.
  • the conductive region and the insulating region are dispersed in the material with a size of 0.5 nm to 10 nm, preferably 0.5 nm to 3 nm, respectively. There is.
  • CAC-OS or CAC-metal oxide is composed of components having different band gaps.
  • CAC-OS or CAC-metal oxide includes a component having a wide gap caused by an insulating region and a component having a narrow gap caused by a conductive region.
  • the carrier when the carrier flows, the carrier mainly flows in the component having the narrow gap.
  • the component having a narrow gap acts in a complementary manner to the component having a wide gap, and the carrier flows through the component having the wide gap in conjunction with the component having the narrow gap. Therefore, when the CAC-OS or the CAC-metal oxide is used for a channel region of a transistor, high current driving capability, that is, high on-state current and high field-effect mobility can be obtained in the on-state of the transistor.
  • CAC-OS or CAC-metal oxide can also be called a matrix composite material (metal matrix composite) or a metal matrix composite material (metal matrix composite).
  • a metal oxide is preferably used for a semiconductor in which a channel of a transistor is formed.
  • a metal oxide having a larger band gap than silicon is preferably 2 eV or more, more preferably 2.5 eV or more, and further preferably 3 eV or more.
  • a semiconductor material having a wide band gap and a low carrier density, such as a metal oxide, is preferable because current in an off state of the transistor can be reduced.
  • the metal oxide preferably contains at least indium (In) or zinc (Zn). More preferably, an oxide represented by an In-M-Zn oxide (M is a metal such as Al, Ti, Ga, Ge, Y, Zr, Sn, La, Ce, Hf, or Nd) is included.
  • M is a metal such as Al, Ti, Ga, Ge, Y, Zr, Sn, La, Ce, Hf, or Nd
  • An organic insulating material or an inorganic insulating material can be used for the insulating layer included in the display device 10.
  • the resin include acrylic resin, epoxy resin, polyimide resin, polyamide resin, polyimide amide resin, siloxane resin, benzocyclobutene resin, and phenol resin.
  • inorganic insulating films include silicon oxide films, silicon oxynitride films, silicon nitride oxide films, silicon nitride films, aluminum oxide films, hafnium oxide films, yttrium oxide films, zirconium oxide films, gallium oxide films, tantalum oxide films, magnesium oxide Examples thereof include a film, a lanthanum oxide film, a cerium oxide film, and a neodymium oxide film.
  • Each of the conductive layers included in the display device 10 has a single-layer structure of a metal such as aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, tantalum, or tungsten, or an alloy containing this as a main component.
  • a stacked structure can be used.
  • a light-transmitting conductive material such as indium tin oxide may be used.
  • a semiconductor such as polycrystalline silicon or an oxide semiconductor, or a silicide such as nickel silicide, which has been reduced in resistance by containing an impurity element or the like, may be used.
  • a film containing graphene can be used. The film containing graphene can be formed by, for example, reducing a film containing graphene oxide.
  • a semiconductor such as an oxide semiconductor containing an impurity element may be used.
  • a conductive paste such as silver, carbon, or copper, or a conductive polymer such as polythiophene may be used. The conductive paste is preferable because it is inexpensive.
  • the conductive polymer is preferable because it is easy to apply.
  • a thin film (an insulating film, a semiconductor film, a conductive film, or the like) included in the display device is formed by sputtering, chemical vapor deposition (CVD), vacuum evaporation, or pulsed laser deposition (PLD: Pulsed Laser Deposition).
  • CVD chemical vapor deposition
  • PLD Pulsed Laser Deposition
  • ALD Atomic Layer Deposition
  • the CVD method may be a plasma enhanced chemical vapor deposition (PECVD) method or a thermal CVD method.
  • PECVD plasma enhanced chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • Thin films (insulating films, semiconductor films, conductive films, etc.) that constitute display devices are spin coating, dip, spray coating, ink jet, dispensing, screen printing, offset printing, slit coating, roll coating, curtain coating, knife coating, etc. It can be formed by a method.
  • the thin film can be processed using a lithography method or the like.
  • an island-shaped thin film may be formed by a film formation method using a shielding mask.
  • the thin film may be processed by a nanoimprint method, a sand blast method, a lift-off method, or the like.
  • a photolithography method a resist mask is formed on a thin film to be processed, the thin film is processed by etching or the like, and the resist mask is removed. After forming a photosensitive thin film, exposure and development are performed. And a method for processing the thin film into a desired shape.
  • light used for exposure can be i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or light in which these are mixed.
  • ultraviolet light, KrF laser light, ArF laser light, or the like can be used.
  • exposure may be performed by an immersion exposure technique.
  • extreme ultraviolet light (EUV: Extreme-violet) or X-rays may be used as light used for exposure.
  • an electron beam can be used instead of the light used for exposure. It is preferable to use extreme ultraviolet light, X-rays, or an electron beam because extremely fine processing is possible. Note that a photomask is not necessary when exposure is performed by scanning a beam such as an electron beam.
  • etching the thin film For etching the thin film, a dry etching method, a wet etching method, a sand blasting method, or the like can be used.
  • the insulating layer 205 is formed over the substrate 201 (FIG. 3A).
  • the insulating layer 205 preferably has a high barrier property.
  • the temperature during film formation is preferably 100 ° C. or higher, and more preferably 250 ° C. or higher.
  • the transistor 301, the transistor 302, the transistor 303, and the capacitor 305 are formed over the insulating layer 205 (FIG. 3A).
  • the conductive layer 411, the conductive layer 421, the conductive layer 431, and the conductive layer 451 are formed over the insulating layer 205.
  • the conductive layer 411, the conductive layer 421, the conductive layer 431, and the conductive layer 451 can be formed by forming a conductive film, forming a resist mask, etching the conductive film, and then removing the resist mask.
  • an insulating layer 311 is formed.
  • an insulating film that can be used for the insulating layer 205 can be used.
  • a semiconductor layer 412, a semiconductor layer 422, and a semiconductor layer 432 are formed.
  • the semiconductor layer 412, the semiconductor layer 422, and the semiconductor layer 432 can be formed by forming a semiconductor film, forming a resist mask, etching the semiconductor film, and then removing the resist mask.
  • a metal oxide can be used for the semiconductor film.
  • the metal oxide film can be formed using one or both of an inert gas and an oxygen gas.
  • an inert gas and an oxygen gas.
  • the flow rate ratio of oxygen (oxygen partial pressure) during the formation of the metal oxide film is preferably 0% or more and 30% or less, and 5% or more and 30% or less. Is more preferably 7% or more and 15% or less.
  • the metal oxide film can be formed by a sputtering method.
  • a PLD method a PECVD method, a thermal CVD method, an ALD method, a vacuum evaporation method, or the like may be used.
  • a conductive layer 307, a conductive layer 413, a conductive layer 414, a conductive layer 423, a conductive layer 424, a conductive layer 433, and a conductive layer 434 are formed.
  • the conductive layer 307, the conductive layer 413, the conductive layer 414, the conductive layer 423, the conductive layer 424, the conductive layer 433, and the conductive layer 434 were formed using a conductive film, a resist mask was formed, and the conductive film was etched It can be formed by removing the resist mask later.
  • the conductive layers 413 and 414 are each connected to the semiconductor layer 412, the conductive layers 423 and 424 are connected to the semiconductor layer 422, and the conductive layers 433 and 434 are connected to the semiconductor layer 432, respectively.
  • part of the semiconductor layer 412 that is not covered with the resist mask, part of the semiconductor layer 422, and part of the semiconductor layer 432 May become thinner.
  • the transistor 301, the transistor 302, the transistor 303, and the capacitor 305 can be formed.
  • a conductive layer 307 electrically connected to the FPC 13 can be formed.
  • an insulating layer 312 is formed to cover the transistor 301, the transistor 302, the transistor 303, and the capacitor 305. Subsequently, an insulating layer 313 is formed (FIG. 3B).
  • the insulating layer 312 and the insulating layer 313 can be formed by a method similar to that of the insulating layer 205.
  • the insulating layer 312 is preferably formed in an atmosphere containing oxygen.
  • a silicon oxide film or an oxynitride insulating film is preferably used. Accordingly, the insulating layer 312 can be an insulating layer that easily releases a large amount of oxygen by heating.
  • the insulating layer 313 is preferably formed using an insulating film that hardly diffuses and transmits oxygen, such as a silicon nitride film.
  • Heat treatment is preferably performed after the insulating layer 312 and the insulating layer 313 are formed. Accordingly, oxygen can be supplied from the insulating layer 312 to the semiconductor layer 412, the semiconductor layer 422, and the semiconductor layer 432. Accordingly, in the case where the semiconductor layer 412, the semiconductor layer 422, and the semiconductor layer 432 are metal oxide layers, oxygen vacancies formed in the metal oxide layer can be repaired and the defect level can be reduced. Thereby, the reliability of the display apparatus 10 can be improved.
  • the insulating layer 314 is formed over the insulating layer 313 (FIG. 3B).
  • the insulating layer 314 is a layer having a formation surface of a display element to be formed later, and thus preferably functions as a planarization layer.
  • the planarization can be performed using, for example, a chemical mechanical polishing (CMP) method.
  • CMP chemical mechanical polishing
  • an opening reaching the conductive layer 307 and an opening reaching the conductive layer 434 are formed in the insulating layer 314, the insulating layer 313, and the insulating layer 312.
  • a conductive layer 355 and a conductive layer 321 are formed (FIG. 3C).
  • the conductive layer 355 is connected to the conductive layer 307 through an opening provided in the insulating layer 314, the insulating layer 313, and the insulating layer 312.
  • the conductive layer 321 is connected to the conductive layer 434 through an opening provided in the insulating layer 314, the insulating layer 313, and the insulating layer 312.
  • the conductive layer 355 and the conductive layer 321 can be formed by forming a conductive film, forming a resist mask, etching the conductive film, and then removing the resist mask.
  • the optical adjustment layer 324 is formed (FIG. 3C).
  • the optical adjustment layer 324 can be formed, for example, by forming a conductive film that transmits visible light, forming a resist mask, etching the conductive film, and then removing the resist mask. Note that in FIG. 3C, the optical adjustment layer 324 is formed so as to cover the conductive layer 321, but the optical adjustment layer 324 may be formed so that an end portion of the conductive layer 321 is exposed.
  • an insulating layer 315 that covers an end portion of the optical adjustment layer 324 is formed (FIG. 3C).
  • the insulating layer 315 can be formed by forming an insulating film, forming a resist mask, etching the insulating film, and then removing the resist mask. Note that an insulating film that can be used for the insulating layer 205 can be used for the insulating layer 315.
  • the insulating layer 315 covers the end portion of the conductive layer 321.
  • the light-emitting layer 322 and the organic layer 322a are formed (FIG. 4A).
  • the light-emitting layer 322 and the organic layer 322a can be formed by a method such as a vapor deposition method, a coating method, a printing method, or a discharge method. Note that the organic layer 322 a is provided so as to cover the conductive layer 355.
  • a conductive layer 323 and a conductive layer 323a are formed (FIG. 4A).
  • the conductive layers 323 and 323a can be formed, for example, by forming a conductive film, forming a resist mask, etching the conductive film, and then removing the resist mask.
  • the conductive layer 323a can be provided so as to cover the organic layer 322a.
  • the conductive layer 323a can be provided so that an end portion of the organic layer 322a is exposed.
  • the conductive layer 323a can be omitted.
  • FIG. 4A and the like illustrate the case where the conductive layer 323a is provided so as to cover the organic layer 322a.
  • an insulating layer 215 is formed over the substrate 211 (FIG. 4B).
  • an insulating film that can be used for the insulating layer 205 can be used.
  • a colored layer 325 and a light-blocking layer 326 are formed over the insulating layer 215 (FIG. 4B). Note that the size of the substrate 211 can be the same as the size of the substrate 201.
  • an adhesive layer 317 is applied to the entire surface of the substrate 201 on which the light emitting element 304 and the like are formed.
  • the adhesive layer 317 can be formed using, for example, screen printing. Alternatively, it can be formed using an inkjet device or a dispensing device.
  • the surface of the substrate 201 on which the light-emitting element 304 and the like are formed is bonded to the surface of the substrate 211 on which the colored layer 325 and the like are formed (FIG. 4C).
  • the substrate 201 can be referred to as a manufacturing substrate
  • the substrate 211 can be referred to as a sealing substrate.
  • a dividing line 401 is formed on the substrate 211 in a portion overlapping with the organic layer 322a (FIG. 5A).
  • the cutting line 401 can be formed by cutting the substrate 211 by pressing a sharp blade at the tip against the substrate 211. Accordingly, the substrate 211, the organic layer 322a, the conductive layer 323a, and the like outside the dividing line 401 (A1 side) are separated from the display device 10 and the conductive layer 355 can be exposed (FIG. 5B). Further, the organic layer 322a and the conductive layer 323a on the inner side (A2 side) from the dividing line 401 remain without being separated.
  • a region where the adhesive layer 317 and the insulating layer 314 are in contact with each other is formed outside the dividing line 401. In this region, the adhesive layer 317 and the insulating layer 314 are in close contact with each other, which makes it difficult to separate them.
  • a region where the adhesive layer 317 and the insulating layer 314 are in contact with each other can be eliminated, so that the substrate 211 outside the dividing line 401 can be easily separated.
  • part of the organic layer 322 a may remain on the conductive layer 355 when the substrate 211 or the like is separated.
  • the organic layer 322a over the conductive layer 355 can be completely removed by performing acetone cleaning or the like.
  • the organic layer 322a inside the dividing line 401 may also be removed. Note that even when part of the organic layer 322a remains over the conductive layer 355, the organic layer 322a is not necessarily removed.
  • a cut may be made by pressing a sharp blade at the tip of the interface between the organic layer 322a and the insulating layer 314 (FIG. 6). This facilitates separation of the substrate 211, the organic layer 322a, the conductive layer 323a, and the like outside the dividing line 401. Note that the cut at the interface between the organic layer 322a and the insulating layer 314 may be made at the same time as the formation of the dividing line 401, or before the forming of the dividing line 401, or after the formation of the dividing line 401. Also good.
  • connection body 319 is formed so as to be connected to the conductive layer 355, and the FPC 13 is formed so as to be connected to the connection body 319.
  • the above is an example of a method for manufacturing the display device 10 having the structure illustrated in FIGS.
  • an adhesive layer 317 is applied to the entire surface of the substrate 201. Therefore, the manufacturing process of the display device can be simplified as compared with the case where the adhesive layer 317 is applied to part of the substrate 201 as a dam fill structure or the like. Further, in the case where the adhesive layer 317 is applied to part of the substrate 201, when the arrangement of various elements such as a transistor on the substrate 201 is changed, it is necessary to change a screen mask used when the adhesive layer 317 is applied.
  • the adhesive layer 317 is applied to the entire surface of the substrate 201, if the size of the substrate 201 is the same, even if the arrangement of various elements such as transistors on the substrate 201 is changed, the screen mask is not changed. It's okay. Therefore, in the case of manufacturing a large display device in particular, it is possible to provide a method for manufacturing a display device with low cost and high productivity.
  • the transistor 301 includes the conductive layer 415
  • the transistor 302 includes the conductive layer 425
  • the transistor 303 includes the conductive layer 435.
  • the configuration of the display device 10 shown in FIG. The conductive layer 415, the conductive layer 425, and the conductive layer 435 are provided so as to be in contact with the insulating layer 313.
  • a conductive film that can be used for the conductive layer 411, the conductive layer 421, and the conductive layer 431 can be used.
  • the conductive layer 415, the conductive layer 425, and the conductive layer 435 each function as a back gate of the transistor.
  • the transistor 301, the transistor 302, and the transistor 303 have a structure in which a semiconductor layer is sandwiched between two gates.
  • the field-effect mobility of the transistor can be increased and the on-state current can be increased.
  • the operation speed of the display device 10 can be increased.
  • the display device 10 is increased in size or definition and the number of wirings is increased, signal delay in each wiring can be reduced, and variation in display luminance between pixels can be reduced. Thereby, the display apparatus 10 can display a high quality image.
  • the display device 10 having the structure illustrated in FIG. 7B is different from the structure of the display device 10 illustrated in FIG. 1B in that the coloring layer 325 and the light-blocking layer 326 are not provided.
  • the light-emitting layer 322 is formed separately for each light-emitting element 304.
  • the light-emitting layer 322 can be a light-emitting layer that emits light in a wavelength band such as red, green, blue, or yellow.
  • the display apparatus 10 can display a high-intensity image, and the power consumption of the display apparatus 10 can be reduced.
  • the organic layer 322a can be formed using the same material and the same step as any of the light-emitting layers 322.
  • the light-blocking layer 326 may be provided.
  • the display device 10 having the configuration illustrated in FIG. 8A is different from the configuration of the display device 10 illustrated in FIG. 1B in that it has a bottom emission structure.
  • the coloring layer 325 is provided so as to be in contact with the insulating layer 313, that is, below the light-emitting element 304. Light emitted from the light-emitting layer 322 is extracted to the substrate 201 side through the colored layer 325.
  • a conductive film that transmits visible light is preferably used as the conductive layer 321, and a conductive film that reflects visible light is preferably used as the conductive layer 323.
  • a material that transmits visible light is preferably used for the substrate 201. Thereby, the light emitted from the light emitting layer 322 can be extracted efficiently.
  • the substrate 211 may not be formed using a material that transmits visible light.
  • the display device 10 having the structure illustrated in FIG. 8B is different from FIG. 1B in that the structures of the transistor 301, the transistor 302, the transistor 303, and the capacitor 305 are different.
  • the transistor 301 includes a semiconductor layer, an insulating layer 311, and a conductive layer 514.
  • the transistor 302 includes a semiconductor layer, an insulating layer 311, and a conductive layer 524.
  • the transistor 303 includes a semiconductor layer, an insulating layer 311, and a conductive layer 534.
  • the capacitor 305 includes a semiconductor layer, an insulating layer 311, and a conductive layer 552. Note that the semiconductor layer included in the transistor 302 and the semiconductor layer included in the capacitor 305 are connected to each other.
  • a semiconductor film that can be used for the semiconductor layer 412, the semiconductor layer 422, and the semiconductor layer 432 can be used.
  • a semiconductor layer provided in the transistor 301 includes a region 511, a region 512, and a region 513.
  • a semiconductor layer provided in the transistor 302 includes a region 521, a region 522, and a region 523.
  • a semiconductor layer provided in the transistor 303 includes a region 531, a region 532, and a region 533.
  • the semiconductor layer provided in the capacitor 305 has a region 551.
  • the conductive layer 514 functions as the gate of the transistor 301.
  • the conductive layer 524 functions as a gate of the transistor 302.
  • the conductive layer 534 functions as a gate of the transistor 303.
  • the conductive layer 552 functions as one electrode of the capacitor 305.
  • a conductive film that can be used for the conductive layer 411, the conductive layer 421, the conductive layer 431, and the conductive layer 451 can be used.
  • the conductive layer 514, the conductive layer 524, the conductive layer 534, and the conductive layer 552 have a region overlapping with the semiconductor layer with the insulating layer 311 interposed therebetween.
  • the region 511 is provided in a region overlapping with the conductive layer 514 and functions as a channel formation region of the transistor 301.
  • the region 521 is provided in a region overlapping with the conductive layer 524 and functions as a channel formation region of the transistor 302.
  • the region 531 is provided in a region overlapping with the conductive layer 534 and functions as a channel formation region of the transistor 303.
  • the region 551 is provided in a region overlapping with the conductive layer 552 and functions as the other electrode of the capacitor 305.
  • the region 512 functions as one of the source and the drain of the transistor 301.
  • the region 513 functions as the other of the source and the drain of the transistor 301.
  • the region 522 functions as one of a source and a drain of the transistor 302.
  • the region 523 functions as the other of the source and the drain of the transistor 302.
  • the region 532 functions as one of the source and the drain of the transistor 303.
  • the region 533 functions as the other of the source and the drain of the transistor 303.
  • the region 512, the region 513, the region 522, the region 523, the region 532, the region 533, and the region 551 are preferably reduced in resistance.
  • impurities such as hydrogen, boron, phosphorus, arsenic, or a rare gas
  • the resistance of the region can be reduced.
  • the introduction of impurities can be performed using an ion implantation method, an ion doping method, a plasma immersion ion implantation method, or the like.
  • the insulating layer 312 is provided so as to be in contact with the insulating layer 311, the conductive layer 514, the conductive layer 524, the conductive layer 534, and the conductive layer 552.
  • the insulating layer 313 is provided in contact with the insulating layer 312.
  • the insulating layer 313, the insulating layer 312, and the insulating layer 311 include an opening reaching the region 512, an opening reaching the region 513, an opening reaching the region 522, an opening reaching the region 523, an opening reaching the region 532, and reaching the region 533. An opening is provided.
  • a conductive layer 307 Over the insulating layer 313, a conductive layer 307, a conductive layer 515, a conductive layer 516, a conductive layer 525, a conductive layer 526, a conductive layer 535, and a conductive layer 536 are provided. These conductive layers have a function as a lead wiring.
  • the conductive layer 515 is electrically connected to the region 512 through an opening provided in the insulating layer 313, the insulating layer 312, and the insulating layer 311.
  • the conductive layer 516 is electrically connected to the region 513 through an opening provided in the insulating layer 313, the insulating layer 312, and the insulating layer 311.
  • the conductive layer 525 is electrically connected to the region 522 through an opening provided in the insulating layer 313, the insulating layer 312, and the insulating layer 311.
  • the conductive layer 526 is electrically connected to the region 523 through an opening provided in the insulating layer 313, the insulating layer 312, and the insulating layer 311.
  • the conductive layer 535 is electrically connected to the region 532 through an opening provided in the insulating layer 313, the insulating layer 312, and the insulating layer 311.
  • the conductive layer 536 is electrically connected to the region 533 through an opening provided in the insulating layer 313, the insulating layer 312, and the insulating layer 311.
  • the conductive layer 515, the conductive layer 516, the conductive layer 525, the conductive layer 526, the conductive layer 535, and the conductive layer 536 are the conductive layer 413, the conductive layer 414, the conductive layer 423, the conductive layer 424, the conductive layer 433, and the conductive layer 434.
  • the electrically conductive film which can be used for can be used.
  • the display device 10 having the structure shown in FIG. 9 is provided with a substrate 202 and an adhesive layer 203 instead of the substrate 201, and a substrate 212 and an adhesive layer 213 instead of the substrate 211, as shown in FIG.
  • the insulating layer 205 and the substrate 202 are bonded to each other with the adhesive layer 203.
  • the insulating layer 215 and the substrate 212 are attached to each other with an adhesive layer 213.
  • the substrate 202 and the substrate 212 flexible substrates can be used.
  • a material having flexibility such as glass, quartz, resin, metal, alloy, or semiconductor can be used.
  • the substrate 212 which is a substrate on the side from which light from the light-emitting element 304 is extracted is formed using a material that transmits the light.
  • the thickness of the substrate is preferably 1 ⁇ m to 200 ⁇ m, more preferably 1 ⁇ m to 100 ⁇ m, further preferably 10 ⁇ m to 50 ⁇ m, and further preferably 10 ⁇ m to 25 ⁇ m.
  • the thickness and hardness of the flexible substrate are within a range where both mechanical strength and flexibility can be achieved.
  • the flexible substrate may have a single layer structure or a laminated structure.
  • the specific gravity of resin is smaller than that of glass, it is preferable to use a resin as a flexible substrate because the display device 10 can be reduced in weight compared to the case of using glass.
  • a material having high toughness, a material having high thermal conductivity, or a material having high heat radiation can be used as in the case of the substrate 201 and the substrate 211.
  • polyester resins such as PET and PEN, polyacrylonitrile resins, acrylic resins, polyimide resins, polymethyl methacrylate resins, PC resins, PES resins, polyamide resins (nylon, aramid). Etc.), polysiloxane resin, cycloolefin resin, polystyrene resin, polyamideimide resin, polyurethane resin, polyvinyl chloride resin, polyvinylidene chloride resin, polypropylene resin, PTFE resin, ABS resin and the like.
  • a material having a low linear expansion coefficient is preferably used.
  • polyamideimide resin, polyimide resin, polyamide resin, PET, or the like can be suitably used.
  • a substrate in which a fibrous body is impregnated with a resin a substrate in which an inorganic filler is mixed with a resin, and a linear expansion coefficient is reduced can be used.
  • At least one of a layer using the above material is a hard coat layer (for example, a silicon nitride layer) that protects the surface of the device from scratches, a layer of a material that can disperse the pressure, and the like. And may be laminated.
  • a hard coat layer for example, a silicon nitride layer
  • the barrier property against water and oxygen can be improved and the reliability of the display device 10 can be improved.
  • the separation layer 603 is formed over the substrate 602 (FIG. 10A).
  • the release layer 603 can be formed using various resin materials (including a resin precursor).
  • the insulating layer 205 is formed over the separation layer 603.
  • a transistor 301, a transistor 302, a transistor 303, a capacitor 305, a light-emitting element 304, an organic layer 322a, a conductive layer 323a, and the like are formed by a method similar to that shown in FIGS. (FIG. 10B).
  • the release layer 613 can use a material that can be used for the release layer 603.
  • the insulating layer 215 is formed over the separation layer 613. Subsequently, a colored layer 325 and a light-blocking layer 326 are formed by a method similar to that shown in FIG.
  • the surface of the substrate 602 on which the light-emitting element 304 and the like are formed and the surface of the substrate 612 on which the colored layer 325 and the like are formed are Bonding is performed using the adhesive layer 317 (FIG. 11A).
  • the substrate 602 can be referred to as a manufacturing substrate
  • the substrate 612 can be referred to as a sealing substrate.
  • the separation layer 603 is irradiated with the laser light 65 through the substrate 602 (FIG. 11B). Accordingly, separation occurs at the interface between the separation layer 603 and the insulating layer 205 (FIG. 12A). Note that peeling may occur in the peeling layer 603, and peeling may occur at the interface between the substrate 602 and the peeling layer 603.
  • a hollow arrow in FIG. 11B indicates the scanning direction of the laser beam 65.
  • the same description may be given.
  • the insulating layer 205 and the substrate 202 are attached to each other with the use of the adhesive layer 203 (FIG. 12B). Note that an adhesive layer that can be used for the adhesive layer 317 can be used as the adhesive layer 203.
  • the separation layer 613 is irradiated with laser light 65 through the substrate 612 (FIG. 13A).
  • peeling occurs at the interface between the peeling layer 613 and the insulating layer 215 (FIG. 13B). Note that peeling may occur in the peeling layer 613 or peeling may occur at the interface between the substrate 612 and the peeling layer 613.
  • the insulating layer 215 and the substrate 212 are attached using the adhesive layer 213 (FIG. 14A). Note that an adhesive layer that can be used for the adhesive layer 317 can be used as the adhesive layer 213.
  • a dividing line 401 is formed in a portion overlapping with the organic layer 322a on the substrate 212 by a method similar to that shown in FIG. 5A (FIG. 14B).
  • the substrate 212, the organic layer 322a, the conductive layer 323a, and the like outside the dividing line 401 are separated from the display device 10, and the conductive layer 355 can be exposed.
  • the organic layer 322a and the conductive layer 323a inside the dividing line 401 remain without being separated.
  • connection body 319 is formed so as to be connected to the conductive layer 355, and the FPC 13 is formed so as to be connected to the connection body 319.
  • the above is an example of a method for manufacturing the display device 10 having the structure illustrated in FIG.
  • the substrate 602 is peeled off and the substrate 202 is attached, and then the substrate 612 is peeled off and the substrate 212 is attached. However, the substrate 612 is peeled off and the substrate 212 is attached. After the alignment, the substrate 602 may be peeled off and the substrate 202 may be bonded.
  • the separation line 401 is formed before the substrate 612 is separated, the substrate 612, the organic layer 322a, the conductive layer 323a, and the like outside the separation line 401 are separated, and then the substrate 612 is separated.
  • the substrate 212 may be bonded together.
  • a touch panel in which an input / output device (also referred to as a touch sensor) is mounted on the display device 10 can be manufactured.
  • detection elements also referred to as sensor elements
  • Various sensors that can detect the proximity or contact of a detection target such as a finger or a stylus can be used as the detection element.
  • various methods such as a capacitance method, a resistance film method, a surface acoustic wave method, an infrared method, an optical method, and a pressure-sensitive method can be used as a sensor method.
  • a touch panel having a capacitive detection element will be described as an example.
  • Examples of the electrostatic capacity method include a surface electrostatic capacity method and a projection electrostatic capacity method.
  • examples of the projected capacitance method include a self-capacitance method and a mutual capacitance method. Use of the mutual capacitance method is preferable because simultaneous multipoint detection is possible.
  • the touch panel of one embodiment of the present invention has a structure in which a separately manufactured display device 10 and a detection element are attached, and a structure in which an electrode that forms the detection element is provided on one or both of a substrate that supports the display element and a counter substrate Various configurations can be applied.
  • FIG. 15A is a schematic perspective view of the touch panel 300.
  • FIG. 15B is a schematic perspective view of FIG. 15A developed. For the sake of clarity, only representative components are shown. In FIG. 15B, only some outlines of some components (the substrate 261, the substrate 211, and the like) are clearly shown by broken lines.
  • the touch panel 300 includes an input device 310 and a display device 10, which are provided so as to overlap each other.
  • the input device 310 includes a substrate 261, an electrode 331, an electrode 332, a plurality of wirings 341, and a plurality of wirings 342.
  • the FPC 350 is electrically connected to each of the plurality of wirings 341 and the plurality of wirings 342.
  • the FPC 350 is provided with an IC 351.
  • the display device 10 includes a substrate 201 and a substrate 211 that are provided to face each other.
  • the display device 10 includes a display area 11 and a drive circuit area 12.
  • a wiring 383 and the like are provided over the substrate 201.
  • the FPC 13 is electrically connected to the wiring 383.
  • the FPC 13 is provided with an IC 374.
  • the wiring 383 has a function of supplying a signal and power to the display region 11 and the drive circuit region 12.
  • the signal and power are input to the wiring 383 from the outside or the IC 374 through the FPC 13, respectively.
  • FIG. 16 shows an example of a cross-sectional view of the touch panel 300.
  • FIG. 16 shows a cross-sectional structure of the display region 11, the drive circuit region 12, a region including the FPC 13, a region including the FPC 350, and the like. Further, in FIG. 16, a wiring formed by processing the same conductive layer as the gate of the transistor and a wiring formed by processing the same conductive layer as the source and drain of the transistor intersect. A cross-sectional structure is shown.
  • the substrate 201 and the substrate 211 are attached to each other with an adhesive layer 317.
  • the substrate 211 and the substrate 261 are attached to each other with an adhesive layer 396.
  • each layer from the substrate 201 to the substrate 211 corresponds to the display device 10.
  • Each layer from the substrate 261 to the electrode 334 corresponds to the input device 310. That is, it can be said that the adhesive layer 396 bonds the display device 10 and the input device 310 together.
  • each layer from the substrate 201 to the insulating layer 215 corresponds to the display device 10.
  • Each layer from the substrate 261 to the substrate 211 corresponds to the input device 310. That is, it can be said that the adhesive layer 317 bonds the display device 10 and the input device 310 together.
  • An insulating layer 393, an electrode 331, and an electrode 332 are provided on the substrate 211 side of the substrate 261.
  • the electrode 331 includes the electrode 333 and the electrode 334 is illustrated.
  • the electrode 332 and the electrode 333 are formed on the same plane.
  • the insulating layer 395 is provided so as to cover the electrode 332 and the electrode 333.
  • the electrode 334 is electrically connected to two electrodes 333 provided so as to sandwich the electrode 332 through an opening provided in the insulating layer 395.
  • connection region 308 is provided in a region near the end of the substrate 261.
  • the connection region 308 includes a wiring 342 and a conductive layer obtained by processing the same conductive layer as the electrode 334.
  • the FPC 350 is electrically connected to the connection region 308 through the connection body 309.
  • FIGS. 1, 2, 7 to 9, 15, and 16 can be combined as necessary or appropriately.
  • the manufacturing method of the display device 10 illustrated in FIGS. 3 to 6 and FIGS. 10 to 14 can be combined as appropriate or necessary.
  • the CAC-OS is one structure of a material in which an element included in an oxide semiconductor is unevenly distributed with a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm, or the vicinity thereof. Note that in the following, in an oxide semiconductor, one or more metal elements are unevenly distributed, and a region including the metal element has a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm, or the vicinity thereof.
  • the state mixed with is also referred to as a mosaic or patch.
  • the oxide semiconductor preferably contains at least indium.
  • One kind selected from the above or a plurality of kinds may be included.
  • a CAC-OS in In-Ga-Zn oxide is an indium oxide (hereinafter referred to as InO).
  • X1 (X1 is greater real than 0) and.), or indium zinc oxide (hereinafter, in X2 Zn Y2 O Z2 ( X2, Y2, and Z2 is larger real than 0) and a.) or the like, Gallium oxide (hereinafter referred to as GaO X3 (X3 is a real number greater than 0)) or gallium zinc oxide (hereinafter referred to as Ga X4 Zn Y4 O Z4 (where X4, Y4, and Z4 are greater than 0)) to.) and the like, the material becomes mosaic by separate into, mosaic InO X1 or in X2 Zn Y2 O Z2, is a configuration in which uniformly distributed in the film (hereinafter Also referred to as a cloud-like.) A.
  • CAC-OS includes a region GaO X3 is the main component, and In X2 Zn Y2 O Z2, or InO X1 is the main component region is a composite oxide semiconductor having a structure that is mixed.
  • the first region indicates that the atomic ratio of In to the element M in the first region is larger than the atomic ratio of In to the element M in the second region. It is assumed that the concentration of In is higher than that in the second region.
  • IGZO is a common name and may refer to one compound of In, Ga, Zn, and O.
  • ZnO ZnO
  • the crystalline compound has a single crystal structure, a polycrystalline structure, or a CAAC structure.
  • the CAAC structure is a crystal structure in which a plurality of IGZO nanocrystals have c-axis orientation and are connected without being oriented in the ab plane.
  • CAC-OS relates to a material structure of an oxide semiconductor.
  • CAC-OS refers to a region observed in the form of nanoparticles mainly composed of Ga in a material structure including In, Ga, Zn and O, and nanoparticles mainly composed of In.
  • the region observed in a shape is a configuration in which the regions are randomly dispersed in a mosaic shape. Therefore, in the CAC-OS, the crystal structure is a secondary element.
  • the CAC-OS does not include a stacked structure of two or more kinds of films having different compositions.
  • a structure composed of two layers of a film mainly containing In and a film mainly containing Ga is not included.
  • a region GaO X3 is the main component, and In X2 Zn Y2 O Z2 or InO X1 is the main component region, in some cases clear boundary can not be observed.
  • the CAC-OS includes a region that is observed in a part of a nanoparticle mainly including the metal element and a nanoparticle mainly including In.
  • the region observed in the form of particles refers to a configuration in which each region is randomly dispersed in a mosaic shape.
  • the CAC-OS can be formed by a sputtering method under a condition where the substrate is not intentionally heated, for example.
  • a CAC-OS is formed by a sputtering method
  • any one or more selected from an inert gas (typically argon), an oxygen gas, and a nitrogen gas may be used as a deposition gas. Good.
  • the flow rate ratio of the oxygen gas to the total flow rate of the deposition gas during film formation is preferably as low as possible. .
  • the CAC-OS has a feature that a clear peak is not observed when measurement is performed using a ⁇ / 2 ⁇ scan by an out-of-plane method, which is one of X-ray diffraction (XRD) measurement methods. Have. That is, it can be seen from X-ray diffraction that no orientation in the ab plane direction and c-axis direction of the measurement region is observed.
  • XRD X-ray diffraction
  • an electron diffraction pattern obtained by irradiating an electron beam with a probe diameter of 1 nm (also referred to as a nanobeam electron beam) has a ring-like region having a high luminance and a plurality of bright regions in the ring region. A point is observed. Therefore, it can be seen from the electron beam diffraction pattern that the crystal structure of the CAC-OS has an nc (nano-crystal) structure having no orientation in the planar direction and the cross-sectional direction.
  • a region in which GaO X3 is a main component is obtained by EDX mapping obtained by using energy dispersive X-ray spectroscopy (EDX). It can be confirmed that a region in which In X2 Zn Y2 O Z2 or InO X1 is a main component is unevenly distributed and mixed.
  • EDX energy dispersive X-ray spectroscopy
  • the CAC-OS has a structure different from that of the IGZO compound in which the metal element is uniformly distributed, and has a property different from that of the IGZO compound. That is, in the CAC-OS, a region in which GaO X3 or the like is a main component and a region in which In X2 Zn Y2 O Z2 or InO X1 is a main component are phase-separated from each other, and each region is mainly composed of each element. Has a mosaic structure.
  • the region containing In X2 Zn Y2 O Z2 or InO X1 as a main component is a region having higher conductivity than the region containing GaO X3 or the like as a main component. That, In X2 Zn Y2 O Z2 or InO X1, is an area which is the main component, by carriers flow, expressed the conductivity of the oxide semiconductor. Accordingly, a region where In X2 Zn Y2 O Z2 or InO X1 is a main component is distributed in a cloud shape in the oxide semiconductor, whereby high field-effect mobility ( ⁇ ) can be realized.
  • regions GaO X3, etc. as a main component, as compared to the In X2 Zn Y2 O Z2 or InO X1 is the main component area, it is highly regions insulating. That is, the region whose main component is GaO X3 or the like is distributed in the oxide semiconductor, whereby leakage current can be suppressed and good switching operation can be realized.
  • CAC-OS when CAC-OS is used for a semiconductor element, the insulating property caused by GaO X3 or the like and the conductivity caused by In X2 Zn Y2 O Z2 or InO X1 act in a complementary manner, resulting in high An on-current (I on ) and high field effect mobility ( ⁇ ) can be realized.
  • CAC-OS is optimal for various semiconductor devices including a display.
  • An electronic device exemplified below includes the display device of one embodiment of the present invention in a display region. Therefore, the electronic device has a high resolution. In addition, the electronic device can achieve both high resolution and a large screen.
  • an image having a resolution of full high vision, 4K2K, 8K4K, 16K8K, or higher can be displayed.
  • the screen size of the display area may be 20 inches or more diagonal, 30 inches diagonal or more, 50 inches diagonal, 60 inches diagonal, or 70 inches diagonal.
  • Examples of electronic devices include relatively large screens such as television devices, desktop or notebook personal computers, monitors for computers, digital signage (digital signage), and large game machines such as pachinko machines.
  • digital cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, portable information terminals, sound reproduction devices, and the like can be given.
  • the electronic device or the lighting device of one embodiment of the present invention can be incorporated along a curved surface of an inner wall or an outer wall of a house or a building, or an interior or exterior of an automobile.
  • the electronic device of one embodiment of the present invention may include an antenna. By receiving the signal with the antenna, it is possible to display video and information in the display area.
  • the antenna may be used for non-contact power transmission.
  • the electronic device of one embodiment of the present invention includes a sensor (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, It may have a function of measuring voltage, power, radiation, flow rate, humidity, gradient, vibration, odor, or infrared).
  • the electronic device of one embodiment of the present invention can have a variety of functions. For example, a function for displaying various information (still images, moving images, text images, etc.) in the display area, a touch panel function, a function for displaying a calendar, date or time, a function for executing various software (programs), and wireless communication A function, a function of reading a program or data recorded on a recording medium, and the like can be provided.
  • FIG. 17A illustrates an example of a television device.
  • a display area 7000 is incorporated in a housing 7101.
  • a structure in which the housing 7101 is supported by a stand 7103 is shown.
  • a display device manufactured by the manufacturing method of one embodiment of the present invention can be applied to the display region 7000.
  • the price of the television device 7100 can be reduced.
  • Operation of the television device 7100 illustrated in FIG. 17A can be performed with an operation switch included in the housing 7101 or a separate remote controller 7111.
  • the display area 7000 may be provided with a touch sensor, and may be operated by touching the display area 7000 with a finger or the like.
  • the remote controller 7111 may have a display area for displaying information output from the remote controller 7111. Channels and volume can be operated with an operation key or a touch panel of the remote controller 7111, and an image displayed in the display area 7000 can be operated.
  • the television device 7100 is provided with a receiver, a modem, and the like.
  • a general television broadcast can be received by the receiver.
  • information communication is performed in one direction (sender to receiver) or two-way (between sender and receiver, or between receivers). It is also possible.
  • FIG. 17B illustrates a laptop personal computer 7200.
  • a laptop personal computer 7200 includes a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like.
  • a display area 7000 is incorporated in the housing 7211.
  • a display device manufactured by the manufacturing method of one embodiment of the present invention can be applied to the display region 7000. Thereby, the price of the notebook personal computer 7200 can be reduced.
  • FIGS. 17C and 17D illustrate an example of digital signage (digital signage).
  • a digital signage 7300 illustrated in FIG. 17C includes a housing 7301, a display area 7000, a speaker 7303, and the like. Furthermore, an LED lamp, operation keys (including a power switch or an operation switch), a connection terminal, various sensors, a microphone, and the like can be provided.
  • FIG. 17D illustrates a digital signage 7400 attached to a columnar column 7401.
  • the digital signage 7400 has a display area 7000 provided along the curved surface of the pillar 7401.
  • the display device manufactured by the manufacturing method of one embodiment of the present invention can be applied to the display region 7000. Thereby, the price of the digital signage 7300 and the digital signage 7400 can be reduced.
  • the larger the display area 7000 the more information can be provided at one time.
  • the wider the display area 7000 the easier it is for people to see. For example, the advertising effect of advertisement can be enhanced.
  • a touch panel By applying a touch panel to the display area 7000, not only an image or a moving image is displayed in the display area 7000, but also a user can operate intuitively, which is preferable. In addition, when used for the purpose of providing information such as route information or traffic information, usability can be improved by an intuitive operation.
  • the digital signage 7300 or the digital signage 7400 can be linked with the information terminal 7311 or the information terminal 7411 such as a smartphone possessed by the user by wireless communication. Is preferred.
  • advertisement information displayed in the display area 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411. Further, the display of the display area 7000 can be switched by operating the information terminal 7311 or the information terminal 7411.
  • the digital signage 7300 or the digital signage 7400 can execute a game using the screen of the information terminal 7311 or the information terminal 7411 as an operation means (controller). Thereby, an unspecified number of users can participate and enjoy the game at the same time.
  • the display device is provided with a pixel including a sub-pixel that performs red display, a sub-pixel that performs green display, and a sub-pixel that performs blue display.
  • the peeling layer 702 was formed over the glass substrate 701.
  • the peeling layer 702 was tungsten with a thickness of 30 nm.
  • an insulating layer 703 was formed over the peeling layer 702.
  • the insulating layer 703 includes, from the bottom, a stacked structure of silicon oxynitride with a thickness of 100 nm, silicon nitride with a thickness of 100 nm, silicon oxynitride with a thickness of 200 nm, silicon nitride with a thickness of 200 nm, and silicon oxynitride with a thickness of 600 nm. did.
  • a circuit 704 including a transistor included in the pixel, a capacitor, a driver circuit, and the like was formed over the insulating layer 703.
  • a pixel electrode 705 was formed over the circuit 704.
  • the pixel electrode 705 has a stacked structure of titanium having a thickness of 5 nm, aluminum having a thickness of 200 nm, and aluminum having a thickness of 50 nm from the lower side.
  • an optical adjustment layer 720 was formed over the pixel electrode 705. ITO was used as the optical adjustment layer 720.
  • the film thickness of the optical adjustment layer was 95 nm for the sub-pixel for displaying red, 45 nm for the sub-pixel for displaying green, and 5 nm for the sub-pixel for displaying blue.
  • an organic EL layer 706 was formed on the optical adjustment layer 720, and an organic EL layer 706a was formed on the circuit 704 by using the same material and the same process as the organic EL layer 706.
  • a common electrode 707 was formed on the organic EL layer 706, and a conductive layer 707a was formed on the organic EL layer 706a by using the same material and the same process as the common electrode 707.
  • the common electrode 707 and the conductive layer 707a are made of ITO having a thickness of 70 nm.
  • a colored layer 710 was formed over the glass substrate 709.
  • the thickness of the coloring layer 710 was 2.0 ⁇ m for the sub-pixel that performs red display, 2.0 ⁇ m for the sub-pixel that performs green display, and 1.0 ⁇ m for the sub-pixel that performs blue display.
  • the adhesive layer 713 was formed using the same material and the same method as the adhesive layer 711.
  • a display device was manufactured by the above procedure, and an image was displayed.
  • the diagonal length of the display area is 2.78 inches
  • the driving method is the active matrix method
  • the resolution is 2560 ⁇ 1440 (WQHD)
  • the color expression method is the RGB method
  • the pixel density is 1058 ppi
  • the aperture ratio was 10.80%.
  • pixels that extract red light, pixels that extract green light, and pixels that extract green light are arranged in a zigzag pattern.
  • one pixel has two transistors and one capacitor element.
  • the source driver was mounted by a COF (Chip On Film) method using a demultiplexer.
  • the gate driver was integrated on the substrate.
  • FIG. 19 shows the display result. It was confirmed that the display device of one embodiment of the present invention operates normally and can display an image.

