WO2018211154A1 - Procedimiento de reducción fotocatalítico y composición catalizadora utilizada en el procedimiento - Google Patents

Procedimiento de reducción fotocatalítico y composición catalizadora utilizada en el procedimiento Download PDF

Info

Publication number
WO2018211154A1
WO2018211154A1 PCT/ES2017/070314 ES2017070314W WO2018211154A1 WO 2018211154 A1 WO2018211154 A1 WO 2018211154A1 ES 2017070314 W ES2017070314 W ES 2017070314W WO 2018211154 A1 WO2018211154 A1 WO 2018211154A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
formula
compound
otf
rings
Prior art date
Application number
PCT/ES2017/070314
Other languages
English (en)
French (fr)
Inventor
Julio LLORET FILLOL
Arnau CALL QUINTANA
Carla CASADEVALL SERRANO
Alicia Casitas Montero
Original Assignee
Fundació Institut Català D'investigació Química (Iciq)
Institució Catalana De Recerca I Estudis Avançats
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fundació Institut Català D'investigació Química (Iciq), Institució Catalana De Recerca I Estudis Avançats filed Critical Fundació Institut Català D'investigació Química (Iciq)
Priority to PCT/ES2017/070314 priority Critical patent/WO2018211154A1/es
Priority to EP18382332.7A priority patent/EP3404007A1/en
Publication of WO2018211154A1 publication Critical patent/WO2018211154A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0237Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • B01J31/182Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine comprising aliphatic or saturated rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2442Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems
    • B01J31/2447Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring
    • B01J31/2452Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring with more than one complexing phosphine-P atom
    • B01J31/2457Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring with more than one complexing phosphine-P atom comprising aliphatic or saturated rings, e.g. Xantphos
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B35/00Reactions without formation or introduction of functional groups containing hetero atoms, involving a change in the type of bonding between two carbon atoms already directly linked
    • C07B35/02Reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/02Formation or introduction of functional groups containing oxygen of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/14Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of a —CHO group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/64Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/32Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/33Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/333Radicals substituted by oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/16Radicals substituted by singly bound hetero atoms other than halogen by oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/64Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0261Complexes comprising ligands with non-tetrahedral chirality
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/827Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a photocatalytic process for reducing aryl ketones, arylalkenes, arylaldehydes and aliphatic aldehydes, and a new catalyst composition used in such a process.
  • aryl ketones arylalkenes
  • arylaldehydes arylaldehydes
  • aliphatic aldehydes a new catalyst composition used in such a process.
  • PREVIOUS TECHNIQUE Different methods for preparing reduced products from unsaturated organic compounds are known in the art. Organic synthesis has several reduction procedures. In most cases, reduction reactions of unsaturated compounds, particularly compounds containing a carbonyl group or a carbon-carbon double bond, require the use of hydrogen in excess amounts or hydride species, possibly in the presence of metal catalysts.
  • patent publication EP1086941 describes a process for preparing a reduced product of an unsaturated organic compound comprising mixing together the unsaturated organic compound and a trichlorosilane.
  • the reduction process may generally be applicable to unsaturated organic compounds, since the reaction described in the patent is not selective; Any unsaturated organic compound can be used without limitation.
  • patent publication EP0305180 describes the reduction of a prochiral ketone to an optically active alcohol in the presence of an oxazoborolidine or oxazaborine. This boron-based catalyst is used only for the reduction of prokyl ketones.
  • the photochemical reactivity of the complexes of Copper (I) significantly improves by using a bulky phosphine and / or appropriate donor instead of PPh 3 , since the life time of the excited states of the copper (I) complexes is prolonged Water reduction has been achieved through a copper-based photosensitizer and a Fe-phosphide dimer complex formed in situ as a water reduction catalyst, in the document "Copper-based photosensitisers in water reduction: a more efficient in situ formed system and improved mechanistic understanding", Alastair et al., Chem. Eu. J. 2016, 22, 1233-1238.
  • the document shows that a Cu-based complex can be excited with visible light by a charge transfer from the metal to the ligand, which carries out the transfer of electrons from a reducer that is sacrificed to a water reduction catalyst.
  • the direct reduction of the functional group by transfer of a single electron from the photoredox catalyst is often limited to the redox potential of the chromophore.
  • this is a difficult task, especially when considering selectivity control. Therefore, from what is known in the art, it follows that the development of a process for the photocatalytic reduction of unsaturated compounds using water as a source of hydrogen and based on abundant metals in the earth remains of great interest.
  • cobalt compound (II) that acts as a catalyst and a redox photosensitizer with a suitable reduction potential to reduce the catalyst, in which said process uses visible light as a driving force, water or an alcohol as a source of robust and safe hydride and An electron donor.
  • the reaction is carried out at low temperature and at room pressure and the yields of the reaction are high.
  • one aspect of the invention relates to a photocatalytic process of reducing a compound of formula (I) that produces a product of formula (II):
  • Y is O or CH ⁇
  • R 1 is an aromatic or heteroaromatic ring system comprising 1 to 2 rings of 5 to 6 members, in which the members are selected from C, CH, N, O and S, and in which the rings can be substituted at any available position with one or more groups selected from halogen, C 1 -C 12 linear or branched C 1 -C 12 haloalkyl linear or branched alkyloxy and C 1 -C 12 linear or branched;
  • R 2 is selected from hydrogen, a C 1 -C 12 alkyl, alkenyl C 2 -C 13 alkynyl, C 2 - C 13 linear or branched and cycloalkyl , C 3 -C 8 wherein the alkyl groups C 1 -C 12 alkenyl C 2 -C 13 alkynyl , C 2 -C 13 and C 3 -C 8 cycloalkyl are optionally substituted on any available with one or more radicals selected from the group consisting of halo, hydroxy, alkyloxy C 1 -C 12 position , alkyloxycarbonyl C 2 -C 7 alkylcarbonyloxy C 2 -C 7 alkylaminocarbonyl , C 2 -C 7 alkylamino , C 2 - C 7, cyano, nitro and a ring system comprising 1 to 3 rings, wherein each ring is saturated, unsaturated or aromatic, comprising the 3 to 7 member rings selected from C, CH, N
  • R 1 is also selected from a C 1 -C 12 alkyl, alkenyl C 2 -C 13 alkynyl , C 2 -C 13 linear or branched, wherein the C 1 -C alkyl 12, alkenyl C 2 -C 13 alkynyl , C 2 -C 13 optionally substituted at any available with one or more radicals selected from the group consisting of halo, hydroxy, alkyloxy C 1 -C 12 position, alkyloxycarbonyl C 2 -C 7 ⁇ alkylcarbonyloxy C 2 -C 7 alkylaminocarbonyl , C 2 -C 7 alkylamino , C 2 -C 7, cyano, nitro and a ring system comprising from 1 to 3 rings, in which each ring is saturated, unsaturated or aromatic, the rings comprising 3 to 7 members selected from C, CH, N, O and S, and wherein the rings may be substituted at any available
  • Another aspect of the invention is a dual catalyst system that involves a robust and well-defined cobalt complex and a copper photoredox catalyst capable of effectively reducing unsaturated organic compounds under irradiation of light with a hydride source, in the presence of an electron donor.
  • the dual catalyst system works in aqueous mixtures and tolerates an oxygen-containing atmosphere, unlike most transition metal catalysts used in reduction / hydrogenation reactions. Therefore, another aspect of the invention relates to a composition comprising a catalyst system consisting of: a compound of formula [Cu (L 1 ) (L 2 )] Z, in which:
  • Cu is in the oxidation state (+1);
  • L 1 is a bidentate phosphine ligand bound to the Cu atom through the atoms of P
  • L 2 is a bidentate nitrogen ligand bound to the Cu atom by two N atoms consisting of a ring system comprising 2 to 7 rings, in which the rings have 5 to 6 members selected from the group consisting of in C, CH, N and NH; being at least two members N or NH; N atoms attached to the copper atom are separated by no more than three ring members and are members of different rings;
  • the rings are unsaturated or aromatic
  • the rings are fused or interconnected
  • rings are optionally substituted with one or more radicals selected from the group consisting of: C 1 -C 6 alkyl, haloC 1 -C 6 alkyl, halo, alkyloxy C 1 - C 6 alkyloxycarbonyl C 1 -C 6 alkylcarbonyloxy C 1 -C 6 , cyano and nitro;
  • X and X ' are the same or different anions
  • L 3 is a tetradentate or pentadentate nitrogen ligand bound to the Co atom through four or five N atoms that is selected from the compounds of formula (IIIa), (IIIb), (IIIc) and (IIId)
  • each R3 is a radical of formula (IV)
  • Z is N or NH
  • R 6 and R 7 together with the carbon atoms to which they are attached, form a C 3 -C 8 cycloalkyl optionally substituted with one or more radicals selected from the group consisting of: C 1 -C 6 alkyl, halo, haloalkyl C1 - C6 alkyloxy and C 1 - C 6;
  • R 8 is a radical selected from the group consisting of hydrogen, C 1 alkyl - C 6 haloalkyl and C1 - C6;
  • R 8 is a radical selected from the group consisting of hydrogen, C 1 alkyl - C 6 haloalkyl and C1 - C6 and a radical of formula (IV);
  • R 6 and R 8 and R 7 and R 8 ' together with the carbon atoms to which they are attached, form a C 3 -C 8 cycloalkyl optionally substituted with one or more radicals selected from the group consisting of C1 - C6 alkyl, halo, haloalkyl and C1 - C6 alkyloxy C1 - C6;
  • one aspect of the present invention relates to a photocatalytic process of reducing an aryl ketone, an aliphatic aldehyde or arylaldehyde and an arylalkene.
  • halogen refers to iodine, bromine, chlorine and fluorine.
  • alkyl refers to a saturated straight chain or branched chain hydrocarbon group having the indicated number of carbon atoms
  • C 1 -C 6 alkyl refers to an alkyl group having one to six carbon atoms with the remaining valencies occupied by hydrogen atoms.
  • straight and branched C 1 -C 6 alkyl groups include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, isomeric pentyls, isomeric hexyls and the like.
  • haloalkyl refers to radicals in which one or more of the carbon atoms of the alkyl are substituted by one or more halogen atoms.
  • alkenyl encompasses linear or branched radicals having the indicated number of carbon atoms and containing at least one double bond.
  • alkynyl encompasses linear or branched radicals having the indicated number of carbon atoms and containing at least one carbon-carbon triple bond.
  • alkyloxy means an alkyl substituent attached to the rest of a molecule via oxygen, in which the term “alkyl” has the definition given above.
  • alkyloxy group include, but are not limited to, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy and tert-butoxy.
  • alkylcarbonyloxy includes alkyl as defined above attached to oxygen-linked carbonyl (-OC (O) -alkyl).
  • alkylcarbonyloxy group include, but are not limited to, acetate, propionate and t-butylcarbonyloxy.
  • alkyloxycarbonyl means a radical containing an alkyloxy radical, as defined above, attached by the oxygen atom to a carbonyl radical (-C (O) -O-alkyl).
  • alkyloxycarbonyl means a radical containing an alkyloxy radical, as defined above, attached by the oxygen atom to a carbonyl radical (-C (O) -O-alkyl).
  • examples of such radicals include, but are not limited to, substituted or unsubstituted methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl and hexyloxycarbonyl.
  • aromatic ring system means an aromatic hydrocarbon group that can be a single ring or multiple rings that are fused to each other or covalently linked, and that optionally carry one or more substituents.
  • heteromatic ring system alone or in combination, refers to a 5-10 membered aromatic heterocycle containing one or more, preferably one or two heteroatoms selected from nitrogen, oxygen and sulfur.
  • the heteroaryl may be substituted on one or more carbon atoms, as defined herein, for example with substituents such as halogen, alkyl, alkoxy, cyano, haloalkyl.
  • alkyl ketone refers to a ketone in which the carbonyl group is connected to alkyl radicals.
  • cycloalkyl refers to a saturated monocyclic or bicyclic cycloalkyl group. Examples of cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl.
  • the term "catalyst system” is intended to clarify that it is necessary that the two components, the cobalt compound (II) and the photosensitizer, be present simultaneously in the reduction process.
  • the catalyst system used in the process of the invention consists of a cobalt compound (II) comprising a tetradentate or pentadentate organic ligand coordinated to a cobalt atom through 4 or 5 nitrogen atoms, wherein at least one of the 4 or 5 nitrogen atoms is a member of a 5 or 6 membered aromatic ring of the organic ligand, and a photosensitizer that has adequate oxidation potential to reduce the cobalt compound (II) to a cobalt compound (I).
  • the photosensitizer has an oxidation potential greater than the oxidation potential of the cobalt compound (II ).
  • the light is visible light. As is known in the state of the art, "visible light” refers to irradiation in the wavelength range of 400 to 800 nm.
  • the light used is suitable to induce a change in the electronic configuration of the photosensitizer, promoting the transfer of an electron from the photosensitizer to a molecular orbital of higher energy level.
  • the wavelength of the light used in the reduction process of the invention is in the range of 400 to 500 nm. Even more particularly, optionally in combination with one or more of the embodiments described below, the wavelength of the light used in the reduction process of the invention is 447 nm.
  • the hydride source is a compound of formula ROH in which R is selected from hydrogen and C 1 -C 6 alkyl.
  • the hydride source is water. More particularly, optionally in combination with one or more of the embodiments described above or below, the hydride source used in the process of the invention can be used as a solvent or cosolvent of the process.
  • the reduction procedure of the invention is carried out in an aprotic solvent that is miscible with water.
  • the reduction process of the invention is carried out in acetonitrile.
  • the electron donor is a tertiary amine. More in particular, optionally in combination with one or more of the embodiments described above or below, the electron donor is a compound of formula NR ' 3 in which each R' is independently C 1 -C 6 alkyl.
  • the electron donor is selected from triethylamine and diisopropylethylamine.
  • Tertiary amines can be used in large excess or as part of the solvent system in the process of the invention.
  • the electron donor can be selected from the reduced forms of CO 2 , such a reduced form of CO 2 being preferably selected from the group that It consists of methanol, formaldehyde, formic acid, oxalic acid, ascorbic acid and lactic acid.
  • the electron donor may alternatively consist of an electrode such as an electrochemical half-cell or a cathode.
  • the process is carried out at a temperature in the range of -10 ° C to 50 oC; more preferably in the range of 20 ° C to 40 ° C. Even more preferably, optionally in combination with one or more of the embodiments described above or below, the process is carried out at a temperature of 30 ° C, particularly when in the compound of formula (I) Y is O. Alternatively, when in the compound of formula (I) Y is CH 2 , the process is carried out at a temperature in the range of -5 ° C to 20 ° C.
  • the catalyst system is one in which the photosensitizer is selected from the group consisting of chlorophylls, eosin Y, Rose Bengal, ruthenium (II) complexes hexacoordinated with polypyridyl ligands, iridium (III) complexes hexacoordinated with pyridyl and / or polypyridyl ligands and a compound of formula [Cu (L 1 ) (L 2 )] Z, in which:
  • Cu is in the oxidation state (+1);
  • L 1 is a bidentate phosphine ligand bound to the Cu atom through the atoms of P
  • L 2 is a bidentate nitrogen ligand bound to the Cu atom by two N atoms consisting of a ring system comprising 2 to 7 rings, in which the rings have 5 to 6 members selected from the group consisting of in C, CH, N and NH; being at least two members N or NH; wherein the N atoms attached to the copper atom are separated by no more than three ring members and are members of different rings;
  • the rings are unsaturated or aromatic
  • rings are fused or interconnected; rings are optionally substituted with one or more radicals selected from the group consisting of: C 1 -C 6 alkyl, haloC 1 -C 6 alkyl, halo, alkyloxy C 1 - C 6 alkyloxycarbonyl C 1 -C 6 alkylcarbonyloxy C 1 -C 6 , cyano and nitro.
  • the catalyst system is one in which the photosensitizer is selected from the group consisting in ruthenium (II) complexes hexacoordinated with polypyridyl ligands, iridium (I) tetracoordinated complexes with pyridyl and / or polypyridyl ligands, and a compound of formula [Cu (L 1 ) (L 2 )] Z as defined above.
  • the photosensitizer is selected from the group consisting in ruthenium (II) complexes hexacoordinated with polypyridyl ligands, iridium (I) tetracoordinated complexes with pyridyl and / or polypyridyl ligands, and a compound of formula [Cu (L 1 ) (L 2 )] Z as defined above.
  • the catalyst system in which the photosensitizer is selected from the group consisting of [Ru (bpy) 3 ] (PF 6 ) 2 , [Go (ppy) 2 (bpy)] PF 6 and a compound of formula [Cu (L 1 ) (L 2 )] Z as defined above.
  • the photosensitizer is [Go (ppy) 2 (bpy)] PF 6 .
  • the photosensitizer is a compound of formula [Cu (L 1 ) (L 2 )] Z as defined above.
  • Such compound of formula [Cu (L 1 ) (L 2 )] Z is preferably a compound in which L 1 is a diphosphine having a bite angle in the range of 95 ° to 125 °.
  • the photosensitizer is a compound of formula [Cu (L 1 ) (L 2 )] Z in which L 1 is a compound of formula P (R 14 R 14 ') -QP (R 13 R 13 ') in which each of R 14 , R 14 ', R 13 and R 13 ' is independently selected from the group consisting of C 1 -C alkyl 6, alkyloxy C1 - C6 and phenyl which is optionally substituted with one or more radicals selected from the group consisting of C1 - C6 alkyl, C1 - C6 haloalkyl, halo, alkyloxy C 1 - C 6 alkyloxycarbonyl C 1 -C 6 alkylcarbonyloxy C 1 -C 6 alkyl, cyano and nitro;
  • Q is selected from the dirradicals derived from the C 2 -C 6 alkyl radicals, C 3 -C 8 cycloalkyl, and a dirradical of formula (V)
  • R 18 , R 18 ', R 15 , R 15 ', R 16 , R 16 ', R 17 and R 17 ' are each selected
  • the photosensitizer is a compound of formula [Cu (L 1 ) (L 2 )] Z in which L 1 is a compound of formula P (R 14 R 14 ') -QP (R 13 R 13') in which each der 14, R 14 'R 13 and R 13' is phenyl;
  • Q is a dirradical of formula (V) as defined above in which R 17 and R 17 'together form a dirradical of formula - (A) n - in which n is 1 and A is C (C 1 -C alkyl 6 ) 2 and wherein each of R 18 , R 18 ', R 15 , R 15 ', R 16 , and R 16 'is independently selected from the group consisting of hydrogen, C 1 -C 6 alkyl, haloC 1 -C 6 alkyl, halo, alkyloxy C 1 -C 6 alkyloxycarbonyl C 1 -C 6 alkylcarbonyloxy C 1 -C 6 alkyl, cyano and nitro. More particularly, optionally in combination with one or more of the embodiments described above or below, the photosensitizer is a compound of formula [Cu (L 1 ) (L 2 )] Z in which L 1 is Xantphos of formula:
  • said compound of formula [Cu (L 1 ) (L 2 )] Z is preferably a compound in which L 2 is a compound of formula (SAW)
  • Z is N or NH
  • each of the pairs R a and R b and R c and R d together with the atoms to which they are attached, form a phenyl ring optionally substituted with one or more radicals selected from the group consisting of C 1 -C alkyl 6 haloalkyl C 1 -C 6 alkyl, halo, alkyloxy C 1 -C 6 alkyloxycarbonyl C 1 -C 6 alkylcarbonyloxy C 1 -C 6 alkyl, cyano and nitro; and wherein the pair R b and R c , together with the carbon atoms to which they are attached, form a phenyl ring that is optionally substituted with one or more radicals selected from the group consisting of C 1 -C 6 alkyl halo C 1 -C 6 alkyl, halo, alkyloxy C 1 -C 6 alkyloxycarbonyl C 1 -C 6 alkylcarbonyloxy C 1 -C 6 alkyl
  • the compound of formula [Cu (L 1 ) (L 2 )] Z is one in which L 2 is batocuproin.
  • the compound of formula [Cu (L 1 ) (L 2 )] Z is one of formula:
  • the molar ratio between the photosensitizer of the catalyst composition and the compound of formula (I) is in the range of 1: 1000 at 5: 100.
  • the molar ratio between the photosensitizer of the catalyst composition and the compound of formula (I) is in the range of 1: 100 to 2: 100.
  • the cobalt compound (II) of the catalyst composition is selected from the compounds of formula [Co (L 3 ) X ] + X'- and [Co (L 3 ) XX '] in which:
  • X and X ' are anions that can be the same or different;
  • L 3 is a tetradentate or pentadentate nitrogen ligand bound to the Co atom through four or five N atoms that is selected from the compounds of formula (IIIa), (IIIb), (IIIc) and (IIId)
  • each R3 is a radical of formula (IV) wherein Z is N or NH;
  • R 6 and R 7 together with the carbon atoms to which they are attached, form a C 3 -C 8 cycloalkyl optionally substituted with one or more radicals selected from the group consisting of: C 1 -C 6 alkyl, halo, haloalkyl C1 - C6 alkyloxy and C 1 - C 6;
  • R 8 is a radical selected from the group consisting of hydrogen, C 1 alkyl - C 6 haloalkyl and C1 - C6;
  • R 8 is a radical selected from the group consisting of hydrogen, C 1 alkyl - C 6 haloalkyl and C1 - C6 and a radical of formula (IV);
  • R 6 and R 8 and R 7 and R 8 ' together with the carbon atoms to which they are attached, form a C 3 -C 8 cycloalkyl optionally substituted with one or more radicals selected from the group consisting of C1 - C6 alkyl, halo, haloalkyl and C1 - C6 alkyloxy C1 - C6;
  • the cobalt compound (II) is a compound of formula [Co (L 3 ) XX ']
  • L 3 is a tetradentate nitrogen ligand.
  • the cobalt compound (II) of the catalyst composition is selected from the compounds of formula [Co (L 3 ) X] + X'- and [Co (L 3 ) XX '] in which:
  • X and X ' are the same and are selected from chloride and trifluoromethanesulfonate;
  • L 3 is a tetradentate or pentadentate nitrogen ligand attached to the Co atom through four or five N atoms that is selected from the compounds of formula (IIIa), (IIIb), (IIIc) and (IIId) as defined above, in which each R 3 is a radical of formula (IV) as defined above in which: Z is N;
  • R 10 and R 11 together with the atoms to which they are attached, form a pyridyl ring
  • R 6 and R 7 are each hydrogen, or, alternatively, R 6 and R 7 , together with the carbon atoms to which they are attached, form a cyclohexyl group
  • R 4 and R 5 are each selected from the group consisting of hydrogen, 2-pyridyl and 6- (2-pyridyl) -2-pyridyl;
  • R 8 is a radical selected from the group consisting of hydrogen and methyl;
  • R 8 is a radical selected from the group consisting of hydrogen, methyl and a radical of formula (IV) in which R 6 and R 7 are hydrogen, Z is N and R 10 and R 11 , together with the atoms at which are attached, form a pyridyl ring; or alternatively
  • R 9 is a radical of formula R 12 O (SO 2 ) - in which R 12 is a tolyl group.
  • the cobalt compound (II) of the catalyst composition is selected from the compounds of formula [Co (L 3 ) X] + X'- and [Co (L3) XX '] in which L 3 is a compound of formula (IIIa) as defined above in which:
  • R 3 is a radical of formula (IV) in which Z is N, R 6 and R 7 are hydrogen and R 10 and R 11 , together with the atoms to which they are attached, form a pyridyl ring;
  • R 4 and R 5 are independently selected from the group consisting of hydrogen, 2-pyridyl and 6- (2-pyridyl) -2-pyridyl;
  • the cobalt compound (II) of the catalyst composition is selected from the compounds of formula [Co (L 3 ) X] + X'- and [Co (L 3 ) XX '] in which L 3 is a compound of formula (IIIb) as defined above in which:
  • R 3 is a radical of formula (IV) in which Z is N, R 6 and R 7 are hydrogen and R 10 and R 11 , together with the atoms to which they are attached, form a pyridyl ring;
  • R 6 and R 7 together with the carbon atoms to which they are attached, form a cyclohexyl group
  • R 8 is a radical selected from the group consisting of hydrogen and methyl
  • R 8 is a radical selected from the group consisting of hydrogen, methyl and a radical of formula (IV) in which R 6 and R 7 are hydrogen, Z is N and R 10 and R 11 , together with the atoms at which are attached, form a pyridyl ring;
  • the cobalt compound (II) of the catalyst composition is selected from the compounds of formula [Co (L 3 ) X] + X'- and [Co (L 3 ) XX '] in which L 3 is selected from the compounds of formula (IIIc) and (IIId) as defined above in which:
  • R 3 is a radical of formula (IV) in which Z is N, R 6 and R 7 are hydrogen and R 10 and R 11 , together with the atoms to which they are attached, form a pyridyl ring;
  • R 6 and R 7 are hydrogen and R 9 is tolyl.
  • the cobalt compound (II) of the catalyst composition is selected from among the
  • the cobalt compound (II) of the catalyst composition is [Co (OTf) (Py 2 Ts tacn)] (OTf).
  • the molar ratio between the cobalt complex (II) of the catalyst composition and the compound of formula (I) is in the interval from 1: 1400 to 5: 100.
  • the molar ratio between the cobalt complex (II) of the catalyst composition and the compound of formula (I) is in the range of 1:50 to 4: 100.
  • the catalyst composition is one in which
  • [Cu (L1) (L2)] Z is [Cu (batocuproin) (Xantphos)] (PF6) and the cobalt compound (II) is [Co (OTf) (Py 2 Ts tacn)] (OTf)
  • compositions comprising the catalyst system as defined above.
  • the composition comprising the catalyst system consists of the photosensitizer and the cobalt complex (II) as described herein. All specific embodiments, whether preferred or particular, of the first aspect of the invention and related to the compound of formula [Cu (L1) (L2)] Y and the cobalt complex (II) are applicable in the second aspect of the invention.
  • the catalyst composition is one in which the molar ratio between the cobalt complex (II) and the photosensitizer is in the range from 0.01: 1 to 1: 0.01.
  • the catalyst composition is one in which the molar ratio between the cobalt complex (II) and the photosensitizer is in the range of
  • the catalyst composition is one in which the molar amount of the cobalt compound (II) is twice the molar amount of the compound of formula [Cu (L 1 ) (L 2 )] Y.
  • the molar ratio between the compound of formula [Cu (L 1 ) (L 2 )] Y and the cobalt compound (II) is
  • the cobalt compound (II) is selected from: [Co (OTf) (Py 2 Ts tacn)] (OTf), [Co (OTf ) (DPA-Bpy)] (OTf), [Co (OTf) (N4Py)] (OTf), [Co (OTf) (H-CDPy 3 )] (OTf), [Co (OTf) 2 (PDP)] , [Co (OTf) (TPA)] (OTf), [Co (Cl) 2 (mcp)] and [Co (Cl) (Py) (dmgH) 2 ].
  • the [Cu (L 1 ) (L 2 )] Z is [Cu (batocuproin) (Xantphos)] (PF 6 ).
  • the cobalt compound (II) is [Co (OTf) (Py 2 Ts tacn)] (OTf).
  • the [Cu (L 1 ) (L 2 )] Z is [Cu (batocuproin) (Xantphos)] (PF 6 ) and the compound of Cobalt (II) is [Co (II) (OTf) (Py 2 Ts tacn)] (OTf).
  • the molar ratio between the compound [Cu (batocuproin) (Xantphos)] (PF 6 ) and [Co (II) (OTf) (Py 2 Ts tacn)] (OTf) is between 0.01: 1 and 1: 0.01.
  • the molar amount of the cobalt compound (II) is twice the molar amount of the compound of formula [Cu (L 1 ) (L 2 ) ] Z.
  • the photocatalytic activity was tested in the reduction of acetophenone in the presence of the different catalysts (1) to (7), CoII-L, in which L is TPA, N 4 Py, DPA-Bpy, BpcMe, H-CDPy 3 , PDP, Py 2 Ts tacn, and in the presence of [Ir (bpy) (ppy) 2 ] PF 6 (PS Ir ) as a photosensitizer.
  • Acetophenone (9a) was used as a model substrate for the optimization of catalytic conditions when [Cu (Batocuproin) (Xantphos)] (PF6) (PSCu) is used as a photoredox catalyst and 1 [Co (OTf) (Py Ts
  • the substrates 9p-9u were reduced with good yields to the corresponding halogenated alcohols 10p-10u (81-92% yield) without de-halogenated products.
  • poorer substrates in electrons such as 9v-9x aldehydes completely became alcohols with excellent yields.
  • the catalyst system is also capable of reducing aliphatic aldehyde 9y (11% yield). It is important to note that the reduction of all tested substrates is not observed in the absence of the cobalt catalyst. Optimization of the reduction of aliphatic aldehydes
  • Hydrocinamaldehyde (11e) was used as a model substrate for the optimization of catalytic conditions when PS Cu is used as a photoredox catalyst and 1 as a catalyst. Table 6. Optimization of catalytic conditions for photoreduction of 11e.
  • Styrene (13a) was used as a model substrate for the optimization of catalytic conditions when PSCu is used as a photoredox catalyst and 1 as a catalyst. Optimization of dual catalyst system load and substrate concentration
  • ⁇ -Methylstyrene (15a) was used as a model substrate for the optimization of catalytic conditions when PSCu is used as a photoredox catalyst and 1 as a catalyst.
  • Electron donor variation using the best substrate concentration (4.4 mM) and optimized conditions for photoreduction of styrene derivatives.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La presente invención se refiere a un procedimiento fotocatalítico mediado por cobalto(ll) para reducir arilcetonas, arilalquenos, arilaldehídos y aldehidos alifáticos, y una nueva composición catalizadora utilizada en tal procedimiento y que comprende un complejo de cobalto(ll) con un ligando nitrogenado tetradentado o pentadentado y un fotosensibilizador.