Abstract

Provided is a low-cost display device. On a first substrate, a transistor and a first conductive layer are formed, and a first insulating layer is formed so as to have a region overlapping the transistor and the first conductive layer. Next, on the first insulating layer, a first opening part reaching either a source or a drain of the transistor and a second opening part reaching the first conductive layer are formed, and a second conductive layer and a third conductive layer are respectively formed in the first opening part and the second opening part. Subsequently, a light-emitting layer having a region overlapping the second conductive layer and an organic layer having a region overlapping the third conductive layer are formed in the same step, and the surface, on which the transistor is formed, of the first substrate and a second substrate are bonded by using an adhesive layer. Next, the second substrate, the adhesive layer, and the organic layer provided in the region overlapping the third conductive layer are separated, and an external input terminal is formed so as to be electrically connected to the third conductive layer.

Description

表示装置およびその作製方法Display device and manufacturing method thereof
本発明の一態様は、表示装置およびその作製方法に関する。 One embodiment of the present invention relates to a display device and a manufacturing method thereof.
なお、本発明の一態様は、上記の技術分野に限定されない。本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、電子機器、照明装置、入力装置(例えば、タッチセンサ等)、入出力装置(例えば、タッチパネル等)、それらの駆動方法、またはそれらの製造方法を一例として挙げることができる。 Note that one embodiment of the present invention is not limited to the above technical field. Technical fields of one embodiment of the present invention include a semiconductor device, a display device, a light-emitting device, an electronic device, a lighting device, an input device (for example, a touch sensor), an input / output device (for example, a touch panel), and a driving method thereof. As an example, a method for producing them can be given.
なお、本明細書等において、半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。トランジスタ、半導体回路、演算装置、記憶装置等は半導体装置の一態様である。また、撮像装置、電気光学装置、発電装置(薄膜太陽電池、有機薄膜太陽電池等を含む)、および電子機器は半導体装置を有している場合がある。 Note that in this specification and the like, a semiconductor device refers to any device that can function by utilizing semiconductor characteristics. A transistor, a semiconductor circuit, an arithmetic device, a memory device, or the like is one embodiment of a semiconductor device. An imaging device, an electro-optical device, a power generation device (including a thin film solar cell, an organic thin film solar cell, and the like) and an electronic device may include a semiconductor device.
有機EL(Electro Luminescence)素子が適用された表示装置、および液晶素子が適用された表示装置が知られている。そのほか、発光ダイオード(LED:Light Emitting Diode)等の発光素子を備える発光装置、電気泳動方式等により表示を行う電子ペーパ等も、表示装置の一例として挙げることができる。 A display device to which an organic EL (Electro Luminescence) element is applied and a display device to which a liquid crystal element is applied are known. In addition, a light-emitting device including a light-emitting element such as a light-emitting diode (LED: Light Emitting Diode), an electronic paper that performs display by an electrophoresis method, and the like can be given as examples of the display device.
有機EL素子の基本的な構成は、一対の電極間に発光性の有機化合物を含む層を挟持したものである。この素子に電圧を印加することにより、発光性の有機化合物から発光を得ることができる。このような有機EL素子が適用された表示装置は、薄型、軽量、高コントラストで且つ低消費電力な表示装置を実現できる。例えば、有機EL素子を用いた表示装置の一例が、特許文献1に記載されている。 The basic structure of the organic EL element is such that a layer containing a light-emitting organic compound is sandwiched between a pair of electrodes. Light emission can be obtained from the light-emitting organic compound by applying a voltage to this element. A display device to which such an organic EL element is applied can realize a thin, lightweight, high-contrast display device with low power consumption. For example, Patent Document 1 describes an example of a display device using an organic EL element.
有機EL素子を有する表示装置は、作製基板に有機EL素子等を形成した後、封止基板を貼り合わせて封止することにより作製することができる。特許文献2では、作製基板上に有機EL素子を形成後、スペーサを当該有機EL素子の外周側に形成し、当該スペーサで囲まれた部分に封止樹脂を塗布することにより、封止基板を貼り合わせる。当該方法により作製した表示装置は、スペーサをダム材、封止樹脂をフィル材としたダムフィル構造をとる。 A display device having an organic EL element can be manufactured by forming an organic EL element or the like on a manufacturing substrate and then sealing the sealing substrate together. In Patent Document 2, after forming an organic EL element on a manufacturing substrate, a spacer is formed on the outer peripheral side of the organic EL element, and a sealing resin is applied to a portion surrounded by the spacer to thereby form a sealing substrate. to paste together. The display device manufactured by this method has a dam fill structure in which the spacer is a dam material and the sealing resin is a fill material.
特開2002−324673号公報JP 2002-324673 A WO2014/181515号公報WO2014 / 181515
有機EL素子を有する表示素子の構造をダムフィル構造とする場合、例えばダム材を設けずに封止を行う場合と比較して、表示装置の作製工程が複雑化する。 When the structure of a display element having an organic EL element is a dam-fill structure, for example, a manufacturing process of a display device is complicated as compared with a case where sealing is performed without providing a dam material.
本発明の一態様は、表示装置の作製方法を簡略化することを課題の一つとする。または、本発明の一態様は、低コストで量産性の高い表示装置の作製方法を提供することを課題の一つとする。または、本発明の一態様は、大型の表示装置を作製することができる方法を提供することを課題の一つとする。または、本発明の一態様は、軽量化した表示装置の作製方法を提供することを課題の一つとする。または、本発明の一態様は、薄型化した表示装置の作製方法を提供することを課題の一つとする。または、本発明の一態様は、耐衝撃性に優れた表示装置の作製方法を提供することを課題の一つとする。または、本発明の一態様は、消費電力を低減した表示装置の作製方法を提供することを課題の一つとする。または、本発明の一態様は、動作速度が速い表示装置の作製方法を提供することを課題の一つとする。または、本発明の一態様は、信頼性の高い表示装置の作製方法を提供することを課題の一つとする。または、本発明の一態様は、高品質の画像を表示することができる表示装置の作製方法を提供することを課題の一つとする。または、本発明の一態様は、新規な表示装置の作製方法を提供することを課題の一つとする。 An object of one embodiment of the present invention is to simplify a method for manufacturing a display device. Another object of one embodiment of the present invention is to provide a method for manufacturing a display device with low cost and high productivity. Another object of one embodiment of the present invention is to provide a method for manufacturing a large display device. Another object of one embodiment of the present invention is to provide a method for manufacturing a lightweight display device. Another object of one embodiment of the present invention is to provide a method for manufacturing a thin display device. Another object of one embodiment of the present invention is to provide a method for manufacturing a display device with excellent impact resistance. Another object of one embodiment of the present invention is to provide a method for manufacturing a display device with reduced power consumption. Another object of one embodiment of the present invention is to provide a method for manufacturing a display device with high operation speed. Another object of one embodiment of the present invention is to provide a method for manufacturing a display device with high reliability. Another object of one embodiment of the present invention is to provide a method for manufacturing a display device capable of displaying a high-quality image. Another object of one embodiment of the present invention is to provide a novel method for manufacturing a display device.
または、本発明の一態様は、低価格の表示装置を提供することを課題の一つとする。または、本発明の一態様は、大型の表示装置を提供することを課題の一つとする。または、本発明の一態様は、軽量化した表示装置を提供することを課題の一つとする。または、本発明の一態様は、薄型化した表示装置を提供することを課題の一つとする。または、本発明の一態様は、耐衝撃性に優れた表示装置を提供することを課題の一つとする。または、本発明の一態様は、消費電力を低減した表示装置を提供することを課題の一つとする。または、本発明の一態様は、動作速度が速い表示装置を提供することを課題の一つとする。または、本発明の一態様は、信頼性の高い表示装置を提供することを課題の一つとする。または、本発明の一態様は、高品質の画像を表示することができる表示装置を提供することを課題の一つとする。または、本発明の一態様は、新規な表示装置を提供することを課題の一つとする。 Another object of one embodiment of the present invention is to provide a low-cost display device. Another object of one embodiment of the present invention is to provide a large display device. Another object of one embodiment of the present invention is to provide a lightweight display device. Another object of one embodiment of the present invention is to provide a thin display device. Another object of one embodiment of the present invention is to provide a display device with excellent impact resistance. Another object of one embodiment of the present invention is to provide a display device with reduced power consumption. Another object of one embodiment of the present invention is to provide a display device with high operation speed. Another object of one embodiment of the present invention is to provide a highly reliable display device. Another object of one embodiment of the present invention is to provide a display device capable of displaying a high-quality image. Another object of one embodiment of the present invention is to provide a novel display device.
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はないものとする。明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。 Note that the description of these problems does not disturb the existence of other problems. One embodiment of the present invention does not necessarily have to solve all of these problems. Issues other than these can be extracted from the description, drawings, and claims.
本発明の一態様は、第1の基板と、第2の基板と、発光素子と、接着層と、有機層と、を有し、発光素子と、接着層と、有機層と、は、第1の基板と第2の基板の間に設けられ、有機層は、接着層と接する領域を有し、第1の基板上に、発光素子が設けられた第1の領域と、第2の基板と重ならない第2の領域と、が設けられ、発光素子は、発光層と、第1の導電層と、第2の導電層と、を有し、有機層は、発光層と同一の材料を有し、かつ第1の領域と、第2の領域との間に設けられる表示装置である。 One embodiment of the present invention includes a first substrate, a second substrate, a light-emitting element, an adhesive layer, and an organic layer. The light-emitting element, the adhesive layer, and the organic layer include: The organic layer is provided between the first substrate and the second substrate, the organic layer has a region in contact with the adhesive layer, the first region where the light-emitting element is provided over the first substrate, and the second substrate A light-emitting element having a light-emitting layer, a first conductive layer, and a second conductive layer, and the organic layer is made of the same material as that of the light-emitting layer. And a display device provided between the first region and the second region.
または、上記態様において、接着層は、第2の領域と接するように設けられ、有機層は、接着層と、第2の領域と、の境界部と接するように設けられてもよい。 Alternatively, in the above aspect, the adhesive layer may be provided in contact with the second region, and the organic layer may be provided in contact with a boundary portion between the adhesive layer and the second region.
または、上記態様において、境界部と垂直方向かつ第2の領域から遠ざかる方向に向かって0.1mm離れた領域に、有機層が設けられてもよい。 Or in the said aspect, an organic layer may be provided in the area | region 0.1 mm away toward the direction perpendicular | vertical to a boundary part and moving away from a 2nd area | region.
または、上記態様において、外部入力端子を有し、外部入力端子は、第2の領域に設けられてもよい。 Or in the said aspect, it has an external input terminal and an external input terminal may be provided in a 2nd area | region.
または、上記態様において、トランジスタを有し、トランジスタは、第1の領域に設けられ、第1の導電層は、トランジスタのソースまたはドレインの一方と電気的に接続されてもよい。 Alternatively, in the above embodiment, a transistor may be provided, the transistor may be provided in the first region, and the first conductive layer may be electrically connected to one of a source and a drain of the transistor.
または、上記態様において、接着層は、硬化型接着剤を有してもよい。 Alternatively, in the above aspect, the adhesive layer may have a curable adhesive.
または、上記態様において、第1の領域に、着色層が設けられてもよい。 Alternatively, in the above aspect, a colored layer may be provided in the first region.
または、上記態様において、第3の導電層を有し、第3の導電層は、第1の発光層と接する領域を有し、第3の導電層は、第2の導電層と同一の材料を有してもよい。 Alternatively, in the above embodiment, the third conductive layer includes the third conductive layer, the third conductive layer includes a region in contact with the first light-emitting layer, and the third conductive layer is formed using the same material as the second conductive layer. You may have.
または、上記態様において、第1の導電層は、発光素子の画素電極としての機能を有し、第2の導電層は、発光素子の共通電極としての機能を有してもよい。 Alternatively, in the above embodiment, the first conductive layer may have a function as a pixel electrode of the light-emitting element, and the second conductive layer may have a function as a common electrode of the light-emitting element.
または、本発明の一態様は、第1の基板上に、トランジスタと、第1の導電層と、を形成する工程と、トランジスタおよび第1の導電層と重なる領域を有するように、第1の絶縁層を形成する工程と、第1の絶縁層に、トランジスタのソースまたはドレインの一方に達する第1の開口部と、第1の導電層に達する第2の開口部と、を形成する工程と、第1の開口部に第2の導電層を形成し、第2の開口部に第3の導電層を形成する工程と、第2の導電層と重なる領域を有するように発光層を形成し、第3の導電層と重なる領域を有するように有機層を形成する工程と、第1の基板の、トランジスタが形成されている面と、第2の基板とを、接着層を用いて貼り合わせる工程と、第3の導電層と重なる領域に設けられた、第2の基板、接着層、および有機層を分離する工程と、第3の導電層と電気的に接続されるように、外部入力端子を形成する工程と、を有する表示装置の作製方法である。 Alternatively, according to one embodiment of the present invention, the first substrate includes a step of forming a transistor and a first conductive layer over the first substrate, and a region overlapping with the transistor and the first conductive layer. Forming an insulating layer; forming a first opening reaching one of a source or a drain of the transistor and a second opening reaching the first conductive layer in the first insulating layer; Forming a second conductive layer in the first opening, forming a third conductive layer in the second opening, and forming a light emitting layer so as to have a region overlapping with the second conductive layer. The step of forming the organic layer so as to have a region overlapping with the third conductive layer, the surface of the first substrate on which the transistor is formed, and the second substrate are bonded together using an adhesive layer. A second substrate, an adhesive layer, provided in a region overlapping with the step and the third conductive layer, And separating the organic layer and so as to be connected the third conductive layer and electrically, a method for manufacturing a display device comprising the steps of: forming an external input terminal.
または、上記態様において、第2の基板の、第1の導電層および有機層と重なる部分に切れ込みを入れた後に、第3の導電層と重なる領域に設けられた、第2の基板、接着層、および有機層を分離してもよい。 Alternatively, in the above embodiment, the second substrate or the adhesive layer provided in a region overlapping with the third conductive layer after making a cut in a portion of the second substrate overlapping with the first conductive layer and the organic layer And the organic layer may be separated.
または、上記態様において、第1の基板の、トランジスタが形成されている面と、第2の基板とを、硬化型接着剤を有する接着層を用いて貼り合わせてもよい。 Alternatively, in the above embodiment, the surface of the first substrate on which the transistor is formed may be bonded to the second substrate using an adhesive layer having a curable adhesive.
または、上記態様において、第2の基板上に、着色層を形成した後、第1の基板の、トランジスタが形成されている面と、第2の基板の、着色層が形成されている面と、を貼り合わせてもよい。 Alternatively, in the above embodiment, after a colored layer is formed over the second substrate, the surface of the first substrate on which the transistor is formed and the surface of the second substrate on which the colored layer is formed , May be pasted together.
本発明の一態様により、表示装置の作製方法を簡略化することができる。または、本発明の一態様により、低コストで量産性の高い表示装置の作製方法を提供することができる。または、本発明の一態様により、大型の表示装置を作製することができる方法を提供することができる。または、本発明の一態様により、軽量化した表示装置の作製方法を提供することができる。または、本発明の一態様により、薄型化した表示装置の作製方法を提供することができる。または、本発明の一態様により、耐衝撃性に優れた表示装置の作製方法を提供することができる。または、本発明の一態様により、消費電力を低減した表示装置の作製方法を提供することができる。または、本発明の一態様により、動作速度が速い表示装置の作製方法を提供することができる。または、本発明の一態様により、信頼性の高い表示装置の作製方法を提供することができる。または、本発明の一態様により、高品質の画像を表示することができる表示装置の作製方法を提供することができる。または、本発明の一態様により、新規な表示装置の作製方法を提供することができる。 According to one embodiment of the present invention, a method for manufacturing a display device can be simplified. Alternatively, according to one embodiment of the present invention, a method for manufacturing a display device with low cost and high productivity can be provided. Alternatively, according to one embodiment of the present invention, a method for manufacturing a large display device can be provided. Alternatively, according to one embodiment of the present invention, a method for manufacturing a lightweight display device can be provided. Alternatively, according to one embodiment of the present invention, a method for manufacturing a thin display device can be provided. Alternatively, according to one embodiment of the present invention, a method for manufacturing a display device with excellent impact resistance can be provided. Alternatively, according to one embodiment of the present invention, a method for manufacturing a display device with reduced power consumption can be provided. Alternatively, according to one embodiment of the present invention, a method for manufacturing a display device with high operating speed can be provided. Alternatively, according to one embodiment of the present invention, a method for manufacturing a highly reliable display device can be provided. Alternatively, according to one embodiment of the present invention, a method for manufacturing a display device capable of displaying a high-quality image can be provided. Alternatively, according to one embodiment of the present invention, a novel method for manufacturing a display device can be provided.
または、本発明の一態様により、低価格の表示装置を提供することができる。または、本発明の一態様により、大型の表示装置を提供することができる。または、本発明の一態様により、軽量化した表示装置を提供することができる。または、本発明の一態様により、薄型化した表示装置を提供することができる。または、本発明の一態様により、耐衝撃性に優れた表示装置を提供することができる。または、本発明の一態様により、消費電力を低減した表示装置を提供することができる。または、本発明の一態様により、動作速度が速い表示装置を提供することができる。または、本発明の一態様により、信頼性の高い表示装置を提供することができる。または、本発明の一態様により、高品質の画像を表示することができる表示装置を提供することができる。または、本発明の一態様により、新規な表示装置を提供することができる。 Alternatively, according to one embodiment of the present invention, a low-cost display device can be provided. Alternatively, according to one embodiment of the present invention, a large display device can be provided. Alternatively, according to one embodiment of the present invention, a lightweight display device can be provided. Alternatively, according to one embodiment of the present invention, a thin display device can be provided. Alternatively, according to one embodiment of the present invention, a display device with excellent impact resistance can be provided. Alternatively, according to one embodiment of the present invention, a display device with reduced power consumption can be provided. Alternatively, according to one embodiment of the present invention, a display device with high operation speed can be provided. Alternatively, according to one embodiment of the present invention, a highly reliable display device can be provided. Alternatively, according to one embodiment of the present invention, a display device capable of displaying a high-quality image can be provided. Alternatively, according to one embodiment of the present invention, a novel display device can be provided.
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。 Note that the description of these effects does not disturb the existence of other effects. One embodiment of the present invention need not necessarily have all of these effects. Effects other than these can be extracted from the description, drawings, and claims.
表示装置の構成例を示す上面図および断面図。4A and 4B are a top view and a cross-sectional view illustrating a structure example of a display device. 表示装置の構成例を示す断面図。Sectional drawing which shows the structural example of a display apparatus. 表示装置の作製方法例を示す断面図。FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device. 表示装置の作製方法例を示す断面図。FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device. 表示装置の作製方法例を示す断面図。FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device. 表示装置の作製方法例を示す断面図。FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device. 表示装置の構成例を示す断面図。Sectional drawing which shows the structural example of a display apparatus. 表示装置の構成例を示す断面図。Sectional drawing which shows the structural example of a display apparatus. 表示装置の構成例を示す断面図。Sectional drawing which shows the structural example of a display apparatus. 表示装置の作製方法例を示す断面図。FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device. 表示装置の作製方法例を示す断面図。FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device. 表示装置の作製方法例を示す断面図。FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device. 表示装置の作製方法例を示す断面図。FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device. 表示装置の作製方法例を示す断面図。FIG. 10 is a cross-sectional view illustrating an example of a method for manufacturing a display device. タッチパネルの構成例を示す斜視図。The perspective view which shows the structural example of a touchscreen. タッチパネルの構成例を示す断面図。Sectional drawing which shows the structural example of a touchscreen. 電子機器の一例を示す図。FIG. 14 illustrates an example of an electronic device. 実施例1における表示装置の作製方法を示す図。4A and 4B illustrate a method for manufacturing a display device in Embodiment 1. 実施例1における表示装置により表示した画像。The image displayed by the display apparatus in Example 1. FIG.
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。 Embodiments will be described in detail with reference to the drawings. However, the present invention is not limited to the following description, and it is easily understood by those skilled in the art that modes and details can be variously changed without departing from the spirit and scope of the present invention. Therefore, the present invention should not be construed as being limited to the description of the embodiments below.
本明細書等では、本発明の一態様を表示装置に適用する場合について説明するが、表示装置に限られず、各種半導体装置に適用することができる。 In this specification and the like, the case where one embodiment of the present invention is applied to a display device is described; however, the present invention is not limited to a display device and can be applied to various semiconductor devices.
なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。 Note that in structures of the invention described below, the same portions or portions having similar functions are denoted by the same reference numerals in different drawings, and description thereof is not repeated. In addition, in the case where the same function is indicated, the hatch pattern is the same, and there is a case where no reference numeral is given.
なお、本明細書で説明する各図において、各構成の大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。 Note that in each drawing described in this specification, the size, the layer thickness, or the region of each component is exaggerated for simplicity in some cases. Therefore, it is not necessarily limited to the scale.
なお、本明細書等における「第1」、「第2」等の序数詞は、構成要素の混同を避けるために付すものであり、数的に限定するものではない。 In the present specification and the like, ordinal numbers such as “first” and “second” are used for avoiding confusion between components, and are not limited numerically.
また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能な場合がある。 In this specification and the like, the terms “film” and “layer” can be interchanged with each other. For example, the term “conductive layer” may be changed to the term “conductive film”. Alternatively, for example, the term “insulating film” may be changed to the term “insulating layer” in some cases.
トランジスタは半導体素子の一種であり、電流や電圧の増幅や、導通または非導通を制御するスイッチング動作等を実現することができる。本明細書におけるトランジスタは、IGFET(Insulated Gate Field Effect Transistor)や薄膜トランジスタ(TFT:Thin Film Transistor)を含む。 A transistor is a kind of semiconductor element, and can realize amplification of current and voltage, switching operation for controlling conduction or non-conduction, and the like. The transistors in this specification include an IGFET (Insulated Gate Field Effect Transistor) and a thin film transistor (TFT: Thin Film Transistor).
また、「ソース」や「ドレイン」の機能は、異なる極性のトランジスタを採用する場合や、回路動作において電流の方向が変化する場合等には入れ替わることがある。このため、本明細書においては、「ソース」や「ドレイン」の用語は、入れ替えて用いることができるものとする。 In addition, the functions of “source” and “drain” may be switched when transistors having different polarities are employed, or when the direction of current changes during circuit operation. Therefore, in this specification, the terms “source” and “drain” can be used interchangeably.
また、本明細書等において、「電気的に接続」には、「何らかの電気的作用を有するもの」を介して接続される場合が含まれる。ここで、「何らかの電気的作用を有するもの」は、接続対象間での電気信号の授受を可能とするものであれば、特に制限を受けない。例えば、「何らかの電気的作用を有するもの」には、電極や配線をはじめ、トランジスタ等のスイッチング素子、抵抗素子、コイル、容量素子、その他の各種機能を有する素子等が含まれる。 Further, in this specification and the like, “electrically connected” includes a case of being connected through “something having an electric action”. Here, the “thing having some electric action” is not particularly limited as long as it can exchange electric signals between connection targets. For example, “things having some electric action” include electrodes, wirings, switching elements such as transistors, resistance elements, coils, capacitive elements, and other elements having various functions.
本明細書等において、表示装置は表示面に画像等を表示(出力)する機能を有するものである。したがって表示装置は出力装置の一態様である。 In this specification and the like, a display device has a function of displaying (outputting) an image or the like on a display surface. Therefore, the display device is an embodiment of the output device.
また、本明細書等において、タッチセンサは指やスタイラス等の被検知体が触れる、押圧する、または近づくこと等を検出する機能を有するものである。またその位置情報を検知する機能を有していてもよい。したがってタッチセンサは入力装置の一態様である。例えばタッチセンサは1以上のセンサ素子を有する構成とすることができる。 In this specification and the like, the touch sensor has a function of detecting that a detection target such as a finger or a stylus touches, presses, or approaches. Moreover, you may have the function to detect the positional information. Therefore, the touch sensor is an aspect of the input device. For example, the touch sensor can be configured to have one or more sensor elements.
また、本明細書等では、タッチセンサを有する基板を、タッチセンサパネル、または単にタッチセンサ等と呼ぶ場合がある。また、本明細書等では、タッチセンサパネルの基板に、例えばFPCもしくはTCP等のコネクターが取り付けられたもの、または基板にCOG方式等によりICが実装されたものを、タッチセンサパネルモジュール、タッチセンサモジュール、センサモジュール、または単にタッチセンサ等と呼ぶ場合がある。 In this specification and the like, a substrate having a touch sensor may be referred to as a touch sensor panel or simply a touch sensor. In addition, in this specification and the like, a touch sensor panel substrate, for example, an FPC or TCP connector attached, or a substrate on which an IC is mounted by a COG method, etc. is referred to as a touch sensor panel module, a touch sensor. It may be called a module, a sensor module, or simply a touch sensor.
なお、本明細書等において、表示装置の一態様であるタッチパネルは表示面に画像等を表示(出力)する機能と、表示面に指やスタイラス等の被検知体が触れる、押圧する、または近づくこと等を検出するタッチセンサとしての機能と、を有する。したがってタッチパネルは入出力装置の一態様である。 Note that in this specification and the like, a touch panel that is one embodiment of a display device has a function of displaying (outputting) an image or the like on a display surface, and a detection target such as a finger or a stylus touches, presses, or approaches the display surface. And a function as a touch sensor for detecting the above. Accordingly, the touch panel is an embodiment of an input / output device.
タッチパネルは、表示装置とタッチセンサパネルとを有する構成とすることもできる。または、表示装置の内部または表面にタッチセンサとしての機能を有する構成とすることもできる。 The touch panel can be configured to include a display device and a touch sensor panel. Alternatively, the display device can have a function as a touch sensor inside or on the surface thereof.
(実施の形態1)
本実施の形態では、本発明の一態様の表示装置、および表示装置の作製方法について、図面を用いて説明する。
(Embodiment 1)
In this embodiment, a display device of one embodiment of the present invention and a method for manufacturing the display device will be described with reference to drawings.
本発明の一態様の表示装置の作製方法では、作製基板にトランジスタおよび表示素子等を形成後、当該作製基板の、トランジスタおよび表示素子等が形成されている面の全面に接着層を塗布し、封止基板を貼り合わせる。つまり、封止基板の大きさは、作製基板の大きさと等しくすることができる。次に、封止基板に切れ込みを入れる等して、封止基板の一部と接着層の一部を分離する。その後、分離した部分に、FPC等の外部入力端子を形成する。 In the method for manufacturing a display device of one embodiment of the present invention, after formation of a transistor, a display element, and the like over a manufacturing substrate, an adhesive layer is applied to the entire surface of the manufacturing substrate where the transistor, the display element, and the like are formed, A sealing substrate is attached. That is, the size of the sealing substrate can be made equal to the size of the manufacturing substrate. Next, a part of the sealing substrate and a part of the adhesive layer are separated by making a cut in the sealing substrate. Thereafter, an external input terminal such as an FPC is formed in the separated portion.
上記作製方法では、作製基板の全面に接着層を塗布する。したがって、ダムフィル構造等として、作製基板の一部に接着層を塗布する場合と比べて、表示装置の作製工程を簡略化することができる。また、作製基板の一部に接着層を塗布する場合、当該作製基板上における、トランジスタ等の各種素子の配置等が変わると、接着層の塗布の際に用いるスクリーンマスク等を変える必要がある。一方、作製基板の全面に接着層を塗布する場合、作製基板の大きさが同じであれば、作製基板上におけるトランジスタ等の各種素子の配置等が変化しても、スクリーンマスク等を変えなくてよい。したがって、特に大型の表示装置を作製する場合において、低コストで量産性の高い表示装置の作製方法を提供することができる。 In the above manufacturing method, an adhesive layer is applied to the entire surface of the manufacturing substrate. Therefore, the manufacturing process of the display device can be simplified as compared with a case where an adhesive layer is applied to a part of the manufacturing substrate as a dam fill structure or the like. Further, in the case where an adhesive layer is applied to part of a manufacturing substrate, a screen mask or the like used for application of the adhesive layer needs to be changed when the arrangement of various elements such as a transistor on the manufacturing substrate is changed. On the other hand, when the adhesive layer is applied to the entire surface of the manufacturing substrate, if the size of the manufacturing substrate is the same, even if the arrangement of various elements such as transistors on the manufacturing substrate changes, the screen mask or the like does not change. Good. Therefore, in the case of manufacturing a large display device in particular, it is possible to provide a method for manufacturing a display device with low cost and high productivity.
<表示装置の構成例1>
図1(A)は、本発明の一態様の表示装置である表示装置10の構成例を示す上面図である。図1(A)に示すように、表示装置10は、表示領域11および駆動回路領域12を有する。表示領域11には、画素が設けられ、駆動回路領域12には、ゲートドライバおよびソースドライバ等、表示装置10を駆動するために必要な回路が設けられる。また、表示装置10には、駆動回路領域12に外部からの信号や電位を伝達する外部入力端子が設けられる。図1(A)では、外部入力端子としてFPC13を設ける例を示している。なお、以降の図においても、外部入力端子としてFPCを設ける例を示す。
<Configuration Example 1 of Display Device>
FIG. 1A is a top view illustrating a structure example of a display device 10 which is a display device of one embodiment of the present invention. As shown in FIG. 1A, the display device 10 includes a display area 11 and a driver circuit area 12. The display area 11 is provided with pixels, and the drive circuit area 12 is provided with circuits necessary for driving the display device 10 such as a gate driver and a source driver. Further, the display device 10 is provided with an external input terminal for transmitting an external signal or potential to the drive circuit region 12. FIG. 1A shows an example in which an FPC 13 is provided as an external input terminal. In the following drawings, an example in which an FPC is provided as an external input terminal is shown.