Description

UN PROCEDIMIENTO DE REDUCCIÓN FOTOCATALÍTICO Y UNA
COMPOSICIÓN CATALIZADORA UTILIZADA EN EL PROCEDIMIENTO La presente invención se refiere a un procedimiento fotocatalítico para reducir arilcetonas, arilalquenos, arilaldehídos y aldehídos alifáticos, y una nueva composición catalizadora utilizada en tal procedimiento. TÉCNICA ANTERIOR En la técnica se conocen diferentes procedimientos para preparar productos reducidos a partir de compuestos orgánicos insaturados. La síntesis orgánica cuenta con varios procedimientos de reducción. En la mayoría de los casos, las reacciones de reducción de compuestos insaturados, particularmente compuestos que contienen un grupo carbonilo o un doble enlace carbono-carbono, requieren el uso de hidrógeno en cantidades en exceso o especies de hidruro, eventualmente en presencia de catalizadores metálicos u organocatalizadores para activar la reacción y/o favorecer la formación de un producto específico (por ejemplo, en transformaciones estereoselectivas). Por lo general, estos procedimientos de reacción son poco selectivos en cuanto al grupo funcional del sustrato de reacción que se hidrogena. El hidrógeno es un gas inflamable y puede presentar algunas dificultades de manipulación, mientras que los hidruros también son especies altamente inflamables y sensibles a la humedad. Tales procedimientos requieren normalmente el uso de condiciones anhidras y condiciones de reacción controladas. La búsqueda de procedimientos químicos más ecológicos implica el uso de disolventes respetuosos con el medio ambiente (como el agua), condiciones de reacción suaves (en términos de temperatura y pH/corrosividad) y el uso de pequeñas cantidades de reactivos raros y costosos o nocivos. Los procedimientos catalíticos, por lo tanto, comúnmente se consideran procedimientos ecológicos. La reducción selectiva de sustratos orgánicos en la que se usa agua como fuente de hidrógeno es de gran interés, ya que utiliza una fuente de hidrógeno económica y estable. Sin embargo, tales procedimientos no se conocen en la técnica. Es conocido en la técnica que algunos complejos de metales de transición de rutenio, rodio e iridio con ligandos nitrogenados retiran fácilmente una molécula de hidrógeno de la molécula de isopropanol o de ácido fórmico para transferirla de una manera (a)simétrica a sustratos orgánicos que contienen grupos carboxilo, grupos imina u olefinas. Esta transformación, conocida como Hidrogenación Asimétrica por Transferencia, se emplea en la reducción de cetonas e iminas para producir alcoholes y aminas quirales. Dicho procedimiento emplea preciosos metales de transición que son poco abundantes en la tierra.
Entre los procedimientos conocidos en la técnica, por ejemplo, la publicación de patente EP1086941 describe un procedimiento para preparar un producto reducido de un compuesto orgánico insaturado que comprende mezclar conjuntamente el compuesto orgánico insaturado y un triclorosilano. El procedimiento de reducción puede ser aplicable generalmente a compuestos orgánicos insaturados, ya que la reacción descrita en la patente no es selectiva; se puede usar cualquier compuesto orgánico insaturado sin limitación. Además, la publicación de patente EP0305180 describe la reducción de una cetona proquiral a un alcohol ópticamente activo en presencia de una oxazoborolidina u oxazaborina. Este catalizador basado en boro se utiliza sólo para la reducción de cetonas proquirales. El uso de la luz como fuerza impulsora de las reacciones químicas ha atraído mucha atención en química orgánica y en ciencia de los materiales, ya que permite activar y desactivar una reacción, el control temporal y espacial de la reacción se lleva a cabo en condiciones suaves y permite realizar transformaciones muy específicas, con alta selectividad, ya que la irradiación de luz se puede modular fácilmente para activar la energía deseada o los eventos de transferencia de electrones deseados. Algunos sistemas fotoredox también se han empleado para llevar a cabo la reducción de sustratos orgánicos por transferencia de un solo electrón. Por ejemplo, se han reducido cetonas mediante transferencia de un solo electrón para obtener los alcoholes correspondientes mediante TiO^, Molinari, R; Lavorato, C.; Argurio, P.; Chem. Eng. J.; 2015, 274-307. En ese documento, se ensayó un reactor fotocatalítico de membrana en la hidrogenación de acetofenona para producir feniletanol, usando agua como disolvente y ácido fórmico como fuente de hidrógeno y donante de electrones, bajo irradiación de luz UV y visible; el rendimiento de feniletanol informado fue, sin embargo, demasiado bajo para que este procedimiento se considere práctico. Uno de los primeros informes que demuestran la utilidad potencial de la catálisis fotoredox con luz visible en síntesis orgánica fue una contribución de Pac y colaboradores en 1981 que describe la reducción mediada por Ru(bpy)3 2+ de olefinas deficientes en electrones, en el documento titulado "Tris-(2,2’-bipyridine) ruthenium(2+)-mediated photoreduction of olefins with 1-benzyl-1,4- dihydronicotinamide: a mechanistic probe for electron-transfer reactions of NAD(P)H-model compounds"; Chyongjin Pac et al., J. Am. Chem. Soc., 1981, 103(21), pp 6495-6497, en el que olefinas activadas se reducían con [Ru(bpy)3]2+. El documento titulado "Significant phosphine ligand effect on the photochemical reactivity of [Cu(N-N)L2]+ (N-N = 1,10-phenanthroline or 2,9-dimethyl-1,10 phenanthroline; L = tertiary phosphine)”; Shigeyoshi Sakaki et al, J. Chem. Soc. Alton Trans.1988, mejora la reactividad fotoquímica de [Cu(N-N)L2]+ introduciendo una fosfina voluminosa y/o donante en lugar de PPh3. La reactividad fotoquímica de los complejos de cobre(I) mejora significativamente al utilizar una fosfina voluminosa y/o donante apropiada en lugar de PPh3, ya que se prolonga el tiempo de vida de los estados excitados de los complejos de cobre(I). La reducción de agua se ha logrado mediante un fotosensibilizador a base de cobre y un complejo de dímero Fe-fosfido formado in situ como catalizador de reducción de agua, en el documento "Copper-based photosensitisers in water reduction: a more efficient in situ formed system and improved mechanistic understanding”, Alastair et al., Chem. Eu. J. 2016, 22, 1233-1238. El documento muestra que un complejo basado en Cu se puede excitar con luz visible mediante una transferencia de carga del metal al ligando, que lleva a cabo la transferencia de electrones desde un reductor que se sacrifica a un catalizador de reducción de agua. A pesar de estos avances, la reducción directa del grupo funcional por transferencia de un solo electrón del catalizador fotoredox se limita a menudo al potencial redox del cromóforo. Además, esta es una tarea difícil, especialmente si se considera el control de la selectividad. Por lo tanto, a partir de lo que se conoce en la técnica, se deduce que el desarrollo de un procedimiento para la reducción fotocatalítica de compuestos insaturados usando agua como fuente de hidrógeno y basado en metales abundantes en la tierra sigue siendo de gran interés. SUMARIO DE LA INVENCIÓN Los inventores han desarrollado un procedimiento eficiente, general, selectivo y robusto que no es sensible a la humedad y que tolera el aire/oxígeno, con el fin de reducir arilcetonas, arilalquenos y aldehídos con un sistema catalizador dual que implica un compuesto de cobalto(II) que actúa como catalizador y un fotosensibilizador redox con un potencial de reducción adecuado para reducir el catalizador, en el que dicho procedimiento utiliza la luz visible como fuerza impulsora, agua o un alcohol como fuente de hidruro robusta y segura y un donante de electrones. La reacción se lleva a cabo a baja temperatura y a presión ambiente y los rendimientos de la reacción son altos.
El procedimiento es ventajoso, ya que se observa una exquisita selectividad hacia la hidrogenación de arilcetonas en presencia de alquenos terminales, cetonas alifáticas y alquinos, permaneciendo estos grupos inalterados por el sistema fotocatalizador. Sorprendentemente, el sistema catalizador también muestra una selectividad única para la reducción de cetonas aromáticas en presencia de aldehídos alifáticos. El procedimiento se lleva además a cabo en condiciones suaves y no requiere el uso de hidrógeno o especies de hidruro como fuente de hidrógeno, lo que lo hace adecuado para la reducción de una amplia gama de sustratos, ya que el procedimiento exhibe una alta tolerancia de grupos funcionales. Por lo tanto, un aspecto de la invención se refiere a un procedimiento fotocatalítico de reducción de un compuesto de fórmula (I) que produce un producto de fórmula (II):
Figure imgf000006_0001
en el que:
Y es O o CH^, y
R1 es un sistema de anillo aromático o heteroaromático que comprende de 1 a 2 anillos de 5 a 6 miembros, en el que los miembros se seleccionan entre C, CH, N, O y S, y en el que los anillos pueden estar sustituidos en cualquier posición disponible con uno o más grupos seleccionados entre halógeno, alquilo C1-C12 lineal o ramificado, haloalquilo C1-C12 lineal o ramificado y alquiloxi C1-C12 lineal o ramificado;
y
R2 se selecciona entre hidrógeno, un alquilo C1-C12, alquenilo C2-C13, alquinilo C2- C13 lineal o ramificado y un cicloalquilo C3-C8 en el que los grupos alquilo C1-C12, alquenilo C2-C13, alquinilo C2-C13 y cicloalquilo C3-C8 están opcionalmente sustituidos en cualquier posición disponible con uno o más radicales seleccionados entre el grupo que consiste en halo, hidroxilo, alquiloxi C1-C12, alquiloxicarbonilo C2-C7, alquilcarboniloxi C2-C7, alquilaminocarbonilo C2-C7, alquilcarbonilamino C2- C7, ciano, nitro y un sistema de anillo que comprende de 1 a 3 anillos, en el que cada anillo está saturado, insaturado o es aromático, comprendiendo los anillos de 3 a 7 miembros seleccionados entre C, CH, N, O y S, y en el que los anillos pueden estar sustituidos en cualquier posición disponible con uno o más grupos seleccionados entre alquilo C1-C12, haloalquilo C1-C12, alquiloxi C1-C12 hidroxilo, alquiloxicarbonilo C2-C7, alquilcarboniloxi C2-C7, alquilaminocarbonilo C2-C7, alquilcarbonilamino C2-C7, ciano y nitro;
con la condición de que:
cuando Y es O y R2 es H, R1 se selecciona además entre un alquilo C1-C12, alquenilo C2-C13, alquinilo C2-C13 lineal o ramificado, en el que el alquilo C1-C12, alquenilo C2-C13, alquinilo C2-C13 están opcionalmente sustituidos en cualquier posición disponible con uno o más radicales seleccionados entre el grupo que consiste en halo, hidroxilo, alquiloxi C1-C12, alquiloxicarbonilo C2-C7¸ alquilcarboniloxi C2-C7, alquilaminocarbonilo C2-C7, alquilcarbonilamino C2-C7, ciano, nitro y un sistema de anillo que comprende de 1 a 3 anillos, en el que cada anillo está saturado, insaturado o es aromático, comprendiendo los anillos de 3 a 7 miembros seleccionados entre C, CH, N, O y S, y en el que los anillos pueden estar sustituidos en cualquier posición disponible con uno o más grupos seleccionados entre alquilo C1-C12, haloalquilo C1-C12, alquiloxi C1-C12, hidroxilo, alquiloxicarbonilo C2-C7, alquilcarboniloxi C2-C7, alquilaminocarbonilo C2-C7, alquilcarbonilamino C2-C7, ciano y nitro; el procedimiento comprende poner en contacto bajo irradiación de luz el compuesto de fórmula (I) con una fuente de hidruro, en presencia de un donante de electrones y un sistema catalizador, en el que dicho sistema catalizador consiste en un compuesto de cobalto(II) que comprende un ligando orgánico tetradentado o pentadentado coordinado a un átomo de cobalto a través de 4 o 5 átomos de nitrógeno, y un fotosensibilizador que tiene un potencial de oxidación adecuado para reducir el compuesto de cobalto(II) a un compuesto de cobalto(I). Otro aspecto de la invención es un sistema catalizador dual que implica un complejo de cobalto robusto y bien definido y un catalizador fotoredox de cobre capaz de reducir eficazmente compuestos orgánicos insaturados bajo irradiación de luz con una fuente de hidruro, en presencia de un donante de electrones. El sistema catalizador dual funciona en mezclas acuosas y tolera una atmósfera que contiene oxígeno, a diferencia de la mayoría de los catalizadores de metales de transición utilizados en las reacciones de reducción/hidrogenación. Por lo tanto, otro aspecto de la invención se refiere a una composición que comprende un sistema catalizador que consiste en: un compuesto de fórmula [Cu(L1)(L2)]Z, en el que:
Cu está en el estado de oxidación (+1);
Z es un anión
L1 es un ligando de fosfina bidentado unido al átomo de Cu a través de los átomos de P
L2 es un ligando de nitrógeno bidentado unido al átomo de Cu mediante dos átomos de N que consiste en un sistema de anillo que comprende de 2 a 7 anillos, en el que los anillos tienen de 5 a 6 miembros seleccionados entre el grupo que consiste en C, CH, N y NH; siendo al menos dos miembros N o NH; los átomos de N unidos al átomo de cobre están separados por no más de tres miembros de anillo y son miembros de diferentes anillos;
los anillos son insaturados o aromáticos;
los anillos están fusionados o interconectados;
los anillos están opcionalmente sustituidos con uno o más radicales seleccionados entre el grupo que consiste en: alquilo C1-C6, haloalquilo C1-C6, halo, alquiloxi C1- C6, alquiloxicarbonilo C1-C6, alquilcarboniloxi C1-C6, ciano y nitro;
y un compuesto de cobalto(II) seleccionado entre los compuestos de fórmula [Co(L3)X]+X’- y [Co(L3)XX’] en el que:
X y X' son aniones iguales o diferentes;
L3 es un ligando nitrogenado tetradentado o pentadentado unido al átomo de Co a través de cuatro o cinco átomos de N que se selecciona entre los compuestos de fórmula (IIIa), (IIIb), (IIIc) y (IIId)
Figure imgf000008_0001
en el que cada R3 es un radical de fórmula (IV)
Figure imgf000008_0002
en el que Z es N o NH;