図1(B)は、表示装置10の構成例を示す断面図である。図1(B)では、表示装置10の構成例として、カラーフィルタ方式が適用されたトップエミッション構造を示している。図1(B)は、図1(A)における一点鎖線A1−A2間の断面図に相当する。 FIG. 1B is a cross-sectional view illustrating a configuration example of the display device 10. FIG. 1B shows a top emission structure to which a color filter method is applied as a configuration example of the display device 10. FIG. 1B corresponds to a cross-sectional view taken along dashed-dotted line A1-A2 in FIG.
表示装置10は、基板201、絶縁層205、トランジスタ301、トランジスタ302、トランジスタ303、容量素子305、絶縁層312、絶縁層313、絶縁層314、絶縁層315、発光素子304、有機層322a、導電層323a、接続領域306、接着層317、着色層325、遮光層326、基板211、および絶縁層215を有する。トランジスタ301は駆動回路領域12に設けられ、トランジスタ302、トランジスタ303、容量素子305、および発光素子304は表示領域11に設けられる。なお、着色層とは、いわゆるカラーフィルタを意味する。 The display device 10 includes a substrate 201, an insulating layer 205, a transistor 301, a transistor 302, a transistor 303, a capacitor 305, an insulating layer 312, an insulating layer 313, an insulating layer 314, an insulating layer 315, a light emitting element 304, an organic layer 322a, and a conductive layer. A layer 323a, a connection region 306, an adhesive layer 317, a coloring layer 325, a light-blocking layer 326, a substrate 211, and an insulating layer 215 are included. The transistor 301 is provided in the driver circuit region 12, and the transistor 302, the transistor 303, the capacitor 305, and the light-emitting element 304 are provided in the display region 11. The colored layer means a so-called color filter.
図1(B)に示す構成の表示装置10は、基板201上に絶縁層205が設けられ、絶縁層205上にトランジスタ301、トランジスタ302、トランジスタ303、および容量素子305が設けられる。 In the display device 10 having the structure illustrated in FIG. 1B, the insulating layer 205 is provided over the substrate 201, and the transistor 301, the transistor 302, the transistor 303, and the capacitor 305 are provided over the insulating layer 205.
トランジスタ301は、導電層411、絶縁層311、半導体層412、導電層413、および導電層414を有する。トランジスタ302は、導電層421、絶縁層311、半導体層422、導電層423、および導電層424を有する。トランジスタ303は、導電層431、絶縁層311、半導体層432、導電層433、および導電層434を有する。容量素子305は、導電層424、絶縁層311、および導電層451を有する。 The transistor 301 includes a conductive layer 411, an insulating layer 311, a semiconductor layer 412, a conductive layer 413, and a conductive layer 414. The transistor 302 includes a conductive layer 421, an insulating layer 311, a semiconductor layer 422, a conductive layer 423, and a conductive layer 424. The transistor 303 includes a conductive layer 431, an insulating layer 311, a semiconductor layer 432, a conductive layer 433, and a conductive layer 434. The capacitor 305 includes a conductive layer 424, an insulating layer 311, and a conductive layer 451.
導電層411は、トランジスタ301のゲートとしての機能を有する。導電層421は、トランジスタ302のゲートとしての機能を有する。導電層431は、トランジスタ303のゲートとしての機能を有する。導電層451は、容量素子305の一方の電極としての機能を有する。絶縁層311は、トランジスタ301、トランジスタ302、およびトランジスタ303のゲート絶縁層、ならびに容量素子305の誘電体層としての機能を有する。 The conductive layer 411 functions as the gate of the transistor 301. The conductive layer 421 functions as the gate of the transistor 302. The conductive layer 431 functions as the gate of the transistor 303. The conductive layer 451 functions as one electrode of the capacitor 305. The insulating layer 311 functions as a gate insulating layer of the transistor 301, the transistor 302, and the transistor 303 and a dielectric layer of the capacitor 305.
導電層413は、トランジスタ301のソースまたはドレインの一方としての機能を有する。導電層414は、トランジスタ301のソースまたはドレインの他方としての機能を有する。導電層423は、トランジスタ302のソースまたはドレインの一方としての機能を有する。導電層424は、トランジスタ302のソースまたはドレインの他方、および容量素子305の他方の電極としての機能を有する。導電層433は、トランジスタ303のソースまたはドレインの一方としての機能を有する。導電層434は、トランジスタ303のソースまたはドレインの他方としての機能を有する。 The conductive layer 413 functions as one of a source and a drain of the transistor 301. The conductive layer 414 functions as the other of the source and the drain of the transistor 301. The conductive layer 423 functions as one of a source and a drain of the transistor 302. The conductive layer 424 functions as the other of the source and the drain of the transistor 302 and the other electrode of the capacitor 305. The conductive layer 433 functions as one of a source and a drain of the transistor 303. The conductive layer 434 functions as the other of the source and the drain of the transistor 303.
導電層411と半導体層412、導電層421と半導体層422、導電層431と半導体層432、および導電層451と導電層424は、絶縁層311を介してそれぞれ重なる領域を有する。 The conductive layer 411 and the semiconductor layer 412, the conductive layer 421 and the semiconductor layer 422, the conductive layer 431 and the semiconductor layer 432, and the conductive layer 451 and the conductive layer 424 each have a region overlapping with the insulating layer 311 interposed therebetween.
トランジスタ301、トランジスタ302、トランジスタ303は、それぞれ構造が異なってもよい。例えば、駆動回路領域12が有するトランジスタ301の構造は、表示領域11が有するトランジスタ302およびトランジスタ303の構造と異なってもよい。 The transistors 301, 302, and 303 may have different structures. For example, the structure of the transistor 301 included in the driver circuit region 12 may be different from the structures of the transistor 302 and the transistor 303 included in the display region 11.
トランジスタ301、トランジスタ302、トランジスタ303、および容量素子305を覆うように、絶縁層312が設けられ、絶縁層312上に絶縁層313が設けられている。なお、絶縁層312または絶縁層313の一方を省略してもよい。また、絶縁層312および絶縁層313の他に、さらに絶縁層を形成してもよい。 An insulating layer 312 is provided so as to cover the transistor 301, the transistor 302, the transistor 303, and the capacitor 305, and an insulating layer 313 is provided over the insulating layer 312. Note that one of the insulating layer 312 and the insulating layer 313 may be omitted. In addition to the insulating layer 312 and the insulating layer 313, an insulating layer may be further formed.
絶縁層313上には、絶縁層314が設けられる。詳細は後述するが、絶縁層314は、トランジスタ301、トランジスタ302、トランジスタ303、および容量素子305が設けられた層と、発光素子304が設けられた層と、を分離する層間絶縁層としての機能を有する。図1(B)に示すように、絶縁層314は平坦化されていることが好ましいが、平坦化されていなくてもよい。 An insulating layer 314 is provided over the insulating layer 313. Although details will be described later, the insulating layer 314 functions as an interlayer insulating layer that separates the layer in which the transistor 301, the transistor 302, the transistor 303, and the capacitor 305 are provided from the layer in which the light-emitting element 304 is provided. Have As shown in FIG. 1B, the insulating layer 314 is preferably planarized, but may not be planarized.
絶縁層314上に、発光素子304、絶縁層315、有機層322a、および導電層323aが設けられる。ここで、絶縁層312、絶縁層313、および絶縁層314のうち、少なくとも一層には、水または水素等の不純物が拡散しにくい材料を用いることが好ましい。これにより、外部から不純物がトランジスタに拡散することを効果的に抑制することが可能となり、表示装置10の信頼性を高めることができる。 Over the insulating layer 314, the light-emitting element 304, the insulating layer 315, the organic layer 322a, and the conductive layer 323a are provided. Here, it is preferable that at least one of the insulating layer 312, the insulating layer 313, and the insulating layer 314 be formed using a material in which impurities such as water or hydrogen hardly diffuse. Accordingly, it is possible to effectively suppress the diffusion of impurities from the outside into the transistor, and the reliability of the display device 10 can be improved.
発光素子304は、導電層321、発光層322、および導電層323を有する。また、発光素子304は、図1(B)に示すように光学調整層324を有していてもよい。発光素子304は、基板211側に光を射出する。なお、光学調整層は、いわゆるマイクロキャビティを意味する。 The light-emitting element 304 includes a conductive layer 321, a light-emitting layer 322, and a conductive layer 323. In addition, the light-emitting element 304 may include an optical adjustment layer 324 as illustrated in FIG. The light emitting element 304 emits light to the substrate 211 side. The optical adjustment layer means a so-called microcavity.
トランジスタおよび容量素子等と、発光素子304と、を積層させて設けることで、発光素子304をトランジスタおよび容量素子等と同一の層に設ける場合より、表示領域11の開口率を高めることができる。 By providing the transistor, the capacitor, and the like and the light-emitting element 304 in layers, the aperture ratio of the display region 11 can be increased as compared with the case where the light-emitting element 304 is provided in the same layer as the transistor, the capacitor, and the like.
導電層321および導電層323のうち、一方は陽極としての機能を有し、他方は陰極としての機能を有する。導電層321および導電層323の間に、発光素子304の閾値電圧より高い電圧を印加すると、発光層322に陽極側から正孔が注入され、陰極側から電子が注入される。注入された電子と正孔は発光層322において再結合し、発光層322に含まれる発光物質が発光する。 One of the conductive layers 321 and 323 has a function as an anode, and the other has a function as a cathode. When a voltage higher than the threshold voltage of the light-emitting element 304 is applied between the conductive layer 321 and the conductive layer 323, holes are injected into the light-emitting layer 322 from the anode side and electrons are injected from the cathode side. The injected electrons and holes are recombined in the light emitting layer 322, and the light emitting material contained in the light emitting layer 322 emits light.
導電層321は、導電層434と電気的に接続される。これらは、直接接続されるか、他の導電層を介して接続される。導電層321は、画素電極としての機能を有し、1つの発光素子304につき1つの導電層321が設けられる。隣り合う2つの導電層321は、絶縁層315によって電気的に絶縁されている。なお、図1(B)では、1つの発光素子304のみ示している。 The conductive layer 321 is electrically connected to the conductive layer 434. These are connected directly or via another conductive layer. The conductive layer 321 functions as a pixel electrode, and one conductive layer 321 is provided for each light-emitting element 304. Two adjacent conductive layers 321 are electrically insulated by an insulating layer 315. Note that in FIG. 1B, only one light-emitting element 304 is illustrated.
発光層322は、発光材料を含む層である。発光素子304には、発光材料として有機化合物を用いた有機EL素子を好適に用いることができる。なお、発光素子304として、発光ダイオード(LED)、有機EL素子、無機EL素子等を用いてもよい。なお、発光素子304として、無機EL素子を用いる場合、有機層322aは無機層となる。 The light emitting layer 322 is a layer containing a light emitting material. As the light-emitting element 304, an organic EL element using an organic compound as a light-emitting material can be preferably used. Note that a light emitting diode (LED), an organic EL element, an inorganic EL element, or the like may be used as the light emitting element 304. Note that in the case where an inorganic EL element is used as the light-emitting element 304, the organic layer 322a is an inorganic layer.
発光層322は少なくとも1層の発光層を有する。 The light-emitting layer 322 includes at least one light-emitting layer.
導電層323は、共通電極としての機能を有する。つまり、複数の発光素子304に共通して、1つの導電層323が設けられている。導電層323には、定電位を供給することができる。 The conductive layer 323 functions as a common electrode. That is, one conductive layer 323 is provided in common for the plurality of light-emitting elements 304. A constant potential can be supplied to the conductive layer 323.
なお、本発明の一態様は、カラーフィルタ方式に限られず、塗り分け方式、色変換方式、または量子ドット方式等を適用してもよい。 Note that one embodiment of the present invention is not limited to the color filter method, and a color separation method, a color conversion method, a quantum dot method, or the like may be applied.
基板211上には、絶縁層215、ならびに着色層325および遮光層326が設けられており、基板201と基板211は接着層317によって貼り合わされている。つまり、図1(B)に示す構成の表示装置10は、基板201と基板211の間にトランジスタ301、トランジスタ302、トランジスタ303、容量素子305、発光素子304、有機層322a、導電層323a等が設けられている。なお、有機層322aおよび導電層323aについての詳細は後述する。 An insulating layer 215, a coloring layer 325, and a light shielding layer 326 are provided over the substrate 211, and the substrate 201 and the substrate 211 are attached to each other with an adhesive layer 317. That is, the display device 10 having the structure illustrated in FIG. 1B includes a transistor 301, a transistor 302, a transistor 303, a capacitor 305, a light-emitting element 304, an organic layer 322a, a conductive layer 323a, and the like between the substrate 201 and the substrate 211. Is provided. Note that details of the organic layer 322a and the conductive layer 323a will be described later.
絶縁層205および絶縁層215として、不純物を透過しにくい、つまりバリア性が高い絶縁膜を用いることが好ましい。特に、絶縁層205および絶縁層215として、防湿性が高い、つまり水蒸気透過量が低い絶縁膜を用いることが好ましい。これにより、絶縁層205と絶縁層215の間に設けられた各種素子に水等の不純物が浸入することを抑制でき、表示装置10の信頼性を高めることができる。 As the insulating layer 205 and the insulating layer 215, it is preferable to use an insulating film which does not easily transmit impurities, that is, has a high barrier property. In particular, as the insulating layer 205 and the insulating layer 215, it is preferable to use an insulating film with high moisture resistance, that is, with a low water vapor transmission amount. Thereby, it is possible to prevent impurities such as water from entering various elements provided between the insulating layer 205 and the insulating layer 215 and to improve the reliability of the display device 10.
防湿性の高い絶縁膜としては、窒化シリコン膜、窒化酸化シリコン膜等の窒素と珪素を含む膜、および窒化アルミニウム膜等の窒素とアルミニウムを含む膜等の無機絶縁膜が挙げられる。また、酸化シリコン膜、酸化窒化シリコン膜、酸化アルミニウム膜等を用いてもよい。また、上述の絶縁膜を2以上積層して用いてもよい。例えば、窒化シリコン膜と、酸化シリコン膜との2層積層構造とすることができる。 Examples of the highly moisture-proof insulating film include inorganic insulating films such as a film containing nitrogen and silicon such as a silicon nitride film and a silicon nitride oxide film, and a film containing nitrogen and aluminum such as an aluminum nitride film. Alternatively, a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, or the like may be used. Two or more of the above insulating films may be stacked. For example, a two-layer structure of a silicon nitride film and a silicon oxide film can be used.
例えば、防湿性の高い絶縁膜の水蒸気透過量は、1×10−5[g/(m・day)]以下、好ましくは1×10−6[g/(m・day)]以下、より好ましくは1×10−7[g/(m・day)]以下、さらに好ましくは1×10−8[g/(m・day)]以下とする。 For example, the moisture permeation amount of the highly moisture-proof insulating film is 1 × 10 −5 [g / (m 2 · day)] or less, preferably 1 × 10 −6 [g / (m 2 · day)] or less, More preferably, it is 1 × 10 −7 [g / (m 2 · day)] or less, and further preferably 1 × 10 −8 [g / (m 2 · day)] or less.
また、接着層317には、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤等の各種硬化型接着剤を用いることができる。接着層317として、硬化型接着剤を用いることで、発光素子304を構成する各層等がはがれることを抑制することができる。また、接着層317が表示装置10の外部に漏れ出すことを抑制することができる。以上により、表示装置10の信頼性を高めることができる。なお、接着層317として、接着シート等を用いてもよい。 For the adhesive layer 317, various curable adhesives such as an ultraviolet curable adhesive, a reactive curable adhesive, a thermosetting adhesive, and an anaerobic adhesive can be used. By using a curable adhesive as the adhesive layer 317, it is possible to suppress peeling of each layer or the like included in the light-emitting element 304. Further, leakage of the adhesive layer 317 to the outside of the display device 10 can be suppressed. As described above, the reliability of the display device 10 can be improved. Note that an adhesive sheet or the like may be used as the adhesive layer 317.
また、接着層317には乾燥剤を含んでいてもよい。例えば、アルカリ土類金属の酸化物(酸化カルシウム、酸化バリウム等)のように、化学吸着によって水分を吸着する物質を用いることができる。または、ゼオライトまたはシリカゲル等のように、物理吸着によって水分を吸着する物質を用いてもよい。乾燥剤が含まれていると、水分等の不純物が機能素子に侵入することを抑制でき、表示装置10の信頼性が向上するため好ましい。 The adhesive layer 317 may contain a desiccant. For example, a substance that adsorbs moisture by chemical adsorption, such as an alkaline earth metal oxide (calcium oxide, barium oxide, or the like) can be used. Alternatively, a substance that adsorbs moisture by physical adsorption, such as zeolite or silica gel, may be used. It is preferable that a desiccant is contained because impurities such as moisture can be prevented from entering the functional element and the reliability of the display device 10 is improved.
また、接着層317に屈折率の高いフィラーまたは光散乱部材を含ませることで、発光素子からの光取り出し効率を向上させることができる。例えば、酸化チタン、酸化バリウム、ゼオライト、ジルコニウム等を用いることができる。 In addition, when the adhesive layer 317 includes a filler having a high refractive index or a light scattering member, light extraction efficiency from the light emitting element can be improved. For example, titanium oxide, barium oxide, zeolite, zirconium, or the like can be used.
発光素子304の発光領域、つまり導電層321、発光層322、導電層323のいずれもが重なり発光層322が発光する領域と重なるように、着色層325が設けられている。発光層322から発せられた光は、着色層325を通って基板211側に取り出される。つまり、図1(B)に示す表示装置10はトップエミッション構造である。 The colored layer 325 is provided so that the light-emitting region of the light-emitting element 304, that is, the conductive layer 321, the light-emitting layer 322, and the conductive layer 323 are all overlapped with the region where the light-emitting layer 322 emits light. Light emitted from the light-emitting layer 322 is extracted to the substrate 211 side through the colored layer 325. That is, the display device 10 illustrated in FIG. 1B has a top emission structure.
図1(B)に示すようなカラーフィルタ方式の表示装置において、発光層322は、白色光を発する発光層とすることができる。また、着色層325は、特定の波長帯の光を透過する有色層である。例えば、赤色、緑色、青色、または黄色等の波長帯の光を透過するカラーフィルタ等とすることができる。着色層325に用いることのできる材料としては、金属材料、樹脂材料、または、顔料もしくは染料が含まれた樹脂材料等が挙げられる。表示装置10を当該構成とすることにより、発光層322を複数の発光素子304に共通で設けても、赤色、緑色、青色、または黄色等の各色の光を取り出すことができる。これにより、発光素子304を有する画素の精細度を高めることができる。 In the color filter display device as illustrated in FIG. 1B, the light-emitting layer 322 can be a light-emitting layer that emits white light. The colored layer 325 is a colored layer that transmits light in a specific wavelength band. For example, a color filter that transmits light in a wavelength band such as red, green, blue, or yellow can be used. As a material that can be used for the colored layer 325, a metal material, a resin material, a resin material containing a pigment or a dye, or the like can be given. With the structure of the display device 10, light of each color such as red, green, blue, or yellow can be extracted even when the light-emitting layer 322 is provided in common for the plurality of light-emitting elements 304. Accordingly, the definition of the pixel including the light emitting element 304 can be increased.
また、発光素子304に光学調整層324を設け、導電層321として可視光を反射する導電膜、導電層323として可視光を透過する導電膜を用いることにより、導電層321と導電層323との間の光学距離を取り出す光の色に応じて調整し、効率よく光を取り出すことができる。これにより、表示装置10が表示可能な色域を広げることができ、さらに消費電力を低減することができる。 In addition, by providing the light-emitting element 304 with the optical adjustment layer 324 and using a conductive film that reflects visible light as the conductive layer 321 and a conductive film that transmits visible light as the conductive layer 323, the conductive layer 321 and the conductive layer 323 are formed. The optical distance between them can be adjusted according to the color of light to be extracted, and light can be extracted efficiently. As a result, the color gamut that can be displayed by the display device 10 can be expanded, and the power consumption can be further reduced.
着色層325は、隣接する遮光層326の間に設けられている。遮光層326は隣接する画素に設けられた発光素子304からの光を遮り、隣接する発光素子304間における混色を抑制する。ここで、着色層325の端部を、遮光層326と重なるように設けることにより、光漏れを抑制することができる。遮光層326としては、発光素子304の光を遮る材料を用いることができ、例えば、金属材料、または、顔料もしくは染料を含む樹脂材料等を用いてブラックマトリクスを形成することができる。なお、遮光層326は、駆動回路領域12等、表示領域11以外の領域に設けると、導波光等による意図しない光漏れを抑制できるため好ましい。 The colored layer 325 is provided between the adjacent light shielding layers 326. The light-blocking layer 326 blocks light from the light-emitting elements 304 provided in adjacent pixels and suppresses color mixing between the adjacent light-emitting elements 304. Here, light leakage can be suppressed by providing the end portion of the colored layer 325 so as to overlap the light shielding layer 326. As the light-blocking layer 326, a material that blocks light from the light-emitting element 304 can be used. For example, a black matrix can be formed using a metal material or a resin material containing a pigment or a dye. Note that the light shielding layer 326 is preferably provided in a region other than the display region 11 such as the drive circuit region 12 because unintended light leakage due to guided light or the like can be suppressed.
表示装置10は、オーバーコートを有していてもよい(図示せず)。オーバーコートは、着色層325に含有された不純物等の発光素子304への拡散を防止することができる。オーバーコートは、発光素子304の光を透過する材料から構成される。例えば、窒化シリコン膜、酸化シリコン膜等の無機絶縁膜、または、アクリル膜、ポリイミド膜等の有機絶縁膜を用いることができ、有機絶縁膜と無機絶縁膜との積層構造としてもよい。 The display device 10 may have an overcoat (not shown). The overcoat can prevent diffusion of impurities and the like contained in the colored layer 325 to the light emitting element 304. The overcoat is made of a material that transmits light from the light emitting element 304. For example, an inorganic insulating film such as a silicon nitride film or a silicon oxide film, or an organic insulating film such as an acrylic film or a polyimide film can be used, and a stacked structure of an organic insulating film and an inorganic insulating film may be used.
接続領域306は、導電層307および導電層355を有する。導電層307と導電層355は、電気的に接続される。導電層307は、トランジスタのソースおよびドレインと同一の材料、および同一の工程で形成することができる。また、導電層355は、導電層321と同一の材料、および同一の工程で形成することができる。導電層355は、駆動回路領域12に外部からの信号や電位を伝達するFPC13と、接続体319を介して電気的に接続される。 The connection region 306 includes a conductive layer 307 and a conductive layer 355. The conductive layer 307 and the conductive layer 355 are electrically connected. The conductive layer 307 can be formed using the same material and step as the source and drain of the transistor. The conductive layer 355 can be formed using the same material and the same process as the conductive layer 321. The conductive layer 355 is electrically connected to the FPC 13 that transmits a signal and a potential from the outside to the drive circuit region 12 through a connection body 319.
接続体319としては、様々な異方性導電フィルム(ACF:Anisotropic Conductive Film)および異方性導電ペースト(ACP:Anisotropic Conductive Paste)等を用いることができる。 As the connection body 319, various anisotropic conductive films (ACF: Anisotropic Conductive Film), anisotropic conductive pastes (ACP: Anisotropic Conductive Paste), and the like can be used.
導電層355、接続体319、およびFPC13は、基板201上の、基板211と重ならない領域に設けられる。基板201における、基板211と重ならない領域を領域400とする。 The conductive layer 355, the connection body 319, and the FPC 13 are provided in a region over the substrate 201 that does not overlap with the substrate 211. A region that does not overlap the substrate 211 in the substrate 201 is referred to as a region 400.
有機層322aおよび導電層323aは、領域400と、接着層317と、の境界部と接するように設けられる。また、前述のように、有機層322aおよび導電層323aは、基板211と重なるように設けられる。詳細は後述するが、有機層322aは、発光層322と同一の材料および同一の工程で形成され、導電層323aは、導電層323と同一の材料および同一の工程で形成される。 The organic layer 322a and the conductive layer 323a are provided so as to be in contact with a boundary portion between the region 400 and the adhesive layer 317. Further, as described above, the organic layer 322 a and the conductive layer 323 a are provided so as to overlap with the substrate 211. Although details will be described later, the organic layer 322a is formed using the same material and the same process as the light-emitting layer 322, and the conductive layer 323a is formed using the same material and the same process as the conductive layer 323.
なお、領域400と、接着層317と、の境界部から、当該境界部と垂直方向かつ領域400から遠ざかる方向に向かって0.1mm離れた領域まで、有機層322aを設ける構成とすることができる。つまり、図1(B)に示すxの値を、0.1mmとすることができる。なお、xの値は、0.1mm未満としてもよいし、0.1mmより大きくてもよい。例えば、xの値を1μmとしてもよいし、10μmとしてもよい。また、例えばxの値を0.2mmとしてもよいし、0.5mmとしてもよいし、1mmとしてもよい。なお、xの値は、2mm以下とすることが好ましい。 Note that the organic layer 322a can be provided from a boundary portion between the region 400 and the adhesive layer 317 to a region that is 0.1 mm away from the boundary portion in a direction perpendicular to the boundary portion and away from the region 400. . That is, the value x shown in FIG. 1B can be set to 0.1 mm. Note that the value of x may be less than 0.1 mm or greater than 0.1 mm. For example, the value of x may be 1 μm or 10 μm. For example, the value of x may be 0.2 mm, 0.5 mm, or 1 mm. The value of x is preferably 2 mm or less.
導電層323aは、図1(B)に示すように、有機層322aを覆うように設けることができる。また、導電層323aは、有機層322aの端部が露出するように設けることができる。また、図2に示すように、導電層323aを省略した構成とすることができる。 As shown in FIG. 1B, the conductive layer 323a can be provided so as to cover the organic layer 322a. Further, the conductive layer 323a can be provided so that an end portion of the organic layer 322a is exposed. In addition, as illustrated in FIG. 2, the conductive layer 323a may be omitted.
次に、図1(B)に示した表示装置10の各構成要素について説明する。 Next, each component of the display device 10 illustrated in FIG. 1B will be described.
〔基板〕
基板201および基板211には、平坦面を有する材料を用いることができる。また、基板201および基板211には、可視光を透過する材料を用いることができる。例えば、ガラス、石英、セラミック、サファイヤ、有機樹脂等の材料を用いることができる。なお、基板201は、可視光を透過する材料を用いなくてもよい。
〔substrate〕
A material having a flat surface can be used for the substrate 201 and the substrate 211. The substrate 201 and the substrate 211 can be formed using a material that transmits visible light. For example, materials such as glass, quartz, ceramic, sapphire, and organic resin can be used. Note that the substrate 201 may not be formed using a material that transmits visible light.
また、基板201および基板211として、厚さの薄い基板を用いてもよい。これにより、表示装置10の軽量化および薄型化を図ることができる。 Alternatively, thin substrates may be used as the substrate 201 and the substrate 211. Thereby, weight reduction and thickness reduction of the display apparatus 10 can be achieved.
また、基板201および基板211として、靱性が高い材料を用いてもよい。これにより、耐衝撃性に優れ、破損しにくい表示装置を実現できる。例えば、樹脂基板、または、厚さの薄い金属基板もしくは合金基板を用いることで、ガラス基板を用いる場合に比べて、軽量であり、破損しにくい表示装置を実現できる。 Further, as the substrate 201 and the substrate 211, a material having high toughness may be used. Thereby, it is possible to realize a display device that is excellent in impact resistance and is not easily damaged. For example, by using a resin substrate, or a thin metal substrate or alloy substrate, a display device that is lighter and less likely to be damaged can be realized as compared with the case of using a glass substrate.
金属材料および合金材料は熱伝導性が高く、基板全体に熱を容易に伝導できるため、表示装置10の局所的な温度上昇を抑制することができ、好ましい。金属材料または合金材料を用いた基板の厚さは、10μm以上200μm以下が好ましく、20μm以上50μm以下であることがより好ましい。 Metal materials and alloy materials are preferable because they have high thermal conductivity and can easily conduct heat to the entire substrate, which can suppress a local temperature increase of the display device 10. The thickness of the substrate using a metal material or an alloy material is preferably 10 μm or more and 200 μm or less, and more preferably 20 μm or more and 50 μm or less.
金属基板または合金基板を構成する材料としては、特に限定はないが、例えば、アルミニウム、銅、ニッケル、または、アルミニウム合金もしくはステンレス等の金属の合金等を好適に用いることができる。半導体基板を構成する材料としては、シリコン等が挙げられる。 The material constituting the metal substrate or the alloy substrate is not particularly limited. For example, aluminum, copper, nickel, or an alloy of a metal such as an aluminum alloy or stainless steel can be preferably used. Examples of the material constituting the semiconductor substrate include silicon.
また、基板201および基板211に、熱放射率が高い材料を用いると表示パネルの表面温度が高くなることを抑制でき、表示装置10の破壊、および信頼性の低下を抑制できる。例えば、基板201および基板211を、金属基板と熱放射率の高い層(例えば、金属酸化物またはセラミック材料を用いることができる)の積層構造としてもよい。 In addition, when a material having a high thermal emissivity is used for the substrate 201 and the substrate 211, it is possible to suppress an increase in the surface temperature of the display panel, and it is possible to suppress destruction of the display device 10 and a decrease in reliability. For example, the substrate 201 and the substrate 211 may have a stacked structure of a metal substrate and a layer having a high thermal emissivity (for example, a metal oxide or a ceramic material can be used).
〔トランジスタ〕
表示装置10が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタとしてもよいし、スタガ型のトランジスタとしてもよいし、逆スタガ型のトランジスタとしてもよい。また、トップゲート型またはボトムゲート型のいずれのトランジスタ構造としてもよい。または、チャネルの上下にゲート電極が設けられていてもよい。
[Transistor]
The structure of the transistor included in the display device 10 is not particularly limited. For example, a planar transistor, a staggered transistor, or an inverted staggered transistor may be used. Further, a top-gate or bottom-gate transistor structure may be employed. Alternatively, gate electrodes may be provided above and below the channel.
トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。 There is no particular limitation on the crystallinity of the semiconductor material used for the transistor, and either an amorphous semiconductor or a semiconductor having crystallinity (a microcrystalline semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, or a semiconductor partially including a crystal region) is used. May be used. It is preferable to use a crystalline semiconductor because deterioration of transistor characteristics can be suppressed.
トランジスタに用いる半導体材料は特に限定されず、例えば、第14族の元素、化合物半導体または金属酸化物を半導体層に用いることができる。代表的には、シリコンを含む半導体、ガリウムヒ素を含む半導体、またはインジウムを含む金属酸化物等を適用できる。 There is no particular limitation on the semiconductor material used for the transistor, and for example, a Group 14 element, a compound semiconductor, or a metal oxide can be used for the semiconductor layer. Typically, a semiconductor containing silicon, a semiconductor containing gallium arsenide, a metal oxide containing indium, or the like can be used.
本明細書等において、金属酸化物(metal oxide)とは、広い表現での金属の酸化物である。金属酸化物は、酸化物絶縁体、酸化物導電体(透明酸化物導電体を含む)、酸化物半導体(Oxide Semiconductorまたは単にOSともいう)等に分類される。例えば、トランジスタの活性層に金属酸化物を用いた場合、当該金属酸化物を酸化物半導体と呼称する場合がある。つまり、金属酸化物が増幅作用、整流作用、およびスイッチング作用の少なくとも1つを有する場合、当該金属酸化物を、金属酸化物半導体(metal oxide semiconductor)、略してOSと呼ぶことができる。また、OS FETと記載する場合においては、金属酸化物または酸化物半導体を有するトランジスタと換言することができる。 In this specification and the like, a metal oxide is a metal oxide in a broad expression. Metal oxides are classified into oxide insulators, oxide conductors (including transparent oxide conductors), and oxide semiconductors (also referred to as oxide semiconductors or simply OS). For example, in the case where a metal oxide is used for an active layer of a transistor, the metal oxide may be referred to as an oxide semiconductor. That is, when a metal oxide has at least one of an amplifying function, a rectifying function, and a switching function, the metal oxide can be referred to as a metal oxide semiconductor, or OS for short. In the case of describing as an OS FET, it can be said to be a transistor including a metal oxide or an oxide semiconductor.
また、本明細書等において、窒素を有する金属酸化物も金属酸化物(metal oxide)と総称する場合がある。また、窒素を有する金属酸化物を、金属酸窒化物(metal oxynitride)と呼称してもよい。 In addition, in this specification and the like, metal oxides containing nitrogen may be collectively referred to as metal oxides. In addition, a metal oxide containing nitrogen may be referred to as a metal oxynitride.
また、本明細書等において、CAAC(c−axis aligned crystal)、およびCAC(Cloud−Aligned Composite)と記載する場合がある。なお、CAACは結晶構造の一例を表し、CACは機能、または材料の構成の一例を表す。 Further, in this specification and the like, there are cases where they are described as CAAC (c-axis aligned crystal) and CAC (Cloud-aligned Composite). Note that CAAC represents an example of a crystal structure, and CAC represents an example of a function or a material structure.
また、本明細書等において、CAC−OSまたはCAC−metal oxideとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。なお、CAC−OSまたはCAC−metal oxideを、トランジスタの活性層に用いる場合、導電性の機能は、キャリアとなる電子(またはホール)を流す機能であり、絶縁性の機能は、キャリアとなる電子を流さない機能である。導電性の機能と、絶縁性の機能とを、それぞれ相補的に作用させることで、スイッチングさせる機能(On/Offさせる機能)をCAC−OSまたはCAC−metal oxideに付与することができる。CAC−OSまたはCAC−metal oxideにおいて、それぞれの機能を分離させることで、双方の機能を最大限に高めることができる。 In this specification and the like, a CAC-OS or a CAC-metal oxide has a conductive function in part of a material and an insulating function in part of the material, and the whole material is a semiconductor. It has the function of. Note that in the case where CAC-OS or CAC-metal oxide is used for an active layer of a transistor, the conductive function is a function of flowing electrons (or holes) serving as carriers, and the insulating function is an electron serving as carriers. It is a function that does not flow. A function of switching (a function of turning on / off) can be imparted to CAC-OS or CAC-metal oxide by causing the conductive function and the insulating function to act complementarily. In CAC-OS or CAC-metal oxide, by separating each function, both functions can be maximized.