el enlace discontinuo representa un enlace simple C-Z o un enlace doble C=Z; y R10 y R11, junto con los átomos a los que están unidos, forman un sistema de anillo que comprende de uno a tres anillos insaturados o aromáticos de 5 a 6 miembros, en el que dichos anillos están fusionados o interconectados, los miembros del anillo se seleccionan entre C, CH, N y NH, en el que los anillos están además opcionalmente sustituidos con uno o más radicales seleccionados entre el grupo que consiste en alquilo C1-C6, haloalquilo C1-C6, halo, alquiloxi C1-C6, alquiloxicarbonilo C1-C6, alquilcarboniloxi C1-C6, ciano y nitro; R4 y R5 se seleccionan cada uno independientemente entre el grupo que consiste en: hidrógeno, alquilo C1-C6, haloalquilo C1-C6 y un radical de fórmula – C(R10)(ZR11); siendo al menos uno de R4 y R5 un radical de fórmula–C(R10)(ZR11); R6 y R7 se seleccionan cada uno independientemente entre el grupo que consiste en: hidrógeno, alquilo C1-C6, halo, haloalquilo C1-C6 y alquiloxi C1-C6; o alternativamente,
R6 y R7, junto con los átomos de carbono a los que están unidos, forman un cicloalquilo C3-C8 opcionalmente sustituido con uno o más radicales seleccionados entre el grupo que consiste en: alquilo C1-C6, halo, haloalquilo C1-C6 y alquiloxi C1- C6;
R8 es un radical seleccionado entre el grupo que consiste en hidrógeno, alquilo C1- C6 y haloalquilo C1-C6;
R8 es un radical seleccionado entre el grupo que consiste en hidrógeno, alquilo C1- C6 y haloalquilo C1-C6 y un radical de fórmula (IV);
o, alternativamente,
uno o dos de los pares de R6 y R8 y R7 y R8', junto con los átomos de carbono a los que están unidos, forman un cicloalquilo C3-C8 opcionalmente sustituido con uno o más radicales seleccionados entre el grupo que consiste en alquilo C1-C6, halo, haloalquilo C1-C6 y alquiloxi C1-C6;
R9 se selecciona entre el grupo que consiste en un radical de fórmula R12O(C=O)-, R12(C=O)-, R12O(S=O)- y R12O(SO2)- en el que R12 se selecciona entre el grupo que consiste en alquilo C1-C6, haloalquilo C1-C6, bencilo y fenilo opcionalmente sustituido con alquilo C1-C6 y haloalquilo C1-C6; y en el que:
cuando el compuesto de cobalto(II) es un compuesto de fórmula [Co(L3)X]+X’-, L3 es un ligando nitrogenado pentadentado; y
cuando el compuesto de cobalto(II) es un compuesto de fórmula [Co(L3)XX’], L3 es un ligando nitrogenado tetradentado. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Como se mencionó anteriormente, un aspecto de la presente invención se refiere a un procedimiento fotocatalítico de reducción de una arilcetona, un aldehído alifático o arilaldehído y un arilalqueno.
En la presente descripción:
El término "halógeno" se refiere a yodo, bromo, cloro y flúor.
El término "alquilo", solo o en combinación, se refiere a un grupo hidrocarburo saturado de cadena lineal o cadena ramificada que tiene el número indicado de átomos de carbono. Por ejemplo, alquilo C1-C6 se refiere a un grupo alquilo que tiene de uno a seis átomos de carbono con las restantes valencias ocupadas por átomos de hidrógeno. Ejemplos de grupos alquilo C1-C6 de cadena lineal y ramificada incluyen, pero no se limitan a, metilo, etilo, propilo, isopropilo, butilo, isobutilo, terc-butilo, los pentilos isoméricos, los hexilos isoméricos y similares. El término "haloalquilo" se refiere a radicales en los que uno o más de los átomos de carbono del alquilo están sustituidos por uno o más átomos de halógeno.
El término "alquenilo" abarca radicales lineales o ramificados que tienen el número indicado de átomos de carbono y que contienen al menos un doble enlace.
El término "alquinilo" abarca radicales lineales o ramificados que tienen el número indicado de átomos de carbono y que contienen al menos un triple enlace carbono-carbono.
El término "alquiloxi" significa un sustituyente alquilo unido al resto de una molécula vía oxígeno, en el que el término "alquilo" tiene la definición dada anteriormente. Ejemplos de grupo alquiloxi incluyen, pero no se limitan a, metoxi, etoxi, n-propoxi, isopropoxi, n-butoxi, isobutoxi, sec-butoxi y terc-butoxi.
El término "alquilcarboniloxi" incluye alquilo como se ha definido anteriormente unido a carbonilo unido a oxígeno (-OC(O)-alquilo). Ejemplos de grupo alquilcarboniloxi incluyen, pero no se limitan a, acetato, propionato y t- butilcarboniloxi.
El término "alquiloxicarbonilo" significa un radical que contiene un radical alquiloxi, como se ha definido anteriormente, unido mediante el átomo de oxígeno a un radical carbonilo (-C(O)-O-alquilo). Ejemplos de tales radicales incluyen, pero no se limitan a, metoxicarbonilo, etoxicarbonilo, propoxicarbonilo, butoxicarbonilo y hexiloxicarbonilo sustituidos o no sustituidos.
El término "sistema de anillo aromático" significa un grupo hidrocarburo aromático que puede ser un solo anillo o múltiples anillos que están fusionados entre sí o enlazados covalentemente, y que opcionalmente lleva uno o más sustituyentes. El término "sistema de anillo heteroaromático", solo o en combinación, se refiere a un heterociclo aromático de 5 a 10 miembros que contiene uno o más, preferentemente uno o dos heteroátomos seleccionados entre nitrógeno, oxígeno y azufre. El heteroarilo puede estar sustituido en uno o más átomos de carbono, como se define en el presente documento, por ejemplo con sustituyentes tales como halógeno, alquilo, alcoxi, ciano, haloalquilo.
El término "alquilcetona" se refiere a una cetona en la que el grupo carbonilo está conectado a radicales alquilo. El término "cicloalquilo" se refiere a un grupo cicloalquilo monocíclico o bicíclico saturado. Ejemplos de grupos cicloalquilo incluyen ciclopropilo, ciclobutilo, ciclopentilo.
El término "sistema catalizador" pretende aclarar que es necesario que los dos componentes, el compuesto de cobalto(II) y el fotosensibilizador, estén presentes simultáneamente en el procedimiento de reducción. En un modo de realización en particular del procedimiento de reducción de la invención, opcionalmente en combinación con uno o más de los modos de realización descritos a continuación, el sistema catalizador utilizado en el procedimiento de la invención consiste en un compuesto de cobalto(II) que comprende un ligando orgánico tetradentado o pentadentado coordinado a un átomo de cobalto a través de 4 o 5 átomos de nitrógeno, en el que al menos uno de los 4 o 5 átomos de nitrógeno es un miembro de un anillo aromático de 5 o 6 miembros del ligando orgánico, y un fotosensibilizador que tiene un potencial de oxidación adecuado para reducir el compuesto de cobalto(II) a un compuesto de cobalto(I). En un modo de realización en particular del procedimiento de reducción de la invención, opcionalmente en combinación con uno o más de los modos de realización descritos a continuación, el fotosensibilizador tiene un potencial de oxidación mayor que el potencial de oxidación del compuesto de cobalto(II). En un modo de realización en particular del procedimiento de reducción de la invención, opcionalmente en combinación con uno o más de los modos de realización descritos a continuación, la luz es luz visible. Como se conoce en el estado de la técnica, "luz visible" se refiere a una irradiación en el intervalo de longitud de onda de 400 a 800 nm. En un modo de realización más en particular del procedimiento de reducción de la invención, opcionalmente en combinación con uno o más de los modos de realización descritos a continuación, la luz utilizada es adecuada para inducir un cambio en la configuración electrónica del fotosensibilizador, promoviendo la transferencia de un electrón del fotosensibilizador a un orbital molecular de mayor nivel energético. Más en particular, la longitud de onda de la luz utilizada en el procedimiento de reducción de la invención está en el intervalo de 400 a 500 nm. Incluso más en particular, opcionalmente en combinación con uno o más de los modos de realización descritos a continuación, la longitud de onda de la luz utilizada en el procedimiento de reducción de la invención es 447 nm. En un modo de realización en particular del procedimiento de reducción de la invención, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, la fuente de hidruro es un compuesto de fórmula ROH en el que R se selecciona entre hidrógeno y alquilo C1-C6. En un modo de realización más en particular, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, la fuente de hidruro es agua. Más en particular, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, la fuente de hidruro utilizada en el procedimiento de la invención se puede usar como disolvente o codisolvente del procedimiento. En un modo de realización en particular del procedimiento de reducción de la invención, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el procedimiento de reducción de la invención se lleva a cabo en un disolvente aprótico que es miscible con agua. Preferentemente, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el procedimiento de reducción de la invención se lleva a cabo en acetonitrilo. En un modo de realización en particular del procedimiento de reducción de la invención, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el donante de electrones es una amina terciaria. Más en particular, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el donante de electrones es un compuesto de fórmula NR'3 en el que cada R' es, independientemente, alquilo C1-C6. Incluso más en particular, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el donante de electrones se selecciona entre trietilamina y diisopropiletilamina. Las aminas terciarias se pueden usar en gran exceso o como parte del sistema disolvente en el procedimiento de la invención. Alternativamente, el donante de electrones se puede seleccionar entre las formas reducidas de CO2, siendo tal forma reducida de CO2preferentemente seleccionada entre el grupo que consiste en metanol, formaldehído, ácido fórmico, ácido oxálico, ácido ascórbico y ácido láctico. El donante de electrones puede consistir alternativamente en un electrodo tal como una semicelda electroquímica o un cátodo. En un modo de realización en particular del procedimiento de reducción de la invención, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el procedimiento se lleva a cabo a una temperatura en el intervalo de -10 ºC a 50 ºC; más preferentemente en el intervalo de 20 ºC a 40 ºC. Aún más preferentemente, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el procedimiento se lleva a cabo a una temperatura de 30 ºC, particularmente cuando en el compuesto de fórmula (I) Y es O. Alternativamente, cuando en el compuesto de fórmula (I) Y es CH2, el procedimiento se lleva a cabo a una temperatura en el intervalo de -5 ºC a 20 ºC. En un modo de realización en particular del procedimiento de reducción de la invención, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el sistema catalizador es uno en el que el fotosensibilizador se selecciona entre el grupo que consiste en clorofilas, eosina Y, rosa de Bengala, complejos de rutenio(II) hexacoordinados con ligandos polipiridilo, complejos de iridio(III) hexacoordinados con ligandos piridilo y/o polipiridilo y un compuesto de fórmula [Cu(L1)(L2)]Z, en el que:
Cu está en el estado de oxidación (+1);
Z es un anión
L1 es un ligando de fosfina bidentado unido al átomo de Cu a través de los átomos de P
L2 es un ligando de nitrógeno bidentado unido al átomo de Cu mediante dos átomos de N que consiste en un sistema de anillo que comprende de 2 a 7 anillos, en el que los anillos tienen de 5 a 6 miembros seleccionados entre el grupo que consiste en C, CH, N y NH; siendo al menos dos miembros N o NH; en el que los átomos de N unidos al átomo de cobre están separados por no más de tres miembros de anillo y son miembros de diferentes anillos;
los anillos son insaturados o aromáticos;
los anillos están fusionados o interconectados; los anillos están opcionalmente sustituidos con uno o más radicales seleccionados entre el grupo que consiste en: alquilo C1-C6, haloalquilo C1-C6, halo, alquiloxi C1- C6, alquiloxicarbonilo C1-C6, alquilcarboniloxi C1-C6, ciano y nitro. En un modo de realización más en particular del procedimiento de reducción de la invención, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el sistema catalizador es uno en el que el fotosensibilizador se selecciona entre el grupo que consiste en complejos de rutenio(II) hexacoordinados con ligandos polipiridilo, complejos de iridio(I) tetracoordinados con ligandos de piridilo y/o polipiridilo, y un compuesto de fórmula [Cu(L1)(L2)]Z como se definió anteriormente. En un modo de realización más en particular del procedimiento de reducción de la invención, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el sistema catalizador en uno el que el fotosensibilizador se selecciona entre el grupo que consiste en [Ru(bpy)3](PF6)2, [Ir(ppy)2(bpy)]PF6 y un compuesto de fórmula [Cu(L1)(L2)]Z como se definió anteriormente.
Figure imgf000014_0001
En un modo de realización más en particular del procedimiento de reducción de la invención, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el fotosensibilizador es [Ir(ppy)2(bpy)]PF6. En un modo de realización en particular del procedimiento de reducción de la invención, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el fotosensibilizador es un compuesto de fórmula [Cu(L1)(L2)]Z como se definió anteriormente. Tal compuesto de fórmula [Cu(L1)(L2)]Z es preferentemente un compuesto en el que L1 es una difosfina que tiene un ángulo de mordida en el intervalo de 95º a 125º. Más en particular, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el fotosensibilizador es un compuesto de fórmula [Cu(L1)(L2)]Z en el que L1 es un compuesto de fórmula P(R14R14’)-Q-P(R13R13’) en el que cada uno de R14, R14’, R13 y R13’ se selecciona independientemente entre el grupo que consiste en alquilo C1-C6, alquiloxi C1-C6 y fenilo que está opcionalmente sustituido con uno o más radicales seleccionados entre el grupo que consiste en alquilo C1-C6, haloalquilo C1-C6, halo, alquiloxi C1- C6, alquiloxicarbonilo C1-C6, alquilcarboniloxi C1-C6, ciano y nitro;