また、本明細書等において、CAC−OSまたはCAC−metal oxideは、導電性領域、および絶縁性領域を有する。導電性領域は、上述の導電性の機能を有し、絶縁性領域は、上述の絶縁性の機能を有する。また、材料中において、導電性領域と、絶縁性領域とは、ナノ粒子レベルで分離している場合がある。また、導電性領域と、絶縁性領域とは、それぞれ材料中に偏在する場合がある。また、導電性領域は、周辺がぼけてクラウド状に連結して観察される場合がある。 In this specification and the like, CAC-OS or CAC-metal oxide includes a conductive region and an insulating region. The conductive region has the above-described conductive function, and the insulating region has the above-described insulating function. In the material, the conductive region and the insulating region may be separated at the nanoparticle level. In addition, the conductive region and the insulating region may be unevenly distributed in the material, respectively. In addition, the conductive region may be observed with the periphery blurred and connected in a cloud shape.
また、CAC−OSまたはCAC−metal oxideにおいて、導電性領域と、絶縁性領域とは、それぞれ0.5nm以上10nm以下、好ましくは0.5nm以上3nm以下のサイズで材料中に分散している場合がある。 In CAC-OS or CAC-metal oxide, the conductive region and the insulating region are dispersed in the material with a size of 0.5 nm to 10 nm, preferably 0.5 nm to 3 nm, respectively. There is.
また、CAC−OSまたはCAC−metal oxideは、異なるバンドギャップを有する成分により構成される。例えば、CAC−OSまたはCAC−metal oxideは、絶縁性領域に起因するワイドギャップを有する成分と、導電性領域に起因するナローギャップを有する成分と、により構成される。当該構成の場合、キャリアを流す際に、ナローギャップを有する成分において、主にキャリアが流れる。また、ナローギャップを有する成分が、ワイドギャップを有する成分に相補的に作用し、ナローギャップを有する成分に連動してワイドギャップを有する成分にもキャリアが流れる。このため、上記CAC−OSまたはCAC−metal oxideをトランジスタのチャネル領域に用いる場合、トランジスタのオン状態において高い電流駆動力、つまり大きなオン電流、および高い電界効果移動度を得ることができる。 Further, CAC-OS or CAC-metal oxide is composed of components having different band gaps. For example, CAC-OS or CAC-metal oxide includes a component having a wide gap caused by an insulating region and a component having a narrow gap caused by a conductive region. In the case of the configuration, when the carrier flows, the carrier mainly flows in the component having the narrow gap. In addition, the component having a narrow gap acts in a complementary manner to the component having a wide gap, and the carrier flows through the component having the wide gap in conjunction with the component having the narrow gap. Therefore, when the CAC-OS or the CAC-metal oxide is used for a channel region of a transistor, high current driving capability, that is, high on-state current and high field-effect mobility can be obtained in the on-state of the transistor.
すなわち、CAC−OSまたはCAC−metal oxideは、マトリックス複合材(matrix composite)、または金属マトリックス複合材(metal matrix composite)と呼称することもできる。 That is, CAC-OS or CAC-metal oxide can also be called a matrix composite material (metal matrix composite) or a metal matrix composite material (metal matrix composite).
特に、トランジスタのチャネルが形成される半導体に、金属酸化物を適用することが好ましい。特にシリコンよりもバンドギャップの大きな金属酸化物を適用することが好ましい。例えば、金属酸化物のエネルギーギャップは、2eV以上であると好ましく、2.5eV以上であるとより好ましく、3eV以上であるとさらに好ましい。金属酸化物のような、バンドギャップが広く、且つキャリア密度の小さい半導体材料を用いると、トランジスタのオフ状態における電流を低減できるため好ましい。 In particular, a metal oxide is preferably used for a semiconductor in which a channel of a transistor is formed. In particular, it is preferable to use a metal oxide having a larger band gap than silicon. For example, the energy gap of the metal oxide is preferably 2 eV or more, more preferably 2.5 eV or more, and further preferably 3 eV or more. A semiconductor material having a wide band gap and a low carrier density, such as a metal oxide, is preferable because current in an off state of the transistor can be reduced.
例えば、上記金属酸化物として、少なくともインジウム(In)もしくは亜鉛(Zn)を含むことが好ましい。より好ましくは、In−M−Zn酸化物(MはAl、Ti、Ga、Ge、Y、Zr、Sn、La、Ce、HfまたはNd等の金属)で表記される酸化物を含む。 For example, the metal oxide preferably contains at least indium (In) or zinc (Zn). More preferably, an oxide represented by an In-M-Zn oxide (M is a metal such as Al, Ti, Ga, Ge, Y, Zr, Sn, La, Ce, Hf, or Nd) is included.
〔絶縁層〕
表示装置10が有する絶縁層には、有機絶縁材料または無機絶縁材料を用いることができる。樹脂としては、例えば、アクリル樹脂、エポキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂等が挙げられる。無機絶縁膜としては、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、および酸化ネオジム膜等が挙げられる。
[Insulating layer]
An organic insulating material or an inorganic insulating material can be used for the insulating layer included in the display device 10. Examples of the resin include acrylic resin, epoxy resin, polyimide resin, polyamide resin, polyimide amide resin, siloxane resin, benzocyclobutene resin, and phenol resin. Examples of inorganic insulating films include silicon oxide films, silicon oxynitride films, silicon nitride oxide films, silicon nitride films, aluminum oxide films, hafnium oxide films, yttrium oxide films, zirconium oxide films, gallium oxide films, tantalum oxide films, magnesium oxide Examples thereof include a film, a lanthanum oxide film, a cerium oxide film, and a neodymium oxide film.
〔導電層〕
表示装置10が有する導電層には、それぞれ、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、もしくはタングステン等の金属、またはこれを主成分とする合金を単層構造または積層構造として用いることができる。または、酸化インジウム、ITO、タングステンを含むインジウム酸化物、タングステンを含むインジウム亜鉛酸化物、チタンを含むインジウム酸化物、チタンを含むITO、インジウム亜鉛酸化物、ZnO、ガリウムを添加したZnO、またはシリコンを含むインジウム錫酸化物等の透光性を有する導電性材料を用いてもよい。また、不純物元素を含有させる等して低抵抗化させた、多結晶シリコンもしくは酸化物半導体等の半導体、またはニッケルシリサイド等のシリサイドを用いてもよい。また、グラフェンを含む膜を用いることもできる。グラフェンを含む膜は、例えば酸化グラフェンを含む膜を還元して形成することができる。また、不純物元素を含有させた酸化物半導体等の半導体を用いてもよい。または、銀、カーボン、もしくは銅等の導電性ペースト、またはポリチオフェン等の導電性ポリマーを用いて形成してもよい。導電性ペーストは、安価であり、好ましい。導電性ポリマーは、塗布しやすく、好ましい。
[Conductive layer]
Each of the conductive layers included in the display device 10 has a single-layer structure of a metal such as aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, tantalum, or tungsten, or an alloy containing this as a main component. Alternatively, a stacked structure can be used. Or indium oxide, ITO, indium oxide containing tungsten, indium zinc oxide containing tungsten, indium oxide containing titanium, ITO containing titanium, indium zinc oxide, ZnO, ZnO added with gallium, or silicon. A light-transmitting conductive material such as indium tin oxide may be used. Alternatively, a semiconductor such as polycrystalline silicon or an oxide semiconductor, or a silicide such as nickel silicide, which has been reduced in resistance by containing an impurity element or the like, may be used. Alternatively, a film containing graphene can be used. The film containing graphene can be formed by, for example, reducing a film containing graphene oxide. Alternatively, a semiconductor such as an oxide semiconductor containing an impurity element may be used. Alternatively, a conductive paste such as silver, carbon, or copper, or a conductive polymer such as polythiophene may be used. The conductive paste is preferable because it is inexpensive. The conductive polymer is preferable because it is easy to apply.
<表示装置の作製方法例1>
次に、図1(A)、(B)に示す構成の表示装置10の作製方法例について、図3乃至図6を用いて説明する。
<Example 1 of Manufacturing Method of Display Device>
Next, an example of a method for manufacturing the display device 10 having the structure illustrated in FIGS. 1A and 1B will be described with reference to FIGS.
なお、表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、真空蒸着法、パルスレーザー堆積(PLD:Pulsed Laser Deposition)法、原子層成膜(ALD:Atomic Layer Deposition)法等を用いて形成することができる。CVD法としては、プラズマ化学気相堆積(PECVD:Plasma Enhanced Chemical Vapor Deposition)法や、熱CVD法でもよい。熱CVD法の例として、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法を使ってもよい。 Note that a thin film (an insulating film, a semiconductor film, a conductive film, or the like) included in the display device is formed by sputtering, chemical vapor deposition (CVD), vacuum evaporation, or pulsed laser deposition (PLD: Pulsed Laser Deposition). ) Method, atomic layer deposition (ALD: Atomic Layer Deposition) method, or the like. The CVD method may be a plasma enhanced chemical vapor deposition (PECVD) method or a thermal CVD method. As an example of the thermal CVD method, a metal organic chemical vapor deposition (MOCVD) method may be used.
表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、スリットコート、ロールコート、カーテンコート、ナイフコート等の方法により形成することができる。 Thin films (insulating films, semiconductor films, conductive films, etc.) that constitute display devices are spin coating, dip, spray coating, ink jet, dispensing, screen printing, offset printing, slit coating, roll coating, curtain coating, knife coating, etc. It can be formed by a method.
表示装置を構成する薄膜を加工する際には、リソグラフィ法等を用いて加工することができる。または、遮蔽マスクを用いた成膜方法により、島状の薄膜を形成してもよい。または、ナノインプリント法、サンドブラスト法、リフトオフ法等により薄膜を加工してもよい。フォトリソグラフィ法としては、加工したい薄膜上にレジストマスクを形成して、エッチング等により当該薄膜を加工し、レジストマスクを除去する方法と、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法と、がある。 When a thin film included in the display device is processed, the thin film can be processed using a lithography method or the like. Alternatively, an island-shaped thin film may be formed by a film formation method using a shielding mask. Alternatively, the thin film may be processed by a nanoimprint method, a sand blast method, a lift-off method, or the like. As a photolithography method, a resist mask is formed on a thin film to be processed, the thin film is processed by etching or the like, and the resist mask is removed. After forming a photosensitive thin film, exposure and development are performed. And a method for processing the thin film into a desired shape.
リソグラフィ法において光を用いる場合、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外線やKrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外光(EUV:Extreme Ultra−violet)やX線を用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビーム等のビームを走査することにより露光を行う場合には、フォトマスクは不要である。 When light is used in the lithography method, for example, light used for exposure can be i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or light in which these are mixed. In addition, ultraviolet light, KrF laser light, ArF laser light, or the like can be used. Further, exposure may be performed by an immersion exposure technique. Further, extreme ultraviolet light (EUV: Extreme-violet) or X-rays may be used as light used for exposure. Further, an electron beam can be used instead of the light used for exposure. It is preferable to use extreme ultraviolet light, X-rays, or an electron beam because extremely fine processing is possible. Note that a photomask is not necessary when exposure is performed by scanning a beam such as an electron beam.
薄膜のエッチングには、ドライエッチング法、ウエットエッチング法、サンドブラスト法等を用いることができる。 For etching the thin film, a dry etching method, a wet etching method, a sand blasting method, or the like can be used.
表示装置10の作製の際は、まず、基板201上に絶縁層205を形成する(図3(A))。前述のように、絶縁層205はバリア性が高いことが好ましい。絶縁層205として無機絶縁膜を用いる場合、成膜温度が高いほど緻密でバリア性の高い膜となるため、高温で形成することが好ましい。例えば、成膜時の温度が、100℃以上であることが好ましく、250℃以上であることがより好ましい。 In manufacturing the display device 10, first, the insulating layer 205 is formed over the substrate 201 (FIG. 3A). As described above, the insulating layer 205 preferably has a high barrier property. In the case where an inorganic insulating film is used as the insulating layer 205, it is preferable to form the insulating layer 205 at a high temperature because a denser and higher barrier property is obtained as the deposition temperature is higher. For example, the temperature during film formation is preferably 100 ° C. or higher, and more preferably 250 ° C. or higher.
次に、絶縁層205上に、トランジスタ301、トランジスタ302、トランジスタ303、および容量素子305を形成する(図3(A))。 Next, the transistor 301, the transistor 302, the transistor 303, and the capacitor 305 are formed over the insulating layer 205 (FIG. 3A).
具体的には、まず、絶縁層205上に、導電層411、導電層421、導電層431、および導電層451を形成する。導電層411、導電層421、導電層431、および導電層451は、導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することで形成できる。 Specifically, first, the conductive layer 411, the conductive layer 421, the conductive layer 431, and the conductive layer 451 are formed over the insulating layer 205. The conductive layer 411, the conductive layer 421, the conductive layer 431, and the conductive layer 451 can be formed by forming a conductive film, forming a resist mask, etching the conductive film, and then removing the resist mask.
続いて、絶縁層311を形成する。絶縁層311は、絶縁層205に用いることのできる絶縁膜を援用できる。 Subsequently, an insulating layer 311 is formed. As the insulating layer 311, an insulating film that can be used for the insulating layer 205 can be used.
続いて、半導体層412、半導体層422、および半導体層432を形成する。半導体層412、半導体層422、および半導体層432は、半導体膜を成膜した後、レジストマスクを形成し、当該半導体膜をエッチングした後にレジストマスクを除去することで形成できる。半導体膜として、金属酸化物を用いることができる。 Subsequently, a semiconductor layer 412, a semiconductor layer 422, and a semiconductor layer 432 are formed. The semiconductor layer 412, the semiconductor layer 422, and the semiconductor layer 432 can be formed by forming a semiconductor film, forming a resist mask, etching the semiconductor film, and then removing the resist mask. A metal oxide can be used for the semiconductor film.
金属酸化物膜は、不活性ガスおよび酸素ガスのいずれか一方または双方を用いて成膜することができる。なお、金属酸化物膜の成膜時における酸素の流量比(酸素分圧)に、特に限定はない。ただし、電界効果移動度が高いトランジスタを得る場合においては、金属酸化物膜の成膜時における酸素の流量比(酸素分圧)は、0%以上30%以下が好ましく、5%以上30%以下がより好ましく、7%以上15%以下がさらに好ましい。 The metal oxide film can be formed using one or both of an inert gas and an oxygen gas. Note that there is no particular limitation on the flow rate ratio of oxygen (oxygen partial pressure) during the formation of the metal oxide film. However, in the case of obtaining a transistor with high field effect mobility, the flow rate ratio of oxygen (oxygen partial pressure) during the formation of the metal oxide film is preferably 0% or more and 30% or less, and 5% or more and 30% or less. Is more preferably 7% or more and 15% or less.
金属酸化物膜は、スパッタリング法により形成することができる。そのほか、PLD法、PECVD法、熱CVD法、ALD法、真空蒸着法等を用いてもよい。 The metal oxide film can be formed by a sputtering method. In addition, a PLD method, a PECVD method, a thermal CVD method, an ALD method, a vacuum evaporation method, or the like may be used.
続いて、導電層307、導電層413、導電層414、導電層423、導電層424、導電層433、および導電層434を形成する。導電層307、導電層413、導電層414、導電層423、導電層424、導電層433、および導電層434は、導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することにより形成できる。導電層413および導電層414は、それぞれ半導体層412と接続され、導電層423および導電層424は、それぞれ半導体層422と接続され、導電層433および導電層434は、それぞれ半導体層432と接続される。 Next, a conductive layer 307, a conductive layer 413, a conductive layer 414, a conductive layer 423, a conductive layer 424, a conductive layer 433, and a conductive layer 434 are formed. The conductive layer 307, the conductive layer 413, the conductive layer 414, the conductive layer 423, the conductive layer 424, the conductive layer 433, and the conductive layer 434 were formed using a conductive film, a resist mask was formed, and the conductive film was etched It can be formed by removing the resist mask later. The conductive layers 413 and 414 are each connected to the semiconductor layer 412, the conductive layers 423 and 424 are connected to the semiconductor layer 422, and the conductive layers 433 and 434 are connected to the semiconductor layer 432, respectively. The
なお、図3(A)では明示していないが、導電膜をエッチングする際に、レジストマスクに覆われていない半導体層412の一部、半導体層422の一部、および半導体層432の一部が薄膜化する場合がある。 Note that although not shown in FIG. 3A, when the conductive film is etched, part of the semiconductor layer 412 that is not covered with the resist mask, part of the semiconductor layer 422, and part of the semiconductor layer 432 May become thinner.
以上のようにして、トランジスタ301、トランジスタ302、トランジスタ303、および容量素子305を形成できる。それとともに、FPC13と電気的に接続される導電層307を形成できる。 As described above, the transistor 301, the transistor 302, the transistor 303, and the capacitor 305 can be formed. At the same time, a conductive layer 307 electrically connected to the FPC 13 can be formed.
次に、トランジスタ301、トランジスタ302、トランジスタ303、および容量素子305を覆う絶縁層312を形成する。続いて、絶縁層313を形成する(図3(B))。絶縁層312および絶縁層313は、絶縁層205と同様の方法により形成することができる。 Next, an insulating layer 312 is formed to cover the transistor 301, the transistor 302, the transistor 303, and the capacitor 305. Subsequently, an insulating layer 313 is formed (FIG. 3B). The insulating layer 312 and the insulating layer 313 can be formed by a method similar to that of the insulating layer 205.
絶縁層312は、酸素を含む雰囲気下で成膜することが好ましい。絶縁層312は、例えば酸化シリコン膜または酸化窒化絶縁膜を用いることが好ましい。これにより、絶縁層312は、加熱により多くの酸素を放出しやすい絶縁層とすることができる。絶縁層313は、窒化シリコン膜等、酸素を拡散、透過しにくい絶縁膜を用いることが好ましい。 The insulating layer 312 is preferably formed in an atmosphere containing oxygen. As the insulating layer 312, for example, a silicon oxide film or an oxynitride insulating film is preferably used. Accordingly, the insulating layer 312 can be an insulating layer that easily releases a large amount of oxygen by heating. The insulating layer 313 is preferably formed using an insulating film that hardly diffuses and transmits oxygen, such as a silicon nitride film.
絶縁層312および絶縁層313の形成後に、加熱処理を行うことが好ましい。これにより、絶縁層312から、半導体層412、半導体層422、および半導体層432に酸素を供給することができる。これにより、半導体層412、半導体層422、および半導体層432が金属酸化物層である場合に、当該金属酸化物層に形成される酸素欠損を修復し、欠陥準位を低減することができる。これにより、表示装置10の信頼性を高めることができる。 Heat treatment is preferably performed after the insulating layer 312 and the insulating layer 313 are formed. Accordingly, oxygen can be supplied from the insulating layer 312 to the semiconductor layer 412, the semiconductor layer 422, and the semiconductor layer 432. Accordingly, in the case where the semiconductor layer 412, the semiconductor layer 422, and the semiconductor layer 432 are metal oxide layers, oxygen vacancies formed in the metal oxide layer can be repaired and the defect level can be reduced. Thereby, the reliability of the display apparatus 10 can be improved.
次に、絶縁層313上に絶縁層314を形成する(図3(B))。絶縁層314は、後に形成する表示素子の被形成面を有する層であるため、平坦化層として機能することが好ましい。平坦化は、例えば化学機械研磨(CMP:Chemical Mechanical Polishing)法を用いて行うことができる。絶縁層314は、絶縁層205に用いることのできる絶縁膜を援用できる。 Next, the insulating layer 314 is formed over the insulating layer 313 (FIG. 3B). The insulating layer 314 is a layer having a formation surface of a display element to be formed later, and thus preferably functions as a planarization layer. The planarization can be performed using, for example, a chemical mechanical polishing (CMP) method. As the insulating layer 314, an insulating film that can be used for the insulating layer 205 can be used.
次に、絶縁層314、絶縁層313、および絶縁層312に、導電層307に達する開口、および導電層434に達する開口を形成する。 Next, an opening reaching the conductive layer 307 and an opening reaching the conductive layer 434 are formed in the insulating layer 314, the insulating layer 313, and the insulating layer 312.
その後、導電層355および導電層321を形成する(図3(C))。導電層355は、絶縁層314、絶縁層313、および絶縁層312に設けられた開口を介して、導電層307と接続される。導電層321は、絶縁層314、絶縁層313、および絶縁層312に設けられた開口を介して、導電層434と接続される。導電層355および導電層321は、導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することにより形成できる。 After that, a conductive layer 355 and a conductive layer 321 are formed (FIG. 3C). The conductive layer 355 is connected to the conductive layer 307 through an opening provided in the insulating layer 314, the insulating layer 313, and the insulating layer 312. The conductive layer 321 is connected to the conductive layer 434 through an opening provided in the insulating layer 314, the insulating layer 313, and the insulating layer 312. The conductive layer 355 and the conductive layer 321 can be formed by forming a conductive film, forming a resist mask, etching the conductive film, and then removing the resist mask.
次に、光学調整層324を形成する(図3(C))。光学調整層324は、例えば可視光を透過する導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することにより形成できる。なお、図3(C)では、導電層321を覆うように光学調整層324を形成したが、導電層321の端部が露出するように光学調整層324を形成してもよい。 Next, the optical adjustment layer 324 is formed (FIG. 3C). The optical adjustment layer 324 can be formed, for example, by forming a conductive film that transmits visible light, forming a resist mask, etching the conductive film, and then removing the resist mask. Note that in FIG. 3C, the optical adjustment layer 324 is formed so as to cover the conductive layer 321, but the optical adjustment layer 324 may be formed so that an end portion of the conductive layer 321 is exposed.
次に、光学調整層324の端部を覆う絶縁層315を形成する(図3(C))。絶縁層315は、絶縁膜を成膜した後、レジストマスクを形成し、当該絶縁膜をエッチングした後にレジストマスクを除去することにより形成できる。なお、絶縁層315は、絶縁層205に用いることのできる絶縁膜を援用できる。また、導電層321の端部が露出するように光学調整層324を形成した場合、絶縁層315は導電層321の端部を覆う。 Next, an insulating layer 315 that covers an end portion of the optical adjustment layer 324 is formed (FIG. 3C). The insulating layer 315 can be formed by forming an insulating film, forming a resist mask, etching the insulating film, and then removing the resist mask. Note that an insulating film that can be used for the insulating layer 205 can be used for the insulating layer 315. In addition, when the optical adjustment layer 324 is formed so that the end portion of the conductive layer 321 is exposed, the insulating layer 315 covers the end portion of the conductive layer 321.
次に、発光層322および有機層322aを形成する(図4(A))。発光層322および有機層322aは、蒸着法、塗布法、印刷法、吐出法等の方法で形成することができる。なお、有機層322aは、導電層355を覆うように設けられる。 Next, the light-emitting layer 322 and the organic layer 322a are formed (FIG. 4A). The light-emitting layer 322 and the organic layer 322a can be formed by a method such as a vapor deposition method, a coating method, a printing method, or a discharge method. Note that the organic layer 322 a is provided so as to cover the conductive layer 355.
次に、導電層323および導電層323aを形成する(図4(A))。導電層323および導電層323aは、例えば導電膜を成膜した後、レジストマスクを形成し、当該導電膜をエッチングした後にレジストマスクを除去することにより形成できる。前述のように、導電層323aは、有機層322aを覆うように設けることができる。また、導電層323aは、有機層322aの端部が露出するように設けることができる。また、導電層323aを省略することができる。図4(A)等では、導電層323aを、有機層322aを覆うように設ける場合を示している。 Next, a conductive layer 323 and a conductive layer 323a are formed (FIG. 4A). The conductive layers 323 and 323a can be formed, for example, by forming a conductive film, forming a resist mask, etching the conductive film, and then removing the resist mask. As described above, the conductive layer 323a can be provided so as to cover the organic layer 322a. Further, the conductive layer 323a can be provided so that an end portion of the organic layer 322a is exposed. Further, the conductive layer 323a can be omitted. FIG. 4A and the like illustrate the case where the conductive layer 323a is provided so as to cover the organic layer 322a.
次に、基板211上に絶縁層215を形成する(図4(B))。絶縁層215は、絶縁層205に用いることができる絶縁膜を援用できる。 Next, an insulating layer 215 is formed over the substrate 211 (FIG. 4B). As the insulating layer 215, an insulating film that can be used for the insulating layer 205 can be used.
次に、絶縁層215上に、着色層325および遮光層326を形成する(図4(B))。なお、基板211の大きさは、基板201の大きさと同一とすることができる。 Next, a colored layer 325 and a light-blocking layer 326 are formed over the insulating layer 215 (FIG. 4B). Note that the size of the substrate 211 can be the same as the size of the substrate 201.
次に、基板201の、発光素子304等が形成されている面の全面に、接着層317を塗布する。接着層317は、例えばスクリーン印刷を用いて形成することができる。または、インクジェット装置またはディスペンス装置を用いて形成することができる。その後、基板201の、発光素子304等が形成されている面と、基板211の、着色層325等が形成されている面と、を貼り合わせる(図4(C))。この場合、基板201を作製基板と呼ぶことができ、基板211を封止基板と呼ぶことができる。 Next, an adhesive layer 317 is applied to the entire surface of the substrate 201 on which the light emitting element 304 and the like are formed. The adhesive layer 317 can be formed using, for example, screen printing. Alternatively, it can be formed using an inkjet device or a dispensing device. After that, the surface of the substrate 201 on which the light-emitting element 304 and the like are formed is bonded to the surface of the substrate 211 on which the colored layer 325 and the like are formed (FIG. 4C). In this case, the substrate 201 can be referred to as a manufacturing substrate, and the substrate 211 can be referred to as a sealing substrate.
次に、基板211上の、有機層322aと重なる部分に分断ライン401を形成する(図5(A))。例えば、先端の鋭利な刃を基板211に押し当てることにより、基板211に切れ込みを入れ、分断ライン401を形成することができる。これにより、分断ライン401より外側(A1側)の基板211、有機層322a、導電層323a等が、表示装置10から分離され、導電層355を露出させることができる(図5(B))。また、分断ライン401より内側(A2側)の有機層322aおよび導電層323aが、分離されずに残る。 Next, a dividing line 401 is formed on the substrate 211 in a portion overlapping with the organic layer 322a (FIG. 5A). For example, the cutting line 401 can be formed by cutting the substrate 211 by pressing a sharp blade at the tip against the substrate 211. Accordingly, the substrate 211, the organic layer 322a, the conductive layer 323a, and the like outside the dividing line 401 (A1 side) are separated from the display device 10 and the conductive layer 355 can be exposed (FIG. 5B). Further, the organic layer 322a and the conductive layer 323a on the inner side (A2 side) from the dividing line 401 remain without being separated.
有機層322aを設けない構成とする場合、分断ライン401より外側において、接着層317と絶縁層314が接する領域が形成される。当該領域では、接着層317と絶縁層314が密着しており、分離することが困難となる。有機層322aを設けることにより、接着層317と絶縁層314が接する領域をなくすことができるため、分断ライン401より外側の基板211を分離しやすくなる。 In the case where the organic layer 322 a is not provided, a region where the adhesive layer 317 and the insulating layer 314 are in contact with each other is formed outside the dividing line 401. In this region, the adhesive layer 317 and the insulating layer 314 are in close contact with each other, which makes it difficult to separate them. By providing the organic layer 322a, a region where the adhesive layer 317 and the insulating layer 314 are in contact with each other can be eliminated, so that the substrate 211 outside the dividing line 401 can be easily separated.
なお、基板211等の分離を行った際、導電層355上に有機層322aの一部が残存する場合がある。この場合、アセトン洗浄等を行うことにより、導電層355上の有機層322aを完全に除去することができる。この際、分断ライン401より内側の有機層322aも除去される場合がある。なお、導電層355上に有機層322aの一部が残存した場合であっても、当該有機層322aの除去を行わなくてもよい。 Note that part of the organic layer 322 a may remain on the conductive layer 355 when the substrate 211 or the like is separated. In this case, the organic layer 322a over the conductive layer 355 can be completely removed by performing acetone cleaning or the like. At this time, the organic layer 322a inside the dividing line 401 may also be removed. Note that even when part of the organic layer 322a remains over the conductive layer 355, the organic layer 322a is not necessarily removed.
また、有機層322aと絶縁層314の界面に、先端の鋭利な刃を押し当てる等して切れ込みを入れてもよい(図6)。これにより、分断ライン401より外側の基板211、有機層322a、導電層323a等を分離しやすくなる。なお、有機層322aと絶縁層314の界面への切れ込みは、分断ライン401の形成と同時に入れてもよいし、分断ライン401の形成前に入れてもよいし、分断ライン401の形成後に入れてもよい。 Further, a cut may be made by pressing a sharp blade at the tip of the interface between the organic layer 322a and the insulating layer 314 (FIG. 6). This facilitates separation of the substrate 211, the organic layer 322a, the conductive layer 323a, and the like outside the dividing line 401. Note that the cut at the interface between the organic layer 322a and the insulating layer 314 may be made at the same time as the formation of the dividing line 401, or before the forming of the dividing line 401, or after the formation of the dividing line 401. Also good.
次に、導電層355と接続されるように接続体319を形成し、接続体319と接続されるようにFPC13を形成する。以上が図1(A)、(B)に示す構成の表示装置10の作製方法例である。 Next, the connection body 319 is formed so as to be connected to the conductive layer 355, and the FPC 13 is formed so as to be connected to the connection body 319. The above is an example of a method for manufacturing the display device 10 having the structure illustrated in FIGS.
図3乃至図6に示す表示装置10の作製方法では、基板201の全面に接着層317を塗布する。したがって、ダムフィル構造等として、基板201の一部に接着層317を塗布する場合と比べて、表示装置の作製工程を簡略化することができる。また、基板201の一部に接着層317を塗布する場合、基板201上におけるトランジスタ等の各種素子の配置等が変わると、接着層317の塗布の際に用いるスクリーンマスク等を変える必要がある。一方、基板201の全面に接着層317を塗布する場合、基板201の大きさが同じであれば、基板201上におけるトランジスタ等の各種素子の配置等が変化しても、スクリーンマスク等を変えなくてよい。したがって、特に大型の表示装置を作製する場合において、低コストで量産性の高い表示装置の作製方法を提供することができる。 In the method for manufacturing the display device 10 illustrated in FIGS. 3 to 6, an adhesive layer 317 is applied to the entire surface of the substrate 201. Therefore, the manufacturing process of the display device can be simplified as compared with the case where the adhesive layer 317 is applied to part of the substrate 201 as a dam fill structure or the like. Further, in the case where the adhesive layer 317 is applied to part of the substrate 201, when the arrangement of various elements such as a transistor on the substrate 201 is changed, it is necessary to change a screen mask used when the adhesive layer 317 is applied. On the other hand, when the adhesive layer 317 is applied to the entire surface of the substrate 201, if the size of the substrate 201 is the same, even if the arrangement of various elements such as transistors on the substrate 201 is changed, the screen mask is not changed. It's okay. Therefore, in the case of manufacturing a large display device in particular, it is possible to provide a method for manufacturing a display device with low cost and high productivity.
<表示装置の構成例2>
図7(A)に示す構成の表示装置10は、トランジスタ301が導電層415を有し、トランジスタ302が導電層425を有し、トランジスタ303が導電層435を有する点が、図1(B)に示す表示装置10の構成と異なる。導電層415、導電層425、および導電層435は、絶縁層313と接するように設けられている。導電層415、導電層425、および導電層435は、導電層411、導電層421、および導電層431に用いることができる導電膜を援用できる。
<Configuration Example 2 of Display Device>
In the display device 10 having the structure illustrated in FIG. 7A, the transistor 301 includes the conductive layer 415, the transistor 302 includes the conductive layer 425, and the transistor 303 includes the conductive layer 435. The configuration of the display device 10 shown in FIG. The conductive layer 415, the conductive layer 425, and the conductive layer 435 are provided so as to be in contact with the insulating layer 313. As the conductive layer 415, the conductive layer 425, and the conductive layer 435, a conductive film that can be used for the conductive layer 411, the conductive layer 421, and the conductive layer 431 can be used.
導電層415、導電層425、および導電層435は、それぞれトランジスタのバックゲートとしての機能を有する。つまり、トランジスタ301、トランジスタ302、およびトランジスタ303は、半導体層を2つのゲートで挟持する構成である。 The conductive layer 415, the conductive layer 425, and the conductive layer 435 each function as a back gate of the transistor. In other words, the transistor 301, the transistor 302, and the transistor 303 have a structure in which a semiconductor layer is sandwiched between two gates.
トランジスタ301、トランジスタ302、およびトランジスタ303を図7(A)に示す構成とすることにより、トランジスタの電界効果移動度を高めることができ、オン電流を増大させることができる。その結果、表示装置10の動作速度を高めることができる。また、表示装置10が大型化または高精細化し配線数が増大しても、各配線における信号遅延を低減することができ、画素間における表示の輝度のばらつきを低減することができる。これにより、表示装置10が高品質の画像を表示することができる。 With the structure of the transistor 301, the transistor 302, and the transistor 303 illustrated in FIG. 7A, the field-effect mobility of the transistor can be increased and the on-state current can be increased. As a result, the operation speed of the display device 10 can be increased. Further, even when the display device 10 is increased in size or definition and the number of wirings is increased, signal delay in each wiring can be reduced, and variation in display luminance between pixels can be reduced. Thereby, the display apparatus 10 can display a high quality image.
<表示装置の構成例3>
図7(B)に示す構成の表示装置10は、着色層325および遮光層326が設けられていない点が、図1(B)に示す表示装置10の構成と異なる。図7(B)に示す構成の表示装置10では、発光層322を発光素子304ごとに塗り分けて形成する。発光層322は、赤色、緑色、青色、または黄色等の波長帯の光を発する発光層とすることができる。
<Configuration Example 3 of Display Device>
The display device 10 having the structure illustrated in FIG. 7B is different from the structure of the display device 10 illustrated in FIG. 1B in that the coloring layer 325 and the light-blocking layer 326 are not provided. In the display device 10 having the structure illustrated in FIG. 7B, the light-emitting layer 322 is formed separately for each light-emitting element 304. The light-emitting layer 322 can be a light-emitting layer that emits light in a wavelength band such as red, green, blue, or yellow.
図7(B)に示す構成の表示装置10は、発光層322から発せられた光が着色層によって吸収されないため、発光層322から発せられた光の取り出し効率を高めることができる。これにより、表示装置10が高輝度の画像を表示することができ、また表示装置10の消費電力を低減することができる。 In the display device 10 having the structure illustrated in FIG. 7B, light emitted from the light-emitting layer 322 is not absorbed by the colored layer, so that extraction efficiency of light emitted from the light-emitting layer 322 can be increased. Thereby, the display apparatus 10 can display a high-intensity image, and the power consumption of the display apparatus 10 can be reduced.
なお、有機層322aは、いずれかの発光層322と同の一材料および同一の工程で形成することができる。また、図7(B)に示す構成の表示装置10において、遮光層326を設けてもよい。 Note that the organic layer 322a can be formed using the same material and the same step as any of the light-emitting layers 322. In the display device 10 having the structure illustrated in FIG. 7B, the light-blocking layer 326 may be provided.
<表示装置の構成例4>
図8(A)に示す構成の表示装置10は、ボトムエミッション構造である点で、図1(B)に示す表示装置10の構成と異なる。図8(A)に示す構成の表示装置10では、絶縁層313と接するように、つまり発光素子304の下側に着色層325が設けられる。発光層322から発せられた光は、着色層325を通って基板201側に取り出される。
<Configuration Example 4 of Display Device>
The display device 10 having the configuration illustrated in FIG. 8A is different from the configuration of the display device 10 illustrated in FIG. 1B in that it has a bottom emission structure. In the display device 10 having the structure illustrated in FIG. 8A, the coloring layer 325 is provided so as to be in contact with the insulating layer 313, that is, below the light-emitting element 304. Light emitted from the light-emitting layer 322 is extracted to the substrate 201 side through the colored layer 325.
図8(A)に示す構成の表示装置10では、導電層321として可視光を透過する導電膜を用い、導電層323として可視光を反射する導電膜を用いることが好ましい。また、基板201には、可視光を透過する材料を用いることが好ましい。これにより、発光層322から発せられた光を効率よく取り出すことができる。なお、基板211は、可視光を透過する材料を用いなくてもよい。 In the display device 10 having the structure illustrated in FIG. 8A, a conductive film that transmits visible light is preferably used as the conductive layer 321, and a conductive film that reflects visible light is preferably used as the conductive layer 323. For the substrate 201, a material that transmits visible light is preferably used. Thereby, the light emitted from the light emitting layer 322 can be extracted efficiently. Note that the substrate 211 may not be formed using a material that transmits visible light.
<表示装置の構成例5>
図8(B)に示す構成の表示装置10は、トランジスタ301、トランジスタ302、トランジスタ303、および容量素子305の構成が異なる点で、図1(B)と異なる。
<Configuration Example 5 of Display Device>
The display device 10 having the structure illustrated in FIG. 8B is different from FIG. 1B in that the structures of the transistor 301, the transistor 302, the transistor 303, and the capacitor 305 are different.
図8(B)に示す構成の表示装置10において、トランジスタ301は、半導体層、絶縁層311、および導電層514を有する。また、トランジスタ302は、半導体層、絶縁層311、および導電層524を有する。また、トランジスタ303は、半導体層、絶縁層311、および導電層534を有する。また、容量素子305は、半導体層、絶縁層311、および導電層552を有する。なお、トランジスタ302が有する半導体層と、容量素子305が有する半導体層と、は接続される。 In the display device 10 having the structure illustrated in FIG. 8B, the transistor 301 includes a semiconductor layer, an insulating layer 311, and a conductive layer 514. The transistor 302 includes a semiconductor layer, an insulating layer 311, and a conductive layer 524. The transistor 303 includes a semiconductor layer, an insulating layer 311, and a conductive layer 534. In addition, the capacitor 305 includes a semiconductor layer, an insulating layer 311, and a conductive layer 552. Note that the semiconductor layer included in the transistor 302 and the semiconductor layer included in the capacitor 305 are connected to each other.
図8(B)に示す構成の表示装置10に設けられた半導体層は、半導体層412、半導体層422、および半導体層432に用いることができる半導体膜を援用できる。 As the semiconductor layer provided in the display device 10 having the structure illustrated in FIG. 8B, a semiconductor film that can be used for the semiconductor layer 412, the semiconductor layer 422, and the semiconductor layer 432 can be used.
トランジスタ301に設けられた半導体層は、領域511、領域512、および領域513を有する。トランジスタ302に設けられた半導体層は、領域521、領域522、および領域523を有する。トランジスタ303に設けられた半導体層は、領域531、領域532、および領域533を有する。容量素子305に設けられた半導体層は、領域551を有する。 A semiconductor layer provided in the transistor 301 includes a region 511, a region 512, and a region 513. A semiconductor layer provided in the transistor 302 includes a region 521, a region 522, and a region 523. A semiconductor layer provided in the transistor 303 includes a region 531, a region 532, and a region 533. The semiconductor layer provided in the capacitor 305 has a region 551.
導電層514は、トランジスタ301のゲートとしての機能を有する。導電層524は、トランジスタ302のゲートとしての機能を有する。導電層534は、トランジスタ303のゲートとしての機能を有する。導電層552は、容量素子305の一方の電極としての機能を有する。 The conductive layer 514 functions as the gate of the transistor 301. The conductive layer 524 functions as a gate of the transistor 302. The conductive layer 534 functions as a gate of the transistor 303. The conductive layer 552 functions as one electrode of the capacitor 305.
導電層514、導電層524、導電層534、および導電層552は、導電層411、導電層421、導電層431、および導電層451に用いることができる導電膜を援用できる。 As the conductive layer 514, the conductive layer 524, the conductive layer 534, and the conductive layer 552, a conductive film that can be used for the conductive layer 411, the conductive layer 421, the conductive layer 431, and the conductive layer 451 can be used.
導電層514、導電層524、導電層534、および導電層552は、絶縁層311を介して半導体層と重なる領域を有する。トランジスタ301が有する半導体層において、領域511は、導電層514と重なる領域に設けられ、トランジスタ301のチャネル形成領域としての機能を有する。トランジスタ302が有する半導体層において、領域521は、導電層524と重なる領域に設けられ、トランジスタ302のチャネル形成領域としての機能を有する。トランジスタ303が有する半導体層において、領域531は、導電層534と重なる領域に設けられ、トランジスタ303のチャネル形成領域としての機能を有する。容量素子305が有する半導体層において、領域551は、導電層552と重なる領域に設けられ、容量素子305の他方の電極としての機能を有する。 The conductive layer 514, the conductive layer 524, the conductive layer 534, and the conductive layer 552 have a region overlapping with the semiconductor layer with the insulating layer 311 interposed therebetween. In the semiconductor layer included in the transistor 301, the region 511 is provided in a region overlapping with the conductive layer 514 and functions as a channel formation region of the transistor 301. In the semiconductor layer included in the transistor 302, the region 521 is provided in a region overlapping with the conductive layer 524 and functions as a channel formation region of the transistor 302. In the semiconductor layer included in the transistor 303, the region 531 is provided in a region overlapping with the conductive layer 534 and functions as a channel formation region of the transistor 303. In the semiconductor layer included in the capacitor 305, the region 551 is provided in a region overlapping with the conductive layer 552 and functions as the other electrode of the capacitor 305.
また、領域512は、トランジスタ301のソースまたはドレインの一方としての機能を有する。領域513は、トランジスタ301のソースまたはドレインの他方としての機能を有する。領域522は、トランジスタ302のソースまたはドレインの一方としての機能を有する。領域523は、トランジスタ302のソースまたはドレインの他方としての機能を有する。領域532は、トランジスタ303のソースまたはドレインの一方としての機能を有する。領域533は、トランジスタ303のソースまたはドレインの他方としての機能を有する。 The region 512 functions as one of the source and the drain of the transistor 301. The region 513 functions as the other of the source and the drain of the transistor 301. The region 522 functions as one of a source and a drain of the transistor 302. The region 523 functions as the other of the source and the drain of the transistor 302. The region 532 functions as one of the source and the drain of the transistor 303. The region 533 functions as the other of the source and the drain of the transistor 303.
領域512、領域513、領域522、領域523、領域532、領域533、および領域551は、低抵抗化されていることが好ましい。例えば、半導体層の形成後、領域512、領域513、領域522、領域523、領域532、領域533、および領域551に水素、ボロン、リン、ヒ素、または希ガス等の不純物を導入することにより、当該領域を低抵抗化することができる。不純物の導入は、イオン注入法、イオンドーピング法、プラズマイマージョンイオンインプランテーション法等を用いて行うことができる。 The region 512, the region 513, the region 522, the region 523, the region 532, the region 533, and the region 551 are preferably reduced in resistance. For example, after forming the semiconductor layer, by introducing impurities such as hydrogen, boron, phosphorus, arsenic, or a rare gas into the region 512, the region 513, the region 522, the region 523, the region 532, the region 533, and the region 551, The resistance of the region can be reduced. The introduction of impurities can be performed using an ion implantation method, an ion doping method, a plasma immersion ion implantation method, or the like.
絶縁層312は、絶縁層311、導電層514、導電層524、導電層534、および導電層552と接するように設けられる。絶縁層313は、絶縁層312と接するように設けられている。絶縁層313、絶縁層312、および絶縁層311には、領域512に達する開口、領域513に達する開口、領域522に達する開口、領域523に達する開口、領域532に達する開口、および領域533に達する開口が設けられる。 The insulating layer 312 is provided so as to be in contact with the insulating layer 311, the conductive layer 514, the conductive layer 524, the conductive layer 534, and the conductive layer 552. The insulating layer 313 is provided in contact with the insulating layer 312. The insulating layer 313, the insulating layer 312, and the insulating layer 311 include an opening reaching the region 512, an opening reaching the region 513, an opening reaching the region 522, an opening reaching the region 523, an opening reaching the region 532, and reaching the region 533. An opening is provided.
絶縁層313上には、導電層307、導電層515、導電層516、導電層525、導電層526、導電層535、および導電層536が設けられる。これらの導電層は、引き回し配線としての機能を有する。 Over the insulating layer 313, a conductive layer 307, a conductive layer 515, a conductive layer 516, a conductive layer 525, a conductive layer 526, a conductive layer 535, and a conductive layer 536 are provided. These conductive layers have a function as a lead wiring.
導電層515は、絶縁層313、絶縁層312、および絶縁層311に設けられた開口を介して、領域512と電気的に接続される。導電層516は、絶縁層313、絶縁層312、および絶縁層311に設けられた開口を介して、領域513と電気的に接続される。導電層525は、絶縁層313、絶縁層312、および絶縁層311に設けられた開口を介して、領域522と電気的に接続される。導電層526は、絶縁層313、絶縁層312、および絶縁層311に設けられた開口を介して、領域523と電気的に接続される。導電層535は、絶縁層313、絶縁層312、および絶縁層311に設けられた開口を介して、領域532と電気的に接続される。導電層536は、絶縁層313、絶縁層312、および絶縁層311に設けられた開口を介して、領域533と電気的に接続される。 The conductive layer 515 is electrically connected to the region 512 through an opening provided in the insulating layer 313, the insulating layer 312, and the insulating layer 311. The conductive layer 516 is electrically connected to the region 513 through an opening provided in the insulating layer 313, the insulating layer 312, and the insulating layer 311. The conductive layer 525 is electrically connected to the region 522 through an opening provided in the insulating layer 313, the insulating layer 312, and the insulating layer 311. The conductive layer 526 is electrically connected to the region 523 through an opening provided in the insulating layer 313, the insulating layer 312, and the insulating layer 311. The conductive layer 535 is electrically connected to the region 532 through an opening provided in the insulating layer 313, the insulating layer 312, and the insulating layer 311. The conductive layer 536 is electrically connected to the region 533 through an opening provided in the insulating layer 313, the insulating layer 312, and the insulating layer 311.
導電層515、導電層516、導電層525、導電層526、導電層535、および導電層536は、導電層413、導電層414、導電層423、導電層424、導電層433、および導電層434に用いることができる導電膜を援用できる。 The conductive layer 515, the conductive layer 516, the conductive layer 525, the conductive layer 526, the conductive layer 535, and the conductive layer 536 are the conductive layer 413, the conductive layer 414, the conductive layer 423, the conductive layer 424, the conductive layer 433, and the conductive layer 434. The electrically conductive film which can be used for can be used.
<表示装置の構成例6>
図9に示す構成の表示装置10は、基板201の代わりに基板202および接着層203が設けられ、基板211の代わりに基板212および接着層213が設けられている点で、図1(B)に示す表示装置10の構成と異なる。
<Configuration Example 6 of Display Device>
The display device 10 having the structure shown in FIG. 9 is provided with a substrate 202 and an adhesive layer 203 instead of the substrate 201, and a substrate 212 and an adhesive layer 213 instead of the substrate 211, as shown in FIG. The configuration of the display device 10 shown in FIG.
図9に示す構成の表示装置10では、絶縁層205と基板202は接着層203によって貼り合わされている。また、絶縁層215と基板212は接着層213によって貼り合わされている。 In the display device 10 having the configuration illustrated in FIG. 9, the insulating layer 205 and the substrate 202 are bonded to each other with the adhesive layer 203. The insulating layer 215 and the substrate 212 are attached to each other with an adhesive layer 213.
基板202および基板212として、可撓性を有する基板を用いることができる。例えば、可撓性を有する程度の厚さのガラス、石英、樹脂、金属、合金、半導体等の材料を用いることができる。発光素子304からの光を取り出す側の基板である基板212は、当該光を透過する材料を用いる。例えば、基板の厚さは、1μm以上200μm以下が好ましく、1μm以上100μm以下がより好ましく、10μm以上50μm以下がさらに好ましく、10μm以上25μm以下がさらに好ましい。可撓性を有する基板の厚さおよび硬さは、機械的強度および可撓性を両立できる範囲とする。可撓性を有する基板は単層構造であっても積層構造であってもよい。 As the substrate 202 and the substrate 212, flexible substrates can be used. For example, a material having flexibility such as glass, quartz, resin, metal, alloy, or semiconductor can be used. The substrate 212 which is a substrate on the side from which light from the light-emitting element 304 is extracted is formed using a material that transmits the light. For example, the thickness of the substrate is preferably 1 μm to 200 μm, more preferably 1 μm to 100 μm, further preferably 10 μm to 50 μm, and further preferably 10 μm to 25 μm. The thickness and hardness of the flexible substrate are within a range where both mechanical strength and flexibility can be achieved. The flexible substrate may have a single layer structure or a laminated structure.
ガラスに比べて樹脂は比重が小さいため、可撓性を有する基板として樹脂を用いると、ガラスを用いる場合に比べて表示装置10を軽量化でき、好ましい。また、基板202および基板212として、基板201および基板211と同様に、靱性が高い材料、熱伝導性が高い材料、熱放射性が高い材料を用いることができる。 Since the specific gravity of resin is smaller than that of glass, it is preferable to use a resin as a flexible substrate because the display device 10 can be reduced in weight compared to the case of using glass. As the substrate 202 and the substrate 212, a material having high toughness, a material having high thermal conductivity, or a material having high heat radiation can be used as in the case of the substrate 201 and the substrate 211.
可撓性および透光性を有する材料としては、例えば、PET、PEN等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、PC樹脂、PES樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、PTFE樹脂、ABS樹脂等が挙げられる。特に、線膨張係数の低い材料を用いることが好ましく、例えば、ポリアミドイミド樹脂、ポリイミド樹脂、ポリアミド樹脂、PET等を好適に用いることができる。また、繊維体に樹脂を含浸した基板、および、無機フィラーを樹脂に混ぜて線膨張係数を下げた基板等を使用することもできる。 Examples of flexible and translucent materials include polyester resins such as PET and PEN, polyacrylonitrile resins, acrylic resins, polyimide resins, polymethyl methacrylate resins, PC resins, PES resins, polyamide resins (nylon, aramid). Etc.), polysiloxane resin, cycloolefin resin, polystyrene resin, polyamideimide resin, polyurethane resin, polyvinyl chloride resin, polyvinylidene chloride resin, polypropylene resin, PTFE resin, ABS resin and the like. In particular, a material having a low linear expansion coefficient is preferably used. For example, polyamideimide resin, polyimide resin, polyamide resin, PET, or the like can be suitably used. In addition, a substrate in which a fibrous body is impregnated with a resin, a substrate in which an inorganic filler is mixed with a resin, and a linear expansion coefficient is reduced can be used.
可撓性を有する基板としては、上記材料を用いた層が、装置の表面を傷等から保護するハードコート層(例えば、窒化シリコン層等)、押圧を分散可能な材質の層等の少なくとも一と積層されて構成されていてもよい。 As the flexible substrate, at least one of a layer using the above material is a hard coat layer (for example, a silicon nitride layer) that protects the surface of the device from scratches, a layer of a material that can disperse the pressure, and the like. And may be laminated.
可撓性を有する基板は、ガラス層を有する構成とすると、水および酸素に対するバリア性を向上させ、表示装置10の信頼性を高めることができる。 When the flexible substrate has a glass layer, the barrier property against water and oxygen can be improved and the reliability of the display device 10 can be improved.
<表示装置の作製方法例2>
次に、図9に示す構成の表示装置10の作製方法例について、図10乃至図14を用いて説明する。
<Example 2 of Manufacturing Method of Display Device>
Next, an example of a method for manufacturing the display device 10 having the structure illustrated in FIG. 9 will be described with reference to FIGS.
まず、基板602上に、剥離層603を形成する(図10(A))。剥離層603は、各種樹脂材料(樹脂前駆体を含む)を用いて形成することができる。 First, the separation layer 603 is formed over the substrate 602 (FIG. 10A). The release layer 603 can be formed using various resin materials (including a resin precursor).
次に、剥離層603上に、絶縁層205を形成する。その後、図3(A)乃至図4(A)に示す場合と同様の方法で、トランジスタ301、トランジスタ302、トランジスタ303、容量素子305、発光素子304、有機層322a、および導電層323a等を形成する(図10(B))。 Next, the insulating layer 205 is formed over the separation layer 603. After that, a transistor 301, a transistor 302, a transistor 303, a capacitor 305, a light-emitting element 304, an organic layer 322a, a conductive layer 323a, and the like are formed by a method similar to that shown in FIGS. (FIG. 10B).
次に、基板612上に、剥離層613を形成する(図10(C))。剥離層613は、剥離層603に用いることができる材料を援用できる。 Next, a peeling layer 613 is formed over the substrate 612 (FIG. 10C). The release layer 613 can use a material that can be used for the release layer 603.
次に、剥離層613上に、絶縁層215を形成する。続いて、図4(B)に示す場合と同様の方法で、着色層325および遮光層326を形成する。 Next, the insulating layer 215 is formed over the separation layer 613. Subsequently, a colored layer 325 and a light-blocking layer 326 are formed by a method similar to that shown in FIG.
次に、図4(C)に示す場合と同様の方法で、基板602の、発光素子304等が形成されている面と、基板612の、着色層325等が形成されている面とを、接着層317を用いて貼り合わせる(図11(A))。この場合、基板602を作製基板と呼ぶことができ、基板612を封止基板と呼ぶことができる。 Next, in a manner similar to that shown in FIG. 4C, the surface of the substrate 602 on which the light-emitting element 304 and the like are formed and the surface of the substrate 612 on which the colored layer 325 and the like are formed are Bonding is performed using the adhesive layer 317 (FIG. 11A). In this case, the substrate 602 can be referred to as a manufacturing substrate, and the substrate 612 can be referred to as a sealing substrate.
次に、基板602を介して剥離層603にレーザ光65を照射する(図11(B))。これにより、剥離層603と絶縁層205の界面で剥離が生じる(図12(A))。なお、剥離層603中で剥離が生じる場合もあるし、基板602と剥離層603の界面で剥離が生じる場合もある。 Next, the separation layer 603 is irradiated with the laser light 65 through the substrate 602 (FIG. 11B). Accordingly, separation occurs at the interface between the separation layer 603 and the insulating layer 205 (FIG. 12A). Note that peeling may occur in the peeling layer 603, and peeling may occur at the interface between the substrate 602 and the peeling layer 603.
図11(B)の白抜き矢印は、レーザ光65のスキャン方向を示す。なお、他の図においても、同様の記載をしている場合がある。 A hollow arrow in FIG. 11B indicates the scanning direction of the laser beam 65. In other drawings, the same description may be given.
次に、絶縁層205と基板202とを接着層203を用いて貼り合わせる(図12(B))。なお、接着層203は、接着層317に用いることができる接着層を援用できる。 Next, the insulating layer 205 and the substrate 202 are attached to each other with the use of the adhesive layer 203 (FIG. 12B). Note that an adhesive layer that can be used for the adhesive layer 317 can be used as the adhesive layer 203.
次に、基板612を介して剥離層613にレーザ光65を照射する(図13(A))。これにより、剥離層613と絶縁層215の界面で剥離が生じる(図13(B))。なお、剥離層613中で剥離が生じる場合もあるし、基板612と剥離層613の界面で剥離が生じる場合もある。 Next, the separation layer 613 is irradiated with laser light 65 through the substrate 612 (FIG. 13A). Thus, peeling occurs at the interface between the peeling layer 613 and the insulating layer 215 (FIG. 13B). Note that peeling may occur in the peeling layer 613 or peeling may occur at the interface between the substrate 612 and the peeling layer 613.
次に、絶縁層215と基板212とを接着層213を用いて貼り合わせる(図14(A))。なお、接着層213は、接着層317に用いることができる接着層を援用できる。 Next, the insulating layer 215 and the substrate 212 are attached using the adhesive layer 213 (FIG. 14A). Note that an adhesive layer that can be used for the adhesive layer 317 can be used as the adhesive layer 213.
次に、図5(A)に示す場合と同様の方法で、基板212上の、有機層322aと重なる部分に分断ライン401を形成する(図14(B))。これにより、図5(B)に示す場合と同様に、分断ライン401より外側の基板212、有機層322a、導電層323a等が、表示装置10から分離され、導電層355を露出させることができる。また、分断ライン401より内側の有機層322aおよび導電層323aが、分離されずに残る。 Next, a dividing line 401 is formed in a portion overlapping with the organic layer 322a on the substrate 212 by a method similar to that shown in FIG. 5A (FIG. 14B). Thus, as in the case shown in FIG. 5B, the substrate 212, the organic layer 322a, the conductive layer 323a, and the like outside the dividing line 401 are separated from the display device 10, and the conductive layer 355 can be exposed. . In addition, the organic layer 322a and the conductive layer 323a inside the dividing line 401 remain without being separated.
次に、導電層355と接続されるように接続体319を形成し、接続体319と接続されるようにFPC13を形成する。以上が図9に示す構成の表示装置10の作製方法例である。 Next, the connection body 319 is formed so as to be connected to the conductive layer 355, and the FPC 13 is formed so as to be connected to the connection body 319. The above is an example of a method for manufacturing the display device 10 having the structure illustrated in FIG.
なお、本作製方法例では、基板602を剥離して基板202を貼り合わせた後、基板612を剥離して基板212を貼り合わせる場合を示しているが、基板612を剥離して基板212を貼り合わせた後、基板602を剥離して基板202を貼り合わせてもよい。 Note that in this manufacturing method example, the substrate 602 is peeled off and the substrate 202 is attached, and then the substrate 612 is peeled off and the substrate 212 is attached. However, the substrate 612 is peeled off and the substrate 212 is attached. After the alignment, the substrate 602 may be peeled off and the substrate 202 may be bonded.
また、本作製方法例では、基板612を剥離して基板212を貼り合わせた後、分断ライン401を形成し、分断ライン401より外側の基板212、有機層322a、導電層323a等を分離する場合を示している。しかしながら、本発明の一態様では、基板612を剥離する前に分断ライン401を形成し、分断ライン401より外側の基板612、有機層322a、導電層323a等を分離した後、基板612を剥離して基板212を貼り合わせてもよい。 Further, in this manufacturing method example, after the substrate 612 is peeled and the substrate 212 is bonded, the dividing line 401 is formed, and the substrate 212, the organic layer 322a, the conductive layer 323a, and the like outside the dividing line 401 are separated. Is shown. However, in one embodiment of the present invention, the separation line 401 is formed before the substrate 612 is separated, the substrate 612, the organic layer 322a, the conductive layer 323a, and the like outside the separation line 401 are separated, and then the substrate 612 is separated. The substrate 212 may be bonded together.
<タッチパネル>
本発明の一態様では、表示装置10に入出力装置(タッチセンサともいう)を搭載した、タッチパネルを作製することができる。
<Touch panel>
In one embodiment of the present invention, a touch panel in which an input / output device (also referred to as a touch sensor) is mounted on the display device 10 can be manufactured.
入出力装置が有する検知素子(センサ素子ともいう)に限定は無い。指もしくはスタイラス等の被検知体の近接または接触を検知することのできる様々なセンサを、検知素子として適用することができる。 There is no limitation on the detection elements (also referred to as sensor elements) included in the input / output device. Various sensors that can detect the proximity or contact of a detection target such as a finger or a stylus can be used as the detection element.
例えばセンサの方式としては、静電容量方式、抵抗膜方式、表面弾性波方式、赤外線方式、光学方式、感圧方式等様々な方式を用いることができる。 For example, various methods such as a capacitance method, a resistance film method, a surface acoustic wave method, an infrared method, an optical method, and a pressure-sensitive method can be used as a sensor method.
本実施の形態では、静電容量方式の検知素子を有するタッチパネルを例に挙げて説明する。 In this embodiment, a touch panel having a capacitive detection element will be described as an example.
静電容量方式としては、表面型静電容量方式、投影型静電容量方式等がある。また、投影型静電容量方式としては、自己容量方式、相互容量方式等がある。相互容量方式を用いると、同時多点検出が可能となるため好ましい。 Examples of the electrostatic capacity method include a surface electrostatic capacity method and a projection electrostatic capacity method. In addition, examples of the projected capacitance method include a self-capacitance method and a mutual capacitance method. Use of the mutual capacitance method is preferable because simultaneous multipoint detection is possible.
本発明の一態様のタッチパネルは、別々に作製された表示装置10と検知素子とを貼り合わせる構成、表示素子を支持する基板および対向基板の一方または双方に検知素子を構成する電極等を設ける構成等、様々な構成を適用することができる。 The touch panel of one embodiment of the present invention has a structure in which a separately manufactured display device 10 and a detection element are attached, and a structure in which an electrode that forms the detection element is provided on one or both of a substrate that supports the display element and a counter substrate Various configurations can be applied.
図15(A)は、タッチパネル300の斜視概略図である。図15(B)は、図15(A)を展開した斜視概略図である。なお明瞭化のため、代表的な構成要素のみを示している。図15(B)では、一部の構成要素(基板261、基板211等)を破線で輪郭のみ明示している。 FIG. 15A is a schematic perspective view of the touch panel 300. FIG. 15B is a schematic perspective view of FIG. 15A developed. For the sake of clarity, only representative components are shown. In FIG. 15B, only some outlines of some components (the substrate 261, the substrate 211, and the like) are clearly shown by broken lines.
タッチパネル300は、入力装置310と、表示装置10とを有し、これらが重ねて設けられている。入力装置310は、基板261、電極331、電極332、複数の配線341、および複数の配線342を有する。FPC350は、複数の配線341および複数の配線342の各々と電気的に接続される。FPC350にはIC351が設けられている。 The touch panel 300 includes an input device 310 and a display device 10, which are provided so as to overlap each other. The input device 310 includes a substrate 261, an electrode 331, an electrode 332, a plurality of wirings 341, and a plurality of wirings 342. The FPC 350 is electrically connected to each of the plurality of wirings 341 and the plurality of wirings 342. The FPC 350 is provided with an IC 351.
表示装置10は、対向して設けられた基板201と基板211とを有する。表示装置10は、表示領域11および駆動回路領域12を有する。基板201上には、配線383等が設けられている。FPC13は、配線383と電気的に接続される。FPC13にはIC374が設けられている。 The display device 10 includes a substrate 201 and a substrate 211 that are provided to face each other. The display device 10 includes a display area 11 and a drive circuit area 12. A wiring 383 and the like are provided over the substrate 201. The FPC 13 is electrically connected to the wiring 383. The FPC 13 is provided with an IC 374.
配線383は、表示領域11および駆動回路領域12に信号および電力を供給する機能を有する。当該信号および電力は、それぞれ、外部またはIC374から、FPC13を介して、配線383に入力される。 The wiring 383 has a function of supplying a signal and power to the display region 11 and the drive circuit region 12. The signal and power are input to the wiring 383 from the outside or the IC 374 through the FPC 13, respectively.
図16に、タッチパネル300の断面図の一例を示す。図16では、表示領域11、駆動回路領域12、FPC13を含む領域、およびFPC350を含む領域等の断面構造を示す。さらに、図16では、トランジスタのゲートと同一の導電層を加工して形成された配線と、トランジスタのソースおよびドレインと同一の導電層を加工して形成された配線とが交差する交差部387の断面構造を示している。 FIG. 16 shows an example of a cross-sectional view of the touch panel 300. FIG. 16 shows a cross-sectional structure of the display region 11, the drive circuit region 12, a region including the FPC 13, a region including the FPC 350, and the like. Further, in FIG. 16, a wiring formed by processing the same conductive layer as the gate of the transistor and a wiring formed by processing the same conductive layer as the source and drain of the transistor intersect. A cross-sectional structure is shown.
基板201と基板211とは、接着層317によって貼り合わされている。基板211と基板261とは、接着層396によって貼り合わされている。ここで、図16に示すように、基板201から基板211までの各層が、表示装置10に相当する。また、基板261から電極334までの各層が入力装置310に相当する。つまり、接着層396は、表示装置10と入力装置310を貼り合わせているといえる。または、基板201から絶縁層215までの各層が、表示装置10に相当する。そして、基板261から基板211までの各層が入力装置310に相当する。つまり、接着層317が、表示装置10と入力装置310を貼り合わせているともいえる。 The substrate 201 and the substrate 211 are attached to each other with an adhesive layer 317. The substrate 211 and the substrate 261 are attached to each other with an adhesive layer 396. Here, as shown in FIG. 16, each layer from the substrate 201 to the substrate 211 corresponds to the display device 10. Each layer from the substrate 261 to the electrode 334 corresponds to the input device 310. That is, it can be said that the adhesive layer 396 bonds the display device 10 and the input device 310 together. Alternatively, each layer from the substrate 201 to the insulating layer 215 corresponds to the display device 10. Each layer from the substrate 261 to the substrate 211 corresponds to the input device 310. That is, it can be said that the adhesive layer 317 bonds the display device 10 and the input device 310 together.
基板261の基板211側には、絶縁層393、電極331、および電極332が設けられている。ここでは、電極331が、電極333および電極334を有する場合の例を示している。図16中の交差部387に示すように、電極332と電極333は同一平面上に形成されている。絶縁層395は、電極332および電極333を覆うように設けられている。電極334は、絶縁層395に設けられた開口を介して、電極332を挟むように設けられる2つの電極333と電気的に接続している。 An insulating layer 393, an electrode 331, and an electrode 332 are provided on the substrate 211 side of the substrate 261. Here, an example in which the electrode 331 includes the electrode 333 and the electrode 334 is illustrated. As indicated by an intersection 387 in FIG. 16, the electrode 332 and the electrode 333 are formed on the same plane. The insulating layer 395 is provided so as to cover the electrode 332 and the electrode 333. The electrode 334 is electrically connected to two electrodes 333 provided so as to sandwich the electrode 332 through an opening provided in the insulating layer 395.
基板261の端部に近い領域には、接続領域308が設けられている。接続領域308は、配線342と、電極334と同一の導電層を加工して得られた導電層とを積層して有する。接続領域308は、接続体309を介してFPC350が電気的に接続される。 A connection region 308 is provided in a region near the end of the substrate 261. The connection region 308 includes a wiring 342 and a conductive layer obtained by processing the same conductive layer as the electrode 334. The FPC 350 is electrically connected to the connection region 308 through the connection body 309.
図1、図2、図7乃至図9、図15、および図16に示す構成は、必要に応じて、または適宜組み合わせることができる。また、図3乃至図6、および図10乃至図14に示す表示装置10の作製方法は、必要に応じて、または適宜組み合わせることができる。 The configurations shown in FIGS. 1, 2, 7 to 9, 15, and 16 can be combined as necessary or appropriately. The manufacturing method of the display device 10 illustrated in FIGS. 3 to 6 and FIGS. 10 to 14 can be combined as appropriate or necessary.
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。 This embodiment can be implemented in appropriate combination with at least part of the other embodiments described in this specification.
(実施の形態2)
<CAC−OSの構成>
本実施の形態では、本発明の一態様で開示されるトランジスタに用いることができるCAC−OSの構成について説明する。
(Embodiment 2)
<Configuration of CAC-OS>
In this embodiment, a structure of a CAC-OS that can be used for the transistor disclosed in one embodiment of the present invention will be described.