Q se selecciona entre los dirradicales derivados de los radicales alquilo C2-C6, cicloalquilo C3-C8, y un dirradical de fórmula (V)
Figure imgf000015_0001
en el que:
cada uno de R18, R18’, R15, R15’, R16, R16’, R17 y R17’ se selecciona
independientemente entre el grupo que consiste en hidrógeno, alquilo C1-C6, haloalquilo C1-C6, halo, alquiloxi C1-C6, alquiloxicarbonilo C1-C6, alquilcarboniloxi C1-C6, ciano y nitro; y
R17 y R17' forman juntos además opcionalmente un dirradical de fórmula -(A)n- en el que n es un número entero de 0 a 1 y A se selecciona entre el grupo que consiste en CH2, CH2-CH2, S, C(alquilo C1-C6)2, PR13, Si(alquilo C1-C6)2 y alquenilo C1-C6. Más en particular, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el fotosensibilizador es un compuesto de fórmula [Cu(L1)(L2)]Z en el que L1 es un compuesto de fórmula P(R14R14’)-Q-P(R13R13’) en el que cada uno deR14, R14’ R13 y R13’ es fenilo;
Q es un dirradical de fórmula (V) como se definió anteriormente en el que R17 y R17' forman juntos un dirradical de fórmula -(A)n- en el que n es 1 y A es C (alquilo C1-C6)2 y en el que cada uno de R18, R18’, R15, R15’, R16, y R16’ se selecciona independientemente entre el grupo que consiste en hidrógeno, alquilo C1-C6, haloalquilo C1-C6, halo, alquiloxi C1-C6, alquiloxicarbonilo C1-C6, alquilcarboniloxi C1-C6, ciano y nitro. Más en particular, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el fotosensibilizador es un compuesto de fórmula [Cu(L1)(L2)]Z en el que L1 es Xantphos de fórmula:
Figure imgf000016_0001
Xantphos Además, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, dicho compuesto de fórmula [Cu(L1)(L2)]Z es preferentemente un compuesto en el que L2 es un compuesto de fórmula (VI)
Figure imgf000016_0002
en el que:
Z es N o NH;
el enlace discontinuo representa un enlace simple C-Z o un enlace doble C=Z; cada uno de los pares Ra y Rb y Rc y Rd, junto con los átomos a los que están unidos, forman un sistema de anillo que es igual o diferente, cada sistema de anillo comprende de uno a cuatro anillos insaturados o aromáticos de 5 a 6 miembros, en el que dichos anillos están fusionados o interconectados, los miembros del anillo se seleccionan entre C, CH, N, NH y O y los anillos están además opcionalmente sustituidos con uno o más radicales seleccionados entre el grupo que consiste en alquilo C1-C6, haloalquilo C1-C6, halo, alquiloxi C1-C6, alquiloxicarbonilo C1-C6, alquilcarboniloxi C1-C6, ciano y nitro; y en el que el par Rb y Rc forma opcionalmente además un sistema de anillo que comprende de uno a dos anillos insaturados o aromáticos de 5 a 6 miembros, en el que dichos anillos están fusionados o interconectados, los miembros del anillo se seleccionan entre C, CH, N, NH y O y en el que los anillos están además opcionalmente sustituidos con uno o más radicales seleccionados entre el grupo que consiste en alquilo C1- C6, haloalquilo C1-C6, halo, alquiloxi C1-C6, alquiloxicarbonilo C1-C6, alquilcarboniloxi C1-C6, ciano y nitro. Preferentemente, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el compuesto de fórmula [Cu(L1)(L2)]Z es uno en el que L2 es un compuesto de fórmula (VI) como se ha definido anteriormente, en el que:
Z es N;
cada uno de los pares Ra y Rb y Rc y Rd, junto con los átomos a los que están unidos, forman un anillo fenilo opcionalmente sustituido con uno o más radicales seleccionados entre el grupo que consiste en alquilo C1-C6, haloalquilo C1-C6, halo, alquiloxi C1-C6, alquiloxicarbonilo C1-C6, alquilcarboniloxi C1-C6, ciano y nitro; y en el que el par Rb y Rc, junto con los átomos de carbono a los que están unidos, forman un anillo fenilo que está opcionalmente sustituido con uno o más radicales seleccionados entre el grupo que consiste en alquilo C1-C6, haloalquilo C1-C6, halo, alquiloxi C1-C6, alquiloxicarbonilo C1-C6, alquilcarboniloxi C1-C6, ciano y nitro. Más preferentemente, el compuesto de fórmula [Cu(L1)(L2)]Z es uno en el que L2 es batocuproína. En un modo de realización preferente, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el compuesto de fórmula [Cu(L1)(L2)]Z es uno de fórmula:
Figure imgf000017_0001
En un modo de realización preferente, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, la relación molar entre el fotosensibilizador de la composición catalizadora y el compuesto de fórmula (I) está en el intervalo de 1:1000 a 5:100. Preferentemente, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, la relación molar entre el fotosensibilizador de la composición catalizadora y el compuesto de fórmula (I) está en el intervalo de 1:100 a 2:100. En otro modo de realización en particular, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el compuesto de cobalto(II) de la composición catalizadora se selecciona entre los compuestos de fórmula [Co(L3)X]+X’- y [Co(L3)XX’] en los que:
X y X' son aniones que pueden ser iguales o diferentes;
L3 es un ligando nitrogenado tetradentado o pentadentado unido al átomo de Co a través de cuatro o cinco átomos de N que se selecciona entre los compuestos de fórmula (IIIa), (IIIb), (IIIc) y (IIId)
Figure imgf000018_0001
en el que cada R3 es un radical de fórmula (IV)
Figure imgf000018_0002
en el que Z es N o NH;
el enlace discontinuo representa un enlace simple C-Z o un enlace doble C=Z; y R10 y R11, junto con los átomos a los que están unidos, forman un sistema de anillo que comprende de uno a tres anillos insaturados o aromáticos de 5 a 6 miembros, en el que dichos anillos están fusionados o interconectados, los miembros del anillo se seleccionan entre C, CH, N y NH, en el que los anillos están además opcionalmente sustituidos con uno o más radicales seleccionados entre el grupo que consiste en alquilo C1-C6, haloalquilo C1-C6, halo, alquiloxi C1-C6, alquiloxicarbonilo C1-C6, alquilcarboniloxi C1-C6, ciano y nitro; R4 y R5 se seleccionan cada uno independientemente entre el grupo que consiste en: hidrógeno, alquilo C1-C6, haloalquilo C1-C6 y un radical de fórmula – C(R10)(ZR11); siendo al menos uno de R4 y R5 un radical de fórmula–C(R10)(ZR11); R6 y R7 se seleccionan cada uno independientemente entre el grupo que consiste en: hidrógeno, alquilo C1-C6, halo, haloalquilo C1-C6 y alquiloxi C1-C6; o alternativamente,
R6 y R7, junto con los átomos de carbono a los que están unidos, forman un cicloalquilo C3-C8 opcionalmente sustituido con uno o más radicales seleccionados entre el grupo que consiste en: alquilo C1-C6, halo, haloalquilo C1-C6 y alquiloxi C1- C6;
R8 es un radical seleccionado entre el grupo que consiste en hidrógeno, alquilo C1- C6 y haloalquilo C1-C6;
R8 es un radical seleccionado entre el grupo que consiste en hidrógeno, alquilo C1- C6 y haloalquilo C1-C6 y un radical de fórmula (IV);
o, alternativamente,
uno o dos de los pares de R6 y R8 y R7 y R8’, junto con los átomos de carbono a los que están unidos, forman un cicloalquilo C3-C8 opcionalmente sustituido con uno o más radicales seleccionados entre el grupo que consiste en alquilo C1-C6, halo, haloalquilo C1-C6 y alquiloxi C1-C6;
R9 se selecciona entre el grupo que consiste en un radical de fórmula R12O(C=O)-, R12(C=O)-, R12O(S=O)- y R12O(SO2)- en el que R12 se selecciona entre el grupo que consiste en alquilo C1-C6, haloalquilo C1-C6, bencilo y fenilo opcionalmente sustituido con alquilo C1-C6 y haloalquilo C1-C6; y en el que:
cuando el compuesto de cobalto(II) es un compuesto de fórmula [Co(L3)X]+X’-, L3 es un ligando nitrogenado pentadentado; y
cuando el compuesto de cobalto(II) es un compuesto de fórmula [Co(L3)XX’], L3 es un ligando nitrogenado tetradentado. En un modo de realización más en particular, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el compuesto de cobalto(II) de la composición catalizadora se selecciona entre los compuestos de fórmula [Co(L3)X]+X’- y [Co(L3)XX’] en los que:
X y X' son iguales y se seleccionan entre cloruro y trifluorometanosulfonato;
L3 es un ligando nitrogenado tetradentado o pentadentado unido al átomo de Co a través de cuatro o cinco átomos de N que se selecciona entre los compuestos de fórmula (IIIa), (IIIb), (IIIc) y (IIId) como se ha definido anteriormente, en los que cada R3 es un radical de fórmula (IV) como se ha definido anteriormente en el que: Z es N;
R10 y R11, junto con los átomos a los que están unidos, forman un anillo piridilo; R6 y R7 son cada uno hidrógeno, o, alternativamente, R6 y R7, junto con los átomos de carbono a los que están unidos, forman un grupo ciclohexilo;
R4 y R5 se seleccionan cada uno entre el grupo que consiste en hidrógeno, 2- piridilo y 6-(2-piridil)-2-piridilo;
R8 es un radical seleccionado entre el grupo que consiste en hidrógeno y metilo; R8 es un radical seleccionado entre el grupo que consiste en hidrógeno, metilo y un radical de fórmula (IV) en el que R6 y R7 son hidrógeno, Z es N y R10 y R11, junto con los átomos a los que están unidos, forman a un anillo piridilo; o alternativamente,
los dos de los pares de R6 y R8 y R7 y R8', junto con los átomos de carbono a los que están unidos, forman un ciclopentilo;
R9 es un radical de fórmula R12O(SO2)- en el que R12 es un grupo tolilo. En un modo de realización más en particular, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el compuesto de cobalto(II) de la composición catalizadora se selecciona entre los compuestos de fórmula [Co(L3)X]+X’- y [Co(L3)XX’] en los que L3 es un compuesto de fórmula (IIIa) como se ha definido anteriormente en el que:
R3 es un radical de fórmula (IV) en el que Z es N, R6 y R7 son hidrógeno y R10 y R11, junto con los átomos a los que están unidos, forman un anillo piridilo;
R4 y R5 se seleccionan independientemente entre el grupo que consiste en hidrógeno, 2-piridilo y 6-(2-piridil)-2-piridilo; En un modo de realización más en particular, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el compuesto de cobalto(II) de la composición catalizadora se selecciona entre los compuestos de fórmula [Co(L3)X]+X’- y [Co(L3)XX’] en los que L3 es un compuesto de fórmula (IIIb) como se ha definido anteriormente en el que:
R3 es un radical de fórmula (IV) en el que Z es N, R6 y R7 son hidrógeno y R10 y R11, junto con los átomos a los que están unidos, forman un anillo piridilo;
R6 y R7, junto con los átomos de carbono a los que están unidos, forman un grupo ciclohexilo; R8 es un radical seleccionado entre el grupo que consiste en hidrógeno y metilo; R8 es un radical seleccionado entre el grupo que consiste en hidrógeno, metilo y un radical de fórmula (IV) en el que R6 y R7 son hidrógeno, Z es N y R10 y R11, junto con los átomos a los que están unidos, forman a un anillo piridilo;
o, alternativamente,
los dos de los pares de R6 y R8 y R7 y R8', junto con los átomos de carbono a los que están unidos, forman un ciclopentilo. En un modo de realización más en particular, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el compuesto de cobalto(II) de la composición catalizadora se selecciona entre los compuestos de fórmula [Co(L3)X]+X’- y [Co(L3)XX’] en los que L3 se selecciona entre los compuestos de fórmula (IIIc) y (IIId) como se ha definido anteriormente en el que:
R3 es un radical de fórmula (IV) en el que Z es N, R6 y R7 son hidrógeno y R10 y R11, junto con los átomos a los que están unidos, forman un anillo piridilo;
R6 y R7 son hidrógeno y R9 es tolilo. En un modo de realización más en particular, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el compuesto de cobalto(II) de la composición catalizadora se selecciona entre los
Figure imgf000021_0001
compuestos de fórmulas En un modo de realización más en particular, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el compuesto de cobalto(II) de la composición catalizadora es [Co(OTf)(Py2 Tstacn)](OTf). En otro modo de realización en particular, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, la relación molar entre el complejo de cobalto(II) de la composición catalizadora y el compuesto de fórmula (I) está en el intervalo de 1:1400 a 5:100. Preferentemente, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, la relación molar entre el complejo de cobalto(II) de la composición catalizadora y el compuesto de fórmula (I) está en el intervalo de 1:50 a 4:100. En un modo de realización más en particular, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, la composición catalizadora es una en la que
el [Cu(L1)(L2)]Z es [Cu(batocuproína)(Xantphos)](PF6) y el compuesto de cobalto(II) es [Co(OTf)(Py2 Tstacn)](OTf)
Figure imgf000022_0001
Otro aspecto de la invención es la composición que comprende el sistema catalizador como se ha definido anteriormente. La composición que comprende el sistema catalizador consiste en el fotosensibilizador y el complejo de cobalto(II) como se describe en el presente documento. Todos los modos de realización específicos, ya sean preferentes o particulares, del primer aspecto de la invención y relacionados con el compuesto de fórmula [Cu(L1)(L2)]Y y el complejo de cobalto(II) son de aplicación en el segundo aspecto de la invención. En un modo de realización más en particular, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, la composición catalizadora es una en la que la relación molar entre el complejo de cobalto(II) y el fotosensibilizador está en el intervalo de 0,01:1 a 1:0,01. Preferentemente, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, la composición catalizadora es una en la que la relación molar entre el complejo de cobalto(II) y el fotosensibilizador está en el intervalo de
1:1 a 3:1. Preferentemente, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, la composición catalizadora es una en la que la cantidad molar del compuesto de cobalto(II) es el doble de la cantidad molar del compuesto de fórmula [Cu(L1)(L2)]Y. Preferentemente, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, la relación molar entre el compuesto de fórmula [Cu(L1)(L2)]Y y el compuesto de cobalto(II) está
comprendido entre 0,01:1 y 1: 0,01. Preferentemente, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el compuesto de cobalto(II) se selecciona entre: [Co(OTf)(Py2 Tstacn)](OTf), [Co(OTf)(DPA-Bpy)](OTf), [Co(OTf)(N4Py)](OTf), [Co(OTf)(H-CDPy3)](OTf), [Co(OTf)2(PDP)], [Co(OTf)(TPA)](OTf), [Co(Cl)2(mcp)] y [Co(Cl)(Py)(dmgH)2].
Figure imgf000023_0001
Preferentemente, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el [Cu(L1)(L2)]Z es [Cu(batocuproína)(Xantphos)](PF6).
Figure imgf000024_0001
Preferentemente, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el compuesto de cobalto(II), es [Co(OTf)(Py2 Tstacn)](OTf). Preferentemente, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, el [Cu(L1)(L2)]Z es [Cu(batocuproína)(Xantphos)](PF6) y el compuesto de cobalto(II) es [Co(II)(OTf)(Py2 Tstacn)](OTf).
Figure imgf000024_0002
Preferentemente, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, la relación molar entre el compuesto [Cu(batocuproína)(Xantphos)](PF6) y el [Co(II)(OTf)(Py2 Tstacn)](OTf) está comprendida entre 0,01:1 y 1: 0,01. Preferentemente, opcionalmente en combinación con uno o más de los modos de realización descritos anteriormente o a continuación, la cantidad molar del compuesto de cobalto(II) es el doble de la cantidad molar del compuesto de fórmula [Cu(L1)(L2)]Z. Los siguientes ejemplos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Además, la presente invención cubre todas las combinaciones posibles de modos de realización particulares y preferentes descritos en el presente documento. EJEMPLOS Selección de catalizadores de cobalto Se comparó la capacidad catalítica de diferentes complejos de cobalto tales como los descritos a continuación:
Figure imgf000025_0002
La actividad fotocatalítica se ensayó en la reducción de acetofenona en presencia de los diferentes catalizadores (1) a (7), CoII-L, en el que L es TPA, N4Py, DPA- Bpy, BpcMe, H-CDPy3, PDP, Py2 Tstacn, y en presencia de [Ir(bpy)(ppy)2]PF6 (PSIr) como fotosensibilizador.
Figure imgf000025_0001
Condiciones de reacción: 9a (0,168 mmol, 16,5 mM), PSIr (2,5 µmol, 1,5 % mol), catalizador de cobalto (5 µmol, 3 % mol), H2O:CH3CN:Et3N (8:2:0,2 ml), irradiación a λ = 447 nm durante 5 h a 30 ºC bajo N2. Los rendimientos y las tasas de formación de 10a se determinaron mediante cromatografía de gases después del post-tratamiento de la reacción utilizando un patrón interno calibrado. Las cantidades totales y las velocidades de formación de H2 se determinaron monitorizando el aumento de la presión y se cuantificaron por análisis de GC. ^10a: Tasa de formación de 10a (mmol h-1), ^H2: Tasa de formación de H2 (mmol H2 h-1). Tabla 1. Rendimiento del catalizador
Figure imgf000026_0002
En todos los casos se observó actividad fotocatalítica, pero [Co(OTf)(Py Ts
2 tacn)](OTf) resulta ser el más eficiente en estas condiciones. Optimización de la reducción de 9a utilizando PSCu
Figure imgf000026_0001
Se utilizó acetofenona (9a) como sustrato modelo para la optimización de las condiciones catalíticas cuando se usa [Cu(batocuproína)(Xantphos)](PF6) (PSCu) como catalizador fotoredox y 1 [Co(OTf)(Py Ts
2 tacn)](OTf) como catalizador. Optimización de la relación H2O:CH3CN
Tabla 2. Reducción fotocatalítica de 9a con PSCu a diferentes relaciones de
MeCN:H2O.
Figure imgf000027_0002
Condiciones de reacción: [9a] (0,168 mmol, 16,5 mM), 1 (5 ^mol, 3 % mol), PSCu (2,5 ^mol, 1,5 % mol), 0,2 ml Et3N (8,5 eq.), irradiación a λ = 447 nm durante 5 h a 30 ºC bajo N2. Volumen total de mezcla: 10 ml. Las conversiones de 9a y los rendimientos de 10a se determinaron mediante GC después del post-tratamiento de la reacción con respecto a un patrón interno calibrado. Sus = sustrato recuperado. PSCu = [Cu(batocuproína)(Xantphos)](PF6). Optimización de la carga de PSCu
Figure imgf000027_0001
Tabla 3. Reducción fotocatalítica de 9a usando diferentes car as de PSCu.
Figure imgf000028_0002
Condiciones de reacción: [9a] (0,168 mmol, 16,5 mM), 1Co (5 ^mol, 3 % mol), PSCu (0-2,4 % mol), 0,2 ml Et3N (8,5 eq.), irradiación a λ = 447 nm durante 5 h a 30 ºC bajo N2. Volumen total de mezcla: 10 ml. Las conversiones de 9a y los rendimientos de 10a se determinaron mediante GC después del post-tratamiento de la reacción con respecto al patrón interno calibrado. Sus = sustrato sin reaccionar. Optimización de la carga del catalizador de cobalto 1
Figure imgf000028_0001
Condiciones de reacción: [9a] (0,168 mmol, 16,5 mM), PSCu (2,5 ^mol, 1,5 % mol), 1 (0,005-5 % mol), 0,2 ml de Et3N (8,5 eq.), irradiación a λ = 447 nm durante 5 h a 30 ºC bajo N2. Volumen total de mezcla: 10 ml. La cantidad del material de partida 9a y los rendimientos de 10a se determinaron mediante GC después del post- tratamiento de la reacción con respecto al patrón interno calibrado. Sus = sustrato sin reaccionar. TONcat = moles 10a/moles 1. Tabla 4. Reducción fotocatalítica de 9a usando diferentes car as de 1Co.
Figure imgf000029_0002
Selección de sustrato
Alcance del fotosensibilizador y de arilcetonas
Figure imgf000029_0001
T l . R i n im l r l z m r nil l i n .
Figure imgf000030_0001
Figure imgf000031_0001
[a] Condiciones catalíticas estándar (cce): 1Co (3 % mol), PSIr (2 % mol), Sustrato (0,126 mmol) en MeCN:H2O:Et3N (2:8:0,2 ml), irradiación a 447 nm durante 5 h a 30 ºC bajo N2. [b] 1Co (1 % mol), PSCu (1,5 % mol), Sustrato (0,168 mmol) en MeCN:H2O:Et3N (4:6:0,2 ml), irradiación a 447 nm durante 5 h a 30 ºC bajo N2. [c] Los rendimientos y el sustrato sin reaccionar se determinaron mediante análisis GC con respecto al patrón interno calibrado después del post-tratamiento. Los valores son el promedio de triplicados. Sus = sustrato sin reaccionar. [d] Rendimientos aislados entre paréntesis. [e] MeCN:H2O:Et3N (3:7:0,2 ml). [f] 1Co (2 % mol).[g] Se detectó la formación de 1-feniletanol (5 % de rendimiento). [h] Se detectó la formación del producto dimérico 2,3-bis(4-clorofenil)butano-2,3-diol (7 % utilizando PSIr y 19 % utilizando PSCu). [i] 1,5 h de irradiación. [j] Debido a la baja solubilidad del compuesto, la mezcla de disolventes empleada fue MeCN:H2O:Et3N (4:6:0,2 ml). [k] Se obtuvo 3-fenilbut-2-en-1-ol (9ak) (45 % de rendimiento) como subproducto. El alcance presentado en la Tabla 5 muestra la capacidad del sistema catalizador para reducir una variedad de cetonas y aldehídos aromáticos. Los rendimientos de alcohol estaban influenciados por el tamaño del grupo alquilo (R') de la cetona 9b- 9e. Los sustratos 1,2-difeniletano-1-ona (9f) y α-tretralona (9g) se redujeron con rendimientos similares: 54 % y 50 % respectivamente. En el caso de metil-acetofenonas, la sustitución en la posición para- (9i), meta- (9j) u orto- (9k) del anillo aromático influye en el resultado de la reacción (33 %, 69 % y 4 %, respectivamente).
Por otro lado, se produjo la conversión de acetofenonas metoxi-sustituidas (9m- 9o), de acuerdo con la reactividad derivada de los efectos electrónicos. Se observó que el sustrato 9m que contiene un sustituyente MeO donante de electrones en la posición para del anillo aromático reacciona con una velocidad inicial lenta de 0,010 mmol h-1, lo que es consistente con la naturaleza menos electrofílica del grupo carbonilo. La transformación fotoquímica selectiva de moléculas orgánicas que contienen átomos de halógeno es siempre compleja, ya que el procedimiento de deshalogenación puede ser una vía competitiva. A este respecto, el sistema catalizador muestra buena tolerancia en la reducción de acetofenonas que contienen átomos de flúor y cloro en el anillo aromático. De acuerdo con el análisis de GC, los sustratos 9p-9u se redujeron con buenos rendimientos a los correspondientes alcoholes halogenados 10p-10u (81-92 % de rendimiento) sin productos deshalogenados. Sorprendentemente, sustratos más pobres en electrones tales como los aldehídos 9v-9x se convirtieron completamente en alcoholes con excelentes rendimientos. Además, el sistema catalizador también es capaz de reducir el aldehído alifático 9y (11 % de rendimiento). Es importante observar que la reducción de todos los sustratos ensayados no se observa en ausencia del catalizador de cobalto. Optimización de la reducción de aldehídos alifáticos
Se utilizó hidrocinamaldehído (11e) como sustrato modelo para la optimización de las condiciones catalíticas cuando se utiliza PSCu como catalizador fotoredox y 1 como catalizador. Tabla 6. Optimización de las condiciones catalíticas ara la fotorreducción de 11e.
Figure imgf000032_0001
Figure imgf000033_0001
Condiciones: 1 (% mol), PSCu (% mol), sustrato (mM) como se indica en la tabla, en H2O:CH3CN:Et3N o H2O:CH3CN:iPr2EtN (6:4:0,2 ml), irradiación a λ = 447 nm durante 5 h a 30 ºC o 15 ºC o durante 24 h a -3 ºC bajo N2. Los rendimientos se determinaron por análisis de GC después del post-tratamiento de la reacción con respecto a un patrón interno calibrado. Los valores son el promedio de triplicados. Tabla 7. Optimización de las condiciones catalíticas para la fotorreducción de 11f (3-(piridin-2-il)propanal).
Figure imgf000034_0003
Condiciones: 1 (% mol), PSCu (% mol), sustrato (mM) como se indica en la tabla, en H2O:CH3CN:Et3N o H2O:CH3CN:iPr2EtN (6:4:0,2 ml), irradiación a λ = 447 nm durante 5 h a 15 ºC bajo N2. Los rendimientos se determinaron por análisis de GC después del post-tratamiento de la reacción con respecto a un patrón interno calibrado. Los valores fueron el promedio de triplicados. Optimización de la reducción de alquenos aromáticos monosustituidos
Se utilizó estireno (13a) como sustrato modelo para la optimización de las condiciones catalíticas cuando se utiliza PSCu como catalizador fotoredox y 1 como catalizador. Optimización de la carga del sistema catalizador dual y de la concentración del sustrato
Figure imgf000034_0001
Tabla 8. Optimización de las condiciones catalíticas para la reducción de 13a usando PSCu como catalizador fotoredox y 1 como catalizador.
Figure imgf000034_0002
Figure imgf000035_0002
Condiciones: 1 (% mol), PSCu (% mol), sustrato (mM) como se indica en la tabla, en H2O:CH3CN:Et3N (6:4:0,2 ml), irradiación a λ = 447 nm durante 5 h a 35 o 15 ºC bajo N2. Los rendimientos se determinaron por análisis de GC después del post- tratamiento de la reacción con respecto a un patrón interno calibrado. Los valores son el promedio de triplicados. Optimización de alquenos aromáticos 1,1-disustituidos
Se utilizó α-metilestireno (15a) como sustrato modelo para la optimización de las condiciones catalíticas cuando se utiliza PSCu como catalizador fotoredox y 1 como catalizador.
Figure imgf000035_0001
Tabla 9. Variación de la concentración de sustrato utilizando las condiciones optimizadas para la fotorreducción de derivados de estireno.
Figure imgf000035_0003
Tabla 10. Variación del donante de electrones (DE) utilizando la mejor concentración de sustrato (4,4 mM) y las condiciones optimizadas para la fotorreducción de derivados de estireno.
Figure imgf000036_0001
Tabla 11. Variación de la carga del sistema catalizador dual utilizando el mejor DE DIPEA la meor concentración del sustrato 4,4 mM .
Figure imgf000036_0002
Tabla 12. Variación de la temperatura utilizando el mejor DE (DIPEA), la mejor concentración del sustrato (4,4 mM) y 6 % mol de carga del sistema catalizador
Figure imgf000036_0003
dual.
Figure imgf000036_0004
Condiciones: 1 (% mol), PSCu (% mol), sustrato (mM) como se indica en la tabla, en H2O:CH3CN:Et3N o H2O:CH3CN:iPr2EtN (6:4:0,2 ml), λ = 447 nm durante 5 h a 15 ºC o durante 24 h a 3 y -3 ºC bajo N2. Los rendimientos se determinaron por análisis de GC después del post-tratamiento de la reacción con respecto a un patrón interno calibrado. Los valores son el promedio de triplicados. Fotorreducción de alquenos aromáticos disustituidos
Figure imgf000037_0001
Figure imgf000037_0002
Selectividad: experimentos de competición Sorprendentemente, el sistema fotocatalizador fue capaz de reducir de una manera exquisita 9a en presencia de 1-fenilpropan-2-ona (9ad), ciclohexanona (9ae) o 2-acetil-1-metilpirrol (9af). Además, el producto 10a fue el único producto reducido observado, incluso cuando el 9a se consumió completamente y el tiempo de irradiación se prolongó hasta 24 h. Esta preferencia por las cetonas aromáticas se extiende a una cetona alifática, alqueno y alquino. Se seleccionaron 1-fenil-1,4- pentanodiona (9ag), 1-fenil-1,4-penten-1-ona (9ah) y 1-fenil-4-pentin-1-ona (9ai) como sustratos modelo para el estudio. Como se muestra en las entradas E-G, la reducción de 9ag, 9ah y 9ai proporcionó selectivamente los productos correspondientes a la reducción de la cetona aromática: 5-hidroxi-5-fenilpentan-2- ona (10ag), 1-fenil-4-penten-1-ol (10ah) y 1-fenil-4-pentin-1-ol (10ai). Es importante destacar que se detectó cualquier producto derivado de la reducción de un grupo funcional alifático incluso en ausencia de 9a. Más compleja es la reducción selectiva de cetonas aromáticas en presencia de aldehídos alifáticos altamente reactivos. Esta selectividad no es trivial y los procedimientos actuales se basan en etapas de protección-desprotección. La competición entre cantidades estequiométricas de acetofenona (9a) en presencia del aldehído alifático 3-fenilbutanal (9y) demostró que, cuando se usaba PSIr, sólo se reducía 9a (68 % de rendimiento) y el producto reducido 10y derivado de la reducción de 9y no se detectó al final de la reacción. Observamos que este sustrato se reduce bajo condiciones catalíticas (Tabla 1). En el caso de la utilización de PSCu en condiciones optimizadas para maximizar la reactividad, la cetona se redujo completamente junto con la presencia del aldehído reducido 10y en un rendimiento del 37 %. Reducción selectiva de cetonas aromáticas en presencia de cetonas, aldehídos, alquenos y alquinos alifáticos. Las condiciones empleadas usando PSIr y PSCu se describen en la Tabla 1.
Figure imgf000039_0001