CAC−OSとは、例えば、酸化物半導体を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、酸化物半導体において、一つあるいはそれ以上の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上2nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。 The CAC-OS is one structure of a material in which an element included in an oxide semiconductor is unevenly distributed with a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm, or the vicinity thereof. Note that in the following, in an oxide semiconductor, one or more metal elements are unevenly distributed, and a region including the metal element has a size of 0.5 nm to 10 nm, preferably 1 nm to 2 nm, or the vicinity thereof. The state mixed with is also referred to as a mosaic or patch.
なお、酸化物半導体は、少なくともインジウムを含むことが好ましい。特にインジウムおよび亜鉛を含むことが好ましい。また、それらに加えて、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウム等から選ばれた一種、または複数種が含まれていてもよい。 Note that the oxide semiconductor preferably contains at least indium. In particular, it is preferable to contain indium and zinc. In addition, aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, etc. One kind selected from the above or a plurality of kinds may be included.
例えば、In−Ga−Zn酸化物におけるCAC−OS(CAC−OSの中でもIn−Ga−Zn酸化物を、特にCAC−IGZOと呼称してもよい。)とは、インジウム酸化物(以下、InOX1(X1は0よりも大きい実数)とする。)、またはインジウム亜鉛酸化物(以下、InX2ZnY2Z2(X2、Y2、およびZ2は0よりも大きい実数)とする。)等と、ガリウム酸化物(以下、GaOX3(X3は0よりも大きい実数)とする。)、またはガリウム亜鉛酸化物(以下、GaX4ZnY4Z4(X4、Y4、およびZ4は0よりも大きい実数)とする。)等と、に材料が分離することでモザイク状となり、モザイク状のInOX1、またはInX2ZnY2Z2が、膜中に均一に分布した構成(以下、クラウド状ともいう。)である。 For example, a CAC-OS in In-Ga-Zn oxide (In-Ga-Zn oxide among CAC-OSs may be referred to as CAC-IGZO in particular) is an indium oxide (hereinafter referred to as InO). X1 (X1 is greater real than 0) and.), or indium zinc oxide (hereinafter, in X2 Zn Y2 O Z2 ( X2, Y2, and Z2 is larger real than 0) and a.) or the like, Gallium oxide (hereinafter referred to as GaO X3 (X3 is a real number greater than 0)) or gallium zinc oxide (hereinafter referred to as Ga X4 Zn Y4 O Z4 (where X4, Y4, and Z4 are greater than 0)) to.) and the like, the material becomes mosaic by separate into, mosaic InO X1 or in X2 Zn Y2 O Z2, is a configuration in which uniformly distributed in the film (hereinafter Also referred to as a cloud-like.) A.
つまり、CAC−OSは、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、混合している構成を有する複合酸化物半導体である。なお、本明細書において、例えば、第1の領域の元素Mに対するInの原子数比が、第2の領域の元素Mに対するInの原子数比よりも大きいことを、第1の領域は、第2の領域と比較して、Inの濃度が高いとする。 That, CAC-OS includes a region GaO X3 is the main component, and In X2 Zn Y2 O Z2, or InO X1 is the main component region is a composite oxide semiconductor having a structure that is mixed. Note that in this specification, for example, the first region indicates that the atomic ratio of In to the element M in the first region is larger than the atomic ratio of In to the element M in the second region. It is assumed that the concentration of In is higher than that in the second region.
なお、IGZOは通称であり、In、Ga、Zn、およびOによる1つの化合物をいう場合がある。代表例として、InGaO(ZnO)m1(m1は自然数)、またはIn(1+x0)Ga(1−x0)(ZnO)m0(−1≦x0≦1、m0は任意数)で表される結晶性の化合物が挙げられる。 Note that IGZO is a common name and may refer to one compound of In, Ga, Zn, and O. As a typical example, InGaO 3 (ZnO) m1 (m1 is a natural number) or In (1 + x0) Ga (1-x0) O 3 (ZnO) m0 (−1 ≦ x0 ≦ 1, m0 is an arbitrary number) A crystalline compound may be mentioned.
上記結晶性の化合物は、単結晶構造、多結晶構造、またはCAAC構造を有する。なお、CAAC構造とは、複数のIGZOのナノ結晶がc軸配向を有し、かつa−b面においては配向せずに連結した結晶構造である。 The crystalline compound has a single crystal structure, a polycrystalline structure, or a CAAC structure. The CAAC structure is a crystal structure in which a plurality of IGZO nanocrystals have c-axis orientation and are connected without being oriented in the ab plane.
一方、CAC−OSは、酸化物半導体の材料構成に関する。CAC−OSとは、In、Ga、Zn、およびOを含む材料構成において、一部にGaを主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。従って、CAC−OSにおいて、結晶構造は副次的な要素である。 On the other hand, CAC-OS relates to a material structure of an oxide semiconductor. CAC-OS refers to a region observed in the form of nanoparticles mainly composed of Ga in a material structure including In, Ga, Zn and O, and nanoparticles mainly composed of In. The region observed in a shape is a configuration in which the regions are randomly dispersed in a mosaic shape. Therefore, in the CAC-OS, the crystal structure is a secondary element.
なお、CAC−OSは、組成の異なる二種類以上の膜の積層構造は含まないものとする。例えば、Inを主成分とする膜と、Gaを主成分とする膜との2層からなる構造は、含まない。 Note that the CAC-OS does not include a stacked structure of two or more kinds of films having different compositions. For example, a structure composed of two layers of a film mainly containing In and a film mainly containing Ga is not included.
なお、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とは、明確な境界が観察できない場合がある。 Incidentally, a region GaO X3 is the main component, and In X2 Zn Y2 O Z2 or InO X1 is the main component region, in some cases clear boundary can not be observed.
なお、ガリウムの代わりに、アルミニウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウム等から選ばれた一種、または複数種が含まれている場合、CAC−OSは、一部に該金属元素を主成分とするナノ粒子状に観察される領域と、一部にInを主成分とするナノ粒子状に観察される領域とが、それぞれモザイク状にランダムに分散している構成をいう。 Instead of gallium, selected from aluminum, yttrium, copper, vanadium, beryllium, boron, silicon, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten, magnesium, etc. In the case where one or a plurality of types are included, the CAC-OS includes a region that is observed in a part of a nanoparticle mainly including the metal element and a nanoparticle mainly including In. The region observed in the form of particles refers to a configuration in which each region is randomly dispersed in a mosaic shape.
CAC−OSは、例えば基板を意図的に加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、および窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましく、例えば酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とすることが好ましい。 The CAC-OS can be formed by a sputtering method under a condition where the substrate is not intentionally heated, for example. In the case where a CAC-OS is formed by a sputtering method, any one or more selected from an inert gas (typically argon), an oxygen gas, and a nitrogen gas may be used as a deposition gas. Good. Further, the flow rate ratio of the oxygen gas to the total flow rate of the deposition gas during film formation is preferably as low as possible. .
CAC−OSは、X線回折(XRD:X−ray diffraction)測定法のひとつであるOut−of−plane法によるθ/2θスキャンを用いて測定したときに、明確なピークが観察されないという特徴を有する。すなわち、X線回折から、測定領域のa−b面方向、およびc軸方向の配向は見られないことが分かる。 The CAC-OS has a feature that a clear peak is not observed when measurement is performed using a θ / 2θ scan by an out-of-plane method, which is one of X-ray diffraction (XRD) measurement methods. Have. That is, it can be seen from X-ray diffraction that no orientation in the ab plane direction and c-axis direction of the measurement region is observed.
またCAC−OSは、プローブ径が1nmの電子線(ナノビーム電子線ともいう。)を照射することで得られる電子線回折パターンにおいて、リング状に輝度の高い領域と、該リング領域に複数の輝点が観測される。従って、電子線回折パターンから、CAC−OSの結晶構造が、平面方向、および断面方向において、配向性を有さないnc(nano−crystal)構造を有することがわかる。 In addition, in the CAC-OS, an electron diffraction pattern obtained by irradiating an electron beam with a probe diameter of 1 nm (also referred to as a nanobeam electron beam) has a ring-like region having a high luminance and a plurality of bright regions in the ring region. A point is observed. Therefore, it can be seen from the electron beam diffraction pattern that the crystal structure of the CAC-OS has an nc (nano-crystal) structure having no orientation in the planar direction and the cross-sectional direction.
また例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、GaOX3が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域とが、偏在し、混合している構造を有することが確認できる。 Further, for example, in a CAC-OS in an In—Ga—Zn oxide, a region in which GaO X3 is a main component is obtained by EDX mapping obtained by using energy dispersive X-ray spectroscopy (EDX). It can be confirmed that a region in which In X2 Zn Y2 O Z2 or InO X1 is a main component is unevenly distributed and mixed.
CAC−OSは、金属元素が均一に分布したIGZO化合物とは異なる構造であり、IGZO化合物と異なる性質を有する。つまり、CAC−OSは、GaOX3等が主成分である領域と、InX2ZnY2Z2、またはInOX1が主成分である領域と、に互いに相分離し、各元素を主成分とする領域がモザイク状である構造を有する。 The CAC-OS has a structure different from that of the IGZO compound in which the metal element is uniformly distributed, and has a property different from that of the IGZO compound. That is, in the CAC-OS, a region in which GaO X3 or the like is a main component and a region in which In X2 Zn Y2 O Z2 or InO X1 is a main component are phase-separated from each other, and each region is mainly composed of each element. Has a mosaic structure.
ここで、InX2ZnY2Z2、またはInOX1が主成分である領域は、GaOX3等が主成分である領域と比較して、導電性が高い領域である。つまり、InX2ZnY2Z2、またはInOX1が主成分である領域を、キャリアが流れることにより、酸化物半導体としての導電性が発現する。従って、InX2ZnY2Z2、またはInOX1が主成分である領域が、酸化物半導体中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。 Here, the region containing In X2 Zn Y2 O Z2 or InO X1 as a main component is a region having higher conductivity than the region containing GaO X3 or the like as a main component. That, In X2 Zn Y2 O Z2 or InO X1, is an area which is the main component, by carriers flow, expressed the conductivity of the oxide semiconductor. Accordingly, a region where In X2 Zn Y2 O Z2 or InO X1 is a main component is distributed in a cloud shape in the oxide semiconductor, whereby high field-effect mobility (μ) can be realized.
一方、GaOX3等が主成分である領域は、InX2ZnY2Z2、またはInOX1が主成分である領域と比較して、絶縁性が高い領域である。つまり、GaOX3等が主成分である領域が、酸化物半導体中に分布することで、リーク電流を抑制し、良好なスイッチング動作を実現できる。 On the other hand, regions GaO X3, etc. as a main component, as compared to the In X2 Zn Y2 O Z2 or InO X1 is the main component area, it is highly regions insulating. That is, the region whose main component is GaO X3 or the like is distributed in the oxide semiconductor, whereby leakage current can be suppressed and good switching operation can be realized.
従って、CAC−OSを半導体素子に用いた場合、GaOX3等に起因する絶縁性と、InX2ZnY2Z2、またはInOX1に起因する導電性とが、相補的に作用することにより、高いオン電流(Ion)、および高い電界効果移動度(μ)を実現することができる。 Therefore, when CAC-OS is used for a semiconductor element, the insulating property caused by GaO X3 or the like and the conductivity caused by In X2 Zn Y2 O Z2 or InO X1 act in a complementary manner, resulting in high An on-current (I on ) and high field effect mobility (μ) can be realized.
また、CAC−OSを用いた半導体素子は、信頼性が高い。従って、CAC−OSは、ディスプレイをはじめとするさまざまな半導体装置に最適である。 In addition, a semiconductor element using a CAC-OS has high reliability. Therefore, the CAC-OS is optimal for various semiconductor devices including a display.
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。 This embodiment can be implemented in appropriate combination with at least part of the other embodiments described in this specification.
(実施の形態3)
本実施の形態では、本発明の一態様の電子機器について、図面を参照して説明する。
(Embodiment 3)
In this embodiment, electronic devices of one embodiment of the present invention are described with reference to drawings.
以下で例示する電子機器は、表示領域に本発明の一態様の表示装置を有するものである。したがって、高い解像度が実現された電子機器である。また高い解像度と、大きな画面が両立された電子機器とすることができる。 An electronic device exemplified below includes the display device of one embodiment of the present invention in a display region. Therefore, the electronic device has a high resolution. In addition, the electronic device can achieve both high resolution and a large screen.
本発明の一態様の電子機器の表示領域には、例えばフルハイビジョン、4K2K、8K4K、16K8K、またはそれ以上の解像度を有する映像を表示させることができる。また、表示領域の画面サイズとしては、対角20インチ以上、または対角30インチ以上、または対角50インチ以上、対角60インチ以上、または対角70インチ以上とすることもできる。 In the display area of the electronic device of one embodiment of the present invention, for example, an image having a resolution of full high vision, 4K2K, 8K4K, 16K8K, or higher can be displayed. The screen size of the display area may be 20 inches or more diagonal, 30 inches diagonal or more, 50 inches diagonal, 60 inches diagonal, or 70 inches diagonal.
電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用等のモニタ、デジタルサイネージ(Digital Signage:電子看板)、パチンコ機等の大型ゲーム機等の比較的大きな画面を有する電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置等が挙げられる。 Examples of electronic devices include relatively large screens such as television devices, desktop or notebook personal computers, monitors for computers, digital signage (digital signage), and large game machines such as pachinko machines. In addition to electronic devices, digital cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, portable information terminals, sound reproduction devices, and the like can be given.
本発明の一態様の電子機器または照明装置は、家屋もしくはビルの内壁もしくは外壁、または、自動車の内装もしくは外装の曲面に沿って組み込むことができる。 The electronic device or the lighting device of one embodiment of the present invention can be incorporated along a curved surface of an inner wall or an outer wall of a house or a building, or an interior or exterior of an automobile.
本発明の一態様の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示領域で映像や情報等の表示を行うことができる。また、電子機器がアンテナおよび二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。 The electronic device of one embodiment of the present invention may include an antenna. By receiving the signal with the antenna, it is possible to display video and information in the display area. In the case where the electronic device includes an antenna and a secondary battery, the antenna may be used for non-contact power transmission.
本発明の一態様の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を測定する機能を含むもの)を有していてもよい。 The electronic device of one embodiment of the present invention includes a sensor (force, displacement, position, velocity, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, It may have a function of measuring voltage, power, radiation, flow rate, humidity, gradient, vibration, odor, or infrared).
本発明の一態様の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像等)を表示領域に表示する機能、タッチパネル機能、カレンダー、日付または時刻等を表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。 The electronic device of one embodiment of the present invention can have a variety of functions. For example, a function for displaying various information (still images, moving images, text images, etc.) in the display area, a touch panel function, a function for displaying a calendar, date or time, a function for executing various software (programs), and wireless communication A function, a function of reading a program or data recorded on a recording medium, and the like can be provided.
図17(A)にテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示領域7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。 FIG. 17A illustrates an example of a television device. In the television device 7100, a display area 7000 is incorporated in a housing 7101. Here, a structure in which the housing 7101 is supported by a stand 7103 is shown.
表示領域7000に、本発明の一態様の作製方法により作製された表示装置を適用することができる。これにより、テレビジョン装置7100の価格を低下させることができる。 A display device manufactured by the manufacturing method of one embodiment of the present invention can be applied to the display region 7000. Thus, the price of the television device 7100 can be reduced.
図17(A)に示すテレビジョン装置7100の操作は、筐体7101が有する操作スイッチや、別体のリモコン操作機7111により行うことができる。または、表示領域7000にタッチセンサを備えていてもよく、指等で表示領域7000に触れることで操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示領域を有していてもよい。リモコン操作機7111が有する操作キーまたはタッチパネルにより、チャンネルおよび音量の操作を行うことができ、表示領域7000に表示される映像を操作することができる。 Operation of the television device 7100 illustrated in FIG. 17A can be performed with an operation switch included in the housing 7101 or a separate remote controller 7111. Alternatively, the display area 7000 may be provided with a touch sensor, and may be operated by touching the display area 7000 with a finger or the like. The remote controller 7111 may have a display area for displaying information output from the remote controller 7111. Channels and volume can be operated with an operation key or a touch panel of the remote controller 7111, and an image displayed in the display area 7000 can be operated.
なお、テレビジョン装置7100は、受信機およびモデム等を備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士等)の情報通信を行うことも可能である。 Note that the television device 7100 is provided with a receiver, a modem, and the like. A general television broadcast can be received by the receiver. In addition, by connecting to a wired or wireless communication network via a modem, information communication is performed in one direction (sender to receiver) or two-way (between sender and receiver, or between receivers). It is also possible.
図17(B)に、ノート型パーソナルコンピュータ7200を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示領域7000が組み込まれている。 FIG. 17B illustrates a laptop personal computer 7200. A laptop personal computer 7200 includes a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like. A display area 7000 is incorporated in the housing 7211.
表示領域7000に、本発明の一態様の作製方法により作製された表示装置を適用することができる。これにより、ノート型パーソナルコンピュータ7200の価格を低下させることができる。 A display device manufactured by the manufacturing method of one embodiment of the present invention can be applied to the display region 7000. Thereby, the price of the notebook personal computer 7200 can be reduced.
図17(C)、(D)に、デジタルサイネージ(Digital Signage:電子看板)の一例を示す。 FIGS. 17C and 17D illustrate an example of digital signage (digital signage).
図17(C)に示すデジタルサイネージ7300は、筐体7301、表示領域7000、およびスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。 A digital signage 7300 illustrated in FIG. 17C includes a housing 7301, a display area 7000, a speaker 7303, and the like. Furthermore, an LED lamp, operation keys (including a power switch or an operation switch), a connection terminal, various sensors, a microphone, and the like can be provided.
また、図17(D)は円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示領域7000を有する。 FIG. 17D illustrates a digital signage 7400 attached to a columnar column 7401. The digital signage 7400 has a display area 7000 provided along the curved surface of the pillar 7401.
図17(C)、(D)において、表示領域7000に、本発明の一態様の作製方法により作製された表示装置を適用することができる。これにより、デジタルサイネージ7300およびデジタルサイネージ7400の価格を低下させることができる。 17C and 17D, the display device manufactured by the manufacturing method of one embodiment of the present invention can be applied to the display region 7000. Thereby, the price of the digital signage 7300 and the digital signage 7400 can be reduced.
表示領域7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示領域7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。 The larger the display area 7000, the more information can be provided at one time. In addition, the wider the display area 7000, the easier it is for people to see. For example, the advertising effect of advertisement can be enhanced.
表示領域7000にタッチパネルを適用することで、表示領域7000に画像または動画を表示するだけでなく、使用者が直感的に操作することができ、好ましい。また、路線情報もしくは交通情報等の情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。 By applying a touch panel to the display area 7000, not only an image or a moving image is displayed in the display area 7000, but also a user can operate intuitively, which is preferable. In addition, when used for the purpose of providing information such as route information or traffic information, usability can be improved by an intuitive operation.
また、図17(C)、(D)に示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、ユーザが所持するスマートフォン等の情報端末機7311または情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示領域7000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面に表示させることができる。また、情報端末機7311または情報端末機7411を操作することで、表示領域7000の表示を切り替えることができる。 In addition, as illustrated in FIGS. 17C and 17D, the digital signage 7300 or the digital signage 7400 can be linked with the information terminal 7311 or the information terminal 7411 such as a smartphone possessed by the user by wireless communication. Is preferred. For example, advertisement information displayed in the display area 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411. Further, the display of the display area 7000 can be switched by operating the information terminal 7311 or the information terminal 7411.
また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数のユーザが同時にゲームに参加し、楽しむことができる。 Further, the digital signage 7300 or the digital signage 7400 can execute a game using the screen of the information terminal 7311 or the information terminal 7411 as an operation means (controller). Thereby, an unspecified number of users can participate and enjoy the game at the same time.
本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。 This embodiment can be implemented in appropriate combination with at least part of the other embodiments described in this specification.
本実施例では、本発明の一態様の表示装置により画像を表示した場合について説明する。 In this example, the case where an image is displayed using the display device of one embodiment of the present invention will be described.
本実施例で画像を表示した表示装置の作製方法を、図18(A)乃至(F)を用いて説明する。なお、当該表示装置は、赤色表示を行う副画素、緑色表示を行う副画素、および青色表示を行う副画素を有する画素が設けられた構成とした。 A method for manufacturing a display device displaying an image in this embodiment will be described with reference to FIGS. Note that the display device is provided with a pixel including a sub-pixel that performs red display, a sub-pixel that performs green display, and a sub-pixel that performs blue display.
まず、ガラス基板701上に剥離層702を形成した。剥離層702は、膜厚30nmのタングステンとした。次に、剥離層702上に絶縁層703を形成した。絶縁層703は、下側から、膜厚100nmの酸化窒化シリコン、膜厚100nmの窒化シリコン、膜厚200nmの酸化窒化シリコン、膜厚200nmの窒化シリコン、膜厚600nmの酸化窒化シリコンの積層構造とした。その後、絶縁層703上に、画素が有するトランジスタおよび容量素子、ならびに駆動回路等を有する回路704を形成した。 First, the peeling layer 702 was formed over the glass substrate 701. The peeling layer 702 was tungsten with a thickness of 30 nm. Next, an insulating layer 703 was formed over the peeling layer 702. The insulating layer 703 includes, from the bottom, a stacked structure of silicon oxynitride with a thickness of 100 nm, silicon nitride with a thickness of 100 nm, silicon oxynitride with a thickness of 200 nm, silicon nitride with a thickness of 200 nm, and silicon oxynitride with a thickness of 600 nm. did. After that, a circuit 704 including a transistor included in the pixel, a capacitor, a driver circuit, and the like was formed over the insulating layer 703.
次に、回路704上に画素電極705を形成した。画素電極705は、下側から、膜厚5nmのチタン、膜厚200nmのアルミニウム、膜厚50nmのアルミニウムの積層構造とした。次に、画素電極705上に、光学調整層720を形成した。光学調整層720として、ITOを用いた。光学調整層の膜厚は、赤色表示を行う副画素では95nm、緑色表示を行う副画素では45nm、青色表示を行う副画素では5nmとした。 Next, a pixel electrode 705 was formed over the circuit 704. The pixel electrode 705 has a stacked structure of titanium having a thickness of 5 nm, aluminum having a thickness of 200 nm, and aluminum having a thickness of 50 nm from the lower side. Next, an optical adjustment layer 720 was formed over the pixel electrode 705. ITO was used as the optical adjustment layer 720. The film thickness of the optical adjustment layer was 95 nm for the sub-pixel for displaying red, 45 nm for the sub-pixel for displaying green, and 5 nm for the sub-pixel for displaying blue.
次に、光学調整層720上に有機EL層706を形成し、有機EL層706と同一の材料かつ同一の工程で、回路704上に有機EL層706aを形成した。有機EL層706として、白色光を発する発光層を用いた。その後、有機EL層706上に共通電極707を形成し、共通電極707と同一の材料かつ同一の工程で、有機EL層706a上に導電層707aを形成した。共通電極707および導電層707aは、膜厚70nmのITOとした。以上により、画素電極705、光学調整層720、有機EL層706、および共通電極707を有する有機EL素子708を形成した(図18(A))。 Next, an organic EL layer 706 was formed on the optical adjustment layer 720, and an organic EL layer 706a was formed on the circuit 704 by using the same material and the same process as the organic EL layer 706. As the organic EL layer 706, a light emitting layer emitting white light was used. Thereafter, a common electrode 707 was formed on the organic EL layer 706, and a conductive layer 707a was formed on the organic EL layer 706a by using the same material and the same process as the common electrode 707. The common electrode 707 and the conductive layer 707a are made of ITO having a thickness of 70 nm. Through the above steps, the organic EL element 708 including the pixel electrode 705, the optical adjustment layer 720, the organic EL layer 706, and the common electrode 707 was formed (FIG. 18A).
次に、ガラス基板709上に着色層710を形成した。着色層710の膜厚は、赤色表示を行う副画素では2.0μm、緑色表示を行う副画素では2.0μm、青色表示を行う副画素では1.0μmとした。 Next, a colored layer 710 was formed over the glass substrate 709. The thickness of the coloring layer 710 was 2.0 μm for the sub-pixel that performs red display, 2.0 μm for the sub-pixel that performs green display, and 1.0 μm for the sub-pixel that performs blue display.
続いて、ガラス基板701の、回路704および有機EL素子708が形成されている面と、ガラス基板709の、着色層710が形成されている面とを、接着層711を用いて貼り合わせた(図18(B))。接着層711としてCEP−5樹脂を用い、スクリーン印刷法により塗布した。 Subsequently, the surface of the glass substrate 701 on which the circuit 704 and the organic EL element 708 are formed and the surface of the glass substrate 709 on which the colored layer 710 is formed are bonded using an adhesive layer 711 ( FIG. 18 (B)). CEP-5 resin was used as the adhesive layer 711 and was applied by screen printing.
次に、剥離層702と絶縁層703との間で剥離を生じさせ、ガラス基板701を分離した(図18(C))。続いて、ガラス基板712と絶縁層703とを、接着層713を用いて貼り合わせた(図18(D))。接着層713は、接着層711と同一の材料および同一の方法を用いて形成した。 Next, separation was caused between the separation layer 702 and the insulating layer 703 to separate the glass substrate 701 (FIG. 18C). Subsequently, the glass substrate 712 and the insulating layer 703 were attached to each other using the adhesive layer 713 (FIG. 18D). The adhesive layer 713 was formed using the same material and the same method as the adhesive layer 711.
次に、ガラス基板709上の、有機EL層706aと重なる部分に、先端の鋭利な刃を押し当てた。これにより、ガラス基板709に切れ込みを入れ、分断ライン714を形成した(図18(E))。続いて、分断ライン714より外側の有機EL層706a、導電層707a、ガラス基板709、および接着層711を分離することにより、回路704を露出させた(図18(F))。その後、露出させた回路704に対して端子出しを行った。 Next, a sharp blade at the tip was pressed against the portion of the glass substrate 709 overlapping the organic EL layer 706a. Thus, a cut was made in the glass substrate 709 to form a dividing line 714 (FIG. 18E). Subsequently, the circuit 704 was exposed by separating the organic EL layer 706a, the conductive layer 707a, the glass substrate 709, and the adhesive layer 711 outside the dividing line 714 (FIG. 18F). Thereafter, terminals were exposed to the exposed circuit 704.
以上の手順により表示装置を作製し、画像を表示させた。なお、当該表示装置において、表示領域の対角線長さは2.78インチ、駆動方式はアクティブマトリックス方式、解像度は2560×1440(WQHD)、色の表現法はRGB方式、画素密度は1058ppi、開口率は10.80%とした。また、赤色の光を取り出す画素、緑色の光を取り出す画素、および緑色の光を取り出す画素をジグザグに配置した。1つの画素は、有機EL素子708の他、2個のトランジスタおよび1個の容量素子を有する構成とした。ソースドライバは、デマルチプレクサを用い、COF(Chip On Film)方式により実装した。ゲートドライバは、基板上に集積して設けた。 A display device was manufactured by the above procedure, and an image was displayed. Note that in the display device, the diagonal length of the display area is 2.78 inches, the driving method is the active matrix method, the resolution is 2560 × 1440 (WQHD), the color expression method is the RGB method, the pixel density is 1058 ppi, and the aperture ratio Was 10.80%. In addition, pixels that extract red light, pixels that extract green light, and pixels that extract green light are arranged in a zigzag pattern. In addition to the organic EL element 708, one pixel has two transistors and one capacitor element. The source driver was mounted by a COF (Chip On Film) method using a demultiplexer. The gate driver was integrated on the substrate.
図19に表示結果を示す。本発明の一態様の表示装置が正常に動作し、画像を表示できることが確認された。 FIG. 19 shows the display result. It was confirmed that the display device of one embodiment of the present invention operates normally and can display an image.
10:表示装置、11:表示領域、12:駆動回路領域、13:FPC、65:レーザ光、201:基板、202:基板、203:接着層、205:絶縁層、211:基板、212:基板、213:接着層、215:絶縁層、261:基板、300:タッチパネル、301:トランジスタ、302:トランジスタ、303:トランジスタ、304:発光素子、305:容量素子、306:接続領域、307:導電層、308:接続領域、309:接続体、310:入力装置、311:絶縁層、312:絶縁層、313:絶縁層、314:絶縁層、315:絶縁層、317:接着層、319:接続体、321:導電層、322:発光層、322a:有機層、323:導電層、323a:導電層、324:光学調整層、325:着色層、326:遮光層、331:電極、332:電極、333:電極、334:電極、341:配線、342:配線、350:FPC、351:IC、355:導電層、374:IC、383:配線、387:交差部、393:絶縁層、395:絶縁層、396:接着層、400:領域、401:分断ライン、411:導電層、412:半導体層、413:導電層、414:導電層、415:導電層、421:導電層、422:半導体層、423:導電層、424:導電層、425:導電層、431:導電層、432:半導体層、433:導電層、434:導電層、435:導電層、451:導電層、511:領域、512:領域、513:領域、514:導電層、515:導電層、516:導電層、521:領域、522:領域、523:領域、524:導電層、525:導電層、526:導電層、531:領域、532:領域、533:領域、534:導電層、535:導電層、536:導電層、551:領域、552:導電層、602:基板、603:剥離層、612:基板、613:剥離層、701:ガラス基板、702:剥離層、703:絶縁層、704:回路、705:画素電極、706:有機EL層、706a:有機EL層、707:共通電極、707a:導電層、708:有機EL素子、709:ガラス基板、710:着色層、711:接着層、712:ガラス基板、713:接着層、714:分断ライン、720:光学調整層、7000:表示領域、7100:テレビジョン装置、7101:筐体、7103:スタンド7111:リモコン操作機、7200:ノート型パーソナルコンピュータ、7211:筐体、7212:キーボード、7213:ポインティングデバイス、7214:外部接続ポート、7300:デジタルサイネージ、7301:筐体、7303:スピーカ、7311:情報端末機、7400:デジタルサイネージ、7401:柱、7411:情報端末機、 10: display device, 11: display region, 12: drive circuit region, 13: FPC, 65: laser light, 201: substrate, 202: substrate, 203: adhesive layer, 205: insulating layer, 211: substrate, 212: substrate 213: Adhesive layer, 215: Insulating layer, 261: Substrate, 300: Touch panel, 301: Transistor, 302: Transistor, 303: Transistor, 304: Light emitting element, 305: Capacitor element, 306: Connection region, 307: Conductive layer 308: connection region 309: connection body 310: input device 311: insulating layer 312: insulating layer 313: insulating layer 314: insulating layer 315: insulating layer 317: adhesive layer 319: connecting body 321: Conductive layer, 322: Light emitting layer, 322a: Organic layer, 323: Conductive layer, 323a: Conductive layer, 324: Optical adjustment layer, 325: Colored layer, 326: Optical layer, 331: electrode, 332: electrode, 333: electrode, 334: electrode, 341: wiring, 342: wiring, 350: FPC, 351: IC, 355: conductive layer, 374: IC, 383: wiring, 387: Intersection, 393: insulating layer, 395: insulating layer, 396: adhesive layer, 400: region, 401: dividing line, 411: conductive layer, 412: semiconductor layer, 413: conductive layer, 414: conductive layer, 415: conductive Layer, 421: conductive layer, 422: semiconductor layer, 423: conductive layer, 424: conductive layer, 425: conductive layer, 431: conductive layer, 432: semiconductor layer, 433: conductive layer, 434: conductive layer, 435: conductive Layer, 451: conductive layer, 511: region, 512: region, 513: region, 514: conductive layer, 515: conductive layer, 516: conductive layer, 521: region, 522: region, 523: region, 524: Electrical layer 525: Conductive layer 526: Conductive layer 531: Region 532: Region 533: Region 534: Conductive layer 535: Conductive layer 536: Conductive layer 551: Region 552: Conductive layer 602 : Substrate, 603: release layer, 612: substrate, 613: release layer, 701: glass substrate, 702: release layer, 703: insulating layer, 704: circuit, 705: pixel electrode, 706: organic EL layer, 706a: organic EL layer, 707: common electrode, 707a: conductive layer, 708: organic EL element, 709: glass substrate, 710: colored layer, 711: adhesive layer, 712: glass substrate, 713: adhesive layer, 714: dividing line, 720 : Optical adjustment layer, 7000: Display area, 7100: Television apparatus, 7101: Case, 7103: Stand 7111: Remote control device, 7200: Notebook personal Computer, 7211: Case, 7212: Keyboard, 7213: Pointing device, 7214: External connection port, 7300: Digital signage, 7301: Case, 7303: Speaker, 7311: Information terminal, 7400: Digital signage, 7401: Pillar 7411: Information terminal,