Claims

REIVINDICACIONES
1. Un procedimiento fotocatalítico de reducción de un compuesto de fórmula (I) que produce un producto de fórmula (II):
Figure imgf000040_0001
en el que:
Y es O o CH2, y
R1 es un sistema de anillo aromático o heteroaromático que comprende de 1 a 2 anillos de 5 a 6 miembros, en el que los miembros se seleccionan entre C, CH, N, O y S, y en el que los anillos pueden estar sustituidos en cualquier posición disponible con uno o más grupos seleccionados entre halógeno, alquilo C1-C12 lineal o ramificado, haloalquilo C1-C12 lineal o ramificado y alquiloxi C1-C12 lineal o ramificado;
y
R2 se selecciona entre hidrógeno, un alquilo C1-C12, alquenilo C2-C13, alquinilo C2- C13 lineal o ramificado y un cicloalquilo C3-C8 en el que los grupos alquilo C1-C12, alquenilo C2-C13, alquinilo C2-C13 y cicloalquilo C3-C8 están opcionalmente sustituidos en cualquier posición disponible con uno o más radicales seleccionados entre el grupo que consiste en halo, hidroxilo, alquiloxi C1-C12, alquiloxicarbonilo C2-C7, alquilcarboniloxi C2-C7, alquilaminocarbonilo C2-C7, alquilcarbonilamino C2- C7, ciano, nitro y un sistema de anillo que comprende de 1 a 3 anillos, en el que cada anillo está saturado, insaturado o es aromático, comprendiendo los anillos de 3 a 7 miembros seleccionados entre C, CH, N, O y S, y en el que los anillos pueden estar sustituidos en cualquier posición disponible con uno o más grupos seleccionados entre alquilo C1-C12, haloalquilo C1-C12, alquiloxi C1-C12 hidroxilo, alquiloxicarbonilo C2-C7, alquilcarboniloxi C2-C7, alquilaminocarbonilo C2-C7, alquilcarbonilamino C2-C7, ciano y nitro;
con la condición de que:
cuando Y es O y R2 es H, R1 se selecciona además entre un alquilo C1-C12, alquenilo C2-C13, alquinilo C2-C13 lineal o ramificado, en el que el alquilo C1-C12, alquenilo C2-C13, alquinilo C2-C13 están opcionalmente sustituidos en cualquier posición disponible con uno o más radicales seleccionados entre el grupo que consiste en halo, hidroxilo, alquiloxi C1-C12, alquiloxicarbonilo C2-C7¸
alquilcarboniloxi C2-C7, alquilaminocarbonilo C2-C7, alquilcarbonilamino C2-C7, ciano, nitro y un sistema de anillo que comprende de 1 a 3 anillos, en el que cada anillo está saturado, insaturado o es aromático, comprendiendo los anillos de 3 a 7 miembros seleccionados entre C, CH, N, O y S, y en el que los anillos pueden estar sustituidos en cualquier posición disponible con uno o más grupos
seleccionados entre alquilo C1-C12, haloalquilo C1-C12, alquiloxi C1-C12, hidroxilo, alquiloxicarbonilo C2-C7, alquilcarboniloxi C2-C7, alquilaminocarbonilo C2-C7, alquilcarbonilamino C2-C7, ciano y nitro; y en el que el procedimiento comprende poner en contacto bajo irradiación de luz el compuesto de fórmula (I) con una fuente de hidruro, en presencia de un donante de electrones y un sistema catalizador, en el que dicho sistema catalizador consiste en un compuesto de cobalto(II) que comprende un ligando orgánico tetradentado o pentadentado coordinado a un átomo de cobalto a través de 4 o 5 átomos de nitrógeno, y un fotosensibilizador que tiene un potencial de oxidación adecuado para reducir el compuesto de cobalto(II) a un compuesto de cobalto(I).
2. El procedimiento de la reivindicación 1, en el que el sistema catalizador consiste en un compuesto de cobalto(II) que comprende un ligando orgánico tetradentado o pentadentado coordinado a un átomo de cobalto a través de 4 o 5 átomos de nitrógeno, en el que al menos uno de los 4 o 5 átomos de nitrógeno es un miembro de un anillo aromático de 5 o 6 miembros del ligando orgánico, y un fotosensibilizador que tiene un potencial de oxidación adecuado para reducir el compuesto de cobalto(II) a un compuesto de cobalto(I).
3. El procedimiento de acuerdo con cualquiera de las reivindicaciones 1 a 2, en el que el fotosensibilizador tiene un potencial de oxidación mayor que el potencial de oxidación del compuesto de cobalto(II).
4. El procedimiento de acuerdo con cualquiera de las reivindicaciones 1 a 3, en el que la luz es luz visible.
5. El procedimiento de acuerdo con cualquiera de las reivindicaciones 1 a 4, en el que la fuente de hidruro es un compuesto de fórmula ROH en el que R se selecciona entre hidrógeno y alquilo C1-C6.
6. El procedimiento de acuerdo con cualquiera de las reivindicaciones 1 a 5, en el que el donante de electrones se selecciona entre trietilamina y diisopropiletilamina.
7. El procedimiento de acuerdo con cualquiera de las reivindicaciones 1 a 6, en el que el compuesto de cobalto(II) se selecciona entre los compuestos de fórmula [Co(L3)X]+X- y [Co(L3)XX’] en los que:
X y X' son aniones que pueden ser iguales o diferentes;
L3 es un ligando nitrogenado tetradentado o pentadentado unido al átomo de Co a través de cuatro o cinco átomos de N que se selecciona entre los compuestos de fórmula (IIIa), (IIIb), (IIIc) y (IIId)
Figure imgf000042_0001
en el que cada R3 es un radical de fórmula (IV)
Figure imgf000042_0002
en el que Z es N o NH;
el enlace discontinuo representa un enlace simple C-Z o un enlace doble C=Z; y R10 y R11, junto con los átomos a los que están unidos, forman un sistema de anillo que comprende de uno a tres anillos insaturados o aromáticos de 5 a 6 miembros, en el que dichos anillos están fusionados o interconectados, los miembros del anillo se seleccionan entre C, CH, N y NH, en el que los anillos están además opcionalmente sustituidos con uno o más radicales seleccionados entre el grupo que consiste en alquilo C1-C6, haloalquilo C1-C6, halo, alquiloxi C1-C6,
alquiloxicarbonilo C1-C6, alquilcarboniloxi C1-C6, ciano y nitro;
R4 y R5 se seleccionan cada uno independientemente entre el grupo que consiste en: hidrógeno, alquilo C1-C6, haloalquilo C1-C6 y un radical de fórmula–
C(R10)(ZR11); siendo al menos uno de R4 y R5 un radical de fórmula–C(R10)(ZR11); R6 y R7 se seleccionan cada uno independientemente entre el grupo que consiste en: hidrógeno, alquilo C1-C6, halo, haloalquilo C1-C6 y alquiloxi C1-C6; o
alternativamente,
R6 y R7, junto con los átomos de carbono a los que están unidos, forman un cicloalquilo C3-C8 opcionalmente sustituido con uno o más radicales seleccionados entre el grupo que consiste en: alquilo C1-C6, halo, haloalquilo C1-C6 y alquiloxi C1- C6;
R8 es un radical seleccionado entre el grupo que consiste en hidrógeno, alquilo C1- C6 y haloalquilo C1-C6;
R8 es un radical seleccionado entre el grupo que consiste en hidrógeno, alquilo C1- C6 y haloalquilo C1-C6 y un radical de fórmula (IV);
o, alternativamente,
uno o dos de los pares de R6 y R8 y R7 y R8’, junto con los átomos de carbono a los que están unidos, forman un cicloalquilo C3-C8 opcionalmente sustituido con uno o más radicales seleccionados entre el grupo que consiste en alquilo C1-C6, halo, haloalquilo C1-C6 y alquiloxi C1-C6;
R9 se selecciona entre el grupo que consiste en un radical de fórmula R12O(C=O)-, R12(C=O)-, R12O(S=O)- y R12O(SO2)- en el que R12 se selecciona entre el grupo que consiste en alquilo C1-C6, haloalquilo C1-C6, bencilo y fenilo opcionalmente sustituido con alquilo C1-C6 y haloalquilo C1-C6; y en el que:
cuando el compuesto de cobalto(II) es un compuesto de fórmula [Co(L3)X]+X’-, L3 es un ligando nitrogenado pentadentado; y
cuando el compuesto de cobalto(II) es un compuesto de fórmula [Co(L3)XX’], L3 es un ligando nitrogenado tetradentado.
8. El procedimiento de reducción de acuerdo con la reivindicación 7, en el que el compuesto de cobalto(II) se selecciona entre : [Co(OTf)(Py2 Tstacn)](OTf), [Co(OTf)(DPA-Bpy)](OTf), [Co(OTf)(N4Py)](OTf), [Co(OTf)(H-CDPy3)](OTf), [Co(OTf)2(PDP)], [Co(OTf)(TPA)](OTf) y [Co(Cl)2(mcp)]
Figure imgf000044_0001
9. El procedimiento de acuerdo con cualquiera de las reivindicaciones 1 a 8, en el que el fotosensibilizador es un compuesto de fórmula [Cu(L1)(L2)]Z, en el que: Cu está en el estado de oxidación (+1);
Z es un anión
L1 es un ligando de fosfina bidentado unido al átomo de Cu a través de los átomos de P
L2 es un ligando de nitrógeno bidentado unido al átomo de Cu mediante dos átomos de N que consiste en un sistema de anillo que comprende de 2 a 7 anillos, en el que los anillos tienen de 5 a 6 miembros seleccionados entre el grupo que consiste en C, CH, N y NH; siendo al menos dos miembros N o NH; en el que los átomos de N unidos al átomo de cobre están separados por no más de tres miembros de anillo y son miembros de diferentes anillos;
los anillos son insaturados o aromáticos;
los anillos están fusionados o interconectados;
los anillos están opcionalmente sustituidos con uno o más radicales seleccionados entre el grupo que consiste en: alquilo C1-C6, haloalquilo C1-C6, halo, alquiloxi C1- C6, alquiloxicarbonilo C1-C6, alquilcarboniloxi C1-C6, ciano y nitro.
10. El procedimiento de reducción de acuerdo con la reivindicación 8, en el que el fotosensibilizador redox es [Cu(batocuproína)(Xantphos)](PF6)
Figure imgf000045_0001
11. El procedimiento de acuerdo con cualquiera de las reivindicaciones 1 a 8, en el que el fotosensibilizador redox es [Ir(bpy)(ppy)2](PF6).
12. El procedimiento de reducción de acuerdo con cualquiera de las reivindicaciones 9 a 11, en el que el compuesto de cobalto(II) es [Co(OTf)(Py2 Tstacn)](OTf).
13. El procedimiento de reducción de acuerdo con cualquiera de las reivindicaciones 9 a 10, en el que el [Cu(L1)(L2)]Z es [Cu(batocuproína)(Xantphos)](PF6) y el compuesto de cobalto(II) es [Co(OTf)(P 2 Ts n Tf
Figure imgf000045_0002
14. El procedimiento de reducción de acuerdo con cualquiera de las reivindicaciones 9, 10 y 13, en el que la relación molar entre el compuesto de fórmula [Cu(L1)(L2)]Y y el compuesto de cobalto(II) está comprendido entre 0,01:1 y 1: 0,01.
15. Una composición que comprende un sistema catalizador que consiste en: un compuesto de fórmula [Cu(L1)(L2)]Z, en el que:
Cu está en el estado de oxidación (+1);
Z es un anión
L1 es un ligando de fosfina bidentado unido al átomo de Cu a través de los átomos de P
L2 es un ligando de nitrógeno bidentado unido al átomo de Cu mediante dos átomos de N que consiste en un sistema de anillo que comprende de 2 a 7 anillos, en el que los anillos tienen de 5 a 6 miembros seleccionados entre el grupo que consiste en C, CH, N y NH; siendo al menos dos miembros N o NH;
los átomos de N unidos al átomo de cobre están separados por no más de tres miembros de anillo y son miembros de diferentes anillos;
los anillos son insaturados o aromáticos;
los anillos están fusionados o interconectados;
los anillos están opcionalmente sustituidos con uno o más radicales seleccionados entre el grupo que consiste en: alquilo C1-C6, haloalquilo C1-C6, halo, alquiloxi C1- C6, alquiloxicarbonilo C1-C6, alquilcarboniloxi C1-C6, ciano y nitro;
y un compuesto de cobalto(II) seleccionado entre los compuestos de fórmula [Co(L3)X]+X’- y [Co(L3)XX’] en el que:
X y X' son aniones iguales o diferentes; L3 es un ligando nitrogenado tetradentado o pentadentado unido al átomo de Co a través de cuatro o cinco átomos de N que se selecciona entre los compuestos de fórmula (IIIa), (IIIb), (IIIc) y (IIId)
Figure imgf000046_0001
en el que cada R3 es un radical de fórmula (IV)
Figure imgf000046_0002
en el que Z es N o NH;
el enlace discontinuo representa un enlace simple C-Z o un enlace doble C=Z; y R10 y R11, junto con los átomos a los que están unidos, forman un sistema de anillo que comprende de uno a tres anillos insaturados o aromáticos de 5 a 6 miembros, en el que dichos anillos están fusionados o interconectados, los miembros del anillo se seleccionan entre C, CH, N y NH, en el que los anillos están además opcionalmente sustituidos con uno o más radicales seleccionados entre el grupo que consiste en alquilo C1-C6, haloalquilo C1-C6, halo, alquiloxi C1-C6,
alquiloxicarbonilo C1-C6, alquilcarboniloxi C1-C6, ciano y nitro;
R4 y R5 se seleccionan cada uno independientemente entre el grupo que consiste en: hidrógeno, alquilo C1-C6, haloalquilo C1-C6 y un radical de fórmula–
C(R10)(ZR11); siendo al menos uno de R4 y R5 un radical de fórmula–C(R10)(ZR11); R6 y R7 se seleccionan cada uno independientemente entre el grupo que consiste en: hidrógeno, alquilo C1-C6, halo, haloalquilo C1-C6 y alquiloxi C1-C6; o
alternativamente,
R6 y R7, junto con los átomos de carbono a los que están unidos, forman un cicloalquilo C3-C8 opcionalmente sustituido con uno o más radicales seleccionados entre el grupo que consiste en: alquilo C1-C6, halo, haloalquilo C1-C6 y alquiloxi C1- C6;
R8 es un radical seleccionado entre el grupo que consiste en hidrógeno, alquilo C1- C6 y haloalquilo C1-C6;
R8 es un radical seleccionado entre el grupo que consiste en hidrógeno, alquilo C1- C6 y haloalquilo C1-C6 y un radical de fórmula (IV);
o, alternativamente,
uno o dos de los pares de R6 y R8 y R7 y R8’, junto con los átomos de carbono a los que están unidos, forman un cicloalquilo C3-C8 opcionalmente sustituido con uno o más radicales seleccionados entre el grupo que consiste en alquilo C1-C6, halo, haloalquilo C1-C6 y alquiloxi C1-C6;
R9 se selecciona entre el grupo que consiste en un radical de fórmula
Figure imgf000047_0001
R12(C=O)-, R12O(S=O)- y R12O(SO2)- en el que R12 se selecciona entre el grupo que consiste en alquilo C1-C6, haloalquilo C1-C6, bencilo y fenilo opcionalmente sustituido con alquilo C1-C6 y haloalquilo C1-C6; y en el que:
cuando el compuesto de cobalto(II) es un compuesto de fórmula [Co(L3)X]+X’-, L3 es un ligando nitrogenado pentadentado; y
cuando el compuesto de cobalto(II) es un compuesto de fórmula [Co(L3)XX’], L3 es un ligando nitrogenado tetradentado.
16. La composición de acuerdo con la reivindicación 15, en el que la relación molar entre el compuesto de fórmula [Cu(L1)(L2)]Y y el compuesto de cobalto(II) está comprendido entre 0,01:1 y 1: 0,01.
17. La composición de acuerdo con cualquiera de las reivindicaciones 15 y 16, en la que el compuesto de cobalto(II) se selecciona entre: [Co(OTf)(Py2 Tstacn)](OTf), [Co(OTf)(DPA-Bpy)](OTf), [Co(OTf)(N4Py)](OTf), [Co(OTf)(H-CDPy3)](OTf), [Co(OTf)2(PDP)], [Co(OTf)(TPA)](OTf), [Co(Cl)2(mcp)] y [Co(Cl)(Py)(dmgH)2].
Figure imgf000048_0001
18. La composición de acuerdo con cualquiera de las reivindicaciones 15 a 17, en la que el [Cu(L1)(L2)]Z es [Cu(batocuproína)(Xantphos)](PF6)
Figure imgf000048_0002
[C [Cuu(b(bataotchuopcruopínroai)n(eX)a(nXtapnhtopsh)o](sP)F](6P)F 6)
19. El procedimiento de reducción de acuerdo con cualquiera de las reivindicaciones 15 a 18, en el que el compuesto de cobalto(II) es [Co(OTf)(Py2 Tstacn)](OTf).
20. La composición de acuerdo con la reivindicación 19, en la que el [Cu(L1)(L2)]Z es [Cu(batocuproína)(Xantphos)](PF6) y el compuesto de cobalto(II) es [Co(II)(OTf)(Py2 Tstacn)](OTf).
Figure imgf000049_0001
21. La composición de acuerdo con la reivindicación 20, en el que la relación molar entre el compuesto de fórmula [Cu(L1)(L2)]Y y el compuesto de cobalto(II) está comprendido entre 0,01:1 y 1: 0,01. 22. La composición de acuerdo con la reivindicación 20, en la que la cantidad molar del compuesto de cobalto(II) es el doble de la cantidad molar del compuesto de fórmula [Cu(L1)(L2)]Y.
PCT/ES2017/070314 2017-05-16 2017-05-16 Procedimiento de reducción fotocatalítico y composición catalizadora utilizada en el procedimiento WO2018211154A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/ES2017/070314 WO2018211154A1 (es) 2017-05-16 2017-05-16 Procedimiento de reducción fotocatalítico y composición catalizadora utilizada en el procedimiento
EP18382332.7A EP3404007A1 (en) 2017-05-16 2018-05-15 Procedure for the activation of organic chloride compounds and a catalytic composition used in the process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2017/070314 WO2018211154A1 (es) 2017-05-16 2017-05-16 Procedimiento de reducción fotocatalítico y composición catalizadora utilizada en el procedimiento

Publications (1)

Publication Number Publication Date
WO2018211154A1 true WO2018211154A1 (es) 2018-11-22

Family

ID=59055226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2017/070314 WO2018211154A1 (es) 2017-05-16 2017-05-16 Procedimiento de reducción fotocatalítico y composición catalizadora utilizada en el procedimiento

Country Status (2)

Country Link
EP (1) EP3404007A1 (es)
WO (1) WO2018211154A1 (es)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112441936A (zh) * 2019-08-27 2021-03-05 浙江工业大学 一种合成烯胺酮类化合物的方法
CN112441940A (zh) * 2019-08-27 2021-03-05 浙江工业大学 一种合成三氟乙氧基烯碘类化合物的方法
CN112441935A (zh) * 2019-08-27 2021-03-05 浙江工业大学 一种β-氨基酮类化合物的合成方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0305180A2 (en) 1987-08-27 1989-03-01 The President And Fellows Of Harvard College Enantioselective reduction of ketones
EP1086941A1 (en) 1999-03-09 2001-03-28 Tokuyama Corporation Process for preparing reductants of unsaturated organic compounds by the use of trichlorosilane and reducing agents

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0305180A2 (en) 1987-08-27 1989-03-01 The President And Fellows Of Harvard College Enantioselective reduction of ketones
EP1086941A1 (en) 1999-03-09 2001-03-28 Tokuyama Corporation Process for preparing reductants of unsaturated organic compounds by the use of trichlorosilane and reducing agents

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ALASTAIR ET AL.: "Copper-based photosensitisers in water reduction: a more efficient in situ formed system and improved mechanistic understanding", CHEM. EU. J., vol. 22, 2016, pages 1233 - 1238
CHYONGJIN PAC ET AL.: "Tris-(2,2'-bipyridine) ruthenium(2+)-mediated photoreduction of olefins with 1-benzyl-1,4-dihydronicotinamide: a mechanistic probe for electron-transfer reactions of NAD(P)H-model compounds", J. AM. CHEM. SOC., vol. 103, no. 21, 1981, pages 6495 - 6497
DAVID Z. ZEE ET AL: "Metal-Polypyridyl Catalysts for Electro- and Photochemical Reduction of Water to Hydrogen", ACCOUNTS OF CHEMICAL RESEARCH., vol. 48, no. 7, 21 July 2015 (2015-07-21), US, pages 2027 - 2036, XP055424309, ISSN: 0001-4842, DOI: 10.1021/acs.accounts.5b00082 *
SHIGEYOSHI SAKAKI ET AL.: "Significant phosphine ligand effect on the photochemical reactivity of [Cu(N-N)1_ + (N-N = 1,10-phenanthroline or 2,9-dimethyl-1,10 phenanthroline; L = tertiary phosphine", J. CHEM. SOC. ALTON TRANS., 1988
SHU-PING LUO ET AL: "Photocatalytic Water Reduction with Copper-Based Photosensitizers: A Noble-Metal-Free System", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 52, no. 1, 2 January 2013 (2013-01-02), pages 419 - 423, XP055065998, ISSN: 1433-7851, DOI: 10.1002/anie.201205915 *
T. GHOSH ET AL: ")-H: a detailed mechanistic study", CHEMICAL SCIENCE, vol. 6, no. 3, 1 January 2015 (2015-01-01), United Kingdom, pages 2027 - 2034, XP055423037, ISSN: 2041-6520, DOI: 10.1039/C4SC03709J *
TIOJ; MOLINARI, R; LAVORATO, C.; ARGURIO, P., CHEM. ENG. J., 2015, pages 274 - 307

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112441936A (zh) * 2019-08-27 2021-03-05 浙江工业大学 一种合成烯胺酮类化合物的方法
CN112441940A (zh) * 2019-08-27 2021-03-05 浙江工业大学 一种合成三氟乙氧基烯碘类化合物的方法
CN112441935A (zh) * 2019-08-27 2021-03-05 浙江工业大学 一种β-氨基酮类化合物的合成方法
CN112441935B (zh) * 2019-08-27 2022-07-22 浙江工业大学 一种β-氨基酮类化合物的合成方法
CN112441936B (zh) * 2019-08-27 2022-07-22 浙江工业大学 一种合成烯胺酮类化合物的方法
CN112441940B (zh) * 2019-08-27 2022-07-22 浙江工业大学 一种合成三氟乙氧基烯碘类化合物的方法

Also Published As

Publication number Publication date
EP3404007A1 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
Beaudelot et al. Photoactive copper complexes: properties and applications
Kinzel et al. Transition metal complexes as catalysts for the electroconversion of CO2: an organometallic perspective
Leifert et al. The persistent radical effect in organic synthesis
García-Álvarez et al. Metal-catalyzed amide bond forming reactions in an environmentally friendly aqueous medium: nitrile hydrations and beyond
Sen et al. Role of 2 nd sphere H-bonding residues in tuning the kinetics of CO 2 reduction to CO by iron porphyrin complexes
Winter et al. Metal‐Terpyridine Complexes in Catalytic Application–A Spotlight on the Last Decade
Pang et al. Pyrylium salts: selective reagents for the activation of primary amino groups in organic synthesis
Nakagawa et al. A triple photoredox/cobalt/brønsted acid catalysis enabling markovnikov hydroalkoxylation of unactivated alkenes
Kopylovich et al. Template Syntheses of Copper (II) Complexes from Arylhydrazones of Malononitrile and their Catalytic Activity towards Alcohol Oxidations and the Nitroaldol Reaction: Hydrogen Bond‐Assisted Ligand Liberation and E/Z Isomerisation
Kopylovich et al. Complexes of copper (II) with 3-(ortho-substituted phenylhydrazo) pentane-2, 4-diones: Syntheses, properties and catalytic activity for cyclohexane oxidation
Liyanage et al. Photochemical CO 2 reduction with mononuclear and dinuclear rhenium catalysts bearing a pendant anthracene chromophore
Mahmudov et al. Mn II and Cu II complexes with arylhydrazones of active methylene compounds as effective heterogeneous catalysts for solvent-and additive-free microwave-assisted peroxidative oxidation of alcohols
Fernandes et al. Bis-and tris-pyridyl amino and imino thioether Cu and Fe complexes. Thermal and microwave-assisted peroxidative oxidations of 1-phenylethanol and cyclohexane in the presence of various N-based additives
Patil et al. Methods of nitriles synthesis from amines through oxidative dehydrogenation
WO2018211154A1 (es) Procedimiento de reducción fotocatalítico y composición catalizadora utilizada en el procedimiento
Bour et al. Well-defined organo-gallium complexes as Lewis acids for molecular catalysis: Structure–stability–activity relationships
Jing et al. Activation of Dioxygen by Cobaloxime and Nitric Oxide for Efficient TEMPO‐Catalyzed Oxidation of Alcohols
KR20070118096A (ko) 탄화수소의 작용기화된 생성물로의 전환을 위한 촉매시스템
Nakada et al. Redox-active ligands for chemical, electrochemical, and photochemical molecular conversions
Biswal et al. New polymeric, dimeric and mononuclear dioxidomolybdenum (VI) complexes with an ONO donor ligand: crystal structures, DFT calculations, catalytic performance and protein binding study of the ligand
Chen et al. Photocatalytic oxidation of alkenes and alcohols in water by a manganese (v) nitrido complex
Das et al. Cobalt (III)-oxo cubane clusters as catalysts for oxidation of organic substrates
Bocian et al. New benzothiazole based copper (II) hydrazone Schiff base complexes for selective and environmentally friendly oxidation of benzylic alcohols: The importance of the bimetallic species tuned by the choice of the counterion
Bugaenko et al. Generation of aryl radicals by redox processes. Recent progress in the arylation methodology
Karmakar et al. Solvent-free microwave-assisted peroxidative oxidation of alcohols catalyzed by iron (III)-TEMPO catalytic systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17729906

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17729906

Country of ref document: EP

Kind code of ref document: A1