Claims (13)

  1.  第1の基板と、第2の基板と、発光素子と、接着層と、有機層と、を有し、
     前記発光素子と、前記接着層と、前記有機層と、は、前記第1の基板と前記第2の基板の間に設けられ、
     前記有機層は、前記接着層と接する領域を有し、
     前記第1の基板上に、前記発光素子が設けられた第1の領域と、前記第2の基板と重ならない第2の領域と、が設けられ、
     前記発光素子は、発光層と、第1の導電層と、第2の導電層と、を有し、
     前記有機層は、前記発光層と同一の材料を有し、かつ前記第1の領域と、前記第2の領域との間に設けられることを特徴とする表示装置。
    A first substrate, a second substrate, a light emitting element, an adhesive layer, and an organic layer;
    The light emitting element, the adhesive layer, and the organic layer are provided between the first substrate and the second substrate,
    The organic layer has a region in contact with the adhesive layer,
    On the first substrate, a first region where the light emitting element is provided and a second region which does not overlap the second substrate are provided,
    The light emitting element includes a light emitting layer, a first conductive layer, and a second conductive layer,
    The display device, wherein the organic layer has the same material as the light-emitting layer and is provided between the first region and the second region.
  2.  請求項1において、
     前記接着層は、前記第2の領域と接するように設けられ、
     前記有機層は、前記接着層と、前記第2の領域と、の境界部と接するように設けられることを特徴とする表示装置。
    In claim 1,
    The adhesive layer is provided in contact with the second region,
    The display device, wherein the organic layer is provided so as to be in contact with a boundary portion between the adhesive layer and the second region.
  3.  請求項2において、
     前記境界部と垂直方向かつ前記第2の領域から遠ざかる方向に向かって0.1mm離れた領域に、前記有機層が設けられることを特徴とする表示装置。
    In claim 2,
    The display device, wherein the organic layer is provided in a region perpendicular to the boundary portion and 0.1 mm away in a direction away from the second region.
  4.  請求項1乃至3のいずれか一項において、
     外部入力端子を有し、
     前記外部入力端子は、前記第2の領域に設けられることを特徴とする表示装置。
    In any one of Claims 1 thru | or 3,
    Has an external input terminal,
    The display device, wherein the external input terminal is provided in the second region.
  5.  請求項1乃至3のいずれか一項において、
     トランジスタを有し、
     前記トランジスタは、前記第1の領域に設けられ、
     前記第1の導電層は、前記トランジスタのソースまたはドレインの一方と電気的に接続されることを特徴とする表示装置。
    In any one of Claims 1 thru | or 3,
    Having a transistor,
    The transistor is provided in the first region;
    The display device is characterized in that the first conductive layer is electrically connected to one of a source and a drain of the transistor.
  6.  請求項1乃至3のいずれか一項において、
     前記接着層は、硬化型接着剤を有することを特徴とする表示装置。
    In any one of Claims 1 thru | or 3,
    The display device, wherein the adhesive layer includes a curable adhesive.
  7.  請求項1乃至3のいずれか一項において、
     前記第1の領域に、着色層が設けられることを特徴とする表示装置。
    In any one of Claims 1 thru | or 3,
    A display device, wherein a colored layer is provided in the first region.
  8.  請求項1乃至3のいずれか一項において、
     第3の導電層を有し、
     前記第3の導電層は、前記第1の発光層と接する領域を有し、
     前記第3の導電層は、前記第2の導電層と同一の材料を有することを特徴とする表示装置。
    In any one of Claims 1 thru | or 3,
    Having a third conductive layer;
    The third conductive layer has a region in contact with the first light emitting layer,
    The display device, wherein the third conductive layer has the same material as the second conductive layer.
  9.  請求項1乃至3のいずれか一項において、
     前記第1の導電層は、前記発光素子の画素電極としての機能を有し、
     前記第2の導電層は、前記発光素子の共通電極としての機能を有することを特徴とする表示装置。
    In any one of Claims 1 thru | or 3,
    The first conductive layer has a function as a pixel electrode of the light emitting element,
    The display device, wherein the second conductive layer has a function as a common electrode of the light emitting element.
  10.  第1の基板上に、トランジスタと、第1の導電層と、を形成する工程と、
     前記トランジスタおよび前記第1の導電層と重なる領域を有するように、第1の絶縁層を形成する工程と、
     前記第1の絶縁層に、前記トランジスタのソースまたはドレインの一方に達する第1の開口部と、前記第1の導電層に達する第2の開口部と、を形成する工程と、
     前記第1の開口部に第2の導電層を形成し、前記第2の開口部に第3の導電層を形成する工程と、
     前記第2の導電層と重なる領域を有するように発光層を形成し、前記第3の導電層と重なる領域を有するように有機層を形成する工程と、
     前記第1の基板の、前記トランジスタが形成されている面と、第2の基板とを、接着層を用いて貼り合わせる工程と、
     前記第3の導電層と重なる領域に設けられた、前記第2の基板、前記接着層、および前記有機層を分離する工程と、
     前記第3の導電層と電気的に接続されるように、外部入力端子を形成する工程と、を有することを特徴とする表示装置の作製方法。
    Forming a transistor and a first conductive layer on a first substrate;
    Forming a first insulating layer so as to have a region overlapping with the transistor and the first conductive layer;
    Forming a first opening reaching one of a source or a drain of the transistor and a second opening reaching the first conductive layer in the first insulating layer;
    Forming a second conductive layer in the first opening and forming a third conductive layer in the second opening;
    Forming a light emitting layer so as to have a region overlapping with the second conductive layer, and forming an organic layer so as to have a region overlapping with the third conductive layer;
    Bonding the surface of the first substrate on which the transistor is formed and the second substrate using an adhesive layer;
    Separating the second substrate, the adhesive layer, and the organic layer provided in a region overlapping with the third conductive layer;
    And a step of forming an external input terminal so as to be electrically connected to the third conductive layer.
  11.  請求項10において、
     前記第2の基板の、前記第1の導電層および前記有機層と重なる部分に切れ込みを入れた後に、前記第3の導電層と重なる領域に設けられた、前記第2の基板、前記接着層、および前記有機層を分離することを特徴とする表示装置の作製方法。
    In claim 10,
    The second substrate and the adhesive layer provided in a region overlapping the third conductive layer after a cut is made in a portion overlapping the first conductive layer and the organic layer of the second substrate And a method for manufacturing a display device, wherein the organic layer is separated.
  12.  請求項10または11において、
     前記第1の基板の、前記トランジスタが形成されている面と、前記第2の基板とを、硬型接着剤を有する接着層を用いて貼り合わせることを特徴とする表示装置の作製方法。
    In claim 10 or 11,
    A method for manufacturing a display device, wherein a surface of the first substrate on which the transistor is formed and the second substrate are bonded together using an adhesive layer having a hard adhesive.
  13.  請求項10乃至11のいずれか一項において、
     前記第2の基板上に、着色層を形成した後、
     前記第1の基板の、前記トランジスタが形成されている面と、前記第2の基板の、前記着色層が形成されている面と、を貼り合わせることを特徴とする表示装置の作製方法。
    In any one of Claims 10 thru | or 11,
    After forming a colored layer on the second substrate,
    A method for manufacturing a display device, wherein a surface of the first substrate on which the transistor is formed is bonded to a surface of the second substrate on which the colored layer is formed.
PCT/IB2018/053169 2017-05-19 2018-05-08 Display device and method for manufacturing same WO2018211355A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019518593A JPWO2018211355A1 (en) 2017-05-19 2018-05-08 Display device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-099530 2017-05-19
JP2017099530 2017-05-19

Publications (1)

Publication Number Publication Date
WO2018211355A1 true WO2018211355A1 (en) 2018-11-22

Family

ID=64273566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2018/053169 WO2018211355A1 (en) 2017-05-19 2018-05-08 Display device and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2018211355A1 (en)
WO (1) WO2018211355A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021009638A1 (en) * 2019-07-17 2021-01-21 株式会社半導体エネルギー研究所 Display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178262A (en) * 2011-02-25 2012-09-13 Canon Inc Manufacturing method of light emitting device
JP2013251255A (en) * 2012-05-04 2013-12-12 Semiconductor Energy Lab Co Ltd Method for manufacturing light-emitting device
JP2014075318A (en) * 2012-10-05 2014-04-24 Dainippon Printing Co Ltd Laminate manufacturing method, laminate manufacturing apparatus, and laminate
WO2015008642A1 (en) * 2013-07-16 2015-01-22 シャープ株式会社 Method for producing flexible display device, and flexible display device
JP2016208020A (en) * 2015-04-22 2016-12-08 株式会社半導体エネルギー研究所 Method of manufacturing circuit board, method of manufacturing light-emitting device, and light-emitting device
JP2016224427A (en) * 2015-05-28 2016-12-28 株式会社半導体エネルギー研究所 Method for manufacturing display device and method for manufacturing electronic device
US20170062528A1 (en) * 2015-08-28 2017-03-02 Semiconductor Energy Laboratory Co., Ltd. Display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178262A (en) * 2011-02-25 2012-09-13 Canon Inc Manufacturing method of light emitting device
JP2013251255A (en) * 2012-05-04 2013-12-12 Semiconductor Energy Lab Co Ltd Method for manufacturing light-emitting device
JP2014075318A (en) * 2012-10-05 2014-04-24 Dainippon Printing Co Ltd Laminate manufacturing method, laminate manufacturing apparatus, and laminate
WO2015008642A1 (en) * 2013-07-16 2015-01-22 シャープ株式会社 Method for producing flexible display device, and flexible display device
JP2016208020A (en) * 2015-04-22 2016-12-08 株式会社半導体エネルギー研究所 Method of manufacturing circuit board, method of manufacturing light-emitting device, and light-emitting device
JP2016224427A (en) * 2015-05-28 2016-12-28 株式会社半導体エネルギー研究所 Method for manufacturing display device and method for manufacturing electronic device
US20170062528A1 (en) * 2015-08-28 2017-03-02 Semiconductor Energy Laboratory Co., Ltd. Display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021009638A1 (en) * 2019-07-17 2021-01-21 株式会社半導体エネルギー研究所 Display device

Also Published As

Publication number Publication date
JPWO2018211355A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
JP2022023881A (en) Display device
US10861917B2 (en) Method for manufacturing a flexible device having transistors
JP7126823B2 (en) Manufacturing method of semiconductor device
JP2022036112A (en) Semiconductor device
JP2017134402A (en) Display device
TWI764845B (en) Display device, display module, and electronic device
JP2018032021A (en) Display device
JP2017195369A (en) Semiconductor device, and display device having the same
JPWO2019025917A1 (en) Semiconductor device and display device
JP2018018068A (en) Display device, display module, electronic device, and method for manufacturing display device
KR102332962B1 (en) Display device manufacturing method, display device, display module and electronic device
JP2018014320A (en) Display apparatus
JP2018022890A (en) Semiconductor device and semiconductor device manufacturing method
KR20200077532A (en) Semiconductor device
JP2023060345A (en) Semiconductor device
JP2024037777A (en) Method for manufacturing semiconductor devices
WO2019043511A1 (en) Semiconductor device and display device
JP2017227897A (en) Display device, display module, electronic apparatus, and method of making display device
WO2018211355A1 (en) Display device and method for manufacturing same
JP2018022036A (en) Display device, display module, and electronic apparatus
JP2018013622A (en) Display device, and electronic apparatus
WO2020039293A1 (en) Light emitting apparatus, light emitting module, electronic device, and manufacturing method for light emitting apparatus
TW202111767A (en) Semiconductor device
JP6999315B2 (en) How to make a display device
JP6799405B2 (en) How to make a display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019518593

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18801955

Country of ref document: EP

Kind code of ref document: A1